xref: /linux/drivers/spi/spi-dw-core.c (revision fa5ef105618ae9b5aaa51b3f09e41d88d4514207)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Designware SPI core controller driver (refer pxa2xx_spi.c)
4  *
5  * Copyright (c) 2009, Intel Corporation.
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/bitops.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/preempt.h>
14 #include <linux/highmem.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 #include <linux/string.h>
20 #include <linux/of.h>
21 
22 #include "internals.h"
23 #include "spi-dw.h"
24 
25 #ifdef CONFIG_DEBUG_FS
26 #include <linux/debugfs.h>
27 #endif
28 
29 /* Slave spi_device related */
30 struct dw_spi_chip_data {
31 	u32 cr0;
32 	u32 rx_sample_dly;	/* RX sample delay */
33 };
34 
35 #ifdef CONFIG_DEBUG_FS
36 
37 #define DW_SPI_DBGFS_REG(_name, _off)	\
38 {					\
39 	.name = _name,			\
40 	.offset = _off,			\
41 }
42 
43 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
44 	DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
45 	DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
46 	DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
47 	DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
48 	DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
49 	DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
50 	DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
51 	DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
52 	DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
53 	DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
54 	DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
55 	DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
56 	DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
57 	DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
58 	DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
59 	DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
60 };
61 
62 static void dw_spi_debugfs_init(struct dw_spi *dws)
63 {
64 	char name[32];
65 
66 	snprintf(name, 32, "dw_spi%d", dws->ctlr->bus_num);
67 	dws->debugfs = debugfs_create_dir(name, NULL);
68 
69 	dws->regset.regs = dw_spi_dbgfs_regs;
70 	dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
71 	dws->regset.base = dws->regs;
72 	debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
73 }
74 
75 static void dw_spi_debugfs_remove(struct dw_spi *dws)
76 {
77 	debugfs_remove_recursive(dws->debugfs);
78 }
79 
80 #else
81 static inline void dw_spi_debugfs_init(struct dw_spi *dws)
82 {
83 }
84 
85 static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
86 {
87 }
88 #endif /* CONFIG_DEBUG_FS */
89 
90 void dw_spi_set_cs(struct spi_device *spi, bool enable)
91 {
92 	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
93 	bool cs_high = !!(spi->mode & SPI_CS_HIGH);
94 
95 	/*
96 	 * DW SPI controller demands any native CS being set in order to
97 	 * proceed with data transfer. So in order to activate the SPI
98 	 * communications we must set a corresponding bit in the Slave
99 	 * Enable register no matter whether the SPI core is configured to
100 	 * support active-high or active-low CS level.
101 	 */
102 	if (cs_high == enable)
103 		dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0)));
104 	else
105 		dw_writel(dws, DW_SPI_SER, 0);
106 }
107 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, "SPI_DW_CORE");
108 
109 /* Return the max entries we can fill into tx fifo */
110 static inline u32 dw_spi_tx_max(struct dw_spi *dws)
111 {
112 	u32 tx_room, rxtx_gap;
113 
114 	tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
115 
116 	/*
117 	 * Another concern is about the tx/rx mismatch, we
118 	 * though to use (dws->fifo_len - rxflr - txflr) as
119 	 * one maximum value for tx, but it doesn't cover the
120 	 * data which is out of tx/rx fifo and inside the
121 	 * shift registers. So a control from sw point of
122 	 * view is taken.
123 	 */
124 	rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
125 
126 	return min3((u32)dws->tx_len, tx_room, rxtx_gap);
127 }
128 
129 /* Return the max entries we should read out of rx fifo */
130 static inline u32 dw_spi_rx_max(struct dw_spi *dws)
131 {
132 	return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
133 }
134 
135 static void dw_writer(struct dw_spi *dws)
136 {
137 	u32 max = dw_spi_tx_max(dws);
138 	u32 txw = 0;
139 
140 	while (max--) {
141 		if (dws->tx) {
142 			if (dws->n_bytes == 1)
143 				txw = *(u8 *)(dws->tx);
144 			else if (dws->n_bytes == 2)
145 				txw = *(u16 *)(dws->tx);
146 			else
147 				txw = *(u32 *)(dws->tx);
148 
149 			dws->tx += dws->n_bytes;
150 		}
151 		dw_write_io_reg(dws, DW_SPI_DR, txw);
152 		--dws->tx_len;
153 	}
154 }
155 
156 static void dw_reader(struct dw_spi *dws)
157 {
158 	u32 max = dw_spi_rx_max(dws);
159 	u32 rxw;
160 
161 	while (max--) {
162 		rxw = dw_read_io_reg(dws, DW_SPI_DR);
163 		if (dws->rx) {
164 			if (dws->n_bytes == 1)
165 				*(u8 *)(dws->rx) = rxw;
166 			else if (dws->n_bytes == 2)
167 				*(u16 *)(dws->rx) = rxw;
168 			else
169 				*(u32 *)(dws->rx) = rxw;
170 
171 			dws->rx += dws->n_bytes;
172 		}
173 		--dws->rx_len;
174 	}
175 }
176 
177 int dw_spi_check_status(struct dw_spi *dws, bool raw)
178 {
179 	u32 irq_status;
180 	int ret = 0;
181 
182 	if (raw)
183 		irq_status = dw_readl(dws, DW_SPI_RISR);
184 	else
185 		irq_status = dw_readl(dws, DW_SPI_ISR);
186 
187 	if (irq_status & DW_SPI_INT_RXOI) {
188 		dev_err(&dws->ctlr->dev, "RX FIFO overflow detected\n");
189 		ret = -EIO;
190 	}
191 
192 	if (irq_status & DW_SPI_INT_RXUI) {
193 		dev_err(&dws->ctlr->dev, "RX FIFO underflow detected\n");
194 		ret = -EIO;
195 	}
196 
197 	if (irq_status & DW_SPI_INT_TXOI) {
198 		dev_err(&dws->ctlr->dev, "TX FIFO overflow detected\n");
199 		ret = -EIO;
200 	}
201 
202 	/* Generically handle the erroneous situation */
203 	if (ret) {
204 		dw_spi_reset_chip(dws);
205 		if (dws->ctlr->cur_msg)
206 			dws->ctlr->cur_msg->status = ret;
207 	}
208 
209 	return ret;
210 }
211 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, "SPI_DW_CORE");
212 
213 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
214 {
215 	u16 irq_status = dw_readl(dws, DW_SPI_ISR);
216 
217 	if (dw_spi_check_status(dws, false)) {
218 		spi_finalize_current_transfer(dws->ctlr);
219 		return IRQ_HANDLED;
220 	}
221 
222 	/*
223 	 * Read data from the Rx FIFO every time we've got a chance executing
224 	 * this method. If there is nothing left to receive, terminate the
225 	 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
226 	 * final stage of the transfer. By doing so we'll get the next IRQ
227 	 * right when the leftover incoming data is received.
228 	 */
229 	dw_reader(dws);
230 	if (!dws->rx_len) {
231 		dw_spi_mask_intr(dws, 0xff);
232 		spi_finalize_current_transfer(dws->ctlr);
233 	} else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
234 		dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
235 	}
236 
237 	/*
238 	 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
239 	 * disabled after the data transmission is finished so not to
240 	 * have the TXE IRQ flood at the final stage of the transfer.
241 	 */
242 	if (irq_status & DW_SPI_INT_TXEI) {
243 		dw_writer(dws);
244 		if (!dws->tx_len)
245 			dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
246 	}
247 
248 	return IRQ_HANDLED;
249 }
250 
251 static irqreturn_t dw_spi_irq(int irq, void *dev_id)
252 {
253 	struct spi_controller *ctlr = dev_id;
254 	struct dw_spi *dws = spi_controller_get_devdata(ctlr);
255 	u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
256 
257 	if (!irq_status)
258 		return IRQ_NONE;
259 
260 	if (!ctlr->cur_msg) {
261 		dw_spi_mask_intr(dws, 0xff);
262 		return IRQ_HANDLED;
263 	}
264 
265 	return dws->transfer_handler(dws);
266 }
267 
268 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
269 {
270 	u32 cr0 = 0;
271 
272 	if (dw_spi_ip_is(dws, PSSI)) {
273 		/* CTRLR0[ 5: 4] Frame Format */
274 		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
275 
276 		/*
277 		 * SPI mode (SCPOL|SCPH)
278 		 * CTRLR0[ 6] Serial Clock Phase
279 		 * CTRLR0[ 7] Serial Clock Polarity
280 		 */
281 		if (spi->mode & SPI_CPOL)
282 			cr0 |= DW_PSSI_CTRLR0_SCPOL;
283 		if (spi->mode & SPI_CPHA)
284 			cr0 |= DW_PSSI_CTRLR0_SCPHA;
285 
286 		/* CTRLR0[11] Shift Register Loop */
287 		if (spi->mode & SPI_LOOP)
288 			cr0 |= DW_PSSI_CTRLR0_SRL;
289 	} else {
290 		/* CTRLR0[ 7: 6] Frame Format */
291 		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
292 
293 		/*
294 		 * SPI mode (SCPOL|SCPH)
295 		 * CTRLR0[ 8] Serial Clock Phase
296 		 * CTRLR0[ 9] Serial Clock Polarity
297 		 */
298 		if (spi->mode & SPI_CPOL)
299 			cr0 |= DW_HSSI_CTRLR0_SCPOL;
300 		if (spi->mode & SPI_CPHA)
301 			cr0 |= DW_HSSI_CTRLR0_SCPHA;
302 
303 		/* CTRLR0[13] Shift Register Loop */
304 		if (spi->mode & SPI_LOOP)
305 			cr0 |= DW_HSSI_CTRLR0_SRL;
306 
307 		/* CTRLR0[31] MST */
308 		if (dw_spi_ver_is_ge(dws, HSSI, 102A))
309 			cr0 |= DW_HSSI_CTRLR0_MST;
310 	}
311 
312 	return cr0;
313 }
314 
315 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
316 			  struct dw_spi_cfg *cfg)
317 {
318 	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
319 	u32 cr0 = chip->cr0;
320 	u32 speed_hz;
321 	u16 clk_div;
322 
323 	/* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
324 	cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
325 
326 	if (dw_spi_ip_is(dws, PSSI))
327 		/* CTRLR0[ 9:8] Transfer Mode */
328 		cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
329 	else
330 		/* CTRLR0[11:10] Transfer Mode */
331 		cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
332 
333 	dw_writel(dws, DW_SPI_CTRLR0, cr0);
334 
335 	if (spi_controller_is_target(dws->ctlr))
336 		return;
337 
338 	if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
339 	    cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
340 		dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
341 
342 	/* Note DW APB SSI clock divider doesn't support odd numbers */
343 	clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
344 	speed_hz = dws->max_freq / clk_div;
345 
346 	if (dws->current_freq != speed_hz) {
347 		dw_spi_set_clk(dws, clk_div);
348 		dws->current_freq = speed_hz;
349 	}
350 
351 	/* Update RX sample delay if required */
352 	if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
353 		dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
354 		dws->cur_rx_sample_dly = chip->rx_sample_dly;
355 	}
356 }
357 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, "SPI_DW_CORE");
358 
359 static void dw_spi_irq_setup(struct dw_spi *dws)
360 {
361 	u16 level;
362 	u8 imask;
363 
364 	/*
365 	 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
366 	 * will be adjusted at the final stage of the IRQ-based SPI transfer
367 	 * execution so not to lose the leftover of the incoming data.
368 	 */
369 	level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
370 	dw_writel(dws, DW_SPI_TXFTLR, level);
371 	dw_writel(dws, DW_SPI_RXFTLR, level - 1);
372 
373 	dws->transfer_handler = dw_spi_transfer_handler;
374 
375 	imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
376 		DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
377 	dw_spi_umask_intr(dws, imask);
378 }
379 
380 /*
381  * The iterative procedure of the poll-based transfer is simple: write as much
382  * as possible to the Tx FIFO, wait until the pending to receive data is ready
383  * to be read, read it from the Rx FIFO and check whether the performed
384  * procedure has been successful.
385  *
386  * Note this method the same way as the IRQ-based transfer won't work well for
387  * the SPI devices connected to the controller with native CS due to the
388  * automatic CS assertion/de-assertion.
389  */
390 static int dw_spi_poll_transfer(struct dw_spi *dws,
391 				struct spi_transfer *transfer)
392 {
393 	struct spi_delay delay;
394 	u16 nbits;
395 	int ret;
396 
397 	delay.unit = SPI_DELAY_UNIT_SCK;
398 	nbits = dws->n_bytes * BITS_PER_BYTE;
399 
400 	do {
401 		dw_writer(dws);
402 
403 		delay.value = nbits * (dws->rx_len - dws->tx_len);
404 		spi_delay_exec(&delay, transfer);
405 
406 		dw_reader(dws);
407 
408 		ret = dw_spi_check_status(dws, true);
409 		if (ret)
410 			return ret;
411 	} while (dws->rx_len);
412 
413 	return 0;
414 }
415 
416 static int dw_spi_transfer_one(struct spi_controller *ctlr,
417 			       struct spi_device *spi,
418 			       struct spi_transfer *transfer)
419 {
420 	struct dw_spi *dws = spi_controller_get_devdata(ctlr);
421 	struct dw_spi_cfg cfg = {
422 		.tmode = DW_SPI_CTRLR0_TMOD_TR,
423 		.dfs = transfer->bits_per_word,
424 		.freq = transfer->speed_hz,
425 	};
426 	int ret;
427 
428 	dws->dma_mapped = 0;
429 	dws->n_bytes = spi_bpw_to_bytes(transfer->bits_per_word);
430 	dws->tx = (void *)transfer->tx_buf;
431 	dws->tx_len = transfer->len / dws->n_bytes;
432 	dws->rx = transfer->rx_buf;
433 	dws->rx_len = dws->tx_len;
434 
435 	/* Ensure the data above is visible for all CPUs */
436 	smp_mb();
437 
438 	dw_spi_enable_chip(dws, 0);
439 
440 	dw_spi_update_config(dws, spi, &cfg);
441 
442 	transfer->effective_speed_hz = dws->current_freq;
443 
444 	/* Check if current transfer is a DMA transaction */
445 	dws->dma_mapped = spi_xfer_is_dma_mapped(ctlr, spi, transfer);
446 
447 	/* For poll mode just disable all interrupts */
448 	dw_spi_mask_intr(dws, 0xff);
449 
450 	if (dws->dma_mapped) {
451 		ret = dws->dma_ops->dma_setup(dws, transfer);
452 		if (ret)
453 			return ret;
454 	}
455 
456 	dw_spi_enable_chip(dws, 1);
457 
458 	if (dws->dma_mapped)
459 		return dws->dma_ops->dma_transfer(dws, transfer);
460 	else if (dws->irq == IRQ_NOTCONNECTED)
461 		return dw_spi_poll_transfer(dws, transfer);
462 
463 	dw_spi_irq_setup(dws);
464 
465 	return 1;
466 }
467 
468 static inline void dw_spi_abort(struct spi_controller *ctlr)
469 {
470 	struct dw_spi *dws = spi_controller_get_devdata(ctlr);
471 
472 	if (dws->dma_mapped)
473 		dws->dma_ops->dma_stop(dws);
474 
475 	dw_spi_reset_chip(dws);
476 }
477 
478 static void dw_spi_handle_err(struct spi_controller *ctlr,
479 			      struct spi_message *msg)
480 {
481 	dw_spi_abort(ctlr);
482 }
483 
484 static int dw_spi_target_abort(struct spi_controller *ctlr)
485 {
486 	dw_spi_abort(ctlr);
487 
488 	return 0;
489 }
490 
491 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
492 {
493 	if (op->data.dir == SPI_MEM_DATA_IN)
494 		op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
495 
496 	return 0;
497 }
498 
499 static bool dw_spi_supports_mem_op(struct spi_mem *mem,
500 				   const struct spi_mem_op *op)
501 {
502 	if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
503 	    op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
504 		return false;
505 
506 	return spi_mem_default_supports_op(mem, op);
507 }
508 
509 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
510 {
511 	unsigned int i, j, len;
512 	u8 *out;
513 
514 	/*
515 	 * Calculate the total length of the EEPROM command transfer and
516 	 * either use the pre-allocated buffer or create a temporary one.
517 	 */
518 	len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
519 	if (op->data.dir == SPI_MEM_DATA_OUT)
520 		len += op->data.nbytes;
521 
522 	if (len <= DW_SPI_BUF_SIZE) {
523 		out = dws->buf;
524 	} else {
525 		out = kzalloc(len, GFP_KERNEL);
526 		if (!out)
527 			return -ENOMEM;
528 	}
529 
530 	/*
531 	 * Collect the operation code, address and dummy bytes into the single
532 	 * buffer. If it's a transfer with data to be sent, also copy it into the
533 	 * single buffer in order to speed the data transmission up.
534 	 */
535 	for (i = 0; i < op->cmd.nbytes; ++i)
536 		out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
537 	for (j = 0; j < op->addr.nbytes; ++i, ++j)
538 		out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
539 	for (j = 0; j < op->dummy.nbytes; ++i, ++j)
540 		out[i] = 0x0;
541 
542 	if (op->data.dir == SPI_MEM_DATA_OUT)
543 		memcpy(&out[i], op->data.buf.out, op->data.nbytes);
544 
545 	dws->n_bytes = 1;
546 	dws->tx = out;
547 	dws->tx_len = len;
548 	if (op->data.dir == SPI_MEM_DATA_IN) {
549 		dws->rx = op->data.buf.in;
550 		dws->rx_len = op->data.nbytes;
551 	} else {
552 		dws->rx = NULL;
553 		dws->rx_len = 0;
554 	}
555 
556 	return 0;
557 }
558 
559 static void dw_spi_free_mem_buf(struct dw_spi *dws)
560 {
561 	if (dws->tx != dws->buf)
562 		kfree(dws->tx);
563 }
564 
565 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
566 {
567 	u32 room, entries, sts;
568 	unsigned int len;
569 	u8 *buf;
570 
571 	/*
572 	 * At initial stage we just pre-fill the Tx FIFO in with no rush,
573 	 * since native CS hasn't been enabled yet and the automatic data
574 	 * transmission won't start til we do that.
575 	 */
576 	len = min(dws->fifo_len, dws->tx_len);
577 	buf = dws->tx;
578 	while (len--)
579 		dw_write_io_reg(dws, DW_SPI_DR, *buf++);
580 
581 	/*
582 	 * After setting any bit in the SER register the transmission will
583 	 * start automatically. We have to keep up with that procedure
584 	 * otherwise the CS de-assertion will happen whereupon the memory
585 	 * operation will be pre-terminated.
586 	 */
587 	len = dws->tx_len - ((void *)buf - dws->tx);
588 	dw_spi_set_cs(spi, false);
589 	while (len) {
590 		entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
591 		if (!entries) {
592 			dev_err(&dws->ctlr->dev, "CS de-assertion on Tx\n");
593 			return -EIO;
594 		}
595 		room = min(dws->fifo_len - entries, len);
596 		for (; room; --room, --len)
597 			dw_write_io_reg(dws, DW_SPI_DR, *buf++);
598 	}
599 
600 	/*
601 	 * Data fetching will start automatically if the EEPROM-read mode is
602 	 * activated. We have to keep up with the incoming data pace to
603 	 * prevent the Rx FIFO overflow causing the inbound data loss.
604 	 */
605 	len = dws->rx_len;
606 	buf = dws->rx;
607 	while (len) {
608 		entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
609 		if (!entries) {
610 			sts = readl_relaxed(dws->regs + DW_SPI_RISR);
611 			if (sts & DW_SPI_INT_RXOI) {
612 				dev_err(&dws->ctlr->dev, "FIFO overflow on Rx\n");
613 				return -EIO;
614 			}
615 			continue;
616 		}
617 		entries = min(entries, len);
618 		for (; entries; --entries, --len)
619 			*buf++ = dw_read_io_reg(dws, DW_SPI_DR);
620 	}
621 
622 	return 0;
623 }
624 
625 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
626 {
627 	return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
628 }
629 
630 static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
631 {
632 	int retry = DW_SPI_WAIT_RETRIES;
633 	struct spi_delay delay;
634 	unsigned long ns, us;
635 	u32 nents;
636 
637 	nents = dw_readl(dws, DW_SPI_TXFLR);
638 	ns = NSEC_PER_SEC / dws->current_freq * nents;
639 	ns *= dws->n_bytes * BITS_PER_BYTE;
640 	if (ns <= NSEC_PER_USEC) {
641 		delay.unit = SPI_DELAY_UNIT_NSECS;
642 		delay.value = ns;
643 	} else {
644 		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
645 		delay.unit = SPI_DELAY_UNIT_USECS;
646 		delay.value = clamp_val(us, 0, USHRT_MAX);
647 	}
648 
649 	while (dw_spi_ctlr_busy(dws) && retry--)
650 		spi_delay_exec(&delay, NULL);
651 
652 	if (retry < 0) {
653 		dev_err(&dws->ctlr->dev, "Mem op hanged up\n");
654 		return -EIO;
655 	}
656 
657 	return 0;
658 }
659 
660 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
661 {
662 	dw_spi_enable_chip(dws, 0);
663 	dw_spi_set_cs(spi, true);
664 	dw_spi_enable_chip(dws, 1);
665 }
666 
667 /*
668  * The SPI memory operation implementation below is the best choice for the
669  * devices, which are selected by the native chip-select lane. It's
670  * specifically developed to workaround the problem with automatic chip-select
671  * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
672  * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
673  * unavailable.
674  */
675 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
676 {
677 	struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
678 	struct dw_spi_cfg cfg;
679 	unsigned long flags;
680 	int ret;
681 
682 	/*
683 	 * Collect the outbound data into a single buffer to speed the
684 	 * transmission up at least on the initial stage.
685 	 */
686 	ret = dw_spi_init_mem_buf(dws, op);
687 	if (ret)
688 		return ret;
689 
690 	/*
691 	 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
692 	 * operation. Transmit-only mode is suitable for the rest of them.
693 	 */
694 	cfg.dfs = 8;
695 	cfg.freq = clamp(op->max_freq, 0U, dws->max_mem_freq);
696 	if (op->data.dir == SPI_MEM_DATA_IN) {
697 		cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
698 		cfg.ndf = op->data.nbytes;
699 	} else {
700 		cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
701 	}
702 
703 	dw_spi_enable_chip(dws, 0);
704 
705 	dw_spi_update_config(dws, mem->spi, &cfg);
706 
707 	dw_spi_mask_intr(dws, 0xff);
708 
709 	dw_spi_enable_chip(dws, 1);
710 
711 	/*
712 	 * DW APB SSI controller has very nasty peculiarities. First originally
713 	 * (without any vendor-specific modifications) it doesn't provide a
714 	 * direct way to set and clear the native chip-select signal. Instead
715 	 * the controller asserts the CS lane if Tx FIFO isn't empty and a
716 	 * transmission is going on, and automatically de-asserts it back to
717 	 * the high level if the Tx FIFO doesn't have anything to be pushed
718 	 * out. Due to that a multi-tasking or heavy IRQs activity might be
719 	 * fatal, since the transfer procedure preemption may cause the Tx FIFO
720 	 * getting empty and sudden CS de-assertion, which in the middle of the
721 	 * transfer will most likely cause the data loss. Secondly the
722 	 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
723 	 * data being automatically pulled in into the Rx FIFO. So if the
724 	 * driver software is late in fetching the data from the FIFO before
725 	 * it's overflown, new incoming data will be lost. In order to make
726 	 * sure the executed memory operations are CS-atomic and to prevent the
727 	 * Rx FIFO overflow we have to disable the local interrupts so to block
728 	 * any preemption during the subsequent IO operations.
729 	 *
730 	 * Note. At some circumstances disabling IRQs may not help to prevent
731 	 * the problems described above. The CS de-assertion and Rx FIFO
732 	 * overflow may still happen due to the relatively slow system bus or
733 	 * CPU not working fast enough, so the write-then-read algo implemented
734 	 * here just won't keep up with the SPI bus data transfer. Such
735 	 * situation is highly platform specific and is supposed to be fixed by
736 	 * manually restricting the SPI bus frequency using the
737 	 * dws->max_mem_freq parameter.
738 	 */
739 	local_irq_save(flags);
740 	preempt_disable();
741 
742 	ret = dw_spi_write_then_read(dws, mem->spi);
743 
744 	local_irq_restore(flags);
745 	preempt_enable();
746 
747 	/*
748 	 * Wait for the operation being finished and check the controller
749 	 * status only if there hasn't been any run-time error detected. In the
750 	 * former case it's just pointless. In the later one to prevent an
751 	 * additional error message printing since any hw error flag being set
752 	 * would be due to an error detected on the data transfer.
753 	 */
754 	if (!ret) {
755 		ret = dw_spi_wait_mem_op_done(dws);
756 		if (!ret)
757 			ret = dw_spi_check_status(dws, true);
758 	}
759 
760 	dw_spi_stop_mem_op(dws, mem->spi);
761 
762 	dw_spi_free_mem_buf(dws);
763 
764 	return ret;
765 }
766 
767 /*
768  * Initialize the default memory operations if a glue layer hasn't specified
769  * custom ones. Direct mapping operations will be preserved anyway since DW SPI
770  * controller doesn't have an embedded dirmap interface. Note the memory
771  * operations implemented in this driver is the best choice only for the DW APB
772  * SSI controller with standard native CS functionality. If a hardware vendor
773  * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
774  * be safer to use the normal SPI-messages-based transfers implementation.
775  */
776 static void dw_spi_init_mem_ops(struct dw_spi *dws)
777 {
778 	if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
779 	    !dws->set_cs) {
780 		dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
781 		dws->mem_ops.supports_op = dw_spi_supports_mem_op;
782 		dws->mem_ops.exec_op = dw_spi_exec_mem_op;
783 		if (!dws->max_mem_freq)
784 			dws->max_mem_freq = dws->max_freq;
785 	}
786 }
787 
788 /* This may be called twice for each spi dev */
789 static int dw_spi_setup(struct spi_device *spi)
790 {
791 	struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
792 	struct dw_spi_chip_data *chip;
793 
794 	/* Only alloc on first setup */
795 	chip = spi_get_ctldata(spi);
796 	if (!chip) {
797 		struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
798 		u32 rx_sample_dly_ns;
799 
800 		chip = kzalloc(sizeof(*chip), GFP_KERNEL);
801 		if (!chip)
802 			return -ENOMEM;
803 		spi_set_ctldata(spi, chip);
804 		/* Get specific / default rx-sample-delay */
805 		if (device_property_read_u32(&spi->dev,
806 					     "rx-sample-delay-ns",
807 					     &rx_sample_dly_ns) != 0)
808 			/* Use default controller value */
809 			rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
810 		chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
811 							NSEC_PER_SEC /
812 							dws->max_freq);
813 	}
814 
815 	/*
816 	 * Update CR0 data each time the setup callback is invoked since
817 	 * the device parameters could have been changed, for instance, by
818 	 * the MMC SPI driver or something else.
819 	 */
820 	chip->cr0 = dw_spi_prepare_cr0(dws, spi);
821 
822 	return 0;
823 }
824 
825 static void dw_spi_cleanup(struct spi_device *spi)
826 {
827 	struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
828 
829 	kfree(chip);
830 	spi_set_ctldata(spi, NULL);
831 }
832 
833 /* Restart the controller, disable all interrupts, clean rx fifo */
834 static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
835 {
836 	dw_spi_reset_chip(dws);
837 
838 	/*
839 	 * Retrieve the Synopsys component version if it hasn't been specified
840 	 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
841 	 * code enclosed with '*' (typical for the most of Synopsys IP-cores).
842 	 */
843 	if (!dws->ver) {
844 		dws->ver = dw_readl(dws, DW_SPI_VERSION);
845 
846 		dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
847 			dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
848 			DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
849 			DW_SPI_GET_BYTE(dws->ver, 1));
850 	}
851 
852 	if (spi_controller_is_target(dws->ctlr)) {
853 		/* There is only one CS input signal in target mode */
854 		dws->num_cs = 1;
855 	} else {
856 		/*
857 		 * Try to detect the number of native chip-selects if the platform
858 		 * driver didn't set it up. There can be up to 16 lines configured.
859 		 */
860 		if (!dws->num_cs) {
861 			u32 ser;
862 
863 			dw_writel(dws, DW_SPI_SER, 0xffff);
864 			ser = dw_readl(dws, DW_SPI_SER);
865 			dw_writel(dws, DW_SPI_SER, 0);
866 
867 			dws->num_cs = hweight16(ser);
868 		}
869 	}
870 
871 	/*
872 	 * Try to detect the FIFO depth if not set by interface driver,
873 	 * the depth could be from 2 to 256 from HW spec
874 	 */
875 	if (!dws->fifo_len) {
876 		u32 fifo;
877 
878 		for (fifo = 1; fifo < 256; fifo++) {
879 			dw_writel(dws, DW_SPI_TXFTLR, fifo);
880 			if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
881 				break;
882 		}
883 		dw_writel(dws, DW_SPI_TXFTLR, 0);
884 
885 		dws->fifo_len = (fifo == 1) ? 0 : fifo;
886 		dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
887 	}
888 
889 	/*
890 	 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
891 	 * writability. Note DWC SSI controller also has the extended DFS, but
892 	 * with zero offset.
893 	 */
894 	if (dw_spi_ip_is(dws, PSSI)) {
895 		u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
896 
897 		dw_spi_enable_chip(dws, 0);
898 		dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
899 		cr0 = dw_readl(dws, DW_SPI_CTRLR0);
900 		dw_writel(dws, DW_SPI_CTRLR0, tmp);
901 		dw_spi_enable_chip(dws, 1);
902 
903 		if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
904 			dws->caps |= DW_SPI_CAP_DFS32;
905 			dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
906 			dev_dbg(dev, "Detected 32-bits max data frame size\n");
907 		}
908 	} else {
909 		dws->caps |= DW_SPI_CAP_DFS32;
910 	}
911 
912 	/* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
913 	if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
914 		dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
915 }
916 
917 static const struct spi_controller_mem_caps dw_spi_mem_caps = {
918 	.per_op_freq = true,
919 };
920 
921 int dw_spi_add_controller(struct device *dev, struct dw_spi *dws)
922 {
923 	struct spi_controller *ctlr;
924 	bool target;
925 	int ret;
926 
927 	if (!dws)
928 		return -EINVAL;
929 
930 	target = device_property_read_bool(dev, "spi-slave");
931 	if (target)
932 		ctlr = spi_alloc_target(dev, 0);
933 	else
934 		ctlr = spi_alloc_host(dev, 0);
935 
936 	if (!ctlr)
937 		return -ENOMEM;
938 
939 	device_set_node(&ctlr->dev, dev_fwnode(dev));
940 
941 	dws->ctlr = ctlr;
942 	dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
943 
944 	spi_controller_set_devdata(ctlr, dws);
945 
946 	/* Basic HW init */
947 	dw_spi_hw_init(dev, dws);
948 
949 	ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
950 			  ctlr);
951 	if (ret < 0 && ret != -ENOTCONN) {
952 		dev_err(dev, "can not get IRQ\n");
953 		goto err_free_ctlr;
954 	}
955 
956 	dw_spi_init_mem_ops(dws);
957 
958 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA;
959 	if (dws->caps & DW_SPI_CAP_DFS32)
960 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
961 	else
962 		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
963 	ctlr->bus_num = dws->bus_num;
964 	ctlr->num_chipselect = dws->num_cs;
965 	ctlr->setup = dw_spi_setup;
966 	ctlr->cleanup = dw_spi_cleanup;
967 	ctlr->transfer_one = dw_spi_transfer_one;
968 	ctlr->handle_err = dw_spi_handle_err;
969 	ctlr->auto_runtime_pm = true;
970 
971 	if (!target) {
972 		ctlr->use_gpio_descriptors = true;
973 		ctlr->mode_bits |= SPI_LOOP;
974 		if (dws->set_cs)
975 			ctlr->set_cs = dws->set_cs;
976 		else
977 			ctlr->set_cs = dw_spi_set_cs;
978 		if (dws->mem_ops.exec_op) {
979 			ctlr->mem_ops = &dws->mem_ops;
980 			ctlr->mem_caps = &dw_spi_mem_caps;
981 		}
982 		ctlr->max_speed_hz = dws->max_freq;
983 		ctlr->flags = SPI_CONTROLLER_GPIO_SS;
984 	} else {
985 		ctlr->target_abort = dw_spi_target_abort;
986 	}
987 
988 	/* Get default rx sample delay */
989 	device_property_read_u32(dev, "rx-sample-delay-ns",
990 				 &dws->def_rx_sample_dly_ns);
991 
992 	if (dws->dma_ops && dws->dma_ops->dma_init) {
993 		ret = dws->dma_ops->dma_init(dev, dws);
994 		if (ret == -EPROBE_DEFER) {
995 			goto err_free_irq;
996 		} else if (ret) {
997 			dev_warn(dev, "DMA init failed\n");
998 		} else {
999 			ctlr->can_dma = dws->dma_ops->can_dma;
1000 			ctlr->flags |= SPI_CONTROLLER_MUST_TX;
1001 		}
1002 	}
1003 
1004 	ret = spi_register_controller(ctlr);
1005 	if (ret) {
1006 		dev_err_probe(dev, ret, "problem registering spi controller\n");
1007 		goto err_dma_exit;
1008 	}
1009 
1010 	dw_spi_debugfs_init(dws);
1011 	return 0;
1012 
1013 err_dma_exit:
1014 	if (dws->dma_ops && dws->dma_ops->dma_exit)
1015 		dws->dma_ops->dma_exit(dws);
1016 	dw_spi_enable_chip(dws, 0);
1017 err_free_irq:
1018 	free_irq(dws->irq, ctlr);
1019 err_free_ctlr:
1020 	spi_controller_put(ctlr);
1021 	return ret;
1022 }
1023 EXPORT_SYMBOL_NS_GPL(dw_spi_add_controller, "SPI_DW_CORE");
1024 
1025 void dw_spi_remove_controller(struct dw_spi *dws)
1026 {
1027 	dw_spi_debugfs_remove(dws);
1028 
1029 	spi_unregister_controller(dws->ctlr);
1030 
1031 	if (dws->dma_ops && dws->dma_ops->dma_exit)
1032 		dws->dma_ops->dma_exit(dws);
1033 
1034 	dw_spi_shutdown_chip(dws);
1035 
1036 	free_irq(dws->irq, dws->ctlr);
1037 }
1038 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_controller, "SPI_DW_CORE");
1039 
1040 int dw_spi_suspend_controller(struct dw_spi *dws)
1041 {
1042 	int ret;
1043 
1044 	ret = spi_controller_suspend(dws->ctlr);
1045 	if (ret)
1046 		return ret;
1047 
1048 	dw_spi_shutdown_chip(dws);
1049 	return 0;
1050 }
1051 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_controller, "SPI_DW_CORE");
1052 
1053 int dw_spi_resume_controller(struct dw_spi *dws)
1054 {
1055 	dw_spi_hw_init(&dws->ctlr->dev, dws);
1056 	return spi_controller_resume(dws->ctlr);
1057 }
1058 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_controller, "SPI_DW_CORE");
1059 
1060 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
1061 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
1062 MODULE_LICENSE("GPL v2");
1063