1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
39 */
40
41 #include "e1000.h"
42
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 struct ich8_hsfsts {
47 u16 flcdone:1; /* bit 0 Flash Cycle Done */
48 u16 flcerr:1; /* bit 1 Flash Cycle Error */
49 u16 dael:1; /* bit 2 Direct Access error Log */
50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
52 u16 reserved1:2; /* bit 13:6 Reserved */
53 u16 reserved2:6; /* bit 13:6 Reserved */
54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
56 } hsf_status;
57 u16 regval;
58 };
59
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 struct ich8_hsflctl {
64 u16 flcgo:1; /* 0 Flash Cycle Go */
65 u16 flcycle:2; /* 2:1 Flash Cycle */
66 u16 reserved:5; /* 7:3 Reserved */
67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
68 u16 flockdn:6; /* 15:10 Reserved */
69 } hsf_ctrl;
70 u16 regval;
71 };
72
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 struct ich8_flracc {
76 u32 grra:8; /* 0:7 GbE region Read Access */
77 u32 grwa:8; /* 8:15 GbE region Write Access */
78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
80 } hsf_flregacc;
81 u16 regval;
82 };
83
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 struct ich8_pr {
87 u32 base:13; /* 0:12 Protected Range Base */
88 u32 reserved1:2; /* 13:14 Reserved */
89 u32 rpe:1; /* 15 Read Protection Enable */
90 u32 limit:13; /* 16:28 Protected Range Limit */
91 u32 reserved2:2; /* 29:30 Reserved */
92 u32 wpe:1; /* 31 Write Protection Enable */
93 } range;
94 u32 regval;
95 };
96
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
__er16flash(struct e1000_hw * hw,unsigned long reg)141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 return readw(hw->flash_address + reg);
144 }
145
__er32flash(struct e1000_hw * hw,unsigned long reg)146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 return readl(hw->flash_address + reg);
149 }
150
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 writew(val, hw->flash_address + reg);
154 }
155
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 writel(val, hw->flash_address + reg);
159 }
160
161 #define er16flash(reg) __er16flash(hw, (reg))
162 #define er32flash(reg) __er32flash(hw, (reg))
163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
165
166 /**
167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 * @hw: pointer to the HW structure
169 *
170 * Test access to the PHY registers by reading the PHY ID registers. If
171 * the PHY ID is already known (e.g. resume path) compare it with known ID,
172 * otherwise assume the read PHY ID is correct if it is valid.
173 *
174 * Assumes the sw/fw/hw semaphore is already acquired.
175 **/
e1000_phy_is_accessible_pchlan(struct e1000_hw * hw)176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 u16 phy_reg = 0;
179 u32 phy_id = 0;
180 s32 ret_val = 0;
181 u16 retry_count;
182 u32 mac_reg = 0;
183
184 for (retry_count = 0; retry_count < 2; retry_count++) {
185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 if (ret_val || (phy_reg == 0xFFFF))
187 continue;
188 phy_id = (u32)(phy_reg << 16);
189
190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 if (ret_val || (phy_reg == 0xFFFF)) {
192 phy_id = 0;
193 continue;
194 }
195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 break;
197 }
198
199 if (hw->phy.id) {
200 if (hw->phy.id == phy_id)
201 goto out;
202 } else if (phy_id) {
203 hw->phy.id = phy_id;
204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 goto out;
206 }
207
208 /* In case the PHY needs to be in mdio slow mode,
209 * set slow mode and try to get the PHY id again.
210 */
211 if (hw->mac.type < e1000_pch_lpt) {
212 hw->phy.ops.release(hw);
213 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 if (!ret_val)
215 ret_val = e1000e_get_phy_id(hw);
216 hw->phy.ops.acquire(hw);
217 }
218
219 if (ret_val)
220 return false;
221 out:
222 if (hw->mac.type >= e1000_pch_lpt) {
223 /* Only unforce SMBus if ME is not active */
224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 /* Switching PHY interface always returns MDI error
226 * so disable retry mechanism to avoid wasting time
227 */
228 e1000e_disable_phy_retry(hw);
229
230 /* Unforce SMBus mode in PHY */
231 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
232 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
233 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
234
235 e1000e_enable_phy_retry(hw);
236
237 /* Unforce SMBus mode in MAC */
238 mac_reg = er32(CTRL_EXT);
239 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
240 ew32(CTRL_EXT, mac_reg);
241 }
242 }
243
244 return true;
245 }
246
247 /**
248 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
249 * @hw: pointer to the HW structure
250 *
251 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
252 * used to reset the PHY to a quiescent state when necessary.
253 **/
e1000_toggle_lanphypc_pch_lpt(struct e1000_hw * hw)254 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
255 {
256 u32 mac_reg;
257
258 /* Set Phy Config Counter to 50msec */
259 mac_reg = er32(FEXTNVM3);
260 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
261 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
262 ew32(FEXTNVM3, mac_reg);
263
264 /* Toggle LANPHYPC Value bit */
265 mac_reg = er32(CTRL);
266 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
267 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
268 ew32(CTRL, mac_reg);
269 e1e_flush();
270 usleep_range(10, 20);
271 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
272 ew32(CTRL, mac_reg);
273 e1e_flush();
274
275 if (hw->mac.type < e1000_pch_lpt) {
276 msleep(50);
277 } else {
278 u16 count = 20;
279
280 do {
281 usleep_range(5000, 6000);
282 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
283
284 msleep(30);
285 }
286 }
287
288 /**
289 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
290 * @hw: pointer to the HW structure
291 *
292 * Workarounds/flow necessary for PHY initialization during driver load
293 * and resume paths.
294 **/
e1000_init_phy_workarounds_pchlan(struct e1000_hw * hw)295 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
296 {
297 struct e1000_adapter *adapter = hw->adapter;
298 u32 mac_reg, fwsm = er32(FWSM);
299 s32 ret_val;
300
301 /* Gate automatic PHY configuration by hardware on managed and
302 * non-managed 82579 and newer adapters.
303 */
304 e1000_gate_hw_phy_config_ich8lan(hw, true);
305
306 /* It is not possible to be certain of the current state of ULP
307 * so forcibly disable it.
308 */
309 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
310 ret_val = e1000_disable_ulp_lpt_lp(hw, true);
311 if (ret_val)
312 e_warn("Failed to disable ULP\n");
313
314 ret_val = hw->phy.ops.acquire(hw);
315 if (ret_val) {
316 e_dbg("Failed to initialize PHY flow\n");
317 goto out;
318 }
319
320 /* There is no guarantee that the PHY is accessible at this time
321 * so disable retry mechanism to avoid wasting time
322 */
323 e1000e_disable_phy_retry(hw);
324
325 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
326 * inaccessible and resetting the PHY is not blocked, toggle the
327 * LANPHYPC Value bit to force the interconnect to PCIe mode.
328 */
329 switch (hw->mac.type) {
330 case e1000_pch_lpt:
331 case e1000_pch_spt:
332 case e1000_pch_cnp:
333 case e1000_pch_tgp:
334 case e1000_pch_adp:
335 case e1000_pch_mtp:
336 case e1000_pch_lnp:
337 case e1000_pch_ptp:
338 case e1000_pch_nvp:
339 if (e1000_phy_is_accessible_pchlan(hw))
340 break;
341
342 /* Before toggling LANPHYPC, see if PHY is accessible by
343 * forcing MAC to SMBus mode first.
344 */
345 mac_reg = er32(CTRL_EXT);
346 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
347 ew32(CTRL_EXT, mac_reg);
348
349 /* Wait 50 milliseconds for MAC to finish any retries
350 * that it might be trying to perform from previous
351 * attempts to acknowledge any phy read requests.
352 */
353 msleep(50);
354
355 fallthrough;
356 case e1000_pch2lan:
357 if (e1000_phy_is_accessible_pchlan(hw))
358 break;
359
360 fallthrough;
361 case e1000_pchlan:
362 if ((hw->mac.type == e1000_pchlan) &&
363 (fwsm & E1000_ICH_FWSM_FW_VALID))
364 break;
365
366 if (hw->phy.ops.check_reset_block(hw)) {
367 e_dbg("Required LANPHYPC toggle blocked by ME\n");
368 ret_val = -E1000_ERR_PHY;
369 break;
370 }
371
372 /* Toggle LANPHYPC Value bit */
373 e1000_toggle_lanphypc_pch_lpt(hw);
374 if (hw->mac.type >= e1000_pch_lpt) {
375 if (e1000_phy_is_accessible_pchlan(hw))
376 break;
377
378 /* Toggling LANPHYPC brings the PHY out of SMBus mode
379 * so ensure that the MAC is also out of SMBus mode
380 */
381 mac_reg = er32(CTRL_EXT);
382 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
383 ew32(CTRL_EXT, mac_reg);
384
385 if (e1000_phy_is_accessible_pchlan(hw))
386 break;
387
388 ret_val = -E1000_ERR_PHY;
389 }
390 break;
391 default:
392 break;
393 }
394
395 e1000e_enable_phy_retry(hw);
396
397 hw->phy.ops.release(hw);
398 if (!ret_val) {
399
400 /* Check to see if able to reset PHY. Print error if not */
401 if (hw->phy.ops.check_reset_block(hw)) {
402 e_err("Reset blocked by ME\n");
403 goto out;
404 }
405
406 /* Reset the PHY before any access to it. Doing so, ensures
407 * that the PHY is in a known good state before we read/write
408 * PHY registers. The generic reset is sufficient here,
409 * because we haven't determined the PHY type yet.
410 */
411 ret_val = e1000e_phy_hw_reset_generic(hw);
412 if (ret_val)
413 goto out;
414
415 /* On a successful reset, possibly need to wait for the PHY
416 * to quiesce to an accessible state before returning control
417 * to the calling function. If the PHY does not quiesce, then
418 * return E1000E_BLK_PHY_RESET, as this is the condition that
419 * the PHY is in.
420 */
421 ret_val = hw->phy.ops.check_reset_block(hw);
422 if (ret_val)
423 e_err("ME blocked access to PHY after reset\n");
424 }
425
426 out:
427 /* Ungate automatic PHY configuration on non-managed 82579 */
428 if ((hw->mac.type == e1000_pch2lan) &&
429 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
430 usleep_range(10000, 11000);
431 e1000_gate_hw_phy_config_ich8lan(hw, false);
432 }
433
434 return ret_val;
435 }
436
437 /**
438 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
439 * @hw: pointer to the HW structure
440 *
441 * Initialize family-specific PHY parameters and function pointers.
442 **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)443 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
444 {
445 struct e1000_phy_info *phy = &hw->phy;
446 s32 ret_val;
447
448 phy->addr = 1;
449 phy->reset_delay_us = 100;
450
451 phy->ops.set_page = e1000_set_page_igp;
452 phy->ops.read_reg = e1000_read_phy_reg_hv;
453 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
454 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
455 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
456 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
457 phy->ops.write_reg = e1000_write_phy_reg_hv;
458 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
459 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
460 phy->ops.power_up = e1000_power_up_phy_copper;
461 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
462 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
463
464 phy->id = e1000_phy_unknown;
465
466 if (hw->mac.type == e1000_pch_mtp) {
467 phy->retry_count = 2;
468 e1000e_enable_phy_retry(hw);
469 }
470
471 ret_val = e1000_init_phy_workarounds_pchlan(hw);
472 if (ret_val)
473 return ret_val;
474
475 if (phy->id == e1000_phy_unknown)
476 switch (hw->mac.type) {
477 default:
478 ret_val = e1000e_get_phy_id(hw);
479 if (ret_val)
480 return ret_val;
481 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
482 break;
483 fallthrough;
484 case e1000_pch2lan:
485 case e1000_pch_lpt:
486 case e1000_pch_spt:
487 case e1000_pch_cnp:
488 case e1000_pch_tgp:
489 case e1000_pch_adp:
490 case e1000_pch_mtp:
491 case e1000_pch_lnp:
492 case e1000_pch_ptp:
493 case e1000_pch_nvp:
494 /* In case the PHY needs to be in mdio slow mode,
495 * set slow mode and try to get the PHY id again.
496 */
497 ret_val = e1000_set_mdio_slow_mode_hv(hw);
498 if (ret_val)
499 return ret_val;
500 ret_val = e1000e_get_phy_id(hw);
501 if (ret_val)
502 return ret_val;
503 break;
504 }
505 phy->type = e1000e_get_phy_type_from_id(phy->id);
506
507 switch (phy->type) {
508 case e1000_phy_82577:
509 case e1000_phy_82579:
510 case e1000_phy_i217:
511 phy->ops.check_polarity = e1000_check_polarity_82577;
512 phy->ops.force_speed_duplex =
513 e1000_phy_force_speed_duplex_82577;
514 phy->ops.get_cable_length = e1000_get_cable_length_82577;
515 phy->ops.get_info = e1000_get_phy_info_82577;
516 phy->ops.commit = e1000e_phy_sw_reset;
517 break;
518 case e1000_phy_82578:
519 phy->ops.check_polarity = e1000_check_polarity_m88;
520 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
521 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
522 phy->ops.get_info = e1000e_get_phy_info_m88;
523 break;
524 default:
525 ret_val = -E1000_ERR_PHY;
526 break;
527 }
528
529 return ret_val;
530 }
531
532 /**
533 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
534 * @hw: pointer to the HW structure
535 *
536 * Initialize family-specific PHY parameters and function pointers.
537 **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)538 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
539 {
540 struct e1000_phy_info *phy = &hw->phy;
541 s32 ret_val;
542 u16 i = 0;
543
544 phy->addr = 1;
545 phy->reset_delay_us = 100;
546
547 phy->ops.power_up = e1000_power_up_phy_copper;
548 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
549
550 /* We may need to do this twice - once for IGP and if that fails,
551 * we'll set BM func pointers and try again
552 */
553 ret_val = e1000e_determine_phy_address(hw);
554 if (ret_val) {
555 phy->ops.write_reg = e1000e_write_phy_reg_bm;
556 phy->ops.read_reg = e1000e_read_phy_reg_bm;
557 ret_val = e1000e_determine_phy_address(hw);
558 if (ret_val) {
559 e_dbg("Cannot determine PHY addr. Erroring out\n");
560 return ret_val;
561 }
562 }
563
564 phy->id = 0;
565 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
566 (i++ < 100)) {
567 usleep_range(1000, 1100);
568 ret_val = e1000e_get_phy_id(hw);
569 if (ret_val)
570 return ret_val;
571 }
572
573 /* Verify phy id */
574 switch (phy->id) {
575 case IGP03E1000_E_PHY_ID:
576 phy->type = e1000_phy_igp_3;
577 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
578 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
579 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
580 phy->ops.get_info = e1000e_get_phy_info_igp;
581 phy->ops.check_polarity = e1000_check_polarity_igp;
582 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
583 break;
584 case IFE_E_PHY_ID:
585 case IFE_PLUS_E_PHY_ID:
586 case IFE_C_E_PHY_ID:
587 phy->type = e1000_phy_ife;
588 phy->autoneg_mask = E1000_ALL_NOT_GIG;
589 phy->ops.get_info = e1000_get_phy_info_ife;
590 phy->ops.check_polarity = e1000_check_polarity_ife;
591 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
592 break;
593 case BME1000_E_PHY_ID:
594 phy->type = e1000_phy_bm;
595 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
596 phy->ops.read_reg = e1000e_read_phy_reg_bm;
597 phy->ops.write_reg = e1000e_write_phy_reg_bm;
598 phy->ops.commit = e1000e_phy_sw_reset;
599 phy->ops.get_info = e1000e_get_phy_info_m88;
600 phy->ops.check_polarity = e1000_check_polarity_m88;
601 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
602 break;
603 default:
604 return -E1000_ERR_PHY;
605 }
606
607 return 0;
608 }
609
610 /**
611 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
612 * @hw: pointer to the HW structure
613 *
614 * Initialize family-specific NVM parameters and function
615 * pointers.
616 **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)617 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
618 {
619 struct e1000_nvm_info *nvm = &hw->nvm;
620 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
621 u32 gfpreg, sector_base_addr, sector_end_addr;
622 u16 i;
623 u32 nvm_size;
624
625 nvm->type = e1000_nvm_flash_sw;
626
627 if (hw->mac.type >= e1000_pch_spt) {
628 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
629 * STRAP register. This is because in SPT the GbE Flash region
630 * is no longer accessed through the flash registers. Instead,
631 * the mechanism has changed, and the Flash region access
632 * registers are now implemented in GbE memory space.
633 */
634 nvm->flash_base_addr = 0;
635 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
636 * NVM_SIZE_MULTIPLIER;
637 nvm->flash_bank_size = nvm_size / 2;
638 /* Adjust to word count */
639 nvm->flash_bank_size /= sizeof(u16);
640 /* Set the base address for flash register access */
641 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
642 } else {
643 /* Can't read flash registers if register set isn't mapped. */
644 if (!hw->flash_address) {
645 e_dbg("ERROR: Flash registers not mapped\n");
646 return -E1000_ERR_CONFIG;
647 }
648
649 gfpreg = er32flash(ICH_FLASH_GFPREG);
650
651 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
652 * Add 1 to sector_end_addr since this sector is included in
653 * the overall size.
654 */
655 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
656 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
657
658 /* flash_base_addr is byte-aligned */
659 nvm->flash_base_addr = sector_base_addr
660 << FLASH_SECTOR_ADDR_SHIFT;
661
662 /* find total size of the NVM, then cut in half since the total
663 * size represents two separate NVM banks.
664 */
665 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
666 << FLASH_SECTOR_ADDR_SHIFT);
667 nvm->flash_bank_size /= 2;
668 /* Adjust to word count */
669 nvm->flash_bank_size /= sizeof(u16);
670 }
671
672 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
673
674 /* Clear shadow ram */
675 for (i = 0; i < nvm->word_size; i++) {
676 dev_spec->shadow_ram[i].modified = false;
677 dev_spec->shadow_ram[i].value = 0xFFFF;
678 }
679
680 return 0;
681 }
682
683 /**
684 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
685 * @hw: pointer to the HW structure
686 *
687 * Initialize family-specific MAC parameters and function
688 * pointers.
689 **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)690 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
691 {
692 struct e1000_mac_info *mac = &hw->mac;
693
694 /* Set media type function pointer */
695 hw->phy.media_type = e1000_media_type_copper;
696
697 /* Set mta register count */
698 mac->mta_reg_count = 32;
699 /* Set rar entry count */
700 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
701 if (mac->type == e1000_ich8lan)
702 mac->rar_entry_count--;
703 /* FWSM register */
704 mac->has_fwsm = true;
705 /* ARC subsystem not supported */
706 mac->arc_subsystem_valid = false;
707 /* Adaptive IFS supported */
708 mac->adaptive_ifs = true;
709
710 /* LED and other operations */
711 switch (mac->type) {
712 case e1000_ich8lan:
713 case e1000_ich9lan:
714 case e1000_ich10lan:
715 /* check management mode */
716 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
717 /* ID LED init */
718 mac->ops.id_led_init = e1000e_id_led_init_generic;
719 /* blink LED */
720 mac->ops.blink_led = e1000e_blink_led_generic;
721 /* setup LED */
722 mac->ops.setup_led = e1000e_setup_led_generic;
723 /* cleanup LED */
724 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
725 /* turn on/off LED */
726 mac->ops.led_on = e1000_led_on_ich8lan;
727 mac->ops.led_off = e1000_led_off_ich8lan;
728 break;
729 case e1000_pch2lan:
730 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
731 mac->ops.rar_set = e1000_rar_set_pch2lan;
732 fallthrough;
733 case e1000_pch_lpt:
734 case e1000_pch_spt:
735 case e1000_pch_cnp:
736 case e1000_pch_tgp:
737 case e1000_pch_adp:
738 case e1000_pch_mtp:
739 case e1000_pch_lnp:
740 case e1000_pch_ptp:
741 case e1000_pch_nvp:
742 case e1000_pchlan:
743 /* check management mode */
744 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
745 /* ID LED init */
746 mac->ops.id_led_init = e1000_id_led_init_pchlan;
747 /* setup LED */
748 mac->ops.setup_led = e1000_setup_led_pchlan;
749 /* cleanup LED */
750 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
751 /* turn on/off LED */
752 mac->ops.led_on = e1000_led_on_pchlan;
753 mac->ops.led_off = e1000_led_off_pchlan;
754 break;
755 default:
756 break;
757 }
758
759 if (mac->type >= e1000_pch_lpt) {
760 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
761 mac->ops.rar_set = e1000_rar_set_pch_lpt;
762 mac->ops.setup_physical_interface =
763 e1000_setup_copper_link_pch_lpt;
764 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
765 }
766
767 /* Enable PCS Lock-loss workaround for ICH8 */
768 if (mac->type == e1000_ich8lan)
769 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
770
771 return 0;
772 }
773
774 /**
775 * __e1000_access_emi_reg_locked - Read/write EMI register
776 * @hw: pointer to the HW structure
777 * @address: EMI address to program
778 * @data: pointer to value to read/write from/to the EMI address
779 * @read: boolean flag to indicate read or write
780 *
781 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
782 **/
__e1000_access_emi_reg_locked(struct e1000_hw * hw,u16 address,u16 * data,bool read)783 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
784 u16 *data, bool read)
785 {
786 s32 ret_val;
787
788 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
789 if (ret_val)
790 return ret_val;
791
792 if (read)
793 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
794 else
795 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
796
797 return ret_val;
798 }
799
800 /**
801 * e1000_read_emi_reg_locked - Read Extended Management Interface register
802 * @hw: pointer to the HW structure
803 * @addr: EMI address to program
804 * @data: value to be read from the EMI address
805 *
806 * Assumes the SW/FW/HW Semaphore is already acquired.
807 **/
e1000_read_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 * data)808 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
809 {
810 return __e1000_access_emi_reg_locked(hw, addr, data, true);
811 }
812
813 /**
814 * e1000_write_emi_reg_locked - Write Extended Management Interface register
815 * @hw: pointer to the HW structure
816 * @addr: EMI address to program
817 * @data: value to be written to the EMI address
818 *
819 * Assumes the SW/FW/HW Semaphore is already acquired.
820 **/
e1000_write_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 data)821 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
822 {
823 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
824 }
825
826 /**
827 * e1000_set_eee_pchlan - Enable/disable EEE support
828 * @hw: pointer to the HW structure
829 *
830 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
831 * the link and the EEE capabilities of the link partner. The LPI Control
832 * register bits will remain set only if/when link is up.
833 *
834 * EEE LPI must not be asserted earlier than one second after link is up.
835 * On 82579, EEE LPI should not be enabled until such time otherwise there
836 * can be link issues with some switches. Other devices can have EEE LPI
837 * enabled immediately upon link up since they have a timer in hardware which
838 * prevents LPI from being asserted too early.
839 **/
e1000_set_eee_pchlan(struct e1000_hw * hw)840 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
841 {
842 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
843 s32 ret_val;
844 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
845
846 switch (hw->phy.type) {
847 case e1000_phy_82579:
848 lpa = I82579_EEE_LP_ABILITY;
849 pcs_status = I82579_EEE_PCS_STATUS;
850 adv_addr = I82579_EEE_ADVERTISEMENT;
851 break;
852 case e1000_phy_i217:
853 lpa = I217_EEE_LP_ABILITY;
854 pcs_status = I217_EEE_PCS_STATUS;
855 adv_addr = I217_EEE_ADVERTISEMENT;
856 break;
857 default:
858 return 0;
859 }
860
861 ret_val = hw->phy.ops.acquire(hw);
862 if (ret_val)
863 return ret_val;
864
865 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
866 if (ret_val)
867 goto release;
868
869 /* Clear bits that enable EEE in various speeds */
870 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
871
872 /* Enable EEE if not disabled by user */
873 if (!dev_spec->eee_disable) {
874 /* Save off link partner's EEE ability */
875 ret_val = e1000_read_emi_reg_locked(hw, lpa,
876 &dev_spec->eee_lp_ability);
877 if (ret_val)
878 goto release;
879
880 /* Read EEE advertisement */
881 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
882 if (ret_val)
883 goto release;
884
885 /* Enable EEE only for speeds in which the link partner is
886 * EEE capable and for which we advertise EEE.
887 */
888 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
889 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
890
891 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
892 e1e_rphy_locked(hw, MII_LPA, &data);
893 if (data & LPA_100FULL)
894 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
895 else
896 /* EEE is not supported in 100Half, so ignore
897 * partner's EEE in 100 ability if full-duplex
898 * is not advertised.
899 */
900 dev_spec->eee_lp_ability &=
901 ~I82579_EEE_100_SUPPORTED;
902 }
903 }
904
905 if (hw->phy.type == e1000_phy_82579) {
906 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
907 &data);
908 if (ret_val)
909 goto release;
910
911 data &= ~I82579_LPI_100_PLL_SHUT;
912 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
913 data);
914 }
915
916 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
917 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
918 if (ret_val)
919 goto release;
920
921 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
922 release:
923 hw->phy.ops.release(hw);
924
925 return ret_val;
926 }
927
928 /**
929 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
930 * @hw: pointer to the HW structure
931 * @link: link up bool flag
932 *
933 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
934 * preventing further DMA write requests. Workaround the issue by disabling
935 * the de-assertion of the clock request when in 1Gpbs mode.
936 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
937 * speeds in order to avoid Tx hangs.
938 **/
e1000_k1_workaround_lpt_lp(struct e1000_hw * hw,bool link)939 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
940 {
941 u32 fextnvm6 = er32(FEXTNVM6);
942 u32 status = er32(STATUS);
943 s32 ret_val = 0;
944 u16 reg;
945
946 if (link && (status & E1000_STATUS_SPEED_1000)) {
947 ret_val = hw->phy.ops.acquire(hw);
948 if (ret_val)
949 return ret_val;
950
951 ret_val =
952 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
953 ®);
954 if (ret_val)
955 goto release;
956
957 ret_val =
958 e1000e_write_kmrn_reg_locked(hw,
959 E1000_KMRNCTRLSTA_K1_CONFIG,
960 reg &
961 ~E1000_KMRNCTRLSTA_K1_ENABLE);
962 if (ret_val)
963 goto release;
964
965 usleep_range(10, 20);
966
967 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
968
969 ret_val =
970 e1000e_write_kmrn_reg_locked(hw,
971 E1000_KMRNCTRLSTA_K1_CONFIG,
972 reg);
973 release:
974 hw->phy.ops.release(hw);
975 } else {
976 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
977 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
978
979 if ((hw->phy.revision > 5) || !link ||
980 ((status & E1000_STATUS_SPEED_100) &&
981 (status & E1000_STATUS_FD)))
982 goto update_fextnvm6;
983
984 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®);
985 if (ret_val)
986 return ret_val;
987
988 /* Clear link status transmit timeout */
989 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
990
991 if (status & E1000_STATUS_SPEED_100) {
992 /* Set inband Tx timeout to 5x10us for 100Half */
993 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
994
995 /* Do not extend the K1 entry latency for 100Half */
996 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
997 } else {
998 /* Set inband Tx timeout to 50x10us for 10Full/Half */
999 reg |= 50 <<
1000 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001
1002 /* Extend the K1 entry latency for 10 Mbps */
1003 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004 }
1005
1006 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007 if (ret_val)
1008 return ret_val;
1009
1010 update_fextnvm6:
1011 ew32(FEXTNVM6, fextnvm6);
1012 }
1013
1014 return ret_val;
1015 }
1016
1017 /**
1018 * e1000_platform_pm_pch_lpt - Set platform power management values
1019 * @hw: pointer to the HW structure
1020 * @link: bool indicating link status
1021 *
1022 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024 * when link is up (which must not exceed the maximum latency supported
1025 * by the platform), otherwise specify there is no LTR requirement.
1026 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1028 * Capability register set, on this device LTR is set by writing the
1029 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031 * message to the PMC.
1032 **/
e1000_platform_pm_pch_lpt(struct e1000_hw * hw,bool link)1033 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034 {
1035 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037 u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */
1038 u32 lat_enc_d = 0; /* latency decoded */
1039 u16 lat_enc = 0; /* latency encoded */
1040
1041 if (link) {
1042 u16 speed, duplex, scale = 0;
1043 u16 max_snoop, max_nosnoop;
1044 u16 max_ltr_enc; /* max LTR latency encoded */
1045 u64 value;
1046 u32 rxa;
1047
1048 if (!hw->adapter->max_frame_size) {
1049 e_dbg("max_frame_size not set.\n");
1050 return -E1000_ERR_CONFIG;
1051 }
1052
1053 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054 if (!speed) {
1055 e_dbg("Speed not set.\n");
1056 return -E1000_ERR_CONFIG;
1057 }
1058
1059 /* Rx Packet Buffer Allocation size (KB) */
1060 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061
1062 /* Determine the maximum latency tolerated by the device.
1063 *
1064 * Per the PCIe spec, the tolerated latencies are encoded as
1065 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1068 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069 */
1070 rxa *= 512;
1071 value = (rxa > hw->adapter->max_frame_size) ?
1072 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073 0;
1074
1075 while (value > PCI_LTR_VALUE_MASK) {
1076 scale++;
1077 value = DIV_ROUND_UP(value, BIT(5));
1078 }
1079 if (scale > E1000_LTRV_SCALE_MAX) {
1080 e_dbg("Invalid LTR latency scale %d\n", scale);
1081 return -E1000_ERR_CONFIG;
1082 }
1083 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084
1085 /* Determine the maximum latency tolerated by the platform */
1086 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087 &max_snoop);
1088 pci_read_config_word(hw->adapter->pdev,
1089 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091
1092 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093 (1U << (E1000_LTRV_SCALE_FACTOR *
1094 FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095
1096 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097 (1U << (E1000_LTRV_SCALE_FACTOR *
1098 FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099
1100 if (lat_enc_d > max_ltr_enc_d)
1101 lat_enc = max_ltr_enc;
1102 }
1103
1104 /* Set Snoop and No-Snoop latencies the same */
1105 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106 ew32(LTRV, reg);
1107
1108 return 0;
1109 }
1110
1111 /**
1112 * e1000e_force_smbus - Force interfaces to transition to SMBUS mode.
1113 * @hw: pointer to the HW structure
1114 *
1115 * Force the MAC and the PHY to SMBUS mode. Assumes semaphore already
1116 * acquired.
1117 *
1118 * Return: 0 on success, negative errno on failure.
1119 **/
e1000e_force_smbus(struct e1000_hw * hw)1120 static s32 e1000e_force_smbus(struct e1000_hw *hw)
1121 {
1122 u16 smb_ctrl = 0;
1123 u32 ctrl_ext;
1124 s32 ret_val;
1125
1126 /* Switching PHY interface always returns MDI error
1127 * so disable retry mechanism to avoid wasting time
1128 */
1129 e1000e_disable_phy_retry(hw);
1130
1131 /* Force SMBus mode in the PHY */
1132 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &smb_ctrl);
1133 if (ret_val) {
1134 e1000e_enable_phy_retry(hw);
1135 return ret_val;
1136 }
1137
1138 smb_ctrl |= CV_SMB_CTRL_FORCE_SMBUS;
1139 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, smb_ctrl);
1140
1141 e1000e_enable_phy_retry(hw);
1142
1143 /* Force SMBus mode in the MAC */
1144 ctrl_ext = er32(CTRL_EXT);
1145 ctrl_ext |= E1000_CTRL_EXT_FORCE_SMBUS;
1146 ew32(CTRL_EXT, ctrl_ext);
1147
1148 return 0;
1149 }
1150
1151 /**
1152 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1153 * @hw: pointer to the HW structure
1154 * @to_sx: boolean indicating a system power state transition to Sx
1155 *
1156 * When link is down, configure ULP mode to significantly reduce the power
1157 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1158 * ME firmware to start the ULP configuration. If not on an ME enabled
1159 * system, configure the ULP mode by software.
1160 */
e1000_enable_ulp_lpt_lp(struct e1000_hw * hw,bool to_sx)1161 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1162 {
1163 u32 mac_reg;
1164 s32 ret_val = 0;
1165 u16 phy_reg;
1166 u16 oem_reg = 0;
1167
1168 if ((hw->mac.type < e1000_pch_lpt) ||
1169 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1170 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1171 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1172 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1173 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1174 return 0;
1175
1176 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1177 /* Request ME configure ULP mode in the PHY */
1178 mac_reg = er32(H2ME);
1179 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1180 ew32(H2ME, mac_reg);
1181
1182 goto out;
1183 }
1184
1185 if (!to_sx) {
1186 int i = 0;
1187
1188 /* Poll up to 5 seconds for Cable Disconnected indication */
1189 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1190 /* Bail if link is re-acquired */
1191 if (er32(STATUS) & E1000_STATUS_LU)
1192 return -E1000_ERR_PHY;
1193
1194 if (i++ == 100)
1195 break;
1196
1197 msleep(50);
1198 }
1199 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1200 (er32(FEXT) &
1201 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1202 }
1203
1204 ret_val = hw->phy.ops.acquire(hw);
1205 if (ret_val)
1206 goto out;
1207
1208 ret_val = e1000e_force_smbus(hw);
1209 if (ret_val) {
1210 e_dbg("Failed to force SMBUS: %d\n", ret_val);
1211 goto release;
1212 }
1213
1214 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1215 * LPLU and disable Gig speed when entering ULP
1216 */
1217 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1218 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1219 &oem_reg);
1220 if (ret_val)
1221 goto release;
1222
1223 phy_reg = oem_reg;
1224 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1225
1226 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1227 phy_reg);
1228
1229 if (ret_val)
1230 goto release;
1231 }
1232
1233 /* Set Inband ULP Exit, Reset to SMBus mode and
1234 * Disable SMBus Release on PERST# in PHY
1235 */
1236 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1237 if (ret_val)
1238 goto release;
1239 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1240 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1241 if (to_sx) {
1242 if (er32(WUFC) & E1000_WUFC_LNKC)
1243 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1244 else
1245 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1246
1247 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1248 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1249 } else {
1250 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1251 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1252 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1253 }
1254 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1255
1256 /* Set Disable SMBus Release on PERST# in MAC */
1257 mac_reg = er32(FEXTNVM7);
1258 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1259 ew32(FEXTNVM7, mac_reg);
1260
1261 /* Commit ULP changes in PHY by starting auto ULP configuration */
1262 phy_reg |= I218_ULP_CONFIG1_START;
1263 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1264
1265 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1266 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1267 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1268 oem_reg);
1269 if (ret_val)
1270 goto release;
1271 }
1272
1273 release:
1274 hw->phy.ops.release(hw);
1275 out:
1276 if (ret_val)
1277 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1278 else
1279 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1280
1281 return ret_val;
1282 }
1283
1284 /**
1285 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1286 * @hw: pointer to the HW structure
1287 * @force: boolean indicating whether or not to force disabling ULP
1288 *
1289 * Un-configure ULP mode when link is up, the system is transitioned from
1290 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1291 * system, poll for an indication from ME that ULP has been un-configured.
1292 * If not on an ME enabled system, un-configure the ULP mode by software.
1293 *
1294 * During nominal operation, this function is called when link is acquired
1295 * to disable ULP mode (force=false); otherwise, for example when unloading
1296 * the driver or during Sx->S0 transitions, this is called with force=true
1297 * to forcibly disable ULP.
1298 */
e1000_disable_ulp_lpt_lp(struct e1000_hw * hw,bool force)1299 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1300 {
1301 s32 ret_val = 0;
1302 u32 mac_reg;
1303 u16 phy_reg;
1304 int i = 0;
1305
1306 if ((hw->mac.type < e1000_pch_lpt) ||
1307 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1308 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1309 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1310 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1311 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1312 return 0;
1313
1314 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1315 struct e1000_adapter *adapter = hw->adapter;
1316 bool firmware_bug = false;
1317
1318 if (force) {
1319 /* Request ME un-configure ULP mode in the PHY */
1320 mac_reg = er32(H2ME);
1321 mac_reg &= ~E1000_H2ME_ULP;
1322 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1323 ew32(H2ME, mac_reg);
1324 }
1325
1326 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1327 * If this takes more than 1 second, show a warning indicating a
1328 * firmware bug
1329 */
1330 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1331 if (i++ == 250) {
1332 ret_val = -E1000_ERR_PHY;
1333 goto out;
1334 }
1335 if (i > 100 && !firmware_bug)
1336 firmware_bug = true;
1337
1338 usleep_range(10000, 11000);
1339 }
1340 if (firmware_bug)
1341 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1342 i * 10);
1343 else
1344 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1345 i * 10);
1346
1347 if (force) {
1348 mac_reg = er32(H2ME);
1349 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1350 ew32(H2ME, mac_reg);
1351 } else {
1352 /* Clear H2ME.ULP after ME ULP configuration */
1353 mac_reg = er32(H2ME);
1354 mac_reg &= ~E1000_H2ME_ULP;
1355 ew32(H2ME, mac_reg);
1356 }
1357
1358 goto out;
1359 }
1360
1361 ret_val = hw->phy.ops.acquire(hw);
1362 if (ret_val)
1363 goto out;
1364
1365 if (force)
1366 /* Toggle LANPHYPC Value bit */
1367 e1000_toggle_lanphypc_pch_lpt(hw);
1368
1369 /* Switching PHY interface always returns MDI error
1370 * so disable retry mechanism to avoid wasting time
1371 */
1372 e1000e_disable_phy_retry(hw);
1373
1374 /* Unforce SMBus mode in PHY */
1375 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1376 if (ret_val) {
1377 /* The MAC might be in PCIe mode, so temporarily force to
1378 * SMBus mode in order to access the PHY.
1379 */
1380 mac_reg = er32(CTRL_EXT);
1381 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1382 ew32(CTRL_EXT, mac_reg);
1383
1384 msleep(50);
1385
1386 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1387 &phy_reg);
1388 if (ret_val)
1389 goto release;
1390 }
1391 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1392 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1393
1394 e1000e_enable_phy_retry(hw);
1395
1396 /* Unforce SMBus mode in MAC */
1397 mac_reg = er32(CTRL_EXT);
1398 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1399 ew32(CTRL_EXT, mac_reg);
1400
1401 /* When ULP mode was previously entered, K1 was disabled by the
1402 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1403 */
1404 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1405 if (ret_val)
1406 goto release;
1407 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1408 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1409
1410 /* Clear ULP enabled configuration */
1411 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1412 if (ret_val)
1413 goto release;
1414 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1415 I218_ULP_CONFIG1_STICKY_ULP |
1416 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1417 I218_ULP_CONFIG1_WOL_HOST |
1418 I218_ULP_CONFIG1_INBAND_EXIT |
1419 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1420 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1421 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1422 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1423
1424 /* Commit ULP changes by starting auto ULP configuration */
1425 phy_reg |= I218_ULP_CONFIG1_START;
1426 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1427
1428 /* Clear Disable SMBus Release on PERST# in MAC */
1429 mac_reg = er32(FEXTNVM7);
1430 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1431 ew32(FEXTNVM7, mac_reg);
1432
1433 release:
1434 hw->phy.ops.release(hw);
1435 if (force) {
1436 e1000_phy_hw_reset(hw);
1437 msleep(50);
1438 }
1439 out:
1440 if (ret_val)
1441 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1442 else
1443 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1444
1445 return ret_val;
1446 }
1447
1448 /**
1449 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1450 * @hw: pointer to the HW structure
1451 *
1452 * Checks to see of the link status of the hardware has changed. If a
1453 * change in link status has been detected, then we read the PHY registers
1454 * to get the current speed/duplex if link exists.
1455 **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)1456 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1457 {
1458 struct e1000_mac_info *mac = &hw->mac;
1459 s32 ret_val, tipg_reg = 0;
1460 u16 emi_addr, emi_val = 0;
1461 bool link;
1462 u16 phy_reg;
1463
1464 /* We only want to go out to the PHY registers to see if Auto-Neg
1465 * has completed and/or if our link status has changed. The
1466 * get_link_status flag is set upon receiving a Link Status
1467 * Change or Rx Sequence Error interrupt.
1468 */
1469 if (!mac->get_link_status)
1470 return 0;
1471 mac->get_link_status = false;
1472
1473 /* First we want to see if the MII Status Register reports
1474 * link. If so, then we want to get the current speed/duplex
1475 * of the PHY.
1476 */
1477 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1478 if (ret_val)
1479 goto out;
1480
1481 if (hw->mac.type == e1000_pchlan) {
1482 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1483 if (ret_val)
1484 goto out;
1485 }
1486
1487 /* When connected at 10Mbps half-duplex, some parts are excessively
1488 * aggressive resulting in many collisions. To avoid this, increase
1489 * the IPG and reduce Rx latency in the PHY.
1490 */
1491 if ((hw->mac.type >= e1000_pch2lan) && link) {
1492 u16 speed, duplex;
1493
1494 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1495 tipg_reg = er32(TIPG);
1496 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1497
1498 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1499 tipg_reg |= 0xFF;
1500 /* Reduce Rx latency in analog PHY */
1501 emi_val = 0;
1502 } else if (hw->mac.type >= e1000_pch_spt &&
1503 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1504 tipg_reg |= 0xC;
1505 emi_val = 1;
1506 } else {
1507
1508 /* Roll back the default values */
1509 tipg_reg |= 0x08;
1510 emi_val = 1;
1511 }
1512
1513 ew32(TIPG, tipg_reg);
1514
1515 ret_val = hw->phy.ops.acquire(hw);
1516 if (ret_val)
1517 goto out;
1518
1519 if (hw->mac.type == e1000_pch2lan)
1520 emi_addr = I82579_RX_CONFIG;
1521 else
1522 emi_addr = I217_RX_CONFIG;
1523 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1524
1525 if (hw->mac.type >= e1000_pch_lpt) {
1526 u16 phy_reg;
1527
1528 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1529 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1530 if (speed == SPEED_100 || speed == SPEED_10)
1531 phy_reg |= 0x3E8;
1532 else
1533 phy_reg |= 0xFA;
1534 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1535
1536 if (speed == SPEED_1000) {
1537 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1538 &phy_reg);
1539
1540 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1541
1542 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1543 phy_reg);
1544 }
1545 }
1546 hw->phy.ops.release(hw);
1547
1548 if (ret_val)
1549 goto out;
1550
1551 if (hw->mac.type >= e1000_pch_spt) {
1552 u16 data;
1553 u16 ptr_gap;
1554
1555 if (speed == SPEED_1000) {
1556 ret_val = hw->phy.ops.acquire(hw);
1557 if (ret_val)
1558 goto out;
1559
1560 ret_val = e1e_rphy_locked(hw,
1561 PHY_REG(776, 20),
1562 &data);
1563 if (ret_val) {
1564 hw->phy.ops.release(hw);
1565 goto out;
1566 }
1567
1568 ptr_gap = (data & (0x3FF << 2)) >> 2;
1569 if (ptr_gap < 0x18) {
1570 data &= ~(0x3FF << 2);
1571 data |= (0x18 << 2);
1572 ret_val =
1573 e1e_wphy_locked(hw,
1574 PHY_REG(776, 20),
1575 data);
1576 }
1577 hw->phy.ops.release(hw);
1578 if (ret_val)
1579 goto out;
1580 } else {
1581 ret_val = hw->phy.ops.acquire(hw);
1582 if (ret_val)
1583 goto out;
1584
1585 ret_val = e1e_wphy_locked(hw,
1586 PHY_REG(776, 20),
1587 0xC023);
1588 hw->phy.ops.release(hw);
1589 if (ret_val)
1590 goto out;
1591
1592 }
1593 }
1594 }
1595
1596 /* I217 Packet Loss issue:
1597 * ensure that FEXTNVM4 Beacon Duration is set correctly
1598 * on power up.
1599 * Set the Beacon Duration for I217 to 8 usec
1600 */
1601 if (hw->mac.type >= e1000_pch_lpt) {
1602 u32 mac_reg;
1603
1604 mac_reg = er32(FEXTNVM4);
1605 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1606 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1607 ew32(FEXTNVM4, mac_reg);
1608 }
1609
1610 /* Work-around I218 hang issue */
1611 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1612 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1613 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1614 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1615 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1616 if (ret_val)
1617 goto out;
1618 }
1619 if (hw->mac.type >= e1000_pch_lpt) {
1620 /* Set platform power management values for
1621 * Latency Tolerance Reporting (LTR)
1622 */
1623 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1624 if (ret_val)
1625 goto out;
1626 }
1627
1628 /* Clear link partner's EEE ability */
1629 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1630
1631 if (hw->mac.type >= e1000_pch_lpt) {
1632 u32 fextnvm6 = er32(FEXTNVM6);
1633
1634 if (hw->mac.type == e1000_pch_spt) {
1635 /* FEXTNVM6 K1-off workaround - for SPT only */
1636 u32 pcieanacfg = er32(PCIEANACFG);
1637
1638 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1639 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1640 else
1641 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1642 }
1643
1644 ew32(FEXTNVM6, fextnvm6);
1645 }
1646
1647 if (!link)
1648 goto out;
1649
1650 switch (hw->mac.type) {
1651 case e1000_pch2lan:
1652 ret_val = e1000_k1_workaround_lv(hw);
1653 if (ret_val)
1654 return ret_val;
1655 fallthrough;
1656 case e1000_pchlan:
1657 if (hw->phy.type == e1000_phy_82578) {
1658 ret_val = e1000_link_stall_workaround_hv(hw);
1659 if (ret_val)
1660 return ret_val;
1661 }
1662
1663 /* Workaround for PCHx parts in half-duplex:
1664 * Set the number of preambles removed from the packet
1665 * when it is passed from the PHY to the MAC to prevent
1666 * the MAC from misinterpreting the packet type.
1667 */
1668 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1669 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1670
1671 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1672 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1673
1674 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1675 break;
1676 default:
1677 break;
1678 }
1679
1680 /* Check if there was DownShift, must be checked
1681 * immediately after link-up
1682 */
1683 e1000e_check_downshift(hw);
1684
1685 /* Enable/Disable EEE after link up */
1686 if (hw->phy.type > e1000_phy_82579) {
1687 ret_val = e1000_set_eee_pchlan(hw);
1688 if (ret_val)
1689 return ret_val;
1690 }
1691
1692 /* If we are forcing speed/duplex, then we simply return since
1693 * we have already determined whether we have link or not.
1694 */
1695 if (!mac->autoneg)
1696 return -E1000_ERR_CONFIG;
1697
1698 /* Auto-Neg is enabled. Auto Speed Detection takes care
1699 * of MAC speed/duplex configuration. So we only need to
1700 * configure Collision Distance in the MAC.
1701 */
1702 mac->ops.config_collision_dist(hw);
1703
1704 /* Configure Flow Control now that Auto-Neg has completed.
1705 * First, we need to restore the desired flow control
1706 * settings because we may have had to re-autoneg with a
1707 * different link partner.
1708 */
1709 ret_val = e1000e_config_fc_after_link_up(hw);
1710 if (ret_val)
1711 e_dbg("Error configuring flow control\n");
1712
1713 return ret_val;
1714
1715 out:
1716 mac->get_link_status = true;
1717 return ret_val;
1718 }
1719
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)1720 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1721 {
1722 struct e1000_hw *hw = &adapter->hw;
1723 s32 rc;
1724
1725 rc = e1000_init_mac_params_ich8lan(hw);
1726 if (rc)
1727 return rc;
1728
1729 rc = e1000_init_nvm_params_ich8lan(hw);
1730 if (rc)
1731 return rc;
1732
1733 switch (hw->mac.type) {
1734 case e1000_ich8lan:
1735 case e1000_ich9lan:
1736 case e1000_ich10lan:
1737 rc = e1000_init_phy_params_ich8lan(hw);
1738 break;
1739 case e1000_pchlan:
1740 case e1000_pch2lan:
1741 case e1000_pch_lpt:
1742 case e1000_pch_spt:
1743 case e1000_pch_cnp:
1744 case e1000_pch_tgp:
1745 case e1000_pch_adp:
1746 case e1000_pch_mtp:
1747 case e1000_pch_lnp:
1748 case e1000_pch_ptp:
1749 case e1000_pch_nvp:
1750 rc = e1000_init_phy_params_pchlan(hw);
1751 break;
1752 default:
1753 break;
1754 }
1755 if (rc)
1756 return rc;
1757
1758 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1759 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1760 */
1761 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1762 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1763 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1764 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1765 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1766
1767 hw->mac.ops.blink_led = NULL;
1768 }
1769
1770 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1771 (adapter->hw.phy.type != e1000_phy_ife))
1772 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1773
1774 /* Enable workaround for 82579 w/ ME enabled */
1775 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1776 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1777 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1778
1779 return 0;
1780 }
1781
1782 static DEFINE_MUTEX(nvm_mutex);
1783
1784 /**
1785 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1786 * @hw: pointer to the HW structure
1787 *
1788 * Acquires the mutex for performing NVM operations.
1789 **/
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused * hw)1790 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1791 {
1792 mutex_lock(&nvm_mutex);
1793
1794 return 0;
1795 }
1796
1797 /**
1798 * e1000_release_nvm_ich8lan - Release NVM mutex
1799 * @hw: pointer to the HW structure
1800 *
1801 * Releases the mutex used while performing NVM operations.
1802 **/
e1000_release_nvm_ich8lan(struct e1000_hw __always_unused * hw)1803 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1804 {
1805 mutex_unlock(&nvm_mutex);
1806 }
1807
1808 /**
1809 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1810 * @hw: pointer to the HW structure
1811 *
1812 * Acquires the software control flag for performing PHY and select
1813 * MAC CSR accesses.
1814 **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)1815 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1816 {
1817 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1818 s32 ret_val = 0;
1819
1820 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1821 &hw->adapter->state)) {
1822 e_dbg("contention for Phy access\n");
1823 return -E1000_ERR_PHY;
1824 }
1825
1826 while (timeout) {
1827 extcnf_ctrl = er32(EXTCNF_CTRL);
1828 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1829 break;
1830
1831 mdelay(1);
1832 timeout--;
1833 }
1834
1835 if (!timeout) {
1836 e_dbg("SW has already locked the resource.\n");
1837 ret_val = -E1000_ERR_CONFIG;
1838 goto out;
1839 }
1840
1841 timeout = SW_FLAG_TIMEOUT;
1842
1843 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1844 ew32(EXTCNF_CTRL, extcnf_ctrl);
1845
1846 while (timeout) {
1847 extcnf_ctrl = er32(EXTCNF_CTRL);
1848 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1849 break;
1850
1851 mdelay(1);
1852 timeout--;
1853 }
1854
1855 if (!timeout) {
1856 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1857 er32(FWSM), extcnf_ctrl);
1858 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1859 ew32(EXTCNF_CTRL, extcnf_ctrl);
1860 ret_val = -E1000_ERR_CONFIG;
1861 goto out;
1862 }
1863
1864 out:
1865 if (ret_val)
1866 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1867
1868 return ret_val;
1869 }
1870
1871 /**
1872 * e1000_release_swflag_ich8lan - Release software control flag
1873 * @hw: pointer to the HW structure
1874 *
1875 * Releases the software control flag for performing PHY and select
1876 * MAC CSR accesses.
1877 **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)1878 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1879 {
1880 u32 extcnf_ctrl;
1881
1882 extcnf_ctrl = er32(EXTCNF_CTRL);
1883
1884 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1885 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1886 ew32(EXTCNF_CTRL, extcnf_ctrl);
1887 } else {
1888 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1889 }
1890
1891 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1892 }
1893
1894 /**
1895 * e1000_check_mng_mode_ich8lan - Checks management mode
1896 * @hw: pointer to the HW structure
1897 *
1898 * This checks if the adapter has any manageability enabled.
1899 * This is a function pointer entry point only called by read/write
1900 * routines for the PHY and NVM parts.
1901 **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)1902 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1903 {
1904 u32 fwsm;
1905
1906 fwsm = er32(FWSM);
1907 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1908 ((fwsm & E1000_FWSM_MODE_MASK) ==
1909 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1910 }
1911
1912 /**
1913 * e1000_check_mng_mode_pchlan - Checks management mode
1914 * @hw: pointer to the HW structure
1915 *
1916 * This checks if the adapter has iAMT enabled.
1917 * This is a function pointer entry point only called by read/write
1918 * routines for the PHY and NVM parts.
1919 **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)1920 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1921 {
1922 u32 fwsm;
1923
1924 fwsm = er32(FWSM);
1925 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1926 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1927 }
1928
1929 /**
1930 * e1000_rar_set_pch2lan - Set receive address register
1931 * @hw: pointer to the HW structure
1932 * @addr: pointer to the receive address
1933 * @index: receive address array register
1934 *
1935 * Sets the receive address array register at index to the address passed
1936 * in by addr. For 82579, RAR[0] is the base address register that is to
1937 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1938 * Use SHRA[0-3] in place of those reserved for ME.
1939 **/
e1000_rar_set_pch2lan(struct e1000_hw * hw,u8 * addr,u32 index)1940 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1941 {
1942 u32 rar_low, rar_high;
1943
1944 /* HW expects these in little endian so we reverse the byte order
1945 * from network order (big endian) to little endian
1946 */
1947 rar_low = ((u32)addr[0] |
1948 ((u32)addr[1] << 8) |
1949 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1950
1951 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1952
1953 /* If MAC address zero, no need to set the AV bit */
1954 if (rar_low || rar_high)
1955 rar_high |= E1000_RAH_AV;
1956
1957 if (index == 0) {
1958 ew32(RAL(index), rar_low);
1959 e1e_flush();
1960 ew32(RAH(index), rar_high);
1961 e1e_flush();
1962 return 0;
1963 }
1964
1965 /* RAR[1-6] are owned by manageability. Skip those and program the
1966 * next address into the SHRA register array.
1967 */
1968 if (index < (u32)(hw->mac.rar_entry_count)) {
1969 s32 ret_val;
1970
1971 ret_val = e1000_acquire_swflag_ich8lan(hw);
1972 if (ret_val)
1973 goto out;
1974
1975 ew32(SHRAL(index - 1), rar_low);
1976 e1e_flush();
1977 ew32(SHRAH(index - 1), rar_high);
1978 e1e_flush();
1979
1980 e1000_release_swflag_ich8lan(hw);
1981
1982 /* verify the register updates */
1983 if ((er32(SHRAL(index - 1)) == rar_low) &&
1984 (er32(SHRAH(index - 1)) == rar_high))
1985 return 0;
1986
1987 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1988 (index - 1), er32(FWSM));
1989 }
1990
1991 out:
1992 e_dbg("Failed to write receive address at index %d\n", index);
1993 return -E1000_ERR_CONFIG;
1994 }
1995
1996 /**
1997 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1998 * @hw: pointer to the HW structure
1999 *
2000 * Get the number of available receive registers that the Host can
2001 * program. SHRA[0-10] are the shared receive address registers
2002 * that are shared between the Host and manageability engine (ME).
2003 * ME can reserve any number of addresses and the host needs to be
2004 * able to tell how many available registers it has access to.
2005 **/
e1000_rar_get_count_pch_lpt(struct e1000_hw * hw)2006 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
2007 {
2008 u32 wlock_mac;
2009 u32 num_entries;
2010
2011 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2012 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2013
2014 switch (wlock_mac) {
2015 case 0:
2016 /* All SHRA[0..10] and RAR[0] available */
2017 num_entries = hw->mac.rar_entry_count;
2018 break;
2019 case 1:
2020 /* Only RAR[0] available */
2021 num_entries = 1;
2022 break;
2023 default:
2024 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
2025 num_entries = wlock_mac + 1;
2026 break;
2027 }
2028
2029 return num_entries;
2030 }
2031
2032 /**
2033 * e1000_rar_set_pch_lpt - Set receive address registers
2034 * @hw: pointer to the HW structure
2035 * @addr: pointer to the receive address
2036 * @index: receive address array register
2037 *
2038 * Sets the receive address register array at index to the address passed
2039 * in by addr. For LPT, RAR[0] is the base address register that is to
2040 * contain the MAC address. SHRA[0-10] are the shared receive address
2041 * registers that are shared between the Host and manageability engine (ME).
2042 **/
e1000_rar_set_pch_lpt(struct e1000_hw * hw,u8 * addr,u32 index)2043 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
2044 {
2045 u32 rar_low, rar_high;
2046 u32 wlock_mac;
2047
2048 /* HW expects these in little endian so we reverse the byte order
2049 * from network order (big endian) to little endian
2050 */
2051 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2052 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2053
2054 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2055
2056 /* If MAC address zero, no need to set the AV bit */
2057 if (rar_low || rar_high)
2058 rar_high |= E1000_RAH_AV;
2059
2060 if (index == 0) {
2061 ew32(RAL(index), rar_low);
2062 e1e_flush();
2063 ew32(RAH(index), rar_high);
2064 e1e_flush();
2065 return 0;
2066 }
2067
2068 /* The manageability engine (ME) can lock certain SHRAR registers that
2069 * it is using - those registers are unavailable for use.
2070 */
2071 if (index < hw->mac.rar_entry_count) {
2072 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2073 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2074
2075 /* Check if all SHRAR registers are locked */
2076 if (wlock_mac == 1)
2077 goto out;
2078
2079 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2080 s32 ret_val;
2081
2082 ret_val = e1000_acquire_swflag_ich8lan(hw);
2083
2084 if (ret_val)
2085 goto out;
2086
2087 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2088 e1e_flush();
2089 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2090 e1e_flush();
2091
2092 e1000_release_swflag_ich8lan(hw);
2093
2094 /* verify the register updates */
2095 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2096 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2097 return 0;
2098 }
2099 }
2100
2101 out:
2102 e_dbg("Failed to write receive address at index %d\n", index);
2103 return -E1000_ERR_CONFIG;
2104 }
2105
2106 /**
2107 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2108 * @hw: pointer to the HW structure
2109 *
2110 * Checks if firmware is blocking the reset of the PHY.
2111 * This is a function pointer entry point only called by
2112 * reset routines.
2113 **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)2114 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2115 {
2116 bool blocked = false;
2117 int i = 0;
2118
2119 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2120 (i++ < 30))
2121 usleep_range(10000, 11000);
2122 return blocked ? E1000_BLK_PHY_RESET : 0;
2123 }
2124
2125 /**
2126 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2127 * @hw: pointer to the HW structure
2128 *
2129 * Assumes semaphore already acquired.
2130 *
2131 **/
e1000_write_smbus_addr(struct e1000_hw * hw)2132 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2133 {
2134 u16 phy_data;
2135 u32 strap = er32(STRAP);
2136 u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
2137 s32 ret_val;
2138
2139 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2140
2141 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2142 if (ret_val)
2143 return ret_val;
2144
2145 phy_data &= ~HV_SMB_ADDR_MASK;
2146 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2147 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2148
2149 if (hw->phy.type == e1000_phy_i217) {
2150 /* Restore SMBus frequency */
2151 if (freq--) {
2152 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2153 phy_data |= (freq & BIT(0)) <<
2154 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2155 phy_data |= (freq & BIT(1)) <<
2156 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2157 } else {
2158 e_dbg("Unsupported SMB frequency in PHY\n");
2159 }
2160 }
2161
2162 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2163 }
2164
2165 /**
2166 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2167 * @hw: pointer to the HW structure
2168 *
2169 * SW should configure the LCD from the NVM extended configuration region
2170 * as a workaround for certain parts.
2171 **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)2172 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2173 {
2174 struct e1000_phy_info *phy = &hw->phy;
2175 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2176 s32 ret_val = 0;
2177 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2178
2179 /* Initialize the PHY from the NVM on ICH platforms. This
2180 * is needed due to an issue where the NVM configuration is
2181 * not properly autoloaded after power transitions.
2182 * Therefore, after each PHY reset, we will load the
2183 * configuration data out of the NVM manually.
2184 */
2185 switch (hw->mac.type) {
2186 case e1000_ich8lan:
2187 if (phy->type != e1000_phy_igp_3)
2188 return ret_val;
2189
2190 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2191 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2192 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2193 break;
2194 }
2195 fallthrough;
2196 case e1000_pchlan:
2197 case e1000_pch2lan:
2198 case e1000_pch_lpt:
2199 case e1000_pch_spt:
2200 case e1000_pch_cnp:
2201 case e1000_pch_tgp:
2202 case e1000_pch_adp:
2203 case e1000_pch_mtp:
2204 case e1000_pch_lnp:
2205 case e1000_pch_ptp:
2206 case e1000_pch_nvp:
2207 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2208 break;
2209 default:
2210 return ret_val;
2211 }
2212
2213 ret_val = hw->phy.ops.acquire(hw);
2214 if (ret_val)
2215 return ret_val;
2216
2217 data = er32(FEXTNVM);
2218 if (!(data & sw_cfg_mask))
2219 goto release;
2220
2221 /* Make sure HW does not configure LCD from PHY
2222 * extended configuration before SW configuration
2223 */
2224 data = er32(EXTCNF_CTRL);
2225 if ((hw->mac.type < e1000_pch2lan) &&
2226 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2227 goto release;
2228
2229 cnf_size = er32(EXTCNF_SIZE);
2230 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2231 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2232 if (!cnf_size)
2233 goto release;
2234
2235 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2236 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2237
2238 if (((hw->mac.type == e1000_pchlan) &&
2239 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2240 (hw->mac.type > e1000_pchlan)) {
2241 /* HW configures the SMBus address and LEDs when the
2242 * OEM and LCD Write Enable bits are set in the NVM.
2243 * When both NVM bits are cleared, SW will configure
2244 * them instead.
2245 */
2246 ret_val = e1000_write_smbus_addr(hw);
2247 if (ret_val)
2248 goto release;
2249
2250 data = er32(LEDCTL);
2251 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2252 (u16)data);
2253 if (ret_val)
2254 goto release;
2255 }
2256
2257 /* Configure LCD from extended configuration region. */
2258
2259 /* cnf_base_addr is in DWORD */
2260 word_addr = (u16)(cnf_base_addr << 1);
2261
2262 for (i = 0; i < cnf_size; i++) {
2263 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data);
2264 if (ret_val)
2265 goto release;
2266
2267 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2268 1, ®_addr);
2269 if (ret_val)
2270 goto release;
2271
2272 /* Save off the PHY page for future writes. */
2273 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2274 phy_page = reg_data;
2275 continue;
2276 }
2277
2278 reg_addr &= PHY_REG_MASK;
2279 reg_addr |= phy_page;
2280
2281 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2282 if (ret_val)
2283 goto release;
2284 }
2285
2286 release:
2287 hw->phy.ops.release(hw);
2288 return ret_val;
2289 }
2290
2291 /**
2292 * e1000_k1_gig_workaround_hv - K1 Si workaround
2293 * @hw: pointer to the HW structure
2294 * @link: link up bool flag
2295 *
2296 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2297 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2298 * If link is down, the function will restore the default K1 setting located
2299 * in the NVM.
2300 **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)2301 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2302 {
2303 s32 ret_val = 0;
2304 u16 status_reg = 0;
2305 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2306
2307 if (hw->mac.type != e1000_pchlan)
2308 return 0;
2309
2310 /* Wrap the whole flow with the sw flag */
2311 ret_val = hw->phy.ops.acquire(hw);
2312 if (ret_val)
2313 return ret_val;
2314
2315 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2316 if (link) {
2317 if (hw->phy.type == e1000_phy_82578) {
2318 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2319 &status_reg);
2320 if (ret_val)
2321 goto release;
2322
2323 status_reg &= (BM_CS_STATUS_LINK_UP |
2324 BM_CS_STATUS_RESOLVED |
2325 BM_CS_STATUS_SPEED_MASK);
2326
2327 if (status_reg == (BM_CS_STATUS_LINK_UP |
2328 BM_CS_STATUS_RESOLVED |
2329 BM_CS_STATUS_SPEED_1000))
2330 k1_enable = false;
2331 }
2332
2333 if (hw->phy.type == e1000_phy_82577) {
2334 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2335 if (ret_val)
2336 goto release;
2337
2338 status_reg &= (HV_M_STATUS_LINK_UP |
2339 HV_M_STATUS_AUTONEG_COMPLETE |
2340 HV_M_STATUS_SPEED_MASK);
2341
2342 if (status_reg == (HV_M_STATUS_LINK_UP |
2343 HV_M_STATUS_AUTONEG_COMPLETE |
2344 HV_M_STATUS_SPEED_1000))
2345 k1_enable = false;
2346 }
2347
2348 /* Link stall fix for link up */
2349 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2350 if (ret_val)
2351 goto release;
2352
2353 } else {
2354 /* Link stall fix for link down */
2355 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2356 if (ret_val)
2357 goto release;
2358 }
2359
2360 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2361
2362 release:
2363 hw->phy.ops.release(hw);
2364
2365 return ret_val;
2366 }
2367
2368 /**
2369 * e1000_configure_k1_ich8lan - Configure K1 power state
2370 * @hw: pointer to the HW structure
2371 * @k1_enable: K1 state to configure
2372 *
2373 * Configure the K1 power state based on the provided parameter.
2374 * Assumes semaphore already acquired.
2375 *
2376 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2377 **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)2378 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2379 {
2380 s32 ret_val;
2381 u32 ctrl_reg = 0;
2382 u32 ctrl_ext = 0;
2383 u32 reg = 0;
2384 u16 kmrn_reg = 0;
2385
2386 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2387 &kmrn_reg);
2388 if (ret_val)
2389 return ret_val;
2390
2391 if (k1_enable)
2392 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2393 else
2394 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2395
2396 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2397 kmrn_reg);
2398 if (ret_val)
2399 return ret_val;
2400
2401 usleep_range(20, 40);
2402 ctrl_ext = er32(CTRL_EXT);
2403 ctrl_reg = er32(CTRL);
2404
2405 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2406 reg |= E1000_CTRL_FRCSPD;
2407 ew32(CTRL, reg);
2408
2409 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2410 e1e_flush();
2411 usleep_range(20, 40);
2412 ew32(CTRL, ctrl_reg);
2413 ew32(CTRL_EXT, ctrl_ext);
2414 e1e_flush();
2415 usleep_range(20, 40);
2416
2417 return 0;
2418 }
2419
2420 /**
2421 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2422 * @hw: pointer to the HW structure
2423 * @d0_state: boolean if entering d0 or d3 device state
2424 *
2425 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2426 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2427 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2428 **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)2429 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2430 {
2431 s32 ret_val = 0;
2432 u32 mac_reg;
2433 u16 oem_reg;
2434
2435 if (hw->mac.type < e1000_pchlan)
2436 return ret_val;
2437
2438 ret_val = hw->phy.ops.acquire(hw);
2439 if (ret_val)
2440 return ret_val;
2441
2442 if (hw->mac.type == e1000_pchlan) {
2443 mac_reg = er32(EXTCNF_CTRL);
2444 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2445 goto release;
2446 }
2447
2448 mac_reg = er32(FEXTNVM);
2449 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2450 goto release;
2451
2452 mac_reg = er32(PHY_CTRL);
2453
2454 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2455 if (ret_val)
2456 goto release;
2457
2458 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2459
2460 if (d0_state) {
2461 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2462 oem_reg |= HV_OEM_BITS_GBE_DIS;
2463
2464 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2465 oem_reg |= HV_OEM_BITS_LPLU;
2466 } else {
2467 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2468 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2469 oem_reg |= HV_OEM_BITS_GBE_DIS;
2470
2471 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2472 E1000_PHY_CTRL_NOND0A_LPLU))
2473 oem_reg |= HV_OEM_BITS_LPLU;
2474 }
2475
2476 /* Set Restart auto-neg to activate the bits */
2477 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2478 !hw->phy.ops.check_reset_block(hw))
2479 oem_reg |= HV_OEM_BITS_RESTART_AN;
2480
2481 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2482
2483 release:
2484 hw->phy.ops.release(hw);
2485
2486 return ret_val;
2487 }
2488
2489 /**
2490 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2491 * @hw: pointer to the HW structure
2492 **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)2493 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2494 {
2495 s32 ret_val;
2496 u16 data;
2497
2498 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2499 if (ret_val)
2500 return ret_val;
2501
2502 data |= HV_KMRN_MDIO_SLOW;
2503
2504 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2505
2506 return ret_val;
2507 }
2508
2509 /**
2510 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2511 * @hw: pointer to the HW structure
2512 *
2513 * A series of PHY workarounds to be done after every PHY reset.
2514 **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)2515 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2516 {
2517 s32 ret_val = 0;
2518 u16 phy_data;
2519
2520 if (hw->mac.type != e1000_pchlan)
2521 return 0;
2522
2523 /* Set MDIO slow mode before any other MDIO access */
2524 if (hw->phy.type == e1000_phy_82577) {
2525 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2526 if (ret_val)
2527 return ret_val;
2528 }
2529
2530 if (((hw->phy.type == e1000_phy_82577) &&
2531 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2532 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2533 /* Disable generation of early preamble */
2534 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2535 if (ret_val)
2536 return ret_val;
2537
2538 /* Preamble tuning for SSC */
2539 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2540 if (ret_val)
2541 return ret_val;
2542 }
2543
2544 if (hw->phy.type == e1000_phy_82578) {
2545 /* Return registers to default by doing a soft reset then
2546 * writing 0x3140 to the control register.
2547 */
2548 if (hw->phy.revision < 2) {
2549 e1000e_phy_sw_reset(hw);
2550 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2551 if (ret_val)
2552 return ret_val;
2553 }
2554 }
2555
2556 /* Select page 0 */
2557 ret_val = hw->phy.ops.acquire(hw);
2558 if (ret_val)
2559 return ret_val;
2560
2561 hw->phy.addr = 1;
2562 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2563 hw->phy.ops.release(hw);
2564 if (ret_val)
2565 return ret_val;
2566
2567 /* Configure the K1 Si workaround during phy reset assuming there is
2568 * link so that it disables K1 if link is in 1Gbps.
2569 */
2570 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2571 if (ret_val)
2572 return ret_val;
2573
2574 /* Workaround for link disconnects on a busy hub in half duplex */
2575 ret_val = hw->phy.ops.acquire(hw);
2576 if (ret_val)
2577 return ret_val;
2578 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2579 if (ret_val)
2580 goto release;
2581 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2582 if (ret_val)
2583 goto release;
2584
2585 /* set MSE higher to enable link to stay up when noise is high */
2586 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2587 release:
2588 hw->phy.ops.release(hw);
2589
2590 return ret_val;
2591 }
2592
2593 /**
2594 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2595 * @hw: pointer to the HW structure
2596 **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)2597 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2598 {
2599 u32 mac_reg;
2600 u16 i, phy_reg = 0;
2601 s32 ret_val;
2602
2603 ret_val = hw->phy.ops.acquire(hw);
2604 if (ret_val)
2605 return;
2606 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2607 if (ret_val)
2608 goto release;
2609
2610 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2611 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2612 mac_reg = er32(RAL(i));
2613 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2614 (u16)(mac_reg & 0xFFFF));
2615 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2616 (u16)((mac_reg >> 16) & 0xFFFF));
2617
2618 mac_reg = er32(RAH(i));
2619 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2620 (u16)(mac_reg & 0xFFFF));
2621 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2622 (u16)((mac_reg & E1000_RAH_AV) >> 16));
2623 }
2624
2625 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2626
2627 release:
2628 hw->phy.ops.release(hw);
2629 }
2630
2631 /**
2632 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2633 * with 82579 PHY
2634 * @hw: pointer to the HW structure
2635 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2636 **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)2637 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2638 {
2639 s32 ret_val = 0;
2640 u16 phy_reg, data;
2641 u32 mac_reg;
2642 u16 i;
2643
2644 if (hw->mac.type < e1000_pch2lan)
2645 return 0;
2646
2647 /* disable Rx path while enabling/disabling workaround */
2648 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2649 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2650 if (ret_val)
2651 return ret_val;
2652
2653 if (enable) {
2654 /* Write Rx addresses (rar_entry_count for RAL/H, and
2655 * SHRAL/H) and initial CRC values to the MAC
2656 */
2657 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2658 u8 mac_addr[ETH_ALEN] = { 0 };
2659 u32 addr_high, addr_low;
2660
2661 addr_high = er32(RAH(i));
2662 if (!(addr_high & E1000_RAH_AV))
2663 continue;
2664 addr_low = er32(RAL(i));
2665 mac_addr[0] = (addr_low & 0xFF);
2666 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2667 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2668 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2669 mac_addr[4] = (addr_high & 0xFF);
2670 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2671
2672 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2673 }
2674
2675 /* Write Rx addresses to the PHY */
2676 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2677
2678 /* Enable jumbo frame workaround in the MAC */
2679 mac_reg = er32(FFLT_DBG);
2680 mac_reg &= ~BIT(14);
2681 mac_reg |= (7 << 15);
2682 ew32(FFLT_DBG, mac_reg);
2683
2684 mac_reg = er32(RCTL);
2685 mac_reg |= E1000_RCTL_SECRC;
2686 ew32(RCTL, mac_reg);
2687
2688 ret_val = e1000e_read_kmrn_reg(hw,
2689 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2690 &data);
2691 if (ret_val)
2692 return ret_val;
2693 ret_val = e1000e_write_kmrn_reg(hw,
2694 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2695 data | BIT(0));
2696 if (ret_val)
2697 return ret_val;
2698 ret_val = e1000e_read_kmrn_reg(hw,
2699 E1000_KMRNCTRLSTA_HD_CTRL,
2700 &data);
2701 if (ret_val)
2702 return ret_val;
2703 data &= ~(0xF << 8);
2704 data |= (0xB << 8);
2705 ret_val = e1000e_write_kmrn_reg(hw,
2706 E1000_KMRNCTRLSTA_HD_CTRL,
2707 data);
2708 if (ret_val)
2709 return ret_val;
2710
2711 /* Enable jumbo frame workaround in the PHY */
2712 e1e_rphy(hw, PHY_REG(769, 23), &data);
2713 data &= ~(0x7F << 5);
2714 data |= (0x37 << 5);
2715 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2716 if (ret_val)
2717 return ret_val;
2718 e1e_rphy(hw, PHY_REG(769, 16), &data);
2719 data &= ~BIT(13);
2720 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2721 if (ret_val)
2722 return ret_val;
2723 e1e_rphy(hw, PHY_REG(776, 20), &data);
2724 data &= ~(0x3FF << 2);
2725 data |= (E1000_TX_PTR_GAP << 2);
2726 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2727 if (ret_val)
2728 return ret_val;
2729 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2730 if (ret_val)
2731 return ret_val;
2732 e1e_rphy(hw, HV_PM_CTRL, &data);
2733 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2734 if (ret_val)
2735 return ret_val;
2736 } else {
2737 /* Write MAC register values back to h/w defaults */
2738 mac_reg = er32(FFLT_DBG);
2739 mac_reg &= ~(0xF << 14);
2740 ew32(FFLT_DBG, mac_reg);
2741
2742 mac_reg = er32(RCTL);
2743 mac_reg &= ~E1000_RCTL_SECRC;
2744 ew32(RCTL, mac_reg);
2745
2746 ret_val = e1000e_read_kmrn_reg(hw,
2747 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2748 &data);
2749 if (ret_val)
2750 return ret_val;
2751 ret_val = e1000e_write_kmrn_reg(hw,
2752 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2753 data & ~BIT(0));
2754 if (ret_val)
2755 return ret_val;
2756 ret_val = e1000e_read_kmrn_reg(hw,
2757 E1000_KMRNCTRLSTA_HD_CTRL,
2758 &data);
2759 if (ret_val)
2760 return ret_val;
2761 data &= ~(0xF << 8);
2762 data |= (0xB << 8);
2763 ret_val = e1000e_write_kmrn_reg(hw,
2764 E1000_KMRNCTRLSTA_HD_CTRL,
2765 data);
2766 if (ret_val)
2767 return ret_val;
2768
2769 /* Write PHY register values back to h/w defaults */
2770 e1e_rphy(hw, PHY_REG(769, 23), &data);
2771 data &= ~(0x7F << 5);
2772 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2773 if (ret_val)
2774 return ret_val;
2775 e1e_rphy(hw, PHY_REG(769, 16), &data);
2776 data |= BIT(13);
2777 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2778 if (ret_val)
2779 return ret_val;
2780 e1e_rphy(hw, PHY_REG(776, 20), &data);
2781 data &= ~(0x3FF << 2);
2782 data |= (0x8 << 2);
2783 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2784 if (ret_val)
2785 return ret_val;
2786 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2787 if (ret_val)
2788 return ret_val;
2789 e1e_rphy(hw, HV_PM_CTRL, &data);
2790 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2791 if (ret_val)
2792 return ret_val;
2793 }
2794
2795 /* re-enable Rx path after enabling/disabling workaround */
2796 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2797 }
2798
2799 /**
2800 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2801 * @hw: pointer to the HW structure
2802 *
2803 * A series of PHY workarounds to be done after every PHY reset.
2804 **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)2805 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2806 {
2807 s32 ret_val = 0;
2808
2809 if (hw->mac.type != e1000_pch2lan)
2810 return 0;
2811
2812 /* Set MDIO slow mode before any other MDIO access */
2813 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2814 if (ret_val)
2815 return ret_val;
2816
2817 ret_val = hw->phy.ops.acquire(hw);
2818 if (ret_val)
2819 return ret_val;
2820 /* set MSE higher to enable link to stay up when noise is high */
2821 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2822 if (ret_val)
2823 goto release;
2824 /* drop link after 5 times MSE threshold was reached */
2825 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2826 release:
2827 hw->phy.ops.release(hw);
2828
2829 return ret_val;
2830 }
2831
2832 /**
2833 * e1000_k1_workaround_lv - K1 Si workaround
2834 * @hw: pointer to the HW structure
2835 *
2836 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2837 * Disable K1 in 1000Mbps and 100Mbps
2838 **/
e1000_k1_workaround_lv(struct e1000_hw * hw)2839 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2840 {
2841 s32 ret_val = 0;
2842 u16 status_reg = 0;
2843
2844 if (hw->mac.type != e1000_pch2lan)
2845 return 0;
2846
2847 /* Set K1 beacon duration based on 10Mbs speed */
2848 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2849 if (ret_val)
2850 return ret_val;
2851
2852 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2853 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2854 if (status_reg &
2855 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2856 u16 pm_phy_reg;
2857
2858 /* LV 1G/100 Packet drop issue wa */
2859 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2860 if (ret_val)
2861 return ret_val;
2862 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2863 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2864 if (ret_val)
2865 return ret_val;
2866 } else {
2867 u32 mac_reg;
2868
2869 mac_reg = er32(FEXTNVM4);
2870 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2871 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2872 ew32(FEXTNVM4, mac_reg);
2873 }
2874 }
2875
2876 return ret_val;
2877 }
2878
2879 /**
2880 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2881 * @hw: pointer to the HW structure
2882 * @gate: boolean set to true to gate, false to ungate
2883 *
2884 * Gate/ungate the automatic PHY configuration via hardware; perform
2885 * the configuration via software instead.
2886 **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)2887 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2888 {
2889 u32 extcnf_ctrl;
2890
2891 if (hw->mac.type < e1000_pch2lan)
2892 return;
2893
2894 extcnf_ctrl = er32(EXTCNF_CTRL);
2895
2896 if (gate)
2897 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2898 else
2899 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2900
2901 ew32(EXTCNF_CTRL, extcnf_ctrl);
2902 }
2903
2904 /**
2905 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2906 * @hw: pointer to the HW structure
2907 *
2908 * Check the appropriate indication the MAC has finished configuring the
2909 * PHY after a software reset.
2910 **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)2911 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2912 {
2913 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2914
2915 /* Wait for basic configuration completes before proceeding */
2916 do {
2917 data = er32(STATUS);
2918 data &= E1000_STATUS_LAN_INIT_DONE;
2919 usleep_range(100, 200);
2920 } while ((!data) && --loop);
2921
2922 /* If basic configuration is incomplete before the above loop
2923 * count reaches 0, loading the configuration from NVM will
2924 * leave the PHY in a bad state possibly resulting in no link.
2925 */
2926 if (loop == 0)
2927 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2928
2929 /* Clear the Init Done bit for the next init event */
2930 data = er32(STATUS);
2931 data &= ~E1000_STATUS_LAN_INIT_DONE;
2932 ew32(STATUS, data);
2933 }
2934
2935 /**
2936 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2937 * @hw: pointer to the HW structure
2938 **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)2939 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2940 {
2941 s32 ret_val = 0;
2942 u16 reg;
2943
2944 if (hw->phy.ops.check_reset_block(hw))
2945 return 0;
2946
2947 /* Allow time for h/w to get to quiescent state after reset */
2948 usleep_range(10000, 11000);
2949
2950 /* Perform any necessary post-reset workarounds */
2951 switch (hw->mac.type) {
2952 case e1000_pchlan:
2953 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2954 if (ret_val)
2955 return ret_val;
2956 break;
2957 case e1000_pch2lan:
2958 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2959 if (ret_val)
2960 return ret_val;
2961 break;
2962 default:
2963 break;
2964 }
2965
2966 /* Clear the host wakeup bit after lcd reset */
2967 if (hw->mac.type >= e1000_pchlan) {
2968 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2969 reg &= ~BM_WUC_HOST_WU_BIT;
2970 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2971 }
2972
2973 /* Configure the LCD with the extended configuration region in NVM */
2974 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2975 if (ret_val)
2976 return ret_val;
2977
2978 /* Configure the LCD with the OEM bits in NVM */
2979 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2980
2981 if (hw->mac.type == e1000_pch2lan) {
2982 /* Ungate automatic PHY configuration on non-managed 82579 */
2983 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2984 usleep_range(10000, 11000);
2985 e1000_gate_hw_phy_config_ich8lan(hw, false);
2986 }
2987
2988 /* Set EEE LPI Update Timer to 200usec */
2989 ret_val = hw->phy.ops.acquire(hw);
2990 if (ret_val)
2991 return ret_val;
2992 ret_val = e1000_write_emi_reg_locked(hw,
2993 I82579_LPI_UPDATE_TIMER,
2994 0x1387);
2995 hw->phy.ops.release(hw);
2996 }
2997
2998 return ret_val;
2999 }
3000
3001 /**
3002 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
3003 * @hw: pointer to the HW structure
3004 *
3005 * Resets the PHY
3006 * This is a function pointer entry point called by drivers
3007 * or other shared routines.
3008 **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)3009 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
3010 {
3011 s32 ret_val = 0;
3012
3013 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
3014 if ((hw->mac.type == e1000_pch2lan) &&
3015 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3016 e1000_gate_hw_phy_config_ich8lan(hw, true);
3017
3018 ret_val = e1000e_phy_hw_reset_generic(hw);
3019 if (ret_val)
3020 return ret_val;
3021
3022 return e1000_post_phy_reset_ich8lan(hw);
3023 }
3024
3025 /**
3026 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
3027 * @hw: pointer to the HW structure
3028 * @active: true to enable LPLU, false to disable
3029 *
3030 * Sets the LPLU state according to the active flag. For PCH, if OEM write
3031 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
3032 * the phy speed. This function will manually set the LPLU bit and restart
3033 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
3034 * since it configures the same bit.
3035 **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)3036 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
3037 {
3038 s32 ret_val;
3039 u16 oem_reg;
3040
3041 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
3042 if (ret_val)
3043 return ret_val;
3044
3045 if (active)
3046 oem_reg |= HV_OEM_BITS_LPLU;
3047 else
3048 oem_reg &= ~HV_OEM_BITS_LPLU;
3049
3050 if (!hw->phy.ops.check_reset_block(hw))
3051 oem_reg |= HV_OEM_BITS_RESTART_AN;
3052
3053 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3054 }
3055
3056 /**
3057 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3058 * @hw: pointer to the HW structure
3059 * @active: true to enable LPLU, false to disable
3060 *
3061 * Sets the LPLU D0 state according to the active flag. When
3062 * activating LPLU this function also disables smart speed
3063 * and vice versa. LPLU will not be activated unless the
3064 * device autonegotiation advertisement meets standards of
3065 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3066 * This is a function pointer entry point only called by
3067 * PHY setup routines.
3068 **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3069 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3070 {
3071 struct e1000_phy_info *phy = &hw->phy;
3072 u32 phy_ctrl;
3073 s32 ret_val = 0;
3074 u16 data;
3075
3076 if (phy->type == e1000_phy_ife)
3077 return 0;
3078
3079 phy_ctrl = er32(PHY_CTRL);
3080
3081 if (active) {
3082 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3083 ew32(PHY_CTRL, phy_ctrl);
3084
3085 if (phy->type != e1000_phy_igp_3)
3086 return 0;
3087
3088 /* Call gig speed drop workaround on LPLU before accessing
3089 * any PHY registers
3090 */
3091 if (hw->mac.type == e1000_ich8lan)
3092 e1000e_gig_downshift_workaround_ich8lan(hw);
3093
3094 /* When LPLU is enabled, we should disable SmartSpeed */
3095 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3096 if (ret_val)
3097 return ret_val;
3098 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3099 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3100 if (ret_val)
3101 return ret_val;
3102 } else {
3103 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3104 ew32(PHY_CTRL, phy_ctrl);
3105
3106 if (phy->type != e1000_phy_igp_3)
3107 return 0;
3108
3109 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3110 * during Dx states where the power conservation is most
3111 * important. During driver activity we should enable
3112 * SmartSpeed, so performance is maintained.
3113 */
3114 if (phy->smart_speed == e1000_smart_speed_on) {
3115 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3116 &data);
3117 if (ret_val)
3118 return ret_val;
3119
3120 data |= IGP01E1000_PSCFR_SMART_SPEED;
3121 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122 data);
3123 if (ret_val)
3124 return ret_val;
3125 } else if (phy->smart_speed == e1000_smart_speed_off) {
3126 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3127 &data);
3128 if (ret_val)
3129 return ret_val;
3130
3131 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3132 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133 data);
3134 if (ret_val)
3135 return ret_val;
3136 }
3137 }
3138
3139 return 0;
3140 }
3141
3142 /**
3143 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3144 * @hw: pointer to the HW structure
3145 * @active: true to enable LPLU, false to disable
3146 *
3147 * Sets the LPLU D3 state according to the active flag. When
3148 * activating LPLU this function also disables smart speed
3149 * and vice versa. LPLU will not be activated unless the
3150 * device autonegotiation advertisement meets standards of
3151 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3152 * This is a function pointer entry point only called by
3153 * PHY setup routines.
3154 **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3155 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3156 {
3157 struct e1000_phy_info *phy = &hw->phy;
3158 u32 phy_ctrl;
3159 s32 ret_val = 0;
3160 u16 data;
3161
3162 phy_ctrl = er32(PHY_CTRL);
3163
3164 if (!active) {
3165 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3166 ew32(PHY_CTRL, phy_ctrl);
3167
3168 if (phy->type != e1000_phy_igp_3)
3169 return 0;
3170
3171 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3172 * during Dx states where the power conservation is most
3173 * important. During driver activity we should enable
3174 * SmartSpeed, so performance is maintained.
3175 */
3176 if (phy->smart_speed == e1000_smart_speed_on) {
3177 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3178 &data);
3179 if (ret_val)
3180 return ret_val;
3181
3182 data |= IGP01E1000_PSCFR_SMART_SPEED;
3183 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3184 data);
3185 if (ret_val)
3186 return ret_val;
3187 } else if (phy->smart_speed == e1000_smart_speed_off) {
3188 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3189 &data);
3190 if (ret_val)
3191 return ret_val;
3192
3193 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3194 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3195 data);
3196 if (ret_val)
3197 return ret_val;
3198 }
3199 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3200 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3201 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3202 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3203 ew32(PHY_CTRL, phy_ctrl);
3204
3205 if (phy->type != e1000_phy_igp_3)
3206 return 0;
3207
3208 /* Call gig speed drop workaround on LPLU before accessing
3209 * any PHY registers
3210 */
3211 if (hw->mac.type == e1000_ich8lan)
3212 e1000e_gig_downshift_workaround_ich8lan(hw);
3213
3214 /* When LPLU is enabled, we should disable SmartSpeed */
3215 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3216 if (ret_val)
3217 return ret_val;
3218
3219 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3220 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3221 }
3222
3223 return ret_val;
3224 }
3225
3226 /**
3227 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3228 * @hw: pointer to the HW structure
3229 * @bank: pointer to the variable that returns the active bank
3230 *
3231 * Reads signature byte from the NVM using the flash access registers.
3232 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3233 **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)3234 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3235 {
3236 u32 eecd;
3237 struct e1000_nvm_info *nvm = &hw->nvm;
3238 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3239 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3240 u32 nvm_dword = 0;
3241 u8 sig_byte = 0;
3242 s32 ret_val;
3243
3244 switch (hw->mac.type) {
3245 case e1000_pch_spt:
3246 case e1000_pch_cnp:
3247 case e1000_pch_tgp:
3248 case e1000_pch_adp:
3249 case e1000_pch_mtp:
3250 case e1000_pch_lnp:
3251 case e1000_pch_ptp:
3252 case e1000_pch_nvp:
3253 bank1_offset = nvm->flash_bank_size;
3254 act_offset = E1000_ICH_NVM_SIG_WORD;
3255
3256 /* set bank to 0 in case flash read fails */
3257 *bank = 0;
3258
3259 /* Check bank 0 */
3260 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3261 &nvm_dword);
3262 if (ret_val)
3263 return ret_val;
3264 sig_byte = FIELD_GET(0xFF00, nvm_dword);
3265 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3266 E1000_ICH_NVM_SIG_VALUE) {
3267 *bank = 0;
3268 return 0;
3269 }
3270
3271 /* Check bank 1 */
3272 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3273 bank1_offset,
3274 &nvm_dword);
3275 if (ret_val)
3276 return ret_val;
3277 sig_byte = FIELD_GET(0xFF00, nvm_dword);
3278 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3279 E1000_ICH_NVM_SIG_VALUE) {
3280 *bank = 1;
3281 return 0;
3282 }
3283
3284 e_dbg("ERROR: No valid NVM bank present\n");
3285 return -E1000_ERR_NVM;
3286 case e1000_ich8lan:
3287 case e1000_ich9lan:
3288 eecd = er32(EECD);
3289 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3290 E1000_EECD_SEC1VAL_VALID_MASK) {
3291 if (eecd & E1000_EECD_SEC1VAL)
3292 *bank = 1;
3293 else
3294 *bank = 0;
3295
3296 return 0;
3297 }
3298 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3299 fallthrough;
3300 default:
3301 /* set bank to 0 in case flash read fails */
3302 *bank = 0;
3303
3304 /* Check bank 0 */
3305 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3306 &sig_byte);
3307 if (ret_val)
3308 return ret_val;
3309 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3310 E1000_ICH_NVM_SIG_VALUE) {
3311 *bank = 0;
3312 return 0;
3313 }
3314
3315 /* Check bank 1 */
3316 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3317 bank1_offset,
3318 &sig_byte);
3319 if (ret_val)
3320 return ret_val;
3321 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3322 E1000_ICH_NVM_SIG_VALUE) {
3323 *bank = 1;
3324 return 0;
3325 }
3326
3327 e_dbg("ERROR: No valid NVM bank present\n");
3328 return -E1000_ERR_NVM;
3329 }
3330 }
3331
3332 /**
3333 * e1000_read_nvm_spt - NVM access for SPT
3334 * @hw: pointer to the HW structure
3335 * @offset: The offset (in bytes) of the word(s) to read.
3336 * @words: Size of data to read in words.
3337 * @data: pointer to the word(s) to read at offset.
3338 *
3339 * Reads a word(s) from the NVM
3340 **/
e1000_read_nvm_spt(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3341 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3342 u16 *data)
3343 {
3344 struct e1000_nvm_info *nvm = &hw->nvm;
3345 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3346 u32 act_offset;
3347 s32 ret_val = 0;
3348 u32 bank = 0;
3349 u32 dword = 0;
3350 u16 offset_to_read;
3351 u16 i;
3352
3353 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3354 (words == 0)) {
3355 e_dbg("nvm parameter(s) out of bounds\n");
3356 ret_val = -E1000_ERR_NVM;
3357 goto out;
3358 }
3359
3360 nvm->ops.acquire(hw);
3361
3362 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3363 if (ret_val) {
3364 e_dbg("Could not detect valid bank, assuming bank 0\n");
3365 bank = 0;
3366 }
3367
3368 act_offset = (bank) ? nvm->flash_bank_size : 0;
3369 act_offset += offset;
3370
3371 ret_val = 0;
3372
3373 for (i = 0; i < words; i += 2) {
3374 if (words - i == 1) {
3375 if (dev_spec->shadow_ram[offset + i].modified) {
3376 data[i] =
3377 dev_spec->shadow_ram[offset + i].value;
3378 } else {
3379 offset_to_read = act_offset + i -
3380 ((act_offset + i) % 2);
3381 ret_val =
3382 e1000_read_flash_dword_ich8lan(hw,
3383 offset_to_read,
3384 &dword);
3385 if (ret_val)
3386 break;
3387 if ((act_offset + i) % 2 == 0)
3388 data[i] = (u16)(dword & 0xFFFF);
3389 else
3390 data[i] = (u16)((dword >> 16) & 0xFFFF);
3391 }
3392 } else {
3393 offset_to_read = act_offset + i;
3394 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3395 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3396 ret_val =
3397 e1000_read_flash_dword_ich8lan(hw,
3398 offset_to_read,
3399 &dword);
3400 if (ret_val)
3401 break;
3402 }
3403 if (dev_spec->shadow_ram[offset + i].modified)
3404 data[i] =
3405 dev_spec->shadow_ram[offset + i].value;
3406 else
3407 data[i] = (u16)(dword & 0xFFFF);
3408 if (dev_spec->shadow_ram[offset + i].modified)
3409 data[i + 1] =
3410 dev_spec->shadow_ram[offset + i + 1].value;
3411 else
3412 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3413 }
3414 }
3415
3416 nvm->ops.release(hw);
3417
3418 out:
3419 if (ret_val)
3420 e_dbg("NVM read error: %d\n", ret_val);
3421
3422 return ret_val;
3423 }
3424
3425 /**
3426 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3427 * @hw: pointer to the HW structure
3428 * @offset: The offset (in bytes) of the word(s) to read.
3429 * @words: Size of data to read in words
3430 * @data: Pointer to the word(s) to read at offset.
3431 *
3432 * Reads a word(s) from the NVM using the flash access registers.
3433 **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3434 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3435 u16 *data)
3436 {
3437 struct e1000_nvm_info *nvm = &hw->nvm;
3438 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3439 u32 act_offset;
3440 s32 ret_val = 0;
3441 u32 bank = 0;
3442 u16 i, word;
3443
3444 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3445 (words == 0)) {
3446 e_dbg("nvm parameter(s) out of bounds\n");
3447 ret_val = -E1000_ERR_NVM;
3448 goto out;
3449 }
3450
3451 nvm->ops.acquire(hw);
3452
3453 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3454 if (ret_val) {
3455 e_dbg("Could not detect valid bank, assuming bank 0\n");
3456 bank = 0;
3457 }
3458
3459 act_offset = (bank) ? nvm->flash_bank_size : 0;
3460 act_offset += offset;
3461
3462 ret_val = 0;
3463 for (i = 0; i < words; i++) {
3464 if (dev_spec->shadow_ram[offset + i].modified) {
3465 data[i] = dev_spec->shadow_ram[offset + i].value;
3466 } else {
3467 ret_val = e1000_read_flash_word_ich8lan(hw,
3468 act_offset + i,
3469 &word);
3470 if (ret_val)
3471 break;
3472 data[i] = word;
3473 }
3474 }
3475
3476 nvm->ops.release(hw);
3477
3478 out:
3479 if (ret_val)
3480 e_dbg("NVM read error: %d\n", ret_val);
3481
3482 return ret_val;
3483 }
3484
3485 /**
3486 * e1000_flash_cycle_init_ich8lan - Initialize flash
3487 * @hw: pointer to the HW structure
3488 *
3489 * This function does initial flash setup so that a new read/write/erase cycle
3490 * can be started.
3491 **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)3492 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3493 {
3494 union ich8_hws_flash_status hsfsts;
3495 s32 ret_val = -E1000_ERR_NVM;
3496
3497 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3498
3499 /* Check if the flash descriptor is valid */
3500 if (!hsfsts.hsf_status.fldesvalid) {
3501 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3502 return -E1000_ERR_NVM;
3503 }
3504
3505 /* Clear FCERR and DAEL in hw status by writing 1 */
3506 hsfsts.hsf_status.flcerr = 1;
3507 hsfsts.hsf_status.dael = 1;
3508 if (hw->mac.type >= e1000_pch_spt)
3509 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3510 else
3511 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3512
3513 /* Either we should have a hardware SPI cycle in progress
3514 * bit to check against, in order to start a new cycle or
3515 * FDONE bit should be changed in the hardware so that it
3516 * is 1 after hardware reset, which can then be used as an
3517 * indication whether a cycle is in progress or has been
3518 * completed.
3519 */
3520
3521 if (!hsfsts.hsf_status.flcinprog) {
3522 /* There is no cycle running at present,
3523 * so we can start a cycle.
3524 * Begin by setting Flash Cycle Done.
3525 */
3526 hsfsts.hsf_status.flcdone = 1;
3527 if (hw->mac.type >= e1000_pch_spt)
3528 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3529 else
3530 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3531 ret_val = 0;
3532 } else {
3533 s32 i;
3534
3535 /* Otherwise poll for sometime so the current
3536 * cycle has a chance to end before giving up.
3537 */
3538 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3539 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3540 if (!hsfsts.hsf_status.flcinprog) {
3541 ret_val = 0;
3542 break;
3543 }
3544 udelay(1);
3545 }
3546 if (!ret_val) {
3547 /* Successful in waiting for previous cycle to timeout,
3548 * now set the Flash Cycle Done.
3549 */
3550 hsfsts.hsf_status.flcdone = 1;
3551 if (hw->mac.type >= e1000_pch_spt)
3552 ew32flash(ICH_FLASH_HSFSTS,
3553 hsfsts.regval & 0xFFFF);
3554 else
3555 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3556 } else {
3557 e_dbg("Flash controller busy, cannot get access\n");
3558 }
3559 }
3560
3561 return ret_val;
3562 }
3563
3564 /**
3565 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3566 * @hw: pointer to the HW structure
3567 * @timeout: maximum time to wait for completion
3568 *
3569 * This function starts a flash cycle and waits for its completion.
3570 **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)3571 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3572 {
3573 union ich8_hws_flash_ctrl hsflctl;
3574 union ich8_hws_flash_status hsfsts;
3575 u32 i = 0;
3576
3577 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3578 if (hw->mac.type >= e1000_pch_spt)
3579 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3580 else
3581 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3582 hsflctl.hsf_ctrl.flcgo = 1;
3583
3584 if (hw->mac.type >= e1000_pch_spt)
3585 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3586 else
3587 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3588
3589 /* wait till FDONE bit is set to 1 */
3590 do {
3591 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3592 if (hsfsts.hsf_status.flcdone)
3593 break;
3594 udelay(1);
3595 } while (i++ < timeout);
3596
3597 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3598 return 0;
3599
3600 return -E1000_ERR_NVM;
3601 }
3602
3603 /**
3604 * e1000_read_flash_dword_ich8lan - Read dword from flash
3605 * @hw: pointer to the HW structure
3606 * @offset: offset to data location
3607 * @data: pointer to the location for storing the data
3608 *
3609 * Reads the flash dword at offset into data. Offset is converted
3610 * to bytes before read.
3611 **/
e1000_read_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3612 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3613 u32 *data)
3614 {
3615 /* Must convert word offset into bytes. */
3616 offset <<= 1;
3617 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3618 }
3619
3620 /**
3621 * e1000_read_flash_word_ich8lan - Read word from flash
3622 * @hw: pointer to the HW structure
3623 * @offset: offset to data location
3624 * @data: pointer to the location for storing the data
3625 *
3626 * Reads the flash word at offset into data. Offset is converted
3627 * to bytes before read.
3628 **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)3629 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3630 u16 *data)
3631 {
3632 /* Must convert offset into bytes. */
3633 offset <<= 1;
3634
3635 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3636 }
3637
3638 /**
3639 * e1000_read_flash_byte_ich8lan - Read byte from flash
3640 * @hw: pointer to the HW structure
3641 * @offset: The offset of the byte to read.
3642 * @data: Pointer to a byte to store the value read.
3643 *
3644 * Reads a single byte from the NVM using the flash access registers.
3645 **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)3646 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3647 u8 *data)
3648 {
3649 s32 ret_val;
3650 u16 word = 0;
3651
3652 /* In SPT, only 32 bits access is supported,
3653 * so this function should not be called.
3654 */
3655 if (hw->mac.type >= e1000_pch_spt)
3656 return -E1000_ERR_NVM;
3657 else
3658 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3659
3660 if (ret_val)
3661 return ret_val;
3662
3663 *data = (u8)word;
3664
3665 return 0;
3666 }
3667
3668 /**
3669 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3670 * @hw: pointer to the HW structure
3671 * @offset: The offset (in bytes) of the byte or word to read.
3672 * @size: Size of data to read, 1=byte 2=word
3673 * @data: Pointer to the word to store the value read.
3674 *
3675 * Reads a byte or word from the NVM using the flash access registers.
3676 **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)3677 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3678 u8 size, u16 *data)
3679 {
3680 union ich8_hws_flash_status hsfsts;
3681 union ich8_hws_flash_ctrl hsflctl;
3682 u32 flash_linear_addr;
3683 u32 flash_data = 0;
3684 s32 ret_val = -E1000_ERR_NVM;
3685 u8 count = 0;
3686
3687 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3688 return -E1000_ERR_NVM;
3689
3690 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3691 hw->nvm.flash_base_addr);
3692
3693 do {
3694 udelay(1);
3695 /* Steps */
3696 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3697 if (ret_val)
3698 break;
3699
3700 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3701 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3702 hsflctl.hsf_ctrl.fldbcount = size - 1;
3703 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3704 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3705
3706 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3707
3708 ret_val =
3709 e1000_flash_cycle_ich8lan(hw,
3710 ICH_FLASH_READ_COMMAND_TIMEOUT);
3711
3712 /* Check if FCERR is set to 1, if set to 1, clear it
3713 * and try the whole sequence a few more times, else
3714 * read in (shift in) the Flash Data0, the order is
3715 * least significant byte first msb to lsb
3716 */
3717 if (!ret_val) {
3718 flash_data = er32flash(ICH_FLASH_FDATA0);
3719 if (size == 1)
3720 *data = (u8)(flash_data & 0x000000FF);
3721 else if (size == 2)
3722 *data = (u16)(flash_data & 0x0000FFFF);
3723 break;
3724 } else {
3725 /* If we've gotten here, then things are probably
3726 * completely hosed, but if the error condition is
3727 * detected, it won't hurt to give it another try...
3728 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3729 */
3730 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3731 if (hsfsts.hsf_status.flcerr) {
3732 /* Repeat for some time before giving up. */
3733 continue;
3734 } else if (!hsfsts.hsf_status.flcdone) {
3735 e_dbg("Timeout error - flash cycle did not complete.\n");
3736 break;
3737 }
3738 }
3739 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3740
3741 return ret_val;
3742 }
3743
3744 /**
3745 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3746 * @hw: pointer to the HW structure
3747 * @offset: The offset (in bytes) of the dword to read.
3748 * @data: Pointer to the dword to store the value read.
3749 *
3750 * Reads a byte or word from the NVM using the flash access registers.
3751 **/
3752
e1000_read_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3753 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3754 u32 *data)
3755 {
3756 union ich8_hws_flash_status hsfsts;
3757 union ich8_hws_flash_ctrl hsflctl;
3758 u32 flash_linear_addr;
3759 s32 ret_val = -E1000_ERR_NVM;
3760 u8 count = 0;
3761
3762 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3763 return -E1000_ERR_NVM;
3764 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3765 hw->nvm.flash_base_addr);
3766
3767 do {
3768 udelay(1);
3769 /* Steps */
3770 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3771 if (ret_val)
3772 break;
3773 /* In SPT, This register is in Lan memory space, not flash.
3774 * Therefore, only 32 bit access is supported
3775 */
3776 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3777
3778 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3779 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3780 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3781 /* In SPT, This register is in Lan memory space, not flash.
3782 * Therefore, only 32 bit access is supported
3783 */
3784 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3785 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3786
3787 ret_val =
3788 e1000_flash_cycle_ich8lan(hw,
3789 ICH_FLASH_READ_COMMAND_TIMEOUT);
3790
3791 /* Check if FCERR is set to 1, if set to 1, clear it
3792 * and try the whole sequence a few more times, else
3793 * read in (shift in) the Flash Data0, the order is
3794 * least significant byte first msb to lsb
3795 */
3796 if (!ret_val) {
3797 *data = er32flash(ICH_FLASH_FDATA0);
3798 break;
3799 } else {
3800 /* If we've gotten here, then things are probably
3801 * completely hosed, but if the error condition is
3802 * detected, it won't hurt to give it another try...
3803 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3804 */
3805 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3806 if (hsfsts.hsf_status.flcerr) {
3807 /* Repeat for some time before giving up. */
3808 continue;
3809 } else if (!hsfsts.hsf_status.flcdone) {
3810 e_dbg("Timeout error - flash cycle did not complete.\n");
3811 break;
3812 }
3813 }
3814 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3815
3816 return ret_val;
3817 }
3818
3819 /**
3820 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3821 * @hw: pointer to the HW structure
3822 * @offset: The offset (in bytes) of the word(s) to write.
3823 * @words: Size of data to write in words
3824 * @data: Pointer to the word(s) to write at offset.
3825 *
3826 * Writes a byte or word to the NVM using the flash access registers.
3827 **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3828 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3829 u16 *data)
3830 {
3831 struct e1000_nvm_info *nvm = &hw->nvm;
3832 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3833 u16 i;
3834
3835 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3836 (words == 0)) {
3837 e_dbg("nvm parameter(s) out of bounds\n");
3838 return -E1000_ERR_NVM;
3839 }
3840
3841 nvm->ops.acquire(hw);
3842
3843 for (i = 0; i < words; i++) {
3844 dev_spec->shadow_ram[offset + i].modified = true;
3845 dev_spec->shadow_ram[offset + i].value = data[i];
3846 }
3847
3848 nvm->ops.release(hw);
3849
3850 return 0;
3851 }
3852
3853 /**
3854 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3855 * @hw: pointer to the HW structure
3856 *
3857 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3858 * which writes the checksum to the shadow ram. The changes in the shadow
3859 * ram are then committed to the EEPROM by processing each bank at a time
3860 * checking for the modified bit and writing only the pending changes.
3861 * After a successful commit, the shadow ram is cleared and is ready for
3862 * future writes.
3863 **/
e1000_update_nvm_checksum_spt(struct e1000_hw * hw)3864 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3865 {
3866 struct e1000_nvm_info *nvm = &hw->nvm;
3867 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3868 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3869 s32 ret_val;
3870 u32 dword = 0;
3871
3872 ret_val = e1000e_update_nvm_checksum_generic(hw);
3873 if (ret_val)
3874 goto out;
3875
3876 if (nvm->type != e1000_nvm_flash_sw)
3877 goto out;
3878
3879 nvm->ops.acquire(hw);
3880
3881 /* We're writing to the opposite bank so if we're on bank 1,
3882 * write to bank 0 etc. We also need to erase the segment that
3883 * is going to be written
3884 */
3885 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3886 if (ret_val) {
3887 e_dbg("Could not detect valid bank, assuming bank 0\n");
3888 bank = 0;
3889 }
3890
3891 if (bank == 0) {
3892 new_bank_offset = nvm->flash_bank_size;
3893 old_bank_offset = 0;
3894 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3895 if (ret_val)
3896 goto release;
3897 } else {
3898 old_bank_offset = nvm->flash_bank_size;
3899 new_bank_offset = 0;
3900 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3901 if (ret_val)
3902 goto release;
3903 }
3904 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3905 /* Determine whether to write the value stored
3906 * in the other NVM bank or a modified value stored
3907 * in the shadow RAM
3908 */
3909 ret_val = e1000_read_flash_dword_ich8lan(hw,
3910 i + old_bank_offset,
3911 &dword);
3912
3913 if (dev_spec->shadow_ram[i].modified) {
3914 dword &= 0xffff0000;
3915 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3916 }
3917 if (dev_spec->shadow_ram[i + 1].modified) {
3918 dword &= 0x0000ffff;
3919 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3920 << 16);
3921 }
3922 if (ret_val)
3923 break;
3924
3925 /* If the word is 0x13, then make sure the signature bits
3926 * (15:14) are 11b until the commit has completed.
3927 * This will allow us to write 10b which indicates the
3928 * signature is valid. We want to do this after the write
3929 * has completed so that we don't mark the segment valid
3930 * while the write is still in progress
3931 */
3932 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3933 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3934
3935 /* Convert offset to bytes. */
3936 act_offset = (i + new_bank_offset) << 1;
3937
3938 usleep_range(100, 200);
3939
3940 /* Write the data to the new bank. Offset in words */
3941 act_offset = i + new_bank_offset;
3942 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3943 dword);
3944 if (ret_val)
3945 break;
3946 }
3947
3948 /* Don't bother writing the segment valid bits if sector
3949 * programming failed.
3950 */
3951 if (ret_val) {
3952 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3953 e_dbg("Flash commit failed.\n");
3954 goto release;
3955 }
3956
3957 /* Finally validate the new segment by setting bit 15:14
3958 * to 10b in word 0x13 , this can be done without an
3959 * erase as well since these bits are 11 to start with
3960 * and we need to change bit 14 to 0b
3961 */
3962 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3963
3964 /*offset in words but we read dword */
3965 --act_offset;
3966 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3967
3968 if (ret_val)
3969 goto release;
3970
3971 dword &= 0xBFFFFFFF;
3972 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3973
3974 if (ret_val)
3975 goto release;
3976
3977 /* offset in words but we read dword */
3978 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3979 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3980
3981 if (ret_val)
3982 goto release;
3983
3984 dword &= 0x00FFFFFF;
3985 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3986
3987 if (ret_val)
3988 goto release;
3989
3990 /* Great! Everything worked, we can now clear the cached entries. */
3991 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3992 dev_spec->shadow_ram[i].modified = false;
3993 dev_spec->shadow_ram[i].value = 0xFFFF;
3994 }
3995
3996 release:
3997 nvm->ops.release(hw);
3998
3999 /* Reload the EEPROM, or else modifications will not appear
4000 * until after the next adapter reset.
4001 */
4002 if (!ret_val) {
4003 nvm->ops.reload(hw);
4004 usleep_range(10000, 11000);
4005 }
4006
4007 out:
4008 if (ret_val)
4009 e_dbg("NVM update error: %d\n", ret_val);
4010
4011 return ret_val;
4012 }
4013
4014 /**
4015 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
4016 * @hw: pointer to the HW structure
4017 *
4018 * The NVM checksum is updated by calling the generic update_nvm_checksum,
4019 * which writes the checksum to the shadow ram. The changes in the shadow
4020 * ram are then committed to the EEPROM by processing each bank at a time
4021 * checking for the modified bit and writing only the pending changes.
4022 * After a successful commit, the shadow ram is cleared and is ready for
4023 * future writes.
4024 **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)4025 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
4026 {
4027 struct e1000_nvm_info *nvm = &hw->nvm;
4028 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4029 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
4030 s32 ret_val;
4031 u16 data = 0;
4032
4033 ret_val = e1000e_update_nvm_checksum_generic(hw);
4034 if (ret_val)
4035 goto out;
4036
4037 if (nvm->type != e1000_nvm_flash_sw)
4038 goto out;
4039
4040 nvm->ops.acquire(hw);
4041
4042 /* We're writing to the opposite bank so if we're on bank 1,
4043 * write to bank 0 etc. We also need to erase the segment that
4044 * is going to be written
4045 */
4046 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4047 if (ret_val) {
4048 e_dbg("Could not detect valid bank, assuming bank 0\n");
4049 bank = 0;
4050 }
4051
4052 if (bank == 0) {
4053 new_bank_offset = nvm->flash_bank_size;
4054 old_bank_offset = 0;
4055 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4056 if (ret_val)
4057 goto release;
4058 } else {
4059 old_bank_offset = nvm->flash_bank_size;
4060 new_bank_offset = 0;
4061 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4062 if (ret_val)
4063 goto release;
4064 }
4065 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4066 if (dev_spec->shadow_ram[i].modified) {
4067 data = dev_spec->shadow_ram[i].value;
4068 } else {
4069 ret_val = e1000_read_flash_word_ich8lan(hw, i +
4070 old_bank_offset,
4071 &data);
4072 if (ret_val)
4073 break;
4074 }
4075
4076 /* If the word is 0x13, then make sure the signature bits
4077 * (15:14) are 11b until the commit has completed.
4078 * This will allow us to write 10b which indicates the
4079 * signature is valid. We want to do this after the write
4080 * has completed so that we don't mark the segment valid
4081 * while the write is still in progress
4082 */
4083 if (i == E1000_ICH_NVM_SIG_WORD)
4084 data |= E1000_ICH_NVM_SIG_MASK;
4085
4086 /* Convert offset to bytes. */
4087 act_offset = (i + new_bank_offset) << 1;
4088
4089 usleep_range(100, 200);
4090 /* Write the bytes to the new bank. */
4091 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4092 act_offset,
4093 (u8)data);
4094 if (ret_val)
4095 break;
4096
4097 usleep_range(100, 200);
4098 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4099 act_offset + 1,
4100 (u8)(data >> 8));
4101 if (ret_val)
4102 break;
4103 }
4104
4105 /* Don't bother writing the segment valid bits if sector
4106 * programming failed.
4107 */
4108 if (ret_val) {
4109 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4110 e_dbg("Flash commit failed.\n");
4111 goto release;
4112 }
4113
4114 /* Finally validate the new segment by setting bit 15:14
4115 * to 10b in word 0x13 , this can be done without an
4116 * erase as well since these bits are 11 to start with
4117 * and we need to change bit 14 to 0b
4118 */
4119 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4120 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4121 if (ret_val)
4122 goto release;
4123
4124 data &= 0xBFFF;
4125 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4126 act_offset * 2 + 1,
4127 (u8)(data >> 8));
4128 if (ret_val)
4129 goto release;
4130
4131 /* And invalidate the previously valid segment by setting
4132 * its signature word (0x13) high_byte to 0b. This can be
4133 * done without an erase because flash erase sets all bits
4134 * to 1's. We can write 1's to 0's without an erase
4135 */
4136 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4137 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4138 if (ret_val)
4139 goto release;
4140
4141 /* Great! Everything worked, we can now clear the cached entries. */
4142 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4143 dev_spec->shadow_ram[i].modified = false;
4144 dev_spec->shadow_ram[i].value = 0xFFFF;
4145 }
4146
4147 release:
4148 nvm->ops.release(hw);
4149
4150 /* Reload the EEPROM, or else modifications will not appear
4151 * until after the next adapter reset.
4152 */
4153 if (!ret_val) {
4154 nvm->ops.reload(hw);
4155 usleep_range(10000, 11000);
4156 }
4157
4158 out:
4159 if (ret_val)
4160 e_dbg("NVM update error: %d\n", ret_val);
4161
4162 return ret_val;
4163 }
4164
4165 /**
4166 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4167 * @hw: pointer to the HW structure
4168 *
4169 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4170 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4171 * calculated, in which case we need to calculate the checksum and set bit 6.
4172 **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)4173 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4174 {
4175 s32 ret_val;
4176 u16 data;
4177 u16 word;
4178 u16 valid_csum_mask;
4179
4180 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4181 * the checksum needs to be fixed. This bit is an indication that
4182 * the NVM was prepared by OEM software and did not calculate
4183 * the checksum...a likely scenario.
4184 */
4185 switch (hw->mac.type) {
4186 case e1000_pch_lpt:
4187 case e1000_pch_spt:
4188 case e1000_pch_cnp:
4189 case e1000_pch_tgp:
4190 case e1000_pch_adp:
4191 case e1000_pch_mtp:
4192 case e1000_pch_lnp:
4193 case e1000_pch_ptp:
4194 case e1000_pch_nvp:
4195 word = NVM_COMPAT;
4196 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4197 break;
4198 default:
4199 word = NVM_FUTURE_INIT_WORD1;
4200 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4201 break;
4202 }
4203
4204 ret_val = e1000_read_nvm(hw, word, 1, &data);
4205 if (ret_val)
4206 return ret_val;
4207
4208 if (!(data & valid_csum_mask)) {
4209 e_dbg("NVM Checksum valid bit not set\n");
4210
4211 if (hw->mac.type < e1000_pch_tgp) {
4212 data |= valid_csum_mask;
4213 ret_val = e1000_write_nvm(hw, word, 1, &data);
4214 if (ret_val)
4215 return ret_val;
4216 ret_val = e1000e_update_nvm_checksum(hw);
4217 if (ret_val)
4218 return ret_val;
4219 }
4220 }
4221
4222 return e1000e_validate_nvm_checksum_generic(hw);
4223 }
4224
4225 /**
4226 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4227 * @hw: pointer to the HW structure
4228 *
4229 * To prevent malicious write/erase of the NVM, set it to be read-only
4230 * so that the hardware ignores all write/erase cycles of the NVM via
4231 * the flash control registers. The shadow-ram copy of the NVM will
4232 * still be updated, however any updates to this copy will not stick
4233 * across driver reloads.
4234 **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)4235 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4236 {
4237 struct e1000_nvm_info *nvm = &hw->nvm;
4238 union ich8_flash_protected_range pr0;
4239 union ich8_hws_flash_status hsfsts;
4240 u32 gfpreg;
4241
4242 nvm->ops.acquire(hw);
4243
4244 gfpreg = er32flash(ICH_FLASH_GFPREG);
4245
4246 /* Write-protect GbE Sector of NVM */
4247 pr0.regval = er32flash(ICH_FLASH_PR0);
4248 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4249 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4250 pr0.range.wpe = true;
4251 ew32flash(ICH_FLASH_PR0, pr0.regval);
4252
4253 /* Lock down a subset of GbE Flash Control Registers, e.g.
4254 * PR0 to prevent the write-protection from being lifted.
4255 * Once FLOCKDN is set, the registers protected by it cannot
4256 * be written until FLOCKDN is cleared by a hardware reset.
4257 */
4258 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4259 hsfsts.hsf_status.flockdn = true;
4260 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4261
4262 nvm->ops.release(hw);
4263 }
4264
4265 /**
4266 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4267 * @hw: pointer to the HW structure
4268 * @offset: The offset (in bytes) of the byte/word to read.
4269 * @size: Size of data to read, 1=byte 2=word
4270 * @data: The byte(s) to write to the NVM.
4271 *
4272 * Writes one/two bytes to the NVM using the flash access registers.
4273 **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)4274 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4275 u8 size, u16 data)
4276 {
4277 union ich8_hws_flash_status hsfsts;
4278 union ich8_hws_flash_ctrl hsflctl;
4279 u32 flash_linear_addr;
4280 u32 flash_data = 0;
4281 s32 ret_val;
4282 u8 count = 0;
4283
4284 if (hw->mac.type >= e1000_pch_spt) {
4285 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4286 return -E1000_ERR_NVM;
4287 } else {
4288 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4289 return -E1000_ERR_NVM;
4290 }
4291
4292 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4293 hw->nvm.flash_base_addr);
4294
4295 do {
4296 udelay(1);
4297 /* Steps */
4298 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4299 if (ret_val)
4300 break;
4301 /* In SPT, This register is in Lan memory space, not
4302 * flash. Therefore, only 32 bit access is supported
4303 */
4304 if (hw->mac.type >= e1000_pch_spt)
4305 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4306 else
4307 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4308
4309 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4310 hsflctl.hsf_ctrl.fldbcount = size - 1;
4311 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4312 /* In SPT, This register is in Lan memory space,
4313 * not flash. Therefore, only 32 bit access is
4314 * supported
4315 */
4316 if (hw->mac.type >= e1000_pch_spt)
4317 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4318 else
4319 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4320
4321 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4322
4323 if (size == 1)
4324 flash_data = (u32)data & 0x00FF;
4325 else
4326 flash_data = (u32)data;
4327
4328 ew32flash(ICH_FLASH_FDATA0, flash_data);
4329
4330 /* check if FCERR is set to 1 , if set to 1, clear it
4331 * and try the whole sequence a few more times else done
4332 */
4333 ret_val =
4334 e1000_flash_cycle_ich8lan(hw,
4335 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4336 if (!ret_val)
4337 break;
4338
4339 /* If we're here, then things are most likely
4340 * completely hosed, but if the error condition
4341 * is detected, it won't hurt to give it another
4342 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4343 */
4344 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4345 if (hsfsts.hsf_status.flcerr)
4346 /* Repeat for some time before giving up. */
4347 continue;
4348 if (!hsfsts.hsf_status.flcdone) {
4349 e_dbg("Timeout error - flash cycle did not complete.\n");
4350 break;
4351 }
4352 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4353
4354 return ret_val;
4355 }
4356
4357 /**
4358 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4359 * @hw: pointer to the HW structure
4360 * @offset: The offset (in bytes) of the dwords to read.
4361 * @data: The 4 bytes to write to the NVM.
4362 *
4363 * Writes one/two/four bytes to the NVM using the flash access registers.
4364 **/
e1000_write_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 data)4365 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4366 u32 data)
4367 {
4368 union ich8_hws_flash_status hsfsts;
4369 union ich8_hws_flash_ctrl hsflctl;
4370 u32 flash_linear_addr;
4371 s32 ret_val;
4372 u8 count = 0;
4373
4374 if (hw->mac.type >= e1000_pch_spt) {
4375 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4376 return -E1000_ERR_NVM;
4377 }
4378 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4379 hw->nvm.flash_base_addr);
4380 do {
4381 udelay(1);
4382 /* Steps */
4383 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4384 if (ret_val)
4385 break;
4386
4387 /* In SPT, This register is in Lan memory space, not
4388 * flash. Therefore, only 32 bit access is supported
4389 */
4390 if (hw->mac.type >= e1000_pch_spt)
4391 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4392 >> 16;
4393 else
4394 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4395
4396 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4397 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4398
4399 /* In SPT, This register is in Lan memory space,
4400 * not flash. Therefore, only 32 bit access is
4401 * supported
4402 */
4403 if (hw->mac.type >= e1000_pch_spt)
4404 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4405 else
4406 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4407
4408 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4409
4410 ew32flash(ICH_FLASH_FDATA0, data);
4411
4412 /* check if FCERR is set to 1 , if set to 1, clear it
4413 * and try the whole sequence a few more times else done
4414 */
4415 ret_val =
4416 e1000_flash_cycle_ich8lan(hw,
4417 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4418
4419 if (!ret_val)
4420 break;
4421
4422 /* If we're here, then things are most likely
4423 * completely hosed, but if the error condition
4424 * is detected, it won't hurt to give it another
4425 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4426 */
4427 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4428
4429 if (hsfsts.hsf_status.flcerr)
4430 /* Repeat for some time before giving up. */
4431 continue;
4432 if (!hsfsts.hsf_status.flcdone) {
4433 e_dbg("Timeout error - flash cycle did not complete.\n");
4434 break;
4435 }
4436 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4437
4438 return ret_val;
4439 }
4440
4441 /**
4442 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4443 * @hw: pointer to the HW structure
4444 * @offset: The index of the byte to read.
4445 * @data: The byte to write to the NVM.
4446 *
4447 * Writes a single byte to the NVM using the flash access registers.
4448 **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)4449 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4450 u8 data)
4451 {
4452 u16 word = (u16)data;
4453
4454 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4455 }
4456
4457 /**
4458 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4459 * @hw: pointer to the HW structure
4460 * @offset: The offset of the word to write.
4461 * @dword: The dword to write to the NVM.
4462 *
4463 * Writes a single dword to the NVM using the flash access registers.
4464 * Goes through a retry algorithm before giving up.
4465 **/
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 dword)4466 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4467 u32 offset, u32 dword)
4468 {
4469 s32 ret_val;
4470 u16 program_retries;
4471
4472 /* Must convert word offset into bytes. */
4473 offset <<= 1;
4474 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4475
4476 if (!ret_val)
4477 return ret_val;
4478 for (program_retries = 0; program_retries < 100; program_retries++) {
4479 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4480 usleep_range(100, 200);
4481 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4482 if (!ret_val)
4483 break;
4484 }
4485 if (program_retries == 100)
4486 return -E1000_ERR_NVM;
4487
4488 return 0;
4489 }
4490
4491 /**
4492 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4493 * @hw: pointer to the HW structure
4494 * @offset: The offset of the byte to write.
4495 * @byte: The byte to write to the NVM.
4496 *
4497 * Writes a single byte to the NVM using the flash access registers.
4498 * Goes through a retry algorithm before giving up.
4499 **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)4500 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4501 u32 offset, u8 byte)
4502 {
4503 s32 ret_val;
4504 u16 program_retries;
4505
4506 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4507 if (!ret_val)
4508 return ret_val;
4509
4510 for (program_retries = 0; program_retries < 100; program_retries++) {
4511 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4512 usleep_range(100, 200);
4513 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4514 if (!ret_val)
4515 break;
4516 }
4517 if (program_retries == 100)
4518 return -E1000_ERR_NVM;
4519
4520 return 0;
4521 }
4522
4523 /**
4524 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4525 * @hw: pointer to the HW structure
4526 * @bank: 0 for first bank, 1 for second bank, etc.
4527 *
4528 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4529 * bank N is 4096 * N + flash_reg_addr.
4530 **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)4531 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4532 {
4533 struct e1000_nvm_info *nvm = &hw->nvm;
4534 union ich8_hws_flash_status hsfsts;
4535 union ich8_hws_flash_ctrl hsflctl;
4536 u32 flash_linear_addr;
4537 /* bank size is in 16bit words - adjust to bytes */
4538 u32 flash_bank_size = nvm->flash_bank_size * 2;
4539 s32 ret_val;
4540 s32 count = 0;
4541 s32 j, iteration, sector_size;
4542
4543 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4544
4545 /* Determine HW Sector size: Read BERASE bits of hw flash status
4546 * register
4547 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4548 * consecutive sectors. The start index for the nth Hw sector
4549 * can be calculated as = bank * 4096 + n * 256
4550 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4551 * The start index for the nth Hw sector can be calculated
4552 * as = bank * 4096
4553 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4554 * (ich9 only, otherwise error condition)
4555 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4556 */
4557 switch (hsfsts.hsf_status.berasesz) {
4558 case 0:
4559 /* Hw sector size 256 */
4560 sector_size = ICH_FLASH_SEG_SIZE_256;
4561 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4562 break;
4563 case 1:
4564 sector_size = ICH_FLASH_SEG_SIZE_4K;
4565 iteration = 1;
4566 break;
4567 case 2:
4568 sector_size = ICH_FLASH_SEG_SIZE_8K;
4569 iteration = 1;
4570 break;
4571 case 3:
4572 sector_size = ICH_FLASH_SEG_SIZE_64K;
4573 iteration = 1;
4574 break;
4575 default:
4576 return -E1000_ERR_NVM;
4577 }
4578
4579 /* Start with the base address, then add the sector offset. */
4580 flash_linear_addr = hw->nvm.flash_base_addr;
4581 flash_linear_addr += (bank) ? flash_bank_size : 0;
4582
4583 for (j = 0; j < iteration; j++) {
4584 do {
4585 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4586
4587 /* Steps */
4588 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4589 if (ret_val)
4590 return ret_val;
4591
4592 /* Write a value 11 (block Erase) in Flash
4593 * Cycle field in hw flash control
4594 */
4595 if (hw->mac.type >= e1000_pch_spt)
4596 hsflctl.regval =
4597 er32flash(ICH_FLASH_HSFSTS) >> 16;
4598 else
4599 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4600
4601 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4602 if (hw->mac.type >= e1000_pch_spt)
4603 ew32flash(ICH_FLASH_HSFSTS,
4604 hsflctl.regval << 16);
4605 else
4606 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4607
4608 /* Write the last 24 bits of an index within the
4609 * block into Flash Linear address field in Flash
4610 * Address.
4611 */
4612 flash_linear_addr += (j * sector_size);
4613 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4614
4615 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4616 if (!ret_val)
4617 break;
4618
4619 /* Check if FCERR is set to 1. If 1,
4620 * clear it and try the whole sequence
4621 * a few more times else Done
4622 */
4623 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4624 if (hsfsts.hsf_status.flcerr)
4625 /* repeat for some time before giving up */
4626 continue;
4627 else if (!hsfsts.hsf_status.flcdone)
4628 return ret_val;
4629 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4630 }
4631
4632 return 0;
4633 }
4634
4635 /**
4636 * e1000_valid_led_default_ich8lan - Set the default LED settings
4637 * @hw: pointer to the HW structure
4638 * @data: Pointer to the LED settings
4639 *
4640 * Reads the LED default settings from the NVM to data. If the NVM LED
4641 * settings is all 0's or F's, set the LED default to a valid LED default
4642 * setting.
4643 **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)4644 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4645 {
4646 s32 ret_val;
4647
4648 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4649 if (ret_val) {
4650 e_dbg("NVM Read Error\n");
4651 return ret_val;
4652 }
4653
4654 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4655 *data = ID_LED_DEFAULT_ICH8LAN;
4656
4657 return 0;
4658 }
4659
4660 /**
4661 * e1000_id_led_init_pchlan - store LED configurations
4662 * @hw: pointer to the HW structure
4663 *
4664 * PCH does not control LEDs via the LEDCTL register, rather it uses
4665 * the PHY LED configuration register.
4666 *
4667 * PCH also does not have an "always on" or "always off" mode which
4668 * complicates the ID feature. Instead of using the "on" mode to indicate
4669 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4670 * use "link_up" mode. The LEDs will still ID on request if there is no
4671 * link based on logic in e1000_led_[on|off]_pchlan().
4672 **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)4673 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4674 {
4675 struct e1000_mac_info *mac = &hw->mac;
4676 s32 ret_val;
4677 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4678 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4679 u16 data, i, temp, shift;
4680
4681 /* Get default ID LED modes */
4682 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4683 if (ret_val)
4684 return ret_val;
4685
4686 mac->ledctl_default = er32(LEDCTL);
4687 mac->ledctl_mode1 = mac->ledctl_default;
4688 mac->ledctl_mode2 = mac->ledctl_default;
4689
4690 for (i = 0; i < 4; i++) {
4691 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4692 shift = (i * 5);
4693 switch (temp) {
4694 case ID_LED_ON1_DEF2:
4695 case ID_LED_ON1_ON2:
4696 case ID_LED_ON1_OFF2:
4697 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4698 mac->ledctl_mode1 |= (ledctl_on << shift);
4699 break;
4700 case ID_LED_OFF1_DEF2:
4701 case ID_LED_OFF1_ON2:
4702 case ID_LED_OFF1_OFF2:
4703 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4704 mac->ledctl_mode1 |= (ledctl_off << shift);
4705 break;
4706 default:
4707 /* Do nothing */
4708 break;
4709 }
4710 switch (temp) {
4711 case ID_LED_DEF1_ON2:
4712 case ID_LED_ON1_ON2:
4713 case ID_LED_OFF1_ON2:
4714 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4715 mac->ledctl_mode2 |= (ledctl_on << shift);
4716 break;
4717 case ID_LED_DEF1_OFF2:
4718 case ID_LED_ON1_OFF2:
4719 case ID_LED_OFF1_OFF2:
4720 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4721 mac->ledctl_mode2 |= (ledctl_off << shift);
4722 break;
4723 default:
4724 /* Do nothing */
4725 break;
4726 }
4727 }
4728
4729 return 0;
4730 }
4731
4732 /**
4733 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4734 * @hw: pointer to the HW structure
4735 *
4736 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4737 * register, so the bus width is hard coded.
4738 **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)4739 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4740 {
4741 struct e1000_bus_info *bus = &hw->bus;
4742 s32 ret_val;
4743
4744 ret_val = e1000e_get_bus_info_pcie(hw);
4745
4746 /* ICH devices are "PCI Express"-ish. They have
4747 * a configuration space, but do not contain
4748 * PCI Express Capability registers, so bus width
4749 * must be hardcoded.
4750 */
4751 if (bus->width == e1000_bus_width_unknown)
4752 bus->width = e1000_bus_width_pcie_x1;
4753
4754 return ret_val;
4755 }
4756
4757 /**
4758 * e1000_reset_hw_ich8lan - Reset the hardware
4759 * @hw: pointer to the HW structure
4760 *
4761 * Does a full reset of the hardware which includes a reset of the PHY and
4762 * MAC.
4763 **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)4764 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4765 {
4766 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4767 u16 kum_cfg;
4768 u32 ctrl, reg;
4769 s32 ret_val;
4770
4771 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4772 * on the last TLP read/write transaction when MAC is reset.
4773 */
4774 ret_val = e1000e_disable_pcie_master(hw);
4775 if (ret_val)
4776 e_dbg("PCI-E Master disable polling has failed.\n");
4777
4778 e_dbg("Masking off all interrupts\n");
4779 ew32(IMC, 0xffffffff);
4780
4781 /* Disable the Transmit and Receive units. Then delay to allow
4782 * any pending transactions to complete before we hit the MAC
4783 * with the global reset.
4784 */
4785 ew32(RCTL, 0);
4786 ew32(TCTL, E1000_TCTL_PSP);
4787 e1e_flush();
4788
4789 usleep_range(10000, 11000);
4790
4791 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4792 if (hw->mac.type == e1000_ich8lan) {
4793 /* Set Tx and Rx buffer allocation to 8k apiece. */
4794 ew32(PBA, E1000_PBA_8K);
4795 /* Set Packet Buffer Size to 16k. */
4796 ew32(PBS, E1000_PBS_16K);
4797 }
4798
4799 if (hw->mac.type == e1000_pchlan) {
4800 /* Save the NVM K1 bit setting */
4801 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4802 if (ret_val)
4803 return ret_val;
4804
4805 if (kum_cfg & E1000_NVM_K1_ENABLE)
4806 dev_spec->nvm_k1_enabled = true;
4807 else
4808 dev_spec->nvm_k1_enabled = false;
4809 }
4810
4811 ctrl = er32(CTRL);
4812
4813 if (!hw->phy.ops.check_reset_block(hw)) {
4814 /* Full-chip reset requires MAC and PHY reset at the same
4815 * time to make sure the interface between MAC and the
4816 * external PHY is reset.
4817 */
4818 ctrl |= E1000_CTRL_PHY_RST;
4819
4820 /* Gate automatic PHY configuration by hardware on
4821 * non-managed 82579
4822 */
4823 if ((hw->mac.type == e1000_pch2lan) &&
4824 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4825 e1000_gate_hw_phy_config_ich8lan(hw, true);
4826 }
4827 ret_val = e1000_acquire_swflag_ich8lan(hw);
4828 e_dbg("Issuing a global reset to ich8lan\n");
4829 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4830 /* cannot issue a flush here because it hangs the hardware */
4831 msleep(20);
4832
4833 /* Set Phy Config Counter to 50msec */
4834 if (hw->mac.type == e1000_pch2lan) {
4835 reg = er32(FEXTNVM3);
4836 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4837 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4838 ew32(FEXTNVM3, reg);
4839 }
4840
4841 if (!ret_val)
4842 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4843
4844 if (ctrl & E1000_CTRL_PHY_RST) {
4845 ret_val = hw->phy.ops.get_cfg_done(hw);
4846 if (ret_val)
4847 return ret_val;
4848
4849 ret_val = e1000_post_phy_reset_ich8lan(hw);
4850 if (ret_val)
4851 return ret_val;
4852 }
4853
4854 /* For PCH, this write will make sure that any noise
4855 * will be detected as a CRC error and be dropped rather than show up
4856 * as a bad packet to the DMA engine.
4857 */
4858 if (hw->mac.type == e1000_pchlan)
4859 ew32(CRC_OFFSET, 0x65656565);
4860
4861 ew32(IMC, 0xffffffff);
4862 er32(ICR);
4863
4864 reg = er32(KABGTXD);
4865 reg |= E1000_KABGTXD_BGSQLBIAS;
4866 ew32(KABGTXD, reg);
4867
4868 return 0;
4869 }
4870
4871 /**
4872 * e1000_init_hw_ich8lan - Initialize the hardware
4873 * @hw: pointer to the HW structure
4874 *
4875 * Prepares the hardware for transmit and receive by doing the following:
4876 * - initialize hardware bits
4877 * - initialize LED identification
4878 * - setup receive address registers
4879 * - setup flow control
4880 * - setup transmit descriptors
4881 * - clear statistics
4882 **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)4883 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4884 {
4885 struct e1000_mac_info *mac = &hw->mac;
4886 u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4887 s32 ret_val;
4888 u16 i;
4889
4890 e1000_initialize_hw_bits_ich8lan(hw);
4891
4892 /* Initialize identification LED */
4893 ret_val = mac->ops.id_led_init(hw);
4894 /* An error is not fatal and we should not stop init due to this */
4895 if (ret_val)
4896 e_dbg("Error initializing identification LED\n");
4897
4898 /* Setup the receive address. */
4899 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4900
4901 /* Zero out the Multicast HASH table */
4902 e_dbg("Zeroing the MTA\n");
4903 for (i = 0; i < mac->mta_reg_count; i++)
4904 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4905
4906 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4907 * the ME. Disable wakeup by clearing the host wakeup bit.
4908 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4909 */
4910 if (hw->phy.type == e1000_phy_82578) {
4911 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4912 i &= ~BM_WUC_HOST_WU_BIT;
4913 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4914 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4915 if (ret_val)
4916 return ret_val;
4917 }
4918
4919 /* Setup link and flow control */
4920 ret_val = mac->ops.setup_link(hw);
4921
4922 /* Set the transmit descriptor write-back policy for both queues */
4923 txdctl = er32(TXDCTL(0));
4924 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4925 E1000_TXDCTL_FULL_TX_DESC_WB);
4926 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4927 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4928 ew32(TXDCTL(0), txdctl);
4929 txdctl = er32(TXDCTL(1));
4930 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4931 E1000_TXDCTL_FULL_TX_DESC_WB);
4932 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4933 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4934 ew32(TXDCTL(1), txdctl);
4935
4936 /* ICH8 has opposite polarity of no_snoop bits.
4937 * By default, we should use snoop behavior.
4938 */
4939 if (mac->type == e1000_ich8lan)
4940 snoop = PCIE_ICH8_SNOOP_ALL;
4941 else
4942 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4943 e1000e_set_pcie_no_snoop(hw, snoop);
4944
4945 /* Enable workaround for packet loss issue on TGP PCH
4946 * Do not gate DMA clock from the modPHY block
4947 */
4948 if (mac->type >= e1000_pch_tgp) {
4949 fflt_dbg = er32(FFLT_DBG);
4950 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4951 ew32(FFLT_DBG, fflt_dbg);
4952 }
4953
4954 ctrl_ext = er32(CTRL_EXT);
4955 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4956 ew32(CTRL_EXT, ctrl_ext);
4957
4958 /* Clear all of the statistics registers (clear on read). It is
4959 * important that we do this after we have tried to establish link
4960 * because the symbol error count will increment wildly if there
4961 * is no link.
4962 */
4963 e1000_clear_hw_cntrs_ich8lan(hw);
4964
4965 return ret_val;
4966 }
4967
4968 /**
4969 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4970 * @hw: pointer to the HW structure
4971 *
4972 * Sets/Clears required hardware bits necessary for correctly setting up the
4973 * hardware for transmit and receive.
4974 **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)4975 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4976 {
4977 u32 reg;
4978
4979 /* Extended Device Control */
4980 reg = er32(CTRL_EXT);
4981 reg |= BIT(22);
4982 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4983 if (hw->mac.type >= e1000_pchlan)
4984 reg |= E1000_CTRL_EXT_PHYPDEN;
4985 ew32(CTRL_EXT, reg);
4986
4987 /* Transmit Descriptor Control 0 */
4988 reg = er32(TXDCTL(0));
4989 reg |= BIT(22);
4990 ew32(TXDCTL(0), reg);
4991
4992 /* Transmit Descriptor Control 1 */
4993 reg = er32(TXDCTL(1));
4994 reg |= BIT(22);
4995 ew32(TXDCTL(1), reg);
4996
4997 /* Transmit Arbitration Control 0 */
4998 reg = er32(TARC(0));
4999 if (hw->mac.type == e1000_ich8lan)
5000 reg |= BIT(28) | BIT(29);
5001 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
5002 ew32(TARC(0), reg);
5003
5004 /* Transmit Arbitration Control 1 */
5005 reg = er32(TARC(1));
5006 if (er32(TCTL) & E1000_TCTL_MULR)
5007 reg &= ~BIT(28);
5008 else
5009 reg |= BIT(28);
5010 reg |= BIT(24) | BIT(26) | BIT(30);
5011 ew32(TARC(1), reg);
5012
5013 /* Device Status */
5014 if (hw->mac.type == e1000_ich8lan) {
5015 reg = er32(STATUS);
5016 reg &= ~BIT(31);
5017 ew32(STATUS, reg);
5018 }
5019
5020 /* work-around descriptor data corruption issue during nfs v2 udp
5021 * traffic, just disable the nfs filtering capability
5022 */
5023 reg = er32(RFCTL);
5024 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
5025
5026 /* Disable IPv6 extension header parsing because some malformed
5027 * IPv6 headers can hang the Rx.
5028 */
5029 if (hw->mac.type == e1000_ich8lan)
5030 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
5031 ew32(RFCTL, reg);
5032
5033 /* Enable ECC on Lynxpoint */
5034 if (hw->mac.type >= e1000_pch_lpt) {
5035 reg = er32(PBECCSTS);
5036 reg |= E1000_PBECCSTS_ECC_ENABLE;
5037 ew32(PBECCSTS, reg);
5038
5039 reg = er32(CTRL);
5040 reg |= E1000_CTRL_MEHE;
5041 ew32(CTRL, reg);
5042 }
5043 }
5044
5045 /**
5046 * e1000_setup_link_ich8lan - Setup flow control and link settings
5047 * @hw: pointer to the HW structure
5048 *
5049 * Determines which flow control settings to use, then configures flow
5050 * control. Calls the appropriate media-specific link configuration
5051 * function. Assuming the adapter has a valid link partner, a valid link
5052 * should be established. Assumes the hardware has previously been reset
5053 * and the transmitter and receiver are not enabled.
5054 **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)5055 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5056 {
5057 s32 ret_val;
5058
5059 if (hw->phy.ops.check_reset_block(hw))
5060 return 0;
5061
5062 /* ICH parts do not have a word in the NVM to determine
5063 * the default flow control setting, so we explicitly
5064 * set it to full.
5065 */
5066 if (hw->fc.requested_mode == e1000_fc_default) {
5067 /* Workaround h/w hang when Tx flow control enabled */
5068 if (hw->mac.type == e1000_pchlan)
5069 hw->fc.requested_mode = e1000_fc_rx_pause;
5070 else
5071 hw->fc.requested_mode = e1000_fc_full;
5072 }
5073
5074 /* Save off the requested flow control mode for use later. Depending
5075 * on the link partner's capabilities, we may or may not use this mode.
5076 */
5077 hw->fc.current_mode = hw->fc.requested_mode;
5078
5079 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5080
5081 /* Continue to configure the copper link. */
5082 ret_val = hw->mac.ops.setup_physical_interface(hw);
5083 if (ret_val)
5084 return ret_val;
5085
5086 ew32(FCTTV, hw->fc.pause_time);
5087 if ((hw->phy.type == e1000_phy_82578) ||
5088 (hw->phy.type == e1000_phy_82579) ||
5089 (hw->phy.type == e1000_phy_i217) ||
5090 (hw->phy.type == e1000_phy_82577)) {
5091 ew32(FCRTV_PCH, hw->fc.refresh_time);
5092
5093 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5094 hw->fc.pause_time);
5095 if (ret_val)
5096 return ret_val;
5097 }
5098
5099 return e1000e_set_fc_watermarks(hw);
5100 }
5101
5102 /**
5103 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5104 * @hw: pointer to the HW structure
5105 *
5106 * Configures the kumeran interface to the PHY to wait the appropriate time
5107 * when polling the PHY, then call the generic setup_copper_link to finish
5108 * configuring the copper link.
5109 **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)5110 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5111 {
5112 u32 ctrl;
5113 s32 ret_val;
5114 u16 reg_data;
5115
5116 ctrl = er32(CTRL);
5117 ctrl |= E1000_CTRL_SLU;
5118 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5119 ew32(CTRL, ctrl);
5120
5121 /* Set the mac to wait the maximum time between each iteration
5122 * and increase the max iterations when polling the phy;
5123 * this fixes erroneous timeouts at 10Mbps.
5124 */
5125 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5126 if (ret_val)
5127 return ret_val;
5128 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5129 ®_data);
5130 if (ret_val)
5131 return ret_val;
5132 reg_data |= 0x3F;
5133 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5134 reg_data);
5135 if (ret_val)
5136 return ret_val;
5137
5138 switch (hw->phy.type) {
5139 case e1000_phy_igp_3:
5140 ret_val = e1000e_copper_link_setup_igp(hw);
5141 if (ret_val)
5142 return ret_val;
5143 break;
5144 case e1000_phy_bm:
5145 case e1000_phy_82578:
5146 ret_val = e1000e_copper_link_setup_m88(hw);
5147 if (ret_val)
5148 return ret_val;
5149 break;
5150 case e1000_phy_82577:
5151 case e1000_phy_82579:
5152 ret_val = e1000_copper_link_setup_82577(hw);
5153 if (ret_val)
5154 return ret_val;
5155 break;
5156 case e1000_phy_ife:
5157 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
5158 if (ret_val)
5159 return ret_val;
5160
5161 reg_data &= ~IFE_PMC_AUTO_MDIX;
5162
5163 switch (hw->phy.mdix) {
5164 case 1:
5165 reg_data &= ~IFE_PMC_FORCE_MDIX;
5166 break;
5167 case 2:
5168 reg_data |= IFE_PMC_FORCE_MDIX;
5169 break;
5170 case 0:
5171 default:
5172 reg_data |= IFE_PMC_AUTO_MDIX;
5173 break;
5174 }
5175 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5176 if (ret_val)
5177 return ret_val;
5178 break;
5179 default:
5180 break;
5181 }
5182
5183 return e1000e_setup_copper_link(hw);
5184 }
5185
5186 /**
5187 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5188 * @hw: pointer to the HW structure
5189 *
5190 * Calls the PHY specific link setup function and then calls the
5191 * generic setup_copper_link to finish configuring the link for
5192 * Lynxpoint PCH devices
5193 **/
e1000_setup_copper_link_pch_lpt(struct e1000_hw * hw)5194 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5195 {
5196 u32 ctrl;
5197 s32 ret_val;
5198
5199 ctrl = er32(CTRL);
5200 ctrl |= E1000_CTRL_SLU;
5201 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5202 ew32(CTRL, ctrl);
5203
5204 ret_val = e1000_copper_link_setup_82577(hw);
5205 if (ret_val)
5206 return ret_val;
5207
5208 return e1000e_setup_copper_link(hw);
5209 }
5210
5211 /**
5212 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5213 * @hw: pointer to the HW structure
5214 * @speed: pointer to store current link speed
5215 * @duplex: pointer to store the current link duplex
5216 *
5217 * Calls the generic get_speed_and_duplex to retrieve the current link
5218 * information and then calls the Kumeran lock loss workaround for links at
5219 * gigabit speeds.
5220 **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)5221 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5222 u16 *duplex)
5223 {
5224 s32 ret_val;
5225
5226 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5227 if (ret_val)
5228 return ret_val;
5229
5230 if ((hw->mac.type == e1000_ich8lan) &&
5231 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5232 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5233 }
5234
5235 return ret_val;
5236 }
5237
5238 /**
5239 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5240 * @hw: pointer to the HW structure
5241 *
5242 * Work-around for 82566 Kumeran PCS lock loss:
5243 * On link status change (i.e. PCI reset, speed change) and link is up and
5244 * speed is gigabit-
5245 * 0) if workaround is optionally disabled do nothing
5246 * 1) wait 1ms for Kumeran link to come up
5247 * 2) check Kumeran Diagnostic register PCS lock loss bit
5248 * 3) if not set the link is locked (all is good), otherwise...
5249 * 4) reset the PHY
5250 * 5) repeat up to 10 times
5251 * Note: this is only called for IGP3 copper when speed is 1gb.
5252 **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)5253 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5254 {
5255 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5256 u32 phy_ctrl;
5257 s32 ret_val;
5258 u16 i, data;
5259 bool link;
5260
5261 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5262 return 0;
5263
5264 /* Make sure link is up before proceeding. If not just return.
5265 * Attempting this while link is negotiating fouled up link
5266 * stability
5267 */
5268 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5269 if (!link)
5270 return 0;
5271
5272 for (i = 0; i < 10; i++) {
5273 /* read once to clear */
5274 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5275 if (ret_val)
5276 return ret_val;
5277 /* and again to get new status */
5278 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5279 if (ret_val)
5280 return ret_val;
5281
5282 /* check for PCS lock */
5283 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5284 return 0;
5285
5286 /* Issue PHY reset */
5287 e1000_phy_hw_reset(hw);
5288 mdelay(5);
5289 }
5290 /* Disable GigE link negotiation */
5291 phy_ctrl = er32(PHY_CTRL);
5292 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5293 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5294 ew32(PHY_CTRL, phy_ctrl);
5295
5296 /* Call gig speed drop workaround on Gig disable before accessing
5297 * any PHY registers
5298 */
5299 e1000e_gig_downshift_workaround_ich8lan(hw);
5300
5301 /* unable to acquire PCS lock */
5302 return -E1000_ERR_PHY;
5303 }
5304
5305 /**
5306 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5307 * @hw: pointer to the HW structure
5308 * @state: boolean value used to set the current Kumeran workaround state
5309 *
5310 * If ICH8, set the current Kumeran workaround state (enabled - true
5311 * /disabled - false).
5312 **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)5313 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5314 bool state)
5315 {
5316 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5317
5318 if (hw->mac.type != e1000_ich8lan) {
5319 e_dbg("Workaround applies to ICH8 only.\n");
5320 return;
5321 }
5322
5323 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5324 }
5325
5326 /**
5327 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5328 * @hw: pointer to the HW structure
5329 *
5330 * Workaround for 82566 power-down on D3 entry:
5331 * 1) disable gigabit link
5332 * 2) write VR power-down enable
5333 * 3) read it back
5334 * Continue if successful, else issue LCD reset and repeat
5335 **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)5336 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5337 {
5338 u32 reg;
5339 u16 data;
5340 u8 retry = 0;
5341
5342 if (hw->phy.type != e1000_phy_igp_3)
5343 return;
5344
5345 /* Try the workaround twice (if needed) */
5346 do {
5347 /* Disable link */
5348 reg = er32(PHY_CTRL);
5349 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5350 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5351 ew32(PHY_CTRL, reg);
5352
5353 /* Call gig speed drop workaround on Gig disable before
5354 * accessing any PHY registers
5355 */
5356 if (hw->mac.type == e1000_ich8lan)
5357 e1000e_gig_downshift_workaround_ich8lan(hw);
5358
5359 /* Write VR power-down enable */
5360 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5361 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5362 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5363
5364 /* Read it back and test */
5365 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5366 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5367 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5368 break;
5369
5370 /* Issue PHY reset and repeat at most one more time */
5371 reg = er32(CTRL);
5372 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5373 retry++;
5374 } while (retry);
5375 }
5376
5377 /**
5378 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5379 * @hw: pointer to the HW structure
5380 *
5381 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5382 * LPLU, Gig disable, MDIC PHY reset):
5383 * 1) Set Kumeran Near-end loopback
5384 * 2) Clear Kumeran Near-end loopback
5385 * Should only be called for ICH8[m] devices with any 1G Phy.
5386 **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)5387 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5388 {
5389 s32 ret_val;
5390 u16 reg_data;
5391
5392 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5393 return;
5394
5395 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5396 ®_data);
5397 if (ret_val)
5398 return;
5399 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5400 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5401 reg_data);
5402 if (ret_val)
5403 return;
5404 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5405 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5406 }
5407
5408 /**
5409 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5410 * @hw: pointer to the HW structure
5411 *
5412 * During S0 to Sx transition, it is possible the link remains at gig
5413 * instead of negotiating to a lower speed. Before going to Sx, set
5414 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5415 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5416 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5417 * needs to be written.
5418 * Parts that support (and are linked to a partner which support) EEE in
5419 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5420 * than 10Mbps w/o EEE.
5421 **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)5422 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5423 {
5424 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5425 u32 phy_ctrl;
5426 s32 ret_val;
5427
5428 phy_ctrl = er32(PHY_CTRL);
5429 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5430
5431 if (hw->phy.type == e1000_phy_i217) {
5432 u16 phy_reg, device_id = hw->adapter->pdev->device;
5433
5434 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5435 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5436 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5437 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5438 (hw->mac.type >= e1000_pch_spt)) {
5439 u32 fextnvm6 = er32(FEXTNVM6);
5440
5441 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5442 }
5443
5444 ret_val = hw->phy.ops.acquire(hw);
5445 if (ret_val)
5446 goto out;
5447
5448 if (!dev_spec->eee_disable) {
5449 u16 eee_advert;
5450
5451 ret_val =
5452 e1000_read_emi_reg_locked(hw,
5453 I217_EEE_ADVERTISEMENT,
5454 &eee_advert);
5455 if (ret_val)
5456 goto release;
5457
5458 /* Disable LPLU if both link partners support 100BaseT
5459 * EEE and 100Full is advertised on both ends of the
5460 * link, and enable Auto Enable LPI since there will
5461 * be no driver to enable LPI while in Sx.
5462 */
5463 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5464 (dev_spec->eee_lp_ability &
5465 I82579_EEE_100_SUPPORTED) &&
5466 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5467 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5468 E1000_PHY_CTRL_NOND0A_LPLU);
5469
5470 /* Set Auto Enable LPI after link up */
5471 e1e_rphy_locked(hw,
5472 I217_LPI_GPIO_CTRL, &phy_reg);
5473 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5474 e1e_wphy_locked(hw,
5475 I217_LPI_GPIO_CTRL, phy_reg);
5476 }
5477 }
5478
5479 /* For i217 Intel Rapid Start Technology support,
5480 * when the system is going into Sx and no manageability engine
5481 * is present, the driver must configure proxy to reset only on
5482 * power good. LPI (Low Power Idle) state must also reset only
5483 * on power good, as well as the MTA (Multicast table array).
5484 * The SMBus release must also be disabled on LCD reset.
5485 */
5486 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5487 /* Enable proxy to reset only on power good. */
5488 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5489 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5490 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5491
5492 /* Set bit enable LPI (EEE) to reset only on
5493 * power good.
5494 */
5495 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5496 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5497 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5498
5499 /* Disable the SMB release on LCD reset. */
5500 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5501 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5502 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5503 }
5504
5505 /* Enable MTA to reset for Intel Rapid Start Technology
5506 * Support
5507 */
5508 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5509 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5510 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5511
5512 release:
5513 hw->phy.ops.release(hw);
5514 }
5515 out:
5516 ew32(PHY_CTRL, phy_ctrl);
5517
5518 if (hw->mac.type == e1000_ich8lan)
5519 e1000e_gig_downshift_workaround_ich8lan(hw);
5520
5521 if (hw->mac.type >= e1000_pchlan) {
5522 e1000_oem_bits_config_ich8lan(hw, false);
5523
5524 /* Reset PHY to activate OEM bits on 82577/8 */
5525 if (hw->mac.type == e1000_pchlan)
5526 e1000e_phy_hw_reset_generic(hw);
5527
5528 ret_val = hw->phy.ops.acquire(hw);
5529 if (ret_val)
5530 return;
5531 e1000_write_smbus_addr(hw);
5532 hw->phy.ops.release(hw);
5533 }
5534 }
5535
5536 /**
5537 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5538 * @hw: pointer to the HW structure
5539 *
5540 * During Sx to S0 transitions on non-managed devices or managed devices
5541 * on which PHY resets are not blocked, if the PHY registers cannot be
5542 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5543 * the PHY.
5544 * On i217, setup Intel Rapid Start Technology.
5545 **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)5546 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5547 {
5548 s32 ret_val;
5549
5550 if (hw->mac.type < e1000_pch2lan)
5551 return;
5552
5553 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5554 if (ret_val) {
5555 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5556 return;
5557 }
5558
5559 /* For i217 Intel Rapid Start Technology support when the system
5560 * is transitioning from Sx and no manageability engine is present
5561 * configure SMBus to restore on reset, disable proxy, and enable
5562 * the reset on MTA (Multicast table array).
5563 */
5564 if (hw->phy.type == e1000_phy_i217) {
5565 u16 phy_reg;
5566
5567 ret_val = hw->phy.ops.acquire(hw);
5568 if (ret_val) {
5569 e_dbg("Failed to setup iRST\n");
5570 return;
5571 }
5572
5573 /* Clear Auto Enable LPI after link up */
5574 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5575 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5576 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5577
5578 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5579 /* Restore clear on SMB if no manageability engine
5580 * is present
5581 */
5582 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5583 if (ret_val)
5584 goto release;
5585 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5586 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5587
5588 /* Disable Proxy */
5589 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5590 }
5591 /* Enable reset on MTA */
5592 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5593 if (ret_val)
5594 goto release;
5595 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5596 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5597 release:
5598 if (ret_val)
5599 e_dbg("Error %d in resume workarounds\n", ret_val);
5600 hw->phy.ops.release(hw);
5601 }
5602 }
5603
5604 /**
5605 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5606 * @hw: pointer to the HW structure
5607 *
5608 * Return the LED back to the default configuration.
5609 **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)5610 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5611 {
5612 if (hw->phy.type == e1000_phy_ife)
5613 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5614
5615 ew32(LEDCTL, hw->mac.ledctl_default);
5616 return 0;
5617 }
5618
5619 /**
5620 * e1000_led_on_ich8lan - Turn LEDs on
5621 * @hw: pointer to the HW structure
5622 *
5623 * Turn on the LEDs.
5624 **/
e1000_led_on_ich8lan(struct e1000_hw * hw)5625 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5626 {
5627 if (hw->phy.type == e1000_phy_ife)
5628 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5629 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5630
5631 ew32(LEDCTL, hw->mac.ledctl_mode2);
5632 return 0;
5633 }
5634
5635 /**
5636 * e1000_led_off_ich8lan - Turn LEDs off
5637 * @hw: pointer to the HW structure
5638 *
5639 * Turn off the LEDs.
5640 **/
e1000_led_off_ich8lan(struct e1000_hw * hw)5641 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5642 {
5643 if (hw->phy.type == e1000_phy_ife)
5644 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5645 (IFE_PSCL_PROBE_MODE |
5646 IFE_PSCL_PROBE_LEDS_OFF));
5647
5648 ew32(LEDCTL, hw->mac.ledctl_mode1);
5649 return 0;
5650 }
5651
5652 /**
5653 * e1000_setup_led_pchlan - Configures SW controllable LED
5654 * @hw: pointer to the HW structure
5655 *
5656 * This prepares the SW controllable LED for use.
5657 **/
e1000_setup_led_pchlan(struct e1000_hw * hw)5658 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5659 {
5660 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5661 }
5662
5663 /**
5664 * e1000_cleanup_led_pchlan - Restore the default LED operation
5665 * @hw: pointer to the HW structure
5666 *
5667 * Return the LED back to the default configuration.
5668 **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)5669 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5670 {
5671 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5672 }
5673
5674 /**
5675 * e1000_led_on_pchlan - Turn LEDs on
5676 * @hw: pointer to the HW structure
5677 *
5678 * Turn on the LEDs.
5679 **/
e1000_led_on_pchlan(struct e1000_hw * hw)5680 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5681 {
5682 u16 data = (u16)hw->mac.ledctl_mode2;
5683 u32 i, led;
5684
5685 /* If no link, then turn LED on by setting the invert bit
5686 * for each LED that's mode is "link_up" in ledctl_mode2.
5687 */
5688 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5689 for (i = 0; i < 3; i++) {
5690 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5691 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5692 E1000_LEDCTL_MODE_LINK_UP)
5693 continue;
5694 if (led & E1000_PHY_LED0_IVRT)
5695 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5696 else
5697 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5698 }
5699 }
5700
5701 return e1e_wphy(hw, HV_LED_CONFIG, data);
5702 }
5703
5704 /**
5705 * e1000_led_off_pchlan - Turn LEDs off
5706 * @hw: pointer to the HW structure
5707 *
5708 * Turn off the LEDs.
5709 **/
e1000_led_off_pchlan(struct e1000_hw * hw)5710 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5711 {
5712 u16 data = (u16)hw->mac.ledctl_mode1;
5713 u32 i, led;
5714
5715 /* If no link, then turn LED off by clearing the invert bit
5716 * for each LED that's mode is "link_up" in ledctl_mode1.
5717 */
5718 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5719 for (i = 0; i < 3; i++) {
5720 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5721 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5722 E1000_LEDCTL_MODE_LINK_UP)
5723 continue;
5724 if (led & E1000_PHY_LED0_IVRT)
5725 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5726 else
5727 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5728 }
5729 }
5730
5731 return e1e_wphy(hw, HV_LED_CONFIG, data);
5732 }
5733
5734 /**
5735 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5736 * @hw: pointer to the HW structure
5737 *
5738 * Read appropriate register for the config done bit for completion status
5739 * and configure the PHY through s/w for EEPROM-less parts.
5740 *
5741 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5742 * config done bit, so only an error is logged and continues. If we were
5743 * to return with error, EEPROM-less silicon would not be able to be reset
5744 * or change link.
5745 **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)5746 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5747 {
5748 s32 ret_val = 0;
5749 u32 bank = 0;
5750 u32 status;
5751
5752 e1000e_get_cfg_done_generic(hw);
5753
5754 /* Wait for indication from h/w that it has completed basic config */
5755 if (hw->mac.type >= e1000_ich10lan) {
5756 e1000_lan_init_done_ich8lan(hw);
5757 } else {
5758 ret_val = e1000e_get_auto_rd_done(hw);
5759 if (ret_val) {
5760 /* When auto config read does not complete, do not
5761 * return with an error. This can happen in situations
5762 * where there is no eeprom and prevents getting link.
5763 */
5764 e_dbg("Auto Read Done did not complete\n");
5765 ret_val = 0;
5766 }
5767 }
5768
5769 /* Clear PHY Reset Asserted bit */
5770 status = er32(STATUS);
5771 if (status & E1000_STATUS_PHYRA)
5772 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5773 else
5774 e_dbg("PHY Reset Asserted not set - needs delay\n");
5775
5776 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5777 if (hw->mac.type <= e1000_ich9lan) {
5778 if (!(er32(EECD) & E1000_EECD_PRES) &&
5779 (hw->phy.type == e1000_phy_igp_3)) {
5780 e1000e_phy_init_script_igp3(hw);
5781 }
5782 } else {
5783 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5784 /* Maybe we should do a basic PHY config */
5785 e_dbg("EEPROM not present\n");
5786 ret_val = -E1000_ERR_CONFIG;
5787 }
5788 }
5789
5790 return ret_val;
5791 }
5792
5793 /**
5794 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5795 * @hw: pointer to the HW structure
5796 *
5797 * In the case of a PHY power down to save power, or to turn off link during a
5798 * driver unload, or wake on lan is not enabled, remove the link.
5799 **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)5800 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5801 {
5802 /* If the management interface is not enabled, then power down */
5803 if (!(hw->mac.ops.check_mng_mode(hw) ||
5804 hw->phy.ops.check_reset_block(hw)))
5805 e1000_power_down_phy_copper(hw);
5806 }
5807
5808 /**
5809 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5810 * @hw: pointer to the HW structure
5811 *
5812 * Clears hardware counters specific to the silicon family and calls
5813 * clear_hw_cntrs_generic to clear all general purpose counters.
5814 **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)5815 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5816 {
5817 u16 phy_data;
5818 s32 ret_val;
5819
5820 e1000e_clear_hw_cntrs_base(hw);
5821
5822 er32(ALGNERRC);
5823 er32(RXERRC);
5824 er32(TNCRS);
5825 er32(CEXTERR);
5826 er32(TSCTC);
5827 er32(TSCTFC);
5828
5829 er32(MGTPRC);
5830 er32(MGTPDC);
5831 er32(MGTPTC);
5832
5833 er32(IAC);
5834 er32(ICRXOC);
5835
5836 /* Clear PHY statistics registers */
5837 if ((hw->phy.type == e1000_phy_82578) ||
5838 (hw->phy.type == e1000_phy_82579) ||
5839 (hw->phy.type == e1000_phy_i217) ||
5840 (hw->phy.type == e1000_phy_82577)) {
5841 ret_val = hw->phy.ops.acquire(hw);
5842 if (ret_val)
5843 return;
5844 ret_val = hw->phy.ops.set_page(hw,
5845 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5846 if (ret_val)
5847 goto release;
5848 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5849 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5850 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5851 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5852 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5853 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5854 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5855 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5856 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5857 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5858 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5859 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5860 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5861 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5862 release:
5863 hw->phy.ops.release(hw);
5864 }
5865 }
5866
5867 static const struct e1000_mac_operations ich8_mac_ops = {
5868 /* check_mng_mode dependent on mac type */
5869 .check_for_link = e1000_check_for_copper_link_ich8lan,
5870 /* cleanup_led dependent on mac type */
5871 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5872 .get_bus_info = e1000_get_bus_info_ich8lan,
5873 .set_lan_id = e1000_set_lan_id_single_port,
5874 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5875 /* led_on dependent on mac type */
5876 /* led_off dependent on mac type */
5877 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5878 .reset_hw = e1000_reset_hw_ich8lan,
5879 .init_hw = e1000_init_hw_ich8lan,
5880 .setup_link = e1000_setup_link_ich8lan,
5881 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5882 /* id_led_init dependent on mac type */
5883 .config_collision_dist = e1000e_config_collision_dist_generic,
5884 .rar_set = e1000e_rar_set_generic,
5885 .rar_get_count = e1000e_rar_get_count_generic,
5886 };
5887
5888 static const struct e1000_phy_operations ich8_phy_ops = {
5889 .acquire = e1000_acquire_swflag_ich8lan,
5890 .check_reset_block = e1000_check_reset_block_ich8lan,
5891 .commit = NULL,
5892 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5893 .get_cable_length = e1000e_get_cable_length_igp_2,
5894 .read_reg = e1000e_read_phy_reg_igp,
5895 .release = e1000_release_swflag_ich8lan,
5896 .reset = e1000_phy_hw_reset_ich8lan,
5897 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5898 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5899 .write_reg = e1000e_write_phy_reg_igp,
5900 };
5901
5902 static const struct e1000_nvm_operations ich8_nvm_ops = {
5903 .acquire = e1000_acquire_nvm_ich8lan,
5904 .read = e1000_read_nvm_ich8lan,
5905 .release = e1000_release_nvm_ich8lan,
5906 .reload = e1000e_reload_nvm_generic,
5907 .update = e1000_update_nvm_checksum_ich8lan,
5908 .valid_led_default = e1000_valid_led_default_ich8lan,
5909 .validate = e1000_validate_nvm_checksum_ich8lan,
5910 .write = e1000_write_nvm_ich8lan,
5911 };
5912
5913 static const struct e1000_nvm_operations spt_nvm_ops = {
5914 .acquire = e1000_acquire_nvm_ich8lan,
5915 .release = e1000_release_nvm_ich8lan,
5916 .read = e1000_read_nvm_spt,
5917 .update = e1000_update_nvm_checksum_spt,
5918 .reload = e1000e_reload_nvm_generic,
5919 .valid_led_default = e1000_valid_led_default_ich8lan,
5920 .validate = e1000_validate_nvm_checksum_ich8lan,
5921 .write = e1000_write_nvm_ich8lan,
5922 };
5923
5924 const struct e1000_info e1000_ich8_info = {
5925 .mac = e1000_ich8lan,
5926 .flags = FLAG_HAS_WOL
5927 | FLAG_IS_ICH
5928 | FLAG_HAS_CTRLEXT_ON_LOAD
5929 | FLAG_HAS_AMT
5930 | FLAG_HAS_FLASH
5931 | FLAG_APME_IN_WUC,
5932 .pba = 8,
5933 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5934 .get_variants = e1000_get_variants_ich8lan,
5935 .mac_ops = &ich8_mac_ops,
5936 .phy_ops = &ich8_phy_ops,
5937 .nvm_ops = &ich8_nvm_ops,
5938 };
5939
5940 const struct e1000_info e1000_ich9_info = {
5941 .mac = e1000_ich9lan,
5942 .flags = FLAG_HAS_JUMBO_FRAMES
5943 | FLAG_IS_ICH
5944 | FLAG_HAS_WOL
5945 | FLAG_HAS_CTRLEXT_ON_LOAD
5946 | FLAG_HAS_AMT
5947 | FLAG_HAS_FLASH
5948 | FLAG_APME_IN_WUC,
5949 .pba = 18,
5950 .max_hw_frame_size = DEFAULT_JUMBO,
5951 .get_variants = e1000_get_variants_ich8lan,
5952 .mac_ops = &ich8_mac_ops,
5953 .phy_ops = &ich8_phy_ops,
5954 .nvm_ops = &ich8_nvm_ops,
5955 };
5956
5957 const struct e1000_info e1000_ich10_info = {
5958 .mac = e1000_ich10lan,
5959 .flags = FLAG_HAS_JUMBO_FRAMES
5960 | FLAG_IS_ICH
5961 | FLAG_HAS_WOL
5962 | FLAG_HAS_CTRLEXT_ON_LOAD
5963 | FLAG_HAS_AMT
5964 | FLAG_HAS_FLASH
5965 | FLAG_APME_IN_WUC,
5966 .pba = 18,
5967 .max_hw_frame_size = DEFAULT_JUMBO,
5968 .get_variants = e1000_get_variants_ich8lan,
5969 .mac_ops = &ich8_mac_ops,
5970 .phy_ops = &ich8_phy_ops,
5971 .nvm_ops = &ich8_nvm_ops,
5972 };
5973
5974 const struct e1000_info e1000_pch_info = {
5975 .mac = e1000_pchlan,
5976 .flags = FLAG_IS_ICH
5977 | FLAG_HAS_WOL
5978 | FLAG_HAS_CTRLEXT_ON_LOAD
5979 | FLAG_HAS_AMT
5980 | FLAG_HAS_FLASH
5981 | FLAG_HAS_JUMBO_FRAMES
5982 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5983 | FLAG_APME_IN_WUC,
5984 .flags2 = FLAG2_HAS_PHY_STATS,
5985 .pba = 26,
5986 .max_hw_frame_size = 4096,
5987 .get_variants = e1000_get_variants_ich8lan,
5988 .mac_ops = &ich8_mac_ops,
5989 .phy_ops = &ich8_phy_ops,
5990 .nvm_ops = &ich8_nvm_ops,
5991 };
5992
5993 const struct e1000_info e1000_pch2_info = {
5994 .mac = e1000_pch2lan,
5995 .flags = FLAG_IS_ICH
5996 | FLAG_HAS_WOL
5997 | FLAG_HAS_HW_TIMESTAMP
5998 | FLAG_HAS_CTRLEXT_ON_LOAD
5999 | FLAG_HAS_AMT
6000 | FLAG_HAS_FLASH
6001 | FLAG_HAS_JUMBO_FRAMES
6002 | FLAG_APME_IN_WUC,
6003 .flags2 = FLAG2_HAS_PHY_STATS
6004 | FLAG2_HAS_EEE
6005 | FLAG2_CHECK_SYSTIM_OVERFLOW,
6006 .pba = 26,
6007 .max_hw_frame_size = 9022,
6008 .get_variants = e1000_get_variants_ich8lan,
6009 .mac_ops = &ich8_mac_ops,
6010 .phy_ops = &ich8_phy_ops,
6011 .nvm_ops = &ich8_nvm_ops,
6012 };
6013
6014 const struct e1000_info e1000_pch_lpt_info = {
6015 .mac = e1000_pch_lpt,
6016 .flags = FLAG_IS_ICH
6017 | FLAG_HAS_WOL
6018 | FLAG_HAS_HW_TIMESTAMP
6019 | FLAG_HAS_CTRLEXT_ON_LOAD
6020 | FLAG_HAS_AMT
6021 | FLAG_HAS_FLASH
6022 | FLAG_HAS_JUMBO_FRAMES
6023 | FLAG_APME_IN_WUC,
6024 .flags2 = FLAG2_HAS_PHY_STATS
6025 | FLAG2_HAS_EEE
6026 | FLAG2_CHECK_SYSTIM_OVERFLOW,
6027 .pba = 26,
6028 .max_hw_frame_size = 9022,
6029 .get_variants = e1000_get_variants_ich8lan,
6030 .mac_ops = &ich8_mac_ops,
6031 .phy_ops = &ich8_phy_ops,
6032 .nvm_ops = &ich8_nvm_ops,
6033 };
6034
6035 const struct e1000_info e1000_pch_spt_info = {
6036 .mac = e1000_pch_spt,
6037 .flags = FLAG_IS_ICH
6038 | FLAG_HAS_WOL
6039 | FLAG_HAS_HW_TIMESTAMP
6040 | FLAG_HAS_CTRLEXT_ON_LOAD
6041 | FLAG_HAS_AMT
6042 | FLAG_HAS_FLASH
6043 | FLAG_HAS_JUMBO_FRAMES
6044 | FLAG_APME_IN_WUC,
6045 .flags2 = FLAG2_HAS_PHY_STATS
6046 | FLAG2_HAS_EEE,
6047 .pba = 26,
6048 .max_hw_frame_size = 9022,
6049 .get_variants = e1000_get_variants_ich8lan,
6050 .mac_ops = &ich8_mac_ops,
6051 .phy_ops = &ich8_phy_ops,
6052 .nvm_ops = &spt_nvm_ops,
6053 };
6054
6055 const struct e1000_info e1000_pch_cnp_info = {
6056 .mac = e1000_pch_cnp,
6057 .flags = FLAG_IS_ICH
6058 | FLAG_HAS_WOL
6059 | FLAG_HAS_HW_TIMESTAMP
6060 | FLAG_HAS_CTRLEXT_ON_LOAD
6061 | FLAG_HAS_AMT
6062 | FLAG_HAS_FLASH
6063 | FLAG_HAS_JUMBO_FRAMES
6064 | FLAG_APME_IN_WUC,
6065 .flags2 = FLAG2_HAS_PHY_STATS
6066 | FLAG2_HAS_EEE,
6067 .pba = 26,
6068 .max_hw_frame_size = 9022,
6069 .get_variants = e1000_get_variants_ich8lan,
6070 .mac_ops = &ich8_mac_ops,
6071 .phy_ops = &ich8_phy_ops,
6072 .nvm_ops = &spt_nvm_ops,
6073 };
6074
6075 const struct e1000_info e1000_pch_tgp_info = {
6076 .mac = e1000_pch_tgp,
6077 .flags = FLAG_IS_ICH
6078 | FLAG_HAS_WOL
6079 | FLAG_HAS_HW_TIMESTAMP
6080 | FLAG_HAS_CTRLEXT_ON_LOAD
6081 | FLAG_HAS_AMT
6082 | FLAG_HAS_FLASH
6083 | FLAG_HAS_JUMBO_FRAMES
6084 | FLAG_APME_IN_WUC,
6085 .flags2 = FLAG2_HAS_PHY_STATS
6086 | FLAG2_HAS_EEE,
6087 .pba = 26,
6088 .max_hw_frame_size = 9022,
6089 .get_variants = e1000_get_variants_ich8lan,
6090 .mac_ops = &ich8_mac_ops,
6091 .phy_ops = &ich8_phy_ops,
6092 .nvm_ops = &spt_nvm_ops,
6093 };
6094
6095 const struct e1000_info e1000_pch_adp_info = {
6096 .mac = e1000_pch_adp,
6097 .flags = FLAG_IS_ICH
6098 | FLAG_HAS_WOL
6099 | FLAG_HAS_HW_TIMESTAMP
6100 | FLAG_HAS_CTRLEXT_ON_LOAD
6101 | FLAG_HAS_AMT
6102 | FLAG_HAS_FLASH
6103 | FLAG_HAS_JUMBO_FRAMES
6104 | FLAG_APME_IN_WUC,
6105 .flags2 = FLAG2_HAS_PHY_STATS
6106 | FLAG2_HAS_EEE,
6107 .pba = 26,
6108 .max_hw_frame_size = 9022,
6109 .get_variants = e1000_get_variants_ich8lan,
6110 .mac_ops = &ich8_mac_ops,
6111 .phy_ops = &ich8_phy_ops,
6112 .nvm_ops = &spt_nvm_ops,
6113 };
6114
6115 const struct e1000_info e1000_pch_mtp_info = {
6116 .mac = e1000_pch_mtp,
6117 .flags = FLAG_IS_ICH
6118 | FLAG_HAS_WOL
6119 | FLAG_HAS_HW_TIMESTAMP
6120 | FLAG_HAS_CTRLEXT_ON_LOAD
6121 | FLAG_HAS_AMT
6122 | FLAG_HAS_FLASH
6123 | FLAG_HAS_JUMBO_FRAMES
6124 | FLAG_APME_IN_WUC,
6125 .flags2 = FLAG2_HAS_PHY_STATS
6126 | FLAG2_HAS_EEE,
6127 .pba = 26,
6128 .max_hw_frame_size = 9022,
6129 .get_variants = e1000_get_variants_ich8lan,
6130 .mac_ops = &ich8_mac_ops,
6131 .phy_ops = &ich8_phy_ops,
6132 .nvm_ops = &spt_nvm_ops,
6133 };
6134