1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Designware SPI core controller driver (refer pxa2xx_spi.c)
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8 #include <linux/bitfield.h>
9 #include <linux/bitops.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/preempt.h>
14 #include <linux/highmem.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/spi/spi.h>
18 #include <linux/spi/spi-mem.h>
19 #include <linux/string.h>
20 #include <linux/of.h>
21
22 #include "internals.h"
23 #include "spi-dw.h"
24
25 #ifdef CONFIG_DEBUG_FS
26 #include <linux/debugfs.h>
27 #endif
28
29 /* Slave spi_device related */
30 struct dw_spi_chip_data {
31 u32 cr0;
32 u32 rx_sample_dly; /* RX sample delay */
33 };
34
35 #ifdef CONFIG_DEBUG_FS
36
37 #define DW_SPI_DBGFS_REG(_name, _off) \
38 { \
39 .name = _name, \
40 .offset = _off, \
41 }
42
43 static const struct debugfs_reg32 dw_spi_dbgfs_regs[] = {
44 DW_SPI_DBGFS_REG("CTRLR0", DW_SPI_CTRLR0),
45 DW_SPI_DBGFS_REG("CTRLR1", DW_SPI_CTRLR1),
46 DW_SPI_DBGFS_REG("SSIENR", DW_SPI_SSIENR),
47 DW_SPI_DBGFS_REG("SER", DW_SPI_SER),
48 DW_SPI_DBGFS_REG("BAUDR", DW_SPI_BAUDR),
49 DW_SPI_DBGFS_REG("TXFTLR", DW_SPI_TXFTLR),
50 DW_SPI_DBGFS_REG("RXFTLR", DW_SPI_RXFTLR),
51 DW_SPI_DBGFS_REG("TXFLR", DW_SPI_TXFLR),
52 DW_SPI_DBGFS_REG("RXFLR", DW_SPI_RXFLR),
53 DW_SPI_DBGFS_REG("SR", DW_SPI_SR),
54 DW_SPI_DBGFS_REG("IMR", DW_SPI_IMR),
55 DW_SPI_DBGFS_REG("ISR", DW_SPI_ISR),
56 DW_SPI_DBGFS_REG("DMACR", DW_SPI_DMACR),
57 DW_SPI_DBGFS_REG("DMATDLR", DW_SPI_DMATDLR),
58 DW_SPI_DBGFS_REG("DMARDLR", DW_SPI_DMARDLR),
59 DW_SPI_DBGFS_REG("RX_SAMPLE_DLY", DW_SPI_RX_SAMPLE_DLY),
60 };
61
dw_spi_debugfs_init(struct dw_spi * dws)62 static void dw_spi_debugfs_init(struct dw_spi *dws)
63 {
64 char name[32];
65
66 snprintf(name, 32, "dw_spi%d", dws->host->bus_num);
67 dws->debugfs = debugfs_create_dir(name, NULL);
68
69 dws->regset.regs = dw_spi_dbgfs_regs;
70 dws->regset.nregs = ARRAY_SIZE(dw_spi_dbgfs_regs);
71 dws->regset.base = dws->regs;
72 debugfs_create_regset32("registers", 0400, dws->debugfs, &dws->regset);
73 }
74
dw_spi_debugfs_remove(struct dw_spi * dws)75 static void dw_spi_debugfs_remove(struct dw_spi *dws)
76 {
77 debugfs_remove_recursive(dws->debugfs);
78 }
79
80 #else
dw_spi_debugfs_init(struct dw_spi * dws)81 static inline void dw_spi_debugfs_init(struct dw_spi *dws)
82 {
83 }
84
dw_spi_debugfs_remove(struct dw_spi * dws)85 static inline void dw_spi_debugfs_remove(struct dw_spi *dws)
86 {
87 }
88 #endif /* CONFIG_DEBUG_FS */
89
dw_spi_set_cs(struct spi_device * spi,bool enable)90 void dw_spi_set_cs(struct spi_device *spi, bool enable)
91 {
92 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
93 bool cs_high = !!(spi->mode & SPI_CS_HIGH);
94
95 /*
96 * DW SPI controller demands any native CS being set in order to
97 * proceed with data transfer. So in order to activate the SPI
98 * communications we must set a corresponding bit in the Slave
99 * Enable register no matter whether the SPI core is configured to
100 * support active-high or active-low CS level.
101 */
102 if (cs_high == enable)
103 dw_writel(dws, DW_SPI_SER, BIT(spi_get_chipselect(spi, 0)));
104 else
105 dw_writel(dws, DW_SPI_SER, 0);
106 }
107 EXPORT_SYMBOL_NS_GPL(dw_spi_set_cs, SPI_DW_CORE);
108
109 /* Return the max entries we can fill into tx fifo */
dw_spi_tx_max(struct dw_spi * dws)110 static inline u32 dw_spi_tx_max(struct dw_spi *dws)
111 {
112 u32 tx_room, rxtx_gap;
113
114 tx_room = dws->fifo_len - dw_readl(dws, DW_SPI_TXFLR);
115
116 /*
117 * Another concern is about the tx/rx mismatch, we
118 * though to use (dws->fifo_len - rxflr - txflr) as
119 * one maximum value for tx, but it doesn't cover the
120 * data which is out of tx/rx fifo and inside the
121 * shift registers. So a control from sw point of
122 * view is taken.
123 */
124 rxtx_gap = dws->fifo_len - (dws->rx_len - dws->tx_len);
125
126 return min3((u32)dws->tx_len, tx_room, rxtx_gap);
127 }
128
129 /* Return the max entries we should read out of rx fifo */
dw_spi_rx_max(struct dw_spi * dws)130 static inline u32 dw_spi_rx_max(struct dw_spi *dws)
131 {
132 return min_t(u32, dws->rx_len, dw_readl(dws, DW_SPI_RXFLR));
133 }
134
dw_writer(struct dw_spi * dws)135 static void dw_writer(struct dw_spi *dws)
136 {
137 u32 max = dw_spi_tx_max(dws);
138 u32 txw = 0;
139
140 while (max--) {
141 if (dws->tx) {
142 if (dws->n_bytes == 1)
143 txw = *(u8 *)(dws->tx);
144 else if (dws->n_bytes == 2)
145 txw = *(u16 *)(dws->tx);
146 else
147 txw = *(u32 *)(dws->tx);
148
149 dws->tx += dws->n_bytes;
150 }
151 dw_write_io_reg(dws, DW_SPI_DR, txw);
152 --dws->tx_len;
153 }
154 }
155
dw_reader(struct dw_spi * dws)156 static void dw_reader(struct dw_spi *dws)
157 {
158 u32 max = dw_spi_rx_max(dws);
159 u32 rxw;
160
161 while (max--) {
162 rxw = dw_read_io_reg(dws, DW_SPI_DR);
163 if (dws->rx) {
164 if (dws->n_bytes == 1)
165 *(u8 *)(dws->rx) = rxw;
166 else if (dws->n_bytes == 2)
167 *(u16 *)(dws->rx) = rxw;
168 else
169 *(u32 *)(dws->rx) = rxw;
170
171 dws->rx += dws->n_bytes;
172 }
173 --dws->rx_len;
174 }
175 }
176
dw_spi_check_status(struct dw_spi * dws,bool raw)177 int dw_spi_check_status(struct dw_spi *dws, bool raw)
178 {
179 u32 irq_status;
180 int ret = 0;
181
182 if (raw)
183 irq_status = dw_readl(dws, DW_SPI_RISR);
184 else
185 irq_status = dw_readl(dws, DW_SPI_ISR);
186
187 if (irq_status & DW_SPI_INT_RXOI) {
188 dev_err(&dws->host->dev, "RX FIFO overflow detected\n");
189 ret = -EIO;
190 }
191
192 if (irq_status & DW_SPI_INT_RXUI) {
193 dev_err(&dws->host->dev, "RX FIFO underflow detected\n");
194 ret = -EIO;
195 }
196
197 if (irq_status & DW_SPI_INT_TXOI) {
198 dev_err(&dws->host->dev, "TX FIFO overflow detected\n");
199 ret = -EIO;
200 }
201
202 /* Generically handle the erroneous situation */
203 if (ret) {
204 dw_spi_reset_chip(dws);
205 if (dws->host->cur_msg)
206 dws->host->cur_msg->status = ret;
207 }
208
209 return ret;
210 }
211 EXPORT_SYMBOL_NS_GPL(dw_spi_check_status, SPI_DW_CORE);
212
dw_spi_transfer_handler(struct dw_spi * dws)213 static irqreturn_t dw_spi_transfer_handler(struct dw_spi *dws)
214 {
215 u16 irq_status = dw_readl(dws, DW_SPI_ISR);
216
217 if (dw_spi_check_status(dws, false)) {
218 spi_finalize_current_transfer(dws->host);
219 return IRQ_HANDLED;
220 }
221
222 /*
223 * Read data from the Rx FIFO every time we've got a chance executing
224 * this method. If there is nothing left to receive, terminate the
225 * procedure. Otherwise adjust the Rx FIFO Threshold level if it's a
226 * final stage of the transfer. By doing so we'll get the next IRQ
227 * right when the leftover incoming data is received.
228 */
229 dw_reader(dws);
230 if (!dws->rx_len) {
231 dw_spi_mask_intr(dws, 0xff);
232 spi_finalize_current_transfer(dws->host);
233 } else if (dws->rx_len <= dw_readl(dws, DW_SPI_RXFTLR)) {
234 dw_writel(dws, DW_SPI_RXFTLR, dws->rx_len - 1);
235 }
236
237 /*
238 * Send data out if Tx FIFO Empty IRQ is received. The IRQ will be
239 * disabled after the data transmission is finished so not to
240 * have the TXE IRQ flood at the final stage of the transfer.
241 */
242 if (irq_status & DW_SPI_INT_TXEI) {
243 dw_writer(dws);
244 if (!dws->tx_len)
245 dw_spi_mask_intr(dws, DW_SPI_INT_TXEI);
246 }
247
248 return IRQ_HANDLED;
249 }
250
dw_spi_irq(int irq,void * dev_id)251 static irqreturn_t dw_spi_irq(int irq, void *dev_id)
252 {
253 struct spi_controller *host = dev_id;
254 struct dw_spi *dws = spi_controller_get_devdata(host);
255 u16 irq_status = dw_readl(dws, DW_SPI_ISR) & DW_SPI_INT_MASK;
256
257 if (!irq_status)
258 return IRQ_NONE;
259
260 if (!host->cur_msg) {
261 dw_spi_mask_intr(dws, 0xff);
262 return IRQ_HANDLED;
263 }
264
265 return dws->transfer_handler(dws);
266 }
267
dw_spi_prepare_cr0(struct dw_spi * dws,struct spi_device * spi)268 static u32 dw_spi_prepare_cr0(struct dw_spi *dws, struct spi_device *spi)
269 {
270 u32 cr0 = 0;
271
272 if (dw_spi_ip_is(dws, PSSI)) {
273 /* CTRLR0[ 5: 4] Frame Format */
274 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
275
276 /*
277 * SPI mode (SCPOL|SCPH)
278 * CTRLR0[ 6] Serial Clock Phase
279 * CTRLR0[ 7] Serial Clock Polarity
280 */
281 if (spi->mode & SPI_CPOL)
282 cr0 |= DW_PSSI_CTRLR0_SCPOL;
283 if (spi->mode & SPI_CPHA)
284 cr0 |= DW_PSSI_CTRLR0_SCPHA;
285
286 /* CTRLR0[11] Shift Register Loop */
287 if (spi->mode & SPI_LOOP)
288 cr0 |= DW_PSSI_CTRLR0_SRL;
289 } else {
290 /* CTRLR0[ 7: 6] Frame Format */
291 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_FRF_MASK, DW_SPI_CTRLR0_FRF_MOTO_SPI);
292
293 /*
294 * SPI mode (SCPOL|SCPH)
295 * CTRLR0[ 8] Serial Clock Phase
296 * CTRLR0[ 9] Serial Clock Polarity
297 */
298 if (spi->mode & SPI_CPOL)
299 cr0 |= DW_HSSI_CTRLR0_SCPOL;
300 if (spi->mode & SPI_CPHA)
301 cr0 |= DW_HSSI_CTRLR0_SCPHA;
302
303 /* CTRLR0[13] Shift Register Loop */
304 if (spi->mode & SPI_LOOP)
305 cr0 |= DW_HSSI_CTRLR0_SRL;
306
307 /* CTRLR0[31] MST */
308 if (dw_spi_ver_is_ge(dws, HSSI, 102A))
309 cr0 |= DW_HSSI_CTRLR0_MST;
310 }
311
312 return cr0;
313 }
314
dw_spi_update_config(struct dw_spi * dws,struct spi_device * spi,struct dw_spi_cfg * cfg)315 void dw_spi_update_config(struct dw_spi *dws, struct spi_device *spi,
316 struct dw_spi_cfg *cfg)
317 {
318 struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
319 u32 cr0 = chip->cr0;
320 u32 speed_hz;
321 u16 clk_div;
322
323 /* CTRLR0[ 4/3: 0] or CTRLR0[ 20: 16] Data Frame Size */
324 cr0 |= (cfg->dfs - 1) << dws->dfs_offset;
325
326 if (dw_spi_ip_is(dws, PSSI))
327 /* CTRLR0[ 9:8] Transfer Mode */
328 cr0 |= FIELD_PREP(DW_PSSI_CTRLR0_TMOD_MASK, cfg->tmode);
329 else
330 /* CTRLR0[11:10] Transfer Mode */
331 cr0 |= FIELD_PREP(DW_HSSI_CTRLR0_TMOD_MASK, cfg->tmode);
332
333 dw_writel(dws, DW_SPI_CTRLR0, cr0);
334
335 if (cfg->tmode == DW_SPI_CTRLR0_TMOD_EPROMREAD ||
336 cfg->tmode == DW_SPI_CTRLR0_TMOD_RO)
337 dw_writel(dws, DW_SPI_CTRLR1, cfg->ndf ? cfg->ndf - 1 : 0);
338
339 /* Note DW APB SSI clock divider doesn't support odd numbers */
340 clk_div = (DIV_ROUND_UP(dws->max_freq, cfg->freq) + 1) & 0xfffe;
341 speed_hz = dws->max_freq / clk_div;
342
343 if (dws->current_freq != speed_hz) {
344 dw_spi_set_clk(dws, clk_div);
345 dws->current_freq = speed_hz;
346 }
347
348 /* Update RX sample delay if required */
349 if (dws->cur_rx_sample_dly != chip->rx_sample_dly) {
350 dw_writel(dws, DW_SPI_RX_SAMPLE_DLY, chip->rx_sample_dly);
351 dws->cur_rx_sample_dly = chip->rx_sample_dly;
352 }
353 }
354 EXPORT_SYMBOL_NS_GPL(dw_spi_update_config, SPI_DW_CORE);
355
dw_spi_irq_setup(struct dw_spi * dws)356 static void dw_spi_irq_setup(struct dw_spi *dws)
357 {
358 u16 level;
359 u8 imask;
360
361 /*
362 * Originally Tx and Rx data lengths match. Rx FIFO Threshold level
363 * will be adjusted at the final stage of the IRQ-based SPI transfer
364 * execution so not to lose the leftover of the incoming data.
365 */
366 level = min_t(unsigned int, dws->fifo_len / 2, dws->tx_len);
367 dw_writel(dws, DW_SPI_TXFTLR, level);
368 dw_writel(dws, DW_SPI_RXFTLR, level - 1);
369
370 dws->transfer_handler = dw_spi_transfer_handler;
371
372 imask = DW_SPI_INT_TXEI | DW_SPI_INT_TXOI |
373 DW_SPI_INT_RXUI | DW_SPI_INT_RXOI | DW_SPI_INT_RXFI;
374 dw_spi_umask_intr(dws, imask);
375 }
376
377 /*
378 * The iterative procedure of the poll-based transfer is simple: write as much
379 * as possible to the Tx FIFO, wait until the pending to receive data is ready
380 * to be read, read it from the Rx FIFO and check whether the performed
381 * procedure has been successful.
382 *
383 * Note this method the same way as the IRQ-based transfer won't work well for
384 * the SPI devices connected to the controller with native CS due to the
385 * automatic CS assertion/de-assertion.
386 */
dw_spi_poll_transfer(struct dw_spi * dws,struct spi_transfer * transfer)387 static int dw_spi_poll_transfer(struct dw_spi *dws,
388 struct spi_transfer *transfer)
389 {
390 struct spi_delay delay;
391 u16 nbits;
392 int ret;
393
394 delay.unit = SPI_DELAY_UNIT_SCK;
395 nbits = dws->n_bytes * BITS_PER_BYTE;
396
397 do {
398 dw_writer(dws);
399
400 delay.value = nbits * (dws->rx_len - dws->tx_len);
401 spi_delay_exec(&delay, transfer);
402
403 dw_reader(dws);
404
405 ret = dw_spi_check_status(dws, true);
406 if (ret)
407 return ret;
408 } while (dws->rx_len);
409
410 return 0;
411 }
412
dw_spi_transfer_one(struct spi_controller * host,struct spi_device * spi,struct spi_transfer * transfer)413 static int dw_spi_transfer_one(struct spi_controller *host,
414 struct spi_device *spi,
415 struct spi_transfer *transfer)
416 {
417 struct dw_spi *dws = spi_controller_get_devdata(host);
418 struct dw_spi_cfg cfg = {
419 .tmode = DW_SPI_CTRLR0_TMOD_TR,
420 .dfs = transfer->bits_per_word,
421 .freq = transfer->speed_hz,
422 };
423 int ret;
424
425 dws->dma_mapped = 0;
426 dws->n_bytes = roundup_pow_of_two(BITS_TO_BYTES(transfer->bits_per_word));
427 dws->tx = (void *)transfer->tx_buf;
428 dws->tx_len = transfer->len / dws->n_bytes;
429 dws->rx = transfer->rx_buf;
430 dws->rx_len = dws->tx_len;
431
432 /* Ensure the data above is visible for all CPUs */
433 smp_mb();
434
435 dw_spi_enable_chip(dws, 0);
436
437 dw_spi_update_config(dws, spi, &cfg);
438
439 transfer->effective_speed_hz = dws->current_freq;
440
441 /* Check if current transfer is a DMA transaction */
442 dws->dma_mapped = spi_xfer_is_dma_mapped(host, spi, transfer);
443
444 /* For poll mode just disable all interrupts */
445 dw_spi_mask_intr(dws, 0xff);
446
447 if (dws->dma_mapped) {
448 ret = dws->dma_ops->dma_setup(dws, transfer);
449 if (ret)
450 return ret;
451 }
452
453 dw_spi_enable_chip(dws, 1);
454
455 if (dws->dma_mapped)
456 return dws->dma_ops->dma_transfer(dws, transfer);
457 else if (dws->irq == IRQ_NOTCONNECTED)
458 return dw_spi_poll_transfer(dws, transfer);
459
460 dw_spi_irq_setup(dws);
461
462 return 1;
463 }
464
dw_spi_handle_err(struct spi_controller * host,struct spi_message * msg)465 static void dw_spi_handle_err(struct spi_controller *host,
466 struct spi_message *msg)
467 {
468 struct dw_spi *dws = spi_controller_get_devdata(host);
469
470 if (dws->dma_mapped)
471 dws->dma_ops->dma_stop(dws);
472
473 dw_spi_reset_chip(dws);
474 }
475
dw_spi_adjust_mem_op_size(struct spi_mem * mem,struct spi_mem_op * op)476 static int dw_spi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
477 {
478 if (op->data.dir == SPI_MEM_DATA_IN)
479 op->data.nbytes = clamp_val(op->data.nbytes, 0, DW_SPI_NDF_MASK + 1);
480
481 return 0;
482 }
483
dw_spi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)484 static bool dw_spi_supports_mem_op(struct spi_mem *mem,
485 const struct spi_mem_op *op)
486 {
487 if (op->data.buswidth > 1 || op->addr.buswidth > 1 ||
488 op->dummy.buswidth > 1 || op->cmd.buswidth > 1)
489 return false;
490
491 return spi_mem_default_supports_op(mem, op);
492 }
493
dw_spi_init_mem_buf(struct dw_spi * dws,const struct spi_mem_op * op)494 static int dw_spi_init_mem_buf(struct dw_spi *dws, const struct spi_mem_op *op)
495 {
496 unsigned int i, j, len;
497 u8 *out;
498
499 /*
500 * Calculate the total length of the EEPROM command transfer and
501 * either use the pre-allocated buffer or create a temporary one.
502 */
503 len = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
504 if (op->data.dir == SPI_MEM_DATA_OUT)
505 len += op->data.nbytes;
506
507 if (len <= DW_SPI_BUF_SIZE) {
508 out = dws->buf;
509 } else {
510 out = kzalloc(len, GFP_KERNEL);
511 if (!out)
512 return -ENOMEM;
513 }
514
515 /*
516 * Collect the operation code, address and dummy bytes into the single
517 * buffer. If it's a transfer with data to be sent, also copy it into the
518 * single buffer in order to speed the data transmission up.
519 */
520 for (i = 0; i < op->cmd.nbytes; ++i)
521 out[i] = DW_SPI_GET_BYTE(op->cmd.opcode, op->cmd.nbytes - i - 1);
522 for (j = 0; j < op->addr.nbytes; ++i, ++j)
523 out[i] = DW_SPI_GET_BYTE(op->addr.val, op->addr.nbytes - j - 1);
524 for (j = 0; j < op->dummy.nbytes; ++i, ++j)
525 out[i] = 0x0;
526
527 if (op->data.dir == SPI_MEM_DATA_OUT)
528 memcpy(&out[i], op->data.buf.out, op->data.nbytes);
529
530 dws->n_bytes = 1;
531 dws->tx = out;
532 dws->tx_len = len;
533 if (op->data.dir == SPI_MEM_DATA_IN) {
534 dws->rx = op->data.buf.in;
535 dws->rx_len = op->data.nbytes;
536 } else {
537 dws->rx = NULL;
538 dws->rx_len = 0;
539 }
540
541 return 0;
542 }
543
dw_spi_free_mem_buf(struct dw_spi * dws)544 static void dw_spi_free_mem_buf(struct dw_spi *dws)
545 {
546 if (dws->tx != dws->buf)
547 kfree(dws->tx);
548 }
549
dw_spi_write_then_read(struct dw_spi * dws,struct spi_device * spi)550 static int dw_spi_write_then_read(struct dw_spi *dws, struct spi_device *spi)
551 {
552 u32 room, entries, sts;
553 unsigned int len;
554 u8 *buf;
555
556 /*
557 * At initial stage we just pre-fill the Tx FIFO in with no rush,
558 * since native CS hasn't been enabled yet and the automatic data
559 * transmission won't start til we do that.
560 */
561 len = min(dws->fifo_len, dws->tx_len);
562 buf = dws->tx;
563 while (len--)
564 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
565
566 /*
567 * After setting any bit in the SER register the transmission will
568 * start automatically. We have to keep up with that procedure
569 * otherwise the CS de-assertion will happen whereupon the memory
570 * operation will be pre-terminated.
571 */
572 len = dws->tx_len - ((void *)buf - dws->tx);
573 dw_spi_set_cs(spi, false);
574 while (len) {
575 entries = readl_relaxed(dws->regs + DW_SPI_TXFLR);
576 if (!entries) {
577 dev_err(&dws->host->dev, "CS de-assertion on Tx\n");
578 return -EIO;
579 }
580 room = min(dws->fifo_len - entries, len);
581 for (; room; --room, --len)
582 dw_write_io_reg(dws, DW_SPI_DR, *buf++);
583 }
584
585 /*
586 * Data fetching will start automatically if the EEPROM-read mode is
587 * activated. We have to keep up with the incoming data pace to
588 * prevent the Rx FIFO overflow causing the inbound data loss.
589 */
590 len = dws->rx_len;
591 buf = dws->rx;
592 while (len) {
593 entries = readl_relaxed(dws->regs + DW_SPI_RXFLR);
594 if (!entries) {
595 sts = readl_relaxed(dws->regs + DW_SPI_RISR);
596 if (sts & DW_SPI_INT_RXOI) {
597 dev_err(&dws->host->dev, "FIFO overflow on Rx\n");
598 return -EIO;
599 }
600 continue;
601 }
602 entries = min(entries, len);
603 for (; entries; --entries, --len)
604 *buf++ = dw_read_io_reg(dws, DW_SPI_DR);
605 }
606
607 return 0;
608 }
609
dw_spi_ctlr_busy(struct dw_spi * dws)610 static inline bool dw_spi_ctlr_busy(struct dw_spi *dws)
611 {
612 return dw_readl(dws, DW_SPI_SR) & DW_SPI_SR_BUSY;
613 }
614
dw_spi_wait_mem_op_done(struct dw_spi * dws)615 static int dw_spi_wait_mem_op_done(struct dw_spi *dws)
616 {
617 int retry = DW_SPI_WAIT_RETRIES;
618 struct spi_delay delay;
619 unsigned long ns, us;
620 u32 nents;
621
622 nents = dw_readl(dws, DW_SPI_TXFLR);
623 ns = NSEC_PER_SEC / dws->current_freq * nents;
624 ns *= dws->n_bytes * BITS_PER_BYTE;
625 if (ns <= NSEC_PER_USEC) {
626 delay.unit = SPI_DELAY_UNIT_NSECS;
627 delay.value = ns;
628 } else {
629 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
630 delay.unit = SPI_DELAY_UNIT_USECS;
631 delay.value = clamp_val(us, 0, USHRT_MAX);
632 }
633
634 while (dw_spi_ctlr_busy(dws) && retry--)
635 spi_delay_exec(&delay, NULL);
636
637 if (retry < 0) {
638 dev_err(&dws->host->dev, "Mem op hanged up\n");
639 return -EIO;
640 }
641
642 return 0;
643 }
644
dw_spi_stop_mem_op(struct dw_spi * dws,struct spi_device * spi)645 static void dw_spi_stop_mem_op(struct dw_spi *dws, struct spi_device *spi)
646 {
647 dw_spi_enable_chip(dws, 0);
648 dw_spi_set_cs(spi, true);
649 dw_spi_enable_chip(dws, 1);
650 }
651
652 /*
653 * The SPI memory operation implementation below is the best choice for the
654 * devices, which are selected by the native chip-select lane. It's
655 * specifically developed to workaround the problem with automatic chip-select
656 * lane toggle when there is no data in the Tx FIFO buffer. Luckily the current
657 * SPI-mem core calls exec_op() callback only if the GPIO-based CS is
658 * unavailable.
659 */
dw_spi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)660 static int dw_spi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
661 {
662 struct dw_spi *dws = spi_controller_get_devdata(mem->spi->controller);
663 struct dw_spi_cfg cfg;
664 unsigned long flags;
665 int ret;
666
667 /*
668 * Collect the outbound data into a single buffer to speed the
669 * transmission up at least on the initial stage.
670 */
671 ret = dw_spi_init_mem_buf(dws, op);
672 if (ret)
673 return ret;
674
675 /*
676 * DW SPI EEPROM-read mode is required only for the SPI memory Data-IN
677 * operation. Transmit-only mode is suitable for the rest of them.
678 */
679 cfg.dfs = 8;
680 cfg.freq = clamp(mem->spi->max_speed_hz, 0U, dws->max_mem_freq);
681 if (op->data.dir == SPI_MEM_DATA_IN) {
682 cfg.tmode = DW_SPI_CTRLR0_TMOD_EPROMREAD;
683 cfg.ndf = op->data.nbytes;
684 } else {
685 cfg.tmode = DW_SPI_CTRLR0_TMOD_TO;
686 }
687
688 dw_spi_enable_chip(dws, 0);
689
690 dw_spi_update_config(dws, mem->spi, &cfg);
691
692 dw_spi_mask_intr(dws, 0xff);
693
694 dw_spi_enable_chip(dws, 1);
695
696 /*
697 * DW APB SSI controller has very nasty peculiarities. First originally
698 * (without any vendor-specific modifications) it doesn't provide a
699 * direct way to set and clear the native chip-select signal. Instead
700 * the controller asserts the CS lane if Tx FIFO isn't empty and a
701 * transmission is going on, and automatically de-asserts it back to
702 * the high level if the Tx FIFO doesn't have anything to be pushed
703 * out. Due to that a multi-tasking or heavy IRQs activity might be
704 * fatal, since the transfer procedure preemption may cause the Tx FIFO
705 * getting empty and sudden CS de-assertion, which in the middle of the
706 * transfer will most likely cause the data loss. Secondly the
707 * EEPROM-read or Read-only DW SPI transfer modes imply the incoming
708 * data being automatically pulled in into the Rx FIFO. So if the
709 * driver software is late in fetching the data from the FIFO before
710 * it's overflown, new incoming data will be lost. In order to make
711 * sure the executed memory operations are CS-atomic and to prevent the
712 * Rx FIFO overflow we have to disable the local interrupts so to block
713 * any preemption during the subsequent IO operations.
714 *
715 * Note. At some circumstances disabling IRQs may not help to prevent
716 * the problems described above. The CS de-assertion and Rx FIFO
717 * overflow may still happen due to the relatively slow system bus or
718 * CPU not working fast enough, so the write-then-read algo implemented
719 * here just won't keep up with the SPI bus data transfer. Such
720 * situation is highly platform specific and is supposed to be fixed by
721 * manually restricting the SPI bus frequency using the
722 * dws->max_mem_freq parameter.
723 */
724 local_irq_save(flags);
725 preempt_disable();
726
727 ret = dw_spi_write_then_read(dws, mem->spi);
728
729 local_irq_restore(flags);
730 preempt_enable();
731
732 /*
733 * Wait for the operation being finished and check the controller
734 * status only if there hasn't been any run-time error detected. In the
735 * former case it's just pointless. In the later one to prevent an
736 * additional error message printing since any hw error flag being set
737 * would be due to an error detected on the data transfer.
738 */
739 if (!ret) {
740 ret = dw_spi_wait_mem_op_done(dws);
741 if (!ret)
742 ret = dw_spi_check_status(dws, true);
743 }
744
745 dw_spi_stop_mem_op(dws, mem->spi);
746
747 dw_spi_free_mem_buf(dws);
748
749 return ret;
750 }
751
752 /*
753 * Initialize the default memory operations if a glue layer hasn't specified
754 * custom ones. Direct mapping operations will be preserved anyway since DW SPI
755 * controller doesn't have an embedded dirmap interface. Note the memory
756 * operations implemented in this driver is the best choice only for the DW APB
757 * SSI controller with standard native CS functionality. If a hardware vendor
758 * has fixed the automatic CS assertion/de-assertion peculiarity, then it will
759 * be safer to use the normal SPI-messages-based transfers implementation.
760 */
dw_spi_init_mem_ops(struct dw_spi * dws)761 static void dw_spi_init_mem_ops(struct dw_spi *dws)
762 {
763 if (!dws->mem_ops.exec_op && !(dws->caps & DW_SPI_CAP_CS_OVERRIDE) &&
764 !dws->set_cs) {
765 dws->mem_ops.adjust_op_size = dw_spi_adjust_mem_op_size;
766 dws->mem_ops.supports_op = dw_spi_supports_mem_op;
767 dws->mem_ops.exec_op = dw_spi_exec_mem_op;
768 if (!dws->max_mem_freq)
769 dws->max_mem_freq = dws->max_freq;
770 }
771 }
772
773 /* This may be called twice for each spi dev */
dw_spi_setup(struct spi_device * spi)774 static int dw_spi_setup(struct spi_device *spi)
775 {
776 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
777 struct dw_spi_chip_data *chip;
778
779 /* Only alloc on first setup */
780 chip = spi_get_ctldata(spi);
781 if (!chip) {
782 struct dw_spi *dws = spi_controller_get_devdata(spi->controller);
783 u32 rx_sample_dly_ns;
784
785 chip = kzalloc(sizeof(*chip), GFP_KERNEL);
786 if (!chip)
787 return -ENOMEM;
788 spi_set_ctldata(spi, chip);
789 /* Get specific / default rx-sample-delay */
790 if (device_property_read_u32(&spi->dev,
791 "rx-sample-delay-ns",
792 &rx_sample_dly_ns) != 0)
793 /* Use default controller value */
794 rx_sample_dly_ns = dws->def_rx_sample_dly_ns;
795 chip->rx_sample_dly = DIV_ROUND_CLOSEST(rx_sample_dly_ns,
796 NSEC_PER_SEC /
797 dws->max_freq);
798 }
799
800 /*
801 * Update CR0 data each time the setup callback is invoked since
802 * the device parameters could have been changed, for instance, by
803 * the MMC SPI driver or something else.
804 */
805 chip->cr0 = dw_spi_prepare_cr0(dws, spi);
806
807 return 0;
808 }
809
dw_spi_cleanup(struct spi_device * spi)810 static void dw_spi_cleanup(struct spi_device *spi)
811 {
812 struct dw_spi_chip_data *chip = spi_get_ctldata(spi);
813
814 kfree(chip);
815 spi_set_ctldata(spi, NULL);
816 }
817
818 /* Restart the controller, disable all interrupts, clean rx fifo */
dw_spi_hw_init(struct device * dev,struct dw_spi * dws)819 static void dw_spi_hw_init(struct device *dev, struct dw_spi *dws)
820 {
821 dw_spi_reset_chip(dws);
822
823 /*
824 * Retrieve the Synopsys component version if it hasn't been specified
825 * by the platform. CoreKit version ID is encoded as a 3-chars ASCII
826 * code enclosed with '*' (typical for the most of Synopsys IP-cores).
827 */
828 if (!dws->ver) {
829 dws->ver = dw_readl(dws, DW_SPI_VERSION);
830
831 dev_dbg(dev, "Synopsys DWC%sSSI v%c.%c%c\n",
832 dw_spi_ip_is(dws, PSSI) ? " APB " : " ",
833 DW_SPI_GET_BYTE(dws->ver, 3), DW_SPI_GET_BYTE(dws->ver, 2),
834 DW_SPI_GET_BYTE(dws->ver, 1));
835 }
836
837 /*
838 * Try to detect the number of native chip-selects if the platform
839 * driver didn't set it up. There can be up to 16 lines configured.
840 */
841 if (!dws->num_cs) {
842 u32 ser;
843
844 dw_writel(dws, DW_SPI_SER, 0xffff);
845 ser = dw_readl(dws, DW_SPI_SER);
846 dw_writel(dws, DW_SPI_SER, 0);
847
848 dws->num_cs = hweight16(ser);
849 }
850
851 /*
852 * Try to detect the FIFO depth if not set by interface driver,
853 * the depth could be from 2 to 256 from HW spec
854 */
855 if (!dws->fifo_len) {
856 u32 fifo;
857
858 for (fifo = 1; fifo < 256; fifo++) {
859 dw_writel(dws, DW_SPI_TXFTLR, fifo);
860 if (fifo != dw_readl(dws, DW_SPI_TXFTLR))
861 break;
862 }
863 dw_writel(dws, DW_SPI_TXFTLR, 0);
864
865 dws->fifo_len = (fifo == 1) ? 0 : fifo;
866 dev_dbg(dev, "Detected FIFO size: %u bytes\n", dws->fifo_len);
867 }
868
869 /*
870 * Detect CTRLR0.DFS field size and offset by testing the lowest bits
871 * writability. Note DWC SSI controller also has the extended DFS, but
872 * with zero offset.
873 */
874 if (dw_spi_ip_is(dws, PSSI)) {
875 u32 cr0, tmp = dw_readl(dws, DW_SPI_CTRLR0);
876
877 dw_spi_enable_chip(dws, 0);
878 dw_writel(dws, DW_SPI_CTRLR0, 0xffffffff);
879 cr0 = dw_readl(dws, DW_SPI_CTRLR0);
880 dw_writel(dws, DW_SPI_CTRLR0, tmp);
881 dw_spi_enable_chip(dws, 1);
882
883 if (!(cr0 & DW_PSSI_CTRLR0_DFS_MASK)) {
884 dws->caps |= DW_SPI_CAP_DFS32;
885 dws->dfs_offset = __bf_shf(DW_PSSI_CTRLR0_DFS32_MASK);
886 dev_dbg(dev, "Detected 32-bits max data frame size\n");
887 }
888 } else {
889 dws->caps |= DW_SPI_CAP_DFS32;
890 }
891
892 /* enable HW fixup for explicit CS deselect for Amazon's alpine chip */
893 if (dws->caps & DW_SPI_CAP_CS_OVERRIDE)
894 dw_writel(dws, DW_SPI_CS_OVERRIDE, 0xF);
895 }
896
dw_spi_add_host(struct device * dev,struct dw_spi * dws)897 int dw_spi_add_host(struct device *dev, struct dw_spi *dws)
898 {
899 struct spi_controller *host;
900 int ret;
901
902 if (!dws)
903 return -EINVAL;
904
905 host = spi_alloc_host(dev, 0);
906 if (!host)
907 return -ENOMEM;
908
909 device_set_node(&host->dev, dev_fwnode(dev));
910
911 dws->host = host;
912 dws->dma_addr = (dma_addr_t)(dws->paddr + DW_SPI_DR);
913
914 spi_controller_set_devdata(host, dws);
915
916 /* Basic HW init */
917 dw_spi_hw_init(dev, dws);
918
919 ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED, dev_name(dev),
920 host);
921 if (ret < 0 && ret != -ENOTCONN) {
922 dev_err(dev, "can not get IRQ\n");
923 goto err_free_host;
924 }
925
926 dw_spi_init_mem_ops(dws);
927
928 host->use_gpio_descriptors = true;
929 host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP;
930 if (dws->caps & DW_SPI_CAP_DFS32)
931 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
932 else
933 host->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
934 host->bus_num = dws->bus_num;
935 host->num_chipselect = dws->num_cs;
936 host->setup = dw_spi_setup;
937 host->cleanup = dw_spi_cleanup;
938 if (dws->set_cs)
939 host->set_cs = dws->set_cs;
940 else
941 host->set_cs = dw_spi_set_cs;
942 host->transfer_one = dw_spi_transfer_one;
943 host->handle_err = dw_spi_handle_err;
944 if (dws->mem_ops.exec_op)
945 host->mem_ops = &dws->mem_ops;
946 host->max_speed_hz = dws->max_freq;
947 host->flags = SPI_CONTROLLER_GPIO_SS;
948 host->auto_runtime_pm = true;
949
950 /* Get default rx sample delay */
951 device_property_read_u32(dev, "rx-sample-delay-ns",
952 &dws->def_rx_sample_dly_ns);
953
954 if (dws->dma_ops && dws->dma_ops->dma_init) {
955 ret = dws->dma_ops->dma_init(dev, dws);
956 if (ret == -EPROBE_DEFER) {
957 goto err_free_irq;
958 } else if (ret) {
959 dev_warn(dev, "DMA init failed\n");
960 } else {
961 host->can_dma = dws->dma_ops->can_dma;
962 host->flags |= SPI_CONTROLLER_MUST_TX;
963 }
964 }
965
966 ret = spi_register_controller(host);
967 if (ret) {
968 dev_err_probe(dev, ret, "problem registering spi host\n");
969 goto err_dma_exit;
970 }
971
972 dw_spi_debugfs_init(dws);
973 return 0;
974
975 err_dma_exit:
976 if (dws->dma_ops && dws->dma_ops->dma_exit)
977 dws->dma_ops->dma_exit(dws);
978 dw_spi_enable_chip(dws, 0);
979 err_free_irq:
980 free_irq(dws->irq, host);
981 err_free_host:
982 spi_controller_put(host);
983 return ret;
984 }
985 EXPORT_SYMBOL_NS_GPL(dw_spi_add_host, SPI_DW_CORE);
986
dw_spi_remove_host(struct dw_spi * dws)987 void dw_spi_remove_host(struct dw_spi *dws)
988 {
989 dw_spi_debugfs_remove(dws);
990
991 spi_unregister_controller(dws->host);
992
993 if (dws->dma_ops && dws->dma_ops->dma_exit)
994 dws->dma_ops->dma_exit(dws);
995
996 dw_spi_shutdown_chip(dws);
997
998 free_irq(dws->irq, dws->host);
999 }
1000 EXPORT_SYMBOL_NS_GPL(dw_spi_remove_host, SPI_DW_CORE);
1001
dw_spi_suspend_host(struct dw_spi * dws)1002 int dw_spi_suspend_host(struct dw_spi *dws)
1003 {
1004 int ret;
1005
1006 ret = spi_controller_suspend(dws->host);
1007 if (ret)
1008 return ret;
1009
1010 dw_spi_shutdown_chip(dws);
1011 return 0;
1012 }
1013 EXPORT_SYMBOL_NS_GPL(dw_spi_suspend_host, SPI_DW_CORE);
1014
dw_spi_resume_host(struct dw_spi * dws)1015 int dw_spi_resume_host(struct dw_spi *dws)
1016 {
1017 dw_spi_hw_init(&dws->host->dev, dws);
1018 return spi_controller_resume(dws->host);
1019 }
1020 EXPORT_SYMBOL_NS_GPL(dw_spi_resume_host, SPI_DW_CORE);
1021
1022 MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
1023 MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
1024 MODULE_LICENSE("GPL v2");
1025