xref: /linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision 61f96e684edd28ca40555ec49ea1555df31ba619)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
__er16flash(struct e1000_hw * hw,unsigned long reg)141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
__er32flash(struct e1000_hw * hw,unsigned long reg)146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
e1000_phy_is_accessible_pchlan(struct e1000_hw * hw)176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Switching PHY interface always returns MDI error
226 			 * so disable retry mechanism to avoid wasting time
227 			 */
228 			e1000e_disable_phy_retry(hw);
229 
230 			/* Unforce SMBus mode in PHY */
231 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234 
235 			e1000e_enable_phy_retry(hw);
236 
237 			/* Unforce SMBus mode in MAC */
238 			mac_reg = er32(CTRL_EXT);
239 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
240 			ew32(CTRL_EXT, mac_reg);
241 		}
242 	}
243 
244 	return true;
245 }
246 
247 /**
248  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249  *  @hw: pointer to the HW structure
250  *
251  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252  *  used to reset the PHY to a quiescent state when necessary.
253  **/
e1000_toggle_lanphypc_pch_lpt(struct e1000_hw * hw)254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256 	u32 mac_reg;
257 
258 	/* Set Phy Config Counter to 50msec */
259 	mac_reg = er32(FEXTNVM3);
260 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 	ew32(FEXTNVM3, mac_reg);
263 
264 	/* Toggle LANPHYPC Value bit */
265 	mac_reg = er32(CTRL);
266 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 	ew32(CTRL, mac_reg);
269 	e1e_flush();
270 	usleep_range(10, 20);
271 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 	ew32(CTRL, mac_reg);
273 	e1e_flush();
274 
275 	if (hw->mac.type < e1000_pch_lpt) {
276 		msleep(50);
277 	} else {
278 		u16 count = 20;
279 
280 		do {
281 			usleep_range(5000, 6000);
282 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283 
284 		msleep(30);
285 	}
286 }
287 
288 /**
289  * e1000_reconfigure_k1_exit_timeout - reconfigure K1 exit timeout to
290  * align to MTP and later platform requirements.
291  * @hw: pointer to the HW structure
292  *
293  * Context: PHY semaphore must be held by caller.
294  * Return: 0 on success, negative on failure
295  */
e1000_reconfigure_k1_exit_timeout(struct e1000_hw * hw)296 static s32 e1000_reconfigure_k1_exit_timeout(struct e1000_hw *hw)
297 {
298 	u16 phy_timeout;
299 	u32 fextnvm12;
300 	s32 ret_val;
301 
302 	if (hw->mac.type < e1000_pch_mtp)
303 		return 0;
304 
305 	/* Change Kumeran K1 power down state from P0s to P1 */
306 	fextnvm12 = er32(FEXTNVM12);
307 	fextnvm12 &= ~E1000_FEXTNVM12_PHYPD_CTRL_MASK;
308 	fextnvm12 |= E1000_FEXTNVM12_PHYPD_CTRL_P1;
309 	ew32(FEXTNVM12, fextnvm12);
310 
311 	/* Wait for the interface the settle */
312 	usleep_range(1000, 1100);
313 
314 	/* Change K1 exit timeout */
315 	ret_val = e1e_rphy_locked(hw, I217_PHY_TIMEOUTS_REG,
316 				  &phy_timeout);
317 	if (ret_val)
318 		return ret_val;
319 
320 	phy_timeout &= ~I217_PHY_TIMEOUTS_K1_EXIT_TO_MASK;
321 	phy_timeout |= 0xF00;
322 
323 	return e1e_wphy_locked(hw, I217_PHY_TIMEOUTS_REG,
324 				  phy_timeout);
325 }
326 
327 /**
328  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
329  *  @hw: pointer to the HW structure
330  *
331  *  Workarounds/flow necessary for PHY initialization during driver load
332  *  and resume paths.
333  **/
e1000_init_phy_workarounds_pchlan(struct e1000_hw * hw)334 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
335 {
336 	struct e1000_adapter *adapter = hw->adapter;
337 	u32 mac_reg, fwsm = er32(FWSM);
338 	s32 ret_val;
339 
340 	/* Gate automatic PHY configuration by hardware on managed and
341 	 * non-managed 82579 and newer adapters.
342 	 */
343 	e1000_gate_hw_phy_config_ich8lan(hw, true);
344 
345 	/* It is not possible to be certain of the current state of ULP
346 	 * so forcibly disable it.
347 	 */
348 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
349 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
350 	if (ret_val)
351 		e_warn("Failed to disable ULP\n");
352 
353 	ret_val = hw->phy.ops.acquire(hw);
354 	if (ret_val) {
355 		e_dbg("Failed to initialize PHY flow\n");
356 		goto out;
357 	}
358 
359 	/* There is no guarantee that the PHY is accessible at this time
360 	 * so disable retry mechanism to avoid wasting time
361 	 */
362 	e1000e_disable_phy_retry(hw);
363 
364 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
365 	 * inaccessible and resetting the PHY is not blocked, toggle the
366 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
367 	 */
368 	switch (hw->mac.type) {
369 	case e1000_pch_mtp:
370 	case e1000_pch_lnp:
371 	case e1000_pch_ptp:
372 	case e1000_pch_nvp:
373 		/* At this point the PHY might be inaccessible so don't
374 		 * propagate the failure
375 		 */
376 		if (e1000_reconfigure_k1_exit_timeout(hw))
377 			e_dbg("Failed to reconfigure K1 exit timeout\n");
378 
379 		fallthrough;
380 	case e1000_pch_lpt:
381 	case e1000_pch_spt:
382 	case e1000_pch_cnp:
383 	case e1000_pch_tgp:
384 	case e1000_pch_adp:
385 		if (e1000_phy_is_accessible_pchlan(hw))
386 			break;
387 
388 		/* Before toggling LANPHYPC, see if PHY is accessible by
389 		 * forcing MAC to SMBus mode first.
390 		 */
391 		mac_reg = er32(CTRL_EXT);
392 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
393 		ew32(CTRL_EXT, mac_reg);
394 
395 		/* Wait 50 milliseconds for MAC to finish any retries
396 		 * that it might be trying to perform from previous
397 		 * attempts to acknowledge any phy read requests.
398 		 */
399 		msleep(50);
400 
401 		fallthrough;
402 	case e1000_pch2lan:
403 		if (e1000_phy_is_accessible_pchlan(hw))
404 			break;
405 
406 		fallthrough;
407 	case e1000_pchlan:
408 		if ((hw->mac.type == e1000_pchlan) &&
409 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
410 			break;
411 
412 		if (hw->phy.ops.check_reset_block(hw)) {
413 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
414 			ret_val = -E1000_ERR_PHY;
415 			break;
416 		}
417 
418 		/* Toggle LANPHYPC Value bit */
419 		e1000_toggle_lanphypc_pch_lpt(hw);
420 		if (hw->mac.type >= e1000_pch_lpt) {
421 			if (e1000_phy_is_accessible_pchlan(hw))
422 				break;
423 
424 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
425 			 * so ensure that the MAC is also out of SMBus mode
426 			 */
427 			mac_reg = er32(CTRL_EXT);
428 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
429 			ew32(CTRL_EXT, mac_reg);
430 
431 			if (e1000_phy_is_accessible_pchlan(hw))
432 				break;
433 
434 			ret_val = -E1000_ERR_PHY;
435 		}
436 		break;
437 	default:
438 		break;
439 	}
440 
441 	e1000e_enable_phy_retry(hw);
442 
443 	hw->phy.ops.release(hw);
444 	if (!ret_val) {
445 
446 		/* Check to see if able to reset PHY.  Print error if not */
447 		if (hw->phy.ops.check_reset_block(hw)) {
448 			e_err("Reset blocked by ME\n");
449 			goto out;
450 		}
451 
452 		/* Reset the PHY before any access to it.  Doing so, ensures
453 		 * that the PHY is in a known good state before we read/write
454 		 * PHY registers.  The generic reset is sufficient here,
455 		 * because we haven't determined the PHY type yet.
456 		 */
457 		ret_val = e1000e_phy_hw_reset_generic(hw);
458 		if (ret_val)
459 			goto out;
460 
461 		/* On a successful reset, possibly need to wait for the PHY
462 		 * to quiesce to an accessible state before returning control
463 		 * to the calling function.  If the PHY does not quiesce, then
464 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
465 		 *  the PHY is in.
466 		 */
467 		ret_val = hw->phy.ops.check_reset_block(hw);
468 		if (ret_val) {
469 			e_err("ME blocked access to PHY after reset\n");
470 			goto out;
471 		}
472 
473 		if (hw->mac.type >= e1000_pch_mtp) {
474 			ret_val = hw->phy.ops.acquire(hw);
475 			if (ret_val) {
476 				e_err("Failed to reconfigure K1 exit timeout\n");
477 				goto out;
478 			}
479 			ret_val = e1000_reconfigure_k1_exit_timeout(hw);
480 			hw->phy.ops.release(hw);
481 		}
482 	}
483 
484 out:
485 	/* Ungate automatic PHY configuration on non-managed 82579 */
486 	if ((hw->mac.type == e1000_pch2lan) &&
487 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
488 		usleep_range(10000, 11000);
489 		e1000_gate_hw_phy_config_ich8lan(hw, false);
490 	}
491 
492 	return ret_val;
493 }
494 
495 /**
496  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
497  *  @hw: pointer to the HW structure
498  *
499  *  Initialize family-specific PHY parameters and function pointers.
500  **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)501 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
502 {
503 	struct e1000_phy_info *phy = &hw->phy;
504 	s32 ret_val;
505 
506 	phy->addr = 1;
507 	phy->reset_delay_us = 100;
508 
509 	phy->ops.set_page = e1000_set_page_igp;
510 	phy->ops.read_reg = e1000_read_phy_reg_hv;
511 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
512 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
513 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
514 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
515 	phy->ops.write_reg = e1000_write_phy_reg_hv;
516 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
517 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
518 	phy->ops.power_up = e1000_power_up_phy_copper;
519 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
520 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
521 
522 	phy->id = e1000_phy_unknown;
523 
524 	if (hw->mac.type == e1000_pch_mtp) {
525 		phy->retry_count = 2;
526 		e1000e_enable_phy_retry(hw);
527 	}
528 
529 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
530 	if (ret_val)
531 		return ret_val;
532 
533 	if (phy->id == e1000_phy_unknown)
534 		switch (hw->mac.type) {
535 		default:
536 			ret_val = e1000e_get_phy_id(hw);
537 			if (ret_val)
538 				return ret_val;
539 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
540 				break;
541 			fallthrough;
542 		case e1000_pch2lan:
543 		case e1000_pch_lpt:
544 		case e1000_pch_spt:
545 		case e1000_pch_cnp:
546 		case e1000_pch_tgp:
547 		case e1000_pch_adp:
548 		case e1000_pch_mtp:
549 		case e1000_pch_lnp:
550 		case e1000_pch_ptp:
551 		case e1000_pch_nvp:
552 			/* In case the PHY needs to be in mdio slow mode,
553 			 * set slow mode and try to get the PHY id again.
554 			 */
555 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
556 			if (ret_val)
557 				return ret_val;
558 			ret_val = e1000e_get_phy_id(hw);
559 			if (ret_val)
560 				return ret_val;
561 			break;
562 		}
563 	phy->type = e1000e_get_phy_type_from_id(phy->id);
564 
565 	switch (phy->type) {
566 	case e1000_phy_82577:
567 	case e1000_phy_82579:
568 	case e1000_phy_i217:
569 		phy->ops.check_polarity = e1000_check_polarity_82577;
570 		phy->ops.force_speed_duplex =
571 		    e1000_phy_force_speed_duplex_82577;
572 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
573 		phy->ops.get_info = e1000_get_phy_info_82577;
574 		phy->ops.commit = e1000e_phy_sw_reset;
575 		break;
576 	case e1000_phy_82578:
577 		phy->ops.check_polarity = e1000_check_polarity_m88;
578 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
579 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
580 		phy->ops.get_info = e1000e_get_phy_info_m88;
581 		break;
582 	default:
583 		ret_val = -E1000_ERR_PHY;
584 		break;
585 	}
586 
587 	return ret_val;
588 }
589 
590 /**
591  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
592  *  @hw: pointer to the HW structure
593  *
594  *  Initialize family-specific PHY parameters and function pointers.
595  **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)596 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
597 {
598 	struct e1000_phy_info *phy = &hw->phy;
599 	s32 ret_val;
600 	u16 i = 0;
601 
602 	phy->addr = 1;
603 	phy->reset_delay_us = 100;
604 
605 	phy->ops.power_up = e1000_power_up_phy_copper;
606 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
607 
608 	/* We may need to do this twice - once for IGP and if that fails,
609 	 * we'll set BM func pointers and try again
610 	 */
611 	ret_val = e1000e_determine_phy_address(hw);
612 	if (ret_val) {
613 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
614 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
615 		ret_val = e1000e_determine_phy_address(hw);
616 		if (ret_val) {
617 			e_dbg("Cannot determine PHY addr. Erroring out\n");
618 			return ret_val;
619 		}
620 	}
621 
622 	phy->id = 0;
623 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
624 	       (i++ < 100)) {
625 		usleep_range(1000, 1100);
626 		ret_val = e1000e_get_phy_id(hw);
627 		if (ret_val)
628 			return ret_val;
629 	}
630 
631 	/* Verify phy id */
632 	switch (phy->id) {
633 	case IGP03E1000_E_PHY_ID:
634 		phy->type = e1000_phy_igp_3;
635 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
636 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
637 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
638 		phy->ops.get_info = e1000e_get_phy_info_igp;
639 		phy->ops.check_polarity = e1000_check_polarity_igp;
640 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
641 		break;
642 	case IFE_E_PHY_ID:
643 	case IFE_PLUS_E_PHY_ID:
644 	case IFE_C_E_PHY_ID:
645 		phy->type = e1000_phy_ife;
646 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
647 		phy->ops.get_info = e1000_get_phy_info_ife;
648 		phy->ops.check_polarity = e1000_check_polarity_ife;
649 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
650 		break;
651 	case BME1000_E_PHY_ID:
652 		phy->type = e1000_phy_bm;
653 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
654 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
655 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
656 		phy->ops.commit = e1000e_phy_sw_reset;
657 		phy->ops.get_info = e1000e_get_phy_info_m88;
658 		phy->ops.check_polarity = e1000_check_polarity_m88;
659 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
660 		break;
661 	default:
662 		return -E1000_ERR_PHY;
663 	}
664 
665 	return 0;
666 }
667 
668 /**
669  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
670  *  @hw: pointer to the HW structure
671  *
672  *  Initialize family-specific NVM parameters and function
673  *  pointers.
674  **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)675 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
676 {
677 	struct e1000_nvm_info *nvm = &hw->nvm;
678 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
679 	u32 gfpreg, sector_base_addr, sector_end_addr;
680 	u16 i;
681 	u32 nvm_size;
682 
683 	nvm->type = e1000_nvm_flash_sw;
684 
685 	if (hw->mac.type >= e1000_pch_spt) {
686 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
687 		 * STRAP register. This is because in SPT the GbE Flash region
688 		 * is no longer accessed through the flash registers. Instead,
689 		 * the mechanism has changed, and the Flash region access
690 		 * registers are now implemented in GbE memory space.
691 		 */
692 		nvm->flash_base_addr = 0;
693 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
694 		    * NVM_SIZE_MULTIPLIER;
695 		nvm->flash_bank_size = nvm_size / 2;
696 		/* Adjust to word count */
697 		nvm->flash_bank_size /= sizeof(u16);
698 		/* Set the base address for flash register access */
699 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
700 	} else {
701 		/* Can't read flash registers if register set isn't mapped. */
702 		if (!hw->flash_address) {
703 			e_dbg("ERROR: Flash registers not mapped\n");
704 			return -E1000_ERR_CONFIG;
705 		}
706 
707 		gfpreg = er32flash(ICH_FLASH_GFPREG);
708 
709 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
710 		 * Add 1 to sector_end_addr since this sector is included in
711 		 * the overall size.
712 		 */
713 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
714 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
715 
716 		/* flash_base_addr is byte-aligned */
717 		nvm->flash_base_addr = sector_base_addr
718 		    << FLASH_SECTOR_ADDR_SHIFT;
719 
720 		/* find total size of the NVM, then cut in half since the total
721 		 * size represents two separate NVM banks.
722 		 */
723 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
724 					<< FLASH_SECTOR_ADDR_SHIFT);
725 		nvm->flash_bank_size /= 2;
726 		/* Adjust to word count */
727 		nvm->flash_bank_size /= sizeof(u16);
728 	}
729 
730 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
731 
732 	/* Clear shadow ram */
733 	for (i = 0; i < nvm->word_size; i++) {
734 		dev_spec->shadow_ram[i].modified = false;
735 		dev_spec->shadow_ram[i].value = 0xFFFF;
736 	}
737 
738 	return 0;
739 }
740 
741 /**
742  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
743  *  @hw: pointer to the HW structure
744  *
745  *  Initialize family-specific MAC parameters and function
746  *  pointers.
747  **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)748 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
749 {
750 	struct e1000_mac_info *mac = &hw->mac;
751 
752 	/* Set media type function pointer */
753 	hw->phy.media_type = e1000_media_type_copper;
754 
755 	/* Set mta register count */
756 	mac->mta_reg_count = 32;
757 	/* Set rar entry count */
758 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
759 	if (mac->type == e1000_ich8lan)
760 		mac->rar_entry_count--;
761 	/* FWSM register */
762 	mac->has_fwsm = true;
763 	/* ARC subsystem not supported */
764 	mac->arc_subsystem_valid = false;
765 	/* Adaptive IFS supported */
766 	mac->adaptive_ifs = true;
767 
768 	/* LED and other operations */
769 	switch (mac->type) {
770 	case e1000_ich8lan:
771 	case e1000_ich9lan:
772 	case e1000_ich10lan:
773 		/* check management mode */
774 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
775 		/* ID LED init */
776 		mac->ops.id_led_init = e1000e_id_led_init_generic;
777 		/* blink LED */
778 		mac->ops.blink_led = e1000e_blink_led_generic;
779 		/* setup LED */
780 		mac->ops.setup_led = e1000e_setup_led_generic;
781 		/* cleanup LED */
782 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
783 		/* turn on/off LED */
784 		mac->ops.led_on = e1000_led_on_ich8lan;
785 		mac->ops.led_off = e1000_led_off_ich8lan;
786 		break;
787 	case e1000_pch2lan:
788 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
789 		mac->ops.rar_set = e1000_rar_set_pch2lan;
790 		fallthrough;
791 	case e1000_pch_lpt:
792 	case e1000_pch_spt:
793 	case e1000_pch_cnp:
794 	case e1000_pch_tgp:
795 	case e1000_pch_adp:
796 	case e1000_pch_mtp:
797 	case e1000_pch_lnp:
798 	case e1000_pch_ptp:
799 	case e1000_pch_nvp:
800 	case e1000_pchlan:
801 		/* check management mode */
802 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
803 		/* ID LED init */
804 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
805 		/* setup LED */
806 		mac->ops.setup_led = e1000_setup_led_pchlan;
807 		/* cleanup LED */
808 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
809 		/* turn on/off LED */
810 		mac->ops.led_on = e1000_led_on_pchlan;
811 		mac->ops.led_off = e1000_led_off_pchlan;
812 		break;
813 	default:
814 		break;
815 	}
816 
817 	if (mac->type >= e1000_pch_lpt) {
818 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
819 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
820 		mac->ops.setup_physical_interface =
821 		    e1000_setup_copper_link_pch_lpt;
822 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
823 	}
824 
825 	/* Enable PCS Lock-loss workaround for ICH8 */
826 	if (mac->type == e1000_ich8lan)
827 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
828 
829 	return 0;
830 }
831 
832 /**
833  *  __e1000_access_emi_reg_locked - Read/write EMI register
834  *  @hw: pointer to the HW structure
835  *  @address: EMI address to program
836  *  @data: pointer to value to read/write from/to the EMI address
837  *  @read: boolean flag to indicate read or write
838  *
839  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
840  **/
__e1000_access_emi_reg_locked(struct e1000_hw * hw,u16 address,u16 * data,bool read)841 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
842 					 u16 *data, bool read)
843 {
844 	s32 ret_val;
845 
846 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
847 	if (ret_val)
848 		return ret_val;
849 
850 	if (read)
851 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
852 	else
853 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
854 
855 	return ret_val;
856 }
857 
858 /**
859  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
860  *  @hw: pointer to the HW structure
861  *  @addr: EMI address to program
862  *  @data: value to be read from the EMI address
863  *
864  *  Assumes the SW/FW/HW Semaphore is already acquired.
865  **/
e1000_read_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 * data)866 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
867 {
868 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
869 }
870 
871 /**
872  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
873  *  @hw: pointer to the HW structure
874  *  @addr: EMI address to program
875  *  @data: value to be written to the EMI address
876  *
877  *  Assumes the SW/FW/HW Semaphore is already acquired.
878  **/
e1000_write_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 data)879 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
880 {
881 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
882 }
883 
884 /**
885  *  e1000_set_eee_pchlan - Enable/disable EEE support
886  *  @hw: pointer to the HW structure
887  *
888  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
889  *  the link and the EEE capabilities of the link partner.  The LPI Control
890  *  register bits will remain set only if/when link is up.
891  *
892  *  EEE LPI must not be asserted earlier than one second after link is up.
893  *  On 82579, EEE LPI should not be enabled until such time otherwise there
894  *  can be link issues with some switches.  Other devices can have EEE LPI
895  *  enabled immediately upon link up since they have a timer in hardware which
896  *  prevents LPI from being asserted too early.
897  **/
e1000_set_eee_pchlan(struct e1000_hw * hw)898 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
899 {
900 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
901 	s32 ret_val;
902 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
903 
904 	switch (hw->phy.type) {
905 	case e1000_phy_82579:
906 		lpa = I82579_EEE_LP_ABILITY;
907 		pcs_status = I82579_EEE_PCS_STATUS;
908 		adv_addr = I82579_EEE_ADVERTISEMENT;
909 		break;
910 	case e1000_phy_i217:
911 		lpa = I217_EEE_LP_ABILITY;
912 		pcs_status = I217_EEE_PCS_STATUS;
913 		adv_addr = I217_EEE_ADVERTISEMENT;
914 		break;
915 	default:
916 		return 0;
917 	}
918 
919 	ret_val = hw->phy.ops.acquire(hw);
920 	if (ret_val)
921 		return ret_val;
922 
923 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
924 	if (ret_val)
925 		goto release;
926 
927 	/* Clear bits that enable EEE in various speeds */
928 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
929 
930 	/* Enable EEE if not disabled by user */
931 	if (!dev_spec->eee_disable) {
932 		/* Save off link partner's EEE ability */
933 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
934 						    &dev_spec->eee_lp_ability);
935 		if (ret_val)
936 			goto release;
937 
938 		/* Read EEE advertisement */
939 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
940 		if (ret_val)
941 			goto release;
942 
943 		/* Enable EEE only for speeds in which the link partner is
944 		 * EEE capable and for which we advertise EEE.
945 		 */
946 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
947 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
948 
949 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
950 			e1e_rphy_locked(hw, MII_LPA, &data);
951 			if (data & LPA_100FULL)
952 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
953 			else
954 				/* EEE is not supported in 100Half, so ignore
955 				 * partner's EEE in 100 ability if full-duplex
956 				 * is not advertised.
957 				 */
958 				dev_spec->eee_lp_ability &=
959 				    ~I82579_EEE_100_SUPPORTED;
960 		}
961 	}
962 
963 	if (hw->phy.type == e1000_phy_82579) {
964 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
965 						    &data);
966 		if (ret_val)
967 			goto release;
968 
969 		data &= ~I82579_LPI_100_PLL_SHUT;
970 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
971 						     data);
972 	}
973 
974 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
975 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
976 	if (ret_val)
977 		goto release;
978 
979 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
980 release:
981 	hw->phy.ops.release(hw);
982 
983 	return ret_val;
984 }
985 
986 /**
987  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
988  *  @hw:   pointer to the HW structure
989  *  @link: link up bool flag
990  *
991  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
992  *  preventing further DMA write requests.  Workaround the issue by disabling
993  *  the de-assertion of the clock request when in 1Gpbs mode.
994  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
995  *  speeds in order to avoid Tx hangs.
996  **/
e1000_k1_workaround_lpt_lp(struct e1000_hw * hw,bool link)997 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
998 {
999 	u32 fextnvm6 = er32(FEXTNVM6);
1000 	u32 status = er32(STATUS);
1001 	s32 ret_val = 0;
1002 	u16 reg;
1003 
1004 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1005 		ret_val = hw->phy.ops.acquire(hw);
1006 		if (ret_val)
1007 			return ret_val;
1008 
1009 		ret_val =
1010 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1011 						&reg);
1012 		if (ret_val)
1013 			goto release;
1014 
1015 		ret_val =
1016 		    e1000e_write_kmrn_reg_locked(hw,
1017 						 E1000_KMRNCTRLSTA_K1_CONFIG,
1018 						 reg &
1019 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
1020 		if (ret_val)
1021 			goto release;
1022 
1023 		usleep_range(10, 20);
1024 
1025 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1026 
1027 		ret_val =
1028 		    e1000e_write_kmrn_reg_locked(hw,
1029 						 E1000_KMRNCTRLSTA_K1_CONFIG,
1030 						 reg);
1031 release:
1032 		hw->phy.ops.release(hw);
1033 	} else {
1034 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1035 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1036 
1037 		if ((hw->phy.revision > 5) || !link ||
1038 		    ((status & E1000_STATUS_SPEED_100) &&
1039 		     (status & E1000_STATUS_FD)))
1040 			goto update_fextnvm6;
1041 
1042 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
1043 		if (ret_val)
1044 			return ret_val;
1045 
1046 		/* Clear link status transmit timeout */
1047 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1048 
1049 		if (status & E1000_STATUS_SPEED_100) {
1050 			/* Set inband Tx timeout to 5x10us for 100Half */
1051 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1052 
1053 			/* Do not extend the K1 entry latency for 100Half */
1054 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1055 		} else {
1056 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1057 			reg |= 50 <<
1058 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1059 
1060 			/* Extend the K1 entry latency for 10 Mbps */
1061 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1062 		}
1063 
1064 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1065 		if (ret_val)
1066 			return ret_val;
1067 
1068 update_fextnvm6:
1069 		ew32(FEXTNVM6, fextnvm6);
1070 	}
1071 
1072 	return ret_val;
1073 }
1074 
1075 /**
1076  *  e1000_platform_pm_pch_lpt - Set platform power management values
1077  *  @hw: pointer to the HW structure
1078  *  @link: bool indicating link status
1079  *
1080  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1081  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1082  *  when link is up (which must not exceed the maximum latency supported
1083  *  by the platform), otherwise specify there is no LTR requirement.
1084  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1085  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1086  *  Capability register set, on this device LTR is set by writing the
1087  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1088  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1089  *  message to the PMC.
1090  **/
e1000_platform_pm_pch_lpt(struct e1000_hw * hw,bool link)1091 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1092 {
1093 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1094 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1095 	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1096 	u32 lat_enc_d = 0;	/* latency decoded */
1097 	u16 lat_enc = 0;	/* latency encoded */
1098 
1099 	if (link) {
1100 		u16 speed, duplex, scale = 0;
1101 		u16 max_snoop, max_nosnoop;
1102 		u16 max_ltr_enc;	/* max LTR latency encoded */
1103 		u64 value;
1104 		u32 rxa;
1105 
1106 		if (!hw->adapter->max_frame_size) {
1107 			e_dbg("max_frame_size not set.\n");
1108 			return -E1000_ERR_CONFIG;
1109 		}
1110 
1111 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1112 		if (!speed) {
1113 			e_dbg("Speed not set.\n");
1114 			return -E1000_ERR_CONFIG;
1115 		}
1116 
1117 		/* Rx Packet Buffer Allocation size (KB) */
1118 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1119 
1120 		/* Determine the maximum latency tolerated by the device.
1121 		 *
1122 		 * Per the PCIe spec, the tolerated latencies are encoded as
1123 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1124 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1125 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1126 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1127 		 */
1128 		rxa *= 512;
1129 		value = (rxa > hw->adapter->max_frame_size) ?
1130 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1131 			0;
1132 
1133 		while (value > PCI_LTR_VALUE_MASK) {
1134 			scale++;
1135 			value = DIV_ROUND_UP(value, BIT(5));
1136 		}
1137 		if (scale > E1000_LTRV_SCALE_MAX) {
1138 			e_dbg("Invalid LTR latency scale %d\n", scale);
1139 			return -E1000_ERR_CONFIG;
1140 		}
1141 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1142 
1143 		/* Determine the maximum latency tolerated by the platform */
1144 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1145 				     &max_snoop);
1146 		pci_read_config_word(hw->adapter->pdev,
1147 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1148 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1149 
1150 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1151 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1152 			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1153 
1154 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1155 			(1U << (E1000_LTRV_SCALE_FACTOR *
1156 				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1157 
1158 		if (lat_enc_d > max_ltr_enc_d)
1159 			lat_enc = max_ltr_enc;
1160 	}
1161 
1162 	/* Set Snoop and No-Snoop latencies the same */
1163 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1164 	ew32(LTRV, reg);
1165 
1166 	return 0;
1167 }
1168 
1169 /**
1170  *  e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1171  *  @hw: pointer to the HW structure
1172  *
1173  *  Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1174  *  acquired.
1175  *
1176  * Return: 0 on success, negative errno on failure.
1177  **/
e1000e_force_smbus(struct e1000_hw * hw)1178 static s32 e1000e_force_smbus(struct e1000_hw *hw)
1179 {
1180 	u16 smb_ctrl = 0;
1181 	u32 ctrl_ext;
1182 	s32 ret_val;
1183 
1184 	/* Switching PHY interface always returns MDI error
1185 	 * so disable retry mechanism to avoid wasting time
1186 	 */
1187 	e1000e_disable_phy_retry(hw);
1188 
1189 	/* Force SMBus mode in the PHY */
1190 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl);
1191 	if (ret_val) {
1192 		e1000e_enable_phy_retry(hw);
1193 		return ret_val;
1194 	}
1195 
1196 	smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
1197 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl);
1198 
1199 	e1000e_enable_phy_retry(hw);
1200 
1201 	/* Force SMBus mode in the MAC */
1202 	ctrl_ext = er32(CTRL_EXT);
1203 	ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
1204 	ew32(CTRL_EXT, ctrl_ext);
1205 
1206 	return 0;
1207 }
1208 
1209 /**
1210  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1211  *  @hw: pointer to the HW structure
1212  *  @to_sx: boolean indicating a system power state transition to Sx
1213  *
1214  *  When link is down, configure ULP mode to significantly reduce the power
1215  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1216  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1217  *  system, configure the ULP mode by software.
1218  */
e1000_enable_ulp_lpt_lp(struct e1000_hw * hw,bool to_sx)1219 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1220 {
1221 	u32 mac_reg;
1222 	s32 ret_val = 0;
1223 	u16 phy_reg;
1224 	u16 oem_reg = 0;
1225 
1226 	if ((hw->mac.type < e1000_pch_lpt) ||
1227 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1228 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1229 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1230 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1231 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1232 		return 0;
1233 
1234 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1235 		/* Request ME configure ULP mode in the PHY */
1236 		mac_reg = er32(H2ME);
1237 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1238 		ew32(H2ME, mac_reg);
1239 
1240 		goto out;
1241 	}
1242 
1243 	if (!to_sx) {
1244 		int i = 0;
1245 
1246 		/* Poll up to 5 seconds for Cable Disconnected indication */
1247 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1248 			/* Bail if link is re-acquired */
1249 			if (er32(STATUS) & E1000_STATUS_LU)
1250 				return -E1000_ERR_PHY;
1251 
1252 			if (i++ == 100)
1253 				break;
1254 
1255 			msleep(50);
1256 		}
1257 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1258 		      (er32(FEXT) &
1259 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1260 	}
1261 
1262 	ret_val = hw->phy.ops.acquire(hw);
1263 	if (ret_val)
1264 		goto out;
1265 
1266 	ret_val = e1000e_force_smbus(hw);
1267 	if (ret_val) {
1268 		e_dbg("Failed to force SMBUS: %d\n", ret_val);
1269 		goto release;
1270 	}
1271 
1272 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1273 	 * LPLU and disable Gig speed when entering ULP
1274 	 */
1275 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1276 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1277 						       &oem_reg);
1278 		if (ret_val)
1279 			goto release;
1280 
1281 		phy_reg = oem_reg;
1282 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1283 
1284 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1285 							phy_reg);
1286 
1287 		if (ret_val)
1288 			goto release;
1289 	}
1290 
1291 	/* Set Inband ULP Exit, Reset to SMBus mode and
1292 	 * Disable SMBus Release on PERST# in PHY
1293 	 */
1294 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1295 	if (ret_val)
1296 		goto release;
1297 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1298 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1299 	if (to_sx) {
1300 		if (er32(WUFC) & E1000_WUFC_LNKC)
1301 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1302 		else
1303 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1304 
1305 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1306 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1307 	} else {
1308 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1309 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1310 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1311 	}
1312 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1313 
1314 	/* Set Disable SMBus Release on PERST# in MAC */
1315 	mac_reg = er32(FEXTNVM7);
1316 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1317 	ew32(FEXTNVM7, mac_reg);
1318 
1319 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1320 	phy_reg |= I218_ULP_CONFIG1_START;
1321 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1322 
1323 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1324 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1325 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1326 							oem_reg);
1327 		if (ret_val)
1328 			goto release;
1329 	}
1330 
1331 release:
1332 	hw->phy.ops.release(hw);
1333 out:
1334 	if (ret_val)
1335 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1336 	else
1337 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1338 
1339 	return ret_val;
1340 }
1341 
1342 /**
1343  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1344  *  @hw: pointer to the HW structure
1345  *  @force: boolean indicating whether or not to force disabling ULP
1346  *
1347  *  Un-configure ULP mode when link is up, the system is transitioned from
1348  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1349  *  system, poll for an indication from ME that ULP has been un-configured.
1350  *  If not on an ME enabled system, un-configure the ULP mode by software.
1351  *
1352  *  During nominal operation, this function is called when link is acquired
1353  *  to disable ULP mode (force=false); otherwise, for example when unloading
1354  *  the driver or during Sx->S0 transitions, this is called with force=true
1355  *  to forcibly disable ULP.
1356  */
e1000_disable_ulp_lpt_lp(struct e1000_hw * hw,bool force)1357 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1358 {
1359 	s32 ret_val = 0;
1360 	u32 mac_reg;
1361 	u16 phy_reg;
1362 	int i = 0;
1363 
1364 	if ((hw->mac.type < e1000_pch_lpt) ||
1365 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1366 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1367 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1368 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1369 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1370 		return 0;
1371 
1372 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1373 		struct e1000_adapter *adapter = hw->adapter;
1374 		bool firmware_bug = false;
1375 
1376 		if (force) {
1377 			/* Request ME un-configure ULP mode in the PHY */
1378 			mac_reg = er32(H2ME);
1379 			mac_reg &= ~E1000_H2ME_ULP;
1380 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1381 			ew32(H2ME, mac_reg);
1382 		}
1383 
1384 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1385 		 * If this takes more than 1 second, show a warning indicating a
1386 		 * firmware bug
1387 		 */
1388 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1389 			if (i++ == 250) {
1390 				ret_val = -E1000_ERR_PHY;
1391 				goto out;
1392 			}
1393 			if (i > 100 && !firmware_bug)
1394 				firmware_bug = true;
1395 
1396 			usleep_range(10000, 11000);
1397 		}
1398 		if (firmware_bug)
1399 			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1400 			       i * 10);
1401 		else
1402 			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1403 			      i * 10);
1404 
1405 		if (force) {
1406 			mac_reg = er32(H2ME);
1407 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1408 			ew32(H2ME, mac_reg);
1409 		} else {
1410 			/* Clear H2ME.ULP after ME ULP configuration */
1411 			mac_reg = er32(H2ME);
1412 			mac_reg &= ~E1000_H2ME_ULP;
1413 			ew32(H2ME, mac_reg);
1414 		}
1415 
1416 		goto out;
1417 	}
1418 
1419 	ret_val = hw->phy.ops.acquire(hw);
1420 	if (ret_val)
1421 		goto out;
1422 
1423 	if (force)
1424 		/* Toggle LANPHYPC Value bit */
1425 		e1000_toggle_lanphypc_pch_lpt(hw);
1426 
1427 	/* Switching PHY interface always returns MDI error
1428 	 * so disable retry mechanism to avoid wasting time
1429 	 */
1430 	e1000e_disable_phy_retry(hw);
1431 
1432 	/* Unforce SMBus mode in PHY */
1433 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1434 	if (ret_val) {
1435 		/* The MAC might be in PCIe mode, so temporarily force to
1436 		 * SMBus mode in order to access the PHY.
1437 		 */
1438 		mac_reg = er32(CTRL_EXT);
1439 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1440 		ew32(CTRL_EXT, mac_reg);
1441 
1442 		msleep(50);
1443 
1444 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1445 						       &phy_reg);
1446 		if (ret_val)
1447 			goto release;
1448 	}
1449 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1450 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1451 
1452 	e1000e_enable_phy_retry(hw);
1453 
1454 	/* Unforce SMBus mode in MAC */
1455 	mac_reg = er32(CTRL_EXT);
1456 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1457 	ew32(CTRL_EXT, mac_reg);
1458 
1459 	/* When ULP mode was previously entered, K1 was disabled by the
1460 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1461 	 */
1462 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1463 	if (ret_val)
1464 		goto release;
1465 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1466 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1467 
1468 	/* Clear ULP enabled configuration */
1469 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1470 	if (ret_val)
1471 		goto release;
1472 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1473 		     I218_ULP_CONFIG1_STICKY_ULP |
1474 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1475 		     I218_ULP_CONFIG1_WOL_HOST |
1476 		     I218_ULP_CONFIG1_INBAND_EXIT |
1477 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1478 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1479 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1480 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1481 
1482 	/* Commit ULP changes by starting auto ULP configuration */
1483 	phy_reg |= I218_ULP_CONFIG1_START;
1484 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1485 
1486 	/* Clear Disable SMBus Release on PERST# in MAC */
1487 	mac_reg = er32(FEXTNVM7);
1488 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1489 	ew32(FEXTNVM7, mac_reg);
1490 
1491 release:
1492 	hw->phy.ops.release(hw);
1493 	if (force) {
1494 		e1000_phy_hw_reset(hw);
1495 		msleep(50);
1496 	}
1497 out:
1498 	if (ret_val)
1499 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1500 	else
1501 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1502 
1503 	return ret_val;
1504 }
1505 
1506 /**
1507  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1508  *  @hw: pointer to the HW structure
1509  *
1510  *  Checks to see of the link status of the hardware has changed.  If a
1511  *  change in link status has been detected, then we read the PHY registers
1512  *  to get the current speed/duplex if link exists.
1513  **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)1514 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1515 {
1516 	struct e1000_mac_info *mac = &hw->mac;
1517 	s32 ret_val, tipg_reg = 0;
1518 	u16 emi_addr, emi_val = 0;
1519 	bool link;
1520 	u16 phy_reg;
1521 
1522 	/* We only want to go out to the PHY registers to see if Auto-Neg
1523 	 * has completed and/or if our link status has changed.  The
1524 	 * get_link_status flag is set upon receiving a Link Status
1525 	 * Change or Rx Sequence Error interrupt.
1526 	 */
1527 	if (!mac->get_link_status)
1528 		return 0;
1529 	mac->get_link_status = false;
1530 
1531 	/* First we want to see if the MII Status Register reports
1532 	 * link.  If so, then we want to get the current speed/duplex
1533 	 * of the PHY.
1534 	 */
1535 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1536 	if (ret_val)
1537 		goto out;
1538 
1539 	if (hw->mac.type == e1000_pchlan) {
1540 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1541 		if (ret_val)
1542 			goto out;
1543 	}
1544 
1545 	/* When connected at 10Mbps half-duplex, some parts are excessively
1546 	 * aggressive resulting in many collisions. To avoid this, increase
1547 	 * the IPG and reduce Rx latency in the PHY.
1548 	 */
1549 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1550 		u16 speed, duplex;
1551 
1552 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1553 		tipg_reg = er32(TIPG);
1554 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1555 
1556 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1557 			tipg_reg |= 0xFF;
1558 			/* Reduce Rx latency in analog PHY */
1559 			emi_val = 0;
1560 		} else if (hw->mac.type >= e1000_pch_spt &&
1561 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1562 			tipg_reg |= 0xC;
1563 			emi_val = 1;
1564 		} else {
1565 
1566 			/* Roll back the default values */
1567 			tipg_reg |= 0x08;
1568 			emi_val = 1;
1569 		}
1570 
1571 		ew32(TIPG, tipg_reg);
1572 
1573 		ret_val = hw->phy.ops.acquire(hw);
1574 		if (ret_val)
1575 			goto out;
1576 
1577 		if (hw->mac.type == e1000_pch2lan)
1578 			emi_addr = I82579_RX_CONFIG;
1579 		else
1580 			emi_addr = I217_RX_CONFIG;
1581 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1582 
1583 		if (hw->mac.type >= e1000_pch_lpt) {
1584 			u16 phy_reg;
1585 
1586 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1587 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1588 			if (speed == SPEED_100 || speed == SPEED_10)
1589 				phy_reg |= 0x3E8;
1590 			else
1591 				phy_reg |= 0xFA;
1592 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1593 
1594 			if (speed == SPEED_1000) {
1595 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1596 							    &phy_reg);
1597 
1598 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1599 
1600 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1601 							     phy_reg);
1602 			}
1603 		}
1604 		hw->phy.ops.release(hw);
1605 
1606 		if (ret_val)
1607 			goto out;
1608 
1609 		if (hw->mac.type >= e1000_pch_spt) {
1610 			u16 data;
1611 			u16 ptr_gap;
1612 
1613 			if (speed == SPEED_1000) {
1614 				ret_val = hw->phy.ops.acquire(hw);
1615 				if (ret_val)
1616 					goto out;
1617 
1618 				ret_val = e1e_rphy_locked(hw,
1619 							  PHY_REG(776, 20),
1620 							  &data);
1621 				if (ret_val) {
1622 					hw->phy.ops.release(hw);
1623 					goto out;
1624 				}
1625 
1626 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1627 				if (ptr_gap < 0x18) {
1628 					data &= ~(0x3FF << 2);
1629 					data |= (0x18 << 2);
1630 					ret_val =
1631 					    e1e_wphy_locked(hw,
1632 							    PHY_REG(776, 20),
1633 							    data);
1634 				}
1635 				hw->phy.ops.release(hw);
1636 				if (ret_val)
1637 					goto out;
1638 			} else {
1639 				ret_val = hw->phy.ops.acquire(hw);
1640 				if (ret_val)
1641 					goto out;
1642 
1643 				ret_val = e1e_wphy_locked(hw,
1644 							  PHY_REG(776, 20),
1645 							  0xC023);
1646 				hw->phy.ops.release(hw);
1647 				if (ret_val)
1648 					goto out;
1649 
1650 			}
1651 		}
1652 	}
1653 
1654 	/* I217 Packet Loss issue:
1655 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1656 	 * on power up.
1657 	 * Set the Beacon Duration for I217 to 8 usec
1658 	 */
1659 	if (hw->mac.type >= e1000_pch_lpt) {
1660 		u32 mac_reg;
1661 
1662 		mac_reg = er32(FEXTNVM4);
1663 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1664 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1665 		ew32(FEXTNVM4, mac_reg);
1666 	}
1667 
1668 	/* Work-around I218 hang issue */
1669 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1670 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1671 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1672 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1673 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1674 		if (ret_val)
1675 			goto out;
1676 	}
1677 	if (hw->mac.type >= e1000_pch_lpt) {
1678 		/* Set platform power management values for
1679 		 * Latency Tolerance Reporting (LTR)
1680 		 */
1681 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1682 		if (ret_val)
1683 			goto out;
1684 	}
1685 
1686 	/* Clear link partner's EEE ability */
1687 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1688 
1689 	if (hw->mac.type >= e1000_pch_lpt) {
1690 		u32 fextnvm6 = er32(FEXTNVM6);
1691 
1692 		if (hw->mac.type == e1000_pch_spt) {
1693 			/* FEXTNVM6 K1-off workaround - for SPT only */
1694 			u32 pcieanacfg = er32(PCIEANACFG);
1695 
1696 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1697 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1698 			else
1699 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1700 		}
1701 
1702 		ew32(FEXTNVM6, fextnvm6);
1703 	}
1704 
1705 	if (!link)
1706 		goto out;
1707 
1708 	switch (hw->mac.type) {
1709 	case e1000_pch2lan:
1710 		ret_val = e1000_k1_workaround_lv(hw);
1711 		if (ret_val)
1712 			return ret_val;
1713 		fallthrough;
1714 	case e1000_pchlan:
1715 		if (hw->phy.type == e1000_phy_82578) {
1716 			ret_val = e1000_link_stall_workaround_hv(hw);
1717 			if (ret_val)
1718 				return ret_val;
1719 		}
1720 
1721 		/* Workaround for PCHx parts in half-duplex:
1722 		 * Set the number of preambles removed from the packet
1723 		 * when it is passed from the PHY to the MAC to prevent
1724 		 * the MAC from misinterpreting the packet type.
1725 		 */
1726 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1727 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1728 
1729 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1730 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1731 
1732 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1733 		break;
1734 	default:
1735 		break;
1736 	}
1737 
1738 	/* Check if there was DownShift, must be checked
1739 	 * immediately after link-up
1740 	 */
1741 	e1000e_check_downshift(hw);
1742 
1743 	/* Enable/Disable EEE after link up */
1744 	if (hw->phy.type > e1000_phy_82579) {
1745 		ret_val = e1000_set_eee_pchlan(hw);
1746 		if (ret_val)
1747 			return ret_val;
1748 	}
1749 
1750 	/* If we are forcing speed/duplex, then we simply return since
1751 	 * we have already determined whether we have link or not.
1752 	 */
1753 	if (!mac->autoneg)
1754 		return -E1000_ERR_CONFIG;
1755 
1756 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1757 	 * of MAC speed/duplex configuration.  So we only need to
1758 	 * configure Collision Distance in the MAC.
1759 	 */
1760 	mac->ops.config_collision_dist(hw);
1761 
1762 	/* Configure Flow Control now that Auto-Neg has completed.
1763 	 * First, we need to restore the desired flow control
1764 	 * settings because we may have had to re-autoneg with a
1765 	 * different link partner.
1766 	 */
1767 	ret_val = e1000e_config_fc_after_link_up(hw);
1768 	if (ret_val)
1769 		e_dbg("Error configuring flow control\n");
1770 
1771 	return ret_val;
1772 
1773 out:
1774 	mac->get_link_status = true;
1775 	return ret_val;
1776 }
1777 
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)1778 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1779 {
1780 	struct e1000_hw *hw = &adapter->hw;
1781 	s32 rc;
1782 
1783 	rc = e1000_init_mac_params_ich8lan(hw);
1784 	if (rc)
1785 		return rc;
1786 
1787 	rc = e1000_init_nvm_params_ich8lan(hw);
1788 	if (rc)
1789 		return rc;
1790 
1791 	switch (hw->mac.type) {
1792 	case e1000_ich8lan:
1793 	case e1000_ich9lan:
1794 	case e1000_ich10lan:
1795 		rc = e1000_init_phy_params_ich8lan(hw);
1796 		break;
1797 	case e1000_pchlan:
1798 	case e1000_pch2lan:
1799 	case e1000_pch_lpt:
1800 	case e1000_pch_spt:
1801 	case e1000_pch_cnp:
1802 	case e1000_pch_tgp:
1803 	case e1000_pch_adp:
1804 	case e1000_pch_mtp:
1805 	case e1000_pch_lnp:
1806 	case e1000_pch_ptp:
1807 	case e1000_pch_nvp:
1808 		rc = e1000_init_phy_params_pchlan(hw);
1809 		break;
1810 	default:
1811 		break;
1812 	}
1813 	if (rc)
1814 		return rc;
1815 
1816 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1817 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1818 	 */
1819 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1820 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1821 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1822 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1823 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1824 
1825 		hw->mac.ops.blink_led = NULL;
1826 	}
1827 
1828 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1829 	    (adapter->hw.phy.type != e1000_phy_ife))
1830 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1831 
1832 	/* Enable workaround for 82579 w/ ME enabled */
1833 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1834 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1835 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1836 
1837 	return 0;
1838 }
1839 
1840 static DEFINE_MUTEX(nvm_mutex);
1841 
1842 /**
1843  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1844  *  @hw: pointer to the HW structure
1845  *
1846  *  Acquires the mutex for performing NVM operations.
1847  **/
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused * hw)1848 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1849 {
1850 	mutex_lock(&nvm_mutex);
1851 
1852 	return 0;
1853 }
1854 
1855 /**
1856  *  e1000_release_nvm_ich8lan - Release NVM mutex
1857  *  @hw: pointer to the HW structure
1858  *
1859  *  Releases the mutex used while performing NVM operations.
1860  **/
e1000_release_nvm_ich8lan(struct e1000_hw __always_unused * hw)1861 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1862 {
1863 	mutex_unlock(&nvm_mutex);
1864 }
1865 
1866 /**
1867  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1868  *  @hw: pointer to the HW structure
1869  *
1870  *  Acquires the software control flag for performing PHY and select
1871  *  MAC CSR accesses.
1872  **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)1873 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1874 {
1875 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1876 	s32 ret_val = 0;
1877 
1878 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1879 			     &hw->adapter->state)) {
1880 		e_dbg("contention for Phy access\n");
1881 		return -E1000_ERR_PHY;
1882 	}
1883 
1884 	while (timeout) {
1885 		extcnf_ctrl = er32(EXTCNF_CTRL);
1886 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1887 			break;
1888 
1889 		mdelay(1);
1890 		timeout--;
1891 	}
1892 
1893 	if (!timeout) {
1894 		e_dbg("SW has already locked the resource.\n");
1895 		ret_val = -E1000_ERR_CONFIG;
1896 		goto out;
1897 	}
1898 
1899 	timeout = SW_FLAG_TIMEOUT;
1900 
1901 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1902 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1903 
1904 	while (timeout) {
1905 		extcnf_ctrl = er32(EXTCNF_CTRL);
1906 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1907 			break;
1908 
1909 		mdelay(1);
1910 		timeout--;
1911 	}
1912 
1913 	if (!timeout) {
1914 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1915 		      er32(FWSM), extcnf_ctrl);
1916 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1917 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1918 		ret_val = -E1000_ERR_CONFIG;
1919 		goto out;
1920 	}
1921 
1922 out:
1923 	if (ret_val)
1924 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1925 
1926 	return ret_val;
1927 }
1928 
1929 /**
1930  *  e1000_release_swflag_ich8lan - Release software control flag
1931  *  @hw: pointer to the HW structure
1932  *
1933  *  Releases the software control flag for performing PHY and select
1934  *  MAC CSR accesses.
1935  **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)1936 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1937 {
1938 	u32 extcnf_ctrl;
1939 
1940 	extcnf_ctrl = er32(EXTCNF_CTRL);
1941 
1942 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1943 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1944 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1945 	} else {
1946 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1947 	}
1948 
1949 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1950 }
1951 
1952 /**
1953  *  e1000_check_mng_mode_ich8lan - Checks management mode
1954  *  @hw: pointer to the HW structure
1955  *
1956  *  This checks if the adapter has any manageability enabled.
1957  *  This is a function pointer entry point only called by read/write
1958  *  routines for the PHY and NVM parts.
1959  **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)1960 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1961 {
1962 	u32 fwsm;
1963 
1964 	fwsm = er32(FWSM);
1965 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1966 		((fwsm & E1000_FWSM_MODE_MASK) ==
1967 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1968 }
1969 
1970 /**
1971  *  e1000_check_mng_mode_pchlan - Checks management mode
1972  *  @hw: pointer to the HW structure
1973  *
1974  *  This checks if the adapter has iAMT enabled.
1975  *  This is a function pointer entry point only called by read/write
1976  *  routines for the PHY and NVM parts.
1977  **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)1978 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1979 {
1980 	u32 fwsm;
1981 
1982 	fwsm = er32(FWSM);
1983 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1984 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1985 }
1986 
1987 /**
1988  *  e1000_rar_set_pch2lan - Set receive address register
1989  *  @hw: pointer to the HW structure
1990  *  @addr: pointer to the receive address
1991  *  @index: receive address array register
1992  *
1993  *  Sets the receive address array register at index to the address passed
1994  *  in by addr.  For 82579, RAR[0] is the base address register that is to
1995  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1996  *  Use SHRA[0-3] in place of those reserved for ME.
1997  **/
e1000_rar_set_pch2lan(struct e1000_hw * hw,u8 * addr,u32 index)1998 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1999 {
2000 	u32 rar_low, rar_high;
2001 
2002 	/* HW expects these in little endian so we reverse the byte order
2003 	 * from network order (big endian) to little endian
2004 	 */
2005 	rar_low = ((u32)addr[0] |
2006 		   ((u32)addr[1] << 8) |
2007 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2008 
2009 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2010 
2011 	/* If MAC address zero, no need to set the AV bit */
2012 	if (rar_low || rar_high)
2013 		rar_high |= E1000_RAH_AV;
2014 
2015 	if (index == 0) {
2016 		ew32(RAL(index), rar_low);
2017 		e1e_flush();
2018 		ew32(RAH(index), rar_high);
2019 		e1e_flush();
2020 		return 0;
2021 	}
2022 
2023 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2024 	 * next address into the SHRA register array.
2025 	 */
2026 	if (index < (u32)(hw->mac.rar_entry_count)) {
2027 		s32 ret_val;
2028 
2029 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2030 		if (ret_val)
2031 			goto out;
2032 
2033 		ew32(SHRAL(index - 1), rar_low);
2034 		e1e_flush();
2035 		ew32(SHRAH(index - 1), rar_high);
2036 		e1e_flush();
2037 
2038 		e1000_release_swflag_ich8lan(hw);
2039 
2040 		/* verify the register updates */
2041 		if ((er32(SHRAL(index - 1)) == rar_low) &&
2042 		    (er32(SHRAH(index - 1)) == rar_high))
2043 			return 0;
2044 
2045 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2046 		      (index - 1), er32(FWSM));
2047 	}
2048 
2049 out:
2050 	e_dbg("Failed to write receive address at index %d\n", index);
2051 	return -E1000_ERR_CONFIG;
2052 }
2053 
2054 /**
2055  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
2056  *  @hw: pointer to the HW structure
2057  *
2058  *  Get the number of available receive registers that the Host can
2059  *  program. SHRA[0-10] are the shared receive address registers
2060  *  that are shared between the Host and manageability engine (ME).
2061  *  ME can reserve any number of addresses and the host needs to be
2062  *  able to tell how many available registers it has access to.
2063  **/
e1000_rar_get_count_pch_lpt(struct e1000_hw * hw)2064 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
2065 {
2066 	u32 wlock_mac;
2067 	u32 num_entries;
2068 
2069 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2070 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2071 
2072 	switch (wlock_mac) {
2073 	case 0:
2074 		/* All SHRA[0..10] and RAR[0] available */
2075 		num_entries = hw->mac.rar_entry_count;
2076 		break;
2077 	case 1:
2078 		/* Only RAR[0] available */
2079 		num_entries = 1;
2080 		break;
2081 	default:
2082 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2083 		num_entries = wlock_mac + 1;
2084 		break;
2085 	}
2086 
2087 	return num_entries;
2088 }
2089 
2090 /**
2091  *  e1000_rar_set_pch_lpt - Set receive address registers
2092  *  @hw: pointer to the HW structure
2093  *  @addr: pointer to the receive address
2094  *  @index: receive address array register
2095  *
2096  *  Sets the receive address register array at index to the address passed
2097  *  in by addr. For LPT, RAR[0] is the base address register that is to
2098  *  contain the MAC address. SHRA[0-10] are the shared receive address
2099  *  registers that are shared between the Host and manageability engine (ME).
2100  **/
e1000_rar_set_pch_lpt(struct e1000_hw * hw,u8 * addr,u32 index)2101 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2102 {
2103 	u32 rar_low, rar_high;
2104 	u32 wlock_mac;
2105 
2106 	/* HW expects these in little endian so we reverse the byte order
2107 	 * from network order (big endian) to little endian
2108 	 */
2109 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2110 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2111 
2112 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2113 
2114 	/* If MAC address zero, no need to set the AV bit */
2115 	if (rar_low || rar_high)
2116 		rar_high |= E1000_RAH_AV;
2117 
2118 	if (index == 0) {
2119 		ew32(RAL(index), rar_low);
2120 		e1e_flush();
2121 		ew32(RAH(index), rar_high);
2122 		e1e_flush();
2123 		return 0;
2124 	}
2125 
2126 	/* The manageability engine (ME) can lock certain SHRAR registers that
2127 	 * it is using - those registers are unavailable for use.
2128 	 */
2129 	if (index < hw->mac.rar_entry_count) {
2130 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2131 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2132 
2133 		/* Check if all SHRAR registers are locked */
2134 		if (wlock_mac == 1)
2135 			goto out;
2136 
2137 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2138 			s32 ret_val;
2139 
2140 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2141 
2142 			if (ret_val)
2143 				goto out;
2144 
2145 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2146 			e1e_flush();
2147 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2148 			e1e_flush();
2149 
2150 			e1000_release_swflag_ich8lan(hw);
2151 
2152 			/* verify the register updates */
2153 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2154 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2155 				return 0;
2156 		}
2157 	}
2158 
2159 out:
2160 	e_dbg("Failed to write receive address at index %d\n", index);
2161 	return -E1000_ERR_CONFIG;
2162 }
2163 
2164 /**
2165  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2166  *  @hw: pointer to the HW structure
2167  *
2168  *  Checks if firmware is blocking the reset of the PHY.
2169  *  This is a function pointer entry point only called by
2170  *  reset routines.
2171  **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)2172 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2173 {
2174 	bool blocked = false;
2175 	int i = 0;
2176 
2177 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2178 	       (i++ < 30))
2179 		usleep_range(10000, 11000);
2180 	return blocked ? E1000_BLK_PHY_RESET : 0;
2181 }
2182 
2183 /**
2184  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2185  *  @hw: pointer to the HW structure
2186  *
2187  *  Assumes semaphore already acquired.
2188  *
2189  **/
e1000_write_smbus_addr(struct e1000_hw * hw)2190 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2191 {
2192 	u16 phy_data;
2193 	u32 strap = er32(STRAP);
2194 	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2195 	s32 ret_val;
2196 
2197 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2198 
2199 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2200 	if (ret_val)
2201 		return ret_val;
2202 
2203 	phy_data &= ~HV_SMB_ADDR_MASK;
2204 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2205 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2206 
2207 	if (hw->phy.type == e1000_phy_i217) {
2208 		/* Restore SMBus frequency */
2209 		if (freq--) {
2210 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2211 			phy_data |= (freq & BIT(0)) <<
2212 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2213 			phy_data |= (freq & BIT(1)) <<
2214 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2215 		} else {
2216 			e_dbg("Unsupported SMB frequency in PHY\n");
2217 		}
2218 	}
2219 
2220 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2221 }
2222 
2223 /**
2224  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2225  *  @hw:   pointer to the HW structure
2226  *
2227  *  SW should configure the LCD from the NVM extended configuration region
2228  *  as a workaround for certain parts.
2229  **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)2230 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2231 {
2232 	struct e1000_phy_info *phy = &hw->phy;
2233 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2234 	s32 ret_val = 0;
2235 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2236 
2237 	/* Initialize the PHY from the NVM on ICH platforms.  This
2238 	 * is needed due to an issue where the NVM configuration is
2239 	 * not properly autoloaded after power transitions.
2240 	 * Therefore, after each PHY reset, we will load the
2241 	 * configuration data out of the NVM manually.
2242 	 */
2243 	switch (hw->mac.type) {
2244 	case e1000_ich8lan:
2245 		if (phy->type != e1000_phy_igp_3)
2246 			return ret_val;
2247 
2248 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2249 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2250 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2251 			break;
2252 		}
2253 		fallthrough;
2254 	case e1000_pchlan:
2255 	case e1000_pch2lan:
2256 	case e1000_pch_lpt:
2257 	case e1000_pch_spt:
2258 	case e1000_pch_cnp:
2259 	case e1000_pch_tgp:
2260 	case e1000_pch_adp:
2261 	case e1000_pch_mtp:
2262 	case e1000_pch_lnp:
2263 	case e1000_pch_ptp:
2264 	case e1000_pch_nvp:
2265 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2266 		break;
2267 	default:
2268 		return ret_val;
2269 	}
2270 
2271 	ret_val = hw->phy.ops.acquire(hw);
2272 	if (ret_val)
2273 		return ret_val;
2274 
2275 	data = er32(FEXTNVM);
2276 	if (!(data & sw_cfg_mask))
2277 		goto release;
2278 
2279 	/* Make sure HW does not configure LCD from PHY
2280 	 * extended configuration before SW configuration
2281 	 */
2282 	data = er32(EXTCNF_CTRL);
2283 	if ((hw->mac.type < e1000_pch2lan) &&
2284 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2285 		goto release;
2286 
2287 	cnf_size = er32(EXTCNF_SIZE);
2288 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2289 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2290 	if (!cnf_size)
2291 		goto release;
2292 
2293 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2294 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2295 
2296 	if (((hw->mac.type == e1000_pchlan) &&
2297 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2298 	    (hw->mac.type > e1000_pchlan)) {
2299 		/* HW configures the SMBus address and LEDs when the
2300 		 * OEM and LCD Write Enable bits are set in the NVM.
2301 		 * When both NVM bits are cleared, SW will configure
2302 		 * them instead.
2303 		 */
2304 		ret_val = e1000_write_smbus_addr(hw);
2305 		if (ret_val)
2306 			goto release;
2307 
2308 		data = er32(LEDCTL);
2309 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2310 							(u16)data);
2311 		if (ret_val)
2312 			goto release;
2313 	}
2314 
2315 	/* Configure LCD from extended configuration region. */
2316 
2317 	/* cnf_base_addr is in DWORD */
2318 	word_addr = (u16)(cnf_base_addr << 1);
2319 
2320 	for (i = 0; i < cnf_size; i++) {
2321 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2322 		if (ret_val)
2323 			goto release;
2324 
2325 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2326 					 1, &reg_addr);
2327 		if (ret_val)
2328 			goto release;
2329 
2330 		/* Save off the PHY page for future writes. */
2331 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2332 			phy_page = reg_data;
2333 			continue;
2334 		}
2335 
2336 		reg_addr &= PHY_REG_MASK;
2337 		reg_addr |= phy_page;
2338 
2339 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2340 		if (ret_val)
2341 			goto release;
2342 	}
2343 
2344 release:
2345 	hw->phy.ops.release(hw);
2346 	return ret_val;
2347 }
2348 
2349 /**
2350  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2351  *  @hw:   pointer to the HW structure
2352  *  @link: link up bool flag
2353  *
2354  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2355  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2356  *  If link is down, the function will restore the default K1 setting located
2357  *  in the NVM.
2358  **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)2359 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2360 {
2361 	s32 ret_val = 0;
2362 	u16 status_reg = 0;
2363 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2364 
2365 	if (hw->mac.type != e1000_pchlan)
2366 		return 0;
2367 
2368 	/* Wrap the whole flow with the sw flag */
2369 	ret_val = hw->phy.ops.acquire(hw);
2370 	if (ret_val)
2371 		return ret_val;
2372 
2373 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2374 	if (link) {
2375 		if (hw->phy.type == e1000_phy_82578) {
2376 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2377 						  &status_reg);
2378 			if (ret_val)
2379 				goto release;
2380 
2381 			status_reg &= (BM_CS_STATUS_LINK_UP |
2382 				       BM_CS_STATUS_RESOLVED |
2383 				       BM_CS_STATUS_SPEED_MASK);
2384 
2385 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2386 					   BM_CS_STATUS_RESOLVED |
2387 					   BM_CS_STATUS_SPEED_1000))
2388 				k1_enable = false;
2389 		}
2390 
2391 		if (hw->phy.type == e1000_phy_82577) {
2392 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2393 			if (ret_val)
2394 				goto release;
2395 
2396 			status_reg &= (HV_M_STATUS_LINK_UP |
2397 				       HV_M_STATUS_AUTONEG_COMPLETE |
2398 				       HV_M_STATUS_SPEED_MASK);
2399 
2400 			if (status_reg == (HV_M_STATUS_LINK_UP |
2401 					   HV_M_STATUS_AUTONEG_COMPLETE |
2402 					   HV_M_STATUS_SPEED_1000))
2403 				k1_enable = false;
2404 		}
2405 
2406 		/* Link stall fix for link up */
2407 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2408 		if (ret_val)
2409 			goto release;
2410 
2411 	} else {
2412 		/* Link stall fix for link down */
2413 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2414 		if (ret_val)
2415 			goto release;
2416 	}
2417 
2418 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2419 
2420 release:
2421 	hw->phy.ops.release(hw);
2422 
2423 	return ret_val;
2424 }
2425 
2426 /**
2427  *  e1000_configure_k1_ich8lan - Configure K1 power state
2428  *  @hw: pointer to the HW structure
2429  *  @k1_enable: K1 state to configure
2430  *
2431  *  Configure the K1 power state based on the provided parameter.
2432  *  Assumes semaphore already acquired.
2433  *
2434  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2435  **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)2436 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2437 {
2438 	s32 ret_val;
2439 	u32 ctrl_reg = 0;
2440 	u32 ctrl_ext = 0;
2441 	u32 reg = 0;
2442 	u16 kmrn_reg = 0;
2443 
2444 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2445 					      &kmrn_reg);
2446 	if (ret_val)
2447 		return ret_val;
2448 
2449 	if (k1_enable)
2450 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2451 	else
2452 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2453 
2454 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2455 					       kmrn_reg);
2456 	if (ret_val)
2457 		return ret_val;
2458 
2459 	usleep_range(20, 40);
2460 	ctrl_ext = er32(CTRL_EXT);
2461 	ctrl_reg = er32(CTRL);
2462 
2463 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2464 	reg |= E1000_CTRL_FRCSPD;
2465 	ew32(CTRL, reg);
2466 
2467 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2468 	e1e_flush();
2469 	usleep_range(20, 40);
2470 	ew32(CTRL, ctrl_reg);
2471 	ew32(CTRL_EXT, ctrl_ext);
2472 	e1e_flush();
2473 	usleep_range(20, 40);
2474 
2475 	return 0;
2476 }
2477 
2478 /**
2479  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2480  *  @hw:       pointer to the HW structure
2481  *  @d0_state: boolean if entering d0 or d3 device state
2482  *
2483  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2484  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2485  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2486  **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)2487 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2488 {
2489 	s32 ret_val = 0;
2490 	u32 mac_reg;
2491 	u16 oem_reg;
2492 
2493 	if (hw->mac.type < e1000_pchlan)
2494 		return ret_val;
2495 
2496 	ret_val = hw->phy.ops.acquire(hw);
2497 	if (ret_val)
2498 		return ret_val;
2499 
2500 	if (hw->mac.type == e1000_pchlan) {
2501 		mac_reg = er32(EXTCNF_CTRL);
2502 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2503 			goto release;
2504 	}
2505 
2506 	mac_reg = er32(FEXTNVM);
2507 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2508 		goto release;
2509 
2510 	mac_reg = er32(PHY_CTRL);
2511 
2512 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2513 	if (ret_val)
2514 		goto release;
2515 
2516 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2517 
2518 	if (d0_state) {
2519 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2520 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2521 
2522 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2523 			oem_reg |= HV_OEM_BITS_LPLU;
2524 	} else {
2525 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2526 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2527 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2528 
2529 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2530 			       E1000_PHY_CTRL_NOND0A_LPLU))
2531 			oem_reg |= HV_OEM_BITS_LPLU;
2532 	}
2533 
2534 	/* Set Restart auto-neg to activate the bits */
2535 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2536 	    !hw->phy.ops.check_reset_block(hw))
2537 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2538 
2539 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2540 
2541 release:
2542 	hw->phy.ops.release(hw);
2543 
2544 	return ret_val;
2545 }
2546 
2547 /**
2548  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2549  *  @hw:   pointer to the HW structure
2550  **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)2551 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2552 {
2553 	s32 ret_val;
2554 	u16 data;
2555 
2556 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2557 	if (ret_val)
2558 		return ret_val;
2559 
2560 	data |= HV_KMRN_MDIO_SLOW;
2561 
2562 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2563 
2564 	return ret_val;
2565 }
2566 
2567 /**
2568  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2569  *  @hw: pointer to the HW structure
2570  *
2571  *  A series of PHY workarounds to be done after every PHY reset.
2572  **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)2573 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2574 {
2575 	s32 ret_val = 0;
2576 	u16 phy_data;
2577 
2578 	if (hw->mac.type != e1000_pchlan)
2579 		return 0;
2580 
2581 	/* Set MDIO slow mode before any other MDIO access */
2582 	if (hw->phy.type == e1000_phy_82577) {
2583 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2584 		if (ret_val)
2585 			return ret_val;
2586 	}
2587 
2588 	if (((hw->phy.type == e1000_phy_82577) &&
2589 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2590 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2591 		/* Disable generation of early preamble */
2592 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2593 		if (ret_val)
2594 			return ret_val;
2595 
2596 		/* Preamble tuning for SSC */
2597 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2598 		if (ret_val)
2599 			return ret_val;
2600 	}
2601 
2602 	if (hw->phy.type == e1000_phy_82578) {
2603 		/* Return registers to default by doing a soft reset then
2604 		 * writing 0x3140 to the control register.
2605 		 */
2606 		if (hw->phy.revision < 2) {
2607 			e1000e_phy_sw_reset(hw);
2608 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2609 			if (ret_val)
2610 				return ret_val;
2611 		}
2612 	}
2613 
2614 	/* Select page 0 */
2615 	ret_val = hw->phy.ops.acquire(hw);
2616 	if (ret_val)
2617 		return ret_val;
2618 
2619 	hw->phy.addr = 1;
2620 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2621 	hw->phy.ops.release(hw);
2622 	if (ret_val)
2623 		return ret_val;
2624 
2625 	/* Configure the K1 Si workaround during phy reset assuming there is
2626 	 * link so that it disables K1 if link is in 1Gbps.
2627 	 */
2628 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2629 	if (ret_val)
2630 		return ret_val;
2631 
2632 	/* Workaround for link disconnects on a busy hub in half duplex */
2633 	ret_val = hw->phy.ops.acquire(hw);
2634 	if (ret_val)
2635 		return ret_val;
2636 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2637 	if (ret_val)
2638 		goto release;
2639 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2640 	if (ret_val)
2641 		goto release;
2642 
2643 	/* set MSE higher to enable link to stay up when noise is high */
2644 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2645 release:
2646 	hw->phy.ops.release(hw);
2647 
2648 	return ret_val;
2649 }
2650 
2651 /**
2652  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2653  *  @hw:   pointer to the HW structure
2654  **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)2655 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2656 {
2657 	u32 mac_reg;
2658 	u16 i, phy_reg = 0;
2659 	s32 ret_val;
2660 
2661 	ret_val = hw->phy.ops.acquire(hw);
2662 	if (ret_val)
2663 		return;
2664 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2665 	if (ret_val)
2666 		goto release;
2667 
2668 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2669 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2670 		mac_reg = er32(RAL(i));
2671 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2672 					   (u16)(mac_reg & 0xFFFF));
2673 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2674 					   (u16)((mac_reg >> 16) & 0xFFFF));
2675 
2676 		mac_reg = er32(RAH(i));
2677 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2678 					   (u16)(mac_reg & 0xFFFF));
2679 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2680 					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
2681 	}
2682 
2683 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2684 
2685 release:
2686 	hw->phy.ops.release(hw);
2687 }
2688 
2689 /**
2690  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2691  *  with 82579 PHY
2692  *  @hw: pointer to the HW structure
2693  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2694  **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)2695 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2696 {
2697 	s32 ret_val = 0;
2698 	u16 phy_reg, data;
2699 	u32 mac_reg;
2700 	u16 i;
2701 
2702 	if (hw->mac.type < e1000_pch2lan)
2703 		return 0;
2704 
2705 	/* disable Rx path while enabling/disabling workaround */
2706 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2707 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2708 	if (ret_val)
2709 		return ret_val;
2710 
2711 	if (enable) {
2712 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2713 		 * SHRAL/H) and initial CRC values to the MAC
2714 		 */
2715 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2716 			u8 mac_addr[ETH_ALEN] = { 0 };
2717 			u32 addr_high, addr_low;
2718 
2719 			addr_high = er32(RAH(i));
2720 			if (!(addr_high & E1000_RAH_AV))
2721 				continue;
2722 			addr_low = er32(RAL(i));
2723 			mac_addr[0] = (addr_low & 0xFF);
2724 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2725 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2726 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2727 			mac_addr[4] = (addr_high & 0xFF);
2728 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2729 
2730 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2731 		}
2732 
2733 		/* Write Rx addresses to the PHY */
2734 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2735 
2736 		/* Enable jumbo frame workaround in the MAC */
2737 		mac_reg = er32(FFLT_DBG);
2738 		mac_reg &= ~BIT(14);
2739 		mac_reg |= (7 << 15);
2740 		ew32(FFLT_DBG, mac_reg);
2741 
2742 		mac_reg = er32(RCTL);
2743 		mac_reg |= E1000_RCTL_SECRC;
2744 		ew32(RCTL, mac_reg);
2745 
2746 		ret_val = e1000e_read_kmrn_reg(hw,
2747 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2748 					       &data);
2749 		if (ret_val)
2750 			return ret_val;
2751 		ret_val = e1000e_write_kmrn_reg(hw,
2752 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2753 						data | BIT(0));
2754 		if (ret_val)
2755 			return ret_val;
2756 		ret_val = e1000e_read_kmrn_reg(hw,
2757 					       E1000_KMRNCTRLSTA_HD_CTRL,
2758 					       &data);
2759 		if (ret_val)
2760 			return ret_val;
2761 		data &= ~(0xF << 8);
2762 		data |= (0xB << 8);
2763 		ret_val = e1000e_write_kmrn_reg(hw,
2764 						E1000_KMRNCTRLSTA_HD_CTRL,
2765 						data);
2766 		if (ret_val)
2767 			return ret_val;
2768 
2769 		/* Enable jumbo frame workaround in the PHY */
2770 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2771 		data &= ~(0x7F << 5);
2772 		data |= (0x37 << 5);
2773 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2774 		if (ret_val)
2775 			return ret_val;
2776 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2777 		data &= ~BIT(13);
2778 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2779 		if (ret_val)
2780 			return ret_val;
2781 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2782 		data &= ~(0x3FF << 2);
2783 		data |= (E1000_TX_PTR_GAP << 2);
2784 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2785 		if (ret_val)
2786 			return ret_val;
2787 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2788 		if (ret_val)
2789 			return ret_val;
2790 		e1e_rphy(hw, HV_PM_CTRL, &data);
2791 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2792 		if (ret_val)
2793 			return ret_val;
2794 	} else {
2795 		/* Write MAC register values back to h/w defaults */
2796 		mac_reg = er32(FFLT_DBG);
2797 		mac_reg &= ~(0xF << 14);
2798 		ew32(FFLT_DBG, mac_reg);
2799 
2800 		mac_reg = er32(RCTL);
2801 		mac_reg &= ~E1000_RCTL_SECRC;
2802 		ew32(RCTL, mac_reg);
2803 
2804 		ret_val = e1000e_read_kmrn_reg(hw,
2805 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2806 					       &data);
2807 		if (ret_val)
2808 			return ret_val;
2809 		ret_val = e1000e_write_kmrn_reg(hw,
2810 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2811 						data & ~BIT(0));
2812 		if (ret_val)
2813 			return ret_val;
2814 		ret_val = e1000e_read_kmrn_reg(hw,
2815 					       E1000_KMRNCTRLSTA_HD_CTRL,
2816 					       &data);
2817 		if (ret_val)
2818 			return ret_val;
2819 		data &= ~(0xF << 8);
2820 		data |= (0xB << 8);
2821 		ret_val = e1000e_write_kmrn_reg(hw,
2822 						E1000_KMRNCTRLSTA_HD_CTRL,
2823 						data);
2824 		if (ret_val)
2825 			return ret_val;
2826 
2827 		/* Write PHY register values back to h/w defaults */
2828 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2829 		data &= ~(0x7F << 5);
2830 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2831 		if (ret_val)
2832 			return ret_val;
2833 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2834 		data |= BIT(13);
2835 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2836 		if (ret_val)
2837 			return ret_val;
2838 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2839 		data &= ~(0x3FF << 2);
2840 		data |= (0x8 << 2);
2841 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2842 		if (ret_val)
2843 			return ret_val;
2844 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2845 		if (ret_val)
2846 			return ret_val;
2847 		e1e_rphy(hw, HV_PM_CTRL, &data);
2848 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2849 		if (ret_val)
2850 			return ret_val;
2851 	}
2852 
2853 	/* re-enable Rx path after enabling/disabling workaround */
2854 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2855 }
2856 
2857 /**
2858  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2859  *  @hw: pointer to the HW structure
2860  *
2861  *  A series of PHY workarounds to be done after every PHY reset.
2862  **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)2863 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2864 {
2865 	s32 ret_val = 0;
2866 
2867 	if (hw->mac.type != e1000_pch2lan)
2868 		return 0;
2869 
2870 	/* Set MDIO slow mode before any other MDIO access */
2871 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2872 	if (ret_val)
2873 		return ret_val;
2874 
2875 	ret_val = hw->phy.ops.acquire(hw);
2876 	if (ret_val)
2877 		return ret_val;
2878 	/* set MSE higher to enable link to stay up when noise is high */
2879 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2880 	if (ret_val)
2881 		goto release;
2882 	/* drop link after 5 times MSE threshold was reached */
2883 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2884 release:
2885 	hw->phy.ops.release(hw);
2886 
2887 	return ret_val;
2888 }
2889 
2890 /**
2891  *  e1000_k1_workaround_lv - K1 Si workaround
2892  *  @hw:   pointer to the HW structure
2893  *
2894  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2895  *  Disable K1 in 1000Mbps and 100Mbps
2896  **/
e1000_k1_workaround_lv(struct e1000_hw * hw)2897 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2898 {
2899 	s32 ret_val = 0;
2900 	u16 status_reg = 0;
2901 
2902 	if (hw->mac.type != e1000_pch2lan)
2903 		return 0;
2904 
2905 	/* Set K1 beacon duration based on 10Mbs speed */
2906 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2907 	if (ret_val)
2908 		return ret_val;
2909 
2910 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2911 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2912 		if (status_reg &
2913 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2914 			u16 pm_phy_reg;
2915 
2916 			/* LV 1G/100 Packet drop issue wa  */
2917 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2918 			if (ret_val)
2919 				return ret_val;
2920 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2921 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2922 			if (ret_val)
2923 				return ret_val;
2924 		} else {
2925 			u32 mac_reg;
2926 
2927 			mac_reg = er32(FEXTNVM4);
2928 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2929 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2930 			ew32(FEXTNVM4, mac_reg);
2931 		}
2932 	}
2933 
2934 	return ret_val;
2935 }
2936 
2937 /**
2938  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2939  *  @hw:   pointer to the HW structure
2940  *  @gate: boolean set to true to gate, false to ungate
2941  *
2942  *  Gate/ungate the automatic PHY configuration via hardware; perform
2943  *  the configuration via software instead.
2944  **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)2945 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2946 {
2947 	u32 extcnf_ctrl;
2948 
2949 	if (hw->mac.type < e1000_pch2lan)
2950 		return;
2951 
2952 	extcnf_ctrl = er32(EXTCNF_CTRL);
2953 
2954 	if (gate)
2955 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2956 	else
2957 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2958 
2959 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2960 }
2961 
2962 /**
2963  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2964  *  @hw: pointer to the HW structure
2965  *
2966  *  Check the appropriate indication the MAC has finished configuring the
2967  *  PHY after a software reset.
2968  **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)2969 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2970 {
2971 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2972 
2973 	/* Wait for basic configuration completes before proceeding */
2974 	do {
2975 		data = er32(STATUS);
2976 		data &= E1000_STATUS_LAN_INIT_DONE;
2977 		usleep_range(100, 200);
2978 	} while ((!data) && --loop);
2979 
2980 	/* If basic configuration is incomplete before the above loop
2981 	 * count reaches 0, loading the configuration from NVM will
2982 	 * leave the PHY in a bad state possibly resulting in no link.
2983 	 */
2984 	if (loop == 0)
2985 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2986 
2987 	/* Clear the Init Done bit for the next init event */
2988 	data = er32(STATUS);
2989 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2990 	ew32(STATUS, data);
2991 }
2992 
2993 /**
2994  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2995  *  @hw: pointer to the HW structure
2996  **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)2997 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2998 {
2999 	s32 ret_val = 0;
3000 	u16 reg;
3001 
3002 	if (hw->phy.ops.check_reset_block(hw))
3003 		return 0;
3004 
3005 	/* Allow time for h/w to get to quiescent state after reset */
3006 	usleep_range(10000, 11000);
3007 
3008 	/* Perform any necessary post-reset workarounds */
3009 	switch (hw->mac.type) {
3010 	case e1000_pchlan:
3011 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3012 		if (ret_val)
3013 			return ret_val;
3014 		break;
3015 	case e1000_pch2lan:
3016 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3017 		if (ret_val)
3018 			return ret_val;
3019 		break;
3020 	default:
3021 		break;
3022 	}
3023 
3024 	/* Clear the host wakeup bit after lcd reset */
3025 	if (hw->mac.type >= e1000_pchlan) {
3026 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
3027 		reg &= ~BM_WUC_HOST_WU_BIT;
3028 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
3029 	}
3030 
3031 	/* Configure the LCD with the extended configuration region in NVM */
3032 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3033 	if (ret_val)
3034 		return ret_val;
3035 
3036 	/* Configure the LCD with the OEM bits in NVM */
3037 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
3038 
3039 	if (hw->mac.type == e1000_pch2lan) {
3040 		/* Ungate automatic PHY configuration on non-managed 82579 */
3041 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
3042 			usleep_range(10000, 11000);
3043 			e1000_gate_hw_phy_config_ich8lan(hw, false);
3044 		}
3045 
3046 		/* Set EEE LPI Update Timer to 200usec */
3047 		ret_val = hw->phy.ops.acquire(hw);
3048 		if (ret_val)
3049 			return ret_val;
3050 		ret_val = e1000_write_emi_reg_locked(hw,
3051 						     I82579_LPI_UPDATE_TIMER,
3052 						     0x1387);
3053 		hw->phy.ops.release(hw);
3054 	}
3055 
3056 	return ret_val;
3057 }
3058 
3059 /**
3060  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3061  *  @hw: pointer to the HW structure
3062  *
3063  *  Resets the PHY
3064  *  This is a function pointer entry point called by drivers
3065  *  or other shared routines.
3066  **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)3067 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3068 {
3069 	s32 ret_val = 0;
3070 
3071 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3072 	if ((hw->mac.type == e1000_pch2lan) &&
3073 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3074 		e1000_gate_hw_phy_config_ich8lan(hw, true);
3075 
3076 	ret_val = e1000e_phy_hw_reset_generic(hw);
3077 	if (ret_val)
3078 		return ret_val;
3079 
3080 	return e1000_post_phy_reset_ich8lan(hw);
3081 }
3082 
3083 /**
3084  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3085  *  @hw: pointer to the HW structure
3086  *  @active: true to enable LPLU, false to disable
3087  *
3088  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3089  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3090  *  the phy speed. This function will manually set the LPLU bit and restart
3091  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3092  *  since it configures the same bit.
3093  **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)3094 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3095 {
3096 	s32 ret_val;
3097 	u16 oem_reg;
3098 
3099 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3100 	if (ret_val)
3101 		return ret_val;
3102 
3103 	if (active)
3104 		oem_reg |= HV_OEM_BITS_LPLU;
3105 	else
3106 		oem_reg &= ~HV_OEM_BITS_LPLU;
3107 
3108 	if (!hw->phy.ops.check_reset_block(hw))
3109 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3110 
3111 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3112 }
3113 
3114 /**
3115  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3116  *  @hw: pointer to the HW structure
3117  *  @active: true to enable LPLU, false to disable
3118  *
3119  *  Sets the LPLU D0 state according to the active flag.  When
3120  *  activating LPLU this function also disables smart speed
3121  *  and vice versa.  LPLU will not be activated unless the
3122  *  device autonegotiation advertisement meets standards of
3123  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3124  *  This is a function pointer entry point only called by
3125  *  PHY setup routines.
3126  **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3127 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3128 {
3129 	struct e1000_phy_info *phy = &hw->phy;
3130 	u32 phy_ctrl;
3131 	s32 ret_val = 0;
3132 	u16 data;
3133 
3134 	if (phy->type == e1000_phy_ife)
3135 		return 0;
3136 
3137 	phy_ctrl = er32(PHY_CTRL);
3138 
3139 	if (active) {
3140 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3141 		ew32(PHY_CTRL, phy_ctrl);
3142 
3143 		if (phy->type != e1000_phy_igp_3)
3144 			return 0;
3145 
3146 		/* Call gig speed drop workaround on LPLU before accessing
3147 		 * any PHY registers
3148 		 */
3149 		if (hw->mac.type == e1000_ich8lan)
3150 			e1000e_gig_downshift_workaround_ich8lan(hw);
3151 
3152 		/* When LPLU is enabled, we should disable SmartSpeed */
3153 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3154 		if (ret_val)
3155 			return ret_val;
3156 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3157 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3158 		if (ret_val)
3159 			return ret_val;
3160 	} else {
3161 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3162 		ew32(PHY_CTRL, phy_ctrl);
3163 
3164 		if (phy->type != e1000_phy_igp_3)
3165 			return 0;
3166 
3167 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3168 		 * during Dx states where the power conservation is most
3169 		 * important.  During driver activity we should enable
3170 		 * SmartSpeed, so performance is maintained.
3171 		 */
3172 		if (phy->smart_speed == e1000_smart_speed_on) {
3173 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3174 					   &data);
3175 			if (ret_val)
3176 				return ret_val;
3177 
3178 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3179 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3180 					   data);
3181 			if (ret_val)
3182 				return ret_val;
3183 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3184 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3185 					   &data);
3186 			if (ret_val)
3187 				return ret_val;
3188 
3189 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3190 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3191 					   data);
3192 			if (ret_val)
3193 				return ret_val;
3194 		}
3195 	}
3196 
3197 	return 0;
3198 }
3199 
3200 /**
3201  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3202  *  @hw: pointer to the HW structure
3203  *  @active: true to enable LPLU, false to disable
3204  *
3205  *  Sets the LPLU D3 state according to the active flag.  When
3206  *  activating LPLU this function also disables smart speed
3207  *  and vice versa.  LPLU will not be activated unless the
3208  *  device autonegotiation advertisement meets standards of
3209  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3210  *  This is a function pointer entry point only called by
3211  *  PHY setup routines.
3212  **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3213 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3214 {
3215 	struct e1000_phy_info *phy = &hw->phy;
3216 	u32 phy_ctrl;
3217 	s32 ret_val = 0;
3218 	u16 data;
3219 
3220 	phy_ctrl = er32(PHY_CTRL);
3221 
3222 	if (!active) {
3223 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3224 		ew32(PHY_CTRL, phy_ctrl);
3225 
3226 		if (phy->type != e1000_phy_igp_3)
3227 			return 0;
3228 
3229 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3230 		 * during Dx states where the power conservation is most
3231 		 * important.  During driver activity we should enable
3232 		 * SmartSpeed, so performance is maintained.
3233 		 */
3234 		if (phy->smart_speed == e1000_smart_speed_on) {
3235 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3236 					   &data);
3237 			if (ret_val)
3238 				return ret_val;
3239 
3240 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3241 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3242 					   data);
3243 			if (ret_val)
3244 				return ret_val;
3245 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3246 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3247 					   &data);
3248 			if (ret_val)
3249 				return ret_val;
3250 
3251 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3252 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3253 					   data);
3254 			if (ret_val)
3255 				return ret_val;
3256 		}
3257 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3258 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3259 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3260 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3261 		ew32(PHY_CTRL, phy_ctrl);
3262 
3263 		if (phy->type != e1000_phy_igp_3)
3264 			return 0;
3265 
3266 		/* Call gig speed drop workaround on LPLU before accessing
3267 		 * any PHY registers
3268 		 */
3269 		if (hw->mac.type == e1000_ich8lan)
3270 			e1000e_gig_downshift_workaround_ich8lan(hw);
3271 
3272 		/* When LPLU is enabled, we should disable SmartSpeed */
3273 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3274 		if (ret_val)
3275 			return ret_val;
3276 
3277 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3278 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3279 	}
3280 
3281 	return ret_val;
3282 }
3283 
3284 /**
3285  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3286  *  @hw: pointer to the HW structure
3287  *  @bank:  pointer to the variable that returns the active bank
3288  *
3289  *  Reads signature byte from the NVM using the flash access registers.
3290  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3291  **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)3292 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3293 {
3294 	u32 eecd;
3295 	struct e1000_nvm_info *nvm = &hw->nvm;
3296 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3297 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3298 	u32 nvm_dword = 0;
3299 	u8 sig_byte = 0;
3300 	s32 ret_val;
3301 
3302 	switch (hw->mac.type) {
3303 	case e1000_pch_spt:
3304 	case e1000_pch_cnp:
3305 	case e1000_pch_tgp:
3306 	case e1000_pch_adp:
3307 	case e1000_pch_mtp:
3308 	case e1000_pch_lnp:
3309 	case e1000_pch_ptp:
3310 	case e1000_pch_nvp:
3311 		bank1_offset = nvm->flash_bank_size;
3312 		act_offset = E1000_ICH_NVM_SIG_WORD;
3313 
3314 		/* set bank to 0 in case flash read fails */
3315 		*bank = 0;
3316 
3317 		/* Check bank 0 */
3318 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3319 							 &nvm_dword);
3320 		if (ret_val)
3321 			return ret_val;
3322 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3323 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3324 		    E1000_ICH_NVM_SIG_VALUE) {
3325 			*bank = 0;
3326 			return 0;
3327 		}
3328 
3329 		/* Check bank 1 */
3330 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3331 							 bank1_offset,
3332 							 &nvm_dword);
3333 		if (ret_val)
3334 			return ret_val;
3335 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3336 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3337 		    E1000_ICH_NVM_SIG_VALUE) {
3338 			*bank = 1;
3339 			return 0;
3340 		}
3341 
3342 		e_dbg("ERROR: No valid NVM bank present\n");
3343 		return -E1000_ERR_NVM;
3344 	case e1000_ich8lan:
3345 	case e1000_ich9lan:
3346 		eecd = er32(EECD);
3347 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3348 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3349 			if (eecd & E1000_EECD_SEC1VAL)
3350 				*bank = 1;
3351 			else
3352 				*bank = 0;
3353 
3354 			return 0;
3355 		}
3356 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3357 		fallthrough;
3358 	default:
3359 		/* set bank to 0 in case flash read fails */
3360 		*bank = 0;
3361 
3362 		/* Check bank 0 */
3363 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3364 							&sig_byte);
3365 		if (ret_val)
3366 			return ret_val;
3367 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3368 		    E1000_ICH_NVM_SIG_VALUE) {
3369 			*bank = 0;
3370 			return 0;
3371 		}
3372 
3373 		/* Check bank 1 */
3374 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3375 							bank1_offset,
3376 							&sig_byte);
3377 		if (ret_val)
3378 			return ret_val;
3379 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3380 		    E1000_ICH_NVM_SIG_VALUE) {
3381 			*bank = 1;
3382 			return 0;
3383 		}
3384 
3385 		e_dbg("ERROR: No valid NVM bank present\n");
3386 		return -E1000_ERR_NVM;
3387 	}
3388 }
3389 
3390 /**
3391  *  e1000_read_nvm_spt - NVM access for SPT
3392  *  @hw: pointer to the HW structure
3393  *  @offset: The offset (in bytes) of the word(s) to read.
3394  *  @words: Size of data to read in words.
3395  *  @data: pointer to the word(s) to read at offset.
3396  *
3397  *  Reads a word(s) from the NVM
3398  **/
e1000_read_nvm_spt(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3399 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3400 			      u16 *data)
3401 {
3402 	struct e1000_nvm_info *nvm = &hw->nvm;
3403 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3404 	u32 act_offset;
3405 	s32 ret_val = 0;
3406 	u32 bank = 0;
3407 	u32 dword = 0;
3408 	u16 offset_to_read;
3409 	u16 i;
3410 
3411 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3412 	    (words == 0)) {
3413 		e_dbg("nvm parameter(s) out of bounds\n");
3414 		ret_val = -E1000_ERR_NVM;
3415 		goto out;
3416 	}
3417 
3418 	nvm->ops.acquire(hw);
3419 
3420 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3421 	if (ret_val) {
3422 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3423 		bank = 0;
3424 	}
3425 
3426 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3427 	act_offset += offset;
3428 
3429 	ret_val = 0;
3430 
3431 	for (i = 0; i < words; i += 2) {
3432 		if (words - i == 1) {
3433 			if (dev_spec->shadow_ram[offset + i].modified) {
3434 				data[i] =
3435 				    dev_spec->shadow_ram[offset + i].value;
3436 			} else {
3437 				offset_to_read = act_offset + i -
3438 				    ((act_offset + i) % 2);
3439 				ret_val =
3440 				  e1000_read_flash_dword_ich8lan(hw,
3441 								 offset_to_read,
3442 								 &dword);
3443 				if (ret_val)
3444 					break;
3445 				if ((act_offset + i) % 2 == 0)
3446 					data[i] = (u16)(dword & 0xFFFF);
3447 				else
3448 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3449 			}
3450 		} else {
3451 			offset_to_read = act_offset + i;
3452 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3453 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3454 				ret_val =
3455 				  e1000_read_flash_dword_ich8lan(hw,
3456 								 offset_to_read,
3457 								 &dword);
3458 				if (ret_val)
3459 					break;
3460 			}
3461 			if (dev_spec->shadow_ram[offset + i].modified)
3462 				data[i] =
3463 				    dev_spec->shadow_ram[offset + i].value;
3464 			else
3465 				data[i] = (u16)(dword & 0xFFFF);
3466 			if (dev_spec->shadow_ram[offset + i].modified)
3467 				data[i + 1] =
3468 				    dev_spec->shadow_ram[offset + i + 1].value;
3469 			else
3470 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3471 		}
3472 	}
3473 
3474 	nvm->ops.release(hw);
3475 
3476 out:
3477 	if (ret_val)
3478 		e_dbg("NVM read error: %d\n", ret_val);
3479 
3480 	return ret_val;
3481 }
3482 
3483 /**
3484  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3485  *  @hw: pointer to the HW structure
3486  *  @offset: The offset (in bytes) of the word(s) to read.
3487  *  @words: Size of data to read in words
3488  *  @data: Pointer to the word(s) to read at offset.
3489  *
3490  *  Reads a word(s) from the NVM using the flash access registers.
3491  **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3492 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3493 				  u16 *data)
3494 {
3495 	struct e1000_nvm_info *nvm = &hw->nvm;
3496 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3497 	u32 act_offset;
3498 	s32 ret_val = 0;
3499 	u32 bank = 0;
3500 	u16 i, word;
3501 
3502 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3503 	    (words == 0)) {
3504 		e_dbg("nvm parameter(s) out of bounds\n");
3505 		ret_val = -E1000_ERR_NVM;
3506 		goto out;
3507 	}
3508 
3509 	nvm->ops.acquire(hw);
3510 
3511 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3512 	if (ret_val) {
3513 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3514 		bank = 0;
3515 	}
3516 
3517 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3518 	act_offset += offset;
3519 
3520 	ret_val = 0;
3521 	for (i = 0; i < words; i++) {
3522 		if (dev_spec->shadow_ram[offset + i].modified) {
3523 			data[i] = dev_spec->shadow_ram[offset + i].value;
3524 		} else {
3525 			ret_val = e1000_read_flash_word_ich8lan(hw,
3526 								act_offset + i,
3527 								&word);
3528 			if (ret_val)
3529 				break;
3530 			data[i] = word;
3531 		}
3532 	}
3533 
3534 	nvm->ops.release(hw);
3535 
3536 out:
3537 	if (ret_val)
3538 		e_dbg("NVM read error: %d\n", ret_val);
3539 
3540 	return ret_val;
3541 }
3542 
3543 /**
3544  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3545  *  @hw: pointer to the HW structure
3546  *
3547  *  This function does initial flash setup so that a new read/write/erase cycle
3548  *  can be started.
3549  **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)3550 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3551 {
3552 	union ich8_hws_flash_status hsfsts;
3553 	s32 ret_val = -E1000_ERR_NVM;
3554 
3555 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3556 
3557 	/* Check if the flash descriptor is valid */
3558 	if (!hsfsts.hsf_status.fldesvalid) {
3559 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3560 		return -E1000_ERR_NVM;
3561 	}
3562 
3563 	/* Clear FCERR and DAEL in hw status by writing 1 */
3564 	hsfsts.hsf_status.flcerr = 1;
3565 	hsfsts.hsf_status.dael = 1;
3566 	if (hw->mac.type >= e1000_pch_spt)
3567 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3568 	else
3569 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3570 
3571 	/* Either we should have a hardware SPI cycle in progress
3572 	 * bit to check against, in order to start a new cycle or
3573 	 * FDONE bit should be changed in the hardware so that it
3574 	 * is 1 after hardware reset, which can then be used as an
3575 	 * indication whether a cycle is in progress or has been
3576 	 * completed.
3577 	 */
3578 
3579 	if (!hsfsts.hsf_status.flcinprog) {
3580 		/* There is no cycle running at present,
3581 		 * so we can start a cycle.
3582 		 * Begin by setting Flash Cycle Done.
3583 		 */
3584 		hsfsts.hsf_status.flcdone = 1;
3585 		if (hw->mac.type >= e1000_pch_spt)
3586 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3587 		else
3588 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3589 		ret_val = 0;
3590 	} else {
3591 		s32 i;
3592 
3593 		/* Otherwise poll for sometime so the current
3594 		 * cycle has a chance to end before giving up.
3595 		 */
3596 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3597 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3598 			if (!hsfsts.hsf_status.flcinprog) {
3599 				ret_val = 0;
3600 				break;
3601 			}
3602 			udelay(1);
3603 		}
3604 		if (!ret_val) {
3605 			/* Successful in waiting for previous cycle to timeout,
3606 			 * now set the Flash Cycle Done.
3607 			 */
3608 			hsfsts.hsf_status.flcdone = 1;
3609 			if (hw->mac.type >= e1000_pch_spt)
3610 				ew32flash(ICH_FLASH_HSFSTS,
3611 					  hsfsts.regval & 0xFFFF);
3612 			else
3613 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3614 		} else {
3615 			e_dbg("Flash controller busy, cannot get access\n");
3616 		}
3617 	}
3618 
3619 	return ret_val;
3620 }
3621 
3622 /**
3623  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3624  *  @hw: pointer to the HW structure
3625  *  @timeout: maximum time to wait for completion
3626  *
3627  *  This function starts a flash cycle and waits for its completion.
3628  **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)3629 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3630 {
3631 	union ich8_hws_flash_ctrl hsflctl;
3632 	union ich8_hws_flash_status hsfsts;
3633 	u32 i = 0;
3634 
3635 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3636 	if (hw->mac.type >= e1000_pch_spt)
3637 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3638 	else
3639 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3640 	hsflctl.hsf_ctrl.flcgo = 1;
3641 
3642 	if (hw->mac.type >= e1000_pch_spt)
3643 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3644 	else
3645 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3646 
3647 	/* wait till FDONE bit is set to 1 */
3648 	do {
3649 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3650 		if (hsfsts.hsf_status.flcdone)
3651 			break;
3652 		udelay(1);
3653 	} while (i++ < timeout);
3654 
3655 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3656 		return 0;
3657 
3658 	return -E1000_ERR_NVM;
3659 }
3660 
3661 /**
3662  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3663  *  @hw: pointer to the HW structure
3664  *  @offset: offset to data location
3665  *  @data: pointer to the location for storing the data
3666  *
3667  *  Reads the flash dword at offset into data.  Offset is converted
3668  *  to bytes before read.
3669  **/
e1000_read_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3670 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3671 					  u32 *data)
3672 {
3673 	/* Must convert word offset into bytes. */
3674 	offset <<= 1;
3675 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3676 }
3677 
3678 /**
3679  *  e1000_read_flash_word_ich8lan - Read word from flash
3680  *  @hw: pointer to the HW structure
3681  *  @offset: offset to data location
3682  *  @data: pointer to the location for storing the data
3683  *
3684  *  Reads the flash word at offset into data.  Offset is converted
3685  *  to bytes before read.
3686  **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)3687 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3688 					 u16 *data)
3689 {
3690 	/* Must convert offset into bytes. */
3691 	offset <<= 1;
3692 
3693 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3694 }
3695 
3696 /**
3697  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3698  *  @hw: pointer to the HW structure
3699  *  @offset: The offset of the byte to read.
3700  *  @data: Pointer to a byte to store the value read.
3701  *
3702  *  Reads a single byte from the NVM using the flash access registers.
3703  **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)3704 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3705 					 u8 *data)
3706 {
3707 	s32 ret_val;
3708 	u16 word = 0;
3709 
3710 	/* In SPT, only 32 bits access is supported,
3711 	 * so this function should not be called.
3712 	 */
3713 	if (hw->mac.type >= e1000_pch_spt)
3714 		return -E1000_ERR_NVM;
3715 	else
3716 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3717 
3718 	if (ret_val)
3719 		return ret_val;
3720 
3721 	*data = (u8)word;
3722 
3723 	return 0;
3724 }
3725 
3726 /**
3727  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3728  *  @hw: pointer to the HW structure
3729  *  @offset: The offset (in bytes) of the byte or word to read.
3730  *  @size: Size of data to read, 1=byte 2=word
3731  *  @data: Pointer to the word to store the value read.
3732  *
3733  *  Reads a byte or word from the NVM using the flash access registers.
3734  **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)3735 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3736 					 u8 size, u16 *data)
3737 {
3738 	union ich8_hws_flash_status hsfsts;
3739 	union ich8_hws_flash_ctrl hsflctl;
3740 	u32 flash_linear_addr;
3741 	u32 flash_data = 0;
3742 	s32 ret_val = -E1000_ERR_NVM;
3743 	u8 count = 0;
3744 
3745 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3746 		return -E1000_ERR_NVM;
3747 
3748 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3749 			     hw->nvm.flash_base_addr);
3750 
3751 	do {
3752 		udelay(1);
3753 		/* Steps */
3754 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3755 		if (ret_val)
3756 			break;
3757 
3758 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3759 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3760 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3761 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3762 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3763 
3764 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3765 
3766 		ret_val =
3767 		    e1000_flash_cycle_ich8lan(hw,
3768 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3769 
3770 		/* Check if FCERR is set to 1, if set to 1, clear it
3771 		 * and try the whole sequence a few more times, else
3772 		 * read in (shift in) the Flash Data0, the order is
3773 		 * least significant byte first msb to lsb
3774 		 */
3775 		if (!ret_val) {
3776 			flash_data = er32flash(ICH_FLASH_FDATA0);
3777 			if (size == 1)
3778 				*data = (u8)(flash_data & 0x000000FF);
3779 			else if (size == 2)
3780 				*data = (u16)(flash_data & 0x0000FFFF);
3781 			break;
3782 		} else {
3783 			/* If we've gotten here, then things are probably
3784 			 * completely hosed, but if the error condition is
3785 			 * detected, it won't hurt to give it another try...
3786 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3787 			 */
3788 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3789 			if (hsfsts.hsf_status.flcerr) {
3790 				/* Repeat for some time before giving up. */
3791 				continue;
3792 			} else if (!hsfsts.hsf_status.flcdone) {
3793 				e_dbg("Timeout error - flash cycle did not complete.\n");
3794 				break;
3795 			}
3796 		}
3797 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3798 
3799 	return ret_val;
3800 }
3801 
3802 /**
3803  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3804  *  @hw: pointer to the HW structure
3805  *  @offset: The offset (in bytes) of the dword to read.
3806  *  @data: Pointer to the dword to store the value read.
3807  *
3808  *  Reads a byte or word from the NVM using the flash access registers.
3809  **/
3810 
e1000_read_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3811 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3812 					   u32 *data)
3813 {
3814 	union ich8_hws_flash_status hsfsts;
3815 	union ich8_hws_flash_ctrl hsflctl;
3816 	u32 flash_linear_addr;
3817 	s32 ret_val = -E1000_ERR_NVM;
3818 	u8 count = 0;
3819 
3820 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3821 		return -E1000_ERR_NVM;
3822 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3823 			     hw->nvm.flash_base_addr);
3824 
3825 	do {
3826 		udelay(1);
3827 		/* Steps */
3828 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3829 		if (ret_val)
3830 			break;
3831 		/* In SPT, This register is in Lan memory space, not flash.
3832 		 * Therefore, only 32 bit access is supported
3833 		 */
3834 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3835 
3836 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3837 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3838 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3839 		/* In SPT, This register is in Lan memory space, not flash.
3840 		 * Therefore, only 32 bit access is supported
3841 		 */
3842 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3843 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3844 
3845 		ret_val =
3846 		   e1000_flash_cycle_ich8lan(hw,
3847 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3848 
3849 		/* Check if FCERR is set to 1, if set to 1, clear it
3850 		 * and try the whole sequence a few more times, else
3851 		 * read in (shift in) the Flash Data0, the order is
3852 		 * least significant byte first msb to lsb
3853 		 */
3854 		if (!ret_val) {
3855 			*data = er32flash(ICH_FLASH_FDATA0);
3856 			break;
3857 		} else {
3858 			/* If we've gotten here, then things are probably
3859 			 * completely hosed, but if the error condition is
3860 			 * detected, it won't hurt to give it another try...
3861 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3862 			 */
3863 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3864 			if (hsfsts.hsf_status.flcerr) {
3865 				/* Repeat for some time before giving up. */
3866 				continue;
3867 			} else if (!hsfsts.hsf_status.flcdone) {
3868 				e_dbg("Timeout error - flash cycle did not complete.\n");
3869 				break;
3870 			}
3871 		}
3872 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3873 
3874 	return ret_val;
3875 }
3876 
3877 /**
3878  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3879  *  @hw: pointer to the HW structure
3880  *  @offset: The offset (in bytes) of the word(s) to write.
3881  *  @words: Size of data to write in words
3882  *  @data: Pointer to the word(s) to write at offset.
3883  *
3884  *  Writes a byte or word to the NVM using the flash access registers.
3885  **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3886 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3887 				   u16 *data)
3888 {
3889 	struct e1000_nvm_info *nvm = &hw->nvm;
3890 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3891 	u16 i;
3892 
3893 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3894 	    (words == 0)) {
3895 		e_dbg("nvm parameter(s) out of bounds\n");
3896 		return -E1000_ERR_NVM;
3897 	}
3898 
3899 	nvm->ops.acquire(hw);
3900 
3901 	for (i = 0; i < words; i++) {
3902 		dev_spec->shadow_ram[offset + i].modified = true;
3903 		dev_spec->shadow_ram[offset + i].value = data[i];
3904 	}
3905 
3906 	nvm->ops.release(hw);
3907 
3908 	return 0;
3909 }
3910 
3911 /**
3912  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3913  *  @hw: pointer to the HW structure
3914  *
3915  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3916  *  which writes the checksum to the shadow ram.  The changes in the shadow
3917  *  ram are then committed to the EEPROM by processing each bank at a time
3918  *  checking for the modified bit and writing only the pending changes.
3919  *  After a successful commit, the shadow ram is cleared and is ready for
3920  *  future writes.
3921  **/
e1000_update_nvm_checksum_spt(struct e1000_hw * hw)3922 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3923 {
3924 	struct e1000_nvm_info *nvm = &hw->nvm;
3925 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3926 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3927 	s32 ret_val;
3928 	u32 dword = 0;
3929 
3930 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3931 	if (ret_val)
3932 		goto out;
3933 
3934 	if (nvm->type != e1000_nvm_flash_sw)
3935 		goto out;
3936 
3937 	nvm->ops.acquire(hw);
3938 
3939 	/* We're writing to the opposite bank so if we're on bank 1,
3940 	 * write to bank 0 etc.  We also need to erase the segment that
3941 	 * is going to be written
3942 	 */
3943 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3944 	if (ret_val) {
3945 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3946 		bank = 0;
3947 	}
3948 
3949 	if (bank == 0) {
3950 		new_bank_offset = nvm->flash_bank_size;
3951 		old_bank_offset = 0;
3952 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3953 		if (ret_val)
3954 			goto release;
3955 	} else {
3956 		old_bank_offset = nvm->flash_bank_size;
3957 		new_bank_offset = 0;
3958 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3959 		if (ret_val)
3960 			goto release;
3961 	}
3962 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3963 		/* Determine whether to write the value stored
3964 		 * in the other NVM bank or a modified value stored
3965 		 * in the shadow RAM
3966 		 */
3967 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3968 							 i + old_bank_offset,
3969 							 &dword);
3970 
3971 		if (dev_spec->shadow_ram[i].modified) {
3972 			dword &= 0xffff0000;
3973 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3974 		}
3975 		if (dev_spec->shadow_ram[i + 1].modified) {
3976 			dword &= 0x0000ffff;
3977 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3978 				  << 16);
3979 		}
3980 		if (ret_val)
3981 			break;
3982 
3983 		/* If the word is 0x13, then make sure the signature bits
3984 		 * (15:14) are 11b until the commit has completed.
3985 		 * This will allow us to write 10b which indicates the
3986 		 * signature is valid.  We want to do this after the write
3987 		 * has completed so that we don't mark the segment valid
3988 		 * while the write is still in progress
3989 		 */
3990 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3991 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3992 
3993 		/* Convert offset to bytes. */
3994 		act_offset = (i + new_bank_offset) << 1;
3995 
3996 		usleep_range(100, 200);
3997 
3998 		/* Write the data to the new bank. Offset in words */
3999 		act_offset = i + new_bank_offset;
4000 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4001 								dword);
4002 		if (ret_val)
4003 			break;
4004 	}
4005 
4006 	/* Don't bother writing the segment valid bits if sector
4007 	 * programming failed.
4008 	 */
4009 	if (ret_val) {
4010 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4011 		e_dbg("Flash commit failed.\n");
4012 		goto release;
4013 	}
4014 
4015 	/* Finally validate the new segment by setting bit 15:14
4016 	 * to 10b in word 0x13 , this can be done without an
4017 	 * erase as well since these bits are 11 to start with
4018 	 * and we need to change bit 14 to 0b
4019 	 */
4020 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4021 
4022 	/*offset in words but we read dword */
4023 	--act_offset;
4024 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4025 
4026 	if (ret_val)
4027 		goto release;
4028 
4029 	dword &= 0xBFFFFFFF;
4030 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4031 
4032 	if (ret_val)
4033 		goto release;
4034 
4035 	/* offset in words but we read dword */
4036 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4037 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4038 
4039 	if (ret_val)
4040 		goto release;
4041 
4042 	dword &= 0x00FFFFFF;
4043 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4044 
4045 	if (ret_val)
4046 		goto release;
4047 
4048 	/* Great!  Everything worked, we can now clear the cached entries. */
4049 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4050 		dev_spec->shadow_ram[i].modified = false;
4051 		dev_spec->shadow_ram[i].value = 0xFFFF;
4052 	}
4053 
4054 release:
4055 	nvm->ops.release(hw);
4056 
4057 	/* Reload the EEPROM, or else modifications will not appear
4058 	 * until after the next adapter reset.
4059 	 */
4060 	if (!ret_val) {
4061 		nvm->ops.reload(hw);
4062 		usleep_range(10000, 11000);
4063 	}
4064 
4065 out:
4066 	if (ret_val)
4067 		e_dbg("NVM update error: %d\n", ret_val);
4068 
4069 	return ret_val;
4070 }
4071 
4072 /**
4073  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4074  *  @hw: pointer to the HW structure
4075  *
4076  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4077  *  which writes the checksum to the shadow ram.  The changes in the shadow
4078  *  ram are then committed to the EEPROM by processing each bank at a time
4079  *  checking for the modified bit and writing only the pending changes.
4080  *  After a successful commit, the shadow ram is cleared and is ready for
4081  *  future writes.
4082  **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)4083 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4084 {
4085 	struct e1000_nvm_info *nvm = &hw->nvm;
4086 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4087 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4088 	s32 ret_val;
4089 	u16 data = 0;
4090 
4091 	ret_val = e1000e_update_nvm_checksum_generic(hw);
4092 	if (ret_val)
4093 		goto out;
4094 
4095 	if (nvm->type != e1000_nvm_flash_sw)
4096 		goto out;
4097 
4098 	nvm->ops.acquire(hw);
4099 
4100 	/* We're writing to the opposite bank so if we're on bank 1,
4101 	 * write to bank 0 etc.  We also need to erase the segment that
4102 	 * is going to be written
4103 	 */
4104 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4105 	if (ret_val) {
4106 		e_dbg("Could not detect valid bank, assuming bank 0\n");
4107 		bank = 0;
4108 	}
4109 
4110 	if (bank == 0) {
4111 		new_bank_offset = nvm->flash_bank_size;
4112 		old_bank_offset = 0;
4113 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4114 		if (ret_val)
4115 			goto release;
4116 	} else {
4117 		old_bank_offset = nvm->flash_bank_size;
4118 		new_bank_offset = 0;
4119 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4120 		if (ret_val)
4121 			goto release;
4122 	}
4123 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4124 		if (dev_spec->shadow_ram[i].modified) {
4125 			data = dev_spec->shadow_ram[i].value;
4126 		} else {
4127 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4128 								old_bank_offset,
4129 								&data);
4130 			if (ret_val)
4131 				break;
4132 		}
4133 
4134 		/* If the word is 0x13, then make sure the signature bits
4135 		 * (15:14) are 11b until the commit has completed.
4136 		 * This will allow us to write 10b which indicates the
4137 		 * signature is valid.  We want to do this after the write
4138 		 * has completed so that we don't mark the segment valid
4139 		 * while the write is still in progress
4140 		 */
4141 		if (i == E1000_ICH_NVM_SIG_WORD)
4142 			data |= E1000_ICH_NVM_SIG_MASK;
4143 
4144 		/* Convert offset to bytes. */
4145 		act_offset = (i + new_bank_offset) << 1;
4146 
4147 		usleep_range(100, 200);
4148 		/* Write the bytes to the new bank. */
4149 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4150 							       act_offset,
4151 							       (u8)data);
4152 		if (ret_val)
4153 			break;
4154 
4155 		usleep_range(100, 200);
4156 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4157 							       act_offset + 1,
4158 							       (u8)(data >> 8));
4159 		if (ret_val)
4160 			break;
4161 	}
4162 
4163 	/* Don't bother writing the segment valid bits if sector
4164 	 * programming failed.
4165 	 */
4166 	if (ret_val) {
4167 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4168 		e_dbg("Flash commit failed.\n");
4169 		goto release;
4170 	}
4171 
4172 	/* Finally validate the new segment by setting bit 15:14
4173 	 * to 10b in word 0x13 , this can be done without an
4174 	 * erase as well since these bits are 11 to start with
4175 	 * and we need to change bit 14 to 0b
4176 	 */
4177 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4178 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4179 	if (ret_val)
4180 		goto release;
4181 
4182 	data &= 0xBFFF;
4183 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4184 						       act_offset * 2 + 1,
4185 						       (u8)(data >> 8));
4186 	if (ret_val)
4187 		goto release;
4188 
4189 	/* And invalidate the previously valid segment by setting
4190 	 * its signature word (0x13) high_byte to 0b. This can be
4191 	 * done without an erase because flash erase sets all bits
4192 	 * to 1's. We can write 1's to 0's without an erase
4193 	 */
4194 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4195 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4196 	if (ret_val)
4197 		goto release;
4198 
4199 	/* Great!  Everything worked, we can now clear the cached entries. */
4200 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4201 		dev_spec->shadow_ram[i].modified = false;
4202 		dev_spec->shadow_ram[i].value = 0xFFFF;
4203 	}
4204 
4205 release:
4206 	nvm->ops.release(hw);
4207 
4208 	/* Reload the EEPROM, or else modifications will not appear
4209 	 * until after the next adapter reset.
4210 	 */
4211 	if (!ret_val) {
4212 		nvm->ops.reload(hw);
4213 		usleep_range(10000, 11000);
4214 	}
4215 
4216 out:
4217 	if (ret_val)
4218 		e_dbg("NVM update error: %d\n", ret_val);
4219 
4220 	return ret_val;
4221 }
4222 
4223 /**
4224  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4225  *  @hw: pointer to the HW structure
4226  *
4227  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4228  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4229  *  calculated, in which case we need to calculate the checksum and set bit 6.
4230  **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)4231 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4232 {
4233 	s32 ret_val;
4234 	u16 data;
4235 	u16 word;
4236 	u16 valid_csum_mask;
4237 
4238 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4239 	 * the checksum needs to be fixed.  This bit is an indication that
4240 	 * the NVM was prepared by OEM software and did not calculate
4241 	 * the checksum...a likely scenario.
4242 	 */
4243 	switch (hw->mac.type) {
4244 	case e1000_pch_lpt:
4245 	case e1000_pch_spt:
4246 	case e1000_pch_cnp:
4247 	case e1000_pch_tgp:
4248 	case e1000_pch_adp:
4249 	case e1000_pch_mtp:
4250 	case e1000_pch_lnp:
4251 	case e1000_pch_ptp:
4252 	case e1000_pch_nvp:
4253 		word = NVM_COMPAT;
4254 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4255 		break;
4256 	default:
4257 		word = NVM_FUTURE_INIT_WORD1;
4258 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4259 		break;
4260 	}
4261 
4262 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4263 	if (ret_val)
4264 		return ret_val;
4265 
4266 	if (!(data & valid_csum_mask)) {
4267 		e_dbg("NVM Checksum valid bit not set\n");
4268 
4269 		if (hw->mac.type < e1000_pch_tgp) {
4270 			data |= valid_csum_mask;
4271 			ret_val = e1000_write_nvm(hw, word, 1, &data);
4272 			if (ret_val)
4273 				return ret_val;
4274 			ret_val = e1000e_update_nvm_checksum(hw);
4275 			if (ret_val)
4276 				return ret_val;
4277 		}
4278 	}
4279 
4280 	return e1000e_validate_nvm_checksum_generic(hw);
4281 }
4282 
4283 /**
4284  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4285  *  @hw: pointer to the HW structure
4286  *
4287  *  To prevent malicious write/erase of the NVM, set it to be read-only
4288  *  so that the hardware ignores all write/erase cycles of the NVM via
4289  *  the flash control registers.  The shadow-ram copy of the NVM will
4290  *  still be updated, however any updates to this copy will not stick
4291  *  across driver reloads.
4292  **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)4293 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4294 {
4295 	struct e1000_nvm_info *nvm = &hw->nvm;
4296 	union ich8_flash_protected_range pr0;
4297 	union ich8_hws_flash_status hsfsts;
4298 	u32 gfpreg;
4299 
4300 	nvm->ops.acquire(hw);
4301 
4302 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4303 
4304 	/* Write-protect GbE Sector of NVM */
4305 	pr0.regval = er32flash(ICH_FLASH_PR0);
4306 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4307 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4308 	pr0.range.wpe = true;
4309 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4310 
4311 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4312 	 * PR0 to prevent the write-protection from being lifted.
4313 	 * Once FLOCKDN is set, the registers protected by it cannot
4314 	 * be written until FLOCKDN is cleared by a hardware reset.
4315 	 */
4316 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4317 	hsfsts.hsf_status.flockdn = true;
4318 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4319 
4320 	nvm->ops.release(hw);
4321 }
4322 
4323 /**
4324  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4325  *  @hw: pointer to the HW structure
4326  *  @offset: The offset (in bytes) of the byte/word to read.
4327  *  @size: Size of data to read, 1=byte 2=word
4328  *  @data: The byte(s) to write to the NVM.
4329  *
4330  *  Writes one/two bytes to the NVM using the flash access registers.
4331  **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)4332 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4333 					  u8 size, u16 data)
4334 {
4335 	union ich8_hws_flash_status hsfsts;
4336 	union ich8_hws_flash_ctrl hsflctl;
4337 	u32 flash_linear_addr;
4338 	u32 flash_data = 0;
4339 	s32 ret_val;
4340 	u8 count = 0;
4341 
4342 	if (hw->mac.type >= e1000_pch_spt) {
4343 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4344 			return -E1000_ERR_NVM;
4345 	} else {
4346 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4347 			return -E1000_ERR_NVM;
4348 	}
4349 
4350 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4351 			     hw->nvm.flash_base_addr);
4352 
4353 	do {
4354 		udelay(1);
4355 		/* Steps */
4356 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4357 		if (ret_val)
4358 			break;
4359 		/* In SPT, This register is in Lan memory space, not
4360 		 * flash.  Therefore, only 32 bit access is supported
4361 		 */
4362 		if (hw->mac.type >= e1000_pch_spt)
4363 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4364 		else
4365 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4366 
4367 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4368 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4369 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4370 		/* In SPT, This register is in Lan memory space,
4371 		 * not flash.  Therefore, only 32 bit access is
4372 		 * supported
4373 		 */
4374 		if (hw->mac.type >= e1000_pch_spt)
4375 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4376 		else
4377 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4378 
4379 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4380 
4381 		if (size == 1)
4382 			flash_data = (u32)data & 0x00FF;
4383 		else
4384 			flash_data = (u32)data;
4385 
4386 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4387 
4388 		/* check if FCERR is set to 1 , if set to 1, clear it
4389 		 * and try the whole sequence a few more times else done
4390 		 */
4391 		ret_val =
4392 		    e1000_flash_cycle_ich8lan(hw,
4393 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4394 		if (!ret_val)
4395 			break;
4396 
4397 		/* If we're here, then things are most likely
4398 		 * completely hosed, but if the error condition
4399 		 * is detected, it won't hurt to give it another
4400 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4401 		 */
4402 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4403 		if (hsfsts.hsf_status.flcerr)
4404 			/* Repeat for some time before giving up. */
4405 			continue;
4406 		if (!hsfsts.hsf_status.flcdone) {
4407 			e_dbg("Timeout error - flash cycle did not complete.\n");
4408 			break;
4409 		}
4410 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4411 
4412 	return ret_val;
4413 }
4414 
4415 /**
4416 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4417 *  @hw: pointer to the HW structure
4418 *  @offset: The offset (in bytes) of the dwords to read.
4419 *  @data: The 4 bytes to write to the NVM.
4420 *
4421 *  Writes one/two/four bytes to the NVM using the flash access registers.
4422 **/
e1000_write_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 data)4423 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4424 					    u32 data)
4425 {
4426 	union ich8_hws_flash_status hsfsts;
4427 	union ich8_hws_flash_ctrl hsflctl;
4428 	u32 flash_linear_addr;
4429 	s32 ret_val;
4430 	u8 count = 0;
4431 
4432 	if (hw->mac.type >= e1000_pch_spt) {
4433 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4434 			return -E1000_ERR_NVM;
4435 	}
4436 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4437 			     hw->nvm.flash_base_addr);
4438 	do {
4439 		udelay(1);
4440 		/* Steps */
4441 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4442 		if (ret_val)
4443 			break;
4444 
4445 		/* In SPT, This register is in Lan memory space, not
4446 		 * flash.  Therefore, only 32 bit access is supported
4447 		 */
4448 		if (hw->mac.type >= e1000_pch_spt)
4449 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4450 			    >> 16;
4451 		else
4452 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4453 
4454 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4455 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4456 
4457 		/* In SPT, This register is in Lan memory space,
4458 		 * not flash.  Therefore, only 32 bit access is
4459 		 * supported
4460 		 */
4461 		if (hw->mac.type >= e1000_pch_spt)
4462 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4463 		else
4464 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4465 
4466 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4467 
4468 		ew32flash(ICH_FLASH_FDATA0, data);
4469 
4470 		/* check if FCERR is set to 1 , if set to 1, clear it
4471 		 * and try the whole sequence a few more times else done
4472 		 */
4473 		ret_val =
4474 		   e1000_flash_cycle_ich8lan(hw,
4475 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4476 
4477 		if (!ret_val)
4478 			break;
4479 
4480 		/* If we're here, then things are most likely
4481 		 * completely hosed, but if the error condition
4482 		 * is detected, it won't hurt to give it another
4483 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4484 		 */
4485 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4486 
4487 		if (hsfsts.hsf_status.flcerr)
4488 			/* Repeat for some time before giving up. */
4489 			continue;
4490 		if (!hsfsts.hsf_status.flcdone) {
4491 			e_dbg("Timeout error - flash cycle did not complete.\n");
4492 			break;
4493 		}
4494 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4495 
4496 	return ret_val;
4497 }
4498 
4499 /**
4500  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4501  *  @hw: pointer to the HW structure
4502  *  @offset: The index of the byte to read.
4503  *  @data: The byte to write to the NVM.
4504  *
4505  *  Writes a single byte to the NVM using the flash access registers.
4506  **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)4507 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4508 					  u8 data)
4509 {
4510 	u16 word = (u16)data;
4511 
4512 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4513 }
4514 
4515 /**
4516 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4517 *  @hw: pointer to the HW structure
4518 *  @offset: The offset of the word to write.
4519 *  @dword: The dword to write to the NVM.
4520 *
4521 *  Writes a single dword to the NVM using the flash access registers.
4522 *  Goes through a retry algorithm before giving up.
4523 **/
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 dword)4524 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4525 						 u32 offset, u32 dword)
4526 {
4527 	s32 ret_val;
4528 	u16 program_retries;
4529 
4530 	/* Must convert word offset into bytes. */
4531 	offset <<= 1;
4532 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4533 
4534 	if (!ret_val)
4535 		return ret_val;
4536 	for (program_retries = 0; program_retries < 100; program_retries++) {
4537 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4538 		usleep_range(100, 200);
4539 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4540 		if (!ret_val)
4541 			break;
4542 	}
4543 	if (program_retries == 100)
4544 		return -E1000_ERR_NVM;
4545 
4546 	return 0;
4547 }
4548 
4549 /**
4550  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4551  *  @hw: pointer to the HW structure
4552  *  @offset: The offset of the byte to write.
4553  *  @byte: The byte to write to the NVM.
4554  *
4555  *  Writes a single byte to the NVM using the flash access registers.
4556  *  Goes through a retry algorithm before giving up.
4557  **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)4558 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4559 						u32 offset, u8 byte)
4560 {
4561 	s32 ret_val;
4562 	u16 program_retries;
4563 
4564 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4565 	if (!ret_val)
4566 		return ret_val;
4567 
4568 	for (program_retries = 0; program_retries < 100; program_retries++) {
4569 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4570 		usleep_range(100, 200);
4571 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4572 		if (!ret_val)
4573 			break;
4574 	}
4575 	if (program_retries == 100)
4576 		return -E1000_ERR_NVM;
4577 
4578 	return 0;
4579 }
4580 
4581 /**
4582  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4583  *  @hw: pointer to the HW structure
4584  *  @bank: 0 for first bank, 1 for second bank, etc.
4585  *
4586  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4587  *  bank N is 4096 * N + flash_reg_addr.
4588  **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)4589 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4590 {
4591 	struct e1000_nvm_info *nvm = &hw->nvm;
4592 	union ich8_hws_flash_status hsfsts;
4593 	union ich8_hws_flash_ctrl hsflctl;
4594 	u32 flash_linear_addr;
4595 	/* bank size is in 16bit words - adjust to bytes */
4596 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4597 	s32 ret_val;
4598 	s32 count = 0;
4599 	s32 j, iteration, sector_size;
4600 
4601 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4602 
4603 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4604 	 * register
4605 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4606 	 *     consecutive sectors.  The start index for the nth Hw sector
4607 	 *     can be calculated as = bank * 4096 + n * 256
4608 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4609 	 *     The start index for the nth Hw sector can be calculated
4610 	 *     as = bank * 4096
4611 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4612 	 *     (ich9 only, otherwise error condition)
4613 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4614 	 */
4615 	switch (hsfsts.hsf_status.berasesz) {
4616 	case 0:
4617 		/* Hw sector size 256 */
4618 		sector_size = ICH_FLASH_SEG_SIZE_256;
4619 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4620 		break;
4621 	case 1:
4622 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4623 		iteration = 1;
4624 		break;
4625 	case 2:
4626 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4627 		iteration = 1;
4628 		break;
4629 	case 3:
4630 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4631 		iteration = 1;
4632 		break;
4633 	default:
4634 		return -E1000_ERR_NVM;
4635 	}
4636 
4637 	/* Start with the base address, then add the sector offset. */
4638 	flash_linear_addr = hw->nvm.flash_base_addr;
4639 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4640 
4641 	for (j = 0; j < iteration; j++) {
4642 		do {
4643 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4644 
4645 			/* Steps */
4646 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4647 			if (ret_val)
4648 				return ret_val;
4649 
4650 			/* Write a value 11 (block Erase) in Flash
4651 			 * Cycle field in hw flash control
4652 			 */
4653 			if (hw->mac.type >= e1000_pch_spt)
4654 				hsflctl.regval =
4655 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4656 			else
4657 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4658 
4659 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4660 			if (hw->mac.type >= e1000_pch_spt)
4661 				ew32flash(ICH_FLASH_HSFSTS,
4662 					  hsflctl.regval << 16);
4663 			else
4664 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4665 
4666 			/* Write the last 24 bits of an index within the
4667 			 * block into Flash Linear address field in Flash
4668 			 * Address.
4669 			 */
4670 			flash_linear_addr += (j * sector_size);
4671 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4672 
4673 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4674 			if (!ret_val)
4675 				break;
4676 
4677 			/* Check if FCERR is set to 1.  If 1,
4678 			 * clear it and try the whole sequence
4679 			 * a few more times else Done
4680 			 */
4681 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4682 			if (hsfsts.hsf_status.flcerr)
4683 				/* repeat for some time before giving up */
4684 				continue;
4685 			else if (!hsfsts.hsf_status.flcdone)
4686 				return ret_val;
4687 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4688 	}
4689 
4690 	return 0;
4691 }
4692 
4693 /**
4694  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4695  *  @hw: pointer to the HW structure
4696  *  @data: Pointer to the LED settings
4697  *
4698  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4699  *  settings is all 0's or F's, set the LED default to a valid LED default
4700  *  setting.
4701  **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)4702 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4703 {
4704 	s32 ret_val;
4705 
4706 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4707 	if (ret_val) {
4708 		e_dbg("NVM Read Error\n");
4709 		return ret_val;
4710 	}
4711 
4712 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4713 		*data = ID_LED_DEFAULT_ICH8LAN;
4714 
4715 	return 0;
4716 }
4717 
4718 /**
4719  *  e1000_id_led_init_pchlan - store LED configurations
4720  *  @hw: pointer to the HW structure
4721  *
4722  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4723  *  the PHY LED configuration register.
4724  *
4725  *  PCH also does not have an "always on" or "always off" mode which
4726  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4727  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4728  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4729  *  link based on logic in e1000_led_[on|off]_pchlan().
4730  **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)4731 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4732 {
4733 	struct e1000_mac_info *mac = &hw->mac;
4734 	s32 ret_val;
4735 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4736 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4737 	u16 data, i, temp, shift;
4738 
4739 	/* Get default ID LED modes */
4740 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4741 	if (ret_val)
4742 		return ret_val;
4743 
4744 	mac->ledctl_default = er32(LEDCTL);
4745 	mac->ledctl_mode1 = mac->ledctl_default;
4746 	mac->ledctl_mode2 = mac->ledctl_default;
4747 
4748 	for (i = 0; i < 4; i++) {
4749 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4750 		shift = (i * 5);
4751 		switch (temp) {
4752 		case ID_LED_ON1_DEF2:
4753 		case ID_LED_ON1_ON2:
4754 		case ID_LED_ON1_OFF2:
4755 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4756 			mac->ledctl_mode1 |= (ledctl_on << shift);
4757 			break;
4758 		case ID_LED_OFF1_DEF2:
4759 		case ID_LED_OFF1_ON2:
4760 		case ID_LED_OFF1_OFF2:
4761 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4762 			mac->ledctl_mode1 |= (ledctl_off << shift);
4763 			break;
4764 		default:
4765 			/* Do nothing */
4766 			break;
4767 		}
4768 		switch (temp) {
4769 		case ID_LED_DEF1_ON2:
4770 		case ID_LED_ON1_ON2:
4771 		case ID_LED_OFF1_ON2:
4772 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4773 			mac->ledctl_mode2 |= (ledctl_on << shift);
4774 			break;
4775 		case ID_LED_DEF1_OFF2:
4776 		case ID_LED_ON1_OFF2:
4777 		case ID_LED_OFF1_OFF2:
4778 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4779 			mac->ledctl_mode2 |= (ledctl_off << shift);
4780 			break;
4781 		default:
4782 			/* Do nothing */
4783 			break;
4784 		}
4785 	}
4786 
4787 	return 0;
4788 }
4789 
4790 /**
4791  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4792  *  @hw: pointer to the HW structure
4793  *
4794  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4795  *  register, so the bus width is hard coded.
4796  **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)4797 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4798 {
4799 	struct e1000_bus_info *bus = &hw->bus;
4800 	s32 ret_val;
4801 
4802 	ret_val = e1000e_get_bus_info_pcie(hw);
4803 
4804 	/* ICH devices are "PCI Express"-ish.  They have
4805 	 * a configuration space, but do not contain
4806 	 * PCI Express Capability registers, so bus width
4807 	 * must be hardcoded.
4808 	 */
4809 	if (bus->width == e1000_bus_width_unknown)
4810 		bus->width = e1000_bus_width_pcie_x1;
4811 
4812 	return ret_val;
4813 }
4814 
4815 /**
4816  *  e1000_reset_hw_ich8lan - Reset the hardware
4817  *  @hw: pointer to the HW structure
4818  *
4819  *  Does a full reset of the hardware which includes a reset of the PHY and
4820  *  MAC.
4821  **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)4822 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4823 {
4824 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4825 	u16 kum_cfg;
4826 	u32 ctrl, reg;
4827 	s32 ret_val;
4828 
4829 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4830 	 * on the last TLP read/write transaction when MAC is reset.
4831 	 */
4832 	ret_val = e1000e_disable_pcie_master(hw);
4833 	if (ret_val)
4834 		e_dbg("PCI-E Master disable polling has failed.\n");
4835 
4836 	e_dbg("Masking off all interrupts\n");
4837 	ew32(IMC, 0xffffffff);
4838 
4839 	/* Disable the Transmit and Receive units.  Then delay to allow
4840 	 * any pending transactions to complete before we hit the MAC
4841 	 * with the global reset.
4842 	 */
4843 	ew32(RCTL, 0);
4844 	ew32(TCTL, E1000_TCTL_PSP);
4845 	e1e_flush();
4846 
4847 	usleep_range(10000, 11000);
4848 
4849 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4850 	if (hw->mac.type == e1000_ich8lan) {
4851 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4852 		ew32(PBA, E1000_PBA_8K);
4853 		/* Set Packet Buffer Size to 16k. */
4854 		ew32(PBS, E1000_PBS_16K);
4855 	}
4856 
4857 	if (hw->mac.type == e1000_pchlan) {
4858 		/* Save the NVM K1 bit setting */
4859 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4860 		if (ret_val)
4861 			return ret_val;
4862 
4863 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4864 			dev_spec->nvm_k1_enabled = true;
4865 		else
4866 			dev_spec->nvm_k1_enabled = false;
4867 	}
4868 
4869 	ctrl = er32(CTRL);
4870 
4871 	if (!hw->phy.ops.check_reset_block(hw)) {
4872 		/* Full-chip reset requires MAC and PHY reset at the same
4873 		 * time to make sure the interface between MAC and the
4874 		 * external PHY is reset.
4875 		 */
4876 		ctrl |= E1000_CTRL_PHY_RST;
4877 
4878 		/* Gate automatic PHY configuration by hardware on
4879 		 * non-managed 82579
4880 		 */
4881 		if ((hw->mac.type == e1000_pch2lan) &&
4882 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4883 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4884 	}
4885 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4886 	e_dbg("Issuing a global reset to ich8lan\n");
4887 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4888 	/* cannot issue a flush here because it hangs the hardware */
4889 	msleep(20);
4890 
4891 	/* Set Phy Config Counter to 50msec */
4892 	if (hw->mac.type == e1000_pch2lan) {
4893 		reg = er32(FEXTNVM3);
4894 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4895 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4896 		ew32(FEXTNVM3, reg);
4897 	}
4898 
4899 	if (!ret_val)
4900 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4901 
4902 	if (ctrl & E1000_CTRL_PHY_RST) {
4903 		ret_val = hw->phy.ops.get_cfg_done(hw);
4904 		if (ret_val)
4905 			return ret_val;
4906 
4907 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4908 		if (ret_val)
4909 			return ret_val;
4910 	}
4911 
4912 	/* For PCH, this write will make sure that any noise
4913 	 * will be detected as a CRC error and be dropped rather than show up
4914 	 * as a bad packet to the DMA engine.
4915 	 */
4916 	if (hw->mac.type == e1000_pchlan)
4917 		ew32(CRC_OFFSET, 0x65656565);
4918 
4919 	ew32(IMC, 0xffffffff);
4920 	er32(ICR);
4921 
4922 	reg = er32(KABGTXD);
4923 	reg |= E1000_KABGTXD_BGSQLBIAS;
4924 	ew32(KABGTXD, reg);
4925 
4926 	return 0;
4927 }
4928 
4929 /**
4930  *  e1000_init_hw_ich8lan - Initialize the hardware
4931  *  @hw: pointer to the HW structure
4932  *
4933  *  Prepares the hardware for transmit and receive by doing the following:
4934  *   - initialize hardware bits
4935  *   - initialize LED identification
4936  *   - setup receive address registers
4937  *   - setup flow control
4938  *   - setup transmit descriptors
4939  *   - clear statistics
4940  **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)4941 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4942 {
4943 	struct e1000_mac_info *mac = &hw->mac;
4944 	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4945 	s32 ret_val;
4946 	u16 i;
4947 
4948 	e1000_initialize_hw_bits_ich8lan(hw);
4949 	if (hw->mac.type >= e1000_pch_mtp) {
4950 		ret_val = hw->phy.ops.acquire(hw);
4951 		if (ret_val)
4952 			return ret_val;
4953 
4954 		ret_val = e1000_reconfigure_k1_exit_timeout(hw);
4955 		hw->phy.ops.release(hw);
4956 		if (ret_val) {
4957 			e_dbg("Error failed to reconfigure K1 exit timeout\n");
4958 			return ret_val;
4959 		}
4960 	}
4961 
4962 	/* Initialize identification LED */
4963 	ret_val = mac->ops.id_led_init(hw);
4964 	/* An error is not fatal and we should not stop init due to this */
4965 	if (ret_val)
4966 		e_dbg("Error initializing identification LED\n");
4967 
4968 	/* Setup the receive address. */
4969 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4970 
4971 	/* Zero out the Multicast HASH table */
4972 	e_dbg("Zeroing the MTA\n");
4973 	for (i = 0; i < mac->mta_reg_count; i++)
4974 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4975 
4976 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4977 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4978 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4979 	 */
4980 	if (hw->phy.type == e1000_phy_82578) {
4981 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4982 		i &= ~BM_WUC_HOST_WU_BIT;
4983 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4984 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4985 		if (ret_val)
4986 			return ret_val;
4987 	}
4988 
4989 	/* Setup link and flow control */
4990 	ret_val = mac->ops.setup_link(hw);
4991 
4992 	/* Set the transmit descriptor write-back policy for both queues */
4993 	txdctl = er32(TXDCTL(0));
4994 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4995 		  E1000_TXDCTL_FULL_TX_DESC_WB);
4996 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4997 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4998 	ew32(TXDCTL(0), txdctl);
4999 	txdctl = er32(TXDCTL(1));
5000 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5001 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5002 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5003 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5004 	ew32(TXDCTL(1), txdctl);
5005 
5006 	/* ICH8 has opposite polarity of no_snoop bits.
5007 	 * By default, we should use snoop behavior.
5008 	 */
5009 	if (mac->type == e1000_ich8lan)
5010 		snoop = PCIE_ICH8_SNOOP_ALL;
5011 	else
5012 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
5013 	e1000e_set_pcie_no_snoop(hw, snoop);
5014 
5015 	/* Enable workaround for packet loss issue on TGP PCH
5016 	 * Do not gate DMA clock from the modPHY block
5017 	 */
5018 	if (mac->type >= e1000_pch_tgp) {
5019 		fflt_dbg = er32(FFLT_DBG);
5020 		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
5021 		ew32(FFLT_DBG, fflt_dbg);
5022 	}
5023 
5024 	ctrl_ext = er32(CTRL_EXT);
5025 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5026 	ew32(CTRL_EXT, ctrl_ext);
5027 
5028 	/* Clear all of the statistics registers (clear on read).  It is
5029 	 * important that we do this after we have tried to establish link
5030 	 * because the symbol error count will increment wildly if there
5031 	 * is no link.
5032 	 */
5033 	e1000_clear_hw_cntrs_ich8lan(hw);
5034 
5035 	return ret_val;
5036 }
5037 
5038 /**
5039  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5040  *  @hw: pointer to the HW structure
5041  *
5042  *  Sets/Clears required hardware bits necessary for correctly setting up the
5043  *  hardware for transmit and receive.
5044  **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)5045 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5046 {
5047 	u32 reg;
5048 
5049 	/* Extended Device Control */
5050 	reg = er32(CTRL_EXT);
5051 	reg |= BIT(22);
5052 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5053 	if (hw->mac.type >= e1000_pchlan)
5054 		reg |= E1000_CTRL_EXT_PHYPDEN;
5055 	ew32(CTRL_EXT, reg);
5056 
5057 	/* Transmit Descriptor Control 0 */
5058 	reg = er32(TXDCTL(0));
5059 	reg |= BIT(22);
5060 	ew32(TXDCTL(0), reg);
5061 
5062 	/* Transmit Descriptor Control 1 */
5063 	reg = er32(TXDCTL(1));
5064 	reg |= BIT(22);
5065 	ew32(TXDCTL(1), reg);
5066 
5067 	/* Transmit Arbitration Control 0 */
5068 	reg = er32(TARC(0));
5069 	if (hw->mac.type == e1000_ich8lan)
5070 		reg |= BIT(28) | BIT(29);
5071 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5072 	ew32(TARC(0), reg);
5073 
5074 	/* Transmit Arbitration Control 1 */
5075 	reg = er32(TARC(1));
5076 	if (er32(TCTL) & E1000_TCTL_MULR)
5077 		reg &= ~BIT(28);
5078 	else
5079 		reg |= BIT(28);
5080 	reg |= BIT(24) | BIT(26) | BIT(30);
5081 	ew32(TARC(1), reg);
5082 
5083 	/* Device Status */
5084 	if (hw->mac.type == e1000_ich8lan) {
5085 		reg = er32(STATUS);
5086 		reg &= ~BIT(31);
5087 		ew32(STATUS, reg);
5088 	}
5089 
5090 	/* work-around descriptor data corruption issue during nfs v2 udp
5091 	 * traffic, just disable the nfs filtering capability
5092 	 */
5093 	reg = er32(RFCTL);
5094 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5095 
5096 	/* Disable IPv6 extension header parsing because some malformed
5097 	 * IPv6 headers can hang the Rx.
5098 	 */
5099 	if (hw->mac.type == e1000_ich8lan)
5100 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5101 	ew32(RFCTL, reg);
5102 
5103 	/* Enable ECC on Lynxpoint */
5104 	if (hw->mac.type >= e1000_pch_lpt) {
5105 		reg = er32(PBECCSTS);
5106 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5107 		ew32(PBECCSTS, reg);
5108 
5109 		reg = er32(CTRL);
5110 		reg |= E1000_CTRL_MEHE;
5111 		ew32(CTRL, reg);
5112 	}
5113 }
5114 
5115 /**
5116  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5117  *  @hw: pointer to the HW structure
5118  *
5119  *  Determines which flow control settings to use, then configures flow
5120  *  control.  Calls the appropriate media-specific link configuration
5121  *  function.  Assuming the adapter has a valid link partner, a valid link
5122  *  should be established.  Assumes the hardware has previously been reset
5123  *  and the transmitter and receiver are not enabled.
5124  **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)5125 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5126 {
5127 	s32 ret_val;
5128 
5129 	if (hw->phy.ops.check_reset_block(hw))
5130 		return 0;
5131 
5132 	/* ICH parts do not have a word in the NVM to determine
5133 	 * the default flow control setting, so we explicitly
5134 	 * set it to full.
5135 	 */
5136 	if (hw->fc.requested_mode == e1000_fc_default) {
5137 		/* Workaround h/w hang when Tx flow control enabled */
5138 		if (hw->mac.type == e1000_pchlan)
5139 			hw->fc.requested_mode = e1000_fc_rx_pause;
5140 		else
5141 			hw->fc.requested_mode = e1000_fc_full;
5142 	}
5143 
5144 	/* Save off the requested flow control mode for use later.  Depending
5145 	 * on the link partner's capabilities, we may or may not use this mode.
5146 	 */
5147 	hw->fc.current_mode = hw->fc.requested_mode;
5148 
5149 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5150 
5151 	/* Continue to configure the copper link. */
5152 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5153 	if (ret_val)
5154 		return ret_val;
5155 
5156 	ew32(FCTTV, hw->fc.pause_time);
5157 	if ((hw->phy.type == e1000_phy_82578) ||
5158 	    (hw->phy.type == e1000_phy_82579) ||
5159 	    (hw->phy.type == e1000_phy_i217) ||
5160 	    (hw->phy.type == e1000_phy_82577)) {
5161 		ew32(FCRTV_PCH, hw->fc.refresh_time);
5162 
5163 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5164 				   hw->fc.pause_time);
5165 		if (ret_val)
5166 			return ret_val;
5167 	}
5168 
5169 	return e1000e_set_fc_watermarks(hw);
5170 }
5171 
5172 /**
5173  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5174  *  @hw: pointer to the HW structure
5175  *
5176  *  Configures the kumeran interface to the PHY to wait the appropriate time
5177  *  when polling the PHY, then call the generic setup_copper_link to finish
5178  *  configuring the copper link.
5179  **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)5180 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5181 {
5182 	u32 ctrl;
5183 	s32 ret_val;
5184 	u16 reg_data;
5185 
5186 	ctrl = er32(CTRL);
5187 	ctrl |= E1000_CTRL_SLU;
5188 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5189 	ew32(CTRL, ctrl);
5190 
5191 	/* Set the mac to wait the maximum time between each iteration
5192 	 * and increase the max iterations when polling the phy;
5193 	 * this fixes erroneous timeouts at 10Mbps.
5194 	 */
5195 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5196 	if (ret_val)
5197 		return ret_val;
5198 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5199 				       &reg_data);
5200 	if (ret_val)
5201 		return ret_val;
5202 	reg_data |= 0x3F;
5203 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5204 					reg_data);
5205 	if (ret_val)
5206 		return ret_val;
5207 
5208 	switch (hw->phy.type) {
5209 	case e1000_phy_igp_3:
5210 		ret_val = e1000e_copper_link_setup_igp(hw);
5211 		if (ret_val)
5212 			return ret_val;
5213 		break;
5214 	case e1000_phy_bm:
5215 	case e1000_phy_82578:
5216 		ret_val = e1000e_copper_link_setup_m88(hw);
5217 		if (ret_val)
5218 			return ret_val;
5219 		break;
5220 	case e1000_phy_82577:
5221 	case e1000_phy_82579:
5222 		ret_val = e1000_copper_link_setup_82577(hw);
5223 		if (ret_val)
5224 			return ret_val;
5225 		break;
5226 	case e1000_phy_ife:
5227 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5228 		if (ret_val)
5229 			return ret_val;
5230 
5231 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5232 
5233 		switch (hw->phy.mdix) {
5234 		case 1:
5235 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5236 			break;
5237 		case 2:
5238 			reg_data |= IFE_PMC_FORCE_MDIX;
5239 			break;
5240 		case 0:
5241 		default:
5242 			reg_data |= IFE_PMC_AUTO_MDIX;
5243 			break;
5244 		}
5245 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5246 		if (ret_val)
5247 			return ret_val;
5248 		break;
5249 	default:
5250 		break;
5251 	}
5252 
5253 	return e1000e_setup_copper_link(hw);
5254 }
5255 
5256 /**
5257  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5258  *  @hw: pointer to the HW structure
5259  *
5260  *  Calls the PHY specific link setup function and then calls the
5261  *  generic setup_copper_link to finish configuring the link for
5262  *  Lynxpoint PCH devices
5263  **/
e1000_setup_copper_link_pch_lpt(struct e1000_hw * hw)5264 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5265 {
5266 	u32 ctrl;
5267 	s32 ret_val;
5268 
5269 	ctrl = er32(CTRL);
5270 	ctrl |= E1000_CTRL_SLU;
5271 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5272 	ew32(CTRL, ctrl);
5273 
5274 	ret_val = e1000_copper_link_setup_82577(hw);
5275 	if (ret_val)
5276 		return ret_val;
5277 
5278 	return e1000e_setup_copper_link(hw);
5279 }
5280 
5281 /**
5282  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5283  *  @hw: pointer to the HW structure
5284  *  @speed: pointer to store current link speed
5285  *  @duplex: pointer to store the current link duplex
5286  *
5287  *  Calls the generic get_speed_and_duplex to retrieve the current link
5288  *  information and then calls the Kumeran lock loss workaround for links at
5289  *  gigabit speeds.
5290  **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)5291 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5292 					  u16 *duplex)
5293 {
5294 	s32 ret_val;
5295 
5296 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5297 	if (ret_val)
5298 		return ret_val;
5299 
5300 	if ((hw->mac.type == e1000_ich8lan) &&
5301 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5302 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5303 	}
5304 
5305 	return ret_val;
5306 }
5307 
5308 /**
5309  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5310  *  @hw: pointer to the HW structure
5311  *
5312  *  Work-around for 82566 Kumeran PCS lock loss:
5313  *  On link status change (i.e. PCI reset, speed change) and link is up and
5314  *  speed is gigabit-
5315  *    0) if workaround is optionally disabled do nothing
5316  *    1) wait 1ms for Kumeran link to come up
5317  *    2) check Kumeran Diagnostic register PCS lock loss bit
5318  *    3) if not set the link is locked (all is good), otherwise...
5319  *    4) reset the PHY
5320  *    5) repeat up to 10 times
5321  *  Note: this is only called for IGP3 copper when speed is 1gb.
5322  **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)5323 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5324 {
5325 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5326 	u32 phy_ctrl;
5327 	s32 ret_val;
5328 	u16 i, data;
5329 	bool link;
5330 
5331 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5332 		return 0;
5333 
5334 	/* Make sure link is up before proceeding.  If not just return.
5335 	 * Attempting this while link is negotiating fouled up link
5336 	 * stability
5337 	 */
5338 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5339 	if (!link)
5340 		return 0;
5341 
5342 	for (i = 0; i < 10; i++) {
5343 		/* read once to clear */
5344 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5345 		if (ret_val)
5346 			return ret_val;
5347 		/* and again to get new status */
5348 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5349 		if (ret_val)
5350 			return ret_val;
5351 
5352 		/* check for PCS lock */
5353 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5354 			return 0;
5355 
5356 		/* Issue PHY reset */
5357 		e1000_phy_hw_reset(hw);
5358 		mdelay(5);
5359 	}
5360 	/* Disable GigE link negotiation */
5361 	phy_ctrl = er32(PHY_CTRL);
5362 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5363 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5364 	ew32(PHY_CTRL, phy_ctrl);
5365 
5366 	/* Call gig speed drop workaround on Gig disable before accessing
5367 	 * any PHY registers
5368 	 */
5369 	e1000e_gig_downshift_workaround_ich8lan(hw);
5370 
5371 	/* unable to acquire PCS lock */
5372 	return -E1000_ERR_PHY;
5373 }
5374 
5375 /**
5376  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5377  *  @hw: pointer to the HW structure
5378  *  @state: boolean value used to set the current Kumeran workaround state
5379  *
5380  *  If ICH8, set the current Kumeran workaround state (enabled - true
5381  *  /disabled - false).
5382  **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)5383 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5384 						  bool state)
5385 {
5386 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5387 
5388 	if (hw->mac.type != e1000_ich8lan) {
5389 		e_dbg("Workaround applies to ICH8 only.\n");
5390 		return;
5391 	}
5392 
5393 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5394 }
5395 
5396 /**
5397  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5398  *  @hw: pointer to the HW structure
5399  *
5400  *  Workaround for 82566 power-down on D3 entry:
5401  *    1) disable gigabit link
5402  *    2) write VR power-down enable
5403  *    3) read it back
5404  *  Continue if successful, else issue LCD reset and repeat
5405  **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)5406 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5407 {
5408 	u32 reg;
5409 	u16 data;
5410 	u8 retry = 0;
5411 
5412 	if (hw->phy.type != e1000_phy_igp_3)
5413 		return;
5414 
5415 	/* Try the workaround twice (if needed) */
5416 	do {
5417 		/* Disable link */
5418 		reg = er32(PHY_CTRL);
5419 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5420 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5421 		ew32(PHY_CTRL, reg);
5422 
5423 		/* Call gig speed drop workaround on Gig disable before
5424 		 * accessing any PHY registers
5425 		 */
5426 		if (hw->mac.type == e1000_ich8lan)
5427 			e1000e_gig_downshift_workaround_ich8lan(hw);
5428 
5429 		/* Write VR power-down enable */
5430 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5431 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5432 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5433 
5434 		/* Read it back and test */
5435 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5436 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5437 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5438 			break;
5439 
5440 		/* Issue PHY reset and repeat at most one more time */
5441 		reg = er32(CTRL);
5442 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5443 		retry++;
5444 	} while (retry);
5445 }
5446 
5447 /**
5448  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5449  *  @hw: pointer to the HW structure
5450  *
5451  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5452  *  LPLU, Gig disable, MDIC PHY reset):
5453  *    1) Set Kumeran Near-end loopback
5454  *    2) Clear Kumeran Near-end loopback
5455  *  Should only be called for ICH8[m] devices with any 1G Phy.
5456  **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)5457 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5458 {
5459 	s32 ret_val;
5460 	u16 reg_data;
5461 
5462 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5463 		return;
5464 
5465 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5466 				       &reg_data);
5467 	if (ret_val)
5468 		return;
5469 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5470 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5471 					reg_data);
5472 	if (ret_val)
5473 		return;
5474 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5475 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5476 }
5477 
5478 /**
5479  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5480  *  @hw: pointer to the HW structure
5481  *
5482  *  During S0 to Sx transition, it is possible the link remains at gig
5483  *  instead of negotiating to a lower speed.  Before going to Sx, set
5484  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5485  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5486  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5487  *  needs to be written.
5488  *  Parts that support (and are linked to a partner which support) EEE in
5489  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5490  *  than 10Mbps w/o EEE.
5491  **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)5492 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5493 {
5494 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5495 	u32 phy_ctrl;
5496 	s32 ret_val;
5497 
5498 	phy_ctrl = er32(PHY_CTRL);
5499 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5500 
5501 	if (hw->phy.type == e1000_phy_i217) {
5502 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5503 
5504 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5505 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5506 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5507 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5508 		    (hw->mac.type >= e1000_pch_spt)) {
5509 			u32 fextnvm6 = er32(FEXTNVM6);
5510 
5511 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5512 		}
5513 
5514 		ret_val = hw->phy.ops.acquire(hw);
5515 		if (ret_val)
5516 			goto out;
5517 
5518 		if (!dev_spec->eee_disable) {
5519 			u16 eee_advert;
5520 
5521 			ret_val =
5522 			    e1000_read_emi_reg_locked(hw,
5523 						      I217_EEE_ADVERTISEMENT,
5524 						      &eee_advert);
5525 			if (ret_val)
5526 				goto release;
5527 
5528 			/* Disable LPLU if both link partners support 100BaseT
5529 			 * EEE and 100Full is advertised on both ends of the
5530 			 * link, and enable Auto Enable LPI since there will
5531 			 * be no driver to enable LPI while in Sx.
5532 			 */
5533 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5534 			    (dev_spec->eee_lp_ability &
5535 			     I82579_EEE_100_SUPPORTED) &&
5536 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5537 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5538 					      E1000_PHY_CTRL_NOND0A_LPLU);
5539 
5540 				/* Set Auto Enable LPI after link up */
5541 				e1e_rphy_locked(hw,
5542 						I217_LPI_GPIO_CTRL, &phy_reg);
5543 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5544 				e1e_wphy_locked(hw,
5545 						I217_LPI_GPIO_CTRL, phy_reg);
5546 			}
5547 		}
5548 
5549 		/* For i217 Intel Rapid Start Technology support,
5550 		 * when the system is going into Sx and no manageability engine
5551 		 * is present, the driver must configure proxy to reset only on
5552 		 * power good.  LPI (Low Power Idle) state must also reset only
5553 		 * on power good, as well as the MTA (Multicast table array).
5554 		 * The SMBus release must also be disabled on LCD reset.
5555 		 */
5556 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5557 			/* Enable proxy to reset only on power good. */
5558 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5559 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5560 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5561 
5562 			/* Set bit enable LPI (EEE) to reset only on
5563 			 * power good.
5564 			 */
5565 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5566 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5567 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5568 
5569 			/* Disable the SMB release on LCD reset. */
5570 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5571 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5572 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5573 		}
5574 
5575 		/* Enable MTA to reset for Intel Rapid Start Technology
5576 		 * Support
5577 		 */
5578 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5579 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5580 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5581 
5582 release:
5583 		hw->phy.ops.release(hw);
5584 	}
5585 out:
5586 	ew32(PHY_CTRL, phy_ctrl);
5587 
5588 	if (hw->mac.type == e1000_ich8lan)
5589 		e1000e_gig_downshift_workaround_ich8lan(hw);
5590 
5591 	if (hw->mac.type >= e1000_pchlan) {
5592 		e1000_oem_bits_config_ich8lan(hw, false);
5593 
5594 		/* Reset PHY to activate OEM bits on 82577/8 */
5595 		if (hw->mac.type == e1000_pchlan)
5596 			e1000e_phy_hw_reset_generic(hw);
5597 
5598 		ret_val = hw->phy.ops.acquire(hw);
5599 		if (ret_val)
5600 			return;
5601 		e1000_write_smbus_addr(hw);
5602 		hw->phy.ops.release(hw);
5603 	}
5604 }
5605 
5606 /**
5607  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5608  *  @hw: pointer to the HW structure
5609  *
5610  *  During Sx to S0 transitions on non-managed devices or managed devices
5611  *  on which PHY resets are not blocked, if the PHY registers cannot be
5612  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5613  *  the PHY.
5614  *  On i217, setup Intel Rapid Start Technology.
5615  **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)5616 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5617 {
5618 	s32 ret_val;
5619 
5620 	if (hw->mac.type < e1000_pch2lan)
5621 		return;
5622 
5623 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5624 	if (ret_val) {
5625 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5626 		return;
5627 	}
5628 
5629 	/* For i217 Intel Rapid Start Technology support when the system
5630 	 * is transitioning from Sx and no manageability engine is present
5631 	 * configure SMBus to restore on reset, disable proxy, and enable
5632 	 * the reset on MTA (Multicast table array).
5633 	 */
5634 	if (hw->phy.type == e1000_phy_i217) {
5635 		u16 phy_reg;
5636 
5637 		ret_val = hw->phy.ops.acquire(hw);
5638 		if (ret_val) {
5639 			e_dbg("Failed to setup iRST\n");
5640 			return;
5641 		}
5642 
5643 		/* Clear Auto Enable LPI after link up */
5644 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5645 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5646 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5647 
5648 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5649 			/* Restore clear on SMB if no manageability engine
5650 			 * is present
5651 			 */
5652 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5653 			if (ret_val)
5654 				goto release;
5655 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5656 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5657 
5658 			/* Disable Proxy */
5659 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5660 		}
5661 		/* Enable reset on MTA */
5662 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5663 		if (ret_val)
5664 			goto release;
5665 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5666 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5667 release:
5668 		if (ret_val)
5669 			e_dbg("Error %d in resume workarounds\n", ret_val);
5670 		hw->phy.ops.release(hw);
5671 	}
5672 }
5673 
5674 /**
5675  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5676  *  @hw: pointer to the HW structure
5677  *
5678  *  Return the LED back to the default configuration.
5679  **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)5680 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5681 {
5682 	if (hw->phy.type == e1000_phy_ife)
5683 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5684 
5685 	ew32(LEDCTL, hw->mac.ledctl_default);
5686 	return 0;
5687 }
5688 
5689 /**
5690  *  e1000_led_on_ich8lan - Turn LEDs on
5691  *  @hw: pointer to the HW structure
5692  *
5693  *  Turn on the LEDs.
5694  **/
e1000_led_on_ich8lan(struct e1000_hw * hw)5695 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5696 {
5697 	if (hw->phy.type == e1000_phy_ife)
5698 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5699 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5700 
5701 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5702 	return 0;
5703 }
5704 
5705 /**
5706  *  e1000_led_off_ich8lan - Turn LEDs off
5707  *  @hw: pointer to the HW structure
5708  *
5709  *  Turn off the LEDs.
5710  **/
e1000_led_off_ich8lan(struct e1000_hw * hw)5711 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5712 {
5713 	if (hw->phy.type == e1000_phy_ife)
5714 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5715 				(IFE_PSCL_PROBE_MODE |
5716 				 IFE_PSCL_PROBE_LEDS_OFF));
5717 
5718 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5719 	return 0;
5720 }
5721 
5722 /**
5723  *  e1000_setup_led_pchlan - Configures SW controllable LED
5724  *  @hw: pointer to the HW structure
5725  *
5726  *  This prepares the SW controllable LED for use.
5727  **/
e1000_setup_led_pchlan(struct e1000_hw * hw)5728 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5729 {
5730 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5731 }
5732 
5733 /**
5734  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5735  *  @hw: pointer to the HW structure
5736  *
5737  *  Return the LED back to the default configuration.
5738  **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)5739 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5740 {
5741 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5742 }
5743 
5744 /**
5745  *  e1000_led_on_pchlan - Turn LEDs on
5746  *  @hw: pointer to the HW structure
5747  *
5748  *  Turn on the LEDs.
5749  **/
e1000_led_on_pchlan(struct e1000_hw * hw)5750 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5751 {
5752 	u16 data = (u16)hw->mac.ledctl_mode2;
5753 	u32 i, led;
5754 
5755 	/* If no link, then turn LED on by setting the invert bit
5756 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5757 	 */
5758 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5759 		for (i = 0; i < 3; i++) {
5760 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5761 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5762 			    E1000_LEDCTL_MODE_LINK_UP)
5763 				continue;
5764 			if (led & E1000_PHY_LED0_IVRT)
5765 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5766 			else
5767 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5768 		}
5769 	}
5770 
5771 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5772 }
5773 
5774 /**
5775  *  e1000_led_off_pchlan - Turn LEDs off
5776  *  @hw: pointer to the HW structure
5777  *
5778  *  Turn off the LEDs.
5779  **/
e1000_led_off_pchlan(struct e1000_hw * hw)5780 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5781 {
5782 	u16 data = (u16)hw->mac.ledctl_mode1;
5783 	u32 i, led;
5784 
5785 	/* If no link, then turn LED off by clearing the invert bit
5786 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5787 	 */
5788 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5789 		for (i = 0; i < 3; i++) {
5790 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5791 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5792 			    E1000_LEDCTL_MODE_LINK_UP)
5793 				continue;
5794 			if (led & E1000_PHY_LED0_IVRT)
5795 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5796 			else
5797 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5798 		}
5799 	}
5800 
5801 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5802 }
5803 
5804 /**
5805  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5806  *  @hw: pointer to the HW structure
5807  *
5808  *  Read appropriate register for the config done bit for completion status
5809  *  and configure the PHY through s/w for EEPROM-less parts.
5810  *
5811  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5812  *  config done bit, so only an error is logged and continues.  If we were
5813  *  to return with error, EEPROM-less silicon would not be able to be reset
5814  *  or change link.
5815  **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)5816 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5817 {
5818 	s32 ret_val = 0;
5819 	u32 bank = 0;
5820 	u32 status;
5821 
5822 	e1000e_get_cfg_done_generic(hw);
5823 
5824 	/* Wait for indication from h/w that it has completed basic config */
5825 	if (hw->mac.type >= e1000_ich10lan) {
5826 		e1000_lan_init_done_ich8lan(hw);
5827 	} else {
5828 		ret_val = e1000e_get_auto_rd_done(hw);
5829 		if (ret_val) {
5830 			/* When auto config read does not complete, do not
5831 			 * return with an error. This can happen in situations
5832 			 * where there is no eeprom and prevents getting link.
5833 			 */
5834 			e_dbg("Auto Read Done did not complete\n");
5835 			ret_val = 0;
5836 		}
5837 	}
5838 
5839 	/* Clear PHY Reset Asserted bit */
5840 	status = er32(STATUS);
5841 	if (status & E1000_STATUS_PHYRA)
5842 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5843 	else
5844 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5845 
5846 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5847 	if (hw->mac.type <= e1000_ich9lan) {
5848 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5849 		    (hw->phy.type == e1000_phy_igp_3)) {
5850 			e1000e_phy_init_script_igp3(hw);
5851 		}
5852 	} else {
5853 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5854 			/* Maybe we should do a basic PHY config */
5855 			e_dbg("EEPROM not present\n");
5856 			ret_val = -E1000_ERR_CONFIG;
5857 		}
5858 	}
5859 
5860 	return ret_val;
5861 }
5862 
5863 /**
5864  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5865  * @hw: pointer to the HW structure
5866  *
5867  * In the case of a PHY power down to save power, or to turn off link during a
5868  * driver unload, or wake on lan is not enabled, remove the link.
5869  **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)5870 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5871 {
5872 	/* If the management interface is not enabled, then power down */
5873 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5874 	      hw->phy.ops.check_reset_block(hw)))
5875 		e1000_power_down_phy_copper(hw);
5876 }
5877 
5878 /**
5879  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5880  *  @hw: pointer to the HW structure
5881  *
5882  *  Clears hardware counters specific to the silicon family and calls
5883  *  clear_hw_cntrs_generic to clear all general purpose counters.
5884  **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)5885 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5886 {
5887 	u16 phy_data;
5888 	s32 ret_val;
5889 
5890 	e1000e_clear_hw_cntrs_base(hw);
5891 
5892 	er32(ALGNERRC);
5893 	er32(RXERRC);
5894 	er32(TNCRS);
5895 	er32(CEXTERR);
5896 	er32(TSCTC);
5897 	er32(TSCTFC);
5898 
5899 	er32(MGTPRC);
5900 	er32(MGTPDC);
5901 	er32(MGTPTC);
5902 
5903 	er32(IAC);
5904 	er32(ICRXOC);
5905 
5906 	/* Clear PHY statistics registers */
5907 	if ((hw->phy.type == e1000_phy_82578) ||
5908 	    (hw->phy.type == e1000_phy_82579) ||
5909 	    (hw->phy.type == e1000_phy_i217) ||
5910 	    (hw->phy.type == e1000_phy_82577)) {
5911 		ret_val = hw->phy.ops.acquire(hw);
5912 		if (ret_val)
5913 			return;
5914 		ret_val = hw->phy.ops.set_page(hw,
5915 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5916 		if (ret_val)
5917 			goto release;
5918 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5919 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5920 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5921 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5922 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5923 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5924 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5925 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5926 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5927 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5928 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5929 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5930 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5931 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5932 release:
5933 		hw->phy.ops.release(hw);
5934 	}
5935 }
5936 
5937 static const struct e1000_mac_operations ich8_mac_ops = {
5938 	/* check_mng_mode dependent on mac type */
5939 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5940 	/* cleanup_led dependent on mac type */
5941 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5942 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5943 	.set_lan_id		= e1000_set_lan_id_single_port,
5944 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5945 	/* led_on dependent on mac type */
5946 	/* led_off dependent on mac type */
5947 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5948 	.reset_hw		= e1000_reset_hw_ich8lan,
5949 	.init_hw		= e1000_init_hw_ich8lan,
5950 	.setup_link		= e1000_setup_link_ich8lan,
5951 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5952 	/* id_led_init dependent on mac type */
5953 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5954 	.rar_set		= e1000e_rar_set_generic,
5955 	.rar_get_count		= e1000e_rar_get_count_generic,
5956 };
5957 
5958 static const struct e1000_phy_operations ich8_phy_ops = {
5959 	.acquire		= e1000_acquire_swflag_ich8lan,
5960 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5961 	.commit			= NULL,
5962 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5963 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5964 	.read_reg		= e1000e_read_phy_reg_igp,
5965 	.release		= e1000_release_swflag_ich8lan,
5966 	.reset			= e1000_phy_hw_reset_ich8lan,
5967 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5968 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5969 	.write_reg		= e1000e_write_phy_reg_igp,
5970 };
5971 
5972 static const struct e1000_nvm_operations ich8_nvm_ops = {
5973 	.acquire		= e1000_acquire_nvm_ich8lan,
5974 	.read			= e1000_read_nvm_ich8lan,
5975 	.release		= e1000_release_nvm_ich8lan,
5976 	.reload			= e1000e_reload_nvm_generic,
5977 	.update			= e1000_update_nvm_checksum_ich8lan,
5978 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5979 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5980 	.write			= e1000_write_nvm_ich8lan,
5981 };
5982 
5983 static const struct e1000_nvm_operations spt_nvm_ops = {
5984 	.acquire		= e1000_acquire_nvm_ich8lan,
5985 	.release		= e1000_release_nvm_ich8lan,
5986 	.read			= e1000_read_nvm_spt,
5987 	.update			= e1000_update_nvm_checksum_spt,
5988 	.reload			= e1000e_reload_nvm_generic,
5989 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5990 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5991 	.write			= e1000_write_nvm_ich8lan,
5992 };
5993 
5994 const struct e1000_info e1000_ich8_info = {
5995 	.mac			= e1000_ich8lan,
5996 	.flags			= FLAG_HAS_WOL
5997 				  | FLAG_IS_ICH
5998 				  | FLAG_HAS_CTRLEXT_ON_LOAD
5999 				  | FLAG_HAS_AMT
6000 				  | FLAG_HAS_FLASH
6001 				  | FLAG_APME_IN_WUC,
6002 	.pba			= 8,
6003 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
6004 	.get_variants		= e1000_get_variants_ich8lan,
6005 	.mac_ops		= &ich8_mac_ops,
6006 	.phy_ops		= &ich8_phy_ops,
6007 	.nvm_ops		= &ich8_nvm_ops,
6008 };
6009 
6010 const struct e1000_info e1000_ich9_info = {
6011 	.mac			= e1000_ich9lan,
6012 	.flags			= FLAG_HAS_JUMBO_FRAMES
6013 				  | FLAG_IS_ICH
6014 				  | FLAG_HAS_WOL
6015 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6016 				  | FLAG_HAS_AMT
6017 				  | FLAG_HAS_FLASH
6018 				  | FLAG_APME_IN_WUC,
6019 	.pba			= 18,
6020 	.max_hw_frame_size	= DEFAULT_JUMBO,
6021 	.get_variants		= e1000_get_variants_ich8lan,
6022 	.mac_ops		= &ich8_mac_ops,
6023 	.phy_ops		= &ich8_phy_ops,
6024 	.nvm_ops		= &ich8_nvm_ops,
6025 };
6026 
6027 const struct e1000_info e1000_ich10_info = {
6028 	.mac			= e1000_ich10lan,
6029 	.flags			= FLAG_HAS_JUMBO_FRAMES
6030 				  | FLAG_IS_ICH
6031 				  | FLAG_HAS_WOL
6032 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6033 				  | FLAG_HAS_AMT
6034 				  | FLAG_HAS_FLASH
6035 				  | FLAG_APME_IN_WUC,
6036 	.pba			= 18,
6037 	.max_hw_frame_size	= DEFAULT_JUMBO,
6038 	.get_variants		= e1000_get_variants_ich8lan,
6039 	.mac_ops		= &ich8_mac_ops,
6040 	.phy_ops		= &ich8_phy_ops,
6041 	.nvm_ops		= &ich8_nvm_ops,
6042 };
6043 
6044 const struct e1000_info e1000_pch_info = {
6045 	.mac			= e1000_pchlan,
6046 	.flags			= FLAG_IS_ICH
6047 				  | FLAG_HAS_WOL
6048 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6049 				  | FLAG_HAS_AMT
6050 				  | FLAG_HAS_FLASH
6051 				  | FLAG_HAS_JUMBO_FRAMES
6052 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
6053 				  | FLAG_APME_IN_WUC,
6054 	.flags2			= FLAG2_HAS_PHY_STATS,
6055 	.pba			= 26,
6056 	.max_hw_frame_size	= 4096,
6057 	.get_variants		= e1000_get_variants_ich8lan,
6058 	.mac_ops		= &ich8_mac_ops,
6059 	.phy_ops		= &ich8_phy_ops,
6060 	.nvm_ops		= &ich8_nvm_ops,
6061 };
6062 
6063 const struct e1000_info e1000_pch2_info = {
6064 	.mac			= e1000_pch2lan,
6065 	.flags			= FLAG_IS_ICH
6066 				  | FLAG_HAS_WOL
6067 				  | FLAG_HAS_HW_TIMESTAMP
6068 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6069 				  | FLAG_HAS_AMT
6070 				  | FLAG_HAS_FLASH
6071 				  | FLAG_HAS_JUMBO_FRAMES
6072 				  | FLAG_APME_IN_WUC,
6073 	.flags2			= FLAG2_HAS_PHY_STATS
6074 				  | FLAG2_HAS_EEE
6075 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6076 	.pba			= 26,
6077 	.max_hw_frame_size	= 9022,
6078 	.get_variants		= e1000_get_variants_ich8lan,
6079 	.mac_ops		= &ich8_mac_ops,
6080 	.phy_ops		= &ich8_phy_ops,
6081 	.nvm_ops		= &ich8_nvm_ops,
6082 };
6083 
6084 const struct e1000_info e1000_pch_lpt_info = {
6085 	.mac			= e1000_pch_lpt,
6086 	.flags			= FLAG_IS_ICH
6087 				  | FLAG_HAS_WOL
6088 				  | FLAG_HAS_HW_TIMESTAMP
6089 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6090 				  | FLAG_HAS_AMT
6091 				  | FLAG_HAS_FLASH
6092 				  | FLAG_HAS_JUMBO_FRAMES
6093 				  | FLAG_APME_IN_WUC,
6094 	.flags2			= FLAG2_HAS_PHY_STATS
6095 				  | FLAG2_HAS_EEE
6096 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6097 	.pba			= 26,
6098 	.max_hw_frame_size	= 9022,
6099 	.get_variants		= e1000_get_variants_ich8lan,
6100 	.mac_ops		= &ich8_mac_ops,
6101 	.phy_ops		= &ich8_phy_ops,
6102 	.nvm_ops		= &ich8_nvm_ops,
6103 };
6104 
6105 const struct e1000_info e1000_pch_spt_info = {
6106 	.mac			= e1000_pch_spt,
6107 	.flags			= FLAG_IS_ICH
6108 				  | FLAG_HAS_WOL
6109 				  | FLAG_HAS_HW_TIMESTAMP
6110 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6111 				  | FLAG_HAS_AMT
6112 				  | FLAG_HAS_FLASH
6113 				  | FLAG_HAS_JUMBO_FRAMES
6114 				  | FLAG_APME_IN_WUC,
6115 	.flags2			= FLAG2_HAS_PHY_STATS
6116 				  | FLAG2_HAS_EEE,
6117 	.pba			= 26,
6118 	.max_hw_frame_size	= 9022,
6119 	.get_variants		= e1000_get_variants_ich8lan,
6120 	.mac_ops		= &ich8_mac_ops,
6121 	.phy_ops		= &ich8_phy_ops,
6122 	.nvm_ops		= &spt_nvm_ops,
6123 };
6124 
6125 const struct e1000_info e1000_pch_cnp_info = {
6126 	.mac			= e1000_pch_cnp,
6127 	.flags			= FLAG_IS_ICH
6128 				  | FLAG_HAS_WOL
6129 				  | FLAG_HAS_HW_TIMESTAMP
6130 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6131 				  | FLAG_HAS_AMT
6132 				  | FLAG_HAS_FLASH
6133 				  | FLAG_HAS_JUMBO_FRAMES
6134 				  | FLAG_APME_IN_WUC,
6135 	.flags2			= FLAG2_HAS_PHY_STATS
6136 				  | FLAG2_HAS_EEE,
6137 	.pba			= 26,
6138 	.max_hw_frame_size	= 9022,
6139 	.get_variants		= e1000_get_variants_ich8lan,
6140 	.mac_ops		= &ich8_mac_ops,
6141 	.phy_ops		= &ich8_phy_ops,
6142 	.nvm_ops		= &spt_nvm_ops,
6143 };
6144 
6145 const struct e1000_info e1000_pch_tgp_info = {
6146 	.mac			= e1000_pch_tgp,
6147 	.flags			= FLAG_IS_ICH
6148 				  | FLAG_HAS_WOL
6149 				  | FLAG_HAS_HW_TIMESTAMP
6150 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6151 				  | FLAG_HAS_AMT
6152 				  | FLAG_HAS_FLASH
6153 				  | FLAG_HAS_JUMBO_FRAMES
6154 				  | FLAG_APME_IN_WUC,
6155 	.flags2			= FLAG2_HAS_PHY_STATS
6156 				  | FLAG2_HAS_EEE,
6157 	.pba			= 26,
6158 	.max_hw_frame_size	= 9022,
6159 	.get_variants		= e1000_get_variants_ich8lan,
6160 	.mac_ops		= &ich8_mac_ops,
6161 	.phy_ops		= &ich8_phy_ops,
6162 	.nvm_ops		= &spt_nvm_ops,
6163 };
6164 
6165 const struct e1000_info e1000_pch_adp_info = {
6166 	.mac			= e1000_pch_adp,
6167 	.flags			= FLAG_IS_ICH
6168 				  | FLAG_HAS_WOL
6169 				  | FLAG_HAS_HW_TIMESTAMP
6170 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6171 				  | FLAG_HAS_AMT
6172 				  | FLAG_HAS_FLASH
6173 				  | FLAG_HAS_JUMBO_FRAMES
6174 				  | FLAG_APME_IN_WUC,
6175 	.flags2			= FLAG2_HAS_PHY_STATS
6176 				  | FLAG2_HAS_EEE,
6177 	.pba			= 26,
6178 	.max_hw_frame_size	= 9022,
6179 	.get_variants		= e1000_get_variants_ich8lan,
6180 	.mac_ops		= &ich8_mac_ops,
6181 	.phy_ops		= &ich8_phy_ops,
6182 	.nvm_ops		= &spt_nvm_ops,
6183 };
6184 
6185 const struct e1000_info e1000_pch_mtp_info = {
6186 	.mac			= e1000_pch_mtp,
6187 	.flags			= FLAG_IS_ICH
6188 				  | FLAG_HAS_WOL
6189 				  | FLAG_HAS_HW_TIMESTAMP
6190 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6191 				  | FLAG_HAS_AMT
6192 				  | FLAG_HAS_FLASH
6193 				  | FLAG_HAS_JUMBO_FRAMES
6194 				  | FLAG_APME_IN_WUC,
6195 	.flags2			= FLAG2_HAS_PHY_STATS
6196 				  | FLAG2_HAS_EEE,
6197 	.pba			= 26,
6198 	.max_hw_frame_size	= 9022,
6199 	.get_variants		= e1000_get_variants_ich8lan,
6200 	.mac_ops		= &ich8_mac_ops,
6201 	.phy_ops		= &ich8_phy_ops,
6202 	.nvm_ops		= &spt_nvm_ops,
6203 };
6204