1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2009 - 2018 Intel Corporation. */
3
4 #include <linux/etherdevice.h>
5
6 #include "vf.h"
7
8 static s32 e1000_check_for_link_vf(struct e1000_hw *hw);
9 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
10 u16 *duplex);
11 static s32 e1000_init_hw_vf(struct e1000_hw *hw);
12 static s32 e1000_reset_hw_vf(struct e1000_hw *hw);
13
14 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw, u8 *,
15 u32, u32, u32);
16 static void e1000_rar_set_vf(struct e1000_hw *, u8 *, u32);
17 static s32 e1000_read_mac_addr_vf(struct e1000_hw *);
18 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 subcmd, u8 *addr);
19 static s32 e1000_set_vfta_vf(struct e1000_hw *, u16, bool);
20
21 /**
22 * e1000_init_mac_params_vf - Inits MAC params
23 * @hw: pointer to the HW structure
24 **/
e1000_init_mac_params_vf(struct e1000_hw * hw)25 static s32 e1000_init_mac_params_vf(struct e1000_hw *hw)
26 {
27 struct e1000_mac_info *mac = &hw->mac;
28
29 /* VF's have no MTA Registers - PF feature only */
30 mac->mta_reg_count = 128;
31 /* VF's have no access to RAR entries */
32 mac->rar_entry_count = 1;
33
34 /* Function pointers */
35 /* reset */
36 mac->ops.reset_hw = e1000_reset_hw_vf;
37 /* hw initialization */
38 mac->ops.init_hw = e1000_init_hw_vf;
39 /* check for link */
40 mac->ops.check_for_link = e1000_check_for_link_vf;
41 /* link info */
42 mac->ops.get_link_up_info = e1000_get_link_up_info_vf;
43 /* multicast address update */
44 mac->ops.update_mc_addr_list = e1000_update_mc_addr_list_vf;
45 /* set mac address */
46 mac->ops.rar_set = e1000_rar_set_vf;
47 /* read mac address */
48 mac->ops.read_mac_addr = e1000_read_mac_addr_vf;
49 /* set mac filter */
50 mac->ops.set_uc_addr = e1000_set_uc_addr_vf;
51 /* set vlan filter table array */
52 mac->ops.set_vfta = e1000_set_vfta_vf;
53
54 return E1000_SUCCESS;
55 }
56
57 /**
58 * e1000_init_function_pointers_vf - Inits function pointers
59 * @hw: pointer to the HW structure
60 **/
e1000_init_function_pointers_vf(struct e1000_hw * hw)61 void e1000_init_function_pointers_vf(struct e1000_hw *hw)
62 {
63 hw->mac.ops.init_params = e1000_init_mac_params_vf;
64 hw->mbx.ops.init_params = e1000_init_mbx_params_vf;
65 }
66
67 /**
68 * e1000_get_link_up_info_vf - Gets link info.
69 * @hw: pointer to the HW structure
70 * @speed: pointer to 16 bit value to store link speed.
71 * @duplex: pointer to 16 bit value to store duplex.
72 *
73 * Since we cannot read the PHY and get accurate link info, we must rely upon
74 * the status register's data which is often stale and inaccurate.
75 **/
e1000_get_link_up_info_vf(struct e1000_hw * hw,u16 * speed,u16 * duplex)76 static s32 e1000_get_link_up_info_vf(struct e1000_hw *hw, u16 *speed,
77 u16 *duplex)
78 {
79 s32 status;
80
81 status = er32(STATUS);
82 if (status & E1000_STATUS_SPEED_1000)
83 *speed = SPEED_1000;
84 else if (status & E1000_STATUS_SPEED_100)
85 *speed = SPEED_100;
86 else
87 *speed = SPEED_10;
88
89 if (status & E1000_STATUS_FD)
90 *duplex = FULL_DUPLEX;
91 else
92 *duplex = HALF_DUPLEX;
93
94 return E1000_SUCCESS;
95 }
96
97 /**
98 * e1000_reset_hw_vf - Resets the HW
99 * @hw: pointer to the HW structure
100 *
101 * VF's provide a function level reset. This is done using bit 26 of ctrl_reg.
102 * This is all the reset we can perform on a VF.
103 **/
e1000_reset_hw_vf(struct e1000_hw * hw)104 static s32 e1000_reset_hw_vf(struct e1000_hw *hw)
105 {
106 struct e1000_mbx_info *mbx = &hw->mbx;
107 u32 timeout = E1000_VF_INIT_TIMEOUT;
108 u32 ret_val = -E1000_ERR_MAC_INIT;
109 u32 msgbuf[3];
110 u8 *addr = (u8 *)(&msgbuf[1]);
111 u32 ctrl;
112
113 /* assert VF queue/interrupt reset */
114 ctrl = er32(CTRL);
115 ew32(CTRL, ctrl | E1000_CTRL_RST);
116
117 /* we cannot initialize while the RSTI / RSTD bits are asserted */
118 while (!mbx->ops.check_for_rst(hw) && timeout) {
119 timeout--;
120 udelay(5);
121 }
122
123 if (timeout) {
124 /* mailbox timeout can now become active */
125 mbx->timeout = E1000_VF_MBX_INIT_TIMEOUT;
126
127 /* notify PF of VF reset completion */
128 msgbuf[0] = E1000_VF_RESET;
129 mbx->ops.write_posted(hw, msgbuf, 1);
130
131 mdelay(10);
132
133 /* set our "perm_addr" based on info provided by PF */
134 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
135 if (!ret_val) {
136 switch (msgbuf[0]) {
137 case E1000_VF_RESET | E1000_VT_MSGTYPE_ACK:
138 memcpy(hw->mac.perm_addr, addr, ETH_ALEN);
139 break;
140 case E1000_VF_RESET | E1000_VT_MSGTYPE_NACK:
141 eth_zero_addr(hw->mac.perm_addr);
142 break;
143 default:
144 ret_val = -E1000_ERR_MAC_INIT;
145 }
146 }
147 }
148
149 return ret_val;
150 }
151
152 /**
153 * e1000_init_hw_vf - Inits the HW
154 * @hw: pointer to the HW structure
155 *
156 * Not much to do here except clear the PF Reset indication if there is one.
157 **/
e1000_init_hw_vf(struct e1000_hw * hw)158 static s32 e1000_init_hw_vf(struct e1000_hw *hw)
159 {
160 /* attempt to set and restore our mac address */
161 e1000_rar_set_vf(hw, hw->mac.addr, 0);
162
163 return E1000_SUCCESS;
164 }
165
166 /**
167 * e1000_hash_mc_addr_vf - Generate a multicast hash value
168 * @hw: pointer to the HW structure
169 * @mc_addr: pointer to a multicast address
170 *
171 * Generates a multicast address hash value which is used to determine
172 * the multicast filter table array address and new table value. See
173 * e1000_mta_set_generic()
174 **/
e1000_hash_mc_addr_vf(struct e1000_hw * hw,u8 * mc_addr)175 static u32 e1000_hash_mc_addr_vf(struct e1000_hw *hw, u8 *mc_addr)
176 {
177 u32 hash_value, hash_mask;
178 u8 bit_shift = 0;
179
180 /* Register count multiplied by bits per register */
181 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
182
183 /* The bit_shift is the number of left-shifts
184 * where 0xFF would still fall within the hash mask.
185 */
186 while (hash_mask >> bit_shift != 0xFF)
187 bit_shift++;
188
189 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
190 (((u16)mc_addr[5]) << bit_shift)));
191
192 return hash_value;
193 }
194
195 /**
196 * e1000_update_mc_addr_list_vf - Update Multicast addresses
197 * @hw: pointer to the HW structure
198 * @mc_addr_list: array of multicast addresses to program
199 * @mc_addr_count: number of multicast addresses to program
200 * @rar_used_count: the first RAR register free to program
201 * @rar_count: total number of supported Receive Address Registers
202 *
203 * Updates the Receive Address Registers and Multicast Table Array.
204 * The caller must have a packed mc_addr_list of multicast addresses.
205 * The parameter rar_count will usually be hw->mac.rar_entry_count
206 * unless there are workarounds that change this.
207 **/
e1000_update_mc_addr_list_vf(struct e1000_hw * hw,u8 * mc_addr_list,u32 mc_addr_count,u32 rar_used_count,u32 rar_count)208 static void e1000_update_mc_addr_list_vf(struct e1000_hw *hw,
209 u8 *mc_addr_list, u32 mc_addr_count,
210 u32 rar_used_count, u32 rar_count)
211 {
212 struct e1000_mbx_info *mbx = &hw->mbx;
213 u32 msgbuf[E1000_VFMAILBOX_SIZE];
214 u16 *hash_list = (u16 *)&msgbuf[1];
215 u32 hash_value;
216 u32 cnt, i;
217 s32 ret_val;
218
219 /* Each entry in the list uses 1 16 bit word. We have 30
220 * 16 bit words available in our HW msg buffer (minus 1 for the
221 * msg type). That's 30 hash values if we pack 'em right. If
222 * there are more than 30 MC addresses to add then punt the
223 * extras for now and then add code to handle more than 30 later.
224 * It would be unusual for a server to request that many multi-cast
225 * addresses except for in large enterprise network environments.
226 */
227
228 cnt = (mc_addr_count > 30) ? 30 : mc_addr_count;
229 msgbuf[0] = E1000_VF_SET_MULTICAST;
230 msgbuf[0] |= cnt << E1000_VT_MSGINFO_SHIFT;
231
232 for (i = 0; i < cnt; i++) {
233 hash_value = e1000_hash_mc_addr_vf(hw, mc_addr_list);
234 hash_list[i] = hash_value & 0x0FFFF;
235 mc_addr_list += ETH_ALEN;
236 }
237
238 ret_val = mbx->ops.write_posted(hw, msgbuf, E1000_VFMAILBOX_SIZE);
239 if (!ret_val)
240 mbx->ops.read_posted(hw, msgbuf, 1);
241 }
242
243 /**
244 * e1000_set_vfta_vf - Set/Unset vlan filter table address
245 * @hw: pointer to the HW structure
246 * @vid: determines the vfta register and bit to set/unset
247 * @set: if true then set bit, else clear bit
248 **/
e1000_set_vfta_vf(struct e1000_hw * hw,u16 vid,bool set)249 static s32 e1000_set_vfta_vf(struct e1000_hw *hw, u16 vid, bool set)
250 {
251 struct e1000_mbx_info *mbx = &hw->mbx;
252 u32 msgbuf[2];
253 s32 err;
254
255 msgbuf[0] = E1000_VF_SET_VLAN;
256 msgbuf[1] = vid;
257 /* Setting the 8 bit field MSG INFO to true indicates "add" */
258 if (set)
259 msgbuf[0] |= BIT(E1000_VT_MSGINFO_SHIFT);
260
261 mbx->ops.write_posted(hw, msgbuf, 2);
262
263 err = mbx->ops.read_posted(hw, msgbuf, 2);
264
265 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
266
267 /* if nacked the vlan was rejected */
268 if (!err && (msgbuf[0] == (E1000_VF_SET_VLAN | E1000_VT_MSGTYPE_NACK)))
269 err = -E1000_ERR_MAC_INIT;
270
271 return err;
272 }
273
274 /**
275 * e1000_rlpml_set_vf - Set the maximum receive packet length
276 * @hw: pointer to the HW structure
277 * @max_size: value to assign to max frame size
278 **/
e1000_rlpml_set_vf(struct e1000_hw * hw,u16 max_size)279 void e1000_rlpml_set_vf(struct e1000_hw *hw, u16 max_size)
280 {
281 struct e1000_mbx_info *mbx = &hw->mbx;
282 u32 msgbuf[2];
283 s32 ret_val;
284
285 msgbuf[0] = E1000_VF_SET_LPE;
286 msgbuf[1] = max_size;
287
288 ret_val = mbx->ops.write_posted(hw, msgbuf, 2);
289 if (!ret_val)
290 mbx->ops.read_posted(hw, msgbuf, 1);
291 }
292
293 /**
294 * e1000_rar_set_vf - set device MAC address
295 * @hw: pointer to the HW structure
296 * @addr: pointer to the receive address
297 * @index: receive address array register
298 **/
e1000_rar_set_vf(struct e1000_hw * hw,u8 * addr,u32 index)299 static void e1000_rar_set_vf(struct e1000_hw *hw, u8 *addr, u32 index)
300 {
301 struct e1000_mbx_info *mbx = &hw->mbx;
302 u32 msgbuf[3];
303 u8 *msg_addr = (u8 *)(&msgbuf[1]);
304 s32 ret_val;
305
306 memset(msgbuf, 0, 12);
307 msgbuf[0] = E1000_VF_SET_MAC_ADDR;
308 memcpy(msg_addr, addr, ETH_ALEN);
309 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
310
311 if (!ret_val)
312 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
313
314 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
315
316 /* if nacked the address was rejected, use "perm_addr" */
317 if (!ret_val &&
318 (msgbuf[0] == (E1000_VF_SET_MAC_ADDR | E1000_VT_MSGTYPE_NACK)))
319 e1000_read_mac_addr_vf(hw);
320 }
321
322 /**
323 * e1000_read_mac_addr_vf - Read device MAC address
324 * @hw: pointer to the HW structure
325 **/
e1000_read_mac_addr_vf(struct e1000_hw * hw)326 static s32 e1000_read_mac_addr_vf(struct e1000_hw *hw)
327 {
328 memcpy(hw->mac.addr, hw->mac.perm_addr, ETH_ALEN);
329
330 return E1000_SUCCESS;
331 }
332
333 /**
334 * e1000_set_uc_addr_vf - Set or clear unicast filters
335 * @hw: pointer to the HW structure
336 * @sub_cmd: add or clear filters
337 * @addr: pointer to the filter MAC address
338 **/
e1000_set_uc_addr_vf(struct e1000_hw * hw,u32 sub_cmd,u8 * addr)339 static s32 e1000_set_uc_addr_vf(struct e1000_hw *hw, u32 sub_cmd, u8 *addr)
340 {
341 struct e1000_mbx_info *mbx = &hw->mbx;
342 u32 msgbuf[3], msgbuf_chk;
343 u8 *msg_addr = (u8 *)(&msgbuf[1]);
344 s32 ret_val;
345
346 memset(msgbuf, 0, sizeof(msgbuf));
347 msgbuf[0] |= sub_cmd;
348 msgbuf[0] |= E1000_VF_SET_MAC_ADDR;
349 msgbuf_chk = msgbuf[0];
350
351 if (addr)
352 memcpy(msg_addr, addr, ETH_ALEN);
353
354 ret_val = mbx->ops.write_posted(hw, msgbuf, 3);
355
356 if (!ret_val)
357 ret_val = mbx->ops.read_posted(hw, msgbuf, 3);
358
359 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
360
361 if (!ret_val) {
362 msgbuf[0] &= ~E1000_VT_MSGTYPE_CTS;
363
364 if (msgbuf[0] == (msgbuf_chk | E1000_VT_MSGTYPE_NACK))
365 return -ENOSPC;
366 }
367
368 return ret_val;
369 }
370
371 /**
372 * e1000_check_for_link_vf - Check for link for a virtual interface
373 * @hw: pointer to the HW structure
374 *
375 * Checks to see if the underlying PF is still talking to the VF and
376 * if it is then it reports the link state to the hardware, otherwise
377 * it reports link down and returns an error.
378 **/
e1000_check_for_link_vf(struct e1000_hw * hw)379 static s32 e1000_check_for_link_vf(struct e1000_hw *hw)
380 {
381 struct e1000_mbx_info *mbx = &hw->mbx;
382 struct e1000_mac_info *mac = &hw->mac;
383 s32 ret_val = E1000_SUCCESS;
384 u32 in_msg = 0;
385
386 /* We only want to run this if there has been a rst asserted.
387 * in this case that could mean a link change, device reset,
388 * or a virtual function reset
389 */
390
391 /* If we were hit with a reset or timeout drop the link */
392 if (!mbx->ops.check_for_rst(hw) || !mbx->timeout)
393 mac->get_link_status = true;
394
395 if (!mac->get_link_status)
396 goto out;
397
398 /* if link status is down no point in checking to see if PF is up */
399 if (!(er32(STATUS) & E1000_STATUS_LU))
400 goto out;
401
402 /* if the read failed it could just be a mailbox collision, best wait
403 * until we are called again and don't report an error
404 */
405 if (mbx->ops.read(hw, &in_msg, 1))
406 goto out;
407
408 /* if incoming message isn't clear to send we are waiting on response */
409 if (!(in_msg & E1000_VT_MSGTYPE_CTS)) {
410 /* msg is not CTS and is NACK we must have lost CTS status */
411 if (in_msg & E1000_VT_MSGTYPE_NACK)
412 ret_val = -E1000_ERR_MAC_INIT;
413 goto out;
414 }
415
416 /* the PF is talking, if we timed out in the past we reinit */
417 if (!mbx->timeout) {
418 ret_val = -E1000_ERR_MAC_INIT;
419 goto out;
420 }
421
422 /* if we passed all the tests above then the link is up and we no
423 * longer need to check for link
424 */
425 mac->get_link_status = false;
426
427 out:
428 return ret_val;
429 }
430
431