1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Designware SPI core controller driver (refer pxa2xx_spi.c) 4 * 5 * Copyright (c) 2009, Intel Corporation. 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/bitops.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/interrupt.h> 12 #include <linux/module.h> 13 #include <linux/preempt.h> 14 #include <linux/highmem.h> 15 #include <linux/delay.h> 16 #include <linux/slab.h> 17 #include <linux/spi/spi.h> 18 #include <linux/spi/spi-mem.h> 19 #include <linux/string.h> 20 #include <linux/of.h> 21 22 #include "internals.h" 23 #include "spi-dw.h" 24 25 #ifdef CONFIG_DEBUG_FS 26 #include <linux/debugfs.h> 27 #endif 28 29 /* Slave spi_device related */ 30 struct dw_spi_chip_data { 31 u32 cr0; 32 u32 rx_sample_dly; /* RX sample delay */ 33 }; 34 35 #ifdef CONFIG_DEBUG_FS 36 37 #define DW_SPI_DBGFS_REG(_name, _off) \ 38 { \ 39 .name = _name, \ 40 .offset = _off, \ 41 } 42 43 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = { 44 DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0), 45 DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1), 46 DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR), 47 DW_SPI_DBGFS_REG("SER", DW_SPI_SER), 48 DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR), 49 DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR), 50 DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR), 51 DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR), 52 DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR), 53 DW_SPI_DBGFS_REG("SR", DW_SPI_SR), 54 DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR), 55 DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR), 56 DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR), 57 DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR), 58 DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR), 59 DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY), 60 }; 61 62 static void dw_spi_debugfs_init(struct dw_spi *dws) 63 { 64 char name[32]; 65 66 snprintf(name, 32, "dw_spi%d", dws->ctlr->bus_num); 67 dws->debugfs = debugfs_create_dir(name, NULL); 68 69 dws->regset.regs = dw_spi_dbgfs_regs; 70 dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs); 71 dws->regset.base = dws->regs; 72 debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset); 73 } 74 75 static void dw_spi_debugfs_remove(struct dw_spi *dws) 76 { 77 debugfs_remove_recursive(dws->debugfs); 78 } 79 80 #else 81 static inline void dw_spi_debugfs_init(struct dw_spi *dws) 82 { 83 } 84 85 static inline void dw_spi_debugfs_remove(struct dw_spi *dws) 86 { 87 } 88 #endif /* CONFIG_DEBUG_FS */ 89 90 void dw_spi_set_cs(struct spi_device *spi, bool enable) 91 { 92 struct dw_spi *dws = spi_controller_get_devdata(spi->controller); 93 bool cs_high = !!(spi->mode & SPI_CS_HIGH); 94 95 /* 96 * DW SPI controller demands any native CS being set in order to 97 * proceed with data transfer. So in order to activate the SPI 98 * communications we must set a corresponding bit in the Slave 99 * Enable register no matter whether the SPI core is configured to 100 * support active-high or active-low CS level. 101 */ 102 if (cs_high == enable) 103 dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0))); 104 else 105 dw_writel(dws, DW_SPI_SER, 0); 106 } 107 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, "SPI_DW_CORE"); 108 109 /* Return the max entries we can fill into tx fifo */ 110 static inline u32 dw_spi_tx_max(struct dw_spi *dws) 111 { 112 u32 tx_room, rxtx_gap; 113 114 tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR); 115 116 /* 117 * Another concern is about the tx/rx mismatch, we 118 * though to use (dws->fifo_len - rxflr - txflr) as 119 * one maximum value for tx, but it doesn't cover the 120 * data which is out of tx/rx fifo and inside the 121 * shift registers. So a control from sw point of 122 * view is taken. 123 */ 124 rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len); 125 126 return min3((u32)dws->tx_len, tx_room, rxtx_gap); 127 } 128 129 /* Return the max entries we should read out of rx fifo */ 130 static inline u32 dw_spi_rx_max(struct dw_spi *dws) 131 { 132 return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR)); 133 } 134 135 static void dw_writer(struct dw_spi *dws) 136 { 137 u32 max = dw_spi_tx_max(dws); 138 u32 txw = 0; 139 140 while (max--) { 141 if (dws->tx) { 142 if (dws->n_bytes == 1) 143 txw = *(u8 *)(dws->tx); 144 else if (dws->n_bytes == 2) 145 txw = *(u16 *)(dws->tx); 146 else 147 txw = *(u32 *)(dws->tx); 148 149 dws->tx += dws->n_bytes; 150 } 151 dw_write_io_reg(dws, DW_SPI_DR, txw); 152 --dws->tx_len; 153 } 154 } 155 156 static void dw_reader(struct dw_spi *dws) 157 { 158 u32 max = dw_spi_rx_max(dws); 159 u32 rxw; 160 161 while (max--) { 162 rxw = dw_read_io_reg(dws, DW_SPI_DR); 163 if (dws->rx) { 164 if (dws->n_bytes == 1) 165 *(u8 *)(dws->rx) = rxw; 166 else if (dws->n_bytes == 2) 167 *(u16 *)(dws->rx) = rxw; 168 else 169 *(u32 *)(dws->rx) = rxw; 170 171 dws->rx += dws->n_bytes; 172 } 173 --dws->rx_len; 174 } 175 } 176 177 int dw_spi_check_status(struct dw_spi *dws, bool raw) 178 { 179 u32 irq_status; 180 int ret = 0; 181 182 if (raw) 183 irq_status = dw_readl(dws, DW_SPI_RISR); 184 else 185 irq_status = dw_readl(dws, DW_SPI_ISR); 186 187 if (irq_status & DW_SPI_INT_RXOI) { 188 dev_err(&dws->ctlr->dev, "RX FIFO overflow detected\n"); 189 ret = -EIO; 190 } 191 192 if (irq_status & DW_SPI_INT_RXUI) { 193 dev_err(&dws->ctlr->dev, "RX FIFO underflow detected\n"); 194 ret = -EIO; 195 } 196 197 if (irq_status & DW_SPI_INT_TXOI) { 198 dev_err(&dws->ctlr->dev, "TX FIFO overflow detected\n"); 199 ret = -EIO; 200 } 201 202 /* Generically handle the erroneous situation */ 203 if (ret) { 204 dw_spi_reset_chip(dws); 205 if (dws->ctlr->cur_msg) 206 dws->ctlr->cur_msg->status = ret; 207 } 208 209 return ret; 210 } 211 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, "SPI_DW_CORE"); 212 213 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws) 214 { 215 u16 irq_status = dw_readl(dws, DW_SPI_ISR); 216 217 if (dw_spi_check_status(dws, false)) { 218 spi_finalize_current_transfer(dws->ctlr); 219 return IRQ_HANDLED; 220 } 221 222 /* 223 * Read data from the Rx FIFO every time we've got a chance executing 224 * this method. If there is nothing left to receive, terminate the 225 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a 226 * final stage of the transfer. By doing so we'll get the next IRQ 227 * right when the leftover incoming data is received. 228 */ 229 dw_reader(dws); 230 if (!dws->rx_len) { 231 dw_spi_mask_intr(dws, 0xff); 232 spi_finalize_current_transfer(dws->ctlr); 233 } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) { 234 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1); 235 } 236 237 /* 238 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be 239 * disabled after the data transmission is finished so not to 240 * have the TXE IRQ flood at the final stage of the transfer. 241 */ 242 if (irq_status & DW_SPI_INT_TXEI) { 243 dw_writer(dws); 244 if (!dws->tx_len) 245 dw_spi_mask_intr(dws, DW_SPI_INT_TXEI); 246 } 247 248 return IRQ_HANDLED; 249 } 250 251 static irqreturn_t dw_spi_irq(int irq, void *dev_id) 252 { 253 struct spi_controller *ctlr = dev_id; 254 struct dw_spi *dws = spi_controller_get_devdata(ctlr); 255 u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK; 256 257 if (!irq_status) 258 return IRQ_NONE; 259 260 if (!ctlr->cur_msg) { 261 dw_spi_mask_intr(dws, 0xff); 262 return IRQ_HANDLED; 263 } 264 265 return dws->transfer_handler(dws); 266 } 267 268 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi) 269 { 270 u32 cr0 = 0; 271 272 if (dw_spi_ip_is(dws, PSSI)) { 273 /* CTRLR0[ 5: 4] Frame Format */ 274 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI); 275 276 /* 277 * SPI mode (SCPOL|SCPH) 278 * CTRLR0[ 6] Serial Clock Phase 279 * CTRLR0[ 7] Serial Clock Polarity 280 */ 281 if (spi->mode & SPI_CPOL) 282 cr0 |= DW_PSSI_CTRLR0_SCPOL; 283 if (spi->mode & SPI_CPHA) 284 cr0 |= DW_PSSI_CTRLR0_SCPHA; 285 286 /* CTRLR0[11] Shift Register Loop */ 287 if (spi->mode & SPI_LOOP) 288 cr0 |= DW_PSSI_CTRLR0_SRL; 289 } else { 290 /* CTRLR0[ 7: 6] Frame Format */ 291 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI); 292 293 /* 294 * SPI mode (SCPOL|SCPH) 295 * CTRLR0[ 8] Serial Clock Phase 296 * CTRLR0[ 9] Serial Clock Polarity 297 */ 298 if (spi->mode & SPI_CPOL) 299 cr0 |= DW_HSSI_CTRLR0_SCPOL; 300 if (spi->mode & SPI_CPHA) 301 cr0 |= DW_HSSI_CTRLR0_SCPHA; 302 303 /* CTRLR0[13] Shift Register Loop */ 304 if (spi->mode & SPI_LOOP) 305 cr0 |= DW_HSSI_CTRLR0_SRL; 306 307 /* CTRLR0[31] MST */ 308 if (dw_spi_ver_is_ge(dws, HSSI, 102A)) 309 cr0 |= DW_HSSI_CTRLR0_MST; 310 } 311 312 return cr0; 313 } 314 315 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi, 316 struct dw_spi_cfg *cfg) 317 { 318 struct dw_spi_chip_data *chip = spi_get_ctldata(spi); 319 u32 cr0 = chip->cr0; 320 u32 speed_hz; 321 u16 clk_div; 322 323 /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */ 324 cr0 |= (cfg->dfs - 1) << dws->dfs_offset; 325 326 if (dw_spi_ip_is(dws, PSSI)) 327 /* CTRLR0[ 9:8] Transfer Mode */ 328 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode); 329 else 330 /* CTRLR0[11:10] Transfer Mode */ 331 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode); 332 333 dw_writel(dws, DW_SPI_CTRLR0, cr0); 334 335 if (spi_controller_is_target(dws->ctlr)) 336 return; 337 338 if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD || 339 cfg->tmode == DW_SPI_CTRLR0_TMOD_RO) 340 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0); 341 342 /* Note DW APB SSI clock divider doesn't support odd numbers */ 343 clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe; 344 speed_hz = dws->max_freq / clk_div; 345 346 if (dws->current_freq != speed_hz) { 347 dw_spi_set_clk(dws, clk_div); 348 dws->current_freq = speed_hz; 349 } 350 351 /* Update RX sample delay if required */ 352 if (dws->cur_rx_sample_dly != chip->rx_sample_dly) { 353 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly); 354 dws->cur_rx_sample_dly = chip->rx_sample_dly; 355 } 356 } 357 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, "SPI_DW_CORE"); 358 359 static void dw_spi_irq_setup(struct dw_spi *dws) 360 { 361 u16 level; 362 u8 imask; 363 364 /* 365 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level 366 * will be adjusted at the final stage of the IRQ-based SPI transfer 367 * execution so not to lose the leftover of the incoming data. 368 */ 369 level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len); 370 dw_writel(dws, DW_SPI_TXFTLR, level); 371 dw_writel(dws, DW_SPI_RXFTLR, level - 1); 372 373 dws->transfer_handler = dw_spi_transfer_handler; 374 375 imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI | 376 DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI; 377 dw_spi_umask_intr(dws, imask); 378 } 379 380 /* 381 * The iterative procedure of the poll-based transfer is simple: write as much 382 * as possible to the Tx FIFO, wait until the pending to receive data is ready 383 * to be read, read it from the Rx FIFO and check whether the performed 384 * procedure has been successful. 385 * 386 * Note this method the same way as the IRQ-based transfer won't work well for 387 * the SPI devices connected to the controller with native CS due to the 388 * automatic CS assertion/de-assertion. 389 */ 390 static int dw_spi_poll_transfer(struct dw_spi *dws, 391 struct spi_transfer *transfer) 392 { 393 struct spi_delay delay; 394 u16 nbits; 395 int ret; 396 397 delay.unit = SPI_DELAY_UNIT_SCK; 398 nbits = dws->n_bytes * BITS_PER_BYTE; 399 400 do { 401 dw_writer(dws); 402 403 delay.value = nbits * (dws->rx_len - dws->tx_len); 404 spi_delay_exec(&delay, transfer); 405 406 dw_reader(dws); 407 408 ret = dw_spi_check_status(dws, true); 409 if (ret) 410 return ret; 411 } while (dws->rx_len); 412 413 return 0; 414 } 415 416 static int dw_spi_transfer_one(struct spi_controller *ctlr, 417 struct spi_device *spi, 418 struct spi_transfer *transfer) 419 { 420 struct dw_spi *dws = spi_controller_get_devdata(ctlr); 421 struct dw_spi_cfg cfg = { 422 .tmode = DW_SPI_CTRLR0_TMOD_TR, 423 .dfs = transfer->bits_per_word, 424 .freq = transfer->speed_hz, 425 }; 426 int ret; 427 428 dws->dma_mapped = 0; 429 dws->n_bytes = spi_bpw_to_bytes(transfer->bits_per_word); 430 dws->tx = (void *)transfer->tx_buf; 431 dws->tx_len = transfer->len / dws->n_bytes; 432 dws->rx = transfer->rx_buf; 433 dws->rx_len = dws->tx_len; 434 435 /* Ensure the data above is visible for all CPUs */ 436 smp_mb(); 437 438 dw_spi_enable_chip(dws, 0); 439 440 dw_spi_update_config(dws, spi, &cfg); 441 442 transfer->effective_speed_hz = dws->current_freq; 443 444 /* Check if current transfer is a DMA transaction */ 445 dws->dma_mapped = spi_xfer_is_dma_mapped(ctlr, spi, transfer); 446 447 /* For poll mode just disable all interrupts */ 448 dw_spi_mask_intr(dws, 0xff); 449 450 if (dws->dma_mapped) { 451 ret = dws->dma_ops->dma_setup(dws, transfer); 452 if (ret) 453 return ret; 454 } 455 456 dw_spi_enable_chip(dws, 1); 457 458 if (dws->dma_mapped) 459 return dws->dma_ops->dma_transfer(dws, transfer); 460 else if (dws->irq == IRQ_NOTCONNECTED) 461 return dw_spi_poll_transfer(dws, transfer); 462 463 dw_spi_irq_setup(dws); 464 465 return 1; 466 } 467 468 static inline void dw_spi_abort(struct spi_controller *ctlr) 469 { 470 struct dw_spi *dws = spi_controller_get_devdata(ctlr); 471 472 if (dws->dma_mapped) 473 dws->dma_ops->dma_stop(dws); 474 475 dw_spi_reset_chip(dws); 476 } 477 478 static void dw_spi_handle_err(struct spi_controller *ctlr, 479 struct spi_message *msg) 480 { 481 dw_spi_abort(ctlr); 482 } 483 484 static int dw_spi_target_abort(struct spi_controller *ctlr) 485 { 486 dw_spi_abort(ctlr); 487 488 return 0; 489 } 490 491 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op) 492 { 493 if (op->data.dir == SPI_MEM_DATA_IN) 494 op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1); 495 496 return 0; 497 } 498 499 static bool dw_spi_supports_mem_op(struct spi_mem *mem, 500 const struct spi_mem_op *op) 501 { 502 if (op->data.buswidth > 1 || op->addr.buswidth > 1 || 503 op->dummy.buswidth > 1 || op->cmd.buswidth > 1) 504 return false; 505 506 return spi_mem_default_supports_op(mem, op); 507 } 508 509 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op) 510 { 511 unsigned int i, j, len; 512 u8 *out; 513 514 /* 515 * Calculate the total length of the EEPROM command transfer and 516 * either use the pre-allocated buffer or create a temporary one. 517 */ 518 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 519 if (op->data.dir == SPI_MEM_DATA_OUT) 520 len += op->data.nbytes; 521 522 if (len <= DW_SPI_BUF_SIZE) { 523 out = dws->buf; 524 } else { 525 out = kzalloc(len, GFP_KERNEL); 526 if (!out) 527 return -ENOMEM; 528 } 529 530 /* 531 * Collect the operation code, address and dummy bytes into the single 532 * buffer. If it's a transfer with data to be sent, also copy it into the 533 * single buffer in order to speed the data transmission up. 534 */ 535 for (i = 0; i < op->cmd.nbytes; ++i) 536 out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1); 537 for (j = 0; j < op->addr.nbytes; ++i, ++j) 538 out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1); 539 for (j = 0; j < op->dummy.nbytes; ++i, ++j) 540 out[i] = 0x0; 541 542 if (op->data.dir == SPI_MEM_DATA_OUT) 543 memcpy(&out[i], op->data.buf.out, op->data.nbytes); 544 545 dws->n_bytes = 1; 546 dws->tx = out; 547 dws->tx_len = len; 548 if (op->data.dir == SPI_MEM_DATA_IN) { 549 dws->rx = op->data.buf.in; 550 dws->rx_len = op->data.nbytes; 551 } else { 552 dws->rx = NULL; 553 dws->rx_len = 0; 554 } 555 556 return 0; 557 } 558 559 static void dw_spi_free_mem_buf(struct dw_spi *dws) 560 { 561 if (dws->tx != dws->buf) 562 kfree(dws->tx); 563 } 564 565 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi) 566 { 567 u32 room, entries, sts; 568 unsigned int len; 569 u8 *buf; 570 571 /* 572 * At initial stage we just pre-fill the Tx FIFO in with no rush, 573 * since native CS hasn't been enabled yet and the automatic data 574 * transmission won't start til we do that. 575 */ 576 len = min(dws->fifo_len, dws->tx_len); 577 buf = dws->tx; 578 while (len--) 579 dw_write_io_reg(dws, DW_SPI_DR, *buf++); 580 581 /* 582 * After setting any bit in the SER register the transmission will 583 * start automatically. We have to keep up with that procedure 584 * otherwise the CS de-assertion will happen whereupon the memory 585 * operation will be pre-terminated. 586 */ 587 len = dws->tx_len - ((void *)buf - dws->tx); 588 dw_spi_set_cs(spi, false); 589 while (len) { 590 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR); 591 if (!entries) { 592 dev_err(&dws->ctlr->dev, "CS de-assertion on Tx\n"); 593 return -EIO; 594 } 595 room = min(dws->fifo_len - entries, len); 596 for (; room; --room, --len) 597 dw_write_io_reg(dws, DW_SPI_DR, *buf++); 598 } 599 600 /* 601 * Data fetching will start automatically if the EEPROM-read mode is 602 * activated. We have to keep up with the incoming data pace to 603 * prevent the Rx FIFO overflow causing the inbound data loss. 604 */ 605 len = dws->rx_len; 606 buf = dws->rx; 607 while (len) { 608 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR); 609 if (!entries) { 610 sts = readl_relaxed(dws->regs + DW_SPI_RISR); 611 if (sts & DW_SPI_INT_RXOI) { 612 dev_err(&dws->ctlr->dev, "FIFO overflow on Rx\n"); 613 return -EIO; 614 } 615 continue; 616 } 617 entries = min(entries, len); 618 for (; entries; --entries, --len) 619 *buf++ = dw_read_io_reg(dws, DW_SPI_DR); 620 } 621 622 return 0; 623 } 624 625 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws) 626 { 627 return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY; 628 } 629 630 static int dw_spi_wait_mem_op_done(struct dw_spi *dws) 631 { 632 int retry = DW_SPI_WAIT_RETRIES; 633 struct spi_delay delay; 634 unsigned long ns, us; 635 u32 nents; 636 637 nents = dw_readl(dws, DW_SPI_TXFLR); 638 ns = NSEC_PER_SEC / dws->current_freq * nents; 639 ns *= dws->n_bytes * BITS_PER_BYTE; 640 if (ns <= NSEC_PER_USEC) { 641 delay.unit = SPI_DELAY_UNIT_NSECS; 642 delay.value = ns; 643 } else { 644 us = DIV_ROUND_UP(ns, NSEC_PER_USEC); 645 delay.unit = SPI_DELAY_UNIT_USECS; 646 delay.value = clamp_val(us, 0, USHRT_MAX); 647 } 648 649 while (dw_spi_ctlr_busy(dws) && retry--) 650 spi_delay_exec(&delay, NULL); 651 652 if (retry < 0) { 653 dev_err(&dws->ctlr->dev, "Mem op hanged up\n"); 654 return -EIO; 655 } 656 657 return 0; 658 } 659 660 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi) 661 { 662 dw_spi_enable_chip(dws, 0); 663 dw_spi_set_cs(spi, true); 664 dw_spi_enable_chip(dws, 1); 665 } 666 667 /* 668 * The SPI memory operation implementation below is the best choice for the 669 * devices, which are selected by the native chip-select lane. It's 670 * specifically developed to workaround the problem with automatic chip-select 671 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current 672 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is 673 * unavailable. 674 */ 675 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op) 676 { 677 struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller); 678 struct dw_spi_cfg cfg; 679 unsigned long flags; 680 int ret; 681 682 /* 683 * Collect the outbound data into a single buffer to speed the 684 * transmission up at least on the initial stage. 685 */ 686 ret = dw_spi_init_mem_buf(dws, op); 687 if (ret) 688 return ret; 689 690 /* 691 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN 692 * operation. Transmit-only mode is suitable for the rest of them. 693 */ 694 cfg.dfs = 8; 695 cfg.freq = clamp(op->max_freq, 0U, dws->max_mem_freq); 696 if (op->data.dir == SPI_MEM_DATA_IN) { 697 cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD; 698 cfg.ndf = op->data.nbytes; 699 } else { 700 cfg.tmode = DW_SPI_CTRLR0_TMOD_TO; 701 } 702 703 dw_spi_enable_chip(dws, 0); 704 705 dw_spi_update_config(dws, mem->spi, &cfg); 706 707 dw_spi_mask_intr(dws, 0xff); 708 709 dw_spi_enable_chip(dws, 1); 710 711 /* 712 * DW APB SSI controller has very nasty peculiarities. First originally 713 * (without any vendor-specific modifications) it doesn't provide a 714 * direct way to set and clear the native chip-select signal. Instead 715 * the controller asserts the CS lane if Tx FIFO isn't empty and a 716 * transmission is going on, and automatically de-asserts it back to 717 * the high level if the Tx FIFO doesn't have anything to be pushed 718 * out. Due to that a multi-tasking or heavy IRQs activity might be 719 * fatal, since the transfer procedure preemption may cause the Tx FIFO 720 * getting empty and sudden CS de-assertion, which in the middle of the 721 * transfer will most likely cause the data loss. Secondly the 722 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming 723 * data being automatically pulled in into the Rx FIFO. So if the 724 * driver software is late in fetching the data from the FIFO before 725 * it's overflown, new incoming data will be lost. In order to make 726 * sure the executed memory operations are CS-atomic and to prevent the 727 * Rx FIFO overflow we have to disable the local interrupts so to block 728 * any preemption during the subsequent IO operations. 729 * 730 * Note. At some circumstances disabling IRQs may not help to prevent 731 * the problems described above. The CS de-assertion and Rx FIFO 732 * overflow may still happen due to the relatively slow system bus or 733 * CPU not working fast enough, so the write-then-read algo implemented 734 * here just won't keep up with the SPI bus data transfer. Such 735 * situation is highly platform specific and is supposed to be fixed by 736 * manually restricting the SPI bus frequency using the 737 * dws->max_mem_freq parameter. 738 */ 739 local_irq_save(flags); 740 preempt_disable(); 741 742 ret = dw_spi_write_then_read(dws, mem->spi); 743 744 local_irq_restore(flags); 745 preempt_enable(); 746 747 /* 748 * Wait for the operation being finished and check the controller 749 * status only if there hasn't been any run-time error detected. In the 750 * former case it's just pointless. In the later one to prevent an 751 * additional error message printing since any hw error flag being set 752 * would be due to an error detected on the data transfer. 753 */ 754 if (!ret) { 755 ret = dw_spi_wait_mem_op_done(dws); 756 if (!ret) 757 ret = dw_spi_check_status(dws, true); 758 } 759 760 dw_spi_stop_mem_op(dws, mem->spi); 761 762 dw_spi_free_mem_buf(dws); 763 764 return ret; 765 } 766 767 /* 768 * Initialize the default memory operations if a glue layer hasn't specified 769 * custom ones. Direct mapping operations will be preserved anyway since DW SPI 770 * controller doesn't have an embedded dirmap interface. Note the memory 771 * operations implemented in this driver is the best choice only for the DW APB 772 * SSI controller with standard native CS functionality. If a hardware vendor 773 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will 774 * be safer to use the normal SPI-messages-based transfers implementation. 775 */ 776 static void dw_spi_init_mem_ops(struct dw_spi *dws) 777 { 778 if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) && 779 !dws->set_cs) { 780 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size; 781 dws->mem_ops.supports_op = dw_spi_supports_mem_op; 782 dws->mem_ops.exec_op = dw_spi_exec_mem_op; 783 if (!dws->max_mem_freq) 784 dws->max_mem_freq = dws->max_freq; 785 } 786 } 787 788 /* This may be called twice for each spi dev */ 789 static int dw_spi_setup(struct spi_device *spi) 790 { 791 struct dw_spi *dws = spi_controller_get_devdata(spi->controller); 792 struct dw_spi_chip_data *chip; 793 794 /* Only alloc on first setup */ 795 chip = spi_get_ctldata(spi); 796 if (!chip) { 797 struct dw_spi *dws = spi_controller_get_devdata(spi->controller); 798 u32 rx_sample_dly_ns; 799 800 chip = kzalloc(sizeof(*chip), GFP_KERNEL); 801 if (!chip) 802 return -ENOMEM; 803 spi_set_ctldata(spi, chip); 804 /* Get specific / default rx-sample-delay */ 805 if (device_property_read_u32(&spi->dev, 806 "rx-sample-delay-ns", 807 &rx_sample_dly_ns) != 0) 808 /* Use default controller value */ 809 rx_sample_dly_ns = dws->def_rx_sample_dly_ns; 810 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns, 811 NSEC_PER_SEC / 812 dws->max_freq); 813 } 814 815 /* 816 * Update CR0 data each time the setup callback is invoked since 817 * the device parameters could have been changed, for instance, by 818 * the MMC SPI driver or something else. 819 */ 820 chip->cr0 = dw_spi_prepare_cr0(dws, spi); 821 822 return 0; 823 } 824 825 static void dw_spi_cleanup(struct spi_device *spi) 826 { 827 struct dw_spi_chip_data *chip = spi_get_ctldata(spi); 828 829 kfree(chip); 830 spi_set_ctldata(spi, NULL); 831 } 832 833 /* Restart the controller, disable all interrupts, clean rx fifo */ 834 static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws) 835 { 836 dw_spi_reset_chip(dws); 837 838 /* 839 * Retrieve the Synopsys component version if it hasn't been specified 840 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII 841 * code enclosed with '*' (typical for the most of Synopsys IP-cores). 842 */ 843 if (!dws->ver) { 844 dws->ver = dw_readl(dws, DW_SPI_VERSION); 845 846 dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n", 847 dw_spi_ip_is(dws, PSSI) ? " APB " : " ", 848 DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2), 849 DW_SPI_GET_BYTE(dws->ver, 1)); 850 } 851 852 if (spi_controller_is_target(dws->ctlr)) { 853 /* There is only one CS input signal in target mode */ 854 dws->num_cs = 1; 855 } else { 856 /* 857 * Try to detect the number of native chip-selects if the platform 858 * driver didn't set it up. There can be up to 16 lines configured. 859 */ 860 if (!dws->num_cs) { 861 u32 ser; 862 863 dw_writel(dws, DW_SPI_SER, 0xffff); 864 ser = dw_readl(dws, DW_SPI_SER); 865 dw_writel(dws, DW_SPI_SER, 0); 866 867 dws->num_cs = hweight16(ser); 868 } 869 } 870 871 /* 872 * Try to detect the FIFO depth if not set by interface driver, 873 * the depth could be from 2 to 256 from HW spec 874 */ 875 if (!dws->fifo_len) { 876 u32 fifo; 877 878 for (fifo = 1; fifo < 256; fifo++) { 879 dw_writel(dws, DW_SPI_TXFTLR, fifo); 880 if (fifo != dw_readl(dws, DW_SPI_TXFTLR)) 881 break; 882 } 883 dw_writel(dws, DW_SPI_TXFTLR, 0); 884 885 dws->fifo_len = (fifo == 1) ? 0 : fifo; 886 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len); 887 } 888 889 /* 890 * Detect CTRLR0.DFS field size and offset by testing the lowest bits 891 * writability. Note DWC SSI controller also has the extended DFS, but 892 * with zero offset. 893 */ 894 if (dw_spi_ip_is(dws, PSSI)) { 895 u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0); 896 897 dw_spi_enable_chip(dws, 0); 898 dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff); 899 cr0 = dw_readl(dws, DW_SPI_CTRLR0); 900 dw_writel(dws, DW_SPI_CTRLR0, tmp); 901 dw_spi_enable_chip(dws, 1); 902 903 if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) { 904 dws->caps |= DW_SPI_CAP_DFS32; 905 dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK); 906 dev_dbg(dev, "Detected 32-bits max data frame size\n"); 907 } 908 } else { 909 dws->caps |= DW_SPI_CAP_DFS32; 910 } 911 912 /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */ 913 if (dws->caps & DW_SPI_CAP_CS_OVERRIDE) 914 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF); 915 } 916 917 static const struct spi_controller_mem_caps dw_spi_mem_caps = { 918 .per_op_freq = true, 919 }; 920 921 int dw_spi_add_controller(struct device *dev, struct dw_spi *dws) 922 { 923 struct spi_controller *ctlr; 924 bool target; 925 int ret; 926 927 if (!dws) 928 return -EINVAL; 929 930 target = device_property_read_bool(dev, "spi-slave"); 931 if (target) 932 ctlr = spi_alloc_target(dev, 0); 933 else 934 ctlr = spi_alloc_host(dev, 0); 935 936 if (!ctlr) 937 return -ENOMEM; 938 939 device_set_node(&ctlr->dev, dev_fwnode(dev)); 940 941 dws->ctlr = ctlr; 942 dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR); 943 944 spi_controller_set_devdata(ctlr, dws); 945 946 /* Basic HW init */ 947 dw_spi_hw_init(dev, dws); 948 949 ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev), 950 ctlr); 951 if (ret < 0 && ret != -ENOTCONN) { 952 dev_err(dev, "can not get IRQ\n"); 953 goto err_free_ctlr; 954 } 955 956 dw_spi_init_mem_ops(dws); 957 958 ctlr->mode_bits = SPI_CPOL | SPI_CPHA; 959 if (dws->caps & DW_SPI_CAP_DFS32) 960 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 961 else 962 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 963 ctlr->bus_num = dws->bus_num; 964 ctlr->num_chipselect = dws->num_cs; 965 ctlr->setup = dw_spi_setup; 966 ctlr->cleanup = dw_spi_cleanup; 967 ctlr->transfer_one = dw_spi_transfer_one; 968 ctlr->handle_err = dw_spi_handle_err; 969 ctlr->auto_runtime_pm = true; 970 971 if (!target) { 972 ctlr->use_gpio_descriptors = true; 973 ctlr->mode_bits |= SPI_LOOP; 974 if (dws->set_cs) 975 ctlr->set_cs = dws->set_cs; 976 else 977 ctlr->set_cs = dw_spi_set_cs; 978 if (dws->mem_ops.exec_op) { 979 ctlr->mem_ops = &dws->mem_ops; 980 ctlr->mem_caps = &dw_spi_mem_caps; 981 } 982 ctlr->max_speed_hz = dws->max_freq; 983 ctlr->flags = SPI_CONTROLLER_GPIO_SS; 984 } else { 985 ctlr->target_abort = dw_spi_target_abort; 986 } 987 988 /* Get default rx sample delay */ 989 device_property_read_u32(dev, "rx-sample-delay-ns", 990 &dws->def_rx_sample_dly_ns); 991 992 if (dws->dma_ops && dws->dma_ops->dma_init) { 993 ret = dws->dma_ops->dma_init(dev, dws); 994 if (ret == -EPROBE_DEFER) { 995 goto err_free_irq; 996 } else if (ret) { 997 dev_warn(dev, "DMA init failed\n"); 998 } else { 999 ctlr->can_dma = dws->dma_ops->can_dma; 1000 ctlr->flags |= SPI_CONTROLLER_MUST_TX; 1001 } 1002 } 1003 1004 ret = spi_register_controller(ctlr); 1005 if (ret) { 1006 dev_err_probe(dev, ret, "problem registering spi controller\n"); 1007 goto err_dma_exit; 1008 } 1009 1010 dw_spi_debugfs_init(dws); 1011 return 0; 1012 1013 err_dma_exit: 1014 if (dws->dma_ops && dws->dma_ops->dma_exit) 1015 dws->dma_ops->dma_exit(dws); 1016 dw_spi_enable_chip(dws, 0); 1017 err_free_irq: 1018 free_irq(dws->irq, ctlr); 1019 err_free_ctlr: 1020 spi_controller_put(ctlr); 1021 return ret; 1022 } 1023 EXPORT_SYMBOL_NS_GPL(dw_spi_add_controller, "SPI_DW_CORE"); 1024 1025 void dw_spi_remove_controller(struct dw_spi *dws) 1026 { 1027 dw_spi_debugfs_remove(dws); 1028 1029 spi_unregister_controller(dws->ctlr); 1030 1031 if (dws->dma_ops && dws->dma_ops->dma_exit) 1032 dws->dma_ops->dma_exit(dws); 1033 1034 dw_spi_shutdown_chip(dws); 1035 1036 free_irq(dws->irq, dws->ctlr); 1037 } 1038 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_controller, "SPI_DW_CORE"); 1039 1040 int dw_spi_suspend_controller(struct dw_spi *dws) 1041 { 1042 int ret; 1043 1044 ret = spi_controller_suspend(dws->ctlr); 1045 if (ret) 1046 return ret; 1047 1048 dw_spi_shutdown_chip(dws); 1049 return 0; 1050 } 1051 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_controller, "SPI_DW_CORE"); 1052 1053 int dw_spi_resume_controller(struct dw_spi *dws) 1054 { 1055 dw_spi_hw_init(&dws->ctlr->dev, dws); 1056 return spi_controller_resume(dws->ctlr); 1057 } 1058 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_controller, "SPI_DW_CORE"); 1059 1060 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>"); 1061 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core"); 1062 MODULE_LICENSE("GPL v2"); 1063