xref: /linux/kernel/fork.c (revision e406d57be7bd2a4e73ea512c1ae36a40a44e499e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/kstack_erase.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 #include <linux/unwind_deferred.h>
109 
110 #include <asm/pgalloc.h>
111 #include <linux/uaccess.h>
112 #include <asm/mmu_context.h>
113 #include <asm/cacheflush.h>
114 #include <asm/tlbflush.h>
115 
116 /* For dup_mmap(). */
117 #include "../mm/internal.h"
118 
119 #include <trace/events/sched.h>
120 
121 #define CREATE_TRACE_POINTS
122 #include <trace/events/task.h>
123 
124 #include <kunit/visibility.h>
125 
126 /*
127  * Minimum number of threads to boot the kernel
128  */
129 #define MIN_THREADS 20
130 
131 /*
132  * Maximum number of threads
133  */
134 #define MAX_THREADS FUTEX_TID_MASK
135 
136 /*
137  * Protected counters by write_lock_irq(&tasklist_lock)
138  */
139 unsigned long total_forks;	/* Handle normal Linux uptimes. */
140 int nr_threads;			/* The idle threads do not count.. */
141 
142 static int max_threads;		/* tunable limit on nr_threads */
143 
144 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
145 
146 static const char * const resident_page_types[] = {
147 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
148 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
149 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
150 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
151 };
152 
153 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
154 
155 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
156 
157 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)158 int lockdep_tasklist_lock_is_held(void)
159 {
160 	return lockdep_is_held(&tasklist_lock);
161 }
162 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
163 #endif /* #ifdef CONFIG_PROVE_RCU */
164 
nr_processes(void)165 int nr_processes(void)
166 {
167 	int cpu;
168 	int total = 0;
169 
170 	for_each_possible_cpu(cpu)
171 		total += per_cpu(process_counts, cpu);
172 
173 	return total;
174 }
175 
arch_release_task_struct(struct task_struct * tsk)176 void __weak arch_release_task_struct(struct task_struct *tsk)
177 {
178 }
179 
180 static struct kmem_cache *task_struct_cachep;
181 
alloc_task_struct_node(int node)182 static inline struct task_struct *alloc_task_struct_node(int node)
183 {
184 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
185 }
186 
free_task_struct(struct task_struct * tsk)187 static inline void free_task_struct(struct task_struct *tsk)
188 {
189 	kmem_cache_free(task_struct_cachep, tsk);
190 }
191 
192 #ifdef CONFIG_VMAP_STACK
193 /*
194  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
195  * flush.  Try to minimize the number of calls by caching stacks.
196  */
197 #define NR_CACHED_STACKS 2
198 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199 /*
200  * Allocated stacks are cached and later reused by new threads, so memcg
201  * accounting is performed by the code assigning/releasing stacks to tasks.
202  * We need a zeroed memory without __GFP_ACCOUNT.
203  */
204 #define GFP_VMAP_STACK (GFP_KERNEL | __GFP_ZERO)
205 
206 struct vm_stack {
207 	struct rcu_head rcu;
208 	struct vm_struct *stack_vm_area;
209 };
210 
try_release_thread_stack_to_cache(struct vm_struct * vm_area)211 static bool try_release_thread_stack_to_cache(struct vm_struct *vm_area)
212 {
213 	unsigned int i;
214 
215 	for (i = 0; i < NR_CACHED_STACKS; i++) {
216 		struct vm_struct *tmp = NULL;
217 
218 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm_area))
219 			return true;
220 	}
221 	return false;
222 }
223 
thread_stack_free_rcu(struct rcu_head * rh)224 static void thread_stack_free_rcu(struct rcu_head *rh)
225 {
226 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
227 	struct vm_struct *vm_area = vm_stack->stack_vm_area;
228 
229 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
230 		return;
231 
232 	vfree(vm_area->addr);
233 }
234 
thread_stack_delayed_free(struct task_struct * tsk)235 static void thread_stack_delayed_free(struct task_struct *tsk)
236 {
237 	struct vm_stack *vm_stack = tsk->stack;
238 
239 	vm_stack->stack_vm_area = tsk->stack_vm_area;
240 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
241 }
242 
free_vm_stack_cache(unsigned int cpu)243 static int free_vm_stack_cache(unsigned int cpu)
244 {
245 	struct vm_struct **cached_vm_stack_areas = per_cpu_ptr(cached_stacks, cpu);
246 	int i;
247 
248 	for (i = 0; i < NR_CACHED_STACKS; i++) {
249 		struct vm_struct *vm_area = cached_vm_stack_areas[i];
250 
251 		if (!vm_area)
252 			continue;
253 
254 		vfree(vm_area->addr);
255 		cached_vm_stack_areas[i] = NULL;
256 	}
257 
258 	return 0;
259 }
260 
memcg_charge_kernel_stack(struct vm_struct * vm_area)261 static int memcg_charge_kernel_stack(struct vm_struct *vm_area)
262 {
263 	int i;
264 	int ret;
265 	int nr_charged = 0;
266 
267 	BUG_ON(vm_area->nr_pages != THREAD_SIZE / PAGE_SIZE);
268 
269 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
270 		ret = memcg_kmem_charge_page(vm_area->pages[i], GFP_KERNEL, 0);
271 		if (ret)
272 			goto err;
273 		nr_charged++;
274 	}
275 	return 0;
276 err:
277 	for (i = 0; i < nr_charged; i++)
278 		memcg_kmem_uncharge_page(vm_area->pages[i], 0);
279 	return ret;
280 }
281 
alloc_thread_stack_node(struct task_struct * tsk,int node)282 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
283 {
284 	struct vm_struct *vm_area;
285 	void *stack;
286 	int i;
287 
288 	for (i = 0; i < NR_CACHED_STACKS; i++) {
289 		vm_area = this_cpu_xchg(cached_stacks[i], NULL);
290 		if (!vm_area)
291 			continue;
292 
293 		if (memcg_charge_kernel_stack(vm_area)) {
294 			vfree(vm_area->addr);
295 			return -ENOMEM;
296 		}
297 
298 		/* Reset stack metadata. */
299 		kasan_unpoison_range(vm_area->addr, THREAD_SIZE);
300 
301 		stack = kasan_reset_tag(vm_area->addr);
302 
303 		/* Clear stale pointers from reused stack. */
304 		memset(stack, 0, THREAD_SIZE);
305 
306 		tsk->stack_vm_area = vm_area;
307 		tsk->stack = stack;
308 		return 0;
309 	}
310 
311 	stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
312 				     GFP_VMAP_STACK,
313 				     node, __builtin_return_address(0));
314 	if (!stack)
315 		return -ENOMEM;
316 
317 	vm_area = find_vm_area(stack);
318 	if (memcg_charge_kernel_stack(vm_area)) {
319 		vfree(stack);
320 		return -ENOMEM;
321 	}
322 	/*
323 	 * We can't call find_vm_area() in interrupt context, and
324 	 * free_thread_stack() can be called in interrupt context,
325 	 * so cache the vm_struct.
326 	 */
327 	tsk->stack_vm_area = vm_area;
328 	stack = kasan_reset_tag(stack);
329 	tsk->stack = stack;
330 	return 0;
331 }
332 
free_thread_stack(struct task_struct * tsk)333 static void free_thread_stack(struct task_struct *tsk)
334 {
335 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 		thread_stack_delayed_free(tsk);
337 
338 	tsk->stack = NULL;
339 	tsk->stack_vm_area = NULL;
340 }
341 
342 #else /* !CONFIG_VMAP_STACK */
343 
344 /*
345  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
346  * kmemcache based allocator.
347  */
348 #if THREAD_SIZE >= PAGE_SIZE
349 
thread_stack_free_rcu(struct rcu_head * rh)350 static void thread_stack_free_rcu(struct rcu_head *rh)
351 {
352 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
353 }
354 
thread_stack_delayed_free(struct task_struct * tsk)355 static void thread_stack_delayed_free(struct task_struct *tsk)
356 {
357 	struct rcu_head *rh = tsk->stack;
358 
359 	call_rcu(rh, thread_stack_free_rcu);
360 }
361 
alloc_thread_stack_node(struct task_struct * tsk,int node)362 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
363 {
364 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
365 					     THREAD_SIZE_ORDER);
366 
367 	if (likely(page)) {
368 		tsk->stack = kasan_reset_tag(page_address(page));
369 		return 0;
370 	}
371 	return -ENOMEM;
372 }
373 
free_thread_stack(struct task_struct * tsk)374 static void free_thread_stack(struct task_struct *tsk)
375 {
376 	thread_stack_delayed_free(tsk);
377 	tsk->stack = NULL;
378 }
379 
380 #else /* !(THREAD_SIZE >= PAGE_SIZE) */
381 
382 static struct kmem_cache *thread_stack_cache;
383 
thread_stack_free_rcu(struct rcu_head * rh)384 static void thread_stack_free_rcu(struct rcu_head *rh)
385 {
386 	kmem_cache_free(thread_stack_cache, rh);
387 }
388 
thread_stack_delayed_free(struct task_struct * tsk)389 static void thread_stack_delayed_free(struct task_struct *tsk)
390 {
391 	struct rcu_head *rh = tsk->stack;
392 
393 	call_rcu(rh, thread_stack_free_rcu);
394 }
395 
alloc_thread_stack_node(struct task_struct * tsk,int node)396 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
397 {
398 	unsigned long *stack;
399 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
400 	stack = kasan_reset_tag(stack);
401 	tsk->stack = stack;
402 	return stack ? 0 : -ENOMEM;
403 }
404 
free_thread_stack(struct task_struct * tsk)405 static void free_thread_stack(struct task_struct *tsk)
406 {
407 	thread_stack_delayed_free(tsk);
408 	tsk->stack = NULL;
409 }
410 
thread_stack_cache_init(void)411 void thread_stack_cache_init(void)
412 {
413 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
414 					THREAD_SIZE, THREAD_SIZE, 0, 0,
415 					THREAD_SIZE, NULL);
416 	BUG_ON(thread_stack_cache == NULL);
417 }
418 
419 #endif /* THREAD_SIZE >= PAGE_SIZE */
420 #endif /* CONFIG_VMAP_STACK */
421 
422 /* SLAB cache for signal_struct structures (tsk->signal) */
423 static struct kmem_cache *signal_cachep;
424 
425 /* SLAB cache for sighand_struct structures (tsk->sighand) */
426 struct kmem_cache *sighand_cachep;
427 
428 /* SLAB cache for files_struct structures (tsk->files) */
429 struct kmem_cache *files_cachep;
430 
431 /* SLAB cache for fs_struct structures (tsk->fs) */
432 struct kmem_cache *fs_cachep;
433 
434 /* SLAB cache for mm_struct structures (tsk->mm) */
435 static struct kmem_cache *mm_cachep;
436 
account_kernel_stack(struct task_struct * tsk,int account)437 static void account_kernel_stack(struct task_struct *tsk, int account)
438 {
439 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
440 		struct vm_struct *vm_area = task_stack_vm_area(tsk);
441 		int i;
442 
443 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
444 			mod_lruvec_page_state(vm_area->pages[i], NR_KERNEL_STACK_KB,
445 					      account * (PAGE_SIZE / 1024));
446 	} else {
447 		void *stack = task_stack_page(tsk);
448 
449 		/* All stack pages are in the same node. */
450 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
451 				      account * (THREAD_SIZE / 1024));
452 	}
453 }
454 
exit_task_stack_account(struct task_struct * tsk)455 void exit_task_stack_account(struct task_struct *tsk)
456 {
457 	account_kernel_stack(tsk, -1);
458 
459 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
460 		struct vm_struct *vm_area;
461 		int i;
462 
463 		vm_area = task_stack_vm_area(tsk);
464 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
465 			memcg_kmem_uncharge_page(vm_area->pages[i], 0);
466 	}
467 }
468 
release_task_stack(struct task_struct * tsk)469 static void release_task_stack(struct task_struct *tsk)
470 {
471 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
472 		return;  /* Better to leak the stack than to free prematurely */
473 
474 	free_thread_stack(tsk);
475 }
476 
477 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)478 void put_task_stack(struct task_struct *tsk)
479 {
480 	if (refcount_dec_and_test(&tsk->stack_refcount))
481 		release_task_stack(tsk);
482 }
483 #endif
484 
free_task(struct task_struct * tsk)485 void free_task(struct task_struct *tsk)
486 {
487 #ifdef CONFIG_SECCOMP
488 	WARN_ON_ONCE(tsk->seccomp.filter);
489 #endif
490 	release_user_cpus_ptr(tsk);
491 	scs_release(tsk);
492 
493 #ifndef CONFIG_THREAD_INFO_IN_TASK
494 	/*
495 	 * The task is finally done with both the stack and thread_info,
496 	 * so free both.
497 	 */
498 	release_task_stack(tsk);
499 #else
500 	/*
501 	 * If the task had a separate stack allocation, it should be gone
502 	 * by now.
503 	 */
504 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
505 #endif
506 	rt_mutex_debug_task_free(tsk);
507 	ftrace_graph_exit_task(tsk);
508 	arch_release_task_struct(tsk);
509 	if (tsk->flags & PF_KTHREAD)
510 		free_kthread_struct(tsk);
511 	bpf_task_storage_free(tsk);
512 	free_task_struct(tsk);
513 }
514 EXPORT_SYMBOL(free_task);
515 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)516 void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
517 {
518 	struct file *exe_file;
519 
520 	exe_file = get_mm_exe_file(oldmm);
521 	RCU_INIT_POINTER(mm->exe_file, exe_file);
522 	/*
523 	 * We depend on the oldmm having properly denied write access to the
524 	 * exe_file already.
525 	 */
526 	if (exe_file && exe_file_deny_write_access(exe_file))
527 		pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
528 }
529 
530 #ifdef CONFIG_MMU
mm_alloc_pgd(struct mm_struct * mm)531 static inline int mm_alloc_pgd(struct mm_struct *mm)
532 {
533 	mm->pgd = pgd_alloc(mm);
534 	if (unlikely(!mm->pgd))
535 		return -ENOMEM;
536 	return 0;
537 }
538 
mm_free_pgd(struct mm_struct * mm)539 static inline void mm_free_pgd(struct mm_struct *mm)
540 {
541 	pgd_free(mm, mm->pgd);
542 }
543 #else
544 #define mm_alloc_pgd(mm)	(0)
545 #define mm_free_pgd(mm)
546 #endif /* CONFIG_MMU */
547 
548 #ifdef CONFIG_MM_ID
549 static DEFINE_IDA(mm_ida);
550 
mm_alloc_id(struct mm_struct * mm)551 static inline int mm_alloc_id(struct mm_struct *mm)
552 {
553 	int ret;
554 
555 	ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
556 	if (ret < 0)
557 		return ret;
558 	mm->mm_id = ret;
559 	return 0;
560 }
561 
mm_free_id(struct mm_struct * mm)562 static inline void mm_free_id(struct mm_struct *mm)
563 {
564 	const mm_id_t id = mm->mm_id;
565 
566 	mm->mm_id = MM_ID_DUMMY;
567 	if (id == MM_ID_DUMMY)
568 		return;
569 	if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
570 		return;
571 	ida_free(&mm_ida, id);
572 }
573 #else /* !CONFIG_MM_ID */
mm_alloc_id(struct mm_struct * mm)574 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
mm_free_id(struct mm_struct * mm)575 static inline void mm_free_id(struct mm_struct *mm) {}
576 #endif /* CONFIG_MM_ID */
577 
check_mm(struct mm_struct * mm)578 static void check_mm(struct mm_struct *mm)
579 {
580 	int i;
581 
582 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
583 			 "Please make sure 'struct resident_page_types[]' is updated as well");
584 
585 	for (i = 0; i < NR_MM_COUNTERS; i++) {
586 		long x = percpu_counter_sum(&mm->rss_stat[i]);
587 
588 		if (unlikely(x)) {
589 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld Comm:%s Pid:%d\n",
590 				 mm, resident_page_types[i], x,
591 				 current->comm,
592 				 task_pid_nr(current));
593 		}
594 	}
595 
596 	if (mm_pgtables_bytes(mm))
597 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
598 				mm_pgtables_bytes(mm));
599 
600 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
601 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
602 #endif
603 }
604 
605 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
606 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
607 
do_check_lazy_tlb(void * arg)608 static void do_check_lazy_tlb(void *arg)
609 {
610 	struct mm_struct *mm = arg;
611 
612 	WARN_ON_ONCE(current->active_mm == mm);
613 }
614 
do_shoot_lazy_tlb(void * arg)615 static void do_shoot_lazy_tlb(void *arg)
616 {
617 	struct mm_struct *mm = arg;
618 
619 	if (current->active_mm == mm) {
620 		WARN_ON_ONCE(current->mm);
621 		current->active_mm = &init_mm;
622 		switch_mm(mm, &init_mm, current);
623 	}
624 }
625 
cleanup_lazy_tlbs(struct mm_struct * mm)626 static void cleanup_lazy_tlbs(struct mm_struct *mm)
627 {
628 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
629 		/*
630 		 * In this case, lazy tlb mms are refounted and would not reach
631 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
632 		 */
633 		return;
634 	}
635 
636 	/*
637 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
638 	 * requires lazy mm users to switch to another mm when the refcount
639 	 * drops to zero, before the mm is freed. This requires IPIs here to
640 	 * switch kernel threads to init_mm.
641 	 *
642 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
643 	 * switch with the final userspace teardown TLB flush which leaves the
644 	 * mm lazy on this CPU but no others, reducing the need for additional
645 	 * IPIs here. There are cases where a final IPI is still required here,
646 	 * such as the final mmdrop being performed on a different CPU than the
647 	 * one exiting, or kernel threads using the mm when userspace exits.
648 	 *
649 	 * IPI overheads have not found to be expensive, but they could be
650 	 * reduced in a number of possible ways, for example (roughly
651 	 * increasing order of complexity):
652 	 * - The last lazy reference created by exit_mm() could instead switch
653 	 *   to init_mm, however it's probable this will run on the same CPU
654 	 *   immediately afterwards, so this may not reduce IPIs much.
655 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
656 	 * - CPUs store active_mm where it can be remotely checked without a
657 	 *   lock, to filter out false-positives in the cpumask.
658 	 * - After mm_users or mm_count reaches zero, switching away from the
659 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
660 	 *   with some batching or delaying of the final IPIs.
661 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
662 	 *   switching to avoid IPIs completely.
663 	 */
664 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
665 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
666 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
667 }
668 
669 /*
670  * Called when the last reference to the mm
671  * is dropped: either by a lazy thread or by
672  * mmput. Free the page directory and the mm.
673  */
__mmdrop(struct mm_struct * mm)674 void __mmdrop(struct mm_struct *mm)
675 {
676 	BUG_ON(mm == &init_mm);
677 	WARN_ON_ONCE(mm == current->mm);
678 
679 	/* Ensure no CPUs are using this as their lazy tlb mm */
680 	cleanup_lazy_tlbs(mm);
681 
682 	WARN_ON_ONCE(mm == current->active_mm);
683 	mm_free_pgd(mm);
684 	mm_free_id(mm);
685 	destroy_context(mm);
686 	mmu_notifier_subscriptions_destroy(mm);
687 	check_mm(mm);
688 	put_user_ns(mm->user_ns);
689 	mm_pasid_drop(mm);
690 	mm_destroy_cid(mm);
691 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
692 
693 	free_mm(mm);
694 }
695 EXPORT_SYMBOL_GPL(__mmdrop);
696 
mmdrop_async_fn(struct work_struct * work)697 static void mmdrop_async_fn(struct work_struct *work)
698 {
699 	struct mm_struct *mm;
700 
701 	mm = container_of(work, struct mm_struct, async_put_work);
702 	__mmdrop(mm);
703 }
704 
mmdrop_async(struct mm_struct * mm)705 static void mmdrop_async(struct mm_struct *mm)
706 {
707 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
708 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
709 		schedule_work(&mm->async_put_work);
710 	}
711 }
712 
free_signal_struct(struct signal_struct * sig)713 static inline void free_signal_struct(struct signal_struct *sig)
714 {
715 	taskstats_tgid_free(sig);
716 	sched_autogroup_exit(sig);
717 	/*
718 	 * __mmdrop is not safe to call from softirq context on x86 due to
719 	 * pgd_dtor so postpone it to the async context
720 	 */
721 	if (sig->oom_mm)
722 		mmdrop_async(sig->oom_mm);
723 	kmem_cache_free(signal_cachep, sig);
724 }
725 
put_signal_struct(struct signal_struct * sig)726 static inline void put_signal_struct(struct signal_struct *sig)
727 {
728 	if (refcount_dec_and_test(&sig->sigcnt))
729 		free_signal_struct(sig);
730 }
731 
__put_task_struct(struct task_struct * tsk)732 void __put_task_struct(struct task_struct *tsk)
733 {
734 	WARN_ON(!tsk->exit_state);
735 	WARN_ON(refcount_read(&tsk->usage));
736 	WARN_ON(tsk == current);
737 
738 	unwind_task_free(tsk);
739 	sched_ext_free(tsk);
740 	io_uring_free(tsk);
741 	cgroup_free(tsk);
742 	task_numa_free(tsk, true);
743 	security_task_free(tsk);
744 	exit_creds(tsk);
745 	delayacct_tsk_free(tsk);
746 	put_signal_struct(tsk->signal);
747 	sched_core_free(tsk);
748 	free_task(tsk);
749 }
750 EXPORT_SYMBOL_GPL(__put_task_struct);
751 
__put_task_struct_rcu_cb(struct rcu_head * rhp)752 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
753 {
754 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
755 
756 	__put_task_struct(task);
757 }
758 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
759 
arch_task_cache_init(void)760 void __init __weak arch_task_cache_init(void) { }
761 
762 /*
763  * set_max_threads
764  */
set_max_threads(unsigned int max_threads_suggested)765 static void __init set_max_threads(unsigned int max_threads_suggested)
766 {
767 	u64 threads;
768 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
769 
770 	/*
771 	 * The number of threads shall be limited such that the thread
772 	 * structures may only consume a small part of the available memory.
773 	 */
774 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
775 		threads = MAX_THREADS;
776 	else
777 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
778 				    (u64) THREAD_SIZE * 8UL);
779 
780 	if (threads > max_threads_suggested)
781 		threads = max_threads_suggested;
782 
783 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
784 }
785 
786 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
787 /* Initialized by the architecture: */
788 int arch_task_struct_size __read_mostly;
789 #endif
790 
task_struct_whitelist(unsigned long * offset,unsigned long * size)791 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
792 {
793 	/* Fetch thread_struct whitelist for the architecture. */
794 	arch_thread_struct_whitelist(offset, size);
795 
796 	/*
797 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
798 	 * adjust offset to position of thread_struct in task_struct.
799 	 */
800 	if (unlikely(*size == 0))
801 		*offset = 0;
802 	else
803 		*offset += offsetof(struct task_struct, thread);
804 }
805 
fork_init(void)806 void __init fork_init(void)
807 {
808 	int i;
809 #ifndef ARCH_MIN_TASKALIGN
810 #define ARCH_MIN_TASKALIGN	0
811 #endif
812 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
813 	unsigned long useroffset, usersize;
814 
815 	/* create a slab on which task_structs can be allocated */
816 	task_struct_whitelist(&useroffset, &usersize);
817 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
818 			arch_task_struct_size, align,
819 			SLAB_PANIC|SLAB_ACCOUNT,
820 			useroffset, usersize, NULL);
821 
822 	/* do the arch specific task caches init */
823 	arch_task_cache_init();
824 
825 	set_max_threads(MAX_THREADS);
826 
827 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
828 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
829 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
830 		init_task.signal->rlim[RLIMIT_NPROC];
831 
832 	for (i = 0; i < UCOUNT_COUNTS; i++)
833 		init_user_ns.ucount_max[i] = max_threads/2;
834 
835 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
836 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
837 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
838 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
839 
840 #ifdef CONFIG_VMAP_STACK
841 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
842 			  NULL, free_vm_stack_cache);
843 #endif
844 
845 	scs_init();
846 
847 	lockdep_init_task(&init_task);
848 	uprobes_init();
849 }
850 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)851 int __weak arch_dup_task_struct(struct task_struct *dst,
852 					       struct task_struct *src)
853 {
854 	*dst = *src;
855 	return 0;
856 }
857 
set_task_stack_end_magic(struct task_struct * tsk)858 void set_task_stack_end_magic(struct task_struct *tsk)
859 {
860 	unsigned long *stackend;
861 
862 	stackend = end_of_stack(tsk);
863 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
864 }
865 
dup_task_struct(struct task_struct * orig,int node)866 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
867 {
868 	struct task_struct *tsk;
869 	int err;
870 
871 	if (node == NUMA_NO_NODE)
872 		node = tsk_fork_get_node(orig);
873 	tsk = alloc_task_struct_node(node);
874 	if (!tsk)
875 		return NULL;
876 
877 	err = arch_dup_task_struct(tsk, orig);
878 	if (err)
879 		goto free_tsk;
880 
881 	err = alloc_thread_stack_node(tsk, node);
882 	if (err)
883 		goto free_tsk;
884 
885 #ifdef CONFIG_THREAD_INFO_IN_TASK
886 	refcount_set(&tsk->stack_refcount, 1);
887 #endif
888 	account_kernel_stack(tsk, 1);
889 
890 	err = scs_prepare(tsk, node);
891 	if (err)
892 		goto free_stack;
893 
894 #ifdef CONFIG_SECCOMP
895 	/*
896 	 * We must handle setting up seccomp filters once we're under
897 	 * the sighand lock in case orig has changed between now and
898 	 * then. Until then, filter must be NULL to avoid messing up
899 	 * the usage counts on the error path calling free_task.
900 	 */
901 	tsk->seccomp.filter = NULL;
902 #endif
903 
904 	setup_thread_stack(tsk, orig);
905 	clear_user_return_notifier(tsk);
906 	clear_tsk_need_resched(tsk);
907 	set_task_stack_end_magic(tsk);
908 	clear_syscall_work_syscall_user_dispatch(tsk);
909 
910 #ifdef CONFIG_STACKPROTECTOR
911 	tsk->stack_canary = get_random_canary();
912 #endif
913 	if (orig->cpus_ptr == &orig->cpus_mask)
914 		tsk->cpus_ptr = &tsk->cpus_mask;
915 	dup_user_cpus_ptr(tsk, orig, node);
916 
917 	/*
918 	 * One for the user space visible state that goes away when reaped.
919 	 * One for the scheduler.
920 	 */
921 	refcount_set(&tsk->rcu_users, 2);
922 	/* One for the rcu users */
923 	refcount_set(&tsk->usage, 1);
924 #ifdef CONFIG_BLK_DEV_IO_TRACE
925 	tsk->btrace_seq = 0;
926 #endif
927 	tsk->splice_pipe = NULL;
928 	tsk->task_frag.page = NULL;
929 	tsk->wake_q.next = NULL;
930 	tsk->worker_private = NULL;
931 
932 	kcov_task_init(tsk);
933 	kmsan_task_create(tsk);
934 	kmap_local_fork(tsk);
935 
936 #ifdef CONFIG_FAULT_INJECTION
937 	tsk->fail_nth = 0;
938 #endif
939 
940 #ifdef CONFIG_BLK_CGROUP
941 	tsk->throttle_disk = NULL;
942 	tsk->use_memdelay = 0;
943 #endif
944 
945 #ifdef CONFIG_ARCH_HAS_CPU_PASID
946 	tsk->pasid_activated = 0;
947 #endif
948 
949 #ifdef CONFIG_MEMCG
950 	tsk->active_memcg = NULL;
951 #endif
952 
953 #ifdef CONFIG_X86_BUS_LOCK_DETECT
954 	tsk->reported_split_lock = 0;
955 #endif
956 
957 #ifdef CONFIG_SCHED_MM_CID
958 	tsk->mm_cid = -1;
959 	tsk->last_mm_cid = -1;
960 	tsk->mm_cid_active = 0;
961 	tsk->migrate_from_cpu = -1;
962 #endif
963 	return tsk;
964 
965 free_stack:
966 	exit_task_stack_account(tsk);
967 	free_thread_stack(tsk);
968 free_tsk:
969 	free_task_struct(tsk);
970 	return NULL;
971 }
972 
973 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
974 
975 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
976 
coredump_filter_setup(char * s)977 static int __init coredump_filter_setup(char *s)
978 {
979 	default_dump_filter =
980 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
981 		MMF_DUMP_FILTER_MASK;
982 	return 1;
983 }
984 
985 __setup("coredump_filter=", coredump_filter_setup);
986 
987 #include <linux/init_task.h>
988 
mm_init_aio(struct mm_struct * mm)989 static void mm_init_aio(struct mm_struct *mm)
990 {
991 #ifdef CONFIG_AIO
992 	spin_lock_init(&mm->ioctx_lock);
993 	mm->ioctx_table = NULL;
994 #endif
995 }
996 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)997 static __always_inline void mm_clear_owner(struct mm_struct *mm,
998 					   struct task_struct *p)
999 {
1000 #ifdef CONFIG_MEMCG
1001 	if (mm->owner == p)
1002 		WRITE_ONCE(mm->owner, NULL);
1003 #endif
1004 }
1005 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1006 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1007 {
1008 #ifdef CONFIG_MEMCG
1009 	mm->owner = p;
1010 #endif
1011 }
1012 
mm_init_uprobes_state(struct mm_struct * mm)1013 static void mm_init_uprobes_state(struct mm_struct *mm)
1014 {
1015 #ifdef CONFIG_UPROBES
1016 	mm->uprobes_state.xol_area = NULL;
1017 	arch_uprobe_init_state(mm);
1018 #endif
1019 }
1020 
mmap_init_lock(struct mm_struct * mm)1021 static void mmap_init_lock(struct mm_struct *mm)
1022 {
1023 	init_rwsem(&mm->mmap_lock);
1024 	mm_lock_seqcount_init(mm);
1025 #ifdef CONFIG_PER_VMA_LOCK
1026 	rcuwait_init(&mm->vma_writer_wait);
1027 #endif
1028 }
1029 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1030 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1031 	struct user_namespace *user_ns)
1032 {
1033 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1034 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1035 	atomic_set(&mm->mm_users, 1);
1036 	atomic_set(&mm->mm_count, 1);
1037 	seqcount_init(&mm->write_protect_seq);
1038 	mmap_init_lock(mm);
1039 	INIT_LIST_HEAD(&mm->mmlist);
1040 	mm_pgtables_bytes_init(mm);
1041 	mm->map_count = 0;
1042 	mm->locked_vm = 0;
1043 	atomic64_set(&mm->pinned_vm, 0);
1044 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1045 	spin_lock_init(&mm->page_table_lock);
1046 	spin_lock_init(&mm->arg_lock);
1047 	mm_init_cpumask(mm);
1048 	mm_init_aio(mm);
1049 	mm_init_owner(mm, p);
1050 	mm_pasid_init(mm);
1051 	RCU_INIT_POINTER(mm->exe_file, NULL);
1052 	mmu_notifier_subscriptions_init(mm);
1053 	init_tlb_flush_pending(mm);
1054 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1055 	mm->pmd_huge_pte = NULL;
1056 #endif
1057 	mm_init_uprobes_state(mm);
1058 	hugetlb_count_init(mm);
1059 
1060 	mm_flags_clear_all(mm);
1061 	if (current->mm) {
1062 		unsigned long flags = __mm_flags_get_word(current->mm);
1063 
1064 		__mm_flags_set_word(mm, mmf_init_legacy_flags(flags));
1065 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1066 	} else {
1067 		__mm_flags_set_word(mm, default_dump_filter);
1068 		mm->def_flags = 0;
1069 	}
1070 
1071 	if (futex_mm_init(mm))
1072 		goto fail_mm_init;
1073 
1074 	if (mm_alloc_pgd(mm))
1075 		goto fail_nopgd;
1076 
1077 	if (mm_alloc_id(mm))
1078 		goto fail_noid;
1079 
1080 	if (init_new_context(p, mm))
1081 		goto fail_nocontext;
1082 
1083 	if (mm_alloc_cid(mm, p))
1084 		goto fail_cid;
1085 
1086 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1087 				     NR_MM_COUNTERS))
1088 		goto fail_pcpu;
1089 
1090 	mm->user_ns = get_user_ns(user_ns);
1091 	lru_gen_init_mm(mm);
1092 	return mm;
1093 
1094 fail_pcpu:
1095 	mm_destroy_cid(mm);
1096 fail_cid:
1097 	destroy_context(mm);
1098 fail_nocontext:
1099 	mm_free_id(mm);
1100 fail_noid:
1101 	mm_free_pgd(mm);
1102 fail_nopgd:
1103 	futex_hash_free(mm);
1104 fail_mm_init:
1105 	free_mm(mm);
1106 	return NULL;
1107 }
1108 
1109 /*
1110  * Allocate and initialize an mm_struct.
1111  */
mm_alloc(void)1112 struct mm_struct *mm_alloc(void)
1113 {
1114 	struct mm_struct *mm;
1115 
1116 	mm = allocate_mm();
1117 	if (!mm)
1118 		return NULL;
1119 
1120 	memset(mm, 0, sizeof(*mm));
1121 	return mm_init(mm, current, current_user_ns());
1122 }
1123 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1124 
__mmput(struct mm_struct * mm)1125 static inline void __mmput(struct mm_struct *mm)
1126 {
1127 	VM_BUG_ON(atomic_read(&mm->mm_users));
1128 
1129 	uprobe_clear_state(mm);
1130 	exit_aio(mm);
1131 	ksm_exit(mm);
1132 	khugepaged_exit(mm); /* must run before exit_mmap */
1133 	exit_mmap(mm);
1134 	mm_put_huge_zero_folio(mm);
1135 	set_mm_exe_file(mm, NULL);
1136 	if (!list_empty(&mm->mmlist)) {
1137 		spin_lock(&mmlist_lock);
1138 		list_del(&mm->mmlist);
1139 		spin_unlock(&mmlist_lock);
1140 	}
1141 	if (mm->binfmt)
1142 		module_put(mm->binfmt->module);
1143 	lru_gen_del_mm(mm);
1144 	futex_hash_free(mm);
1145 	mmdrop(mm);
1146 }
1147 
1148 /*
1149  * Decrement the use count and release all resources for an mm.
1150  */
mmput(struct mm_struct * mm)1151 void mmput(struct mm_struct *mm)
1152 {
1153 	might_sleep();
1154 
1155 	if (atomic_dec_and_test(&mm->mm_users))
1156 		__mmput(mm);
1157 }
1158 EXPORT_SYMBOL_GPL(mmput);
1159 
1160 #if defined(CONFIG_MMU) || defined(CONFIG_FUTEX_PRIVATE_HASH)
mmput_async_fn(struct work_struct * work)1161 static void mmput_async_fn(struct work_struct *work)
1162 {
1163 	struct mm_struct *mm = container_of(work, struct mm_struct,
1164 					    async_put_work);
1165 
1166 	__mmput(mm);
1167 }
1168 
mmput_async(struct mm_struct * mm)1169 void mmput_async(struct mm_struct *mm)
1170 {
1171 	if (atomic_dec_and_test(&mm->mm_users)) {
1172 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1173 		schedule_work(&mm->async_put_work);
1174 	}
1175 }
1176 EXPORT_SYMBOL_GPL(mmput_async);
1177 #endif
1178 
1179 /**
1180  * set_mm_exe_file - change a reference to the mm's executable file
1181  * @mm: The mm to change.
1182  * @new_exe_file: The new file to use.
1183  *
1184  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1185  *
1186  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1187  * invocations: in mmput() nobody alive left, in execve it happens before
1188  * the new mm is made visible to anyone.
1189  *
1190  * Can only fail if new_exe_file != NULL.
1191  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1192 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1193 {
1194 	struct file *old_exe_file;
1195 
1196 	/*
1197 	 * It is safe to dereference the exe_file without RCU as
1198 	 * this function is only called if nobody else can access
1199 	 * this mm -- see comment above for justification.
1200 	 */
1201 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1202 
1203 	if (new_exe_file) {
1204 		/*
1205 		 * We expect the caller (i.e., sys_execve) to already denied
1206 		 * write access, so this is unlikely to fail.
1207 		 */
1208 		if (unlikely(exe_file_deny_write_access(new_exe_file)))
1209 			return -EACCES;
1210 		get_file(new_exe_file);
1211 	}
1212 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1213 	if (old_exe_file) {
1214 		exe_file_allow_write_access(old_exe_file);
1215 		fput(old_exe_file);
1216 	}
1217 	return 0;
1218 }
1219 
1220 /**
1221  * replace_mm_exe_file - replace a reference to the mm's executable file
1222  * @mm: The mm to change.
1223  * @new_exe_file: The new file to use.
1224  *
1225  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1226  *
1227  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1228  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1229 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1230 {
1231 	struct vm_area_struct *vma;
1232 	struct file *old_exe_file;
1233 	int ret = 0;
1234 
1235 	/* Forbid mm->exe_file change if old file still mapped. */
1236 	old_exe_file = get_mm_exe_file(mm);
1237 	if (old_exe_file) {
1238 		VMA_ITERATOR(vmi, mm, 0);
1239 		mmap_read_lock(mm);
1240 		for_each_vma(vmi, vma) {
1241 			if (!vma->vm_file)
1242 				continue;
1243 			if (path_equal(&vma->vm_file->f_path,
1244 				       &old_exe_file->f_path)) {
1245 				ret = -EBUSY;
1246 				break;
1247 			}
1248 		}
1249 		mmap_read_unlock(mm);
1250 		fput(old_exe_file);
1251 		if (ret)
1252 			return ret;
1253 	}
1254 
1255 	ret = exe_file_deny_write_access(new_exe_file);
1256 	if (ret)
1257 		return -EACCES;
1258 	get_file(new_exe_file);
1259 
1260 	/* set the new file */
1261 	mmap_write_lock(mm);
1262 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1263 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1264 	mmap_write_unlock(mm);
1265 
1266 	if (old_exe_file) {
1267 		exe_file_allow_write_access(old_exe_file);
1268 		fput(old_exe_file);
1269 	}
1270 	return 0;
1271 }
1272 
1273 /**
1274  * get_mm_exe_file - acquire a reference to the mm's executable file
1275  * @mm: The mm of interest.
1276  *
1277  * Returns %NULL if mm has no associated executable file.
1278  * User must release file via fput().
1279  */
get_mm_exe_file(struct mm_struct * mm)1280 struct file *get_mm_exe_file(struct mm_struct *mm)
1281 {
1282 	struct file *exe_file;
1283 
1284 	rcu_read_lock();
1285 	exe_file = get_file_rcu(&mm->exe_file);
1286 	rcu_read_unlock();
1287 	return exe_file;
1288 }
1289 
1290 /**
1291  * get_task_exe_file - acquire a reference to the task's executable file
1292  * @task: The task.
1293  *
1294  * Returns %NULL if task's mm (if any) has no associated executable file or
1295  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1296  * User must release file via fput().
1297  */
get_task_exe_file(struct task_struct * task)1298 struct file *get_task_exe_file(struct task_struct *task)
1299 {
1300 	struct file *exe_file = NULL;
1301 	struct mm_struct *mm;
1302 
1303 	if (task->flags & PF_KTHREAD)
1304 		return NULL;
1305 
1306 	task_lock(task);
1307 	mm = task->mm;
1308 	if (mm)
1309 		exe_file = get_mm_exe_file(mm);
1310 	task_unlock(task);
1311 	return exe_file;
1312 }
1313 
1314 /**
1315  * get_task_mm - acquire a reference to the task's mm
1316  * @task: The task.
1317  *
1318  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1319  * this kernel workthread has transiently adopted a user mm with use_mm,
1320  * to do its AIO) is not set and if so returns a reference to it, after
1321  * bumping up the use count.  User must release the mm via mmput()
1322  * after use.  Typically used by /proc and ptrace.
1323  */
get_task_mm(struct task_struct * task)1324 struct mm_struct *get_task_mm(struct task_struct *task)
1325 {
1326 	struct mm_struct *mm;
1327 
1328 	if (task->flags & PF_KTHREAD)
1329 		return NULL;
1330 
1331 	task_lock(task);
1332 	mm = task->mm;
1333 	if (mm)
1334 		mmget(mm);
1335 	task_unlock(task);
1336 	return mm;
1337 }
1338 EXPORT_SYMBOL_GPL(get_task_mm);
1339 
may_access_mm(struct mm_struct * mm,struct task_struct * task,unsigned int mode)1340 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1341 {
1342 	if (mm == current->mm)
1343 		return true;
1344 	if (ptrace_may_access(task, mode))
1345 		return true;
1346 	if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1347 		return true;
1348 	return false;
1349 }
1350 
mm_access(struct task_struct * task,unsigned int mode)1351 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1352 {
1353 	struct mm_struct *mm;
1354 	int err;
1355 
1356 	err =  down_read_killable(&task->signal->exec_update_lock);
1357 	if (err)
1358 		return ERR_PTR(err);
1359 
1360 	mm = get_task_mm(task);
1361 	if (!mm) {
1362 		mm = ERR_PTR(-ESRCH);
1363 	} else if (!may_access_mm(mm, task, mode)) {
1364 		mmput(mm);
1365 		mm = ERR_PTR(-EACCES);
1366 	}
1367 	up_read(&task->signal->exec_update_lock);
1368 
1369 	return mm;
1370 }
1371 
complete_vfork_done(struct task_struct * tsk)1372 static void complete_vfork_done(struct task_struct *tsk)
1373 {
1374 	struct completion *vfork;
1375 
1376 	task_lock(tsk);
1377 	vfork = tsk->vfork_done;
1378 	if (likely(vfork)) {
1379 		tsk->vfork_done = NULL;
1380 		complete(vfork);
1381 	}
1382 	task_unlock(tsk);
1383 }
1384 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1385 static int wait_for_vfork_done(struct task_struct *child,
1386 				struct completion *vfork)
1387 {
1388 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1389 	int killed;
1390 
1391 	cgroup_enter_frozen();
1392 	killed = wait_for_completion_state(vfork, state);
1393 	cgroup_leave_frozen(false);
1394 
1395 	if (killed) {
1396 		task_lock(child);
1397 		child->vfork_done = NULL;
1398 		task_unlock(child);
1399 	}
1400 
1401 	put_task_struct(child);
1402 	return killed;
1403 }
1404 
1405 /* Please note the differences between mmput and mm_release.
1406  * mmput is called whenever we stop holding onto a mm_struct,
1407  * error success whatever.
1408  *
1409  * mm_release is called after a mm_struct has been removed
1410  * from the current process.
1411  *
1412  * This difference is important for error handling, when we
1413  * only half set up a mm_struct for a new process and need to restore
1414  * the old one.  Because we mmput the new mm_struct before
1415  * restoring the old one. . .
1416  * Eric Biederman 10 January 1998
1417  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1418 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1419 {
1420 	uprobe_free_utask(tsk);
1421 
1422 	/* Get rid of any cached register state */
1423 	deactivate_mm(tsk, mm);
1424 
1425 	/*
1426 	 * Signal userspace if we're not exiting with a core dump
1427 	 * because we want to leave the value intact for debugging
1428 	 * purposes.
1429 	 */
1430 	if (tsk->clear_child_tid) {
1431 		if (atomic_read(&mm->mm_users) > 1) {
1432 			/*
1433 			 * We don't check the error code - if userspace has
1434 			 * not set up a proper pointer then tough luck.
1435 			 */
1436 			put_user(0, tsk->clear_child_tid);
1437 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1438 					1, NULL, NULL, 0, 0);
1439 		}
1440 		tsk->clear_child_tid = NULL;
1441 	}
1442 
1443 	/*
1444 	 * All done, finally we can wake up parent and return this mm to him.
1445 	 * Also kthread_stop() uses this completion for synchronization.
1446 	 */
1447 	if (tsk->vfork_done)
1448 		complete_vfork_done(tsk);
1449 }
1450 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1451 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1452 {
1453 	futex_exit_release(tsk);
1454 	mm_release(tsk, mm);
1455 }
1456 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1457 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1458 {
1459 	futex_exec_release(tsk);
1460 	mm_release(tsk, mm);
1461 }
1462 
1463 /**
1464  * dup_mm() - duplicates an existing mm structure
1465  * @tsk: the task_struct with which the new mm will be associated.
1466  * @oldmm: the mm to duplicate.
1467  *
1468  * Allocates a new mm structure and duplicates the provided @oldmm structure
1469  * content into it.
1470  *
1471  * Return: the duplicated mm or NULL on failure.
1472  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1473 static struct mm_struct *dup_mm(struct task_struct *tsk,
1474 				struct mm_struct *oldmm)
1475 {
1476 	struct mm_struct *mm;
1477 	int err;
1478 
1479 	mm = allocate_mm();
1480 	if (!mm)
1481 		goto fail_nomem;
1482 
1483 	memcpy(mm, oldmm, sizeof(*mm));
1484 
1485 	if (!mm_init(mm, tsk, mm->user_ns))
1486 		goto fail_nomem;
1487 
1488 	uprobe_start_dup_mmap();
1489 	err = dup_mmap(mm, oldmm);
1490 	if (err)
1491 		goto free_pt;
1492 	uprobe_end_dup_mmap();
1493 
1494 	mm->hiwater_rss = get_mm_rss(mm);
1495 	mm->hiwater_vm = mm->total_vm;
1496 
1497 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1498 		goto free_pt;
1499 
1500 	return mm;
1501 
1502 free_pt:
1503 	/* don't put binfmt in mmput, we haven't got module yet */
1504 	mm->binfmt = NULL;
1505 	mm_init_owner(mm, NULL);
1506 	mmput(mm);
1507 	if (err)
1508 		uprobe_end_dup_mmap();
1509 
1510 fail_nomem:
1511 	return NULL;
1512 }
1513 
copy_mm(u64 clone_flags,struct task_struct * tsk)1514 static int copy_mm(u64 clone_flags, struct task_struct *tsk)
1515 {
1516 	struct mm_struct *mm, *oldmm;
1517 
1518 	tsk->min_flt = tsk->maj_flt = 0;
1519 	tsk->nvcsw = tsk->nivcsw = 0;
1520 #ifdef CONFIG_DETECT_HUNG_TASK
1521 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1522 	tsk->last_switch_time = 0;
1523 #endif
1524 
1525 	tsk->mm = NULL;
1526 	tsk->active_mm = NULL;
1527 
1528 	/*
1529 	 * Are we cloning a kernel thread?
1530 	 *
1531 	 * We need to steal a active VM for that..
1532 	 */
1533 	oldmm = current->mm;
1534 	if (!oldmm)
1535 		return 0;
1536 
1537 	if (clone_flags & CLONE_VM) {
1538 		mmget(oldmm);
1539 		mm = oldmm;
1540 	} else {
1541 		mm = dup_mm(tsk, current->mm);
1542 		if (!mm)
1543 			return -ENOMEM;
1544 	}
1545 
1546 	tsk->mm = mm;
1547 	tsk->active_mm = mm;
1548 	sched_mm_cid_fork(tsk);
1549 	return 0;
1550 }
1551 
copy_fs(u64 clone_flags,struct task_struct * tsk)1552 static int copy_fs(u64 clone_flags, struct task_struct *tsk)
1553 {
1554 	struct fs_struct *fs = current->fs;
1555 	if (clone_flags & CLONE_FS) {
1556 		/* tsk->fs is already what we want */
1557 		read_seqlock_excl(&fs->seq);
1558 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1559 		if (fs->in_exec) {
1560 			read_sequnlock_excl(&fs->seq);
1561 			return -EAGAIN;
1562 		}
1563 		fs->users++;
1564 		read_sequnlock_excl(&fs->seq);
1565 		return 0;
1566 	}
1567 	tsk->fs = copy_fs_struct(fs);
1568 	if (!tsk->fs)
1569 		return -ENOMEM;
1570 	return 0;
1571 }
1572 
copy_files(u64 clone_flags,struct task_struct * tsk,int no_files)1573 static int copy_files(u64 clone_flags, struct task_struct *tsk,
1574 		      int no_files)
1575 {
1576 	struct files_struct *oldf, *newf;
1577 
1578 	/*
1579 	 * A background process may not have any files ...
1580 	 */
1581 	oldf = current->files;
1582 	if (!oldf)
1583 		return 0;
1584 
1585 	if (no_files) {
1586 		tsk->files = NULL;
1587 		return 0;
1588 	}
1589 
1590 	if (clone_flags & CLONE_FILES) {
1591 		atomic_inc(&oldf->count);
1592 		return 0;
1593 	}
1594 
1595 	newf = dup_fd(oldf, NULL);
1596 	if (IS_ERR(newf))
1597 		return PTR_ERR(newf);
1598 
1599 	tsk->files = newf;
1600 	return 0;
1601 }
1602 
copy_sighand(u64 clone_flags,struct task_struct * tsk)1603 static int copy_sighand(u64 clone_flags, struct task_struct *tsk)
1604 {
1605 	struct sighand_struct *sig;
1606 
1607 	if (clone_flags & CLONE_SIGHAND) {
1608 		refcount_inc(&current->sighand->count);
1609 		return 0;
1610 	}
1611 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1612 	RCU_INIT_POINTER(tsk->sighand, sig);
1613 	if (!sig)
1614 		return -ENOMEM;
1615 
1616 	refcount_set(&sig->count, 1);
1617 	spin_lock_irq(&current->sighand->siglock);
1618 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1619 	spin_unlock_irq(&current->sighand->siglock);
1620 
1621 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1622 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1623 		flush_signal_handlers(tsk, 0);
1624 
1625 	return 0;
1626 }
1627 
__cleanup_sighand(struct sighand_struct * sighand)1628 void __cleanup_sighand(struct sighand_struct *sighand)
1629 {
1630 	if (refcount_dec_and_test(&sighand->count)) {
1631 		signalfd_cleanup(sighand);
1632 		/*
1633 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1634 		 * without an RCU grace period, see __lock_task_sighand().
1635 		 */
1636 		kmem_cache_free(sighand_cachep, sighand);
1637 	}
1638 }
1639 
1640 /*
1641  * Initialize POSIX timer handling for a thread group.
1642  */
posix_cpu_timers_init_group(struct signal_struct * sig)1643 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1644 {
1645 	struct posix_cputimers *pct = &sig->posix_cputimers;
1646 	unsigned long cpu_limit;
1647 
1648 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1649 	posix_cputimers_group_init(pct, cpu_limit);
1650 }
1651 
copy_signal(u64 clone_flags,struct task_struct * tsk)1652 static int copy_signal(u64 clone_flags, struct task_struct *tsk)
1653 {
1654 	struct signal_struct *sig;
1655 
1656 	if (clone_flags & CLONE_THREAD)
1657 		return 0;
1658 
1659 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1660 	tsk->signal = sig;
1661 	if (!sig)
1662 		return -ENOMEM;
1663 
1664 	sig->nr_threads = 1;
1665 	sig->quick_threads = 1;
1666 	atomic_set(&sig->live, 1);
1667 	refcount_set(&sig->sigcnt, 1);
1668 
1669 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1670 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1671 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1672 
1673 	init_waitqueue_head(&sig->wait_chldexit);
1674 	sig->curr_target = tsk;
1675 	init_sigpending(&sig->shared_pending);
1676 	INIT_HLIST_HEAD(&sig->multiprocess);
1677 	seqlock_init(&sig->stats_lock);
1678 	prev_cputime_init(&sig->prev_cputime);
1679 
1680 #ifdef CONFIG_POSIX_TIMERS
1681 	INIT_HLIST_HEAD(&sig->posix_timers);
1682 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1683 	hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1684 #endif
1685 
1686 	task_lock(current->group_leader);
1687 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1688 	task_unlock(current->group_leader);
1689 
1690 	posix_cpu_timers_init_group(sig);
1691 
1692 	tty_audit_fork(sig);
1693 	sched_autogroup_fork(sig);
1694 
1695 #ifdef CONFIG_CGROUPS
1696 	init_rwsem(&sig->cgroup_threadgroup_rwsem);
1697 #endif
1698 
1699 	sig->oom_score_adj = current->signal->oom_score_adj;
1700 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1701 
1702 	mutex_init(&sig->cred_guard_mutex);
1703 	init_rwsem(&sig->exec_update_lock);
1704 
1705 	return 0;
1706 }
1707 
copy_seccomp(struct task_struct * p)1708 static void copy_seccomp(struct task_struct *p)
1709 {
1710 #ifdef CONFIG_SECCOMP
1711 	/*
1712 	 * Must be called with sighand->lock held, which is common to
1713 	 * all threads in the group. Holding cred_guard_mutex is not
1714 	 * needed because this new task is not yet running and cannot
1715 	 * be racing exec.
1716 	 */
1717 	assert_spin_locked(&current->sighand->siglock);
1718 
1719 	/* Ref-count the new filter user, and assign it. */
1720 	get_seccomp_filter(current);
1721 	p->seccomp = current->seccomp;
1722 
1723 	/*
1724 	 * Explicitly enable no_new_privs here in case it got set
1725 	 * between the task_struct being duplicated and holding the
1726 	 * sighand lock. The seccomp state and nnp must be in sync.
1727 	 */
1728 	if (task_no_new_privs(current))
1729 		task_set_no_new_privs(p);
1730 
1731 	/*
1732 	 * If the parent gained a seccomp mode after copying thread
1733 	 * flags and between before we held the sighand lock, we have
1734 	 * to manually enable the seccomp thread flag here.
1735 	 */
1736 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1737 		set_task_syscall_work(p, SECCOMP);
1738 #endif
1739 }
1740 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1741 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1742 {
1743 	current->clear_child_tid = tidptr;
1744 
1745 	return task_pid_vnr(current);
1746 }
1747 
rt_mutex_init_task(struct task_struct * p)1748 static void rt_mutex_init_task(struct task_struct *p)
1749 {
1750 	raw_spin_lock_init(&p->pi_lock);
1751 #ifdef CONFIG_RT_MUTEXES
1752 	p->pi_waiters = RB_ROOT_CACHED;
1753 	p->pi_top_task = NULL;
1754 	p->pi_blocked_on = NULL;
1755 #endif
1756 }
1757 
init_task_pid_links(struct task_struct * task)1758 static inline void init_task_pid_links(struct task_struct *task)
1759 {
1760 	enum pid_type type;
1761 
1762 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1763 		INIT_HLIST_NODE(&task->pid_links[type]);
1764 }
1765 
1766 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1767 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1768 {
1769 	if (type == PIDTYPE_PID)
1770 		task->thread_pid = pid;
1771 	else
1772 		task->signal->pids[type] = pid;
1773 }
1774 
rcu_copy_process(struct task_struct * p)1775 static inline void rcu_copy_process(struct task_struct *p)
1776 {
1777 #ifdef CONFIG_PREEMPT_RCU
1778 	p->rcu_read_lock_nesting = 0;
1779 	p->rcu_read_unlock_special.s = 0;
1780 	p->rcu_blocked_node = NULL;
1781 	INIT_LIST_HEAD(&p->rcu_node_entry);
1782 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1783 #ifdef CONFIG_TASKS_RCU
1784 	p->rcu_tasks_holdout = false;
1785 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1786 	p->rcu_tasks_idle_cpu = -1;
1787 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
1788 #endif /* #ifdef CONFIG_TASKS_RCU */
1789 #ifdef CONFIG_TASKS_TRACE_RCU
1790 	p->trc_reader_nesting = 0;
1791 	p->trc_reader_special.s = 0;
1792 	INIT_LIST_HEAD(&p->trc_holdout_list);
1793 	INIT_LIST_HEAD(&p->trc_blkd_node);
1794 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1795 }
1796 
1797 /**
1798  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1799  * @pid:   the struct pid for which to create a pidfd
1800  * @flags: flags of the new @pidfd
1801  * @ret_file: return the new pidfs file
1802  *
1803  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1804  * caller's file descriptor table. The pidfd is reserved but not installed yet.
1805  *
1806  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
1807  * task identified by @pid must be a thread-group leader.
1808  *
1809  * If this function returns successfully the caller is responsible to either
1810  * call fd_install() passing the returned pidfd and pidfd file as arguments in
1811  * order to install the pidfd into its file descriptor table or they must use
1812  * put_unused_fd() and fput() on the returned pidfd and pidfd file
1813  * respectively.
1814  *
1815  * This function is useful when a pidfd must already be reserved but there
1816  * might still be points of failure afterwards and the caller wants to ensure
1817  * that no pidfd is leaked into its file descriptor table.
1818  *
1819  * Return: On success, a reserved pidfd is returned from the function and a new
1820  *         pidfd file is returned in the last argument to the function. On
1821  *         error, a negative error code is returned from the function and the
1822  *         last argument remains unchanged.
1823  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret_file)1824 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret_file)
1825 {
1826 	struct file *pidfs_file;
1827 
1828 	/*
1829 	 * PIDFD_STALE is only allowed to be passed if the caller knows
1830 	 * that @pid is already registered in pidfs and thus
1831 	 * PIDFD_INFO_EXIT information is guaranteed to be available.
1832 	 */
1833 	if (!(flags & PIDFD_STALE)) {
1834 		/*
1835 		 * While holding the pidfd waitqueue lock removing the
1836 		 * task linkage for the thread-group leader pid
1837 		 * (PIDTYPE_TGID) isn't possible. Thus, if there's still
1838 		 * task linkage for PIDTYPE_PID not having thread-group
1839 		 * leader linkage for the pid means it wasn't a
1840 		 * thread-group leader in the first place.
1841 		 */
1842 		guard(spinlock_irq)(&pid->wait_pidfd.lock);
1843 
1844 		/* Task has already been reaped. */
1845 		if (!pid_has_task(pid, PIDTYPE_PID))
1846 			return -ESRCH;
1847 		/*
1848 		 * If this struct pid isn't used as a thread-group
1849 		 * leader but the caller requested to create a
1850 		 * thread-group leader pidfd then report ENOENT.
1851 		 */
1852 		if (!(flags & PIDFD_THREAD) && !pid_has_task(pid, PIDTYPE_TGID))
1853 			return -ENOENT;
1854 	}
1855 
1856 	CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
1857 	if (pidfd < 0)
1858 		return pidfd;
1859 
1860 	pidfs_file = pidfs_alloc_file(pid, flags | O_RDWR);
1861 	if (IS_ERR(pidfs_file))
1862 		return PTR_ERR(pidfs_file);
1863 
1864 	*ret_file = pidfs_file;
1865 	return take_fd(pidfd);
1866 }
1867 
__delayed_free_task(struct rcu_head * rhp)1868 static void __delayed_free_task(struct rcu_head *rhp)
1869 {
1870 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1871 
1872 	free_task(tsk);
1873 }
1874 
delayed_free_task(struct task_struct * tsk)1875 static __always_inline void delayed_free_task(struct task_struct *tsk)
1876 {
1877 	if (IS_ENABLED(CONFIG_MEMCG))
1878 		call_rcu(&tsk->rcu, __delayed_free_task);
1879 	else
1880 		free_task(tsk);
1881 }
1882 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1883 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1884 {
1885 	/* Skip if kernel thread */
1886 	if (!tsk->mm)
1887 		return;
1888 
1889 	/* Skip if spawning a thread or using vfork */
1890 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1891 		return;
1892 
1893 	/* We need to synchronize with __set_oom_adj */
1894 	mutex_lock(&oom_adj_mutex);
1895 	mm_flags_set(MMF_MULTIPROCESS, tsk->mm);
1896 	/* Update the values in case they were changed after copy_signal */
1897 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1898 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1899 	mutex_unlock(&oom_adj_mutex);
1900 }
1901 
1902 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)1903 static void rv_task_fork(struct task_struct *p)
1904 {
1905 	memset(&p->rv, 0, sizeof(p->rv));
1906 }
1907 #else
1908 #define rv_task_fork(p) do {} while (0)
1909 #endif
1910 
need_futex_hash_allocate_default(u64 clone_flags)1911 static bool need_futex_hash_allocate_default(u64 clone_flags)
1912 {
1913 	if ((clone_flags & (CLONE_THREAD | CLONE_VM)) != (CLONE_THREAD | CLONE_VM))
1914 		return false;
1915 	return true;
1916 }
1917 
1918 /*
1919  * This creates a new process as a copy of the old one,
1920  * but does not actually start it yet.
1921  *
1922  * It copies the registers, and all the appropriate
1923  * parts of the process environment (as per the clone
1924  * flags). The actual kick-off is left to the caller.
1925  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1926 __latent_entropy struct task_struct *copy_process(
1927 					struct pid *pid,
1928 					int trace,
1929 					int node,
1930 					struct kernel_clone_args *args)
1931 {
1932 	int pidfd = -1, retval;
1933 	struct task_struct *p;
1934 	struct multiprocess_signals delayed;
1935 	struct file *pidfile = NULL;
1936 	const u64 clone_flags = args->flags;
1937 	struct nsproxy *nsp = current->nsproxy;
1938 
1939 	/*
1940 	 * Don't allow sharing the root directory with processes in a different
1941 	 * namespace
1942 	 */
1943 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1944 		return ERR_PTR(-EINVAL);
1945 
1946 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1947 		return ERR_PTR(-EINVAL);
1948 
1949 	/*
1950 	 * Thread groups must share signals as well, and detached threads
1951 	 * can only be started up within the thread group.
1952 	 */
1953 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1954 		return ERR_PTR(-EINVAL);
1955 
1956 	/*
1957 	 * Shared signal handlers imply shared VM. By way of the above,
1958 	 * thread groups also imply shared VM. Blocking this case allows
1959 	 * for various simplifications in other code.
1960 	 */
1961 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1962 		return ERR_PTR(-EINVAL);
1963 
1964 	/*
1965 	 * Siblings of global init remain as zombies on exit since they are
1966 	 * not reaped by their parent (swapper). To solve this and to avoid
1967 	 * multi-rooted process trees, prevent global and container-inits
1968 	 * from creating siblings.
1969 	 */
1970 	if ((clone_flags & CLONE_PARENT) &&
1971 				current->signal->flags & SIGNAL_UNKILLABLE)
1972 		return ERR_PTR(-EINVAL);
1973 
1974 	/*
1975 	 * If the new process will be in a different pid or user namespace
1976 	 * do not allow it to share a thread group with the forking task.
1977 	 */
1978 	if (clone_flags & CLONE_THREAD) {
1979 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1980 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1981 			return ERR_PTR(-EINVAL);
1982 	}
1983 
1984 	if (clone_flags & CLONE_PIDFD) {
1985 		/*
1986 		 * - CLONE_DETACHED is blocked so that we can potentially
1987 		 *   reuse it later for CLONE_PIDFD.
1988 		 */
1989 		if (clone_flags & CLONE_DETACHED)
1990 			return ERR_PTR(-EINVAL);
1991 	}
1992 
1993 	/*
1994 	 * Force any signals received before this point to be delivered
1995 	 * before the fork happens.  Collect up signals sent to multiple
1996 	 * processes that happen during the fork and delay them so that
1997 	 * they appear to happen after the fork.
1998 	 */
1999 	sigemptyset(&delayed.signal);
2000 	INIT_HLIST_NODE(&delayed.node);
2001 
2002 	spin_lock_irq(&current->sighand->siglock);
2003 	if (!(clone_flags & CLONE_THREAD))
2004 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2005 	recalc_sigpending();
2006 	spin_unlock_irq(&current->sighand->siglock);
2007 	retval = -ERESTARTNOINTR;
2008 	if (task_sigpending(current))
2009 		goto fork_out;
2010 
2011 	retval = -ENOMEM;
2012 	p = dup_task_struct(current, node);
2013 	if (!p)
2014 		goto fork_out;
2015 	p->flags &= ~PF_KTHREAD;
2016 	if (args->kthread)
2017 		p->flags |= PF_KTHREAD;
2018 	if (args->user_worker) {
2019 		/*
2020 		 * Mark us a user worker, and block any signal that isn't
2021 		 * fatal or STOP
2022 		 */
2023 		p->flags |= PF_USER_WORKER;
2024 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2025 	}
2026 	if (args->io_thread)
2027 		p->flags |= PF_IO_WORKER;
2028 
2029 	if (args->name)
2030 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2031 
2032 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2033 	/*
2034 	 * Clear TID on mm_release()?
2035 	 */
2036 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2037 
2038 	ftrace_graph_init_task(p);
2039 
2040 	rt_mutex_init_task(p);
2041 
2042 	lockdep_assert_irqs_enabled();
2043 #ifdef CONFIG_PROVE_LOCKING
2044 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2045 #endif
2046 	retval = copy_creds(p, clone_flags);
2047 	if (retval < 0)
2048 		goto bad_fork_free;
2049 
2050 	retval = -EAGAIN;
2051 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2052 		if (p->real_cred->user != INIT_USER &&
2053 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2054 			goto bad_fork_cleanup_count;
2055 	}
2056 	current->flags &= ~PF_NPROC_EXCEEDED;
2057 
2058 	/*
2059 	 * If multiple threads are within copy_process(), then this check
2060 	 * triggers too late. This doesn't hurt, the check is only there
2061 	 * to stop root fork bombs.
2062 	 */
2063 	retval = -EAGAIN;
2064 	if (data_race(nr_threads >= max_threads))
2065 		goto bad_fork_cleanup_count;
2066 
2067 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2068 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2069 	p->flags |= PF_FORKNOEXEC;
2070 	INIT_LIST_HEAD(&p->children);
2071 	INIT_LIST_HEAD(&p->sibling);
2072 	rcu_copy_process(p);
2073 	p->vfork_done = NULL;
2074 	spin_lock_init(&p->alloc_lock);
2075 
2076 	init_sigpending(&p->pending);
2077 
2078 	p->utime = p->stime = p->gtime = 0;
2079 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2080 	p->utimescaled = p->stimescaled = 0;
2081 #endif
2082 	prev_cputime_init(&p->prev_cputime);
2083 
2084 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2085 	seqcount_init(&p->vtime.seqcount);
2086 	p->vtime.starttime = 0;
2087 	p->vtime.state = VTIME_INACTIVE;
2088 #endif
2089 
2090 #ifdef CONFIG_IO_URING
2091 	p->io_uring = NULL;
2092 #endif
2093 
2094 	p->default_timer_slack_ns = current->timer_slack_ns;
2095 
2096 #ifdef CONFIG_PSI
2097 	p->psi_flags = 0;
2098 #endif
2099 
2100 	task_io_accounting_init(&p->ioac);
2101 	acct_clear_integrals(p);
2102 
2103 	posix_cputimers_init(&p->posix_cputimers);
2104 	tick_dep_init_task(p);
2105 
2106 	p->io_context = NULL;
2107 	audit_set_context(p, NULL);
2108 	cgroup_fork(p);
2109 	if (args->kthread) {
2110 		if (!set_kthread_struct(p))
2111 			goto bad_fork_cleanup_delayacct;
2112 	}
2113 #ifdef CONFIG_NUMA
2114 	p->mempolicy = mpol_dup(p->mempolicy);
2115 	if (IS_ERR(p->mempolicy)) {
2116 		retval = PTR_ERR(p->mempolicy);
2117 		p->mempolicy = NULL;
2118 		goto bad_fork_cleanup_delayacct;
2119 	}
2120 #endif
2121 #ifdef CONFIG_CPUSETS
2122 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2123 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2124 #endif
2125 #ifdef CONFIG_TRACE_IRQFLAGS
2126 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2127 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2128 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2129 	p->softirqs_enabled		= 1;
2130 	p->softirq_context		= 0;
2131 #endif
2132 
2133 	p->pagefault_disabled = 0;
2134 
2135 	lockdep_init_task(p);
2136 
2137 	p->blocked_on = NULL; /* not blocked yet */
2138 
2139 #ifdef CONFIG_BCACHE
2140 	p->sequential_io	= 0;
2141 	p->sequential_io_avg	= 0;
2142 #endif
2143 #ifdef CONFIG_BPF_SYSCALL
2144 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2145 	p->bpf_ctx = NULL;
2146 #endif
2147 
2148 	unwind_task_init(p);
2149 
2150 	/* Perform scheduler related setup. Assign this task to a CPU. */
2151 	retval = sched_fork(clone_flags, p);
2152 	if (retval)
2153 		goto bad_fork_cleanup_policy;
2154 
2155 	retval = perf_event_init_task(p, clone_flags);
2156 	if (retval)
2157 		goto bad_fork_sched_cancel_fork;
2158 	retval = audit_alloc(p);
2159 	if (retval)
2160 		goto bad_fork_cleanup_perf;
2161 	/* copy all the process information */
2162 	shm_init_task(p);
2163 	retval = security_task_alloc(p, clone_flags);
2164 	if (retval)
2165 		goto bad_fork_cleanup_audit;
2166 	retval = copy_semundo(clone_flags, p);
2167 	if (retval)
2168 		goto bad_fork_cleanup_security;
2169 	retval = copy_files(clone_flags, p, args->no_files);
2170 	if (retval)
2171 		goto bad_fork_cleanup_semundo;
2172 	retval = copy_fs(clone_flags, p);
2173 	if (retval)
2174 		goto bad_fork_cleanup_files;
2175 	retval = copy_sighand(clone_flags, p);
2176 	if (retval)
2177 		goto bad_fork_cleanup_fs;
2178 	retval = copy_signal(clone_flags, p);
2179 	if (retval)
2180 		goto bad_fork_cleanup_sighand;
2181 	retval = copy_mm(clone_flags, p);
2182 	if (retval)
2183 		goto bad_fork_cleanup_signal;
2184 	retval = copy_namespaces(clone_flags, p);
2185 	if (retval)
2186 		goto bad_fork_cleanup_mm;
2187 	retval = copy_io(clone_flags, p);
2188 	if (retval)
2189 		goto bad_fork_cleanup_namespaces;
2190 	retval = copy_thread(p, args);
2191 	if (retval)
2192 		goto bad_fork_cleanup_io;
2193 
2194 	stackleak_task_init(p);
2195 
2196 	if (pid != &init_struct_pid) {
2197 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2198 				args->set_tid_size);
2199 		if (IS_ERR(pid)) {
2200 			retval = PTR_ERR(pid);
2201 			goto bad_fork_cleanup_thread;
2202 		}
2203 	}
2204 
2205 	/*
2206 	 * This has to happen after we've potentially unshared the file
2207 	 * descriptor table (so that the pidfd doesn't leak into the child
2208 	 * if the fd table isn't shared).
2209 	 */
2210 	if (clone_flags & CLONE_PIDFD) {
2211 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2212 
2213 		/*
2214 		 * Note that no task has been attached to @pid yet indicate
2215 		 * that via CLONE_PIDFD.
2216 		 */
2217 		retval = pidfd_prepare(pid, flags | PIDFD_STALE, &pidfile);
2218 		if (retval < 0)
2219 			goto bad_fork_free_pid;
2220 		pidfd = retval;
2221 
2222 		retval = put_user(pidfd, args->pidfd);
2223 		if (retval)
2224 			goto bad_fork_put_pidfd;
2225 	}
2226 
2227 #ifdef CONFIG_BLOCK
2228 	p->plug = NULL;
2229 #endif
2230 	futex_init_task(p);
2231 
2232 	/*
2233 	 * sigaltstack should be cleared when sharing the same VM
2234 	 */
2235 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2236 		sas_ss_reset(p);
2237 
2238 	/*
2239 	 * Syscall tracing and stepping should be turned off in the
2240 	 * child regardless of CLONE_PTRACE.
2241 	 */
2242 	user_disable_single_step(p);
2243 	clear_task_syscall_work(p, SYSCALL_TRACE);
2244 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2245 	clear_task_syscall_work(p, SYSCALL_EMU);
2246 #endif
2247 	clear_tsk_latency_tracing(p);
2248 
2249 	/* ok, now we should be set up.. */
2250 	p->pid = pid_nr(pid);
2251 	if (clone_flags & CLONE_THREAD) {
2252 		p->group_leader = current->group_leader;
2253 		p->tgid = current->tgid;
2254 	} else {
2255 		p->group_leader = p;
2256 		p->tgid = p->pid;
2257 	}
2258 
2259 	p->nr_dirtied = 0;
2260 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2261 	p->dirty_paused_when = 0;
2262 
2263 	p->pdeath_signal = 0;
2264 	p->task_works = NULL;
2265 	clear_posix_cputimers_work(p);
2266 
2267 #ifdef CONFIG_KRETPROBES
2268 	p->kretprobe_instances.first = NULL;
2269 #endif
2270 #ifdef CONFIG_RETHOOK
2271 	p->rethooks.first = NULL;
2272 #endif
2273 
2274 	/*
2275 	 * Ensure that the cgroup subsystem policies allow the new process to be
2276 	 * forked. It should be noted that the new process's css_set can be changed
2277 	 * between here and cgroup_post_fork() if an organisation operation is in
2278 	 * progress.
2279 	 */
2280 	retval = cgroup_can_fork(p, args);
2281 	if (retval)
2282 		goto bad_fork_put_pidfd;
2283 
2284 	/*
2285 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2286 	 * the new task on the correct runqueue. All this *before* the task
2287 	 * becomes visible.
2288 	 *
2289 	 * This isn't part of ->can_fork() because while the re-cloning is
2290 	 * cgroup specific, it unconditionally needs to place the task on a
2291 	 * runqueue.
2292 	 */
2293 	retval = sched_cgroup_fork(p, args);
2294 	if (retval)
2295 		goto bad_fork_cancel_cgroup;
2296 
2297 	/*
2298 	 * Allocate a default futex hash for the user process once the first
2299 	 * thread spawns.
2300 	 */
2301 	if (need_futex_hash_allocate_default(clone_flags)) {
2302 		retval = futex_hash_allocate_default();
2303 		if (retval)
2304 			goto bad_fork_cancel_cgroup;
2305 		/*
2306 		 * If we fail beyond this point we don't free the allocated
2307 		 * futex hash map. We assume that another thread will be created
2308 		 * and makes use of it. The hash map will be freed once the main
2309 		 * thread terminates.
2310 		 */
2311 	}
2312 	/*
2313 	 * From this point on we must avoid any synchronous user-space
2314 	 * communication until we take the tasklist-lock. In particular, we do
2315 	 * not want user-space to be able to predict the process start-time by
2316 	 * stalling fork(2) after we recorded the start_time but before it is
2317 	 * visible to the system.
2318 	 */
2319 
2320 	p->start_time = ktime_get_ns();
2321 	p->start_boottime = ktime_get_boottime_ns();
2322 
2323 	/*
2324 	 * Make it visible to the rest of the system, but dont wake it up yet.
2325 	 * Need tasklist lock for parent etc handling!
2326 	 */
2327 	write_lock_irq(&tasklist_lock);
2328 
2329 	/* CLONE_PARENT re-uses the old parent */
2330 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2331 		p->real_parent = current->real_parent;
2332 		p->parent_exec_id = current->parent_exec_id;
2333 		if (clone_flags & CLONE_THREAD)
2334 			p->exit_signal = -1;
2335 		else
2336 			p->exit_signal = current->group_leader->exit_signal;
2337 	} else {
2338 		p->real_parent = current;
2339 		p->parent_exec_id = current->self_exec_id;
2340 		p->exit_signal = args->exit_signal;
2341 	}
2342 
2343 	klp_copy_process(p);
2344 
2345 	sched_core_fork(p);
2346 
2347 	spin_lock(&current->sighand->siglock);
2348 
2349 	rv_task_fork(p);
2350 
2351 	rseq_fork(p, clone_flags);
2352 
2353 	/* Don't start children in a dying pid namespace */
2354 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2355 		retval = -ENOMEM;
2356 		goto bad_fork_core_free;
2357 	}
2358 
2359 	/* Let kill terminate clone/fork in the middle */
2360 	if (fatal_signal_pending(current)) {
2361 		retval = -EINTR;
2362 		goto bad_fork_core_free;
2363 	}
2364 
2365 	/* No more failure paths after this point. */
2366 
2367 	/*
2368 	 * Copy seccomp details explicitly here, in case they were changed
2369 	 * before holding sighand lock.
2370 	 */
2371 	copy_seccomp(p);
2372 
2373 	init_task_pid_links(p);
2374 	if (likely(p->pid)) {
2375 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2376 
2377 		init_task_pid(p, PIDTYPE_PID, pid);
2378 		if (thread_group_leader(p)) {
2379 			init_task_pid(p, PIDTYPE_TGID, pid);
2380 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2381 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2382 
2383 			if (is_child_reaper(pid)) {
2384 				ns_of_pid(pid)->child_reaper = p;
2385 				p->signal->flags |= SIGNAL_UNKILLABLE;
2386 			}
2387 			p->signal->shared_pending.signal = delayed.signal;
2388 			p->signal->tty = tty_kref_get(current->signal->tty);
2389 			/*
2390 			 * Inherit has_child_subreaper flag under the same
2391 			 * tasklist_lock with adding child to the process tree
2392 			 * for propagate_has_child_subreaper optimization.
2393 			 */
2394 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2395 							 p->real_parent->signal->is_child_subreaper;
2396 			list_add_tail(&p->sibling, &p->real_parent->children);
2397 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2398 			attach_pid(p, PIDTYPE_TGID);
2399 			attach_pid(p, PIDTYPE_PGID);
2400 			attach_pid(p, PIDTYPE_SID);
2401 			__this_cpu_inc(process_counts);
2402 		} else {
2403 			current->signal->nr_threads++;
2404 			current->signal->quick_threads++;
2405 			atomic_inc(&current->signal->live);
2406 			refcount_inc(&current->signal->sigcnt);
2407 			task_join_group_stop(p);
2408 			list_add_tail_rcu(&p->thread_node,
2409 					  &p->signal->thread_head);
2410 		}
2411 		attach_pid(p, PIDTYPE_PID);
2412 		nr_threads++;
2413 	}
2414 	total_forks++;
2415 	hlist_del_init(&delayed.node);
2416 	spin_unlock(&current->sighand->siglock);
2417 	syscall_tracepoint_update(p);
2418 	write_unlock_irq(&tasklist_lock);
2419 
2420 	if (pidfile)
2421 		fd_install(pidfd, pidfile);
2422 
2423 	proc_fork_connector(p);
2424 	sched_post_fork(p);
2425 	cgroup_post_fork(p, args);
2426 	perf_event_fork(p);
2427 
2428 	trace_task_newtask(p, clone_flags);
2429 	uprobe_copy_process(p, clone_flags);
2430 	user_events_fork(p, clone_flags);
2431 
2432 	copy_oom_score_adj(clone_flags, p);
2433 
2434 	return p;
2435 
2436 bad_fork_core_free:
2437 	sched_core_free(p);
2438 	spin_unlock(&current->sighand->siglock);
2439 	write_unlock_irq(&tasklist_lock);
2440 bad_fork_cancel_cgroup:
2441 	cgroup_cancel_fork(p, args);
2442 bad_fork_put_pidfd:
2443 	if (clone_flags & CLONE_PIDFD) {
2444 		fput(pidfile);
2445 		put_unused_fd(pidfd);
2446 	}
2447 bad_fork_free_pid:
2448 	if (pid != &init_struct_pid)
2449 		free_pid(pid);
2450 bad_fork_cleanup_thread:
2451 	exit_thread(p);
2452 bad_fork_cleanup_io:
2453 	if (p->io_context)
2454 		exit_io_context(p);
2455 bad_fork_cleanup_namespaces:
2456 	exit_task_namespaces(p);
2457 bad_fork_cleanup_mm:
2458 	if (p->mm) {
2459 		mm_clear_owner(p->mm, p);
2460 		mmput(p->mm);
2461 	}
2462 bad_fork_cleanup_signal:
2463 	if (!(clone_flags & CLONE_THREAD))
2464 		free_signal_struct(p->signal);
2465 bad_fork_cleanup_sighand:
2466 	__cleanup_sighand(p->sighand);
2467 bad_fork_cleanup_fs:
2468 	exit_fs(p); /* blocking */
2469 bad_fork_cleanup_files:
2470 	exit_files(p); /* blocking */
2471 bad_fork_cleanup_semundo:
2472 	exit_sem(p);
2473 bad_fork_cleanup_security:
2474 	security_task_free(p);
2475 bad_fork_cleanup_audit:
2476 	audit_free(p);
2477 bad_fork_cleanup_perf:
2478 	perf_event_free_task(p);
2479 bad_fork_sched_cancel_fork:
2480 	sched_cancel_fork(p);
2481 bad_fork_cleanup_policy:
2482 	lockdep_free_task(p);
2483 #ifdef CONFIG_NUMA
2484 	mpol_put(p->mempolicy);
2485 #endif
2486 bad_fork_cleanup_delayacct:
2487 	delayacct_tsk_free(p);
2488 bad_fork_cleanup_count:
2489 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2490 	exit_creds(p);
2491 bad_fork_free:
2492 	WRITE_ONCE(p->__state, TASK_DEAD);
2493 	exit_task_stack_account(p);
2494 	put_task_stack(p);
2495 	delayed_free_task(p);
2496 fork_out:
2497 	spin_lock_irq(&current->sighand->siglock);
2498 	hlist_del_init(&delayed.node);
2499 	spin_unlock_irq(&current->sighand->siglock);
2500 	return ERR_PTR(retval);
2501 }
2502 
init_idle_pids(struct task_struct * idle)2503 static inline void init_idle_pids(struct task_struct *idle)
2504 {
2505 	enum pid_type type;
2506 
2507 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2508 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2509 		init_task_pid(idle, type, &init_struct_pid);
2510 	}
2511 }
2512 
idle_dummy(void * dummy)2513 static int idle_dummy(void *dummy)
2514 {
2515 	/* This function is never called */
2516 	return 0;
2517 }
2518 
fork_idle(int cpu)2519 struct task_struct * __init fork_idle(int cpu)
2520 {
2521 	struct task_struct *task;
2522 	struct kernel_clone_args args = {
2523 		.flags		= CLONE_VM,
2524 		.fn		= &idle_dummy,
2525 		.fn_arg		= NULL,
2526 		.kthread	= 1,
2527 		.idle		= 1,
2528 	};
2529 
2530 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2531 	if (!IS_ERR(task)) {
2532 		init_idle_pids(task);
2533 		init_idle(task, cpu);
2534 	}
2535 
2536 	return task;
2537 }
2538 
2539 /*
2540  * This is like kernel_clone(), but shaved down and tailored to just
2541  * creating io_uring workers. It returns a created task, or an error pointer.
2542  * The returned task is inactive, and the caller must fire it up through
2543  * wake_up_new_task(p). All signals are blocked in the created task.
2544  */
create_io_thread(int (* fn)(void *),void * arg,int node)2545 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2546 {
2547 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2548 			      CLONE_IO|CLONE_VM|CLONE_UNTRACED;
2549 	struct kernel_clone_args args = {
2550 		.flags		= flags,
2551 		.fn		= fn,
2552 		.fn_arg		= arg,
2553 		.io_thread	= 1,
2554 		.user_worker	= 1,
2555 	};
2556 
2557 	return copy_process(NULL, 0, node, &args);
2558 }
2559 
2560 /*
2561  *  Ok, this is the main fork-routine.
2562  *
2563  * It copies the process, and if successful kick-starts
2564  * it and waits for it to finish using the VM if required.
2565  *
2566  * args->exit_signal is expected to be checked for sanity by the caller.
2567  */
kernel_clone(struct kernel_clone_args * args)2568 pid_t kernel_clone(struct kernel_clone_args *args)
2569 {
2570 	u64 clone_flags = args->flags;
2571 	struct completion vfork;
2572 	struct pid *pid;
2573 	struct task_struct *p;
2574 	int trace = 0;
2575 	pid_t nr;
2576 
2577 	/*
2578 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2579 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2580 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2581 	 * field in struct clone_args and it still doesn't make sense to have
2582 	 * them both point at the same memory location. Performing this check
2583 	 * here has the advantage that we don't need to have a separate helper
2584 	 * to check for legacy clone().
2585 	 */
2586 	if ((clone_flags & CLONE_PIDFD) &&
2587 	    (clone_flags & CLONE_PARENT_SETTID) &&
2588 	    (args->pidfd == args->parent_tid))
2589 		return -EINVAL;
2590 
2591 	/*
2592 	 * Determine whether and which event to report to ptracer.  When
2593 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2594 	 * requested, no event is reported; otherwise, report if the event
2595 	 * for the type of forking is enabled.
2596 	 */
2597 	if (!(clone_flags & CLONE_UNTRACED)) {
2598 		if (clone_flags & CLONE_VFORK)
2599 			trace = PTRACE_EVENT_VFORK;
2600 		else if (args->exit_signal != SIGCHLD)
2601 			trace = PTRACE_EVENT_CLONE;
2602 		else
2603 			trace = PTRACE_EVENT_FORK;
2604 
2605 		if (likely(!ptrace_event_enabled(current, trace)))
2606 			trace = 0;
2607 	}
2608 
2609 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2610 	add_latent_entropy();
2611 
2612 	if (IS_ERR(p))
2613 		return PTR_ERR(p);
2614 
2615 	/*
2616 	 * Do this prior waking up the new thread - the thread pointer
2617 	 * might get invalid after that point, if the thread exits quickly.
2618 	 */
2619 	trace_sched_process_fork(current, p);
2620 
2621 	pid = get_task_pid(p, PIDTYPE_PID);
2622 	nr = pid_vnr(pid);
2623 
2624 	if (clone_flags & CLONE_PARENT_SETTID)
2625 		put_user(nr, args->parent_tid);
2626 
2627 	if (clone_flags & CLONE_VFORK) {
2628 		p->vfork_done = &vfork;
2629 		init_completion(&vfork);
2630 		get_task_struct(p);
2631 	}
2632 
2633 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2634 		/* lock the task to synchronize with memcg migration */
2635 		task_lock(p);
2636 		lru_gen_add_mm(p->mm);
2637 		task_unlock(p);
2638 	}
2639 
2640 	wake_up_new_task(p);
2641 
2642 	/* forking complete and child started to run, tell ptracer */
2643 	if (unlikely(trace))
2644 		ptrace_event_pid(trace, pid);
2645 
2646 	if (clone_flags & CLONE_VFORK) {
2647 		if (!wait_for_vfork_done(p, &vfork))
2648 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2649 	}
2650 
2651 	put_pid(pid);
2652 	return nr;
2653 }
2654 
2655 /*
2656  * Create a kernel thread.
2657  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2658 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2659 		    unsigned long flags)
2660 {
2661 	struct kernel_clone_args args = {
2662 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2663 		.exit_signal	= (flags & CSIGNAL),
2664 		.fn		= fn,
2665 		.fn_arg		= arg,
2666 		.name		= name,
2667 		.kthread	= 1,
2668 	};
2669 
2670 	return kernel_clone(&args);
2671 }
2672 
2673 /*
2674  * Create a user mode thread.
2675  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2676 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2677 {
2678 	struct kernel_clone_args args = {
2679 		.flags		= ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2680 		.exit_signal	= (flags & CSIGNAL),
2681 		.fn		= fn,
2682 		.fn_arg		= arg,
2683 	};
2684 
2685 	return kernel_clone(&args);
2686 }
2687 
2688 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2689 SYSCALL_DEFINE0(fork)
2690 {
2691 #ifdef CONFIG_MMU
2692 	struct kernel_clone_args args = {
2693 		.exit_signal = SIGCHLD,
2694 	};
2695 
2696 	return kernel_clone(&args);
2697 #else
2698 	/* can not support in nommu mode */
2699 	return -EINVAL;
2700 #endif
2701 }
2702 #endif
2703 
2704 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2705 SYSCALL_DEFINE0(vfork)
2706 {
2707 	struct kernel_clone_args args = {
2708 		.flags		= CLONE_VFORK | CLONE_VM,
2709 		.exit_signal	= SIGCHLD,
2710 	};
2711 
2712 	return kernel_clone(&args);
2713 }
2714 #endif
2715 
2716 #ifdef __ARCH_WANT_SYS_CLONE
2717 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2718 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2719 		 int __user *, parent_tidptr,
2720 		 unsigned long, tls,
2721 		 int __user *, child_tidptr)
2722 #elif defined(CONFIG_CLONE_BACKWARDS2)
2723 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2724 		 int __user *, parent_tidptr,
2725 		 int __user *, child_tidptr,
2726 		 unsigned long, tls)
2727 #elif defined(CONFIG_CLONE_BACKWARDS3)
2728 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2729 		int, stack_size,
2730 		int __user *, parent_tidptr,
2731 		int __user *, child_tidptr,
2732 		unsigned long, tls)
2733 #else
2734 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2735 		 int __user *, parent_tidptr,
2736 		 int __user *, child_tidptr,
2737 		 unsigned long, tls)
2738 #endif
2739 {
2740 	struct kernel_clone_args args = {
2741 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2742 		.pidfd		= parent_tidptr,
2743 		.child_tid	= child_tidptr,
2744 		.parent_tid	= parent_tidptr,
2745 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2746 		.stack		= newsp,
2747 		.tls		= tls,
2748 	};
2749 
2750 	return kernel_clone(&args);
2751 }
2752 #endif
2753 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2754 static noinline int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2755 					      struct clone_args __user *uargs,
2756 					      size_t usize)
2757 {
2758 	int err;
2759 	struct clone_args args;
2760 	pid_t *kset_tid = kargs->set_tid;
2761 
2762 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2763 		     CLONE_ARGS_SIZE_VER0);
2764 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2765 		     CLONE_ARGS_SIZE_VER1);
2766 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2767 		     CLONE_ARGS_SIZE_VER2);
2768 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2769 
2770 	if (unlikely(usize > PAGE_SIZE))
2771 		return -E2BIG;
2772 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2773 		return -EINVAL;
2774 
2775 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2776 	if (err)
2777 		return err;
2778 
2779 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2780 		return -EINVAL;
2781 
2782 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
2783 		return -EINVAL;
2784 
2785 	if (unlikely(args.set_tid && args.set_tid_size == 0))
2786 		return -EINVAL;
2787 
2788 	/*
2789 	 * Verify that higher 32bits of exit_signal are unset and that
2790 	 * it is a valid signal
2791 	 */
2792 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2793 		     !valid_signal(args.exit_signal)))
2794 		return -EINVAL;
2795 
2796 	if ((args.flags & CLONE_INTO_CGROUP) &&
2797 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2798 		return -EINVAL;
2799 
2800 	*kargs = (struct kernel_clone_args){
2801 		.flags		= args.flags,
2802 		.pidfd		= u64_to_user_ptr(args.pidfd),
2803 		.child_tid	= u64_to_user_ptr(args.child_tid),
2804 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
2805 		.exit_signal	= args.exit_signal,
2806 		.stack		= args.stack,
2807 		.stack_size	= args.stack_size,
2808 		.tls		= args.tls,
2809 		.set_tid_size	= args.set_tid_size,
2810 		.cgroup		= args.cgroup,
2811 	};
2812 
2813 	if (args.set_tid &&
2814 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2815 			(kargs->set_tid_size * sizeof(pid_t))))
2816 		return -EFAULT;
2817 
2818 	kargs->set_tid = kset_tid;
2819 
2820 	return 0;
2821 }
2822 
2823 /**
2824  * clone3_stack_valid - check and prepare stack
2825  * @kargs: kernel clone args
2826  *
2827  * Verify that the stack arguments userspace gave us are sane.
2828  * In addition, set the stack direction for userspace since it's easy for us to
2829  * determine.
2830  */
clone3_stack_valid(struct kernel_clone_args * kargs)2831 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2832 {
2833 	if (kargs->stack == 0) {
2834 		if (kargs->stack_size > 0)
2835 			return false;
2836 	} else {
2837 		if (kargs->stack_size == 0)
2838 			return false;
2839 
2840 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2841 			return false;
2842 
2843 #if !defined(CONFIG_STACK_GROWSUP)
2844 		kargs->stack += kargs->stack_size;
2845 #endif
2846 	}
2847 
2848 	return true;
2849 }
2850 
clone3_args_valid(struct kernel_clone_args * kargs)2851 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2852 {
2853 	/* Verify that no unknown flags are passed along. */
2854 	if (kargs->flags &
2855 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2856 		return false;
2857 
2858 	/*
2859 	 * - make the CLONE_DETACHED bit reusable for clone3
2860 	 * - make the CSIGNAL bits reusable for clone3
2861 	 */
2862 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2863 		return false;
2864 
2865 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2866 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2867 		return false;
2868 
2869 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2870 	    kargs->exit_signal)
2871 		return false;
2872 
2873 	if (!clone3_stack_valid(kargs))
2874 		return false;
2875 
2876 	return true;
2877 }
2878 
2879 /**
2880  * sys_clone3 - create a new process with specific properties
2881  * @uargs: argument structure
2882  * @size:  size of @uargs
2883  *
2884  * clone3() is the extensible successor to clone()/clone2().
2885  * It takes a struct as argument that is versioned by its size.
2886  *
2887  * Return: On success, a positive PID for the child process.
2888  *         On error, a negative errno number.
2889  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2890 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2891 {
2892 	int err;
2893 
2894 	struct kernel_clone_args kargs;
2895 	pid_t set_tid[MAX_PID_NS_LEVEL];
2896 
2897 #ifdef __ARCH_BROKEN_SYS_CLONE3
2898 #warning clone3() entry point is missing, please fix
2899 	return -ENOSYS;
2900 #endif
2901 
2902 	kargs.set_tid = set_tid;
2903 
2904 	err = copy_clone_args_from_user(&kargs, uargs, size);
2905 	if (err)
2906 		return err;
2907 
2908 	if (!clone3_args_valid(&kargs))
2909 		return -EINVAL;
2910 
2911 	return kernel_clone(&kargs);
2912 }
2913 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2914 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2915 {
2916 	struct task_struct *leader, *parent, *child;
2917 	int res;
2918 
2919 	read_lock(&tasklist_lock);
2920 	leader = top = top->group_leader;
2921 down:
2922 	for_each_thread(leader, parent) {
2923 		list_for_each_entry(child, &parent->children, sibling) {
2924 			res = visitor(child, data);
2925 			if (res) {
2926 				if (res < 0)
2927 					goto out;
2928 				leader = child;
2929 				goto down;
2930 			}
2931 up:
2932 			;
2933 		}
2934 	}
2935 
2936 	if (leader != top) {
2937 		child = leader;
2938 		parent = child->real_parent;
2939 		leader = parent->group_leader;
2940 		goto up;
2941 	}
2942 out:
2943 	read_unlock(&tasklist_lock);
2944 }
2945 
2946 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2947 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2948 #endif
2949 
sighand_ctor(void * data)2950 static void sighand_ctor(void *data)
2951 {
2952 	struct sighand_struct *sighand = data;
2953 
2954 	spin_lock_init(&sighand->siglock);
2955 	init_waitqueue_head(&sighand->signalfd_wqh);
2956 }
2957 
mm_cache_init(void)2958 void __init mm_cache_init(void)
2959 {
2960 	unsigned int mm_size;
2961 
2962 	/*
2963 	 * The mm_cpumask is located at the end of mm_struct, and is
2964 	 * dynamically sized based on the maximum CPU number this system
2965 	 * can have, taking hotplug into account (nr_cpu_ids).
2966 	 */
2967 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
2968 
2969 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
2970 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2971 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2972 			offsetof(struct mm_struct, saved_auxv),
2973 			sizeof_field(struct mm_struct, saved_auxv),
2974 			NULL);
2975 }
2976 
proc_caches_init(void)2977 void __init proc_caches_init(void)
2978 {
2979 	sighand_cachep = kmem_cache_create("sighand_cache",
2980 			sizeof(struct sighand_struct), 0,
2981 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2982 			SLAB_ACCOUNT, sighand_ctor);
2983 	signal_cachep = kmem_cache_create("signal_cache",
2984 			sizeof(struct signal_struct), 0,
2985 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2986 			NULL);
2987 	files_cachep = kmem_cache_create("files_cache",
2988 			sizeof(struct files_struct), 0,
2989 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2990 			NULL);
2991 	fs_cachep = kmem_cache_create("fs_cache",
2992 			sizeof(struct fs_struct), 0,
2993 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2994 			NULL);
2995 	mmap_init();
2996 	nsproxy_cache_init();
2997 }
2998 
2999 /*
3000  * Check constraints on flags passed to the unshare system call.
3001  */
check_unshare_flags(unsigned long unshare_flags)3002 static int check_unshare_flags(unsigned long unshare_flags)
3003 {
3004 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3005 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3006 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3007 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3008 				CLONE_NEWTIME))
3009 		return -EINVAL;
3010 	/*
3011 	 * Not implemented, but pretend it works if there is nothing
3012 	 * to unshare.  Note that unsharing the address space or the
3013 	 * signal handlers also need to unshare the signal queues (aka
3014 	 * CLONE_THREAD).
3015 	 */
3016 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3017 		if (!thread_group_empty(current))
3018 			return -EINVAL;
3019 	}
3020 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3021 		if (refcount_read(&current->sighand->count) > 1)
3022 			return -EINVAL;
3023 	}
3024 	if (unshare_flags & CLONE_VM) {
3025 		if (!current_is_single_threaded())
3026 			return -EINVAL;
3027 	}
3028 
3029 	return 0;
3030 }
3031 
3032 /*
3033  * Unshare the filesystem structure if it is being shared
3034  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3035 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3036 {
3037 	struct fs_struct *fs = current->fs;
3038 
3039 	if (!(unshare_flags & CLONE_FS) || !fs)
3040 		return 0;
3041 
3042 	/* don't need lock here; in the worst case we'll do useless copy */
3043 	if (fs->users == 1)
3044 		return 0;
3045 
3046 	*new_fsp = copy_fs_struct(fs);
3047 	if (!*new_fsp)
3048 		return -ENOMEM;
3049 
3050 	return 0;
3051 }
3052 
3053 /*
3054  * Unshare file descriptor table if it is being shared
3055  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3056 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3057 {
3058 	struct files_struct *fd = current->files;
3059 
3060 	if ((unshare_flags & CLONE_FILES) &&
3061 	    (fd && atomic_read(&fd->count) > 1)) {
3062 		fd = dup_fd(fd, NULL);
3063 		if (IS_ERR(fd))
3064 			return PTR_ERR(fd);
3065 		*new_fdp = fd;
3066 	}
3067 
3068 	return 0;
3069 }
3070 
3071 /*
3072  * unshare allows a process to 'unshare' part of the process
3073  * context which was originally shared using clone.  copy_*
3074  * functions used by kernel_clone() cannot be used here directly
3075  * because they modify an inactive task_struct that is being
3076  * constructed. Here we are modifying the current, active,
3077  * task_struct.
3078  */
ksys_unshare(unsigned long unshare_flags)3079 int ksys_unshare(unsigned long unshare_flags)
3080 {
3081 	struct fs_struct *fs, *new_fs = NULL;
3082 	struct files_struct *new_fd = NULL;
3083 	struct cred *new_cred = NULL;
3084 	struct nsproxy *new_nsproxy = NULL;
3085 	int do_sysvsem = 0;
3086 	int err;
3087 
3088 	/*
3089 	 * If unsharing a user namespace must also unshare the thread group
3090 	 * and unshare the filesystem root and working directories.
3091 	 */
3092 	if (unshare_flags & CLONE_NEWUSER)
3093 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3094 	/*
3095 	 * If unsharing vm, must also unshare signal handlers.
3096 	 */
3097 	if (unshare_flags & CLONE_VM)
3098 		unshare_flags |= CLONE_SIGHAND;
3099 	/*
3100 	 * If unsharing a signal handlers, must also unshare the signal queues.
3101 	 */
3102 	if (unshare_flags & CLONE_SIGHAND)
3103 		unshare_flags |= CLONE_THREAD;
3104 	/*
3105 	 * If unsharing namespace, must also unshare filesystem information.
3106 	 */
3107 	if (unshare_flags & CLONE_NEWNS)
3108 		unshare_flags |= CLONE_FS;
3109 
3110 	err = check_unshare_flags(unshare_flags);
3111 	if (err)
3112 		goto bad_unshare_out;
3113 	/*
3114 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3115 	 * to a new ipc namespace, the semaphore arrays from the old
3116 	 * namespace are unreachable.
3117 	 */
3118 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3119 		do_sysvsem = 1;
3120 	err = unshare_fs(unshare_flags, &new_fs);
3121 	if (err)
3122 		goto bad_unshare_out;
3123 	err = unshare_fd(unshare_flags, &new_fd);
3124 	if (err)
3125 		goto bad_unshare_cleanup_fs;
3126 	err = unshare_userns(unshare_flags, &new_cred);
3127 	if (err)
3128 		goto bad_unshare_cleanup_fd;
3129 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3130 					 new_cred, new_fs);
3131 	if (err)
3132 		goto bad_unshare_cleanup_cred;
3133 
3134 	if (new_cred) {
3135 		err = set_cred_ucounts(new_cred);
3136 		if (err)
3137 			goto bad_unshare_cleanup_cred;
3138 	}
3139 
3140 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3141 		if (do_sysvsem) {
3142 			/*
3143 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3144 			 */
3145 			exit_sem(current);
3146 		}
3147 		if (unshare_flags & CLONE_NEWIPC) {
3148 			/* Orphan segments in old ns (see sem above). */
3149 			exit_shm(current);
3150 			shm_init_task(current);
3151 		}
3152 
3153 		if (new_nsproxy)
3154 			switch_task_namespaces(current, new_nsproxy);
3155 
3156 		task_lock(current);
3157 
3158 		if (new_fs) {
3159 			fs = current->fs;
3160 			read_seqlock_excl(&fs->seq);
3161 			current->fs = new_fs;
3162 			if (--fs->users)
3163 				new_fs = NULL;
3164 			else
3165 				new_fs = fs;
3166 			read_sequnlock_excl(&fs->seq);
3167 		}
3168 
3169 		if (new_fd)
3170 			swap(current->files, new_fd);
3171 
3172 		task_unlock(current);
3173 
3174 		if (new_cred) {
3175 			/* Install the new user namespace */
3176 			commit_creds(new_cred);
3177 			new_cred = NULL;
3178 		}
3179 	}
3180 
3181 	perf_event_namespaces(current);
3182 
3183 bad_unshare_cleanup_cred:
3184 	if (new_cred)
3185 		put_cred(new_cred);
3186 bad_unshare_cleanup_fd:
3187 	if (new_fd)
3188 		put_files_struct(new_fd);
3189 
3190 bad_unshare_cleanup_fs:
3191 	if (new_fs)
3192 		free_fs_struct(new_fs);
3193 
3194 bad_unshare_out:
3195 	return err;
3196 }
3197 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3198 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3199 {
3200 	return ksys_unshare(unshare_flags);
3201 }
3202 
3203 /*
3204  *	Helper to unshare the files of the current task.
3205  *	We don't want to expose copy_files internals to
3206  *	the exec layer of the kernel.
3207  */
3208 
unshare_files(void)3209 int unshare_files(void)
3210 {
3211 	struct task_struct *task = current;
3212 	struct files_struct *old, *copy = NULL;
3213 	int error;
3214 
3215 	error = unshare_fd(CLONE_FILES, &copy);
3216 	if (error || !copy)
3217 		return error;
3218 
3219 	old = task->files;
3220 	task_lock(task);
3221 	task->files = copy;
3222 	task_unlock(task);
3223 	put_files_struct(old);
3224 	return 0;
3225 }
3226 
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3227 static int sysctl_max_threads(const struct ctl_table *table, int write,
3228 		       void *buffer, size_t *lenp, loff_t *ppos)
3229 {
3230 	struct ctl_table t;
3231 	int ret;
3232 	int threads = max_threads;
3233 	int min = 1;
3234 	int max = MAX_THREADS;
3235 
3236 	t = *table;
3237 	t.data = &threads;
3238 	t.extra1 = &min;
3239 	t.extra2 = &max;
3240 
3241 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3242 	if (ret || !write)
3243 		return ret;
3244 
3245 	max_threads = threads;
3246 
3247 	return 0;
3248 }
3249 
3250 static const struct ctl_table fork_sysctl_table[] = {
3251 	{
3252 		.procname	= "threads-max",
3253 		.data		= NULL,
3254 		.maxlen		= sizeof(int),
3255 		.mode		= 0644,
3256 		.proc_handler	= sysctl_max_threads,
3257 	},
3258 };
3259 
init_fork_sysctl(void)3260 static int __init init_fork_sysctl(void)
3261 {
3262 	register_sysctl_init("kernel", fork_sysctl_table);
3263 	return 0;
3264 }
3265 
3266 subsys_initcall(init_fork_sysctl);
3267