xref: /linux/drivers/net/ethernet/intel/e1000e/ich8lan.c (revision 8f7aa3d3c7323f4ca2768a9e74ebbe359c4f8f88)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 /* 82562G 10/100 Network Connection
5  * 82562G-2 10/100 Network Connection
6  * 82562GT 10/100 Network Connection
7  * 82562GT-2 10/100 Network Connection
8  * 82562V 10/100 Network Connection
9  * 82562V-2 10/100 Network Connection
10  * 82566DC-2 Gigabit Network Connection
11  * 82566DC Gigabit Network Connection
12  * 82566DM-2 Gigabit Network Connection
13  * 82566DM Gigabit Network Connection
14  * 82566MC Gigabit Network Connection
15  * 82566MM Gigabit Network Connection
16  * 82567LM Gigabit Network Connection
17  * 82567LF Gigabit Network Connection
18  * 82567V Gigabit Network Connection
19  * 82567LM-2 Gigabit Network Connection
20  * 82567LF-2 Gigabit Network Connection
21  * 82567V-2 Gigabit Network Connection
22  * 82567LF-3 Gigabit Network Connection
23  * 82567LM-3 Gigabit Network Connection
24  * 82567LM-4 Gigabit Network Connection
25  * 82577LM Gigabit Network Connection
26  * 82577LC Gigabit Network Connection
27  * 82578DM Gigabit Network Connection
28  * 82578DC Gigabit Network Connection
29  * 82579LM Gigabit Network Connection
30  * 82579V Gigabit Network Connection
31  * Ethernet Connection I217-LM
32  * Ethernet Connection I217-V
33  * Ethernet Connection I218-V
34  * Ethernet Connection I218-LM
35  * Ethernet Connection (2) I218-LM
36  * Ethernet Connection (2) I218-V
37  * Ethernet Connection (3) I218-LM
38  * Ethernet Connection (3) I218-V
39  */
40 
41 #include "e1000.h"
42 
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 	struct ich8_hsfsts {
47 		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
48 		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
49 		u16 dael:1;	/* bit 2 Direct Access error Log */
50 		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
51 		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
52 		u16 reserved1:2;	/* bit 13:6 Reserved */
53 		u16 reserved2:6;	/* bit 13:6 Reserved */
54 		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
55 		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
56 	} hsf_status;
57 	u16 regval;
58 };
59 
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 	struct ich8_hsflctl {
64 		u16 flcgo:1;	/* 0 Flash Cycle Go */
65 		u16 flcycle:2;	/* 2:1 Flash Cycle */
66 		u16 reserved:5;	/* 7:3 Reserved  */
67 		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
68 		u16 flockdn:6;	/* 15:10 Reserved */
69 	} hsf_ctrl;
70 	u16 regval;
71 };
72 
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 	struct ich8_flracc {
76 		u32 grra:8;	/* 0:7 GbE region Read Access */
77 		u32 grwa:8;	/* 8:15 GbE region Write Access */
78 		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
79 		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
80 	} hsf_flregacc;
81 	u16 regval;
82 };
83 
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 	struct ich8_pr {
87 		u32 base:13;	/* 0:12 Protected Range Base */
88 		u32 reserved1:2;	/* 13:14 Reserved */
89 		u32 rpe:1;	/* 15 Read Protection Enable */
90 		u32 limit:13;	/* 16:28 Protected Range Limit */
91 		u32 reserved2:2;	/* 29:30 Reserved */
92 		u32 wpe:1;	/* 31 Write Protection Enable */
93 	} range;
94 	u32 regval;
95 };
96 
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 						u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 					 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 					 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 					 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 					   u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 					  u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 					    u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 						 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140 
141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 	return readw(hw->flash_address + reg);
144 }
145 
146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 	return readl(hw->flash_address + reg);
149 }
150 
151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 	writew(val, hw->flash_address + reg);
154 }
155 
156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 	writel(val, hw->flash_address + reg);
159 }
160 
161 #define er16flash(reg)		__er16flash(hw, (reg))
162 #define er32flash(reg)		__er32flash(hw, (reg))
163 #define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
165 
166 /**
167  *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168  *  @hw: pointer to the HW structure
169  *
170  *  Test access to the PHY registers by reading the PHY ID registers.  If
171  *  the PHY ID is already known (e.g. resume path) compare it with known ID,
172  *  otherwise assume the read PHY ID is correct if it is valid.
173  *
174  *  Assumes the sw/fw/hw semaphore is already acquired.
175  **/
176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 	u16 phy_reg = 0;
179 	u32 phy_id = 0;
180 	s32 ret_val = 0;
181 	u16 retry_count;
182 	u32 mac_reg = 0;
183 
184 	for (retry_count = 0; retry_count < 2; retry_count++) {
185 		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 		if (ret_val || (phy_reg == 0xFFFF))
187 			continue;
188 		phy_id = (u32)(phy_reg << 16);
189 
190 		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 		if (ret_val || (phy_reg == 0xFFFF)) {
192 			phy_id = 0;
193 			continue;
194 		}
195 		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 		break;
197 	}
198 
199 	if (hw->phy.id) {
200 		if (hw->phy.id == phy_id)
201 			goto out;
202 	} else if (phy_id) {
203 		hw->phy.id = phy_id;
204 		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 		goto out;
206 	}
207 
208 	/* In case the PHY needs to be in mdio slow mode,
209 	 * set slow mode and try to get the PHY id again.
210 	 */
211 	if (hw->mac.type < e1000_pch_lpt) {
212 		hw->phy.ops.release(hw);
213 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 		if (!ret_val)
215 			ret_val = e1000e_get_phy_id(hw);
216 		hw->phy.ops.acquire(hw);
217 	}
218 
219 	if (ret_val)
220 		return false;
221 out:
222 	if (hw->mac.type >= e1000_pch_lpt) {
223 		/* Only unforce SMBus if ME is not active */
224 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 			/* Switching PHY interface always returns MDI error
226 			 * so disable retry mechanism to avoid wasting time
227 			 */
228 			e1000e_disable_phy_retry(hw);
229 
230 			/* Unforce SMBus mode in PHY */
231 			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232 			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233 			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234 
235 			e1000e_enable_phy_retry(hw);
236 
237 			/* Unforce SMBus mode in MAC */
238 			mac_reg = er32(CTRL_EXT);
239 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
240 			ew32(CTRL_EXT, mac_reg);
241 		}
242 	}
243 
244 	return true;
245 }
246 
247 /**
248  *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249  *  @hw: pointer to the HW structure
250  *
251  *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252  *  used to reset the PHY to a quiescent state when necessary.
253  **/
254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256 	u32 mac_reg;
257 
258 	/* Set Phy Config Counter to 50msec */
259 	mac_reg = er32(FEXTNVM3);
260 	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 	ew32(FEXTNVM3, mac_reg);
263 
264 	/* Toggle LANPHYPC Value bit */
265 	mac_reg = er32(CTRL);
266 	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 	ew32(CTRL, mac_reg);
269 	e1e_flush();
270 	usleep_range(10, 20);
271 	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 	ew32(CTRL, mac_reg);
273 	e1e_flush();
274 
275 	if (hw->mac.type < e1000_pch_lpt) {
276 		msleep(50);
277 	} else {
278 		u16 count = 20;
279 
280 		do {
281 			usleep_range(5000, 6000);
282 		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283 
284 		msleep(30);
285 	}
286 }
287 
288 /**
289  * e1000_reconfigure_k1_params - reconfigure Kumeran K1 parameters.
290  * @hw: pointer to the HW structure
291  *
292  * By default K1 is enabled after MAC reset, so this function only
293  * disables it.
294  *
295  * Context: PHY semaphore must be held by caller.
296  * Return: 0 on success, negative on failure
297  */
298 static s32 e1000_reconfigure_k1_params(struct e1000_hw *hw)
299 {
300 	u16 phy_timeout;
301 	u32 fextnvm12;
302 	s32 ret_val;
303 
304 	if (hw->mac.type < e1000_pch_mtp) {
305 		if (hw->adapter->flags2 & FLAG2_DISABLE_K1)
306 			return e1000_configure_k1_ich8lan(hw, false);
307 		return 0;
308 	}
309 
310 	/* Change Kumeran K1 power down state from P0s to P1 */
311 	fextnvm12 = er32(FEXTNVM12);
312 	fextnvm12 &= ~E1000_FEXTNVM12_PHYPD_CTRL_MASK;
313 	fextnvm12 |= E1000_FEXTNVM12_PHYPD_CTRL_P1;
314 	ew32(FEXTNVM12, fextnvm12);
315 
316 	/* Wait for the interface the settle */
317 	usleep_range(1000, 1100);
318 	if (hw->adapter->flags2 & FLAG2_DISABLE_K1)
319 		return e1000_configure_k1_ich8lan(hw, false);
320 
321 	/* Change K1 exit timeout */
322 	ret_val = e1e_rphy_locked(hw, I217_PHY_TIMEOUTS_REG,
323 				  &phy_timeout);
324 	if (ret_val)
325 		return ret_val;
326 
327 	phy_timeout &= ~I217_PHY_TIMEOUTS_K1_EXIT_TO_MASK;
328 	phy_timeout |= 0xF00;
329 
330 	return e1e_wphy_locked(hw, I217_PHY_TIMEOUTS_REG,
331 				  phy_timeout);
332 }
333 
334 /**
335  *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
336  *  @hw: pointer to the HW structure
337  *
338  *  Workarounds/flow necessary for PHY initialization during driver load
339  *  and resume paths.
340  **/
341 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
342 {
343 	struct e1000_adapter *adapter = hw->adapter;
344 	u32 mac_reg, fwsm = er32(FWSM);
345 	s32 ret_val;
346 
347 	/* Gate automatic PHY configuration by hardware on managed and
348 	 * non-managed 82579 and newer adapters.
349 	 */
350 	e1000_gate_hw_phy_config_ich8lan(hw, true);
351 
352 	/* It is not possible to be certain of the current state of ULP
353 	 * so forcibly disable it.
354 	 */
355 	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
356 	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
357 	if (ret_val)
358 		e_warn("Failed to disable ULP\n");
359 
360 	ret_val = hw->phy.ops.acquire(hw);
361 	if (ret_val) {
362 		e_dbg("Failed to initialize PHY flow\n");
363 		goto out;
364 	}
365 
366 	/* There is no guarantee that the PHY is accessible at this time
367 	 * so disable retry mechanism to avoid wasting time
368 	 */
369 	e1000e_disable_phy_retry(hw);
370 
371 	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
372 	 * inaccessible and resetting the PHY is not blocked, toggle the
373 	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
374 	 */
375 	switch (hw->mac.type) {
376 	case e1000_pch_mtp:
377 	case e1000_pch_lnp:
378 	case e1000_pch_ptp:
379 	case e1000_pch_nvp:
380 		/* At this point the PHY might be inaccessible so don't
381 		 * propagate the failure
382 		 */
383 		if (e1000_reconfigure_k1_params(hw))
384 			e_dbg("Failed to reconfigure K1 parameters\n");
385 
386 		fallthrough;
387 	case e1000_pch_lpt:
388 	case e1000_pch_spt:
389 	case e1000_pch_cnp:
390 	case e1000_pch_tgp:
391 	case e1000_pch_adp:
392 		if (e1000_phy_is_accessible_pchlan(hw))
393 			break;
394 
395 		/* Before toggling LANPHYPC, see if PHY is accessible by
396 		 * forcing MAC to SMBus mode first.
397 		 */
398 		mac_reg = er32(CTRL_EXT);
399 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
400 		ew32(CTRL_EXT, mac_reg);
401 
402 		/* Wait 50 milliseconds for MAC to finish any retries
403 		 * that it might be trying to perform from previous
404 		 * attempts to acknowledge any phy read requests.
405 		 */
406 		msleep(50);
407 
408 		fallthrough;
409 	case e1000_pch2lan:
410 		if (e1000_phy_is_accessible_pchlan(hw))
411 			break;
412 
413 		fallthrough;
414 	case e1000_pchlan:
415 		if ((hw->mac.type == e1000_pchlan) &&
416 		    (fwsm & E1000_ICH_FWSM_FW_VALID))
417 			break;
418 
419 		if (hw->phy.ops.check_reset_block(hw)) {
420 			e_dbg("Required LANPHYPC toggle blocked by ME\n");
421 			ret_val = -E1000_ERR_PHY;
422 			break;
423 		}
424 
425 		/* Toggle LANPHYPC Value bit */
426 		e1000_toggle_lanphypc_pch_lpt(hw);
427 		if (hw->mac.type >= e1000_pch_lpt) {
428 			if (e1000_phy_is_accessible_pchlan(hw))
429 				break;
430 
431 			/* Toggling LANPHYPC brings the PHY out of SMBus mode
432 			 * so ensure that the MAC is also out of SMBus mode
433 			 */
434 			mac_reg = er32(CTRL_EXT);
435 			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
436 			ew32(CTRL_EXT, mac_reg);
437 
438 			if (e1000_phy_is_accessible_pchlan(hw))
439 				break;
440 
441 			ret_val = -E1000_ERR_PHY;
442 		}
443 		break;
444 	default:
445 		break;
446 	}
447 
448 	e1000e_enable_phy_retry(hw);
449 
450 	hw->phy.ops.release(hw);
451 	if (!ret_val) {
452 
453 		/* Check to see if able to reset PHY.  Print error if not */
454 		if (hw->phy.ops.check_reset_block(hw)) {
455 			e_err("Reset blocked by ME\n");
456 			goto out;
457 		}
458 
459 		/* Reset the PHY before any access to it.  Doing so, ensures
460 		 * that the PHY is in a known good state before we read/write
461 		 * PHY registers.  The generic reset is sufficient here,
462 		 * because we haven't determined the PHY type yet.
463 		 */
464 		ret_val = e1000e_phy_hw_reset_generic(hw);
465 		if (ret_val)
466 			goto out;
467 
468 		/* On a successful reset, possibly need to wait for the PHY
469 		 * to quiesce to an accessible state before returning control
470 		 * to the calling function.  If the PHY does not quiesce, then
471 		 * return E1000E_BLK_PHY_RESET, as this is the condition that
472 		 *  the PHY is in.
473 		 */
474 		ret_val = hw->phy.ops.check_reset_block(hw);
475 		if (ret_val) {
476 			e_err("ME blocked access to PHY after reset\n");
477 			goto out;
478 		}
479 
480 		if (hw->mac.type >= e1000_pch_mtp) {
481 			ret_val = hw->phy.ops.acquire(hw);
482 			if (ret_val) {
483 				e_err("Failed to reconfigure K1 parameters\n");
484 				goto out;
485 			}
486 			ret_val = e1000_reconfigure_k1_params(hw);
487 			hw->phy.ops.release(hw);
488 		}
489 	}
490 
491 out:
492 	/* Ungate automatic PHY configuration on non-managed 82579 */
493 	if ((hw->mac.type == e1000_pch2lan) &&
494 	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
495 		usleep_range(10000, 11000);
496 		e1000_gate_hw_phy_config_ich8lan(hw, false);
497 	}
498 
499 	return ret_val;
500 }
501 
502 /**
503  *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
504  *  @hw: pointer to the HW structure
505  *
506  *  Initialize family-specific PHY parameters and function pointers.
507  **/
508 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
509 {
510 	struct e1000_phy_info *phy = &hw->phy;
511 	s32 ret_val;
512 
513 	phy->addr = 1;
514 	phy->reset_delay_us = 100;
515 
516 	phy->ops.set_page = e1000_set_page_igp;
517 	phy->ops.read_reg = e1000_read_phy_reg_hv;
518 	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
519 	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
520 	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
521 	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
522 	phy->ops.write_reg = e1000_write_phy_reg_hv;
523 	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
524 	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
525 	phy->ops.power_up = e1000_power_up_phy_copper;
526 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
527 	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
528 
529 	phy->id = e1000_phy_unknown;
530 
531 	if (hw->mac.type == e1000_pch_mtp) {
532 		phy->retry_count = 2;
533 		e1000e_enable_phy_retry(hw);
534 	}
535 
536 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
537 	if (ret_val)
538 		return ret_val;
539 
540 	if (phy->id == e1000_phy_unknown)
541 		switch (hw->mac.type) {
542 		default:
543 			ret_val = e1000e_get_phy_id(hw);
544 			if (ret_val)
545 				return ret_val;
546 			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
547 				break;
548 			fallthrough;
549 		case e1000_pch2lan:
550 		case e1000_pch_lpt:
551 		case e1000_pch_spt:
552 		case e1000_pch_cnp:
553 		case e1000_pch_tgp:
554 		case e1000_pch_adp:
555 		case e1000_pch_mtp:
556 		case e1000_pch_lnp:
557 		case e1000_pch_ptp:
558 		case e1000_pch_nvp:
559 			/* In case the PHY needs to be in mdio slow mode,
560 			 * set slow mode and try to get the PHY id again.
561 			 */
562 			ret_val = e1000_set_mdio_slow_mode_hv(hw);
563 			if (ret_val)
564 				return ret_val;
565 			ret_val = e1000e_get_phy_id(hw);
566 			if (ret_val)
567 				return ret_val;
568 			break;
569 		}
570 	phy->type = e1000e_get_phy_type_from_id(phy->id);
571 
572 	switch (phy->type) {
573 	case e1000_phy_82577:
574 	case e1000_phy_82579:
575 	case e1000_phy_i217:
576 		phy->ops.check_polarity = e1000_check_polarity_82577;
577 		phy->ops.force_speed_duplex =
578 		    e1000_phy_force_speed_duplex_82577;
579 		phy->ops.get_cable_length = e1000_get_cable_length_82577;
580 		phy->ops.get_info = e1000_get_phy_info_82577;
581 		phy->ops.commit = e1000e_phy_sw_reset;
582 		break;
583 	case e1000_phy_82578:
584 		phy->ops.check_polarity = e1000_check_polarity_m88;
585 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
586 		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
587 		phy->ops.get_info = e1000e_get_phy_info_m88;
588 		break;
589 	default:
590 		ret_val = -E1000_ERR_PHY;
591 		break;
592 	}
593 
594 	return ret_val;
595 }
596 
597 /**
598  *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
599  *  @hw: pointer to the HW structure
600  *
601  *  Initialize family-specific PHY parameters and function pointers.
602  **/
603 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
604 {
605 	struct e1000_phy_info *phy = &hw->phy;
606 	s32 ret_val;
607 	u16 i = 0;
608 
609 	phy->addr = 1;
610 	phy->reset_delay_us = 100;
611 
612 	phy->ops.power_up = e1000_power_up_phy_copper;
613 	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
614 
615 	/* We may need to do this twice - once for IGP and if that fails,
616 	 * we'll set BM func pointers and try again
617 	 */
618 	ret_val = e1000e_determine_phy_address(hw);
619 	if (ret_val) {
620 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
621 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
622 		ret_val = e1000e_determine_phy_address(hw);
623 		if (ret_val) {
624 			e_dbg("Cannot determine PHY addr. Erroring out\n");
625 			return ret_val;
626 		}
627 	}
628 
629 	phy->id = 0;
630 	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
631 	       (i++ < 100)) {
632 		usleep_range(1000, 1100);
633 		ret_val = e1000e_get_phy_id(hw);
634 		if (ret_val)
635 			return ret_val;
636 	}
637 
638 	/* Verify phy id */
639 	switch (phy->id) {
640 	case IGP03E1000_E_PHY_ID:
641 		phy->type = e1000_phy_igp_3;
642 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
643 		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
644 		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
645 		phy->ops.get_info = e1000e_get_phy_info_igp;
646 		phy->ops.check_polarity = e1000_check_polarity_igp;
647 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
648 		break;
649 	case IFE_E_PHY_ID:
650 	case IFE_PLUS_E_PHY_ID:
651 	case IFE_C_E_PHY_ID:
652 		phy->type = e1000_phy_ife;
653 		phy->autoneg_mask = E1000_ALL_NOT_GIG;
654 		phy->ops.get_info = e1000_get_phy_info_ife;
655 		phy->ops.check_polarity = e1000_check_polarity_ife;
656 		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
657 		break;
658 	case BME1000_E_PHY_ID:
659 		phy->type = e1000_phy_bm;
660 		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
661 		phy->ops.read_reg = e1000e_read_phy_reg_bm;
662 		phy->ops.write_reg = e1000e_write_phy_reg_bm;
663 		phy->ops.commit = e1000e_phy_sw_reset;
664 		phy->ops.get_info = e1000e_get_phy_info_m88;
665 		phy->ops.check_polarity = e1000_check_polarity_m88;
666 		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
667 		break;
668 	default:
669 		return -E1000_ERR_PHY;
670 	}
671 
672 	return 0;
673 }
674 
675 /**
676  *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
677  *  @hw: pointer to the HW structure
678  *
679  *  Initialize family-specific NVM parameters and function
680  *  pointers.
681  **/
682 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
683 {
684 	struct e1000_nvm_info *nvm = &hw->nvm;
685 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
686 	u32 gfpreg, sector_base_addr, sector_end_addr;
687 	u16 i;
688 	u32 nvm_size;
689 
690 	nvm->type = e1000_nvm_flash_sw;
691 
692 	if (hw->mac.type >= e1000_pch_spt) {
693 		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
694 		 * STRAP register. This is because in SPT the GbE Flash region
695 		 * is no longer accessed through the flash registers. Instead,
696 		 * the mechanism has changed, and the Flash region access
697 		 * registers are now implemented in GbE memory space.
698 		 */
699 		nvm->flash_base_addr = 0;
700 		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
701 		    * NVM_SIZE_MULTIPLIER;
702 		nvm->flash_bank_size = nvm_size / 2;
703 		/* Adjust to word count */
704 		nvm->flash_bank_size /= sizeof(u16);
705 		/* Set the base address for flash register access */
706 		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
707 	} else {
708 		/* Can't read flash registers if register set isn't mapped. */
709 		if (!hw->flash_address) {
710 			e_dbg("ERROR: Flash registers not mapped\n");
711 			return -E1000_ERR_CONFIG;
712 		}
713 
714 		gfpreg = er32flash(ICH_FLASH_GFPREG);
715 
716 		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
717 		 * Add 1 to sector_end_addr since this sector is included in
718 		 * the overall size.
719 		 */
720 		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
721 		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
722 
723 		/* flash_base_addr is byte-aligned */
724 		nvm->flash_base_addr = sector_base_addr
725 		    << FLASH_SECTOR_ADDR_SHIFT;
726 
727 		/* find total size of the NVM, then cut in half since the total
728 		 * size represents two separate NVM banks.
729 		 */
730 		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
731 					<< FLASH_SECTOR_ADDR_SHIFT);
732 		nvm->flash_bank_size /= 2;
733 		/* Adjust to word count */
734 		nvm->flash_bank_size /= sizeof(u16);
735 	}
736 
737 	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
738 
739 	/* Clear shadow ram */
740 	for (i = 0; i < nvm->word_size; i++) {
741 		dev_spec->shadow_ram[i].modified = false;
742 		dev_spec->shadow_ram[i].value = 0xFFFF;
743 	}
744 
745 	return 0;
746 }
747 
748 /**
749  *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
750  *  @hw: pointer to the HW structure
751  *
752  *  Initialize family-specific MAC parameters and function
753  *  pointers.
754  **/
755 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
756 {
757 	struct e1000_mac_info *mac = &hw->mac;
758 
759 	/* Set media type function pointer */
760 	hw->phy.media_type = e1000_media_type_copper;
761 
762 	/* Set mta register count */
763 	mac->mta_reg_count = 32;
764 	/* Set rar entry count */
765 	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
766 	if (mac->type == e1000_ich8lan)
767 		mac->rar_entry_count--;
768 	/* FWSM register */
769 	mac->has_fwsm = true;
770 	/* ARC subsystem not supported */
771 	mac->arc_subsystem_valid = false;
772 	/* Adaptive IFS supported */
773 	mac->adaptive_ifs = true;
774 
775 	/* LED and other operations */
776 	switch (mac->type) {
777 	case e1000_ich8lan:
778 	case e1000_ich9lan:
779 	case e1000_ich10lan:
780 		/* check management mode */
781 		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
782 		/* ID LED init */
783 		mac->ops.id_led_init = e1000e_id_led_init_generic;
784 		/* blink LED */
785 		mac->ops.blink_led = e1000e_blink_led_generic;
786 		/* setup LED */
787 		mac->ops.setup_led = e1000e_setup_led_generic;
788 		/* cleanup LED */
789 		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
790 		/* turn on/off LED */
791 		mac->ops.led_on = e1000_led_on_ich8lan;
792 		mac->ops.led_off = e1000_led_off_ich8lan;
793 		break;
794 	case e1000_pch2lan:
795 		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
796 		mac->ops.rar_set = e1000_rar_set_pch2lan;
797 		fallthrough;
798 	case e1000_pch_lpt:
799 	case e1000_pch_spt:
800 	case e1000_pch_cnp:
801 	case e1000_pch_tgp:
802 	case e1000_pch_adp:
803 	case e1000_pch_mtp:
804 	case e1000_pch_lnp:
805 	case e1000_pch_ptp:
806 	case e1000_pch_nvp:
807 	case e1000_pchlan:
808 		/* check management mode */
809 		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
810 		/* ID LED init */
811 		mac->ops.id_led_init = e1000_id_led_init_pchlan;
812 		/* setup LED */
813 		mac->ops.setup_led = e1000_setup_led_pchlan;
814 		/* cleanup LED */
815 		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
816 		/* turn on/off LED */
817 		mac->ops.led_on = e1000_led_on_pchlan;
818 		mac->ops.led_off = e1000_led_off_pchlan;
819 		break;
820 	default:
821 		break;
822 	}
823 
824 	if (mac->type >= e1000_pch_lpt) {
825 		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
826 		mac->ops.rar_set = e1000_rar_set_pch_lpt;
827 		mac->ops.setup_physical_interface =
828 		    e1000_setup_copper_link_pch_lpt;
829 		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
830 	}
831 
832 	/* Enable PCS Lock-loss workaround for ICH8 */
833 	if (mac->type == e1000_ich8lan)
834 		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
835 
836 	return 0;
837 }
838 
839 /**
840  *  __e1000_access_emi_reg_locked - Read/write EMI register
841  *  @hw: pointer to the HW structure
842  *  @address: EMI address to program
843  *  @data: pointer to value to read/write from/to the EMI address
844  *  @read: boolean flag to indicate read or write
845  *
846  *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
847  **/
848 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
849 					 u16 *data, bool read)
850 {
851 	s32 ret_val;
852 
853 	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
854 	if (ret_val)
855 		return ret_val;
856 
857 	if (read)
858 		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
859 	else
860 		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
861 
862 	return ret_val;
863 }
864 
865 /**
866  *  e1000_read_emi_reg_locked - Read Extended Management Interface register
867  *  @hw: pointer to the HW structure
868  *  @addr: EMI address to program
869  *  @data: value to be read from the EMI address
870  *
871  *  Assumes the SW/FW/HW Semaphore is already acquired.
872  **/
873 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
874 {
875 	return __e1000_access_emi_reg_locked(hw, addr, data, true);
876 }
877 
878 /**
879  *  e1000_write_emi_reg_locked - Write Extended Management Interface register
880  *  @hw: pointer to the HW structure
881  *  @addr: EMI address to program
882  *  @data: value to be written to the EMI address
883  *
884  *  Assumes the SW/FW/HW Semaphore is already acquired.
885  **/
886 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
887 {
888 	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
889 }
890 
891 /**
892  *  e1000_set_eee_pchlan - Enable/disable EEE support
893  *  @hw: pointer to the HW structure
894  *
895  *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
896  *  the link and the EEE capabilities of the link partner.  The LPI Control
897  *  register bits will remain set only if/when link is up.
898  *
899  *  EEE LPI must not be asserted earlier than one second after link is up.
900  *  On 82579, EEE LPI should not be enabled until such time otherwise there
901  *  can be link issues with some switches.  Other devices can have EEE LPI
902  *  enabled immediately upon link up since they have a timer in hardware which
903  *  prevents LPI from being asserted too early.
904  **/
905 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
906 {
907 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
908 	s32 ret_val;
909 	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
910 
911 	switch (hw->phy.type) {
912 	case e1000_phy_82579:
913 		lpa = I82579_EEE_LP_ABILITY;
914 		pcs_status = I82579_EEE_PCS_STATUS;
915 		adv_addr = I82579_EEE_ADVERTISEMENT;
916 		break;
917 	case e1000_phy_i217:
918 		lpa = I217_EEE_LP_ABILITY;
919 		pcs_status = I217_EEE_PCS_STATUS;
920 		adv_addr = I217_EEE_ADVERTISEMENT;
921 		break;
922 	default:
923 		return 0;
924 	}
925 
926 	ret_val = hw->phy.ops.acquire(hw);
927 	if (ret_val)
928 		return ret_val;
929 
930 	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
931 	if (ret_val)
932 		goto release;
933 
934 	/* Clear bits that enable EEE in various speeds */
935 	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
936 
937 	/* Enable EEE if not disabled by user */
938 	if (!dev_spec->eee_disable) {
939 		/* Save off link partner's EEE ability */
940 		ret_val = e1000_read_emi_reg_locked(hw, lpa,
941 						    &dev_spec->eee_lp_ability);
942 		if (ret_val)
943 			goto release;
944 
945 		/* Read EEE advertisement */
946 		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
947 		if (ret_val)
948 			goto release;
949 
950 		/* Enable EEE only for speeds in which the link partner is
951 		 * EEE capable and for which we advertise EEE.
952 		 */
953 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
954 			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
955 
956 		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
957 			e1e_rphy_locked(hw, MII_LPA, &data);
958 			if (data & LPA_100FULL)
959 				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
960 			else
961 				/* EEE is not supported in 100Half, so ignore
962 				 * partner's EEE in 100 ability if full-duplex
963 				 * is not advertised.
964 				 */
965 				dev_spec->eee_lp_ability &=
966 				    ~I82579_EEE_100_SUPPORTED;
967 		}
968 	}
969 
970 	if (hw->phy.type == e1000_phy_82579) {
971 		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
972 						    &data);
973 		if (ret_val)
974 			goto release;
975 
976 		data &= ~I82579_LPI_100_PLL_SHUT;
977 		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
978 						     data);
979 	}
980 
981 	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
982 	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
983 	if (ret_val)
984 		goto release;
985 
986 	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
987 release:
988 	hw->phy.ops.release(hw);
989 
990 	return ret_val;
991 }
992 
993 /**
994  *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
995  *  @hw:   pointer to the HW structure
996  *  @link: link up bool flag
997  *
998  *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
999  *  preventing further DMA write requests.  Workaround the issue by disabling
1000  *  the de-assertion of the clock request when in 1Gpbs mode.
1001  *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
1002  *  speeds in order to avoid Tx hangs.
1003  **/
1004 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
1005 {
1006 	u32 fextnvm6 = er32(FEXTNVM6);
1007 	u32 status = er32(STATUS);
1008 	s32 ret_val = 0;
1009 	u16 reg;
1010 
1011 	if (link && (status & E1000_STATUS_SPEED_1000)) {
1012 		ret_val = hw->phy.ops.acquire(hw);
1013 		if (ret_val)
1014 			return ret_val;
1015 
1016 		ret_val =
1017 		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
1018 						&reg);
1019 		if (ret_val)
1020 			goto release;
1021 
1022 		ret_val =
1023 		    e1000e_write_kmrn_reg_locked(hw,
1024 						 E1000_KMRNCTRLSTA_K1_CONFIG,
1025 						 reg &
1026 						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
1027 		if (ret_val)
1028 			goto release;
1029 
1030 		usleep_range(10, 20);
1031 
1032 		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
1033 
1034 		ret_val =
1035 		    e1000e_write_kmrn_reg_locked(hw,
1036 						 E1000_KMRNCTRLSTA_K1_CONFIG,
1037 						 reg);
1038 release:
1039 		hw->phy.ops.release(hw);
1040 	} else {
1041 		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
1042 		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
1043 
1044 		if ((hw->phy.revision > 5) || !link ||
1045 		    ((status & E1000_STATUS_SPEED_100) &&
1046 		     (status & E1000_STATUS_FD)))
1047 			goto update_fextnvm6;
1048 
1049 		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
1050 		if (ret_val)
1051 			return ret_val;
1052 
1053 		/* Clear link status transmit timeout */
1054 		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
1055 
1056 		if (status & E1000_STATUS_SPEED_100) {
1057 			/* Set inband Tx timeout to 5x10us for 100Half */
1058 			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1059 
1060 			/* Do not extend the K1 entry latency for 100Half */
1061 			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1062 		} else {
1063 			/* Set inband Tx timeout to 50x10us for 10Full/Half */
1064 			reg |= 50 <<
1065 			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1066 
1067 			/* Extend the K1 entry latency for 10 Mbps */
1068 			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1069 		}
1070 
1071 		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1072 		if (ret_val)
1073 			return ret_val;
1074 
1075 update_fextnvm6:
1076 		ew32(FEXTNVM6, fextnvm6);
1077 	}
1078 
1079 	return ret_val;
1080 }
1081 
1082 /**
1083  *  e1000_platform_pm_pch_lpt - Set platform power management values
1084  *  @hw: pointer to the HW structure
1085  *  @link: bool indicating link status
1086  *
1087  *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1088  *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1089  *  when link is up (which must not exceed the maximum latency supported
1090  *  by the platform), otherwise specify there is no LTR requirement.
1091  *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1092  *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1093  *  Capability register set, on this device LTR is set by writing the
1094  *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1095  *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1096  *  message to the PMC.
1097  **/
1098 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1099 {
1100 	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1101 	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1102 	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1103 	u32 lat_enc_d = 0;	/* latency decoded */
1104 	u16 lat_enc = 0;	/* latency encoded */
1105 
1106 	if (link) {
1107 		u16 speed, duplex, scale = 0;
1108 		u16 max_snoop, max_nosnoop;
1109 		u16 max_ltr_enc;	/* max LTR latency encoded */
1110 		u64 value;
1111 		u32 rxa;
1112 
1113 		if (!hw->adapter->max_frame_size) {
1114 			e_dbg("max_frame_size not set.\n");
1115 			return -E1000_ERR_CONFIG;
1116 		}
1117 
1118 		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1119 		if (!speed) {
1120 			e_dbg("Speed not set.\n");
1121 			return -E1000_ERR_CONFIG;
1122 		}
1123 
1124 		/* Rx Packet Buffer Allocation size (KB) */
1125 		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1126 
1127 		/* Determine the maximum latency tolerated by the device.
1128 		 *
1129 		 * Per the PCIe spec, the tolerated latencies are encoded as
1130 		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1131 		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1132 		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1133 		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1134 		 */
1135 		rxa *= 512;
1136 		value = (rxa > hw->adapter->max_frame_size) ?
1137 			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1138 			0;
1139 
1140 		while (value > PCI_LTR_VALUE_MASK) {
1141 			scale++;
1142 			value = DIV_ROUND_UP(value, BIT(5));
1143 		}
1144 		if (scale > E1000_LTRV_SCALE_MAX) {
1145 			e_dbg("Invalid LTR latency scale %d\n", scale);
1146 			return -E1000_ERR_CONFIG;
1147 		}
1148 		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1149 
1150 		/* Determine the maximum latency tolerated by the platform */
1151 		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1152 				     &max_snoop);
1153 		pci_read_config_word(hw->adapter->pdev,
1154 				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1155 		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1156 
1157 		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1158 			     (1U << (E1000_LTRV_SCALE_FACTOR *
1159 			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1160 
1161 		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1162 			(1U << (E1000_LTRV_SCALE_FACTOR *
1163 				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1164 
1165 		if (lat_enc_d > max_ltr_enc_d)
1166 			lat_enc = max_ltr_enc;
1167 	}
1168 
1169 	/* Set Snoop and No-Snoop latencies the same */
1170 	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1171 	ew32(LTRV, reg);
1172 
1173 	return 0;
1174 }
1175 
1176 /**
1177  *  e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1178  *  @hw: pointer to the HW structure
1179  *
1180  *  Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1181  *  acquired.
1182  *
1183  * Return: 0 on success, negative errno on failure.
1184  **/
1185 static s32 e1000e_force_smbus(struct e1000_hw *hw)
1186 {
1187 	u16 smb_ctrl = 0;
1188 	u32 ctrl_ext;
1189 	s32 ret_val;
1190 
1191 	/* Switching PHY interface always returns MDI error
1192 	 * so disable retry mechanism to avoid wasting time
1193 	 */
1194 	e1000e_disable_phy_retry(hw);
1195 
1196 	/* Force SMBus mode in the PHY */
1197 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl);
1198 	if (ret_val) {
1199 		e1000e_enable_phy_retry(hw);
1200 		return ret_val;
1201 	}
1202 
1203 	smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
1204 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl);
1205 
1206 	e1000e_enable_phy_retry(hw);
1207 
1208 	/* Force SMBus mode in the MAC */
1209 	ctrl_ext = er32(CTRL_EXT);
1210 	ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
1211 	ew32(CTRL_EXT, ctrl_ext);
1212 
1213 	return 0;
1214 }
1215 
1216 /**
1217  *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1218  *  @hw: pointer to the HW structure
1219  *  @to_sx: boolean indicating a system power state transition to Sx
1220  *
1221  *  When link is down, configure ULP mode to significantly reduce the power
1222  *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1223  *  ME firmware to start the ULP configuration.  If not on an ME enabled
1224  *  system, configure the ULP mode by software.
1225  */
1226 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1227 {
1228 	u32 mac_reg;
1229 	s32 ret_val = 0;
1230 	u16 phy_reg;
1231 	u16 oem_reg = 0;
1232 
1233 	if ((hw->mac.type < e1000_pch_lpt) ||
1234 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1235 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1236 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1237 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1238 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1239 		return 0;
1240 
1241 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1242 		/* Request ME configure ULP mode in the PHY */
1243 		mac_reg = er32(H2ME);
1244 		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1245 		ew32(H2ME, mac_reg);
1246 
1247 		goto out;
1248 	}
1249 
1250 	if (!to_sx) {
1251 		int i = 0;
1252 
1253 		/* Poll up to 5 seconds for Cable Disconnected indication */
1254 		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1255 			/* Bail if link is re-acquired */
1256 			if (er32(STATUS) & E1000_STATUS_LU)
1257 				return -E1000_ERR_PHY;
1258 
1259 			if (i++ == 100)
1260 				break;
1261 
1262 			msleep(50);
1263 		}
1264 		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1265 		      (er32(FEXT) &
1266 		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1267 	}
1268 
1269 	ret_val = hw->phy.ops.acquire(hw);
1270 	if (ret_val)
1271 		goto out;
1272 
1273 	ret_val = e1000e_force_smbus(hw);
1274 	if (ret_val) {
1275 		e_dbg("Failed to force SMBUS: %d\n", ret_val);
1276 		goto release;
1277 	}
1278 
1279 	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1280 	 * LPLU and disable Gig speed when entering ULP
1281 	 */
1282 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1283 		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1284 						       &oem_reg);
1285 		if (ret_val)
1286 			goto release;
1287 
1288 		phy_reg = oem_reg;
1289 		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1290 
1291 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1292 							phy_reg);
1293 
1294 		if (ret_val)
1295 			goto release;
1296 	}
1297 
1298 	/* Set Inband ULP Exit, Reset to SMBus mode and
1299 	 * Disable SMBus Release on PERST# in PHY
1300 	 */
1301 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1302 	if (ret_val)
1303 		goto release;
1304 	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1305 		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1306 	if (to_sx) {
1307 		if (er32(WUFC) & E1000_WUFC_LNKC)
1308 			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1309 		else
1310 			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1311 
1312 		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1313 		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1314 	} else {
1315 		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1316 		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1317 		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1318 	}
1319 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1320 
1321 	/* Set Disable SMBus Release on PERST# in MAC */
1322 	mac_reg = er32(FEXTNVM7);
1323 	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1324 	ew32(FEXTNVM7, mac_reg);
1325 
1326 	/* Commit ULP changes in PHY by starting auto ULP configuration */
1327 	phy_reg |= I218_ULP_CONFIG1_START;
1328 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1329 
1330 	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1331 	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1332 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1333 							oem_reg);
1334 		if (ret_val)
1335 			goto release;
1336 	}
1337 
1338 release:
1339 	hw->phy.ops.release(hw);
1340 out:
1341 	if (ret_val)
1342 		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1343 	else
1344 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1345 
1346 	return ret_val;
1347 }
1348 
1349 /**
1350  *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1351  *  @hw: pointer to the HW structure
1352  *  @force: boolean indicating whether or not to force disabling ULP
1353  *
1354  *  Un-configure ULP mode when link is up, the system is transitioned from
1355  *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1356  *  system, poll for an indication from ME that ULP has been un-configured.
1357  *  If not on an ME enabled system, un-configure the ULP mode by software.
1358  *
1359  *  During nominal operation, this function is called when link is acquired
1360  *  to disable ULP mode (force=false); otherwise, for example when unloading
1361  *  the driver or during Sx->S0 transitions, this is called with force=true
1362  *  to forcibly disable ULP.
1363  */
1364 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1365 {
1366 	s32 ret_val = 0;
1367 	u32 mac_reg;
1368 	u16 phy_reg;
1369 	int i = 0;
1370 
1371 	if ((hw->mac.type < e1000_pch_lpt) ||
1372 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1373 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1374 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1375 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1376 	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1377 		return 0;
1378 
1379 	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1380 		struct e1000_adapter *adapter = hw->adapter;
1381 		bool firmware_bug = false;
1382 
1383 		if (force) {
1384 			/* Request ME un-configure ULP mode in the PHY */
1385 			mac_reg = er32(H2ME);
1386 			mac_reg &= ~E1000_H2ME_ULP;
1387 			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1388 			ew32(H2ME, mac_reg);
1389 		}
1390 
1391 		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1392 		 * If this takes more than 1 second, show a warning indicating a
1393 		 * firmware bug
1394 		 */
1395 		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1396 			if (i++ == 250) {
1397 				ret_val = -E1000_ERR_PHY;
1398 				goto out;
1399 			}
1400 			if (i > 100 && !firmware_bug)
1401 				firmware_bug = true;
1402 
1403 			usleep_range(10000, 11000);
1404 		}
1405 		if (firmware_bug)
1406 			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1407 			       i * 10);
1408 		else
1409 			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1410 			      i * 10);
1411 
1412 		if (force) {
1413 			mac_reg = er32(H2ME);
1414 			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1415 			ew32(H2ME, mac_reg);
1416 		} else {
1417 			/* Clear H2ME.ULP after ME ULP configuration */
1418 			mac_reg = er32(H2ME);
1419 			mac_reg &= ~E1000_H2ME_ULP;
1420 			ew32(H2ME, mac_reg);
1421 		}
1422 
1423 		goto out;
1424 	}
1425 
1426 	ret_val = hw->phy.ops.acquire(hw);
1427 	if (ret_val)
1428 		goto out;
1429 
1430 	if (force)
1431 		/* Toggle LANPHYPC Value bit */
1432 		e1000_toggle_lanphypc_pch_lpt(hw);
1433 
1434 	/* Switching PHY interface always returns MDI error
1435 	 * so disable retry mechanism to avoid wasting time
1436 	 */
1437 	e1000e_disable_phy_retry(hw);
1438 
1439 	/* Unforce SMBus mode in PHY */
1440 	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1441 	if (ret_val) {
1442 		/* The MAC might be in PCIe mode, so temporarily force to
1443 		 * SMBus mode in order to access the PHY.
1444 		 */
1445 		mac_reg = er32(CTRL_EXT);
1446 		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1447 		ew32(CTRL_EXT, mac_reg);
1448 
1449 		msleep(50);
1450 
1451 		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1452 						       &phy_reg);
1453 		if (ret_val)
1454 			goto release;
1455 	}
1456 	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1457 	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1458 
1459 	e1000e_enable_phy_retry(hw);
1460 
1461 	/* Unforce SMBus mode in MAC */
1462 	mac_reg = er32(CTRL_EXT);
1463 	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1464 	ew32(CTRL_EXT, mac_reg);
1465 
1466 	/* When ULP mode was previously entered, K1 was disabled by the
1467 	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1468 	 */
1469 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1470 	if (ret_val)
1471 		goto release;
1472 	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1473 	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1474 
1475 	/* Clear ULP enabled configuration */
1476 	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1477 	if (ret_val)
1478 		goto release;
1479 	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1480 		     I218_ULP_CONFIG1_STICKY_ULP |
1481 		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1482 		     I218_ULP_CONFIG1_WOL_HOST |
1483 		     I218_ULP_CONFIG1_INBAND_EXIT |
1484 		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1485 		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1486 		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1487 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1488 
1489 	/* Commit ULP changes by starting auto ULP configuration */
1490 	phy_reg |= I218_ULP_CONFIG1_START;
1491 	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1492 
1493 	/* Clear Disable SMBus Release on PERST# in MAC */
1494 	mac_reg = er32(FEXTNVM7);
1495 	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1496 	ew32(FEXTNVM7, mac_reg);
1497 
1498 release:
1499 	hw->phy.ops.release(hw);
1500 	if (force) {
1501 		e1000_phy_hw_reset(hw);
1502 		msleep(50);
1503 	}
1504 out:
1505 	if (ret_val)
1506 		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1507 	else
1508 		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1509 
1510 	return ret_val;
1511 }
1512 
1513 /**
1514  *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1515  *  @hw: pointer to the HW structure
1516  *
1517  *  Checks to see of the link status of the hardware has changed.  If a
1518  *  change in link status has been detected, then we read the PHY registers
1519  *  to get the current speed/duplex if link exists.
1520  **/
1521 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1522 {
1523 	struct e1000_mac_info *mac = &hw->mac;
1524 	s32 ret_val, tipg_reg = 0;
1525 	u16 emi_addr, emi_val = 0;
1526 	bool link;
1527 	u16 phy_reg;
1528 
1529 	/* We only want to go out to the PHY registers to see if Auto-Neg
1530 	 * has completed and/or if our link status has changed.  The
1531 	 * get_link_status flag is set upon receiving a Link Status
1532 	 * Change or Rx Sequence Error interrupt.
1533 	 */
1534 	if (!mac->get_link_status)
1535 		return 0;
1536 	mac->get_link_status = false;
1537 
1538 	/* First we want to see if the MII Status Register reports
1539 	 * link.  If so, then we want to get the current speed/duplex
1540 	 * of the PHY.
1541 	 */
1542 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1543 	if (ret_val)
1544 		goto out;
1545 
1546 	if (hw->mac.type == e1000_pchlan) {
1547 		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1548 		if (ret_val)
1549 			goto out;
1550 	}
1551 
1552 	/* When connected at 10Mbps half-duplex, some parts are excessively
1553 	 * aggressive resulting in many collisions. To avoid this, increase
1554 	 * the IPG and reduce Rx latency in the PHY.
1555 	 */
1556 	if ((hw->mac.type >= e1000_pch2lan) && link) {
1557 		u16 speed, duplex;
1558 
1559 		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1560 		tipg_reg = er32(TIPG);
1561 		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1562 
1563 		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1564 			tipg_reg |= 0xFF;
1565 			/* Reduce Rx latency in analog PHY */
1566 			emi_val = 0;
1567 		} else if (hw->mac.type >= e1000_pch_spt &&
1568 			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1569 			tipg_reg |= 0xC;
1570 			emi_val = 1;
1571 		} else {
1572 
1573 			/* Roll back the default values */
1574 			tipg_reg |= 0x08;
1575 			emi_val = 1;
1576 		}
1577 
1578 		ew32(TIPG, tipg_reg);
1579 
1580 		ret_val = hw->phy.ops.acquire(hw);
1581 		if (ret_val)
1582 			goto out;
1583 
1584 		if (hw->mac.type == e1000_pch2lan)
1585 			emi_addr = I82579_RX_CONFIG;
1586 		else
1587 			emi_addr = I217_RX_CONFIG;
1588 		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1589 
1590 		if (hw->mac.type >= e1000_pch_lpt) {
1591 			u16 phy_reg;
1592 
1593 			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1594 			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1595 			if (speed == SPEED_100 || speed == SPEED_10)
1596 				phy_reg |= 0x3E8;
1597 			else
1598 				phy_reg |= 0xFA;
1599 			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1600 
1601 			if (speed == SPEED_1000) {
1602 				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1603 							    &phy_reg);
1604 
1605 				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1606 
1607 				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1608 							     phy_reg);
1609 			}
1610 		}
1611 		hw->phy.ops.release(hw);
1612 
1613 		if (ret_val)
1614 			goto out;
1615 
1616 		if (hw->mac.type >= e1000_pch_spt) {
1617 			u16 data;
1618 			u16 ptr_gap;
1619 
1620 			if (speed == SPEED_1000) {
1621 				ret_val = hw->phy.ops.acquire(hw);
1622 				if (ret_val)
1623 					goto out;
1624 
1625 				ret_val = e1e_rphy_locked(hw,
1626 							  PHY_REG(776, 20),
1627 							  &data);
1628 				if (ret_val) {
1629 					hw->phy.ops.release(hw);
1630 					goto out;
1631 				}
1632 
1633 				ptr_gap = (data & (0x3FF << 2)) >> 2;
1634 				if (ptr_gap < 0x18) {
1635 					data &= ~(0x3FF << 2);
1636 					data |= (0x18 << 2);
1637 					ret_val =
1638 					    e1e_wphy_locked(hw,
1639 							    PHY_REG(776, 20),
1640 							    data);
1641 				}
1642 				hw->phy.ops.release(hw);
1643 				if (ret_val)
1644 					goto out;
1645 			} else {
1646 				ret_val = hw->phy.ops.acquire(hw);
1647 				if (ret_val)
1648 					goto out;
1649 
1650 				ret_val = e1e_wphy_locked(hw,
1651 							  PHY_REG(776, 20),
1652 							  0xC023);
1653 				hw->phy.ops.release(hw);
1654 				if (ret_val)
1655 					goto out;
1656 
1657 			}
1658 		}
1659 	}
1660 
1661 	/* I217 Packet Loss issue:
1662 	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1663 	 * on power up.
1664 	 * Set the Beacon Duration for I217 to 8 usec
1665 	 */
1666 	if (hw->mac.type >= e1000_pch_lpt) {
1667 		u32 mac_reg;
1668 
1669 		mac_reg = er32(FEXTNVM4);
1670 		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1671 		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1672 		ew32(FEXTNVM4, mac_reg);
1673 	}
1674 
1675 	/* Work-around I218 hang issue */
1676 	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1677 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1678 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1679 	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1680 		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1681 		if (ret_val)
1682 			goto out;
1683 	}
1684 	if (hw->mac.type >= e1000_pch_lpt) {
1685 		/* Set platform power management values for
1686 		 * Latency Tolerance Reporting (LTR)
1687 		 */
1688 		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1689 		if (ret_val)
1690 			goto out;
1691 	}
1692 
1693 	/* Clear link partner's EEE ability */
1694 	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1695 
1696 	if (hw->mac.type >= e1000_pch_lpt) {
1697 		u32 fextnvm6 = er32(FEXTNVM6);
1698 
1699 		if (hw->mac.type == e1000_pch_spt) {
1700 			/* FEXTNVM6 K1-off workaround - for SPT only */
1701 			u32 pcieanacfg = er32(PCIEANACFG);
1702 
1703 			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1704 				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1705 			else
1706 				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1707 		}
1708 
1709 		ew32(FEXTNVM6, fextnvm6);
1710 	}
1711 
1712 	if (!link)
1713 		goto out;
1714 
1715 	switch (hw->mac.type) {
1716 	case e1000_pch2lan:
1717 		ret_val = e1000_k1_workaround_lv(hw);
1718 		if (ret_val)
1719 			return ret_val;
1720 		fallthrough;
1721 	case e1000_pchlan:
1722 		if (hw->phy.type == e1000_phy_82578) {
1723 			ret_val = e1000_link_stall_workaround_hv(hw);
1724 			if (ret_val)
1725 				return ret_val;
1726 		}
1727 
1728 		/* Workaround for PCHx parts in half-duplex:
1729 		 * Set the number of preambles removed from the packet
1730 		 * when it is passed from the PHY to the MAC to prevent
1731 		 * the MAC from misinterpreting the packet type.
1732 		 */
1733 		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1734 		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1735 
1736 		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1737 			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1738 
1739 		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1740 		break;
1741 	default:
1742 		break;
1743 	}
1744 
1745 	/* Check if there was DownShift, must be checked
1746 	 * immediately after link-up
1747 	 */
1748 	e1000e_check_downshift(hw);
1749 
1750 	/* Enable/Disable EEE after link up */
1751 	if (hw->phy.type > e1000_phy_82579) {
1752 		ret_val = e1000_set_eee_pchlan(hw);
1753 		if (ret_val)
1754 			return ret_val;
1755 	}
1756 
1757 	/* If we are forcing speed/duplex, then we simply return since
1758 	 * we have already determined whether we have link or not.
1759 	 */
1760 	if (!mac->autoneg)
1761 		return -E1000_ERR_CONFIG;
1762 
1763 	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1764 	 * of MAC speed/duplex configuration.  So we only need to
1765 	 * configure Collision Distance in the MAC.
1766 	 */
1767 	mac->ops.config_collision_dist(hw);
1768 
1769 	/* Configure Flow Control now that Auto-Neg has completed.
1770 	 * First, we need to restore the desired flow control
1771 	 * settings because we may have had to re-autoneg with a
1772 	 * different link partner.
1773 	 */
1774 	ret_val = e1000e_config_fc_after_link_up(hw);
1775 	if (ret_val)
1776 		e_dbg("Error configuring flow control\n");
1777 
1778 	return ret_val;
1779 
1780 out:
1781 	mac->get_link_status = true;
1782 	return ret_val;
1783 }
1784 
1785 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1786 {
1787 	struct e1000_hw *hw = &adapter->hw;
1788 	s32 rc;
1789 
1790 	rc = e1000_init_mac_params_ich8lan(hw);
1791 	if (rc)
1792 		return rc;
1793 
1794 	rc = e1000_init_nvm_params_ich8lan(hw);
1795 	if (rc)
1796 		return rc;
1797 
1798 	switch (hw->mac.type) {
1799 	case e1000_ich8lan:
1800 	case e1000_ich9lan:
1801 	case e1000_ich10lan:
1802 		rc = e1000_init_phy_params_ich8lan(hw);
1803 		break;
1804 	case e1000_pchlan:
1805 	case e1000_pch2lan:
1806 	case e1000_pch_lpt:
1807 	case e1000_pch_spt:
1808 	case e1000_pch_cnp:
1809 	case e1000_pch_tgp:
1810 	case e1000_pch_adp:
1811 	case e1000_pch_mtp:
1812 	case e1000_pch_lnp:
1813 	case e1000_pch_ptp:
1814 	case e1000_pch_nvp:
1815 		rc = e1000_init_phy_params_pchlan(hw);
1816 		break;
1817 	default:
1818 		break;
1819 	}
1820 	if (rc)
1821 		return rc;
1822 
1823 	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1824 	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1825 	 */
1826 	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1827 	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1828 	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1829 		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1830 		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1831 
1832 		hw->mac.ops.blink_led = NULL;
1833 	}
1834 
1835 	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1836 	    (adapter->hw.phy.type != e1000_phy_ife))
1837 		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1838 
1839 	/* Enable workaround for 82579 w/ ME enabled */
1840 	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1841 	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1842 		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1843 
1844 	return 0;
1845 }
1846 
1847 static DEFINE_MUTEX(nvm_mutex);
1848 
1849 /**
1850  *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1851  *  @hw: pointer to the HW structure
1852  *
1853  *  Acquires the mutex for performing NVM operations.
1854  **/
1855 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1856 {
1857 	mutex_lock(&nvm_mutex);
1858 
1859 	return 0;
1860 }
1861 
1862 /**
1863  *  e1000_release_nvm_ich8lan - Release NVM mutex
1864  *  @hw: pointer to the HW structure
1865  *
1866  *  Releases the mutex used while performing NVM operations.
1867  **/
1868 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1869 {
1870 	mutex_unlock(&nvm_mutex);
1871 }
1872 
1873 /**
1874  *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1875  *  @hw: pointer to the HW structure
1876  *
1877  *  Acquires the software control flag for performing PHY and select
1878  *  MAC CSR accesses.
1879  **/
1880 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1881 {
1882 	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1883 	s32 ret_val = 0;
1884 
1885 	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1886 			     &hw->adapter->state)) {
1887 		e_dbg("contention for Phy access\n");
1888 		return -E1000_ERR_PHY;
1889 	}
1890 
1891 	while (timeout) {
1892 		extcnf_ctrl = er32(EXTCNF_CTRL);
1893 		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1894 			break;
1895 
1896 		mdelay(1);
1897 		timeout--;
1898 	}
1899 
1900 	if (!timeout) {
1901 		e_dbg("SW has already locked the resource.\n");
1902 		ret_val = -E1000_ERR_CONFIG;
1903 		goto out;
1904 	}
1905 
1906 	timeout = SW_FLAG_TIMEOUT;
1907 
1908 	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1909 	ew32(EXTCNF_CTRL, extcnf_ctrl);
1910 
1911 	while (timeout) {
1912 		extcnf_ctrl = er32(EXTCNF_CTRL);
1913 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1914 			break;
1915 
1916 		mdelay(1);
1917 		timeout--;
1918 	}
1919 
1920 	if (!timeout) {
1921 		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1922 		      er32(FWSM), extcnf_ctrl);
1923 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1924 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1925 		ret_val = -E1000_ERR_CONFIG;
1926 		goto out;
1927 	}
1928 
1929 out:
1930 	if (ret_val)
1931 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1932 
1933 	return ret_val;
1934 }
1935 
1936 /**
1937  *  e1000_release_swflag_ich8lan - Release software control flag
1938  *  @hw: pointer to the HW structure
1939  *
1940  *  Releases the software control flag for performing PHY and select
1941  *  MAC CSR accesses.
1942  **/
1943 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1944 {
1945 	u32 extcnf_ctrl;
1946 
1947 	extcnf_ctrl = er32(EXTCNF_CTRL);
1948 
1949 	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1950 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1951 		ew32(EXTCNF_CTRL, extcnf_ctrl);
1952 	} else {
1953 		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1954 	}
1955 
1956 	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1957 }
1958 
1959 /**
1960  *  e1000_check_mng_mode_ich8lan - Checks management mode
1961  *  @hw: pointer to the HW structure
1962  *
1963  *  This checks if the adapter has any manageability enabled.
1964  *  This is a function pointer entry point only called by read/write
1965  *  routines for the PHY and NVM parts.
1966  **/
1967 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1968 {
1969 	u32 fwsm;
1970 
1971 	fwsm = er32(FWSM);
1972 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1973 		((fwsm & E1000_FWSM_MODE_MASK) ==
1974 		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1975 }
1976 
1977 /**
1978  *  e1000_check_mng_mode_pchlan - Checks management mode
1979  *  @hw: pointer to the HW structure
1980  *
1981  *  This checks if the adapter has iAMT enabled.
1982  *  This is a function pointer entry point only called by read/write
1983  *  routines for the PHY and NVM parts.
1984  **/
1985 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1986 {
1987 	u32 fwsm;
1988 
1989 	fwsm = er32(FWSM);
1990 	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1991 	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1992 }
1993 
1994 /**
1995  *  e1000_rar_set_pch2lan - Set receive address register
1996  *  @hw: pointer to the HW structure
1997  *  @addr: pointer to the receive address
1998  *  @index: receive address array register
1999  *
2000  *  Sets the receive address array register at index to the address passed
2001  *  in by addr.  For 82579, RAR[0] is the base address register that is to
2002  *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
2003  *  Use SHRA[0-3] in place of those reserved for ME.
2004  **/
2005 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
2006 {
2007 	u32 rar_low, rar_high;
2008 
2009 	/* HW expects these in little endian so we reverse the byte order
2010 	 * from network order (big endian) to little endian
2011 	 */
2012 	rar_low = ((u32)addr[0] |
2013 		   ((u32)addr[1] << 8) |
2014 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2015 
2016 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2017 
2018 	/* If MAC address zero, no need to set the AV bit */
2019 	if (rar_low || rar_high)
2020 		rar_high |= E1000_RAH_AV;
2021 
2022 	if (index == 0) {
2023 		ew32(RAL(index), rar_low);
2024 		e1e_flush();
2025 		ew32(RAH(index), rar_high);
2026 		e1e_flush();
2027 		return 0;
2028 	}
2029 
2030 	/* RAR[1-6] are owned by manageability.  Skip those and program the
2031 	 * next address into the SHRA register array.
2032 	 */
2033 	if (index < (u32)(hw->mac.rar_entry_count)) {
2034 		s32 ret_val;
2035 
2036 		ret_val = e1000_acquire_swflag_ich8lan(hw);
2037 		if (ret_val)
2038 			goto out;
2039 
2040 		ew32(SHRAL(index - 1), rar_low);
2041 		e1e_flush();
2042 		ew32(SHRAH(index - 1), rar_high);
2043 		e1e_flush();
2044 
2045 		e1000_release_swflag_ich8lan(hw);
2046 
2047 		/* verify the register updates */
2048 		if ((er32(SHRAL(index - 1)) == rar_low) &&
2049 		    (er32(SHRAH(index - 1)) == rar_high))
2050 			return 0;
2051 
2052 		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
2053 		      (index - 1), er32(FWSM));
2054 	}
2055 
2056 out:
2057 	e_dbg("Failed to write receive address at index %d\n", index);
2058 	return -E1000_ERR_CONFIG;
2059 }
2060 
2061 /**
2062  *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
2063  *  @hw: pointer to the HW structure
2064  *
2065  *  Get the number of available receive registers that the Host can
2066  *  program. SHRA[0-10] are the shared receive address registers
2067  *  that are shared between the Host and manageability engine (ME).
2068  *  ME can reserve any number of addresses and the host needs to be
2069  *  able to tell how many available registers it has access to.
2070  **/
2071 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
2072 {
2073 	u32 wlock_mac;
2074 	u32 num_entries;
2075 
2076 	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2077 	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2078 
2079 	switch (wlock_mac) {
2080 	case 0:
2081 		/* All SHRA[0..10] and RAR[0] available */
2082 		num_entries = hw->mac.rar_entry_count;
2083 		break;
2084 	case 1:
2085 		/* Only RAR[0] available */
2086 		num_entries = 1;
2087 		break;
2088 	default:
2089 		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2090 		num_entries = wlock_mac + 1;
2091 		break;
2092 	}
2093 
2094 	return num_entries;
2095 }
2096 
2097 /**
2098  *  e1000_rar_set_pch_lpt - Set receive address registers
2099  *  @hw: pointer to the HW structure
2100  *  @addr: pointer to the receive address
2101  *  @index: receive address array register
2102  *
2103  *  Sets the receive address register array at index to the address passed
2104  *  in by addr. For LPT, RAR[0] is the base address register that is to
2105  *  contain the MAC address. SHRA[0-10] are the shared receive address
2106  *  registers that are shared between the Host and manageability engine (ME).
2107  **/
2108 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2109 {
2110 	u32 rar_low, rar_high;
2111 	u32 wlock_mac;
2112 
2113 	/* HW expects these in little endian so we reverse the byte order
2114 	 * from network order (big endian) to little endian
2115 	 */
2116 	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2117 		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2118 
2119 	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2120 
2121 	/* If MAC address zero, no need to set the AV bit */
2122 	if (rar_low || rar_high)
2123 		rar_high |= E1000_RAH_AV;
2124 
2125 	if (index == 0) {
2126 		ew32(RAL(index), rar_low);
2127 		e1e_flush();
2128 		ew32(RAH(index), rar_high);
2129 		e1e_flush();
2130 		return 0;
2131 	}
2132 
2133 	/* The manageability engine (ME) can lock certain SHRAR registers that
2134 	 * it is using - those registers are unavailable for use.
2135 	 */
2136 	if (index < hw->mac.rar_entry_count) {
2137 		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2138 		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2139 
2140 		/* Check if all SHRAR registers are locked */
2141 		if (wlock_mac == 1)
2142 			goto out;
2143 
2144 		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2145 			s32 ret_val;
2146 
2147 			ret_val = e1000_acquire_swflag_ich8lan(hw);
2148 
2149 			if (ret_val)
2150 				goto out;
2151 
2152 			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2153 			e1e_flush();
2154 			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2155 			e1e_flush();
2156 
2157 			e1000_release_swflag_ich8lan(hw);
2158 
2159 			/* verify the register updates */
2160 			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2161 			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2162 				return 0;
2163 		}
2164 	}
2165 
2166 out:
2167 	e_dbg("Failed to write receive address at index %d\n", index);
2168 	return -E1000_ERR_CONFIG;
2169 }
2170 
2171 /**
2172  *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2173  *  @hw: pointer to the HW structure
2174  *
2175  *  Checks if firmware is blocking the reset of the PHY.
2176  *  This is a function pointer entry point only called by
2177  *  reset routines.
2178  **/
2179 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2180 {
2181 	bool blocked = false;
2182 	int i = 0;
2183 
2184 	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2185 	       (i++ < 30))
2186 		usleep_range(10000, 11000);
2187 	return blocked ? E1000_BLK_PHY_RESET : 0;
2188 }
2189 
2190 /**
2191  *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2192  *  @hw: pointer to the HW structure
2193  *
2194  *  Assumes semaphore already acquired.
2195  *
2196  **/
2197 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2198 {
2199 	u16 phy_data;
2200 	u32 strap = er32(STRAP);
2201 	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2202 	s32 ret_val;
2203 
2204 	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2205 
2206 	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2207 	if (ret_val)
2208 		return ret_val;
2209 
2210 	phy_data &= ~HV_SMB_ADDR_MASK;
2211 	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2212 	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2213 
2214 	if (hw->phy.type == e1000_phy_i217) {
2215 		/* Restore SMBus frequency */
2216 		if (freq--) {
2217 			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2218 			phy_data |= (freq & BIT(0)) <<
2219 			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2220 			phy_data |= (freq & BIT(1)) <<
2221 			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2222 		} else {
2223 			e_dbg("Unsupported SMB frequency in PHY\n");
2224 		}
2225 	}
2226 
2227 	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2228 }
2229 
2230 /**
2231  *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2232  *  @hw:   pointer to the HW structure
2233  *
2234  *  SW should configure the LCD from the NVM extended configuration region
2235  *  as a workaround for certain parts.
2236  **/
2237 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2238 {
2239 	struct e1000_phy_info *phy = &hw->phy;
2240 	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2241 	s32 ret_val = 0;
2242 	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2243 
2244 	/* Initialize the PHY from the NVM on ICH platforms.  This
2245 	 * is needed due to an issue where the NVM configuration is
2246 	 * not properly autoloaded after power transitions.
2247 	 * Therefore, after each PHY reset, we will load the
2248 	 * configuration data out of the NVM manually.
2249 	 */
2250 	switch (hw->mac.type) {
2251 	case e1000_ich8lan:
2252 		if (phy->type != e1000_phy_igp_3)
2253 			return ret_val;
2254 
2255 		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2256 		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2257 			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2258 			break;
2259 		}
2260 		fallthrough;
2261 	case e1000_pchlan:
2262 	case e1000_pch2lan:
2263 	case e1000_pch_lpt:
2264 	case e1000_pch_spt:
2265 	case e1000_pch_cnp:
2266 	case e1000_pch_tgp:
2267 	case e1000_pch_adp:
2268 	case e1000_pch_mtp:
2269 	case e1000_pch_lnp:
2270 	case e1000_pch_ptp:
2271 	case e1000_pch_nvp:
2272 		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2273 		break;
2274 	default:
2275 		return ret_val;
2276 	}
2277 
2278 	ret_val = hw->phy.ops.acquire(hw);
2279 	if (ret_val)
2280 		return ret_val;
2281 
2282 	data = er32(FEXTNVM);
2283 	if (!(data & sw_cfg_mask))
2284 		goto release;
2285 
2286 	/* Make sure HW does not configure LCD from PHY
2287 	 * extended configuration before SW configuration
2288 	 */
2289 	data = er32(EXTCNF_CTRL);
2290 	if ((hw->mac.type < e1000_pch2lan) &&
2291 	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2292 		goto release;
2293 
2294 	cnf_size = er32(EXTCNF_SIZE);
2295 	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2296 	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2297 	if (!cnf_size)
2298 		goto release;
2299 
2300 	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2301 	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2302 
2303 	if (((hw->mac.type == e1000_pchlan) &&
2304 	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2305 	    (hw->mac.type > e1000_pchlan)) {
2306 		/* HW configures the SMBus address and LEDs when the
2307 		 * OEM and LCD Write Enable bits are set in the NVM.
2308 		 * When both NVM bits are cleared, SW will configure
2309 		 * them instead.
2310 		 */
2311 		ret_val = e1000_write_smbus_addr(hw);
2312 		if (ret_val)
2313 			goto release;
2314 
2315 		data = er32(LEDCTL);
2316 		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2317 							(u16)data);
2318 		if (ret_val)
2319 			goto release;
2320 	}
2321 
2322 	/* Configure LCD from extended configuration region. */
2323 
2324 	/* cnf_base_addr is in DWORD */
2325 	word_addr = (u16)(cnf_base_addr << 1);
2326 
2327 	for (i = 0; i < cnf_size; i++) {
2328 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2329 		if (ret_val)
2330 			goto release;
2331 
2332 		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2333 					 1, &reg_addr);
2334 		if (ret_val)
2335 			goto release;
2336 
2337 		/* Save off the PHY page for future writes. */
2338 		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2339 			phy_page = reg_data;
2340 			continue;
2341 		}
2342 
2343 		reg_addr &= PHY_REG_MASK;
2344 		reg_addr |= phy_page;
2345 
2346 		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2347 		if (ret_val)
2348 			goto release;
2349 	}
2350 
2351 release:
2352 	hw->phy.ops.release(hw);
2353 	return ret_val;
2354 }
2355 
2356 /**
2357  *  e1000_k1_gig_workaround_hv - K1 Si workaround
2358  *  @hw:   pointer to the HW structure
2359  *  @link: link up bool flag
2360  *
2361  *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2362  *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2363  *  If link is down, the function will restore the default K1 setting located
2364  *  in the NVM.
2365  **/
2366 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2367 {
2368 	s32 ret_val = 0;
2369 	u16 status_reg = 0;
2370 	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2371 
2372 	if (hw->mac.type != e1000_pchlan)
2373 		return 0;
2374 
2375 	/* Wrap the whole flow with the sw flag */
2376 	ret_val = hw->phy.ops.acquire(hw);
2377 	if (ret_val)
2378 		return ret_val;
2379 
2380 	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2381 	if (link) {
2382 		if (hw->phy.type == e1000_phy_82578) {
2383 			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2384 						  &status_reg);
2385 			if (ret_val)
2386 				goto release;
2387 
2388 			status_reg &= (BM_CS_STATUS_LINK_UP |
2389 				       BM_CS_STATUS_RESOLVED |
2390 				       BM_CS_STATUS_SPEED_MASK);
2391 
2392 			if (status_reg == (BM_CS_STATUS_LINK_UP |
2393 					   BM_CS_STATUS_RESOLVED |
2394 					   BM_CS_STATUS_SPEED_1000))
2395 				k1_enable = false;
2396 		}
2397 
2398 		if (hw->phy.type == e1000_phy_82577) {
2399 			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2400 			if (ret_val)
2401 				goto release;
2402 
2403 			status_reg &= (HV_M_STATUS_LINK_UP |
2404 				       HV_M_STATUS_AUTONEG_COMPLETE |
2405 				       HV_M_STATUS_SPEED_MASK);
2406 
2407 			if (status_reg == (HV_M_STATUS_LINK_UP |
2408 					   HV_M_STATUS_AUTONEG_COMPLETE |
2409 					   HV_M_STATUS_SPEED_1000))
2410 				k1_enable = false;
2411 		}
2412 
2413 		/* Link stall fix for link up */
2414 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2415 		if (ret_val)
2416 			goto release;
2417 
2418 	} else {
2419 		/* Link stall fix for link down */
2420 		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2421 		if (ret_val)
2422 			goto release;
2423 	}
2424 
2425 	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2426 
2427 release:
2428 	hw->phy.ops.release(hw);
2429 
2430 	return ret_val;
2431 }
2432 
2433 /**
2434  *  e1000_configure_k1_ich8lan - Configure K1 power state
2435  *  @hw: pointer to the HW structure
2436  *  @k1_enable: K1 state to configure
2437  *
2438  *  Configure the K1 power state based on the provided parameter.
2439  *  Assumes semaphore already acquired.
2440  *
2441  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2442  **/
2443 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2444 {
2445 	s32 ret_val;
2446 	u32 ctrl_reg = 0;
2447 	u32 ctrl_ext = 0;
2448 	u32 reg = 0;
2449 	u16 kmrn_reg = 0;
2450 
2451 	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2452 					      &kmrn_reg);
2453 	if (ret_val)
2454 		return ret_val;
2455 
2456 	if (k1_enable)
2457 		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2458 	else
2459 		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2460 
2461 	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2462 					       kmrn_reg);
2463 	if (ret_val)
2464 		return ret_val;
2465 
2466 	usleep_range(20, 40);
2467 	ctrl_ext = er32(CTRL_EXT);
2468 	ctrl_reg = er32(CTRL);
2469 
2470 	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2471 	reg |= E1000_CTRL_FRCSPD;
2472 	ew32(CTRL, reg);
2473 
2474 	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2475 	e1e_flush();
2476 	usleep_range(20, 40);
2477 	ew32(CTRL, ctrl_reg);
2478 	ew32(CTRL_EXT, ctrl_ext);
2479 	e1e_flush();
2480 	usleep_range(20, 40);
2481 
2482 	return 0;
2483 }
2484 
2485 /**
2486  *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2487  *  @hw:       pointer to the HW structure
2488  *  @d0_state: boolean if entering d0 or d3 device state
2489  *
2490  *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2491  *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2492  *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2493  **/
2494 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2495 {
2496 	s32 ret_val = 0;
2497 	u32 mac_reg;
2498 	u16 oem_reg;
2499 
2500 	if (hw->mac.type < e1000_pchlan)
2501 		return ret_val;
2502 
2503 	ret_val = hw->phy.ops.acquire(hw);
2504 	if (ret_val)
2505 		return ret_val;
2506 
2507 	if (hw->mac.type == e1000_pchlan) {
2508 		mac_reg = er32(EXTCNF_CTRL);
2509 		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2510 			goto release;
2511 	}
2512 
2513 	mac_reg = er32(FEXTNVM);
2514 	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2515 		goto release;
2516 
2517 	mac_reg = er32(PHY_CTRL);
2518 
2519 	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2520 	if (ret_val)
2521 		goto release;
2522 
2523 	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2524 
2525 	if (d0_state) {
2526 		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2527 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2528 
2529 		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2530 			oem_reg |= HV_OEM_BITS_LPLU;
2531 	} else {
2532 		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2533 			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2534 			oem_reg |= HV_OEM_BITS_GBE_DIS;
2535 
2536 		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2537 			       E1000_PHY_CTRL_NOND0A_LPLU))
2538 			oem_reg |= HV_OEM_BITS_LPLU;
2539 	}
2540 
2541 	/* Set Restart auto-neg to activate the bits */
2542 	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2543 	    !hw->phy.ops.check_reset_block(hw))
2544 		oem_reg |= HV_OEM_BITS_RESTART_AN;
2545 
2546 	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2547 
2548 release:
2549 	hw->phy.ops.release(hw);
2550 
2551 	return ret_val;
2552 }
2553 
2554 /**
2555  *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2556  *  @hw:   pointer to the HW structure
2557  **/
2558 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2559 {
2560 	s32 ret_val;
2561 	u16 data;
2562 
2563 	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2564 	if (ret_val)
2565 		return ret_val;
2566 
2567 	data |= HV_KMRN_MDIO_SLOW;
2568 
2569 	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2570 
2571 	return ret_val;
2572 }
2573 
2574 /**
2575  *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2576  *  @hw: pointer to the HW structure
2577  *
2578  *  A series of PHY workarounds to be done after every PHY reset.
2579  **/
2580 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2581 {
2582 	s32 ret_val = 0;
2583 	u16 phy_data;
2584 
2585 	if (hw->mac.type != e1000_pchlan)
2586 		return 0;
2587 
2588 	/* Set MDIO slow mode before any other MDIO access */
2589 	if (hw->phy.type == e1000_phy_82577) {
2590 		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2591 		if (ret_val)
2592 			return ret_val;
2593 	}
2594 
2595 	if (((hw->phy.type == e1000_phy_82577) &&
2596 	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2597 	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2598 		/* Disable generation of early preamble */
2599 		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2600 		if (ret_val)
2601 			return ret_val;
2602 
2603 		/* Preamble tuning for SSC */
2604 		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2605 		if (ret_val)
2606 			return ret_val;
2607 	}
2608 
2609 	if (hw->phy.type == e1000_phy_82578) {
2610 		/* Return registers to default by doing a soft reset then
2611 		 * writing 0x3140 to the control register.
2612 		 */
2613 		if (hw->phy.revision < 2) {
2614 			e1000e_phy_sw_reset(hw);
2615 			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2616 			if (ret_val)
2617 				return ret_val;
2618 		}
2619 	}
2620 
2621 	/* Select page 0 */
2622 	ret_val = hw->phy.ops.acquire(hw);
2623 	if (ret_val)
2624 		return ret_val;
2625 
2626 	hw->phy.addr = 1;
2627 	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2628 	hw->phy.ops.release(hw);
2629 	if (ret_val)
2630 		return ret_val;
2631 
2632 	/* Configure the K1 Si workaround during phy reset assuming there is
2633 	 * link so that it disables K1 if link is in 1Gbps.
2634 	 */
2635 	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2636 	if (ret_val)
2637 		return ret_val;
2638 
2639 	/* Workaround for link disconnects on a busy hub in half duplex */
2640 	ret_val = hw->phy.ops.acquire(hw);
2641 	if (ret_val)
2642 		return ret_val;
2643 	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2644 	if (ret_val)
2645 		goto release;
2646 	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2647 	if (ret_val)
2648 		goto release;
2649 
2650 	/* set MSE higher to enable link to stay up when noise is high */
2651 	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2652 release:
2653 	hw->phy.ops.release(hw);
2654 
2655 	return ret_val;
2656 }
2657 
2658 /**
2659  *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2660  *  @hw:   pointer to the HW structure
2661  **/
2662 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2663 {
2664 	u32 mac_reg;
2665 	u16 i, phy_reg = 0;
2666 	s32 ret_val;
2667 
2668 	ret_val = hw->phy.ops.acquire(hw);
2669 	if (ret_val)
2670 		return;
2671 	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2672 	if (ret_val)
2673 		goto release;
2674 
2675 	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2676 	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2677 		mac_reg = er32(RAL(i));
2678 		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2679 					   (u16)(mac_reg & 0xFFFF));
2680 		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2681 					   (u16)((mac_reg >> 16) & 0xFFFF));
2682 
2683 		mac_reg = er32(RAH(i));
2684 		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2685 					   (u16)(mac_reg & 0xFFFF));
2686 		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2687 					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
2688 	}
2689 
2690 	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2691 
2692 release:
2693 	hw->phy.ops.release(hw);
2694 }
2695 
2696 /**
2697  *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2698  *  with 82579 PHY
2699  *  @hw: pointer to the HW structure
2700  *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2701  **/
2702 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2703 {
2704 	s32 ret_val = 0;
2705 	u16 phy_reg, data;
2706 	u32 mac_reg;
2707 	u16 i;
2708 
2709 	if (hw->mac.type < e1000_pch2lan)
2710 		return 0;
2711 
2712 	/* disable Rx path while enabling/disabling workaround */
2713 	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2714 	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2715 	if (ret_val)
2716 		return ret_val;
2717 
2718 	if (enable) {
2719 		/* Write Rx addresses (rar_entry_count for RAL/H, and
2720 		 * SHRAL/H) and initial CRC values to the MAC
2721 		 */
2722 		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2723 			u8 mac_addr[ETH_ALEN] = { 0 };
2724 			u32 addr_high, addr_low;
2725 
2726 			addr_high = er32(RAH(i));
2727 			if (!(addr_high & E1000_RAH_AV))
2728 				continue;
2729 			addr_low = er32(RAL(i));
2730 			mac_addr[0] = (addr_low & 0xFF);
2731 			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2732 			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2733 			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2734 			mac_addr[4] = (addr_high & 0xFF);
2735 			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2736 
2737 			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2738 		}
2739 
2740 		/* Write Rx addresses to the PHY */
2741 		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2742 
2743 		/* Enable jumbo frame workaround in the MAC */
2744 		mac_reg = er32(FFLT_DBG);
2745 		mac_reg &= ~BIT(14);
2746 		mac_reg |= (7 << 15);
2747 		ew32(FFLT_DBG, mac_reg);
2748 
2749 		mac_reg = er32(RCTL);
2750 		mac_reg |= E1000_RCTL_SECRC;
2751 		ew32(RCTL, mac_reg);
2752 
2753 		ret_val = e1000e_read_kmrn_reg(hw,
2754 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2755 					       &data);
2756 		if (ret_val)
2757 			return ret_val;
2758 		ret_val = e1000e_write_kmrn_reg(hw,
2759 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2760 						data | BIT(0));
2761 		if (ret_val)
2762 			return ret_val;
2763 		ret_val = e1000e_read_kmrn_reg(hw,
2764 					       E1000_KMRNCTRLSTA_HD_CTRL,
2765 					       &data);
2766 		if (ret_val)
2767 			return ret_val;
2768 		data &= ~(0xF << 8);
2769 		data |= (0xB << 8);
2770 		ret_val = e1000e_write_kmrn_reg(hw,
2771 						E1000_KMRNCTRLSTA_HD_CTRL,
2772 						data);
2773 		if (ret_val)
2774 			return ret_val;
2775 
2776 		/* Enable jumbo frame workaround in the PHY */
2777 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2778 		data &= ~(0x7F << 5);
2779 		data |= (0x37 << 5);
2780 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2781 		if (ret_val)
2782 			return ret_val;
2783 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2784 		data &= ~BIT(13);
2785 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2786 		if (ret_val)
2787 			return ret_val;
2788 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2789 		data &= ~(0x3FF << 2);
2790 		data |= (E1000_TX_PTR_GAP << 2);
2791 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2792 		if (ret_val)
2793 			return ret_val;
2794 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2795 		if (ret_val)
2796 			return ret_val;
2797 		e1e_rphy(hw, HV_PM_CTRL, &data);
2798 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2799 		if (ret_val)
2800 			return ret_val;
2801 	} else {
2802 		/* Write MAC register values back to h/w defaults */
2803 		mac_reg = er32(FFLT_DBG);
2804 		mac_reg &= ~(0xF << 14);
2805 		ew32(FFLT_DBG, mac_reg);
2806 
2807 		mac_reg = er32(RCTL);
2808 		mac_reg &= ~E1000_RCTL_SECRC;
2809 		ew32(RCTL, mac_reg);
2810 
2811 		ret_val = e1000e_read_kmrn_reg(hw,
2812 					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2813 					       &data);
2814 		if (ret_val)
2815 			return ret_val;
2816 		ret_val = e1000e_write_kmrn_reg(hw,
2817 						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2818 						data & ~BIT(0));
2819 		if (ret_val)
2820 			return ret_val;
2821 		ret_val = e1000e_read_kmrn_reg(hw,
2822 					       E1000_KMRNCTRLSTA_HD_CTRL,
2823 					       &data);
2824 		if (ret_val)
2825 			return ret_val;
2826 		data &= ~(0xF << 8);
2827 		data |= (0xB << 8);
2828 		ret_val = e1000e_write_kmrn_reg(hw,
2829 						E1000_KMRNCTRLSTA_HD_CTRL,
2830 						data);
2831 		if (ret_val)
2832 			return ret_val;
2833 
2834 		/* Write PHY register values back to h/w defaults */
2835 		e1e_rphy(hw, PHY_REG(769, 23), &data);
2836 		data &= ~(0x7F << 5);
2837 		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2838 		if (ret_val)
2839 			return ret_val;
2840 		e1e_rphy(hw, PHY_REG(769, 16), &data);
2841 		data |= BIT(13);
2842 		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2843 		if (ret_val)
2844 			return ret_val;
2845 		e1e_rphy(hw, PHY_REG(776, 20), &data);
2846 		data &= ~(0x3FF << 2);
2847 		data |= (0x8 << 2);
2848 		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2849 		if (ret_val)
2850 			return ret_val;
2851 		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2852 		if (ret_val)
2853 			return ret_val;
2854 		e1e_rphy(hw, HV_PM_CTRL, &data);
2855 		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2856 		if (ret_val)
2857 			return ret_val;
2858 	}
2859 
2860 	/* re-enable Rx path after enabling/disabling workaround */
2861 	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2862 }
2863 
2864 /**
2865  *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2866  *  @hw: pointer to the HW structure
2867  *
2868  *  A series of PHY workarounds to be done after every PHY reset.
2869  **/
2870 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2871 {
2872 	s32 ret_val = 0;
2873 
2874 	if (hw->mac.type != e1000_pch2lan)
2875 		return 0;
2876 
2877 	/* Set MDIO slow mode before any other MDIO access */
2878 	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2879 	if (ret_val)
2880 		return ret_val;
2881 
2882 	ret_val = hw->phy.ops.acquire(hw);
2883 	if (ret_val)
2884 		return ret_val;
2885 	/* set MSE higher to enable link to stay up when noise is high */
2886 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2887 	if (ret_val)
2888 		goto release;
2889 	/* drop link after 5 times MSE threshold was reached */
2890 	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2891 release:
2892 	hw->phy.ops.release(hw);
2893 
2894 	return ret_val;
2895 }
2896 
2897 /**
2898  *  e1000_k1_workaround_lv - K1 Si workaround
2899  *  @hw:   pointer to the HW structure
2900  *
2901  *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2902  *  Disable K1 in 1000Mbps and 100Mbps
2903  **/
2904 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2905 {
2906 	s32 ret_val = 0;
2907 	u16 status_reg = 0;
2908 
2909 	if (hw->mac.type != e1000_pch2lan)
2910 		return 0;
2911 
2912 	/* Set K1 beacon duration based on 10Mbs speed */
2913 	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2914 	if (ret_val)
2915 		return ret_val;
2916 
2917 	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2918 	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2919 		if (status_reg &
2920 		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2921 			u16 pm_phy_reg;
2922 
2923 			/* LV 1G/100 Packet drop issue wa  */
2924 			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2925 			if (ret_val)
2926 				return ret_val;
2927 			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2928 			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2929 			if (ret_val)
2930 				return ret_val;
2931 		} else {
2932 			u32 mac_reg;
2933 
2934 			mac_reg = er32(FEXTNVM4);
2935 			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2936 			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2937 			ew32(FEXTNVM4, mac_reg);
2938 		}
2939 	}
2940 
2941 	return ret_val;
2942 }
2943 
2944 /**
2945  *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2946  *  @hw:   pointer to the HW structure
2947  *  @gate: boolean set to true to gate, false to ungate
2948  *
2949  *  Gate/ungate the automatic PHY configuration via hardware; perform
2950  *  the configuration via software instead.
2951  **/
2952 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2953 {
2954 	u32 extcnf_ctrl;
2955 
2956 	if (hw->mac.type < e1000_pch2lan)
2957 		return;
2958 
2959 	extcnf_ctrl = er32(EXTCNF_CTRL);
2960 
2961 	if (gate)
2962 		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2963 	else
2964 		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2965 
2966 	ew32(EXTCNF_CTRL, extcnf_ctrl);
2967 }
2968 
2969 /**
2970  *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2971  *  @hw: pointer to the HW structure
2972  *
2973  *  Check the appropriate indication the MAC has finished configuring the
2974  *  PHY after a software reset.
2975  **/
2976 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2977 {
2978 	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2979 
2980 	/* Wait for basic configuration completes before proceeding */
2981 	do {
2982 		data = er32(STATUS);
2983 		data &= E1000_STATUS_LAN_INIT_DONE;
2984 		usleep_range(100, 200);
2985 	} while ((!data) && --loop);
2986 
2987 	/* If basic configuration is incomplete before the above loop
2988 	 * count reaches 0, loading the configuration from NVM will
2989 	 * leave the PHY in a bad state possibly resulting in no link.
2990 	 */
2991 	if (loop == 0)
2992 		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2993 
2994 	/* Clear the Init Done bit for the next init event */
2995 	data = er32(STATUS);
2996 	data &= ~E1000_STATUS_LAN_INIT_DONE;
2997 	ew32(STATUS, data);
2998 }
2999 
3000 /**
3001  *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
3002  *  @hw: pointer to the HW structure
3003  **/
3004 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
3005 {
3006 	s32 ret_val = 0;
3007 	u16 reg;
3008 
3009 	if (hw->phy.ops.check_reset_block(hw))
3010 		return 0;
3011 
3012 	/* Allow time for h/w to get to quiescent state after reset */
3013 	usleep_range(10000, 11000);
3014 
3015 	/* Perform any necessary post-reset workarounds */
3016 	switch (hw->mac.type) {
3017 	case e1000_pchlan:
3018 		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
3019 		if (ret_val)
3020 			return ret_val;
3021 		break;
3022 	case e1000_pch2lan:
3023 		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
3024 		if (ret_val)
3025 			return ret_val;
3026 		break;
3027 	default:
3028 		break;
3029 	}
3030 
3031 	/* Clear the host wakeup bit after lcd reset */
3032 	if (hw->mac.type >= e1000_pchlan) {
3033 		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
3034 		reg &= ~BM_WUC_HOST_WU_BIT;
3035 		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
3036 	}
3037 
3038 	/* Configure the LCD with the extended configuration region in NVM */
3039 	ret_val = e1000_sw_lcd_config_ich8lan(hw);
3040 	if (ret_val)
3041 		return ret_val;
3042 
3043 	/* Configure the LCD with the OEM bits in NVM */
3044 	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
3045 
3046 	if (hw->mac.type == e1000_pch2lan) {
3047 		/* Ungate automatic PHY configuration on non-managed 82579 */
3048 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
3049 			usleep_range(10000, 11000);
3050 			e1000_gate_hw_phy_config_ich8lan(hw, false);
3051 		}
3052 
3053 		/* Set EEE LPI Update Timer to 200usec */
3054 		ret_val = hw->phy.ops.acquire(hw);
3055 		if (ret_val)
3056 			return ret_val;
3057 		ret_val = e1000_write_emi_reg_locked(hw,
3058 						     I82579_LPI_UPDATE_TIMER,
3059 						     0x1387);
3060 		hw->phy.ops.release(hw);
3061 	}
3062 
3063 	return ret_val;
3064 }
3065 
3066 /**
3067  *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3068  *  @hw: pointer to the HW structure
3069  *
3070  *  Resets the PHY
3071  *  This is a function pointer entry point called by drivers
3072  *  or other shared routines.
3073  **/
3074 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3075 {
3076 	s32 ret_val = 0;
3077 
3078 	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
3079 	if ((hw->mac.type == e1000_pch2lan) &&
3080 	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3081 		e1000_gate_hw_phy_config_ich8lan(hw, true);
3082 
3083 	ret_val = e1000e_phy_hw_reset_generic(hw);
3084 	if (ret_val)
3085 		return ret_val;
3086 
3087 	return e1000_post_phy_reset_ich8lan(hw);
3088 }
3089 
3090 /**
3091  *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3092  *  @hw: pointer to the HW structure
3093  *  @active: true to enable LPLU, false to disable
3094  *
3095  *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
3096  *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3097  *  the phy speed. This function will manually set the LPLU bit and restart
3098  *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
3099  *  since it configures the same bit.
3100  **/
3101 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3102 {
3103 	s32 ret_val;
3104 	u16 oem_reg;
3105 
3106 	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3107 	if (ret_val)
3108 		return ret_val;
3109 
3110 	if (active)
3111 		oem_reg |= HV_OEM_BITS_LPLU;
3112 	else
3113 		oem_reg &= ~HV_OEM_BITS_LPLU;
3114 
3115 	if (!hw->phy.ops.check_reset_block(hw))
3116 		oem_reg |= HV_OEM_BITS_RESTART_AN;
3117 
3118 	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3119 }
3120 
3121 /**
3122  *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3123  *  @hw: pointer to the HW structure
3124  *  @active: true to enable LPLU, false to disable
3125  *
3126  *  Sets the LPLU D0 state according to the active flag.  When
3127  *  activating LPLU this function also disables smart speed
3128  *  and vice versa.  LPLU will not be activated unless the
3129  *  device autonegotiation advertisement meets standards of
3130  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3131  *  This is a function pointer entry point only called by
3132  *  PHY setup routines.
3133  **/
3134 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3135 {
3136 	struct e1000_phy_info *phy = &hw->phy;
3137 	u32 phy_ctrl;
3138 	s32 ret_val = 0;
3139 	u16 data;
3140 
3141 	if (phy->type == e1000_phy_ife)
3142 		return 0;
3143 
3144 	phy_ctrl = er32(PHY_CTRL);
3145 
3146 	if (active) {
3147 		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3148 		ew32(PHY_CTRL, phy_ctrl);
3149 
3150 		if (phy->type != e1000_phy_igp_3)
3151 			return 0;
3152 
3153 		/* Call gig speed drop workaround on LPLU before accessing
3154 		 * any PHY registers
3155 		 */
3156 		if (hw->mac.type == e1000_ich8lan)
3157 			e1000e_gig_downshift_workaround_ich8lan(hw);
3158 
3159 		/* When LPLU is enabled, we should disable SmartSpeed */
3160 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3161 		if (ret_val)
3162 			return ret_val;
3163 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3164 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3165 		if (ret_val)
3166 			return ret_val;
3167 	} else {
3168 		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3169 		ew32(PHY_CTRL, phy_ctrl);
3170 
3171 		if (phy->type != e1000_phy_igp_3)
3172 			return 0;
3173 
3174 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3175 		 * during Dx states where the power conservation is most
3176 		 * important.  During driver activity we should enable
3177 		 * SmartSpeed, so performance is maintained.
3178 		 */
3179 		if (phy->smart_speed == e1000_smart_speed_on) {
3180 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3181 					   &data);
3182 			if (ret_val)
3183 				return ret_val;
3184 
3185 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3186 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3187 					   data);
3188 			if (ret_val)
3189 				return ret_val;
3190 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3191 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3192 					   &data);
3193 			if (ret_val)
3194 				return ret_val;
3195 
3196 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3197 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3198 					   data);
3199 			if (ret_val)
3200 				return ret_val;
3201 		}
3202 	}
3203 
3204 	return 0;
3205 }
3206 
3207 /**
3208  *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3209  *  @hw: pointer to the HW structure
3210  *  @active: true to enable LPLU, false to disable
3211  *
3212  *  Sets the LPLU D3 state according to the active flag.  When
3213  *  activating LPLU this function also disables smart speed
3214  *  and vice versa.  LPLU will not be activated unless the
3215  *  device autonegotiation advertisement meets standards of
3216  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3217  *  This is a function pointer entry point only called by
3218  *  PHY setup routines.
3219  **/
3220 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3221 {
3222 	struct e1000_phy_info *phy = &hw->phy;
3223 	u32 phy_ctrl;
3224 	s32 ret_val = 0;
3225 	u16 data;
3226 
3227 	phy_ctrl = er32(PHY_CTRL);
3228 
3229 	if (!active) {
3230 		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3231 		ew32(PHY_CTRL, phy_ctrl);
3232 
3233 		if (phy->type != e1000_phy_igp_3)
3234 			return 0;
3235 
3236 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3237 		 * during Dx states where the power conservation is most
3238 		 * important.  During driver activity we should enable
3239 		 * SmartSpeed, so performance is maintained.
3240 		 */
3241 		if (phy->smart_speed == e1000_smart_speed_on) {
3242 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3243 					   &data);
3244 			if (ret_val)
3245 				return ret_val;
3246 
3247 			data |= IGP01E1000_PSCFR_SMART_SPEED;
3248 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3249 					   data);
3250 			if (ret_val)
3251 				return ret_val;
3252 		} else if (phy->smart_speed == e1000_smart_speed_off) {
3253 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3254 					   &data);
3255 			if (ret_val)
3256 				return ret_val;
3257 
3258 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3259 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3260 					   data);
3261 			if (ret_val)
3262 				return ret_val;
3263 		}
3264 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3265 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3266 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3267 		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3268 		ew32(PHY_CTRL, phy_ctrl);
3269 
3270 		if (phy->type != e1000_phy_igp_3)
3271 			return 0;
3272 
3273 		/* Call gig speed drop workaround on LPLU before accessing
3274 		 * any PHY registers
3275 		 */
3276 		if (hw->mac.type == e1000_ich8lan)
3277 			e1000e_gig_downshift_workaround_ich8lan(hw);
3278 
3279 		/* When LPLU is enabled, we should disable SmartSpeed */
3280 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3281 		if (ret_val)
3282 			return ret_val;
3283 
3284 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3285 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3286 	}
3287 
3288 	return ret_val;
3289 }
3290 
3291 /**
3292  *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3293  *  @hw: pointer to the HW structure
3294  *  @bank:  pointer to the variable that returns the active bank
3295  *
3296  *  Reads signature byte from the NVM using the flash access registers.
3297  *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3298  **/
3299 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3300 {
3301 	u32 eecd;
3302 	struct e1000_nvm_info *nvm = &hw->nvm;
3303 	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3304 	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3305 	u32 nvm_dword = 0;
3306 	u8 sig_byte = 0;
3307 	s32 ret_val;
3308 
3309 	switch (hw->mac.type) {
3310 	case e1000_pch_spt:
3311 	case e1000_pch_cnp:
3312 	case e1000_pch_tgp:
3313 	case e1000_pch_adp:
3314 	case e1000_pch_mtp:
3315 	case e1000_pch_lnp:
3316 	case e1000_pch_ptp:
3317 	case e1000_pch_nvp:
3318 		bank1_offset = nvm->flash_bank_size;
3319 		act_offset = E1000_ICH_NVM_SIG_WORD;
3320 
3321 		/* set bank to 0 in case flash read fails */
3322 		*bank = 0;
3323 
3324 		/* Check bank 0 */
3325 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3326 							 &nvm_dword);
3327 		if (ret_val)
3328 			return ret_val;
3329 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3330 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3331 		    E1000_ICH_NVM_SIG_VALUE) {
3332 			*bank = 0;
3333 			return 0;
3334 		}
3335 
3336 		/* Check bank 1 */
3337 		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3338 							 bank1_offset,
3339 							 &nvm_dword);
3340 		if (ret_val)
3341 			return ret_val;
3342 		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3343 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3344 		    E1000_ICH_NVM_SIG_VALUE) {
3345 			*bank = 1;
3346 			return 0;
3347 		}
3348 
3349 		e_dbg("ERROR: No valid NVM bank present\n");
3350 		return -E1000_ERR_NVM;
3351 	case e1000_ich8lan:
3352 	case e1000_ich9lan:
3353 		eecd = er32(EECD);
3354 		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3355 		    E1000_EECD_SEC1VAL_VALID_MASK) {
3356 			if (eecd & E1000_EECD_SEC1VAL)
3357 				*bank = 1;
3358 			else
3359 				*bank = 0;
3360 
3361 			return 0;
3362 		}
3363 		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3364 		fallthrough;
3365 	default:
3366 		/* set bank to 0 in case flash read fails */
3367 		*bank = 0;
3368 
3369 		/* Check bank 0 */
3370 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3371 							&sig_byte);
3372 		if (ret_val)
3373 			return ret_val;
3374 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3375 		    E1000_ICH_NVM_SIG_VALUE) {
3376 			*bank = 0;
3377 			return 0;
3378 		}
3379 
3380 		/* Check bank 1 */
3381 		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3382 							bank1_offset,
3383 							&sig_byte);
3384 		if (ret_val)
3385 			return ret_val;
3386 		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3387 		    E1000_ICH_NVM_SIG_VALUE) {
3388 			*bank = 1;
3389 			return 0;
3390 		}
3391 
3392 		e_dbg("ERROR: No valid NVM bank present\n");
3393 		return -E1000_ERR_NVM;
3394 	}
3395 }
3396 
3397 /**
3398  *  e1000_read_nvm_spt - NVM access for SPT
3399  *  @hw: pointer to the HW structure
3400  *  @offset: The offset (in bytes) of the word(s) to read.
3401  *  @words: Size of data to read in words.
3402  *  @data: pointer to the word(s) to read at offset.
3403  *
3404  *  Reads a word(s) from the NVM
3405  **/
3406 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3407 			      u16 *data)
3408 {
3409 	struct e1000_nvm_info *nvm = &hw->nvm;
3410 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3411 	u32 act_offset;
3412 	s32 ret_val = 0;
3413 	u32 bank = 0;
3414 	u32 dword = 0;
3415 	u16 offset_to_read;
3416 	u16 i;
3417 
3418 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3419 	    (words == 0)) {
3420 		e_dbg("nvm parameter(s) out of bounds\n");
3421 		ret_val = -E1000_ERR_NVM;
3422 		goto out;
3423 	}
3424 
3425 	nvm->ops.acquire(hw);
3426 
3427 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3428 	if (ret_val) {
3429 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3430 		bank = 0;
3431 	}
3432 
3433 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3434 	act_offset += offset;
3435 
3436 	ret_val = 0;
3437 
3438 	for (i = 0; i < words; i += 2) {
3439 		if (words - i == 1) {
3440 			if (dev_spec->shadow_ram[offset + i].modified) {
3441 				data[i] =
3442 				    dev_spec->shadow_ram[offset + i].value;
3443 			} else {
3444 				offset_to_read = act_offset + i -
3445 				    ((act_offset + i) % 2);
3446 				ret_val =
3447 				  e1000_read_flash_dword_ich8lan(hw,
3448 								 offset_to_read,
3449 								 &dword);
3450 				if (ret_val)
3451 					break;
3452 				if ((act_offset + i) % 2 == 0)
3453 					data[i] = (u16)(dword & 0xFFFF);
3454 				else
3455 					data[i] = (u16)((dword >> 16) & 0xFFFF);
3456 			}
3457 		} else {
3458 			offset_to_read = act_offset + i;
3459 			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3460 			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3461 				ret_val =
3462 				  e1000_read_flash_dword_ich8lan(hw,
3463 								 offset_to_read,
3464 								 &dword);
3465 				if (ret_val)
3466 					break;
3467 			}
3468 			if (dev_spec->shadow_ram[offset + i].modified)
3469 				data[i] =
3470 				    dev_spec->shadow_ram[offset + i].value;
3471 			else
3472 				data[i] = (u16)(dword & 0xFFFF);
3473 			if (dev_spec->shadow_ram[offset + i].modified)
3474 				data[i + 1] =
3475 				    dev_spec->shadow_ram[offset + i + 1].value;
3476 			else
3477 				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3478 		}
3479 	}
3480 
3481 	nvm->ops.release(hw);
3482 
3483 out:
3484 	if (ret_val)
3485 		e_dbg("NVM read error: %d\n", ret_val);
3486 
3487 	return ret_val;
3488 }
3489 
3490 /**
3491  *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3492  *  @hw: pointer to the HW structure
3493  *  @offset: The offset (in bytes) of the word(s) to read.
3494  *  @words: Size of data to read in words
3495  *  @data: Pointer to the word(s) to read at offset.
3496  *
3497  *  Reads a word(s) from the NVM using the flash access registers.
3498  **/
3499 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3500 				  u16 *data)
3501 {
3502 	struct e1000_nvm_info *nvm = &hw->nvm;
3503 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3504 	u32 act_offset;
3505 	s32 ret_val = 0;
3506 	u32 bank = 0;
3507 	u16 i, word;
3508 
3509 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3510 	    (words == 0)) {
3511 		e_dbg("nvm parameter(s) out of bounds\n");
3512 		ret_val = -E1000_ERR_NVM;
3513 		goto out;
3514 	}
3515 
3516 	nvm->ops.acquire(hw);
3517 
3518 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3519 	if (ret_val) {
3520 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3521 		bank = 0;
3522 	}
3523 
3524 	act_offset = (bank) ? nvm->flash_bank_size : 0;
3525 	act_offset += offset;
3526 
3527 	ret_val = 0;
3528 	for (i = 0; i < words; i++) {
3529 		if (dev_spec->shadow_ram[offset + i].modified) {
3530 			data[i] = dev_spec->shadow_ram[offset + i].value;
3531 		} else {
3532 			ret_val = e1000_read_flash_word_ich8lan(hw,
3533 								act_offset + i,
3534 								&word);
3535 			if (ret_val)
3536 				break;
3537 			data[i] = word;
3538 		}
3539 	}
3540 
3541 	nvm->ops.release(hw);
3542 
3543 out:
3544 	if (ret_val)
3545 		e_dbg("NVM read error: %d\n", ret_val);
3546 
3547 	return ret_val;
3548 }
3549 
3550 /**
3551  *  e1000_flash_cycle_init_ich8lan - Initialize flash
3552  *  @hw: pointer to the HW structure
3553  *
3554  *  This function does initial flash setup so that a new read/write/erase cycle
3555  *  can be started.
3556  **/
3557 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3558 {
3559 	union ich8_hws_flash_status hsfsts;
3560 	s32 ret_val = -E1000_ERR_NVM;
3561 
3562 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3563 
3564 	/* Check if the flash descriptor is valid */
3565 	if (!hsfsts.hsf_status.fldesvalid) {
3566 		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3567 		return -E1000_ERR_NVM;
3568 	}
3569 
3570 	/* Clear FCERR and DAEL in hw status by writing 1 */
3571 	hsfsts.hsf_status.flcerr = 1;
3572 	hsfsts.hsf_status.dael = 1;
3573 	if (hw->mac.type >= e1000_pch_spt)
3574 		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3575 	else
3576 		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3577 
3578 	/* Either we should have a hardware SPI cycle in progress
3579 	 * bit to check against, in order to start a new cycle or
3580 	 * FDONE bit should be changed in the hardware so that it
3581 	 * is 1 after hardware reset, which can then be used as an
3582 	 * indication whether a cycle is in progress or has been
3583 	 * completed.
3584 	 */
3585 
3586 	if (!hsfsts.hsf_status.flcinprog) {
3587 		/* There is no cycle running at present,
3588 		 * so we can start a cycle.
3589 		 * Begin by setting Flash Cycle Done.
3590 		 */
3591 		hsfsts.hsf_status.flcdone = 1;
3592 		if (hw->mac.type >= e1000_pch_spt)
3593 			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3594 		else
3595 			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3596 		ret_val = 0;
3597 	} else {
3598 		s32 i;
3599 
3600 		/* Otherwise poll for sometime so the current
3601 		 * cycle has a chance to end before giving up.
3602 		 */
3603 		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3604 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3605 			if (!hsfsts.hsf_status.flcinprog) {
3606 				ret_val = 0;
3607 				break;
3608 			}
3609 			udelay(1);
3610 		}
3611 		if (!ret_val) {
3612 			/* Successful in waiting for previous cycle to timeout,
3613 			 * now set the Flash Cycle Done.
3614 			 */
3615 			hsfsts.hsf_status.flcdone = 1;
3616 			if (hw->mac.type >= e1000_pch_spt)
3617 				ew32flash(ICH_FLASH_HSFSTS,
3618 					  hsfsts.regval & 0xFFFF);
3619 			else
3620 				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3621 		} else {
3622 			e_dbg("Flash controller busy, cannot get access\n");
3623 		}
3624 	}
3625 
3626 	return ret_val;
3627 }
3628 
3629 /**
3630  *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3631  *  @hw: pointer to the HW structure
3632  *  @timeout: maximum time to wait for completion
3633  *
3634  *  This function starts a flash cycle and waits for its completion.
3635  **/
3636 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3637 {
3638 	union ich8_hws_flash_ctrl hsflctl;
3639 	union ich8_hws_flash_status hsfsts;
3640 	u32 i = 0;
3641 
3642 	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3643 	if (hw->mac.type >= e1000_pch_spt)
3644 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3645 	else
3646 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3647 	hsflctl.hsf_ctrl.flcgo = 1;
3648 
3649 	if (hw->mac.type >= e1000_pch_spt)
3650 		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3651 	else
3652 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3653 
3654 	/* wait till FDONE bit is set to 1 */
3655 	do {
3656 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3657 		if (hsfsts.hsf_status.flcdone)
3658 			break;
3659 		udelay(1);
3660 	} while (i++ < timeout);
3661 
3662 	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3663 		return 0;
3664 
3665 	return -E1000_ERR_NVM;
3666 }
3667 
3668 /**
3669  *  e1000_read_flash_dword_ich8lan - Read dword from flash
3670  *  @hw: pointer to the HW structure
3671  *  @offset: offset to data location
3672  *  @data: pointer to the location for storing the data
3673  *
3674  *  Reads the flash dword at offset into data.  Offset is converted
3675  *  to bytes before read.
3676  **/
3677 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3678 					  u32 *data)
3679 {
3680 	/* Must convert word offset into bytes. */
3681 	offset <<= 1;
3682 	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3683 }
3684 
3685 /**
3686  *  e1000_read_flash_word_ich8lan - Read word from flash
3687  *  @hw: pointer to the HW structure
3688  *  @offset: offset to data location
3689  *  @data: pointer to the location for storing the data
3690  *
3691  *  Reads the flash word at offset into data.  Offset is converted
3692  *  to bytes before read.
3693  **/
3694 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3695 					 u16 *data)
3696 {
3697 	/* Must convert offset into bytes. */
3698 	offset <<= 1;
3699 
3700 	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3701 }
3702 
3703 /**
3704  *  e1000_read_flash_byte_ich8lan - Read byte from flash
3705  *  @hw: pointer to the HW structure
3706  *  @offset: The offset of the byte to read.
3707  *  @data: Pointer to a byte to store the value read.
3708  *
3709  *  Reads a single byte from the NVM using the flash access registers.
3710  **/
3711 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3712 					 u8 *data)
3713 {
3714 	s32 ret_val;
3715 	u16 word = 0;
3716 
3717 	/* In SPT, only 32 bits access is supported,
3718 	 * so this function should not be called.
3719 	 */
3720 	if (hw->mac.type >= e1000_pch_spt)
3721 		return -E1000_ERR_NVM;
3722 	else
3723 		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3724 
3725 	if (ret_val)
3726 		return ret_val;
3727 
3728 	*data = (u8)word;
3729 
3730 	return 0;
3731 }
3732 
3733 /**
3734  *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3735  *  @hw: pointer to the HW structure
3736  *  @offset: The offset (in bytes) of the byte or word to read.
3737  *  @size: Size of data to read, 1=byte 2=word
3738  *  @data: Pointer to the word to store the value read.
3739  *
3740  *  Reads a byte or word from the NVM using the flash access registers.
3741  **/
3742 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3743 					 u8 size, u16 *data)
3744 {
3745 	union ich8_hws_flash_status hsfsts;
3746 	union ich8_hws_flash_ctrl hsflctl;
3747 	u32 flash_linear_addr;
3748 	u32 flash_data = 0;
3749 	s32 ret_val = -E1000_ERR_NVM;
3750 	u8 count = 0;
3751 
3752 	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3753 		return -E1000_ERR_NVM;
3754 
3755 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3756 			     hw->nvm.flash_base_addr);
3757 
3758 	do {
3759 		udelay(1);
3760 		/* Steps */
3761 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3762 		if (ret_val)
3763 			break;
3764 
3765 		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3766 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3767 		hsflctl.hsf_ctrl.fldbcount = size - 1;
3768 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3769 		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3770 
3771 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3772 
3773 		ret_val =
3774 		    e1000_flash_cycle_ich8lan(hw,
3775 					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3776 
3777 		/* Check if FCERR is set to 1, if set to 1, clear it
3778 		 * and try the whole sequence a few more times, else
3779 		 * read in (shift in) the Flash Data0, the order is
3780 		 * least significant byte first msb to lsb
3781 		 */
3782 		if (!ret_val) {
3783 			flash_data = er32flash(ICH_FLASH_FDATA0);
3784 			if (size == 1)
3785 				*data = (u8)(flash_data & 0x000000FF);
3786 			else if (size == 2)
3787 				*data = (u16)(flash_data & 0x0000FFFF);
3788 			break;
3789 		} else {
3790 			/* If we've gotten here, then things are probably
3791 			 * completely hosed, but if the error condition is
3792 			 * detected, it won't hurt to give it another try...
3793 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3794 			 */
3795 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3796 			if (hsfsts.hsf_status.flcerr) {
3797 				/* Repeat for some time before giving up. */
3798 				continue;
3799 			} else if (!hsfsts.hsf_status.flcdone) {
3800 				e_dbg("Timeout error - flash cycle did not complete.\n");
3801 				break;
3802 			}
3803 		}
3804 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3805 
3806 	return ret_val;
3807 }
3808 
3809 /**
3810  *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3811  *  @hw: pointer to the HW structure
3812  *  @offset: The offset (in bytes) of the dword to read.
3813  *  @data: Pointer to the dword to store the value read.
3814  *
3815  *  Reads a byte or word from the NVM using the flash access registers.
3816  **/
3817 
3818 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3819 					   u32 *data)
3820 {
3821 	union ich8_hws_flash_status hsfsts;
3822 	union ich8_hws_flash_ctrl hsflctl;
3823 	u32 flash_linear_addr;
3824 	s32 ret_val = -E1000_ERR_NVM;
3825 	u8 count = 0;
3826 
3827 	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3828 		return -E1000_ERR_NVM;
3829 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3830 			     hw->nvm.flash_base_addr);
3831 
3832 	do {
3833 		udelay(1);
3834 		/* Steps */
3835 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3836 		if (ret_val)
3837 			break;
3838 		/* In SPT, This register is in Lan memory space, not flash.
3839 		 * Therefore, only 32 bit access is supported
3840 		 */
3841 		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3842 
3843 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3844 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3845 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3846 		/* In SPT, This register is in Lan memory space, not flash.
3847 		 * Therefore, only 32 bit access is supported
3848 		 */
3849 		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3850 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3851 
3852 		ret_val =
3853 		   e1000_flash_cycle_ich8lan(hw,
3854 					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3855 
3856 		/* Check if FCERR is set to 1, if set to 1, clear it
3857 		 * and try the whole sequence a few more times, else
3858 		 * read in (shift in) the Flash Data0, the order is
3859 		 * least significant byte first msb to lsb
3860 		 */
3861 		if (!ret_val) {
3862 			*data = er32flash(ICH_FLASH_FDATA0);
3863 			break;
3864 		} else {
3865 			/* If we've gotten here, then things are probably
3866 			 * completely hosed, but if the error condition is
3867 			 * detected, it won't hurt to give it another try...
3868 			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3869 			 */
3870 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3871 			if (hsfsts.hsf_status.flcerr) {
3872 				/* Repeat for some time before giving up. */
3873 				continue;
3874 			} else if (!hsfsts.hsf_status.flcdone) {
3875 				e_dbg("Timeout error - flash cycle did not complete.\n");
3876 				break;
3877 			}
3878 		}
3879 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3880 
3881 	return ret_val;
3882 }
3883 
3884 /**
3885  *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3886  *  @hw: pointer to the HW structure
3887  *  @offset: The offset (in bytes) of the word(s) to write.
3888  *  @words: Size of data to write in words
3889  *  @data: Pointer to the word(s) to write at offset.
3890  *
3891  *  Writes a byte or word to the NVM using the flash access registers.
3892  **/
3893 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3894 				   u16 *data)
3895 {
3896 	struct e1000_nvm_info *nvm = &hw->nvm;
3897 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3898 	u16 i;
3899 
3900 	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3901 	    (words == 0)) {
3902 		e_dbg("nvm parameter(s) out of bounds\n");
3903 		return -E1000_ERR_NVM;
3904 	}
3905 
3906 	nvm->ops.acquire(hw);
3907 
3908 	for (i = 0; i < words; i++) {
3909 		dev_spec->shadow_ram[offset + i].modified = true;
3910 		dev_spec->shadow_ram[offset + i].value = data[i];
3911 	}
3912 
3913 	nvm->ops.release(hw);
3914 
3915 	return 0;
3916 }
3917 
3918 /**
3919  *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3920  *  @hw: pointer to the HW structure
3921  *
3922  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3923  *  which writes the checksum to the shadow ram.  The changes in the shadow
3924  *  ram are then committed to the EEPROM by processing each bank at a time
3925  *  checking for the modified bit and writing only the pending changes.
3926  *  After a successful commit, the shadow ram is cleared and is ready for
3927  *  future writes.
3928  **/
3929 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3930 {
3931 	struct e1000_nvm_info *nvm = &hw->nvm;
3932 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3933 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3934 	s32 ret_val;
3935 	u32 dword = 0;
3936 
3937 	ret_val = e1000e_update_nvm_checksum_generic(hw);
3938 	if (ret_val)
3939 		goto out;
3940 
3941 	if (nvm->type != e1000_nvm_flash_sw)
3942 		goto out;
3943 
3944 	nvm->ops.acquire(hw);
3945 
3946 	/* We're writing to the opposite bank so if we're on bank 1,
3947 	 * write to bank 0 etc.  We also need to erase the segment that
3948 	 * is going to be written
3949 	 */
3950 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3951 	if (ret_val) {
3952 		e_dbg("Could not detect valid bank, assuming bank 0\n");
3953 		bank = 0;
3954 	}
3955 
3956 	if (bank == 0) {
3957 		new_bank_offset = nvm->flash_bank_size;
3958 		old_bank_offset = 0;
3959 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3960 		if (ret_val)
3961 			goto release;
3962 	} else {
3963 		old_bank_offset = nvm->flash_bank_size;
3964 		new_bank_offset = 0;
3965 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3966 		if (ret_val)
3967 			goto release;
3968 	}
3969 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3970 		/* Determine whether to write the value stored
3971 		 * in the other NVM bank or a modified value stored
3972 		 * in the shadow RAM
3973 		 */
3974 		ret_val = e1000_read_flash_dword_ich8lan(hw,
3975 							 i + old_bank_offset,
3976 							 &dword);
3977 
3978 		if (dev_spec->shadow_ram[i].modified) {
3979 			dword &= 0xffff0000;
3980 			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3981 		}
3982 		if (dev_spec->shadow_ram[i + 1].modified) {
3983 			dword &= 0x0000ffff;
3984 			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3985 				  << 16);
3986 		}
3987 		if (ret_val)
3988 			break;
3989 
3990 		/* If the word is 0x13, then make sure the signature bits
3991 		 * (15:14) are 11b until the commit has completed.
3992 		 * This will allow us to write 10b which indicates the
3993 		 * signature is valid.  We want to do this after the write
3994 		 * has completed so that we don't mark the segment valid
3995 		 * while the write is still in progress
3996 		 */
3997 		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3998 			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3999 
4000 		/* Convert offset to bytes. */
4001 		act_offset = (i + new_bank_offset) << 1;
4002 
4003 		usleep_range(100, 200);
4004 
4005 		/* Write the data to the new bank. Offset in words */
4006 		act_offset = i + new_bank_offset;
4007 		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
4008 								dword);
4009 		if (ret_val)
4010 			break;
4011 	}
4012 
4013 	/* Don't bother writing the segment valid bits if sector
4014 	 * programming failed.
4015 	 */
4016 	if (ret_val) {
4017 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4018 		e_dbg("Flash commit failed.\n");
4019 		goto release;
4020 	}
4021 
4022 	/* Finally validate the new segment by setting bit 15:14
4023 	 * to 10b in word 0x13 , this can be done without an
4024 	 * erase as well since these bits are 11 to start with
4025 	 * and we need to change bit 14 to 0b
4026 	 */
4027 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4028 
4029 	/*offset in words but we read dword */
4030 	--act_offset;
4031 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4032 
4033 	if (ret_val)
4034 		goto release;
4035 
4036 	dword &= 0xBFFFFFFF;
4037 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4038 
4039 	if (ret_val)
4040 		goto release;
4041 
4042 	/* offset in words but we read dword */
4043 	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
4044 	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
4045 
4046 	if (ret_val)
4047 		goto release;
4048 
4049 	dword &= 0x00FFFFFF;
4050 	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
4051 
4052 	if (ret_val)
4053 		goto release;
4054 
4055 	/* Great!  Everything worked, we can now clear the cached entries. */
4056 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4057 		dev_spec->shadow_ram[i].modified = false;
4058 		dev_spec->shadow_ram[i].value = 0xFFFF;
4059 	}
4060 
4061 release:
4062 	nvm->ops.release(hw);
4063 
4064 	/* Reload the EEPROM, or else modifications will not appear
4065 	 * until after the next adapter reset.
4066 	 */
4067 	if (!ret_val) {
4068 		nvm->ops.reload(hw);
4069 		usleep_range(10000, 11000);
4070 	}
4071 
4072 out:
4073 	if (ret_val)
4074 		e_dbg("NVM update error: %d\n", ret_val);
4075 
4076 	return ret_val;
4077 }
4078 
4079 /**
4080  *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4081  *  @hw: pointer to the HW structure
4082  *
4083  *  The NVM checksum is updated by calling the generic update_nvm_checksum,
4084  *  which writes the checksum to the shadow ram.  The changes in the shadow
4085  *  ram are then committed to the EEPROM by processing each bank at a time
4086  *  checking for the modified bit and writing only the pending changes.
4087  *  After a successful commit, the shadow ram is cleared and is ready for
4088  *  future writes.
4089  **/
4090 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4091 {
4092 	struct e1000_nvm_info *nvm = &hw->nvm;
4093 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4094 	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4095 	s32 ret_val;
4096 	u16 data = 0;
4097 
4098 	ret_val = e1000e_update_nvm_checksum_generic(hw);
4099 	if (ret_val)
4100 		goto out;
4101 
4102 	if (nvm->type != e1000_nvm_flash_sw)
4103 		goto out;
4104 
4105 	nvm->ops.acquire(hw);
4106 
4107 	/* We're writing to the opposite bank so if we're on bank 1,
4108 	 * write to bank 0 etc.  We also need to erase the segment that
4109 	 * is going to be written
4110 	 */
4111 	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4112 	if (ret_val) {
4113 		e_dbg("Could not detect valid bank, assuming bank 0\n");
4114 		bank = 0;
4115 	}
4116 
4117 	if (bank == 0) {
4118 		new_bank_offset = nvm->flash_bank_size;
4119 		old_bank_offset = 0;
4120 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4121 		if (ret_val)
4122 			goto release;
4123 	} else {
4124 		old_bank_offset = nvm->flash_bank_size;
4125 		new_bank_offset = 0;
4126 		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4127 		if (ret_val)
4128 			goto release;
4129 	}
4130 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4131 		if (dev_spec->shadow_ram[i].modified) {
4132 			data = dev_spec->shadow_ram[i].value;
4133 		} else {
4134 			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4135 								old_bank_offset,
4136 								&data);
4137 			if (ret_val)
4138 				break;
4139 		}
4140 
4141 		/* If the word is 0x13, then make sure the signature bits
4142 		 * (15:14) are 11b until the commit has completed.
4143 		 * This will allow us to write 10b which indicates the
4144 		 * signature is valid.  We want to do this after the write
4145 		 * has completed so that we don't mark the segment valid
4146 		 * while the write is still in progress
4147 		 */
4148 		if (i == E1000_ICH_NVM_SIG_WORD)
4149 			data |= E1000_ICH_NVM_SIG_MASK;
4150 
4151 		/* Convert offset to bytes. */
4152 		act_offset = (i + new_bank_offset) << 1;
4153 
4154 		usleep_range(100, 200);
4155 		/* Write the bytes to the new bank. */
4156 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4157 							       act_offset,
4158 							       (u8)data);
4159 		if (ret_val)
4160 			break;
4161 
4162 		usleep_range(100, 200);
4163 		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4164 							       act_offset + 1,
4165 							       (u8)(data >> 8));
4166 		if (ret_val)
4167 			break;
4168 	}
4169 
4170 	/* Don't bother writing the segment valid bits if sector
4171 	 * programming failed.
4172 	 */
4173 	if (ret_val) {
4174 		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4175 		e_dbg("Flash commit failed.\n");
4176 		goto release;
4177 	}
4178 
4179 	/* Finally validate the new segment by setting bit 15:14
4180 	 * to 10b in word 0x13 , this can be done without an
4181 	 * erase as well since these bits are 11 to start with
4182 	 * and we need to change bit 14 to 0b
4183 	 */
4184 	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4185 	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4186 	if (ret_val)
4187 		goto release;
4188 
4189 	data &= 0xBFFF;
4190 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4191 						       act_offset * 2 + 1,
4192 						       (u8)(data >> 8));
4193 	if (ret_val)
4194 		goto release;
4195 
4196 	/* And invalidate the previously valid segment by setting
4197 	 * its signature word (0x13) high_byte to 0b. This can be
4198 	 * done without an erase because flash erase sets all bits
4199 	 * to 1's. We can write 1's to 0's without an erase
4200 	 */
4201 	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4202 	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4203 	if (ret_val)
4204 		goto release;
4205 
4206 	/* Great!  Everything worked, we can now clear the cached entries. */
4207 	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4208 		dev_spec->shadow_ram[i].modified = false;
4209 		dev_spec->shadow_ram[i].value = 0xFFFF;
4210 	}
4211 
4212 release:
4213 	nvm->ops.release(hw);
4214 
4215 	/* Reload the EEPROM, or else modifications will not appear
4216 	 * until after the next adapter reset.
4217 	 */
4218 	if (!ret_val) {
4219 		nvm->ops.reload(hw);
4220 		usleep_range(10000, 11000);
4221 	}
4222 
4223 out:
4224 	if (ret_val)
4225 		e_dbg("NVM update error: %d\n", ret_val);
4226 
4227 	return ret_val;
4228 }
4229 
4230 /**
4231  *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4232  *  @hw: pointer to the HW structure
4233  *
4234  *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4235  *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4236  *  calculated, in which case we need to calculate the checksum and set bit 6.
4237  **/
4238 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4239 {
4240 	s32 ret_val;
4241 	u16 data;
4242 	u16 word;
4243 	u16 valid_csum_mask;
4244 
4245 	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4246 	 * the checksum needs to be fixed.  This bit is an indication that
4247 	 * the NVM was prepared by OEM software and did not calculate
4248 	 * the checksum...a likely scenario.
4249 	 */
4250 	switch (hw->mac.type) {
4251 	case e1000_pch_lpt:
4252 	case e1000_pch_spt:
4253 	case e1000_pch_cnp:
4254 	case e1000_pch_tgp:
4255 	case e1000_pch_adp:
4256 	case e1000_pch_mtp:
4257 	case e1000_pch_lnp:
4258 	case e1000_pch_ptp:
4259 	case e1000_pch_nvp:
4260 		word = NVM_COMPAT;
4261 		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4262 		break;
4263 	default:
4264 		word = NVM_FUTURE_INIT_WORD1;
4265 		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4266 		break;
4267 	}
4268 
4269 	ret_val = e1000_read_nvm(hw, word, 1, &data);
4270 	if (ret_val)
4271 		return ret_val;
4272 
4273 	if (!(data & valid_csum_mask)) {
4274 		e_dbg("NVM Checksum valid bit not set\n");
4275 
4276 		if (hw->mac.type < e1000_pch_tgp) {
4277 			data |= valid_csum_mask;
4278 			ret_val = e1000_write_nvm(hw, word, 1, &data);
4279 			if (ret_val)
4280 				return ret_val;
4281 			ret_val = e1000e_update_nvm_checksum(hw);
4282 			if (ret_val)
4283 				return ret_val;
4284 		} else if (hw->mac.type == e1000_pch_tgp) {
4285 			return 0;
4286 		}
4287 	}
4288 
4289 	return e1000e_validate_nvm_checksum_generic(hw);
4290 }
4291 
4292 /**
4293  *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4294  *  @hw: pointer to the HW structure
4295  *
4296  *  To prevent malicious write/erase of the NVM, set it to be read-only
4297  *  so that the hardware ignores all write/erase cycles of the NVM via
4298  *  the flash control registers.  The shadow-ram copy of the NVM will
4299  *  still be updated, however any updates to this copy will not stick
4300  *  across driver reloads.
4301  **/
4302 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4303 {
4304 	struct e1000_nvm_info *nvm = &hw->nvm;
4305 	union ich8_flash_protected_range pr0;
4306 	union ich8_hws_flash_status hsfsts;
4307 	u32 gfpreg;
4308 
4309 	nvm->ops.acquire(hw);
4310 
4311 	gfpreg = er32flash(ICH_FLASH_GFPREG);
4312 
4313 	/* Write-protect GbE Sector of NVM */
4314 	pr0.regval = er32flash(ICH_FLASH_PR0);
4315 	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4316 	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4317 	pr0.range.wpe = true;
4318 	ew32flash(ICH_FLASH_PR0, pr0.regval);
4319 
4320 	/* Lock down a subset of GbE Flash Control Registers, e.g.
4321 	 * PR0 to prevent the write-protection from being lifted.
4322 	 * Once FLOCKDN is set, the registers protected by it cannot
4323 	 * be written until FLOCKDN is cleared by a hardware reset.
4324 	 */
4325 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4326 	hsfsts.hsf_status.flockdn = true;
4327 	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4328 
4329 	nvm->ops.release(hw);
4330 }
4331 
4332 /**
4333  *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4334  *  @hw: pointer to the HW structure
4335  *  @offset: The offset (in bytes) of the byte/word to read.
4336  *  @size: Size of data to read, 1=byte 2=word
4337  *  @data: The byte(s) to write to the NVM.
4338  *
4339  *  Writes one/two bytes to the NVM using the flash access registers.
4340  **/
4341 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4342 					  u8 size, u16 data)
4343 {
4344 	union ich8_hws_flash_status hsfsts;
4345 	union ich8_hws_flash_ctrl hsflctl;
4346 	u32 flash_linear_addr;
4347 	u32 flash_data = 0;
4348 	s32 ret_val;
4349 	u8 count = 0;
4350 
4351 	if (hw->mac.type >= e1000_pch_spt) {
4352 		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4353 			return -E1000_ERR_NVM;
4354 	} else {
4355 		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4356 			return -E1000_ERR_NVM;
4357 	}
4358 
4359 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4360 			     hw->nvm.flash_base_addr);
4361 
4362 	do {
4363 		udelay(1);
4364 		/* Steps */
4365 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4366 		if (ret_val)
4367 			break;
4368 		/* In SPT, This register is in Lan memory space, not
4369 		 * flash.  Therefore, only 32 bit access is supported
4370 		 */
4371 		if (hw->mac.type >= e1000_pch_spt)
4372 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4373 		else
4374 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4375 
4376 		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4377 		hsflctl.hsf_ctrl.fldbcount = size - 1;
4378 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4379 		/* In SPT, This register is in Lan memory space,
4380 		 * not flash.  Therefore, only 32 bit access is
4381 		 * supported
4382 		 */
4383 		if (hw->mac.type >= e1000_pch_spt)
4384 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4385 		else
4386 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4387 
4388 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4389 
4390 		if (size == 1)
4391 			flash_data = (u32)data & 0x00FF;
4392 		else
4393 			flash_data = (u32)data;
4394 
4395 		ew32flash(ICH_FLASH_FDATA0, flash_data);
4396 
4397 		/* check if FCERR is set to 1 , if set to 1, clear it
4398 		 * and try the whole sequence a few more times else done
4399 		 */
4400 		ret_val =
4401 		    e1000_flash_cycle_ich8lan(hw,
4402 					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4403 		if (!ret_val)
4404 			break;
4405 
4406 		/* If we're here, then things are most likely
4407 		 * completely hosed, but if the error condition
4408 		 * is detected, it won't hurt to give it another
4409 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4410 		 */
4411 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4412 		if (hsfsts.hsf_status.flcerr)
4413 			/* Repeat for some time before giving up. */
4414 			continue;
4415 		if (!hsfsts.hsf_status.flcdone) {
4416 			e_dbg("Timeout error - flash cycle did not complete.\n");
4417 			break;
4418 		}
4419 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4420 
4421 	return ret_val;
4422 }
4423 
4424 /**
4425 *  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4426 *  @hw: pointer to the HW structure
4427 *  @offset: The offset (in bytes) of the dwords to read.
4428 *  @data: The 4 bytes to write to the NVM.
4429 *
4430 *  Writes one/two/four bytes to the NVM using the flash access registers.
4431 **/
4432 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4433 					    u32 data)
4434 {
4435 	union ich8_hws_flash_status hsfsts;
4436 	union ich8_hws_flash_ctrl hsflctl;
4437 	u32 flash_linear_addr;
4438 	s32 ret_val;
4439 	u8 count = 0;
4440 
4441 	if (hw->mac.type >= e1000_pch_spt) {
4442 		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4443 			return -E1000_ERR_NVM;
4444 	}
4445 	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4446 			     hw->nvm.flash_base_addr);
4447 	do {
4448 		udelay(1);
4449 		/* Steps */
4450 		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4451 		if (ret_val)
4452 			break;
4453 
4454 		/* In SPT, This register is in Lan memory space, not
4455 		 * flash.  Therefore, only 32 bit access is supported
4456 		 */
4457 		if (hw->mac.type >= e1000_pch_spt)
4458 			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4459 			    >> 16;
4460 		else
4461 			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4462 
4463 		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4464 		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4465 
4466 		/* In SPT, This register is in Lan memory space,
4467 		 * not flash.  Therefore, only 32 bit access is
4468 		 * supported
4469 		 */
4470 		if (hw->mac.type >= e1000_pch_spt)
4471 			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4472 		else
4473 			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4474 
4475 		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4476 
4477 		ew32flash(ICH_FLASH_FDATA0, data);
4478 
4479 		/* check if FCERR is set to 1 , if set to 1, clear it
4480 		 * and try the whole sequence a few more times else done
4481 		 */
4482 		ret_val =
4483 		   e1000_flash_cycle_ich8lan(hw,
4484 					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4485 
4486 		if (!ret_val)
4487 			break;
4488 
4489 		/* If we're here, then things are most likely
4490 		 * completely hosed, but if the error condition
4491 		 * is detected, it won't hurt to give it another
4492 		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4493 		 */
4494 		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4495 
4496 		if (hsfsts.hsf_status.flcerr)
4497 			/* Repeat for some time before giving up. */
4498 			continue;
4499 		if (!hsfsts.hsf_status.flcdone) {
4500 			e_dbg("Timeout error - flash cycle did not complete.\n");
4501 			break;
4502 		}
4503 	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4504 
4505 	return ret_val;
4506 }
4507 
4508 /**
4509  *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4510  *  @hw: pointer to the HW structure
4511  *  @offset: The index of the byte to read.
4512  *  @data: The byte to write to the NVM.
4513  *
4514  *  Writes a single byte to the NVM using the flash access registers.
4515  **/
4516 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4517 					  u8 data)
4518 {
4519 	u16 word = (u16)data;
4520 
4521 	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4522 }
4523 
4524 /**
4525 *  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4526 *  @hw: pointer to the HW structure
4527 *  @offset: The offset of the word to write.
4528 *  @dword: The dword to write to the NVM.
4529 *
4530 *  Writes a single dword to the NVM using the flash access registers.
4531 *  Goes through a retry algorithm before giving up.
4532 **/
4533 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4534 						 u32 offset, u32 dword)
4535 {
4536 	s32 ret_val;
4537 	u16 program_retries;
4538 
4539 	/* Must convert word offset into bytes. */
4540 	offset <<= 1;
4541 	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4542 
4543 	if (!ret_val)
4544 		return ret_val;
4545 	for (program_retries = 0; program_retries < 100; program_retries++) {
4546 		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4547 		usleep_range(100, 200);
4548 		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4549 		if (!ret_val)
4550 			break;
4551 	}
4552 	if (program_retries == 100)
4553 		return -E1000_ERR_NVM;
4554 
4555 	return 0;
4556 }
4557 
4558 /**
4559  *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4560  *  @hw: pointer to the HW structure
4561  *  @offset: The offset of the byte to write.
4562  *  @byte: The byte to write to the NVM.
4563  *
4564  *  Writes a single byte to the NVM using the flash access registers.
4565  *  Goes through a retry algorithm before giving up.
4566  **/
4567 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4568 						u32 offset, u8 byte)
4569 {
4570 	s32 ret_val;
4571 	u16 program_retries;
4572 
4573 	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4574 	if (!ret_val)
4575 		return ret_val;
4576 
4577 	for (program_retries = 0; program_retries < 100; program_retries++) {
4578 		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4579 		usleep_range(100, 200);
4580 		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4581 		if (!ret_val)
4582 			break;
4583 	}
4584 	if (program_retries == 100)
4585 		return -E1000_ERR_NVM;
4586 
4587 	return 0;
4588 }
4589 
4590 /**
4591  *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4592  *  @hw: pointer to the HW structure
4593  *  @bank: 0 for first bank, 1 for second bank, etc.
4594  *
4595  *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4596  *  bank N is 4096 * N + flash_reg_addr.
4597  **/
4598 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4599 {
4600 	struct e1000_nvm_info *nvm = &hw->nvm;
4601 	union ich8_hws_flash_status hsfsts;
4602 	union ich8_hws_flash_ctrl hsflctl;
4603 	u32 flash_linear_addr;
4604 	/* bank size is in 16bit words - adjust to bytes */
4605 	u32 flash_bank_size = nvm->flash_bank_size * 2;
4606 	s32 ret_val;
4607 	s32 count = 0;
4608 	s32 j, iteration, sector_size;
4609 
4610 	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4611 
4612 	/* Determine HW Sector size: Read BERASE bits of hw flash status
4613 	 * register
4614 	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4615 	 *     consecutive sectors.  The start index for the nth Hw sector
4616 	 *     can be calculated as = bank * 4096 + n * 256
4617 	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4618 	 *     The start index for the nth Hw sector can be calculated
4619 	 *     as = bank * 4096
4620 	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4621 	 *     (ich9 only, otherwise error condition)
4622 	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4623 	 */
4624 	switch (hsfsts.hsf_status.berasesz) {
4625 	case 0:
4626 		/* Hw sector size 256 */
4627 		sector_size = ICH_FLASH_SEG_SIZE_256;
4628 		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4629 		break;
4630 	case 1:
4631 		sector_size = ICH_FLASH_SEG_SIZE_4K;
4632 		iteration = 1;
4633 		break;
4634 	case 2:
4635 		sector_size = ICH_FLASH_SEG_SIZE_8K;
4636 		iteration = 1;
4637 		break;
4638 	case 3:
4639 		sector_size = ICH_FLASH_SEG_SIZE_64K;
4640 		iteration = 1;
4641 		break;
4642 	default:
4643 		return -E1000_ERR_NVM;
4644 	}
4645 
4646 	/* Start with the base address, then add the sector offset. */
4647 	flash_linear_addr = hw->nvm.flash_base_addr;
4648 	flash_linear_addr += (bank) ? flash_bank_size : 0;
4649 
4650 	for (j = 0; j < iteration; j++) {
4651 		do {
4652 			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4653 
4654 			/* Steps */
4655 			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4656 			if (ret_val)
4657 				return ret_val;
4658 
4659 			/* Write a value 11 (block Erase) in Flash
4660 			 * Cycle field in hw flash control
4661 			 */
4662 			if (hw->mac.type >= e1000_pch_spt)
4663 				hsflctl.regval =
4664 				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4665 			else
4666 				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4667 
4668 			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4669 			if (hw->mac.type >= e1000_pch_spt)
4670 				ew32flash(ICH_FLASH_HSFSTS,
4671 					  hsflctl.regval << 16);
4672 			else
4673 				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4674 
4675 			/* Write the last 24 bits of an index within the
4676 			 * block into Flash Linear address field in Flash
4677 			 * Address.
4678 			 */
4679 			flash_linear_addr += (j * sector_size);
4680 			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4681 
4682 			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4683 			if (!ret_val)
4684 				break;
4685 
4686 			/* Check if FCERR is set to 1.  If 1,
4687 			 * clear it and try the whole sequence
4688 			 * a few more times else Done
4689 			 */
4690 			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4691 			if (hsfsts.hsf_status.flcerr)
4692 				/* repeat for some time before giving up */
4693 				continue;
4694 			else if (!hsfsts.hsf_status.flcdone)
4695 				return ret_val;
4696 		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4697 	}
4698 
4699 	return 0;
4700 }
4701 
4702 /**
4703  *  e1000_valid_led_default_ich8lan - Set the default LED settings
4704  *  @hw: pointer to the HW structure
4705  *  @data: Pointer to the LED settings
4706  *
4707  *  Reads the LED default settings from the NVM to data.  If the NVM LED
4708  *  settings is all 0's or F's, set the LED default to a valid LED default
4709  *  setting.
4710  **/
4711 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4712 {
4713 	s32 ret_val;
4714 
4715 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4716 	if (ret_val) {
4717 		e_dbg("NVM Read Error\n");
4718 		return ret_val;
4719 	}
4720 
4721 	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4722 		*data = ID_LED_DEFAULT_ICH8LAN;
4723 
4724 	return 0;
4725 }
4726 
4727 /**
4728  *  e1000_id_led_init_pchlan - store LED configurations
4729  *  @hw: pointer to the HW structure
4730  *
4731  *  PCH does not control LEDs via the LEDCTL register, rather it uses
4732  *  the PHY LED configuration register.
4733  *
4734  *  PCH also does not have an "always on" or "always off" mode which
4735  *  complicates the ID feature.  Instead of using the "on" mode to indicate
4736  *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4737  *  use "link_up" mode.  The LEDs will still ID on request if there is no
4738  *  link based on logic in e1000_led_[on|off]_pchlan().
4739  **/
4740 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4741 {
4742 	struct e1000_mac_info *mac = &hw->mac;
4743 	s32 ret_val;
4744 	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4745 	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4746 	u16 data, i, temp, shift;
4747 
4748 	/* Get default ID LED modes */
4749 	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4750 	if (ret_val)
4751 		return ret_val;
4752 
4753 	mac->ledctl_default = er32(LEDCTL);
4754 	mac->ledctl_mode1 = mac->ledctl_default;
4755 	mac->ledctl_mode2 = mac->ledctl_default;
4756 
4757 	for (i = 0; i < 4; i++) {
4758 		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4759 		shift = (i * 5);
4760 		switch (temp) {
4761 		case ID_LED_ON1_DEF2:
4762 		case ID_LED_ON1_ON2:
4763 		case ID_LED_ON1_OFF2:
4764 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4765 			mac->ledctl_mode1 |= (ledctl_on << shift);
4766 			break;
4767 		case ID_LED_OFF1_DEF2:
4768 		case ID_LED_OFF1_ON2:
4769 		case ID_LED_OFF1_OFF2:
4770 			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4771 			mac->ledctl_mode1 |= (ledctl_off << shift);
4772 			break;
4773 		default:
4774 			/* Do nothing */
4775 			break;
4776 		}
4777 		switch (temp) {
4778 		case ID_LED_DEF1_ON2:
4779 		case ID_LED_ON1_ON2:
4780 		case ID_LED_OFF1_ON2:
4781 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4782 			mac->ledctl_mode2 |= (ledctl_on << shift);
4783 			break;
4784 		case ID_LED_DEF1_OFF2:
4785 		case ID_LED_ON1_OFF2:
4786 		case ID_LED_OFF1_OFF2:
4787 			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4788 			mac->ledctl_mode2 |= (ledctl_off << shift);
4789 			break;
4790 		default:
4791 			/* Do nothing */
4792 			break;
4793 		}
4794 	}
4795 
4796 	return 0;
4797 }
4798 
4799 /**
4800  *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4801  *  @hw: pointer to the HW structure
4802  *
4803  *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4804  *  register, so the bus width is hard coded.
4805  **/
4806 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4807 {
4808 	struct e1000_bus_info *bus = &hw->bus;
4809 	s32 ret_val;
4810 
4811 	ret_val = e1000e_get_bus_info_pcie(hw);
4812 
4813 	/* ICH devices are "PCI Express"-ish.  They have
4814 	 * a configuration space, but do not contain
4815 	 * PCI Express Capability registers, so bus width
4816 	 * must be hardcoded.
4817 	 */
4818 	if (bus->width == e1000_bus_width_unknown)
4819 		bus->width = e1000_bus_width_pcie_x1;
4820 
4821 	return ret_val;
4822 }
4823 
4824 /**
4825  *  e1000_reset_hw_ich8lan - Reset the hardware
4826  *  @hw: pointer to the HW structure
4827  *
4828  *  Does a full reset of the hardware which includes a reset of the PHY and
4829  *  MAC.
4830  **/
4831 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4832 {
4833 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4834 	u16 kum_cfg;
4835 	u32 ctrl, reg;
4836 	s32 ret_val;
4837 
4838 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4839 	 * on the last TLP read/write transaction when MAC is reset.
4840 	 */
4841 	ret_val = e1000e_disable_pcie_master(hw);
4842 	if (ret_val)
4843 		e_dbg("PCI-E Master disable polling has failed.\n");
4844 
4845 	e_dbg("Masking off all interrupts\n");
4846 	ew32(IMC, 0xffffffff);
4847 
4848 	/* Disable the Transmit and Receive units.  Then delay to allow
4849 	 * any pending transactions to complete before we hit the MAC
4850 	 * with the global reset.
4851 	 */
4852 	ew32(RCTL, 0);
4853 	ew32(TCTL, E1000_TCTL_PSP);
4854 	e1e_flush();
4855 
4856 	usleep_range(10000, 11000);
4857 
4858 	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4859 	if (hw->mac.type == e1000_ich8lan) {
4860 		/* Set Tx and Rx buffer allocation to 8k apiece. */
4861 		ew32(PBA, E1000_PBA_8K);
4862 		/* Set Packet Buffer Size to 16k. */
4863 		ew32(PBS, E1000_PBS_16K);
4864 	}
4865 
4866 	if (hw->mac.type == e1000_pchlan) {
4867 		/* Save the NVM K1 bit setting */
4868 		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4869 		if (ret_val)
4870 			return ret_val;
4871 
4872 		if (kum_cfg & E1000_NVM_K1_ENABLE)
4873 			dev_spec->nvm_k1_enabled = true;
4874 		else
4875 			dev_spec->nvm_k1_enabled = false;
4876 	}
4877 
4878 	ctrl = er32(CTRL);
4879 
4880 	if (!hw->phy.ops.check_reset_block(hw)) {
4881 		/* Full-chip reset requires MAC and PHY reset at the same
4882 		 * time to make sure the interface between MAC and the
4883 		 * external PHY is reset.
4884 		 */
4885 		ctrl |= E1000_CTRL_PHY_RST;
4886 
4887 		/* Gate automatic PHY configuration by hardware on
4888 		 * non-managed 82579
4889 		 */
4890 		if ((hw->mac.type == e1000_pch2lan) &&
4891 		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4892 			e1000_gate_hw_phy_config_ich8lan(hw, true);
4893 	}
4894 	ret_val = e1000_acquire_swflag_ich8lan(hw);
4895 	e_dbg("Issuing a global reset to ich8lan\n");
4896 	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4897 	/* cannot issue a flush here because it hangs the hardware */
4898 	msleep(20);
4899 
4900 	/* Set Phy Config Counter to 50msec */
4901 	if (hw->mac.type == e1000_pch2lan) {
4902 		reg = er32(FEXTNVM3);
4903 		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4904 		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4905 		ew32(FEXTNVM3, reg);
4906 	}
4907 
4908 	if (!ret_val)
4909 		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4910 
4911 	if (ctrl & E1000_CTRL_PHY_RST) {
4912 		ret_val = hw->phy.ops.get_cfg_done(hw);
4913 		if (ret_val)
4914 			return ret_val;
4915 
4916 		ret_val = e1000_post_phy_reset_ich8lan(hw);
4917 		if (ret_val)
4918 			return ret_val;
4919 	}
4920 
4921 	/* For PCH, this write will make sure that any noise
4922 	 * will be detected as a CRC error and be dropped rather than show up
4923 	 * as a bad packet to the DMA engine.
4924 	 */
4925 	if (hw->mac.type == e1000_pchlan)
4926 		ew32(CRC_OFFSET, 0x65656565);
4927 
4928 	ew32(IMC, 0xffffffff);
4929 	er32(ICR);
4930 
4931 	reg = er32(KABGTXD);
4932 	reg |= E1000_KABGTXD_BGSQLBIAS;
4933 	ew32(KABGTXD, reg);
4934 
4935 	return 0;
4936 }
4937 
4938 /**
4939  *  e1000_init_hw_ich8lan - Initialize the hardware
4940  *  @hw: pointer to the HW structure
4941  *
4942  *  Prepares the hardware for transmit and receive by doing the following:
4943  *   - initialize hardware bits
4944  *   - initialize LED identification
4945  *   - setup receive address registers
4946  *   - setup flow control
4947  *   - setup transmit descriptors
4948  *   - clear statistics
4949  **/
4950 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4951 {
4952 	struct e1000_mac_info *mac = &hw->mac;
4953 	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4954 	s32 ret_val;
4955 	u16 i;
4956 
4957 	e1000_initialize_hw_bits_ich8lan(hw);
4958 	ret_val = hw->phy.ops.acquire(hw);
4959 	if (ret_val)
4960 		return ret_val;
4961 
4962 	ret_val = e1000_reconfigure_k1_params(hw);
4963 	hw->phy.ops.release(hw);
4964 	if (ret_val) {
4965 		e_dbg("Error failed to reconfigure K1 parameters\n");
4966 		return ret_val;
4967 	}
4968 
4969 	/* Initialize identification LED */
4970 	ret_val = mac->ops.id_led_init(hw);
4971 	/* An error is not fatal and we should not stop init due to this */
4972 	if (ret_val)
4973 		e_dbg("Error initializing identification LED\n");
4974 
4975 	/* Setup the receive address. */
4976 	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4977 
4978 	/* Zero out the Multicast HASH table */
4979 	e_dbg("Zeroing the MTA\n");
4980 	for (i = 0; i < mac->mta_reg_count; i++)
4981 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4982 
4983 	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4984 	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4985 	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4986 	 */
4987 	if (hw->phy.type == e1000_phy_82578) {
4988 		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4989 		i &= ~BM_WUC_HOST_WU_BIT;
4990 		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4991 		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4992 		if (ret_val)
4993 			return ret_val;
4994 	}
4995 
4996 	/* Setup link and flow control */
4997 	ret_val = mac->ops.setup_link(hw);
4998 
4999 	/* Set the transmit descriptor write-back policy for both queues */
5000 	txdctl = er32(TXDCTL(0));
5001 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5002 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5003 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5004 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5005 	ew32(TXDCTL(0), txdctl);
5006 	txdctl = er32(TXDCTL(1));
5007 	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
5008 		  E1000_TXDCTL_FULL_TX_DESC_WB);
5009 	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
5010 		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
5011 	ew32(TXDCTL(1), txdctl);
5012 
5013 	/* ICH8 has opposite polarity of no_snoop bits.
5014 	 * By default, we should use snoop behavior.
5015 	 */
5016 	if (mac->type == e1000_ich8lan)
5017 		snoop = PCIE_ICH8_SNOOP_ALL;
5018 	else
5019 		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
5020 	e1000e_set_pcie_no_snoop(hw, snoop);
5021 
5022 	/* Enable workaround for packet loss issue on TGP PCH
5023 	 * Do not gate DMA clock from the modPHY block
5024 	 */
5025 	if (mac->type >= e1000_pch_tgp) {
5026 		fflt_dbg = er32(FFLT_DBG);
5027 		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
5028 		ew32(FFLT_DBG, fflt_dbg);
5029 	}
5030 
5031 	ctrl_ext = er32(CTRL_EXT);
5032 	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
5033 	ew32(CTRL_EXT, ctrl_ext);
5034 
5035 	/* Clear all of the statistics registers (clear on read).  It is
5036 	 * important that we do this after we have tried to establish link
5037 	 * because the symbol error count will increment wildly if there
5038 	 * is no link.
5039 	 */
5040 	e1000_clear_hw_cntrs_ich8lan(hw);
5041 
5042 	return ret_val;
5043 }
5044 
5045 /**
5046  *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
5047  *  @hw: pointer to the HW structure
5048  *
5049  *  Sets/Clears required hardware bits necessary for correctly setting up the
5050  *  hardware for transmit and receive.
5051  **/
5052 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
5053 {
5054 	u32 reg;
5055 
5056 	/* Extended Device Control */
5057 	reg = er32(CTRL_EXT);
5058 	reg |= BIT(22);
5059 	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
5060 	if (hw->mac.type >= e1000_pchlan)
5061 		reg |= E1000_CTRL_EXT_PHYPDEN;
5062 	ew32(CTRL_EXT, reg);
5063 
5064 	/* Transmit Descriptor Control 0 */
5065 	reg = er32(TXDCTL(0));
5066 	reg |= BIT(22);
5067 	ew32(TXDCTL(0), reg);
5068 
5069 	/* Transmit Descriptor Control 1 */
5070 	reg = er32(TXDCTL(1));
5071 	reg |= BIT(22);
5072 	ew32(TXDCTL(1), reg);
5073 
5074 	/* Transmit Arbitration Control 0 */
5075 	reg = er32(TARC(0));
5076 	if (hw->mac.type == e1000_ich8lan)
5077 		reg |= BIT(28) | BIT(29);
5078 	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5079 	ew32(TARC(0), reg);
5080 
5081 	/* Transmit Arbitration Control 1 */
5082 	reg = er32(TARC(1));
5083 	if (er32(TCTL) & E1000_TCTL_MULR)
5084 		reg &= ~BIT(28);
5085 	else
5086 		reg |= BIT(28);
5087 	reg |= BIT(24) | BIT(26) | BIT(30);
5088 	ew32(TARC(1), reg);
5089 
5090 	/* Device Status */
5091 	if (hw->mac.type == e1000_ich8lan) {
5092 		reg = er32(STATUS);
5093 		reg &= ~BIT(31);
5094 		ew32(STATUS, reg);
5095 	}
5096 
5097 	/* work-around descriptor data corruption issue during nfs v2 udp
5098 	 * traffic, just disable the nfs filtering capability
5099 	 */
5100 	reg = er32(RFCTL);
5101 	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5102 
5103 	/* Disable IPv6 extension header parsing because some malformed
5104 	 * IPv6 headers can hang the Rx.
5105 	 */
5106 	if (hw->mac.type == e1000_ich8lan)
5107 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5108 	ew32(RFCTL, reg);
5109 
5110 	/* Enable ECC on Lynxpoint */
5111 	if (hw->mac.type >= e1000_pch_lpt) {
5112 		reg = er32(PBECCSTS);
5113 		reg |= E1000_PBECCSTS_ECC_ENABLE;
5114 		ew32(PBECCSTS, reg);
5115 
5116 		reg = er32(CTRL);
5117 		reg |= E1000_CTRL_MEHE;
5118 		ew32(CTRL, reg);
5119 	}
5120 }
5121 
5122 /**
5123  *  e1000_setup_link_ich8lan - Setup flow control and link settings
5124  *  @hw: pointer to the HW structure
5125  *
5126  *  Determines which flow control settings to use, then configures flow
5127  *  control.  Calls the appropriate media-specific link configuration
5128  *  function.  Assuming the adapter has a valid link partner, a valid link
5129  *  should be established.  Assumes the hardware has previously been reset
5130  *  and the transmitter and receiver are not enabled.
5131  **/
5132 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5133 {
5134 	s32 ret_val;
5135 
5136 	if (hw->phy.ops.check_reset_block(hw))
5137 		return 0;
5138 
5139 	/* ICH parts do not have a word in the NVM to determine
5140 	 * the default flow control setting, so we explicitly
5141 	 * set it to full.
5142 	 */
5143 	if (hw->fc.requested_mode == e1000_fc_default) {
5144 		/* Workaround h/w hang when Tx flow control enabled */
5145 		if (hw->mac.type == e1000_pchlan)
5146 			hw->fc.requested_mode = e1000_fc_rx_pause;
5147 		else
5148 			hw->fc.requested_mode = e1000_fc_full;
5149 	}
5150 
5151 	/* Save off the requested flow control mode for use later.  Depending
5152 	 * on the link partner's capabilities, we may or may not use this mode.
5153 	 */
5154 	hw->fc.current_mode = hw->fc.requested_mode;
5155 
5156 	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5157 
5158 	/* Continue to configure the copper link. */
5159 	ret_val = hw->mac.ops.setup_physical_interface(hw);
5160 	if (ret_val)
5161 		return ret_val;
5162 
5163 	ew32(FCTTV, hw->fc.pause_time);
5164 	if ((hw->phy.type == e1000_phy_82578) ||
5165 	    (hw->phy.type == e1000_phy_82579) ||
5166 	    (hw->phy.type == e1000_phy_i217) ||
5167 	    (hw->phy.type == e1000_phy_82577)) {
5168 		ew32(FCRTV_PCH, hw->fc.refresh_time);
5169 
5170 		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5171 				   hw->fc.pause_time);
5172 		if (ret_val)
5173 			return ret_val;
5174 	}
5175 
5176 	return e1000e_set_fc_watermarks(hw);
5177 }
5178 
5179 /**
5180  *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5181  *  @hw: pointer to the HW structure
5182  *
5183  *  Configures the kumeran interface to the PHY to wait the appropriate time
5184  *  when polling the PHY, then call the generic setup_copper_link to finish
5185  *  configuring the copper link.
5186  **/
5187 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5188 {
5189 	u32 ctrl;
5190 	s32 ret_val;
5191 	u16 reg_data;
5192 
5193 	ctrl = er32(CTRL);
5194 	ctrl |= E1000_CTRL_SLU;
5195 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5196 	ew32(CTRL, ctrl);
5197 
5198 	/* Set the mac to wait the maximum time between each iteration
5199 	 * and increase the max iterations when polling the phy;
5200 	 * this fixes erroneous timeouts at 10Mbps.
5201 	 */
5202 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5203 	if (ret_val)
5204 		return ret_val;
5205 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5206 				       &reg_data);
5207 	if (ret_val)
5208 		return ret_val;
5209 	reg_data |= 0x3F;
5210 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5211 					reg_data);
5212 	if (ret_val)
5213 		return ret_val;
5214 
5215 	switch (hw->phy.type) {
5216 	case e1000_phy_igp_3:
5217 		ret_val = e1000e_copper_link_setup_igp(hw);
5218 		if (ret_val)
5219 			return ret_val;
5220 		break;
5221 	case e1000_phy_bm:
5222 	case e1000_phy_82578:
5223 		ret_val = e1000e_copper_link_setup_m88(hw);
5224 		if (ret_val)
5225 			return ret_val;
5226 		break;
5227 	case e1000_phy_82577:
5228 	case e1000_phy_82579:
5229 		ret_val = e1000_copper_link_setup_82577(hw);
5230 		if (ret_val)
5231 			return ret_val;
5232 		break;
5233 	case e1000_phy_ife:
5234 		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5235 		if (ret_val)
5236 			return ret_val;
5237 
5238 		reg_data &= ~IFE_PMC_AUTO_MDIX;
5239 
5240 		switch (hw->phy.mdix) {
5241 		case 1:
5242 			reg_data &= ~IFE_PMC_FORCE_MDIX;
5243 			break;
5244 		case 2:
5245 			reg_data |= IFE_PMC_FORCE_MDIX;
5246 			break;
5247 		case 0:
5248 		default:
5249 			reg_data |= IFE_PMC_AUTO_MDIX;
5250 			break;
5251 		}
5252 		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5253 		if (ret_val)
5254 			return ret_val;
5255 		break;
5256 	default:
5257 		break;
5258 	}
5259 
5260 	return e1000e_setup_copper_link(hw);
5261 }
5262 
5263 /**
5264  *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5265  *  @hw: pointer to the HW structure
5266  *
5267  *  Calls the PHY specific link setup function and then calls the
5268  *  generic setup_copper_link to finish configuring the link for
5269  *  Lynxpoint PCH devices
5270  **/
5271 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5272 {
5273 	u32 ctrl;
5274 	s32 ret_val;
5275 
5276 	ctrl = er32(CTRL);
5277 	ctrl |= E1000_CTRL_SLU;
5278 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5279 	ew32(CTRL, ctrl);
5280 
5281 	ret_val = e1000_copper_link_setup_82577(hw);
5282 	if (ret_val)
5283 		return ret_val;
5284 
5285 	return e1000e_setup_copper_link(hw);
5286 }
5287 
5288 /**
5289  *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5290  *  @hw: pointer to the HW structure
5291  *  @speed: pointer to store current link speed
5292  *  @duplex: pointer to store the current link duplex
5293  *
5294  *  Calls the generic get_speed_and_duplex to retrieve the current link
5295  *  information and then calls the Kumeran lock loss workaround for links at
5296  *  gigabit speeds.
5297  **/
5298 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5299 					  u16 *duplex)
5300 {
5301 	s32 ret_val;
5302 
5303 	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5304 	if (ret_val)
5305 		return ret_val;
5306 
5307 	if ((hw->mac.type == e1000_ich8lan) &&
5308 	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5309 		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5310 	}
5311 
5312 	return ret_val;
5313 }
5314 
5315 /**
5316  *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5317  *  @hw: pointer to the HW structure
5318  *
5319  *  Work-around for 82566 Kumeran PCS lock loss:
5320  *  On link status change (i.e. PCI reset, speed change) and link is up and
5321  *  speed is gigabit-
5322  *    0) if workaround is optionally disabled do nothing
5323  *    1) wait 1ms for Kumeran link to come up
5324  *    2) check Kumeran Diagnostic register PCS lock loss bit
5325  *    3) if not set the link is locked (all is good), otherwise...
5326  *    4) reset the PHY
5327  *    5) repeat up to 10 times
5328  *  Note: this is only called for IGP3 copper when speed is 1gb.
5329  **/
5330 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5331 {
5332 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5333 	u32 phy_ctrl;
5334 	s32 ret_val;
5335 	u16 i, data;
5336 	bool link;
5337 
5338 	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5339 		return 0;
5340 
5341 	/* Make sure link is up before proceeding.  If not just return.
5342 	 * Attempting this while link is negotiating fouled up link
5343 	 * stability
5344 	 */
5345 	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5346 	if (!link)
5347 		return 0;
5348 
5349 	for (i = 0; i < 10; i++) {
5350 		/* read once to clear */
5351 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5352 		if (ret_val)
5353 			return ret_val;
5354 		/* and again to get new status */
5355 		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5356 		if (ret_val)
5357 			return ret_val;
5358 
5359 		/* check for PCS lock */
5360 		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5361 			return 0;
5362 
5363 		/* Issue PHY reset */
5364 		e1000_phy_hw_reset(hw);
5365 		mdelay(5);
5366 	}
5367 	/* Disable GigE link negotiation */
5368 	phy_ctrl = er32(PHY_CTRL);
5369 	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5370 		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5371 	ew32(PHY_CTRL, phy_ctrl);
5372 
5373 	/* Call gig speed drop workaround on Gig disable before accessing
5374 	 * any PHY registers
5375 	 */
5376 	e1000e_gig_downshift_workaround_ich8lan(hw);
5377 
5378 	/* unable to acquire PCS lock */
5379 	return -E1000_ERR_PHY;
5380 }
5381 
5382 /**
5383  *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5384  *  @hw: pointer to the HW structure
5385  *  @state: boolean value used to set the current Kumeran workaround state
5386  *
5387  *  If ICH8, set the current Kumeran workaround state (enabled - true
5388  *  /disabled - false).
5389  **/
5390 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5391 						  bool state)
5392 {
5393 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5394 
5395 	if (hw->mac.type != e1000_ich8lan) {
5396 		e_dbg("Workaround applies to ICH8 only.\n");
5397 		return;
5398 	}
5399 
5400 	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5401 }
5402 
5403 /**
5404  *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5405  *  @hw: pointer to the HW structure
5406  *
5407  *  Workaround for 82566 power-down on D3 entry:
5408  *    1) disable gigabit link
5409  *    2) write VR power-down enable
5410  *    3) read it back
5411  *  Continue if successful, else issue LCD reset and repeat
5412  **/
5413 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5414 {
5415 	u32 reg;
5416 	u16 data;
5417 	u8 retry = 0;
5418 
5419 	if (hw->phy.type != e1000_phy_igp_3)
5420 		return;
5421 
5422 	/* Try the workaround twice (if needed) */
5423 	do {
5424 		/* Disable link */
5425 		reg = er32(PHY_CTRL);
5426 		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5427 			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5428 		ew32(PHY_CTRL, reg);
5429 
5430 		/* Call gig speed drop workaround on Gig disable before
5431 		 * accessing any PHY registers
5432 		 */
5433 		if (hw->mac.type == e1000_ich8lan)
5434 			e1000e_gig_downshift_workaround_ich8lan(hw);
5435 
5436 		/* Write VR power-down enable */
5437 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5438 		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5439 		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5440 
5441 		/* Read it back and test */
5442 		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5443 		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5444 		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5445 			break;
5446 
5447 		/* Issue PHY reset and repeat at most one more time */
5448 		reg = er32(CTRL);
5449 		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5450 		retry++;
5451 	} while (retry);
5452 }
5453 
5454 /**
5455  *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5456  *  @hw: pointer to the HW structure
5457  *
5458  *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5459  *  LPLU, Gig disable, MDIC PHY reset):
5460  *    1) Set Kumeran Near-end loopback
5461  *    2) Clear Kumeran Near-end loopback
5462  *  Should only be called for ICH8[m] devices with any 1G Phy.
5463  **/
5464 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5465 {
5466 	s32 ret_val;
5467 	u16 reg_data;
5468 
5469 	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5470 		return;
5471 
5472 	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5473 				       &reg_data);
5474 	if (ret_val)
5475 		return;
5476 	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5477 	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5478 					reg_data);
5479 	if (ret_val)
5480 		return;
5481 	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5482 	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5483 }
5484 
5485 /**
5486  *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5487  *  @hw: pointer to the HW structure
5488  *
5489  *  During S0 to Sx transition, it is possible the link remains at gig
5490  *  instead of negotiating to a lower speed.  Before going to Sx, set
5491  *  'Gig Disable' to force link speed negotiation to a lower speed based on
5492  *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5493  *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5494  *  needs to be written.
5495  *  Parts that support (and are linked to a partner which support) EEE in
5496  *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5497  *  than 10Mbps w/o EEE.
5498  **/
5499 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5500 {
5501 	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5502 	u32 phy_ctrl;
5503 	s32 ret_val;
5504 
5505 	phy_ctrl = er32(PHY_CTRL);
5506 	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5507 
5508 	if (hw->phy.type == e1000_phy_i217) {
5509 		u16 phy_reg, device_id = hw->adapter->pdev->device;
5510 
5511 		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5512 		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5513 		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5514 		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5515 		    (hw->mac.type >= e1000_pch_spt)) {
5516 			u32 fextnvm6 = er32(FEXTNVM6);
5517 
5518 			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5519 		}
5520 
5521 		ret_val = hw->phy.ops.acquire(hw);
5522 		if (ret_val)
5523 			goto out;
5524 
5525 		if (!dev_spec->eee_disable) {
5526 			u16 eee_advert;
5527 
5528 			ret_val =
5529 			    e1000_read_emi_reg_locked(hw,
5530 						      I217_EEE_ADVERTISEMENT,
5531 						      &eee_advert);
5532 			if (ret_val)
5533 				goto release;
5534 
5535 			/* Disable LPLU if both link partners support 100BaseT
5536 			 * EEE and 100Full is advertised on both ends of the
5537 			 * link, and enable Auto Enable LPI since there will
5538 			 * be no driver to enable LPI while in Sx.
5539 			 */
5540 			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5541 			    (dev_spec->eee_lp_ability &
5542 			     I82579_EEE_100_SUPPORTED) &&
5543 			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5544 				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5545 					      E1000_PHY_CTRL_NOND0A_LPLU);
5546 
5547 				/* Set Auto Enable LPI after link up */
5548 				e1e_rphy_locked(hw,
5549 						I217_LPI_GPIO_CTRL, &phy_reg);
5550 				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5551 				e1e_wphy_locked(hw,
5552 						I217_LPI_GPIO_CTRL, phy_reg);
5553 			}
5554 		}
5555 
5556 		/* For i217 Intel Rapid Start Technology support,
5557 		 * when the system is going into Sx and no manageability engine
5558 		 * is present, the driver must configure proxy to reset only on
5559 		 * power good.  LPI (Low Power Idle) state must also reset only
5560 		 * on power good, as well as the MTA (Multicast table array).
5561 		 * The SMBus release must also be disabled on LCD reset.
5562 		 */
5563 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5564 			/* Enable proxy to reset only on power good. */
5565 			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5566 			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5567 			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5568 
5569 			/* Set bit enable LPI (EEE) to reset only on
5570 			 * power good.
5571 			 */
5572 			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5573 			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5574 			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5575 
5576 			/* Disable the SMB release on LCD reset. */
5577 			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5578 			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5579 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5580 		}
5581 
5582 		/* Enable MTA to reset for Intel Rapid Start Technology
5583 		 * Support
5584 		 */
5585 		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5586 		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5587 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5588 
5589 release:
5590 		hw->phy.ops.release(hw);
5591 	}
5592 out:
5593 	ew32(PHY_CTRL, phy_ctrl);
5594 
5595 	if (hw->mac.type == e1000_ich8lan)
5596 		e1000e_gig_downshift_workaround_ich8lan(hw);
5597 
5598 	if (hw->mac.type >= e1000_pchlan) {
5599 		e1000_oem_bits_config_ich8lan(hw, false);
5600 
5601 		/* Reset PHY to activate OEM bits on 82577/8 */
5602 		if (hw->mac.type == e1000_pchlan)
5603 			e1000e_phy_hw_reset_generic(hw);
5604 
5605 		ret_val = hw->phy.ops.acquire(hw);
5606 		if (ret_val)
5607 			return;
5608 		e1000_write_smbus_addr(hw);
5609 		hw->phy.ops.release(hw);
5610 	}
5611 }
5612 
5613 /**
5614  *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5615  *  @hw: pointer to the HW structure
5616  *
5617  *  During Sx to S0 transitions on non-managed devices or managed devices
5618  *  on which PHY resets are not blocked, if the PHY registers cannot be
5619  *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5620  *  the PHY.
5621  *  On i217, setup Intel Rapid Start Technology.
5622  **/
5623 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5624 {
5625 	s32 ret_val;
5626 
5627 	if (hw->mac.type < e1000_pch2lan)
5628 		return;
5629 
5630 	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5631 	if (ret_val) {
5632 		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5633 		return;
5634 	}
5635 
5636 	/* For i217 Intel Rapid Start Technology support when the system
5637 	 * is transitioning from Sx and no manageability engine is present
5638 	 * configure SMBus to restore on reset, disable proxy, and enable
5639 	 * the reset on MTA (Multicast table array).
5640 	 */
5641 	if (hw->phy.type == e1000_phy_i217) {
5642 		u16 phy_reg;
5643 
5644 		ret_val = hw->phy.ops.acquire(hw);
5645 		if (ret_val) {
5646 			e_dbg("Failed to setup iRST\n");
5647 			return;
5648 		}
5649 
5650 		/* Clear Auto Enable LPI after link up */
5651 		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5652 		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5653 		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5654 
5655 		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5656 			/* Restore clear on SMB if no manageability engine
5657 			 * is present
5658 			 */
5659 			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5660 			if (ret_val)
5661 				goto release;
5662 			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5663 			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5664 
5665 			/* Disable Proxy */
5666 			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5667 		}
5668 		/* Enable reset on MTA */
5669 		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5670 		if (ret_val)
5671 			goto release;
5672 		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5673 		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5674 release:
5675 		if (ret_val)
5676 			e_dbg("Error %d in resume workarounds\n", ret_val);
5677 		hw->phy.ops.release(hw);
5678 	}
5679 }
5680 
5681 /**
5682  *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5683  *  @hw: pointer to the HW structure
5684  *
5685  *  Return the LED back to the default configuration.
5686  **/
5687 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5688 {
5689 	if (hw->phy.type == e1000_phy_ife)
5690 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5691 
5692 	ew32(LEDCTL, hw->mac.ledctl_default);
5693 	return 0;
5694 }
5695 
5696 /**
5697  *  e1000_led_on_ich8lan - Turn LEDs on
5698  *  @hw: pointer to the HW structure
5699  *
5700  *  Turn on the LEDs.
5701  **/
5702 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5703 {
5704 	if (hw->phy.type == e1000_phy_ife)
5705 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5706 				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5707 
5708 	ew32(LEDCTL, hw->mac.ledctl_mode2);
5709 	return 0;
5710 }
5711 
5712 /**
5713  *  e1000_led_off_ich8lan - Turn LEDs off
5714  *  @hw: pointer to the HW structure
5715  *
5716  *  Turn off the LEDs.
5717  **/
5718 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5719 {
5720 	if (hw->phy.type == e1000_phy_ife)
5721 		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5722 				(IFE_PSCL_PROBE_MODE |
5723 				 IFE_PSCL_PROBE_LEDS_OFF));
5724 
5725 	ew32(LEDCTL, hw->mac.ledctl_mode1);
5726 	return 0;
5727 }
5728 
5729 /**
5730  *  e1000_setup_led_pchlan - Configures SW controllable LED
5731  *  @hw: pointer to the HW structure
5732  *
5733  *  This prepares the SW controllable LED for use.
5734  **/
5735 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5736 {
5737 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5738 }
5739 
5740 /**
5741  *  e1000_cleanup_led_pchlan - Restore the default LED operation
5742  *  @hw: pointer to the HW structure
5743  *
5744  *  Return the LED back to the default configuration.
5745  **/
5746 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5747 {
5748 	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5749 }
5750 
5751 /**
5752  *  e1000_led_on_pchlan - Turn LEDs on
5753  *  @hw: pointer to the HW structure
5754  *
5755  *  Turn on the LEDs.
5756  **/
5757 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5758 {
5759 	u16 data = (u16)hw->mac.ledctl_mode2;
5760 	u32 i, led;
5761 
5762 	/* If no link, then turn LED on by setting the invert bit
5763 	 * for each LED that's mode is "link_up" in ledctl_mode2.
5764 	 */
5765 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5766 		for (i = 0; i < 3; i++) {
5767 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5768 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5769 			    E1000_LEDCTL_MODE_LINK_UP)
5770 				continue;
5771 			if (led & E1000_PHY_LED0_IVRT)
5772 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5773 			else
5774 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5775 		}
5776 	}
5777 
5778 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5779 }
5780 
5781 /**
5782  *  e1000_led_off_pchlan - Turn LEDs off
5783  *  @hw: pointer to the HW structure
5784  *
5785  *  Turn off the LEDs.
5786  **/
5787 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5788 {
5789 	u16 data = (u16)hw->mac.ledctl_mode1;
5790 	u32 i, led;
5791 
5792 	/* If no link, then turn LED off by clearing the invert bit
5793 	 * for each LED that's mode is "link_up" in ledctl_mode1.
5794 	 */
5795 	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5796 		for (i = 0; i < 3; i++) {
5797 			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5798 			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5799 			    E1000_LEDCTL_MODE_LINK_UP)
5800 				continue;
5801 			if (led & E1000_PHY_LED0_IVRT)
5802 				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5803 			else
5804 				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5805 		}
5806 	}
5807 
5808 	return e1e_wphy(hw, HV_LED_CONFIG, data);
5809 }
5810 
5811 /**
5812  *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5813  *  @hw: pointer to the HW structure
5814  *
5815  *  Read appropriate register for the config done bit for completion status
5816  *  and configure the PHY through s/w for EEPROM-less parts.
5817  *
5818  *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5819  *  config done bit, so only an error is logged and continues.  If we were
5820  *  to return with error, EEPROM-less silicon would not be able to be reset
5821  *  or change link.
5822  **/
5823 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5824 {
5825 	s32 ret_val = 0;
5826 	u32 bank = 0;
5827 	u32 status;
5828 
5829 	e1000e_get_cfg_done_generic(hw);
5830 
5831 	/* Wait for indication from h/w that it has completed basic config */
5832 	if (hw->mac.type >= e1000_ich10lan) {
5833 		e1000_lan_init_done_ich8lan(hw);
5834 	} else {
5835 		ret_val = e1000e_get_auto_rd_done(hw);
5836 		if (ret_val) {
5837 			/* When auto config read does not complete, do not
5838 			 * return with an error. This can happen in situations
5839 			 * where there is no eeprom and prevents getting link.
5840 			 */
5841 			e_dbg("Auto Read Done did not complete\n");
5842 			ret_val = 0;
5843 		}
5844 	}
5845 
5846 	/* Clear PHY Reset Asserted bit */
5847 	status = er32(STATUS);
5848 	if (status & E1000_STATUS_PHYRA)
5849 		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5850 	else
5851 		e_dbg("PHY Reset Asserted not set - needs delay\n");
5852 
5853 	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5854 	if (hw->mac.type <= e1000_ich9lan) {
5855 		if (!(er32(EECD) & E1000_EECD_PRES) &&
5856 		    (hw->phy.type == e1000_phy_igp_3)) {
5857 			e1000e_phy_init_script_igp3(hw);
5858 		}
5859 	} else {
5860 		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5861 			/* Maybe we should do a basic PHY config */
5862 			e_dbg("EEPROM not present\n");
5863 			ret_val = -E1000_ERR_CONFIG;
5864 		}
5865 	}
5866 
5867 	return ret_val;
5868 }
5869 
5870 /**
5871  * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5872  * @hw: pointer to the HW structure
5873  *
5874  * In the case of a PHY power down to save power, or to turn off link during a
5875  * driver unload, or wake on lan is not enabled, remove the link.
5876  **/
5877 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5878 {
5879 	/* If the management interface is not enabled, then power down */
5880 	if (!(hw->mac.ops.check_mng_mode(hw) ||
5881 	      hw->phy.ops.check_reset_block(hw)))
5882 		e1000_power_down_phy_copper(hw);
5883 }
5884 
5885 /**
5886  *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5887  *  @hw: pointer to the HW structure
5888  *
5889  *  Clears hardware counters specific to the silicon family and calls
5890  *  clear_hw_cntrs_generic to clear all general purpose counters.
5891  **/
5892 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5893 {
5894 	u16 phy_data;
5895 	s32 ret_val;
5896 
5897 	e1000e_clear_hw_cntrs_base(hw);
5898 
5899 	er32(ALGNERRC);
5900 	er32(RXERRC);
5901 	er32(TNCRS);
5902 	er32(CEXTERR);
5903 	er32(TSCTC);
5904 	er32(TSCTFC);
5905 
5906 	er32(MGTPRC);
5907 	er32(MGTPDC);
5908 	er32(MGTPTC);
5909 
5910 	er32(IAC);
5911 	er32(ICRXOC);
5912 
5913 	/* Clear PHY statistics registers */
5914 	if ((hw->phy.type == e1000_phy_82578) ||
5915 	    (hw->phy.type == e1000_phy_82579) ||
5916 	    (hw->phy.type == e1000_phy_i217) ||
5917 	    (hw->phy.type == e1000_phy_82577)) {
5918 		ret_val = hw->phy.ops.acquire(hw);
5919 		if (ret_val)
5920 			return;
5921 		ret_val = hw->phy.ops.set_page(hw,
5922 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5923 		if (ret_val)
5924 			goto release;
5925 		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5926 		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5927 		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5928 		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5929 		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5930 		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5931 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5932 		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5933 		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5934 		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5935 		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5936 		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5937 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5938 		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5939 release:
5940 		hw->phy.ops.release(hw);
5941 	}
5942 }
5943 
5944 static const struct e1000_mac_operations ich8_mac_ops = {
5945 	/* check_mng_mode dependent on mac type */
5946 	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5947 	/* cleanup_led dependent on mac type */
5948 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5949 	.get_bus_info		= e1000_get_bus_info_ich8lan,
5950 	.set_lan_id		= e1000_set_lan_id_single_port,
5951 	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5952 	/* led_on dependent on mac type */
5953 	/* led_off dependent on mac type */
5954 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5955 	.reset_hw		= e1000_reset_hw_ich8lan,
5956 	.init_hw		= e1000_init_hw_ich8lan,
5957 	.setup_link		= e1000_setup_link_ich8lan,
5958 	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5959 	/* id_led_init dependent on mac type */
5960 	.config_collision_dist	= e1000e_config_collision_dist_generic,
5961 	.rar_set		= e1000e_rar_set_generic,
5962 	.rar_get_count		= e1000e_rar_get_count_generic,
5963 };
5964 
5965 static const struct e1000_phy_operations ich8_phy_ops = {
5966 	.acquire		= e1000_acquire_swflag_ich8lan,
5967 	.check_reset_block	= e1000_check_reset_block_ich8lan,
5968 	.commit			= NULL,
5969 	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5970 	.get_cable_length	= e1000e_get_cable_length_igp_2,
5971 	.read_reg		= e1000e_read_phy_reg_igp,
5972 	.release		= e1000_release_swflag_ich8lan,
5973 	.reset			= e1000_phy_hw_reset_ich8lan,
5974 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5975 	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5976 	.write_reg		= e1000e_write_phy_reg_igp,
5977 };
5978 
5979 static const struct e1000_nvm_operations ich8_nvm_ops = {
5980 	.acquire		= e1000_acquire_nvm_ich8lan,
5981 	.read			= e1000_read_nvm_ich8lan,
5982 	.release		= e1000_release_nvm_ich8lan,
5983 	.reload			= e1000e_reload_nvm_generic,
5984 	.update			= e1000_update_nvm_checksum_ich8lan,
5985 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5986 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5987 	.write			= e1000_write_nvm_ich8lan,
5988 };
5989 
5990 static const struct e1000_nvm_operations spt_nvm_ops = {
5991 	.acquire		= e1000_acquire_nvm_ich8lan,
5992 	.release		= e1000_release_nvm_ich8lan,
5993 	.read			= e1000_read_nvm_spt,
5994 	.update			= e1000_update_nvm_checksum_spt,
5995 	.reload			= e1000e_reload_nvm_generic,
5996 	.valid_led_default	= e1000_valid_led_default_ich8lan,
5997 	.validate		= e1000_validate_nvm_checksum_ich8lan,
5998 	.write			= e1000_write_nvm_ich8lan,
5999 };
6000 
6001 const struct e1000_info e1000_ich8_info = {
6002 	.mac			= e1000_ich8lan,
6003 	.flags			= FLAG_HAS_WOL
6004 				  | FLAG_IS_ICH
6005 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6006 				  | FLAG_HAS_AMT
6007 				  | FLAG_HAS_FLASH
6008 				  | FLAG_APME_IN_WUC,
6009 	.pba			= 8,
6010 	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
6011 	.get_variants		= e1000_get_variants_ich8lan,
6012 	.mac_ops		= &ich8_mac_ops,
6013 	.phy_ops		= &ich8_phy_ops,
6014 	.nvm_ops		= &ich8_nvm_ops,
6015 };
6016 
6017 const struct e1000_info e1000_ich9_info = {
6018 	.mac			= e1000_ich9lan,
6019 	.flags			= FLAG_HAS_JUMBO_FRAMES
6020 				  | FLAG_IS_ICH
6021 				  | FLAG_HAS_WOL
6022 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6023 				  | FLAG_HAS_AMT
6024 				  | FLAG_HAS_FLASH
6025 				  | FLAG_APME_IN_WUC,
6026 	.pba			= 18,
6027 	.max_hw_frame_size	= DEFAULT_JUMBO,
6028 	.get_variants		= e1000_get_variants_ich8lan,
6029 	.mac_ops		= &ich8_mac_ops,
6030 	.phy_ops		= &ich8_phy_ops,
6031 	.nvm_ops		= &ich8_nvm_ops,
6032 };
6033 
6034 const struct e1000_info e1000_ich10_info = {
6035 	.mac			= e1000_ich10lan,
6036 	.flags			= FLAG_HAS_JUMBO_FRAMES
6037 				  | FLAG_IS_ICH
6038 				  | FLAG_HAS_WOL
6039 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6040 				  | FLAG_HAS_AMT
6041 				  | FLAG_HAS_FLASH
6042 				  | FLAG_APME_IN_WUC,
6043 	.pba			= 18,
6044 	.max_hw_frame_size	= DEFAULT_JUMBO,
6045 	.get_variants		= e1000_get_variants_ich8lan,
6046 	.mac_ops		= &ich8_mac_ops,
6047 	.phy_ops		= &ich8_phy_ops,
6048 	.nvm_ops		= &ich8_nvm_ops,
6049 };
6050 
6051 const struct e1000_info e1000_pch_info = {
6052 	.mac			= e1000_pchlan,
6053 	.flags			= FLAG_IS_ICH
6054 				  | FLAG_HAS_WOL
6055 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6056 				  | FLAG_HAS_AMT
6057 				  | FLAG_HAS_FLASH
6058 				  | FLAG_HAS_JUMBO_FRAMES
6059 				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
6060 				  | FLAG_APME_IN_WUC,
6061 	.flags2			= FLAG2_HAS_PHY_STATS,
6062 	.pba			= 26,
6063 	.max_hw_frame_size	= 4096,
6064 	.get_variants		= e1000_get_variants_ich8lan,
6065 	.mac_ops		= &ich8_mac_ops,
6066 	.phy_ops		= &ich8_phy_ops,
6067 	.nvm_ops		= &ich8_nvm_ops,
6068 };
6069 
6070 const struct e1000_info e1000_pch2_info = {
6071 	.mac			= e1000_pch2lan,
6072 	.flags			= FLAG_IS_ICH
6073 				  | FLAG_HAS_WOL
6074 				  | FLAG_HAS_HW_TIMESTAMP
6075 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6076 				  | FLAG_HAS_AMT
6077 				  | FLAG_HAS_FLASH
6078 				  | FLAG_HAS_JUMBO_FRAMES
6079 				  | FLAG_APME_IN_WUC,
6080 	.flags2			= FLAG2_HAS_PHY_STATS
6081 				  | FLAG2_HAS_EEE
6082 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6083 	.pba			= 26,
6084 	.max_hw_frame_size	= 9022,
6085 	.get_variants		= e1000_get_variants_ich8lan,
6086 	.mac_ops		= &ich8_mac_ops,
6087 	.phy_ops		= &ich8_phy_ops,
6088 	.nvm_ops		= &ich8_nvm_ops,
6089 };
6090 
6091 const struct e1000_info e1000_pch_lpt_info = {
6092 	.mac			= e1000_pch_lpt,
6093 	.flags			= FLAG_IS_ICH
6094 				  | FLAG_HAS_WOL
6095 				  | FLAG_HAS_HW_TIMESTAMP
6096 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6097 				  | FLAG_HAS_AMT
6098 				  | FLAG_HAS_FLASH
6099 				  | FLAG_HAS_JUMBO_FRAMES
6100 				  | FLAG_APME_IN_WUC,
6101 	.flags2			= FLAG2_HAS_PHY_STATS
6102 				  | FLAG2_HAS_EEE
6103 				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
6104 	.pba			= 26,
6105 	.max_hw_frame_size	= 9022,
6106 	.get_variants		= e1000_get_variants_ich8lan,
6107 	.mac_ops		= &ich8_mac_ops,
6108 	.phy_ops		= &ich8_phy_ops,
6109 	.nvm_ops		= &ich8_nvm_ops,
6110 };
6111 
6112 const struct e1000_info e1000_pch_spt_info = {
6113 	.mac			= e1000_pch_spt,
6114 	.flags			= FLAG_IS_ICH
6115 				  | FLAG_HAS_WOL
6116 				  | FLAG_HAS_HW_TIMESTAMP
6117 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6118 				  | FLAG_HAS_AMT
6119 				  | FLAG_HAS_FLASH
6120 				  | FLAG_HAS_JUMBO_FRAMES
6121 				  | FLAG_APME_IN_WUC,
6122 	.flags2			= FLAG2_HAS_PHY_STATS
6123 				  | FLAG2_HAS_EEE,
6124 	.pba			= 26,
6125 	.max_hw_frame_size	= 9022,
6126 	.get_variants		= e1000_get_variants_ich8lan,
6127 	.mac_ops		= &ich8_mac_ops,
6128 	.phy_ops		= &ich8_phy_ops,
6129 	.nvm_ops		= &spt_nvm_ops,
6130 };
6131 
6132 const struct e1000_info e1000_pch_cnp_info = {
6133 	.mac			= e1000_pch_cnp,
6134 	.flags			= FLAG_IS_ICH
6135 				  | FLAG_HAS_WOL
6136 				  | FLAG_HAS_HW_TIMESTAMP
6137 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6138 				  | FLAG_HAS_AMT
6139 				  | FLAG_HAS_FLASH
6140 				  | FLAG_HAS_JUMBO_FRAMES
6141 				  | FLAG_APME_IN_WUC,
6142 	.flags2			= FLAG2_HAS_PHY_STATS
6143 				  | FLAG2_HAS_EEE,
6144 	.pba			= 26,
6145 	.max_hw_frame_size	= 9022,
6146 	.get_variants		= e1000_get_variants_ich8lan,
6147 	.mac_ops		= &ich8_mac_ops,
6148 	.phy_ops		= &ich8_phy_ops,
6149 	.nvm_ops		= &spt_nvm_ops,
6150 };
6151 
6152 const struct e1000_info e1000_pch_tgp_info = {
6153 	.mac			= e1000_pch_tgp,
6154 	.flags			= FLAG_IS_ICH
6155 				  | FLAG_HAS_WOL
6156 				  | FLAG_HAS_HW_TIMESTAMP
6157 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6158 				  | FLAG_HAS_AMT
6159 				  | FLAG_HAS_FLASH
6160 				  | FLAG_HAS_JUMBO_FRAMES
6161 				  | FLAG_APME_IN_WUC,
6162 	.flags2			= FLAG2_HAS_PHY_STATS
6163 				  | FLAG2_HAS_EEE,
6164 	.pba			= 26,
6165 	.max_hw_frame_size	= 9022,
6166 	.get_variants		= e1000_get_variants_ich8lan,
6167 	.mac_ops		= &ich8_mac_ops,
6168 	.phy_ops		= &ich8_phy_ops,
6169 	.nvm_ops		= &spt_nvm_ops,
6170 };
6171 
6172 const struct e1000_info e1000_pch_adp_info = {
6173 	.mac			= e1000_pch_adp,
6174 	.flags			= FLAG_IS_ICH
6175 				  | FLAG_HAS_WOL
6176 				  | FLAG_HAS_HW_TIMESTAMP
6177 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6178 				  | FLAG_HAS_AMT
6179 				  | FLAG_HAS_FLASH
6180 				  | FLAG_HAS_JUMBO_FRAMES
6181 				  | FLAG_APME_IN_WUC,
6182 	.flags2			= FLAG2_HAS_PHY_STATS
6183 				  | FLAG2_HAS_EEE,
6184 	.pba			= 26,
6185 	.max_hw_frame_size	= 9022,
6186 	.get_variants		= e1000_get_variants_ich8lan,
6187 	.mac_ops		= &ich8_mac_ops,
6188 	.phy_ops		= &ich8_phy_ops,
6189 	.nvm_ops		= &spt_nvm_ops,
6190 };
6191 
6192 const struct e1000_info e1000_pch_mtp_info = {
6193 	.mac			= e1000_pch_mtp,
6194 	.flags			= FLAG_IS_ICH
6195 				  | FLAG_HAS_WOL
6196 				  | FLAG_HAS_HW_TIMESTAMP
6197 				  | FLAG_HAS_CTRLEXT_ON_LOAD
6198 				  | FLAG_HAS_AMT
6199 				  | FLAG_HAS_FLASH
6200 				  | FLAG_HAS_JUMBO_FRAMES
6201 				  | FLAG_APME_IN_WUC,
6202 	.flags2			= FLAG2_HAS_PHY_STATS
6203 				  | FLAG2_HAS_EEE,
6204 	.pba			= 26,
6205 	.max_hw_frame_size	= 9022,
6206 	.get_variants		= e1000_get_variants_ich8lan,
6207 	.mac_ops		= &ich8_mac_ops,
6208 	.phy_ops		= &ich8_phy_ops,
6209 	.nvm_ops		= &spt_nvm_ops,
6210 };
6211