xref: /linux/kernel/rcu/tree.c (revision f49040c7aaa5532a1f94355ef5073c49e6b32349)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  *
5  * Copyright IBM Corporation, 2008
6  *
7  * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8  *	    Manfred Spraul <manfred@colorfullife.com>
9  *	    Paul E. McKenney <paulmck@linux.ibm.com>
10  *
11  * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13  *
14  * For detailed explanation of Read-Copy Update mechanism see -
15  *	Documentation/RCU
16  */
17 
18 #define pr_fmt(fmt) "rcu: " fmt
19 
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/kmemleak.h>
35 #include <linux/moduleparam.h>
36 #include <linux/panic.h>
37 #include <linux/panic_notifier.h>
38 #include <linux/percpu.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/mutex.h>
42 #include <linux/time.h>
43 #include <linux/kernel_stat.h>
44 #include <linux/wait.h>
45 #include <linux/kthread.h>
46 #include <uapi/linux/sched/types.h>
47 #include <linux/prefetch.h>
48 #include <linux/delay.h>
49 #include <linux/random.h>
50 #include <linux/trace_events.h>
51 #include <linux/suspend.h>
52 #include <linux/ftrace.h>
53 #include <linux/tick.h>
54 #include <linux/sysrq.h>
55 #include <linux/kprobes.h>
56 #include <linux/gfp.h>
57 #include <linux/oom.h>
58 #include <linux/smpboot.h>
59 #include <linux/jiffies.h>
60 #include <linux/slab.h>
61 #include <linux/sched/isolation.h>
62 #include <linux/sched/clock.h>
63 #include <linux/vmalloc.h>
64 #include <linux/mm.h>
65 #include <linux/kasan.h>
66 #include <linux/context_tracking.h>
67 #include "../time/tick-internal.h"
68 
69 #include "tree.h"
70 #include "rcu.h"
71 
72 #ifdef MODULE_PARAM_PREFIX
73 #undef MODULE_PARAM_PREFIX
74 #endif
75 #define MODULE_PARAM_PREFIX "rcutree."
76 
77 /* Data structures. */
78 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);
79 
80 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
81 	.gpwrap = true,
82 };
83 static struct rcu_state rcu_state = {
84 	.level = { &rcu_state.node[0] },
85 	.gp_state = RCU_GP_IDLE,
86 	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
87 	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
88 	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
89 	.name = RCU_NAME,
90 	.abbr = RCU_ABBR,
91 	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
92 	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
93 	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
94 	.srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work,
95 		rcu_sr_normal_gp_cleanup_work),
96 	.srs_cleanups_pending = ATOMIC_INIT(0),
97 #ifdef CONFIG_RCU_NOCB_CPU
98 	.nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex),
99 #endif
100 };
101 
102 /* Dump rcu_node combining tree at boot to verify correct setup. */
103 static bool dump_tree;
104 module_param(dump_tree, bool, 0444);
105 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
106 static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
107 #ifndef CONFIG_PREEMPT_RT
108 module_param(use_softirq, bool, 0444);
109 #endif
110 /* Control rcu_node-tree auto-balancing at boot time. */
111 static bool rcu_fanout_exact;
112 module_param(rcu_fanout_exact, bool, 0444);
113 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
114 static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
115 module_param(rcu_fanout_leaf, int, 0444);
116 int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
117 /* Number of rcu_nodes at specified level. */
118 int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
119 int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
120 
121 /*
122  * The rcu_scheduler_active variable is initialized to the value
123  * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
124  * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
125  * RCU can assume that there is but one task, allowing RCU to (for example)
126  * optimize synchronize_rcu() to a simple barrier().  When this variable
127  * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
128  * to detect real grace periods.  This variable is also used to suppress
129  * boot-time false positives from lockdep-RCU error checking.  Finally, it
130  * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
131  * is fully initialized, including all of its kthreads having been spawned.
132  */
133 int rcu_scheduler_active __read_mostly;
134 EXPORT_SYMBOL_GPL(rcu_scheduler_active);
135 
136 /*
137  * The rcu_scheduler_fully_active variable transitions from zero to one
138  * during the early_initcall() processing, which is after the scheduler
139  * is capable of creating new tasks.  So RCU processing (for example,
140  * creating tasks for RCU priority boosting) must be delayed until after
141  * rcu_scheduler_fully_active transitions from zero to one.  We also
142  * currently delay invocation of any RCU callbacks until after this point.
143  *
144  * It might later prove better for people registering RCU callbacks during
145  * early boot to take responsibility for these callbacks, but one step at
146  * a time.
147  */
148 static int rcu_scheduler_fully_active __read_mostly;
149 
150 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
151 			      unsigned long gps, unsigned long flags);
152 static void invoke_rcu_core(void);
153 static void rcu_report_exp_rdp(struct rcu_data *rdp);
154 static void sync_sched_exp_online_cleanup(int cpu);
155 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
156 static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
157 static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
158 static bool rcu_init_invoked(void);
159 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
160 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
161 
162 /*
163  * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
164  * real-time priority(enabling/disabling) is controlled by
165  * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
166  */
167 static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
168 module_param(kthread_prio, int, 0444);
169 
170 /* Delay in jiffies for grace-period initialization delays, debug only. */
171 
172 static int gp_preinit_delay;
173 module_param(gp_preinit_delay, int, 0444);
174 static int gp_init_delay;
175 module_param(gp_init_delay, int, 0444);
176 static int gp_cleanup_delay;
177 module_param(gp_cleanup_delay, int, 0444);
178 static int nohz_full_patience_delay;
179 module_param(nohz_full_patience_delay, int, 0444);
180 static int nohz_full_patience_delay_jiffies;
181 
182 // Add delay to rcu_read_unlock() for strict grace periods.
183 static int rcu_unlock_delay;
184 #ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
185 module_param(rcu_unlock_delay, int, 0444);
186 #endif
187 
188 /* Retrieve RCU kthreads priority for rcutorture */
rcu_get_gp_kthreads_prio(void)189 int rcu_get_gp_kthreads_prio(void)
190 {
191 	return kthread_prio;
192 }
193 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
194 
195 /*
196  * Number of grace periods between delays, normalized by the duration of
197  * the delay.  The longer the delay, the more the grace periods between
198  * each delay.  The reason for this normalization is that it means that,
199  * for non-zero delays, the overall slowdown of grace periods is constant
200  * regardless of the duration of the delay.  This arrangement balances
201  * the need for long delays to increase some race probabilities with the
202  * need for fast grace periods to increase other race probabilities.
203  */
204 #define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
205 
206 /*
207  * Return true if an RCU grace period is in progress.  The READ_ONCE()s
208  * permit this function to be invoked without holding the root rcu_node
209  * structure's ->lock, but of course results can be subject to change.
210  */
rcu_gp_in_progress(void)211 static int rcu_gp_in_progress(void)
212 {
213 	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
214 }
215 
216 /*
217  * Return the number of callbacks queued on the specified CPU.
218  * Handles both the nocbs and normal cases.
219  */
rcu_get_n_cbs_cpu(int cpu)220 static long rcu_get_n_cbs_cpu(int cpu)
221 {
222 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
223 
224 	if (rcu_segcblist_is_enabled(&rdp->cblist))
225 		return rcu_segcblist_n_cbs(&rdp->cblist);
226 	return 0;
227 }
228 
229 /**
230  * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
231  *
232  * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
233  * This is a special-purpose function to be used in the softirq
234  * infrastructure and perhaps the occasional long-running softirq
235  * handler.
236  *
237  * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
238  * equivalent to momentarily completely enabling preemption.  For
239  * example, given this code::
240  *
241  *	local_bh_disable();
242  *	do_something();
243  *	rcu_softirq_qs();  // A
244  *	do_something_else();
245  *	local_bh_enable();  // B
246  *
247  * A call to synchronize_rcu() that began concurrently with the
248  * call to do_something() would be guaranteed to wait only until
249  * execution reached statement A.  Without that rcu_softirq_qs(),
250  * that same synchronize_rcu() would instead be guaranteed to wait
251  * until execution reached statement B.
252  */
rcu_softirq_qs(void)253 void rcu_softirq_qs(void)
254 {
255 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
256 			 lock_is_held(&rcu_lock_map) ||
257 			 lock_is_held(&rcu_sched_lock_map),
258 			 "Illegal rcu_softirq_qs() in RCU read-side critical section");
259 	rcu_qs();
260 	rcu_preempt_deferred_qs(current);
261 	rcu_tasks_qs(current, false);
262 }
263 
264 /*
265  * Reset the current CPU's RCU_WATCHING counter to indicate that the
266  * newly onlined CPU is no longer in an extended quiescent state.
267  * This will either leave the counter unchanged, or increment it
268  * to the next non-quiescent value.
269  *
270  * The non-atomic test/increment sequence works because the upper bits
271  * of the ->state variable are manipulated only by the corresponding CPU,
272  * or when the corresponding CPU is offline.
273  */
rcu_watching_online(void)274 static void rcu_watching_online(void)
275 {
276 	if (ct_rcu_watching() & CT_RCU_WATCHING)
277 		return;
278 	ct_state_inc(CT_RCU_WATCHING);
279 }
280 
281 /*
282  * Return true if the snapshot returned from ct_rcu_watching()
283  * indicates that RCU is in an extended quiescent state.
284  */
rcu_watching_snap_in_eqs(int snap)285 static bool rcu_watching_snap_in_eqs(int snap)
286 {
287 	return !(snap & CT_RCU_WATCHING);
288 }
289 
290 /**
291  * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU
292  * since the specified @snap?
293  *
294  * @rdp: The rcu_data corresponding to the CPU for which to check EQS.
295  * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS.
296  *
297  * Returns true if the CPU corresponding to @rdp has spent some time in an
298  * extended quiescent state since @snap. Note that this doesn't check if it
299  * /still/ is in an EQS, just that it went through one since @snap.
300  *
301  * This is meant to be used in a loop waiting for a CPU to go through an EQS.
302  */
rcu_watching_snap_stopped_since(struct rcu_data * rdp,int snap)303 static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap)
304 {
305 	/*
306 	 * The first failing snapshot is already ordered against the accesses
307 	 * performed by the remote CPU after it exits idle.
308 	 *
309 	 * The second snapshot therefore only needs to order against accesses
310 	 * performed by the remote CPU prior to entering idle and therefore can
311 	 * rely solely on acquire semantics.
312 	 */
313 	if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap)))
314 		return true;
315 
316 	return snap != ct_rcu_watching_cpu_acquire(rdp->cpu);
317 }
318 
319 /*
320  * Return true if the referenced integer is zero while the specified
321  * CPU remains within a single extended quiescent state.
322  */
rcu_watching_zero_in_eqs(int cpu,int * vp)323 bool rcu_watching_zero_in_eqs(int cpu, int *vp)
324 {
325 	int snap;
326 
327 	// If not quiescent, force back to earlier extended quiescent state.
328 	snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING;
329 	smp_rmb(); // Order CT state and *vp reads.
330 	if (READ_ONCE(*vp))
331 		return false;  // Non-zero, so report failure;
332 	smp_rmb(); // Order *vp read and CT state re-read.
333 
334 	// If still in the same extended quiescent state, we are good!
335 	return snap == ct_rcu_watching_cpu(cpu);
336 }
337 
338 /*
339  * Let the RCU core know that this CPU has gone through the scheduler,
340  * which is a quiescent state.  This is called when the need for a
341  * quiescent state is urgent, so we burn an atomic operation and full
342  * memory barriers to let the RCU core know about it, regardless of what
343  * this CPU might (or might not) do in the near future.
344  *
345  * We inform the RCU core by emulating a zero-duration dyntick-idle period.
346  *
347  * The caller must have disabled interrupts and must not be idle.
348  */
rcu_momentary_eqs(void)349 notrace void rcu_momentary_eqs(void)
350 {
351 	int seq;
352 
353 	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
354 	seq = ct_state_inc(2 * CT_RCU_WATCHING);
355 	/* It is illegal to call this from idle state. */
356 	WARN_ON_ONCE(!(seq & CT_RCU_WATCHING));
357 	rcu_preempt_deferred_qs(current);
358 }
359 EXPORT_SYMBOL_GPL(rcu_momentary_eqs);
360 
361 /**
362  * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
363  *
364  * If the current CPU is idle and running at a first-level (not nested)
365  * interrupt, or directly, from idle, return true.
366  *
367  * The caller must have at least disabled IRQs.
368  */
rcu_is_cpu_rrupt_from_idle(void)369 static int rcu_is_cpu_rrupt_from_idle(void)
370 {
371 	long nesting;
372 
373 	/*
374 	 * Usually called from the tick; but also used from smp_function_call()
375 	 * for expedited grace periods. This latter can result in running from
376 	 * the idle task, instead of an actual IPI.
377 	 */
378 	lockdep_assert_irqs_disabled();
379 
380 	/* Check for counter underflows */
381 	RCU_LOCKDEP_WARN(ct_nesting() < 0,
382 			 "RCU nesting counter underflow!");
383 	RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0,
384 			 "RCU nmi_nesting counter underflow/zero!");
385 
386 	/* Are we at first interrupt nesting level? */
387 	nesting = ct_nmi_nesting();
388 	if (nesting > 1)
389 		return false;
390 
391 	/*
392 	 * If we're not in an interrupt, we must be in the idle task!
393 	 */
394 	WARN_ON_ONCE(!nesting && !is_idle_task(current));
395 
396 	/* Does CPU appear to be idle from an RCU standpoint? */
397 	return ct_nesting() == 0;
398 }
399 
400 #define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
401 				// Maximum callbacks per rcu_do_batch ...
402 #define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
403 static long blimit = DEFAULT_RCU_BLIMIT;
404 #define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
405 static long qhimark = DEFAULT_RCU_QHIMARK;
406 #define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
407 static long qlowmark = DEFAULT_RCU_QLOMARK;
408 #define DEFAULT_RCU_QOVLD_MULT 2
409 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
410 static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
411 static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
412 
413 module_param(blimit, long, 0444);
414 module_param(qhimark, long, 0444);
415 module_param(qlowmark, long, 0444);
416 module_param(qovld, long, 0444);
417 
418 static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
419 static ulong jiffies_till_next_fqs = ULONG_MAX;
420 static bool rcu_kick_kthreads;
421 static int rcu_divisor = 7;
422 module_param(rcu_divisor, int, 0644);
423 
424 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
425 static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
426 module_param(rcu_resched_ns, long, 0644);
427 
428 /*
429  * How long the grace period must be before we start recruiting
430  * quiescent-state help from rcu_note_context_switch().
431  */
432 static ulong jiffies_till_sched_qs = ULONG_MAX;
433 module_param(jiffies_till_sched_qs, ulong, 0444);
434 static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
435 module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
436 
437 /*
438  * Make sure that we give the grace-period kthread time to detect any
439  * idle CPUs before taking active measures to force quiescent states.
440  * However, don't go below 100 milliseconds, adjusted upwards for really
441  * large systems.
442  */
adjust_jiffies_till_sched_qs(void)443 static void adjust_jiffies_till_sched_qs(void)
444 {
445 	unsigned long j;
446 
447 	/* If jiffies_till_sched_qs was specified, respect the request. */
448 	if (jiffies_till_sched_qs != ULONG_MAX) {
449 		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
450 		return;
451 	}
452 	/* Otherwise, set to third fqs scan, but bound below on large system. */
453 	j = READ_ONCE(jiffies_till_first_fqs) +
454 		      2 * READ_ONCE(jiffies_till_next_fqs);
455 	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
456 		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
457 	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
458 	WRITE_ONCE(jiffies_to_sched_qs, j);
459 }
460 
param_set_first_fqs_jiffies(const char * val,const struct kernel_param * kp)461 static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
462 {
463 	ulong j;
464 	int ret = kstrtoul(val, 0, &j);
465 
466 	if (!ret) {
467 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
468 		adjust_jiffies_till_sched_qs();
469 	}
470 	return ret;
471 }
472 
param_set_next_fqs_jiffies(const char * val,const struct kernel_param * kp)473 static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
474 {
475 	ulong j;
476 	int ret = kstrtoul(val, 0, &j);
477 
478 	if (!ret) {
479 		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
480 		adjust_jiffies_till_sched_qs();
481 	}
482 	return ret;
483 }
484 
485 static const struct kernel_param_ops first_fqs_jiffies_ops = {
486 	.set = param_set_first_fqs_jiffies,
487 	.get = param_get_ulong,
488 };
489 
490 static const struct kernel_param_ops next_fqs_jiffies_ops = {
491 	.set = param_set_next_fqs_jiffies,
492 	.get = param_get_ulong,
493 };
494 
495 module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
496 module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
497 module_param(rcu_kick_kthreads, bool, 0644);
498 
499 static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
500 static int rcu_pending(int user);
501 
502 /*
503  * Return the number of RCU GPs completed thus far for debug & stats.
504  */
rcu_get_gp_seq(void)505 unsigned long rcu_get_gp_seq(void)
506 {
507 	return READ_ONCE(rcu_state.gp_seq);
508 }
509 EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
510 
511 /*
512  * Return the number of RCU expedited batches completed thus far for
513  * debug & stats.  Odd numbers mean that a batch is in progress, even
514  * numbers mean idle.  The value returned will thus be roughly double
515  * the cumulative batches since boot.
516  */
rcu_exp_batches_completed(void)517 unsigned long rcu_exp_batches_completed(void)
518 {
519 	return rcu_state.expedited_sequence;
520 }
521 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
522 
523 /*
524  * Return the root node of the rcu_state structure.
525  */
rcu_get_root(void)526 static struct rcu_node *rcu_get_root(void)
527 {
528 	return &rcu_state.node[0];
529 }
530 
531 /*
532  * Send along grace-period-related data for rcutorture diagnostics.
533  */
rcutorture_get_gp_data(int * flags,unsigned long * gp_seq)534 void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
535 {
536 	*flags = READ_ONCE(rcu_state.gp_flags);
537 	*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
538 }
539 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
540 
541 /* Gather grace-period sequence numbers for rcutorture diagnostics. */
rcutorture_gather_gp_seqs(void)542 unsigned long long rcutorture_gather_gp_seqs(void)
543 {
544 	return ((READ_ONCE(rcu_state.gp_seq) & 0xffffULL) << 40) |
545 	       ((READ_ONCE(rcu_state.expedited_sequence) & 0xffffffULL) << 16) |
546 	       (READ_ONCE(rcu_state.gp_seq_polled) & 0xffffULL);
547 }
548 EXPORT_SYMBOL_GPL(rcutorture_gather_gp_seqs);
549 
550 /* Format grace-period sequence numbers for rcutorture diagnostics. */
rcutorture_format_gp_seqs(unsigned long long seqs,char * cp,size_t len)551 void rcutorture_format_gp_seqs(unsigned long long seqs, char *cp, size_t len)
552 {
553 	unsigned int egp = (seqs >> 16) & 0xffffffULL;
554 	unsigned int ggp = (seqs >> 40) & 0xffffULL;
555 	unsigned int pgp = seqs & 0xffffULL;
556 
557 	snprintf(cp, len, "g%04x:e%06x:p%04x", ggp, egp, pgp);
558 }
559 EXPORT_SYMBOL_GPL(rcutorture_format_gp_seqs);
560 
561 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
562 /*
563  * An empty function that will trigger a reschedule on
564  * IRQ tail once IRQs get re-enabled on userspace/guest resume.
565  */
late_wakeup_func(struct irq_work * work)566 static void late_wakeup_func(struct irq_work *work)
567 {
568 }
569 
570 static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
571 	IRQ_WORK_INIT(late_wakeup_func);
572 
573 /*
574  * If either:
575  *
576  * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
577  * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
578  *
579  * In these cases the late RCU wake ups aren't supported in the resched loops and our
580  * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
581  * get re-enabled again.
582  */
rcu_irq_work_resched(void)583 noinstr void rcu_irq_work_resched(void)
584 {
585 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
586 
587 	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
588 		return;
589 
590 	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
591 		return;
592 
593 	instrumentation_begin();
594 	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
595 		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
596 	}
597 	instrumentation_end();
598 }
599 #endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
600 
601 #ifdef CONFIG_PROVE_RCU
602 /**
603  * rcu_irq_exit_check_preempt - Validate that scheduling is possible
604  */
rcu_irq_exit_check_preempt(void)605 void rcu_irq_exit_check_preempt(void)
606 {
607 	lockdep_assert_irqs_disabled();
608 
609 	RCU_LOCKDEP_WARN(ct_nesting() <= 0,
610 			 "RCU nesting counter underflow/zero!");
611 	RCU_LOCKDEP_WARN(ct_nmi_nesting() !=
612 			 CT_NESTING_IRQ_NONIDLE,
613 			 "Bad RCU  nmi_nesting counter\n");
614 	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
615 			 "RCU in extended quiescent state!");
616 }
617 #endif /* #ifdef CONFIG_PROVE_RCU */
618 
619 #ifdef CONFIG_NO_HZ_FULL
620 /**
621  * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
622  *
623  * The scheduler tick is not normally enabled when CPUs enter the kernel
624  * from nohz_full userspace execution.  After all, nohz_full userspace
625  * execution is an RCU quiescent state and the time executing in the kernel
626  * is quite short.  Except of course when it isn't.  And it is not hard to
627  * cause a large system to spend tens of seconds or even minutes looping
628  * in the kernel, which can cause a number of problems, include RCU CPU
629  * stall warnings.
630  *
631  * Therefore, if a nohz_full CPU fails to report a quiescent state
632  * in a timely manner, the RCU grace-period kthread sets that CPU's
633  * ->rcu_urgent_qs flag with the expectation that the next interrupt or
634  * exception will invoke this function, which will turn on the scheduler
635  * tick, which will enable RCU to detect that CPU's quiescent states,
636  * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
637  * The tick will be disabled once a quiescent state is reported for
638  * this CPU.
639  *
640  * Of course, in carefully tuned systems, there might never be an
641  * interrupt or exception.  In that case, the RCU grace-period kthread
642  * will eventually cause one to happen.  However, in less carefully
643  * controlled environments, this function allows RCU to get what it
644  * needs without creating otherwise useless interruptions.
645  */
__rcu_irq_enter_check_tick(void)646 void __rcu_irq_enter_check_tick(void)
647 {
648 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
649 
650 	// If we're here from NMI there's nothing to do.
651 	if (in_nmi())
652 		return;
653 
654 	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
655 			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
656 
657 	if (!tick_nohz_full_cpu(rdp->cpu) ||
658 	    !READ_ONCE(rdp->rcu_urgent_qs) ||
659 	    READ_ONCE(rdp->rcu_forced_tick)) {
660 		// RCU doesn't need nohz_full help from this CPU, or it is
661 		// already getting that help.
662 		return;
663 	}
664 
665 	// We get here only when not in an extended quiescent state and
666 	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
667 	// already watching and (2) The fact that we are in an interrupt
668 	// handler and that the rcu_node lock is an irq-disabled lock
669 	// prevents self-deadlock.  So we can safely recheck under the lock.
670 	// Note that the nohz_full state currently cannot change.
671 	raw_spin_lock_rcu_node(rdp->mynode);
672 	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
673 		// A nohz_full CPU is in the kernel and RCU needs a
674 		// quiescent state.  Turn on the tick!
675 		WRITE_ONCE(rdp->rcu_forced_tick, true);
676 		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
677 	}
678 	raw_spin_unlock_rcu_node(rdp->mynode);
679 }
680 NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
681 #endif /* CONFIG_NO_HZ_FULL */
682 
683 /*
684  * Check to see if any future non-offloaded RCU-related work will need
685  * to be done by the current CPU, even if none need be done immediately,
686  * returning 1 if so.  This function is part of the RCU implementation;
687  * it is -not- an exported member of the RCU API.  This is used by
688  * the idle-entry code to figure out whether it is safe to disable the
689  * scheduler-clock interrupt.
690  *
691  * Just check whether or not this CPU has non-offloaded RCU callbacks
692  * queued.
693  */
rcu_needs_cpu(void)694 int rcu_needs_cpu(void)
695 {
696 	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
697 		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
698 }
699 
700 /*
701  * If any sort of urgency was applied to the current CPU (for example,
702  * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
703  * to get to a quiescent state, disable it.
704  */
rcu_disable_urgency_upon_qs(struct rcu_data * rdp)705 static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
706 {
707 	raw_lockdep_assert_held_rcu_node(rdp->mynode);
708 	WRITE_ONCE(rdp->rcu_urgent_qs, false);
709 	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
710 	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
711 		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
712 		WRITE_ONCE(rdp->rcu_forced_tick, false);
713 	}
714 }
715 
716 /**
717  * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
718  *
719  * Return @true if RCU is watching the running CPU and @false otherwise.
720  * An @true return means that this CPU can safely enter RCU read-side
721  * critical sections.
722  *
723  * Although calls to rcu_is_watching() from most parts of the kernel
724  * will return @true, there are important exceptions.  For example, if the
725  * current CPU is deep within its idle loop, in kernel entry/exit code,
726  * or offline, rcu_is_watching() will return @false.
727  *
728  * Make notrace because it can be called by the internal functions of
729  * ftrace, and making this notrace removes unnecessary recursion calls.
730  */
rcu_is_watching(void)731 notrace bool rcu_is_watching(void)
732 {
733 	bool ret;
734 
735 	preempt_disable_notrace();
736 	ret = rcu_is_watching_curr_cpu();
737 	preempt_enable_notrace();
738 	return ret;
739 }
740 EXPORT_SYMBOL_GPL(rcu_is_watching);
741 
742 /*
743  * If a holdout task is actually running, request an urgent quiescent
744  * state from its CPU.  This is unsynchronized, so migrations can cause
745  * the request to go to the wrong CPU.  Which is OK, all that will happen
746  * is that the CPU's next context switch will be a bit slower and next
747  * time around this task will generate another request.
748  */
rcu_request_urgent_qs_task(struct task_struct * t)749 void rcu_request_urgent_qs_task(struct task_struct *t)
750 {
751 	int cpu;
752 
753 	barrier();
754 	cpu = task_cpu(t);
755 	if (!task_curr(t))
756 		return; /* This task is not running on that CPU. */
757 	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
758 }
759 
760 /*
761  * When trying to report a quiescent state on behalf of some other CPU,
762  * it is our responsibility to check for and handle potential overflow
763  * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
764  * After all, the CPU might be in deep idle state, and thus executing no
765  * code whatsoever.
766  */
rcu_gpnum_ovf(struct rcu_node * rnp,struct rcu_data * rdp)767 static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
768 {
769 	raw_lockdep_assert_held_rcu_node(rnp);
770 	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
771 			 rnp->gp_seq))
772 		WRITE_ONCE(rdp->gpwrap, true);
773 	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
774 		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
775 }
776 
777 /*
778  * Snapshot the specified CPU's RCU_WATCHING counter so that we can later
779  * credit them with an implicit quiescent state.  Return 1 if this CPU
780  * is in dynticks idle mode, which is an extended quiescent state.
781  */
rcu_watching_snap_save(struct rcu_data * rdp)782 static int rcu_watching_snap_save(struct rcu_data *rdp)
783 {
784 	/*
785 	 * Full ordering between remote CPU's post idle accesses and updater's
786 	 * accesses prior to current GP (and also the started GP sequence number)
787 	 * is enforced by rcu_seq_start() implicit barrier and even further by
788 	 * smp_mb__after_unlock_lock() barriers chained all the way throughout the
789 	 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp
790 	 * locking.
791 	 *
792 	 * Ordering between remote CPU's pre idle accesses and post grace period
793 	 * updater's accesses is enforced by the below acquire semantic.
794 	 */
795 	rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu);
796 	if (rcu_watching_snap_in_eqs(rdp->watching_snap)) {
797 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
798 		rcu_gpnum_ovf(rdp->mynode, rdp);
799 		return 1;
800 	}
801 	return 0;
802 }
803 
804 /*
805  * Returns positive if the specified CPU has passed through a quiescent state
806  * by virtue of being in or having passed through an dynticks idle state since
807  * the last call to rcu_watching_snap_save() for this same CPU, or by
808  * virtue of having been offline.
809  *
810  * Returns negative if the specified CPU needs a force resched.
811  *
812  * Returns zero otherwise.
813  */
rcu_watching_snap_recheck(struct rcu_data * rdp)814 static int rcu_watching_snap_recheck(struct rcu_data *rdp)
815 {
816 	unsigned long jtsq;
817 	int ret = 0;
818 	struct rcu_node *rnp = rdp->mynode;
819 
820 	/*
821 	 * If the CPU passed through or entered a dynticks idle phase with
822 	 * no active irq/NMI handlers, then we can safely pretend that the CPU
823 	 * already acknowledged the request to pass through a quiescent
824 	 * state.  Either way, that CPU cannot possibly be in an RCU
825 	 * read-side critical section that started before the beginning
826 	 * of the current RCU grace period.
827 	 */
828 	if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) {
829 		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
830 		rcu_gpnum_ovf(rnp, rdp);
831 		return 1;
832 	}
833 
834 	/*
835 	 * Complain if a CPU that is considered to be offline from RCU's
836 	 * perspective has not yet reported a quiescent state.  After all,
837 	 * the offline CPU should have reported a quiescent state during
838 	 * the CPU-offline process, or, failing that, by rcu_gp_init()
839 	 * if it ran concurrently with either the CPU going offline or the
840 	 * last task on a leaf rcu_node structure exiting its RCU read-side
841 	 * critical section while all CPUs corresponding to that structure
842 	 * are offline.  This added warning detects bugs in any of these
843 	 * code paths.
844 	 *
845 	 * The rcu_node structure's ->lock is held here, which excludes
846 	 * the relevant portions the CPU-hotplug code, the grace-period
847 	 * initialization code, and the rcu_read_unlock() code paths.
848 	 *
849 	 * For more detail, please refer to the "Hotplug CPU" section
850 	 * of RCU's Requirements documentation.
851 	 */
852 	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
853 		struct rcu_node *rnp1;
854 
855 		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
856 			__func__, rnp->grplo, rnp->grphi, rnp->level,
857 			(long)rnp->gp_seq, (long)rnp->completedqs);
858 		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
859 			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
860 				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
861 		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
862 			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
863 			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
864 			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
865 		return 1; /* Break things loose after complaining. */
866 	}
867 
868 	/*
869 	 * A CPU running for an extended time within the kernel can
870 	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
871 	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
872 	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
873 	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
874 	 * variable are safe because the assignments are repeated if this
875 	 * CPU failed to pass through a quiescent state.  This code
876 	 * also checks .jiffies_resched in case jiffies_to_sched_qs
877 	 * is set way high.
878 	 */
879 	jtsq = READ_ONCE(jiffies_to_sched_qs);
880 	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
881 	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
882 	     time_after(jiffies, rcu_state.jiffies_resched) ||
883 	     rcu_state.cbovld)) {
884 		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
885 		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
886 		smp_store_release(&rdp->rcu_urgent_qs, true);
887 	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
888 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
889 	}
890 
891 	/*
892 	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
893 	 * The above code handles this, but only for straight cond_resched().
894 	 * And some in-kernel loops check need_resched() before calling
895 	 * cond_resched(), which defeats the above code for CPUs that are
896 	 * running in-kernel with scheduling-clock interrupts disabled.
897 	 * So hit them over the head with the resched_cpu() hammer!
898 	 */
899 	if (tick_nohz_full_cpu(rdp->cpu) &&
900 	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
901 	     rcu_state.cbovld)) {
902 		WRITE_ONCE(rdp->rcu_urgent_qs, true);
903 		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
904 		ret = -1;
905 	}
906 
907 	/*
908 	 * If more than halfway to RCU CPU stall-warning time, invoke
909 	 * resched_cpu() more frequently to try to loosen things up a bit.
910 	 * Also check to see if the CPU is getting hammered with interrupts,
911 	 * but only once per grace period, just to keep the IPIs down to
912 	 * a dull roar.
913 	 */
914 	if (time_after(jiffies, rcu_state.jiffies_resched)) {
915 		if (time_after(jiffies,
916 			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
917 			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
918 			ret = -1;
919 		}
920 		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
921 		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
922 		    (rnp->ffmask & rdp->grpmask)) {
923 			rdp->rcu_iw_pending = true;
924 			rdp->rcu_iw_gp_seq = rnp->gp_seq;
925 			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
926 		}
927 
928 		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
929 			int cpu = rdp->cpu;
930 			struct rcu_snap_record *rsrp;
931 			struct kernel_cpustat *kcsp;
932 
933 			kcsp = &kcpustat_cpu(cpu);
934 
935 			rsrp = &rdp->snap_record;
936 			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
937 			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
938 			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
939 			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
940 			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
941 			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
942 			rsrp->jiffies = jiffies;
943 			rsrp->gp_seq = rdp->gp_seq;
944 		}
945 	}
946 
947 	return ret;
948 }
949 
950 /* Trace-event wrapper function for trace_rcu_future_grace_period.  */
trace_rcu_this_gp(struct rcu_node * rnp,struct rcu_data * rdp,unsigned long gp_seq_req,const char * s)951 static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
952 			      unsigned long gp_seq_req, const char *s)
953 {
954 	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
955 				      gp_seq_req, rnp->level,
956 				      rnp->grplo, rnp->grphi, s);
957 }
958 
959 /*
960  * rcu_start_this_gp - Request the start of a particular grace period
961  * @rnp_start: The leaf node of the CPU from which to start.
962  * @rdp: The rcu_data corresponding to the CPU from which to start.
963  * @gp_seq_req: The gp_seq of the grace period to start.
964  *
965  * Start the specified grace period, as needed to handle newly arrived
966  * callbacks.  The required future grace periods are recorded in each
967  * rcu_node structure's ->gp_seq_needed field.  Returns true if there
968  * is reason to awaken the grace-period kthread.
969  *
970  * The caller must hold the specified rcu_node structure's ->lock, which
971  * is why the caller is responsible for waking the grace-period kthread.
972  *
973  * Returns true if the GP thread needs to be awakened else false.
974  */
rcu_start_this_gp(struct rcu_node * rnp_start,struct rcu_data * rdp,unsigned long gp_seq_req)975 static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
976 			      unsigned long gp_seq_req)
977 {
978 	bool ret = false;
979 	struct rcu_node *rnp;
980 
981 	/*
982 	 * Use funnel locking to either acquire the root rcu_node
983 	 * structure's lock or bail out if the need for this grace period
984 	 * has already been recorded -- or if that grace period has in
985 	 * fact already started.  If there is already a grace period in
986 	 * progress in a non-leaf node, no recording is needed because the
987 	 * end of the grace period will scan the leaf rcu_node structures.
988 	 * Note that rnp_start->lock must not be released.
989 	 */
990 	raw_lockdep_assert_held_rcu_node(rnp_start);
991 	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
992 	for (rnp = rnp_start; 1; rnp = rnp->parent) {
993 		if (rnp != rnp_start)
994 			raw_spin_lock_rcu_node(rnp);
995 		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
996 		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
997 		    (rnp != rnp_start &&
998 		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
999 			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1000 					  TPS("Prestarted"));
1001 			goto unlock_out;
1002 		}
1003 		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1004 		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1005 			/*
1006 			 * We just marked the leaf or internal node, and a
1007 			 * grace period is in progress, which means that
1008 			 * rcu_gp_cleanup() will see the marking.  Bail to
1009 			 * reduce contention.
1010 			 */
1011 			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1012 					  TPS("Startedleaf"));
1013 			goto unlock_out;
1014 		}
1015 		if (rnp != rnp_start && rnp->parent != NULL)
1016 			raw_spin_unlock_rcu_node(rnp);
1017 		if (!rnp->parent)
1018 			break;  /* At root, and perhaps also leaf. */
1019 	}
1020 
1021 	/* If GP already in progress, just leave, otherwise start one. */
1022 	if (rcu_gp_in_progress()) {
1023 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1024 		goto unlock_out;
1025 	}
1026 	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1027 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1028 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1029 	if (!READ_ONCE(rcu_state.gp_kthread)) {
1030 		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1031 		goto unlock_out;
1032 	}
1033 	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1034 	ret = true;  /* Caller must wake GP kthread. */
1035 unlock_out:
1036 	/* Push furthest requested GP to leaf node and rcu_data structure. */
1037 	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1038 		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1039 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1040 	}
1041 	if (rnp != rnp_start)
1042 		raw_spin_unlock_rcu_node(rnp);
1043 	return ret;
1044 }
1045 
1046 /*
1047  * Clean up any old requests for the just-ended grace period.  Also return
1048  * whether any additional grace periods have been requested.
1049  */
rcu_future_gp_cleanup(struct rcu_node * rnp)1050 static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1051 {
1052 	bool needmore;
1053 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1054 
1055 	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1056 	if (!needmore)
1057 		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1058 	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1059 			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1060 	return needmore;
1061 }
1062 
swake_up_one_online_ipi(void * arg)1063 static void swake_up_one_online_ipi(void *arg)
1064 {
1065 	struct swait_queue_head *wqh = arg;
1066 
1067 	swake_up_one(wqh);
1068 }
1069 
swake_up_one_online(struct swait_queue_head * wqh)1070 static void swake_up_one_online(struct swait_queue_head *wqh)
1071 {
1072 	int cpu = get_cpu();
1073 
1074 	/*
1075 	 * If called from rcutree_report_cpu_starting(), wake up
1076 	 * is dangerous that late in the CPU-down hotplug process. The
1077 	 * scheduler might queue an ignored hrtimer. Defer the wake up
1078 	 * to an online CPU instead.
1079 	 */
1080 	if (unlikely(cpu_is_offline(cpu))) {
1081 		int target;
1082 
1083 		target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1084 					 cpu_online_mask);
1085 
1086 		smp_call_function_single(target, swake_up_one_online_ipi,
1087 					 wqh, 0);
1088 		put_cpu();
1089 	} else {
1090 		put_cpu();
1091 		swake_up_one(wqh);
1092 	}
1093 }
1094 
1095 /*
1096  * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1097  * interrupt or softirq handler, in which case we just might immediately
1098  * sleep upon return, resulting in a grace-period hang), and don't bother
1099  * awakening when there is nothing for the grace-period kthread to do
1100  * (as in several CPUs raced to awaken, we lost), and finally don't try
1101  * to awaken a kthread that has not yet been created.  If all those checks
1102  * are passed, track some debug information and awaken.
1103  *
1104  * So why do the self-wakeup when in an interrupt or softirq handler
1105  * in the grace-period kthread's context?  Because the kthread might have
1106  * been interrupted just as it was going to sleep, and just after the final
1107  * pre-sleep check of the awaken condition.  In this case, a wakeup really
1108  * is required, and is therefore supplied.
1109  */
rcu_gp_kthread_wake(void)1110 static void rcu_gp_kthread_wake(void)
1111 {
1112 	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1113 
1114 	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1115 	    !READ_ONCE(rcu_state.gp_flags) || !t)
1116 		return;
1117 	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1118 	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1119 	swake_up_one_online(&rcu_state.gp_wq);
1120 }
1121 
1122 /*
1123  * If there is room, assign a ->gp_seq number to any callbacks on this
1124  * CPU that have not already been assigned.  Also accelerate any callbacks
1125  * that were previously assigned a ->gp_seq number that has since proven
1126  * to be too conservative, which can happen if callbacks get assigned a
1127  * ->gp_seq number while RCU is idle, but with reference to a non-root
1128  * rcu_node structure.  This function is idempotent, so it does not hurt
1129  * to call it repeatedly.  Returns an flag saying that we should awaken
1130  * the RCU grace-period kthread.
1131  *
1132  * The caller must hold rnp->lock with interrupts disabled.
1133  */
rcu_accelerate_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1134 static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1135 {
1136 	unsigned long gp_seq_req;
1137 	bool ret = false;
1138 
1139 	rcu_lockdep_assert_cblist_protected(rdp);
1140 	raw_lockdep_assert_held_rcu_node(rnp);
1141 
1142 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1143 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1144 		return false;
1145 
1146 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1147 
1148 	/*
1149 	 * Callbacks are often registered with incomplete grace-period
1150 	 * information.  Something about the fact that getting exact
1151 	 * information requires acquiring a global lock...  RCU therefore
1152 	 * makes a conservative estimate of the grace period number at which
1153 	 * a given callback will become ready to invoke.	The following
1154 	 * code checks this estimate and improves it when possible, thus
1155 	 * accelerating callback invocation to an earlier grace-period
1156 	 * number.
1157 	 */
1158 	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1159 	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1160 		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1161 
1162 	/* Trace depending on how much we were able to accelerate. */
1163 	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1164 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1165 	else
1166 		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1167 
1168 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1169 
1170 	return ret;
1171 }
1172 
1173 /*
1174  * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1175  * rcu_node structure's ->lock be held.  It consults the cached value
1176  * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1177  * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1178  * while holding the leaf rcu_node structure's ->lock.
1179  */
rcu_accelerate_cbs_unlocked(struct rcu_node * rnp,struct rcu_data * rdp)1180 static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1181 					struct rcu_data *rdp)
1182 {
1183 	unsigned long c;
1184 	bool needwake;
1185 
1186 	rcu_lockdep_assert_cblist_protected(rdp);
1187 	c = rcu_seq_snap(&rcu_state.gp_seq);
1188 	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1189 		/* Old request still live, so mark recent callbacks. */
1190 		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1191 		return;
1192 	}
1193 	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1194 	needwake = rcu_accelerate_cbs(rnp, rdp);
1195 	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1196 	if (needwake)
1197 		rcu_gp_kthread_wake();
1198 }
1199 
1200 /*
1201  * Move any callbacks whose grace period has completed to the
1202  * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1203  * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1204  * sublist.  This function is idempotent, so it does not hurt to
1205  * invoke it repeatedly.  As long as it is not invoked -too- often...
1206  * Returns true if the RCU grace-period kthread needs to be awakened.
1207  *
1208  * The caller must hold rnp->lock with interrupts disabled.
1209  */
rcu_advance_cbs(struct rcu_node * rnp,struct rcu_data * rdp)1210 static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1211 {
1212 	rcu_lockdep_assert_cblist_protected(rdp);
1213 	raw_lockdep_assert_held_rcu_node(rnp);
1214 
1215 	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1216 	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1217 		return false;
1218 
1219 	/*
1220 	 * Find all callbacks whose ->gp_seq numbers indicate that they
1221 	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1222 	 */
1223 	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1224 
1225 	/* Classify any remaining callbacks. */
1226 	return rcu_accelerate_cbs(rnp, rdp);
1227 }
1228 
1229 /*
1230  * Move and classify callbacks, but only if doing so won't require
1231  * that the RCU grace-period kthread be awakened.
1232  */
rcu_advance_cbs_nowake(struct rcu_node * rnp,struct rcu_data * rdp)1233 static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1234 						  struct rcu_data *rdp)
1235 {
1236 	rcu_lockdep_assert_cblist_protected(rdp);
1237 	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1238 		return;
1239 	// The grace period cannot end while we hold the rcu_node lock.
1240 	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1241 		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1242 	raw_spin_unlock_rcu_node(rnp);
1243 }
1244 
1245 /*
1246  * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1247  * quiescent state.  This is intended to be invoked when the CPU notices
1248  * a new grace period.
1249  */
rcu_strict_gp_check_qs(void)1250 static void rcu_strict_gp_check_qs(void)
1251 {
1252 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1253 		rcu_read_lock();
1254 		rcu_read_unlock();
1255 	}
1256 }
1257 
1258 /*
1259  * Update CPU-local rcu_data state to record the beginnings and ends of
1260  * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1261  * structure corresponding to the current CPU, and must have irqs disabled.
1262  * Returns true if the grace-period kthread needs to be awakened.
1263  */
__note_gp_changes(struct rcu_node * rnp,struct rcu_data * rdp)1264 static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1265 {
1266 	bool ret = false;
1267 	bool need_qs;
1268 	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1269 
1270 	raw_lockdep_assert_held_rcu_node(rnp);
1271 
1272 	if (rdp->gp_seq == rnp->gp_seq)
1273 		return false; /* Nothing to do. */
1274 
1275 	/* Handle the ends of any preceding grace periods first. */
1276 	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1277 	    unlikely(rdp->gpwrap)) {
1278 		if (!offloaded)
1279 			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1280 		rdp->core_needs_qs = false;
1281 		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1282 	} else {
1283 		if (!offloaded)
1284 			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1285 		if (rdp->core_needs_qs)
1286 			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1287 	}
1288 
1289 	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1290 	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1291 	    unlikely(rdp->gpwrap)) {
1292 		/*
1293 		 * If the current grace period is waiting for this CPU,
1294 		 * set up to detect a quiescent state, otherwise don't
1295 		 * go looking for one.
1296 		 */
1297 		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1298 		need_qs = !!(rnp->qsmask & rdp->grpmask);
1299 		rdp->cpu_no_qs.b.norm = need_qs;
1300 		rdp->core_needs_qs = need_qs;
1301 		zero_cpu_stall_ticks(rdp);
1302 	}
1303 	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1304 	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1305 		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1306 	if (IS_ENABLED(CONFIG_PROVE_RCU) && rdp->gpwrap)
1307 		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1308 	WRITE_ONCE(rdp->gpwrap, false);
1309 	rcu_gpnum_ovf(rnp, rdp);
1310 	return ret;
1311 }
1312 
note_gp_changes(struct rcu_data * rdp)1313 static void note_gp_changes(struct rcu_data *rdp)
1314 {
1315 	unsigned long flags;
1316 	bool needwake;
1317 	struct rcu_node *rnp;
1318 
1319 	local_irq_save(flags);
1320 	rnp = rdp->mynode;
1321 	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1322 	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1323 	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1324 		local_irq_restore(flags);
1325 		return;
1326 	}
1327 	needwake = __note_gp_changes(rnp, rdp);
1328 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1329 	rcu_strict_gp_check_qs();
1330 	if (needwake)
1331 		rcu_gp_kthread_wake();
1332 }
1333 
1334 static atomic_t *rcu_gp_slow_suppress;
1335 
1336 /* Register a counter to suppress debugging grace-period delays. */
rcu_gp_slow_register(atomic_t * rgssp)1337 void rcu_gp_slow_register(atomic_t *rgssp)
1338 {
1339 	WARN_ON_ONCE(rcu_gp_slow_suppress);
1340 
1341 	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1342 }
1343 EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1344 
1345 /* Unregister a counter, with NULL for not caring which. */
rcu_gp_slow_unregister(atomic_t * rgssp)1346 void rcu_gp_slow_unregister(atomic_t *rgssp)
1347 {
1348 	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1349 
1350 	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1351 }
1352 EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1353 
rcu_gp_slow_is_suppressed(void)1354 static bool rcu_gp_slow_is_suppressed(void)
1355 {
1356 	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1357 
1358 	return rgssp && atomic_read(rgssp);
1359 }
1360 
rcu_gp_slow(int delay)1361 static void rcu_gp_slow(int delay)
1362 {
1363 	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1364 	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1365 		schedule_timeout_idle(delay);
1366 }
1367 
1368 static unsigned long sleep_duration;
1369 
1370 /* Allow rcutorture to stall the grace-period kthread. */
rcu_gp_set_torture_wait(int duration)1371 void rcu_gp_set_torture_wait(int duration)
1372 {
1373 	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1374 		WRITE_ONCE(sleep_duration, duration);
1375 }
1376 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1377 
1378 /* Actually implement the aforementioned wait. */
rcu_gp_torture_wait(void)1379 static void rcu_gp_torture_wait(void)
1380 {
1381 	unsigned long duration;
1382 
1383 	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1384 		return;
1385 	duration = xchg(&sleep_duration, 0UL);
1386 	if (duration > 0) {
1387 		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1388 		schedule_timeout_idle(duration);
1389 		pr_alert("%s: Wait complete\n", __func__);
1390 	}
1391 }
1392 
1393 /*
1394  * Handler for on_each_cpu() to invoke the target CPU's RCU core
1395  * processing.
1396  */
rcu_strict_gp_boundary(void * unused)1397 static void rcu_strict_gp_boundary(void *unused)
1398 {
1399 	invoke_rcu_core();
1400 }
1401 
1402 // Make the polled API aware of the beginning of a grace period.
rcu_poll_gp_seq_start(unsigned long * snap)1403 static void rcu_poll_gp_seq_start(unsigned long *snap)
1404 {
1405 	struct rcu_node *rnp = rcu_get_root();
1406 
1407 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1408 		raw_lockdep_assert_held_rcu_node(rnp);
1409 
1410 	// If RCU was idle, note beginning of GP.
1411 	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1412 		rcu_seq_start(&rcu_state.gp_seq_polled);
1413 
1414 	// Either way, record current state.
1415 	*snap = rcu_state.gp_seq_polled;
1416 }
1417 
1418 // Make the polled API aware of the end of a grace period.
rcu_poll_gp_seq_end(unsigned long * snap)1419 static void rcu_poll_gp_seq_end(unsigned long *snap)
1420 {
1421 	struct rcu_node *rnp = rcu_get_root();
1422 
1423 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1424 		raw_lockdep_assert_held_rcu_node(rnp);
1425 
1426 	// If the previously noted GP is still in effect, record the
1427 	// end of that GP.  Either way, zero counter to avoid counter-wrap
1428 	// problems.
1429 	if (*snap && *snap == rcu_state.gp_seq_polled) {
1430 		rcu_seq_end(&rcu_state.gp_seq_polled);
1431 		rcu_state.gp_seq_polled_snap = 0;
1432 		rcu_state.gp_seq_polled_exp_snap = 0;
1433 	} else {
1434 		*snap = 0;
1435 	}
1436 }
1437 
1438 // Make the polled API aware of the beginning of a grace period, but
1439 // where caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_start_unlocked(unsigned long * snap)1440 static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1441 {
1442 	unsigned long flags;
1443 	struct rcu_node *rnp = rcu_get_root();
1444 
1445 	if (rcu_init_invoked()) {
1446 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1447 			lockdep_assert_irqs_enabled();
1448 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1449 	}
1450 	rcu_poll_gp_seq_start(snap);
1451 	if (rcu_init_invoked())
1452 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1453 }
1454 
1455 // Make the polled API aware of the end of a grace period, but where
1456 // caller does not hold the root rcu_node structure's lock.
rcu_poll_gp_seq_end_unlocked(unsigned long * snap)1457 static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1458 {
1459 	unsigned long flags;
1460 	struct rcu_node *rnp = rcu_get_root();
1461 
1462 	if (rcu_init_invoked()) {
1463 		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1464 			lockdep_assert_irqs_enabled();
1465 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1466 	}
1467 	rcu_poll_gp_seq_end(snap);
1468 	if (rcu_init_invoked())
1469 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1470 }
1471 
1472 /*
1473  * There is a single llist, which is used for handling
1474  * synchronize_rcu() users' enqueued rcu_synchronize nodes.
1475  * Within this llist, there are two tail pointers:
1476  *
1477  * wait tail: Tracks the set of nodes, which need to
1478  *            wait for the current GP to complete.
1479  * done tail: Tracks the set of nodes, for which grace
1480  *            period has elapsed. These nodes processing
1481  *            will be done as part of the cleanup work
1482  *            execution by a kworker.
1483  *
1484  * At every grace period init, a new wait node is added
1485  * to the llist. This wait node is used as wait tail
1486  * for this new grace period. Given that there are a fixed
1487  * number of wait nodes, if all wait nodes are in use
1488  * (which can happen when kworker callback processing
1489  * is delayed) and additional grace period is requested.
1490  * This means, a system is slow in processing callbacks.
1491  *
1492  * TODO: If a slow processing is detected, a first node
1493  * in the llist should be used as a wait-tail for this
1494  * grace period, therefore users which should wait due
1495  * to a slow process are handled by _this_ grace period
1496  * and not next.
1497  *
1498  * Below is an illustration of how the done and wait
1499  * tail pointers move from one set of rcu_synchronize nodes
1500  * to the other, as grace periods start and finish and
1501  * nodes are processed by kworker.
1502  *
1503  *
1504  * a. Initial llist callbacks list:
1505  *
1506  * +----------+           +--------+          +-------+
1507  * |          |           |        |          |       |
1508  * |   head   |---------> |   cb2  |--------->| cb1   |
1509  * |          |           |        |          |       |
1510  * +----------+           +--------+          +-------+
1511  *
1512  *
1513  *
1514  * b. New GP1 Start:
1515  *
1516  *                    WAIT TAIL
1517  *                      |
1518  *                      |
1519  *                      v
1520  * +----------+     +--------+      +--------+        +-------+
1521  * |          |     |        |      |        |        |       |
1522  * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
1523  * |          |     | head1  |      |        |        |       |
1524  * +----------+     +--------+      +--------+        +-------+
1525  *
1526  *
1527  *
1528  * c. GP completion:
1529  *
1530  * WAIT_TAIL == DONE_TAIL
1531  *
1532  *                   DONE TAIL
1533  *                     |
1534  *                     |
1535  *                     v
1536  * +----------+     +--------+      +--------+        +-------+
1537  * |          |     |        |      |        |        |       |
1538  * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
1539  * |          |     | head1  |      |        |        |       |
1540  * +----------+     +--------+      +--------+        +-------+
1541  *
1542  *
1543  *
1544  * d. New callbacks and GP2 start:
1545  *
1546  *                    WAIT TAIL                          DONE TAIL
1547  *                      |                                 |
1548  *                      |                                 |
1549  *                      v                                 v
1550  * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1551  * |          |     |      |    |      |    |      |    |     |    |     |    |     |
1552  * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
1553  * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
1554  * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1555  *
1556  *
1557  *
1558  * e. GP2 completion:
1559  *
1560  * WAIT_TAIL == DONE_TAIL
1561  *                   DONE TAIL
1562  *                      |
1563  *                      |
1564  *                      v
1565  * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1566  * |          |     |      |    |      |    |      |    |     |    |     |    |     |
1567  * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
1568  * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
1569  * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1570  *
1571  *
1572  * While the llist state transitions from d to e, a kworker
1573  * can start executing rcu_sr_normal_gp_cleanup_work() and
1574  * can observe either the old done tail (@c) or the new
1575  * done tail (@e). So, done tail updates and reads need
1576  * to use the rel-acq semantics. If the concurrent kworker
1577  * observes the old done tail, the newly queued work
1578  * execution will process the updated done tail. If the
1579  * concurrent kworker observes the new done tail, then
1580  * the newly queued work will skip processing the done
1581  * tail, as workqueue semantics guarantees that the new
1582  * work is executed only after the previous one completes.
1583  *
1584  * f. kworker callbacks processing complete:
1585  *
1586  *
1587  *                   DONE TAIL
1588  *                     |
1589  *                     |
1590  *                     v
1591  * +----------+     +--------+
1592  * |          |     |        |
1593  * |   head   ------> wait   |
1594  * |          |     | head2  |
1595  * +----------+     +--------+
1596  *
1597  */
rcu_sr_is_wait_head(struct llist_node * node)1598 static bool rcu_sr_is_wait_head(struct llist_node *node)
1599 {
1600 	return &(rcu_state.srs_wait_nodes)[0].node <= node &&
1601 		node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node;
1602 }
1603 
rcu_sr_get_wait_head(void)1604 static struct llist_node *rcu_sr_get_wait_head(void)
1605 {
1606 	struct sr_wait_node *sr_wn;
1607 	int i;
1608 
1609 	for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) {
1610 		sr_wn = &(rcu_state.srs_wait_nodes)[i];
1611 
1612 		if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1))
1613 			return &sr_wn->node;
1614 	}
1615 
1616 	return NULL;
1617 }
1618 
rcu_sr_put_wait_head(struct llist_node * node)1619 static void rcu_sr_put_wait_head(struct llist_node *node)
1620 {
1621 	struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node);
1622 
1623 	atomic_set_release(&sr_wn->inuse, 0);
1624 }
1625 
1626 /* Disabled by default. */
1627 static int rcu_normal_wake_from_gp;
1628 module_param(rcu_normal_wake_from_gp, int, 0644);
1629 static struct workqueue_struct *sync_wq;
1630 
rcu_sr_normal_complete(struct llist_node * node)1631 static void rcu_sr_normal_complete(struct llist_node *node)
1632 {
1633 	struct rcu_synchronize *rs = container_of(
1634 		(struct rcu_head *) node, struct rcu_synchronize, head);
1635 
1636 	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
1637 		!poll_state_synchronize_rcu_full(&rs->oldstate),
1638 		"A full grace period is not passed yet!\n");
1639 
1640 	/* Finally. */
1641 	complete(&rs->completion);
1642 }
1643 
rcu_sr_normal_gp_cleanup_work(struct work_struct * work)1644 static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
1645 {
1646 	struct llist_node *done, *rcu, *next, *head;
1647 
1648 	/*
1649 	 * This work execution can potentially execute
1650 	 * while a new done tail is being updated by
1651 	 * grace period kthread in rcu_sr_normal_gp_cleanup().
1652 	 * So, read and updates of done tail need to
1653 	 * follow acq-rel semantics.
1654 	 *
1655 	 * Given that wq semantics guarantees that a single work
1656 	 * cannot execute concurrently by multiple kworkers,
1657 	 * the done tail list manipulations are protected here.
1658 	 */
1659 	done = smp_load_acquire(&rcu_state.srs_done_tail);
1660 	if (WARN_ON_ONCE(!done))
1661 		return;
1662 
1663 	WARN_ON_ONCE(!rcu_sr_is_wait_head(done));
1664 	head = done->next;
1665 	done->next = NULL;
1666 
1667 	/*
1668 	 * The dummy node, which is pointed to by the
1669 	 * done tail which is acq-read above is not removed
1670 	 * here.  This allows lockless additions of new
1671 	 * rcu_synchronize nodes in rcu_sr_normal_add_req(),
1672 	 * while the cleanup work executes. The dummy
1673 	 * nodes is removed, in next round of cleanup
1674 	 * work execution.
1675 	 */
1676 	llist_for_each_safe(rcu, next, head) {
1677 		if (!rcu_sr_is_wait_head(rcu)) {
1678 			rcu_sr_normal_complete(rcu);
1679 			continue;
1680 		}
1681 
1682 		rcu_sr_put_wait_head(rcu);
1683 	}
1684 
1685 	/* Order list manipulations with atomic access. */
1686 	atomic_dec_return_release(&rcu_state.srs_cleanups_pending);
1687 }
1688 
1689 /*
1690  * Helper function for rcu_gp_cleanup().
1691  */
rcu_sr_normal_gp_cleanup(void)1692 static void rcu_sr_normal_gp_cleanup(void)
1693 {
1694 	struct llist_node *wait_tail, *next = NULL, *rcu = NULL;
1695 	int done = 0;
1696 
1697 	wait_tail = rcu_state.srs_wait_tail;
1698 	if (wait_tail == NULL)
1699 		return;
1700 
1701 	rcu_state.srs_wait_tail = NULL;
1702 	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1703 	WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail));
1704 
1705 	/*
1706 	 * Process (a) and (d) cases. See an illustration.
1707 	 */
1708 	llist_for_each_safe(rcu, next, wait_tail->next) {
1709 		if (rcu_sr_is_wait_head(rcu))
1710 			break;
1711 
1712 		rcu_sr_normal_complete(rcu);
1713 		// It can be last, update a next on this step.
1714 		wait_tail->next = next;
1715 
1716 		if (++done == SR_MAX_USERS_WAKE_FROM_GP)
1717 			break;
1718 	}
1719 
1720 	/*
1721 	 * Fast path, no more users to process except putting the second last
1722 	 * wait head if no inflight-workers. If there are in-flight workers,
1723 	 * they will remove the last wait head.
1724 	 *
1725 	 * Note that the ACQUIRE orders atomic access with list manipulation.
1726 	 */
1727 	if (wait_tail->next && wait_tail->next->next == NULL &&
1728 	    rcu_sr_is_wait_head(wait_tail->next) &&
1729 	    !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) {
1730 		rcu_sr_put_wait_head(wait_tail->next);
1731 		wait_tail->next = NULL;
1732 	}
1733 
1734 	/* Concurrent sr_normal_gp_cleanup work might observe this update. */
1735 	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail);
1736 	smp_store_release(&rcu_state.srs_done_tail, wait_tail);
1737 
1738 	/*
1739 	 * We schedule a work in order to perform a final processing
1740 	 * of outstanding users(if still left) and releasing wait-heads
1741 	 * added by rcu_sr_normal_gp_init() call.
1742 	 */
1743 	if (wait_tail->next) {
1744 		atomic_inc(&rcu_state.srs_cleanups_pending);
1745 		if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work))
1746 			atomic_dec(&rcu_state.srs_cleanups_pending);
1747 	}
1748 }
1749 
1750 /*
1751  * Helper function for rcu_gp_init().
1752  */
rcu_sr_normal_gp_init(void)1753 static bool rcu_sr_normal_gp_init(void)
1754 {
1755 	struct llist_node *first;
1756 	struct llist_node *wait_head;
1757 	bool start_new_poll = false;
1758 
1759 	first = READ_ONCE(rcu_state.srs_next.first);
1760 	if (!first || rcu_sr_is_wait_head(first))
1761 		return start_new_poll;
1762 
1763 	wait_head = rcu_sr_get_wait_head();
1764 	if (!wait_head) {
1765 		// Kick another GP to retry.
1766 		start_new_poll = true;
1767 		return start_new_poll;
1768 	}
1769 
1770 	/* Inject a wait-dummy-node. */
1771 	llist_add(wait_head, &rcu_state.srs_next);
1772 
1773 	/*
1774 	 * A waiting list of rcu_synchronize nodes should be empty on
1775 	 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(),
1776 	 * rolls it over. If not, it is a BUG, warn a user.
1777 	 */
1778 	WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL);
1779 	rcu_state.srs_wait_tail = wait_head;
1780 	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1781 
1782 	return start_new_poll;
1783 }
1784 
rcu_sr_normal_add_req(struct rcu_synchronize * rs)1785 static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
1786 {
1787 	llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next);
1788 }
1789 
1790 /*
1791  * Initialize a new grace period.  Return false if no grace period required.
1792  */
rcu_gp_init(void)1793 static noinline_for_stack bool rcu_gp_init(void)
1794 {
1795 	unsigned long flags;
1796 	unsigned long oldmask;
1797 	unsigned long mask;
1798 	struct rcu_data *rdp;
1799 	struct rcu_node *rnp = rcu_get_root();
1800 	bool start_new_poll;
1801 
1802 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1803 	raw_spin_lock_irq_rcu_node(rnp);
1804 	if (!rcu_state.gp_flags) {
1805 		/* Spurious wakeup, tell caller to go back to sleep.  */
1806 		raw_spin_unlock_irq_rcu_node(rnp);
1807 		return false;
1808 	}
1809 	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1810 
1811 	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1812 		/*
1813 		 * Grace period already in progress, don't start another.
1814 		 * Not supposed to be able to happen.
1815 		 */
1816 		raw_spin_unlock_irq_rcu_node(rnp);
1817 		return false;
1818 	}
1819 
1820 	/* Advance to a new grace period and initialize state. */
1821 	record_gp_stall_check_time();
1822 	/*
1823 	 * A new wait segment must be started before gp_seq advanced, so
1824 	 * that previous gp waiters won't observe the new gp_seq.
1825 	 */
1826 	start_new_poll = rcu_sr_normal_gp_init();
1827 	/* Record GP times before starting GP, hence rcu_seq_start(). */
1828 	rcu_seq_start(&rcu_state.gp_seq);
1829 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1830 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1831 	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1832 	raw_spin_unlock_irq_rcu_node(rnp);
1833 
1834 	/*
1835 	 * The "start_new_poll" is set to true, only when this GP is not able
1836 	 * to handle anything and there are outstanding users. It happens when
1837 	 * the rcu_sr_normal_gp_init() function was not able to insert a dummy
1838 	 * separator to the llist, because there were no left any dummy-nodes.
1839 	 *
1840 	 * Number of dummy-nodes is fixed, it could be that we are run out of
1841 	 * them, if so we start a new pool request to repeat a try. It is rare
1842 	 * and it means that a system is doing a slow processing of callbacks.
1843 	 */
1844 	if (start_new_poll)
1845 		(void) start_poll_synchronize_rcu();
1846 
1847 	/*
1848 	 * Apply per-leaf buffered online and offline operations to
1849 	 * the rcu_node tree. Note that this new grace period need not
1850 	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1851 	 * offlining path, when combined with checks in this function,
1852 	 * will handle CPUs that are currently going offline or that will
1853 	 * go offline later.  Please also refer to "Hotplug CPU" section
1854 	 * of RCU's Requirements documentation.
1855 	 */
1856 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1857 	/* Exclude CPU hotplug operations. */
1858 	rcu_for_each_leaf_node(rnp) {
1859 		local_irq_disable();
1860 		arch_spin_lock(&rcu_state.ofl_lock);
1861 		raw_spin_lock_rcu_node(rnp);
1862 		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1863 		    !rnp->wait_blkd_tasks) {
1864 			/* Nothing to do on this leaf rcu_node structure. */
1865 			raw_spin_unlock_rcu_node(rnp);
1866 			arch_spin_unlock(&rcu_state.ofl_lock);
1867 			local_irq_enable();
1868 			continue;
1869 		}
1870 
1871 		/* Record old state, apply changes to ->qsmaskinit field. */
1872 		oldmask = rnp->qsmaskinit;
1873 		rnp->qsmaskinit = rnp->qsmaskinitnext;
1874 
1875 		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1876 		if (!oldmask != !rnp->qsmaskinit) {
1877 			if (!oldmask) { /* First online CPU for rcu_node. */
1878 				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1879 					rcu_init_new_rnp(rnp);
1880 			} else if (rcu_preempt_has_tasks(rnp)) {
1881 				rnp->wait_blkd_tasks = true; /* blocked tasks */
1882 			} else { /* Last offline CPU and can propagate. */
1883 				rcu_cleanup_dead_rnp(rnp);
1884 			}
1885 		}
1886 
1887 		/*
1888 		 * If all waited-on tasks from prior grace period are
1889 		 * done, and if all this rcu_node structure's CPUs are
1890 		 * still offline, propagate up the rcu_node tree and
1891 		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1892 		 * rcu_node structure's CPUs has since come back online,
1893 		 * simply clear ->wait_blkd_tasks.
1894 		 */
1895 		if (rnp->wait_blkd_tasks &&
1896 		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1897 			rnp->wait_blkd_tasks = false;
1898 			if (!rnp->qsmaskinit)
1899 				rcu_cleanup_dead_rnp(rnp);
1900 		}
1901 
1902 		raw_spin_unlock_rcu_node(rnp);
1903 		arch_spin_unlock(&rcu_state.ofl_lock);
1904 		local_irq_enable();
1905 	}
1906 	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1907 
1908 	/*
1909 	 * Set the quiescent-state-needed bits in all the rcu_node
1910 	 * structures for all currently online CPUs in breadth-first
1911 	 * order, starting from the root rcu_node structure, relying on the
1912 	 * layout of the tree within the rcu_state.node[] array.  Note that
1913 	 * other CPUs will access only the leaves of the hierarchy, thus
1914 	 * seeing that no grace period is in progress, at least until the
1915 	 * corresponding leaf node has been initialized.
1916 	 *
1917 	 * The grace period cannot complete until the initialization
1918 	 * process finishes, because this kthread handles both.
1919 	 */
1920 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1921 	rcu_for_each_node_breadth_first(rnp) {
1922 		rcu_gp_slow(gp_init_delay);
1923 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1924 		rdp = this_cpu_ptr(&rcu_data);
1925 		rcu_preempt_check_blocked_tasks(rnp);
1926 		rnp->qsmask = rnp->qsmaskinit;
1927 		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1928 		if (rnp == rdp->mynode)
1929 			(void)__note_gp_changes(rnp, rdp);
1930 		rcu_preempt_boost_start_gp(rnp);
1931 		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1932 					    rnp->level, rnp->grplo,
1933 					    rnp->grphi, rnp->qsmask);
1934 		/* Quiescent states for tasks on any now-offline CPUs. */
1935 		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1936 		rnp->rcu_gp_init_mask = mask;
1937 		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1938 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1939 		else
1940 			raw_spin_unlock_irq_rcu_node(rnp);
1941 		cond_resched_tasks_rcu_qs();
1942 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1943 	}
1944 
1945 	// If strict, make all CPUs aware of new grace period.
1946 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1947 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1948 
1949 	return true;
1950 }
1951 
1952 /*
1953  * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1954  * time.
1955  */
rcu_gp_fqs_check_wake(int * gfp)1956 static bool rcu_gp_fqs_check_wake(int *gfp)
1957 {
1958 	struct rcu_node *rnp = rcu_get_root();
1959 
1960 	// If under overload conditions, force an immediate FQS scan.
1961 	if (*gfp & RCU_GP_FLAG_OVLD)
1962 		return true;
1963 
1964 	// Someone like call_rcu() requested a force-quiescent-state scan.
1965 	*gfp = READ_ONCE(rcu_state.gp_flags);
1966 	if (*gfp & RCU_GP_FLAG_FQS)
1967 		return true;
1968 
1969 	// The current grace period has completed.
1970 	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1971 		return true;
1972 
1973 	return false;
1974 }
1975 
1976 /*
1977  * Do one round of quiescent-state forcing.
1978  */
rcu_gp_fqs(bool first_time)1979 static void rcu_gp_fqs(bool first_time)
1980 {
1981 	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1982 	struct rcu_node *rnp = rcu_get_root();
1983 
1984 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1985 	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1986 
1987 	WARN_ON_ONCE(nr_fqs > 3);
1988 	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1989 	if (nr_fqs) {
1990 		if (nr_fqs == 1) {
1991 			WRITE_ONCE(rcu_state.jiffies_stall,
1992 				   jiffies + rcu_jiffies_till_stall_check());
1993 		}
1994 		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1995 	}
1996 
1997 	if (first_time) {
1998 		/* Collect dyntick-idle snapshots. */
1999 		force_qs_rnp(rcu_watching_snap_save);
2000 	} else {
2001 		/* Handle dyntick-idle and offline CPUs. */
2002 		force_qs_rnp(rcu_watching_snap_recheck);
2003 	}
2004 	/* Clear flag to prevent immediate re-entry. */
2005 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2006 		raw_spin_lock_irq_rcu_node(rnp);
2007 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS);
2008 		raw_spin_unlock_irq_rcu_node(rnp);
2009 	}
2010 }
2011 
2012 /*
2013  * Loop doing repeated quiescent-state forcing until the grace period ends.
2014  */
rcu_gp_fqs_loop(void)2015 static noinline_for_stack void rcu_gp_fqs_loop(void)
2016 {
2017 	bool first_gp_fqs = true;
2018 	int gf = 0;
2019 	unsigned long j;
2020 	int ret;
2021 	struct rcu_node *rnp = rcu_get_root();
2022 
2023 	j = READ_ONCE(jiffies_till_first_fqs);
2024 	if (rcu_state.cbovld)
2025 		gf = RCU_GP_FLAG_OVLD;
2026 	ret = 0;
2027 	for (;;) {
2028 		if (rcu_state.cbovld) {
2029 			j = (j + 2) / 3;
2030 			if (j <= 0)
2031 				j = 1;
2032 		}
2033 		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
2034 			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
2035 			/*
2036 			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
2037 			 * update; required for stall checks.
2038 			 */
2039 			smp_wmb();
2040 			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
2041 				   jiffies + (j ? 3 * j : 2));
2042 		}
2043 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2044 				       TPS("fqswait"));
2045 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
2046 		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
2047 				 rcu_gp_fqs_check_wake(&gf), j);
2048 		rcu_gp_torture_wait();
2049 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2050 		/* Locking provides needed memory barriers. */
2051 		/*
2052 		 * Exit the loop if the root rcu_node structure indicates that the grace period
2053 		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
2054 		 * is required only for single-node rcu_node trees because readers blocking
2055 		 * the current grace period are queued only on leaf rcu_node structures.
2056 		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
2057 		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
2058 		 * the corresponding leaf nodes have passed through their quiescent state.
2059 		 */
2060 		if (!READ_ONCE(rnp->qsmask) &&
2061 		    !rcu_preempt_blocked_readers_cgp(rnp))
2062 			break;
2063 		/* If time for quiescent-state forcing, do it. */
2064 		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2065 		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2066 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2067 					       TPS("fqsstart"));
2068 			rcu_gp_fqs(first_gp_fqs);
2069 			gf = 0;
2070 			if (first_gp_fqs) {
2071 				first_gp_fqs = false;
2072 				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2073 			}
2074 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2075 					       TPS("fqsend"));
2076 			cond_resched_tasks_rcu_qs();
2077 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2078 			ret = 0; /* Force full wait till next FQS. */
2079 			j = READ_ONCE(jiffies_till_next_fqs);
2080 		} else {
2081 			/* Deal with stray signal. */
2082 			cond_resched_tasks_rcu_qs();
2083 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2084 			WARN_ON(signal_pending(current));
2085 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2086 					       TPS("fqswaitsig"));
2087 			ret = 1; /* Keep old FQS timing. */
2088 			j = jiffies;
2089 			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2090 				j = 1;
2091 			else
2092 				j = rcu_state.jiffies_force_qs - j;
2093 			gf = 0;
2094 		}
2095 	}
2096 }
2097 
2098 /*
2099  * Clean up after the old grace period.
2100  */
rcu_gp_cleanup(void)2101 static noinline void rcu_gp_cleanup(void)
2102 {
2103 	int cpu;
2104 	bool needgp = false;
2105 	unsigned long gp_duration;
2106 	unsigned long new_gp_seq;
2107 	bool offloaded;
2108 	struct rcu_data *rdp;
2109 	struct rcu_node *rnp = rcu_get_root();
2110 	struct swait_queue_head *sq;
2111 
2112 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2113 	raw_spin_lock_irq_rcu_node(rnp);
2114 	rcu_state.gp_end = jiffies;
2115 	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2116 	if (gp_duration > rcu_state.gp_max)
2117 		rcu_state.gp_max = gp_duration;
2118 
2119 	/*
2120 	 * We know the grace period is complete, but to everyone else
2121 	 * it appears to still be ongoing.  But it is also the case
2122 	 * that to everyone else it looks like there is nothing that
2123 	 * they can do to advance the grace period.  It is therefore
2124 	 * safe for us to drop the lock in order to mark the grace
2125 	 * period as completed in all of the rcu_node structures.
2126 	 */
2127 	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
2128 	raw_spin_unlock_irq_rcu_node(rnp);
2129 
2130 	/*
2131 	 * Propagate new ->gp_seq value to rcu_node structures so that
2132 	 * other CPUs don't have to wait until the start of the next grace
2133 	 * period to process their callbacks.  This also avoids some nasty
2134 	 * RCU grace-period initialization races by forcing the end of
2135 	 * the current grace period to be completely recorded in all of
2136 	 * the rcu_node structures before the beginning of the next grace
2137 	 * period is recorded in any of the rcu_node structures.
2138 	 */
2139 	new_gp_seq = rcu_state.gp_seq;
2140 	rcu_seq_end(&new_gp_seq);
2141 	rcu_for_each_node_breadth_first(rnp) {
2142 		raw_spin_lock_irq_rcu_node(rnp);
2143 		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2144 			dump_blkd_tasks(rnp, 10);
2145 		WARN_ON_ONCE(rnp->qsmask);
2146 		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2147 		if (!rnp->parent)
2148 			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
2149 		rdp = this_cpu_ptr(&rcu_data);
2150 		if (rnp == rdp->mynode)
2151 			needgp = __note_gp_changes(rnp, rdp) || needgp;
2152 		/* smp_mb() provided by prior unlock-lock pair. */
2153 		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2154 		// Reset overload indication for CPUs no longer overloaded
2155 		if (rcu_is_leaf_node(rnp))
2156 			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2157 				rdp = per_cpu_ptr(&rcu_data, cpu);
2158 				check_cb_ovld_locked(rdp, rnp);
2159 			}
2160 		sq = rcu_nocb_gp_get(rnp);
2161 		raw_spin_unlock_irq_rcu_node(rnp);
2162 		rcu_nocb_gp_cleanup(sq);
2163 		cond_resched_tasks_rcu_qs();
2164 		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2165 		rcu_gp_slow(gp_cleanup_delay);
2166 	}
2167 	rnp = rcu_get_root();
2168 	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2169 
2170 	/* Declare grace period done, trace first to use old GP number. */
2171 	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2172 	rcu_seq_end(&rcu_state.gp_seq);
2173 	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2174 	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2175 	/* Check for GP requests since above loop. */
2176 	rdp = this_cpu_ptr(&rcu_data);
2177 	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2178 		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2179 				  TPS("CleanupMore"));
2180 		needgp = true;
2181 	}
2182 	/* Advance CBs to reduce false positives below. */
2183 	offloaded = rcu_rdp_is_offloaded(rdp);
2184 	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2185 
2186 		// We get here if a grace period was needed (“needgp”)
2187 		// and the above call to rcu_accelerate_cbs() did not set
2188 		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
2189 		// the need for another grace period).  The purpose
2190 		// of the “offloaded” check is to avoid invoking
2191 		// rcu_accelerate_cbs() on an offloaded CPU because we do not
2192 		// hold the ->nocb_lock needed to safely access an offloaded
2193 		// ->cblist.  We do not want to acquire that lock because
2194 		// it can be heavily contended during callback floods.
2195 
2196 		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2197 		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2198 		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
2199 	} else {
2200 
2201 		// We get here either if there is no need for an
2202 		// additional grace period or if rcu_accelerate_cbs() has
2203 		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
2204 		// So all we need to do is to clear all of the other
2205 		// ->gp_flags bits.
2206 
2207 		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2208 	}
2209 	raw_spin_unlock_irq_rcu_node(rnp);
2210 
2211 	// Make synchronize_rcu() users aware of the end of old grace period.
2212 	rcu_sr_normal_gp_cleanup();
2213 
2214 	// If strict, make all CPUs aware of the end of the old grace period.
2215 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2216 		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2217 }
2218 
2219 /*
2220  * Body of kthread that handles grace periods.
2221  */
rcu_gp_kthread(void * unused)2222 static int __noreturn rcu_gp_kthread(void *unused)
2223 {
2224 	rcu_bind_gp_kthread();
2225 	for (;;) {
2226 
2227 		/* Handle grace-period start. */
2228 		for (;;) {
2229 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2230 					       TPS("reqwait"));
2231 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2232 			swait_event_idle_exclusive(rcu_state.gp_wq,
2233 					 READ_ONCE(rcu_state.gp_flags) &
2234 					 RCU_GP_FLAG_INIT);
2235 			rcu_gp_torture_wait();
2236 			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2237 			/* Locking provides needed memory barrier. */
2238 			if (rcu_gp_init())
2239 				break;
2240 			cond_resched_tasks_rcu_qs();
2241 			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2242 			WARN_ON(signal_pending(current));
2243 			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2244 					       TPS("reqwaitsig"));
2245 		}
2246 
2247 		/* Handle quiescent-state forcing. */
2248 		rcu_gp_fqs_loop();
2249 
2250 		/* Handle grace-period end. */
2251 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2252 		rcu_gp_cleanup();
2253 		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2254 	}
2255 }
2256 
2257 /*
2258  * Report a full set of quiescent states to the rcu_state data structure.
2259  * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2260  * another grace period is required.  Whether we wake the grace-period
2261  * kthread or it awakens itself for the next round of quiescent-state
2262  * forcing, that kthread will clean up after the just-completed grace
2263  * period.  Note that the caller must hold rnp->lock, which is released
2264  * before return.
2265  */
rcu_report_qs_rsp(unsigned long flags)2266 static void rcu_report_qs_rsp(unsigned long flags)
2267 	__releases(rcu_get_root()->lock)
2268 {
2269 	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2270 	WARN_ON_ONCE(!rcu_gp_in_progress());
2271 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2272 	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2273 	rcu_gp_kthread_wake();
2274 }
2275 
2276 /*
2277  * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2278  * Allows quiescent states for a group of CPUs to be reported at one go
2279  * to the specified rcu_node structure, though all the CPUs in the group
2280  * must be represented by the same rcu_node structure (which need not be a
2281  * leaf rcu_node structure, though it often will be).  The gps parameter
2282  * is the grace-period snapshot, which means that the quiescent states
2283  * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2284  * must be held upon entry, and it is released before return.
2285  *
2286  * As a special case, if mask is zero, the bit-already-cleared check is
2287  * disabled.  This allows propagating quiescent state due to resumed tasks
2288  * during grace-period initialization.
2289  */
rcu_report_qs_rnp(unsigned long mask,struct rcu_node * rnp,unsigned long gps,unsigned long flags)2290 static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2291 			      unsigned long gps, unsigned long flags)
2292 	__releases(rnp->lock)
2293 {
2294 	unsigned long oldmask = 0;
2295 	struct rcu_node *rnp_c;
2296 
2297 	raw_lockdep_assert_held_rcu_node(rnp);
2298 
2299 	/* Walk up the rcu_node hierarchy. */
2300 	for (;;) {
2301 		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2302 
2303 			/*
2304 			 * Our bit has already been cleared, or the
2305 			 * relevant grace period is already over, so done.
2306 			 */
2307 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2308 			return;
2309 		}
2310 		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2311 		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2312 			     rcu_preempt_blocked_readers_cgp(rnp));
2313 		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2314 		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2315 						 mask, rnp->qsmask, rnp->level,
2316 						 rnp->grplo, rnp->grphi,
2317 						 !!rnp->gp_tasks);
2318 		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2319 
2320 			/* Other bits still set at this level, so done. */
2321 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2322 			return;
2323 		}
2324 		rnp->completedqs = rnp->gp_seq;
2325 		mask = rnp->grpmask;
2326 		if (rnp->parent == NULL) {
2327 
2328 			/* No more levels.  Exit loop holding root lock. */
2329 
2330 			break;
2331 		}
2332 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2333 		rnp_c = rnp;
2334 		rnp = rnp->parent;
2335 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2336 		oldmask = READ_ONCE(rnp_c->qsmask);
2337 	}
2338 
2339 	/*
2340 	 * Get here if we are the last CPU to pass through a quiescent
2341 	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2342 	 * to clean up and start the next grace period if one is needed.
2343 	 */
2344 	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2345 }
2346 
2347 /*
2348  * Record a quiescent state for all tasks that were previously queued
2349  * on the specified rcu_node structure and that were blocking the current
2350  * RCU grace period.  The caller must hold the corresponding rnp->lock with
2351  * irqs disabled, and this lock is released upon return, but irqs remain
2352  * disabled.
2353  */
2354 static void __maybe_unused
rcu_report_unblock_qs_rnp(struct rcu_node * rnp,unsigned long flags)2355 rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2356 	__releases(rnp->lock)
2357 {
2358 	unsigned long gps;
2359 	unsigned long mask;
2360 	struct rcu_node *rnp_p;
2361 
2362 	raw_lockdep_assert_held_rcu_node(rnp);
2363 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2364 	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2365 	    rnp->qsmask != 0) {
2366 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2367 		return;  /* Still need more quiescent states! */
2368 	}
2369 
2370 	rnp->completedqs = rnp->gp_seq;
2371 	rnp_p = rnp->parent;
2372 	if (rnp_p == NULL) {
2373 		/*
2374 		 * Only one rcu_node structure in the tree, so don't
2375 		 * try to report up to its nonexistent parent!
2376 		 */
2377 		rcu_report_qs_rsp(flags);
2378 		return;
2379 	}
2380 
2381 	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2382 	gps = rnp->gp_seq;
2383 	mask = rnp->grpmask;
2384 	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2385 	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2386 	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2387 }
2388 
2389 /*
2390  * Record a quiescent state for the specified CPU to that CPU's rcu_data
2391  * structure.  This must be called from the specified CPU.
2392  */
2393 static void
rcu_report_qs_rdp(struct rcu_data * rdp)2394 rcu_report_qs_rdp(struct rcu_data *rdp)
2395 {
2396 	unsigned long flags;
2397 	unsigned long mask;
2398 	struct rcu_node *rnp;
2399 
2400 	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2401 	rnp = rdp->mynode;
2402 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2403 	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2404 	    rdp->gpwrap) {
2405 
2406 		/*
2407 		 * The grace period in which this quiescent state was
2408 		 * recorded has ended, so don't report it upwards.
2409 		 * We will instead need a new quiescent state that lies
2410 		 * within the current grace period.
2411 		 */
2412 		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2413 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2414 		return;
2415 	}
2416 	mask = rdp->grpmask;
2417 	rdp->core_needs_qs = false;
2418 	if ((rnp->qsmask & mask) == 0) {
2419 		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2420 	} else {
2421 		/*
2422 		 * This GP can't end until cpu checks in, so all of our
2423 		 * callbacks can be processed during the next GP.
2424 		 *
2425 		 * NOCB kthreads have their own way to deal with that...
2426 		 */
2427 		if (!rcu_rdp_is_offloaded(rdp)) {
2428 			/*
2429 			 * The current GP has not yet ended, so it
2430 			 * should not be possible for rcu_accelerate_cbs()
2431 			 * to return true.  So complain, but don't awaken.
2432 			 */
2433 			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2434 		}
2435 
2436 		rcu_disable_urgency_upon_qs(rdp);
2437 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2438 		/* ^^^ Released rnp->lock */
2439 	}
2440 }
2441 
2442 /*
2443  * Check to see if there is a new grace period of which this CPU
2444  * is not yet aware, and if so, set up local rcu_data state for it.
2445  * Otherwise, see if this CPU has just passed through its first
2446  * quiescent state for this grace period, and record that fact if so.
2447  */
2448 static void
rcu_check_quiescent_state(struct rcu_data * rdp)2449 rcu_check_quiescent_state(struct rcu_data *rdp)
2450 {
2451 	/* Check for grace-period ends and beginnings. */
2452 	note_gp_changes(rdp);
2453 
2454 	/*
2455 	 * Does this CPU still need to do its part for current grace period?
2456 	 * If no, return and let the other CPUs do their part as well.
2457 	 */
2458 	if (!rdp->core_needs_qs)
2459 		return;
2460 
2461 	/*
2462 	 * Was there a quiescent state since the beginning of the grace
2463 	 * period? If no, then exit and wait for the next call.
2464 	 */
2465 	if (rdp->cpu_no_qs.b.norm)
2466 		return;
2467 
2468 	/*
2469 	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2470 	 * judge of that).
2471 	 */
2472 	rcu_report_qs_rdp(rdp);
2473 }
2474 
2475 /* Return true if callback-invocation time limit exceeded. */
rcu_do_batch_check_time(long count,long tlimit,bool jlimit_check,unsigned long jlimit)2476 static bool rcu_do_batch_check_time(long count, long tlimit,
2477 				    bool jlimit_check, unsigned long jlimit)
2478 {
2479 	// Invoke local_clock() only once per 32 consecutive callbacks.
2480 	return unlikely(tlimit) &&
2481 	       (!likely(count & 31) ||
2482 		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2483 		 jlimit_check && time_after(jiffies, jlimit))) &&
2484 	       local_clock() >= tlimit;
2485 }
2486 
2487 /*
2488  * Invoke any RCU callbacks that have made it to the end of their grace
2489  * period.  Throttle as specified by rdp->blimit.
2490  */
rcu_do_batch(struct rcu_data * rdp)2491 static void rcu_do_batch(struct rcu_data *rdp)
2492 {
2493 	long bl;
2494 	long count = 0;
2495 	int div;
2496 	bool __maybe_unused empty;
2497 	unsigned long flags;
2498 	unsigned long jlimit;
2499 	bool jlimit_check = false;
2500 	long pending;
2501 	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2502 	struct rcu_head *rhp;
2503 	long tlimit = 0;
2504 
2505 	/* If no callbacks are ready, just return. */
2506 	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2507 		trace_rcu_batch_start(rcu_state.name,
2508 				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2509 		trace_rcu_batch_end(rcu_state.name, 0,
2510 				    !rcu_segcblist_empty(&rdp->cblist),
2511 				    need_resched(), is_idle_task(current),
2512 				    rcu_is_callbacks_kthread(rdp));
2513 		return;
2514 	}
2515 
2516 	/*
2517 	 * Extract the list of ready callbacks, disabling IRQs to prevent
2518 	 * races with call_rcu() from interrupt handlers.  Leave the
2519 	 * callback counts, as rcu_barrier() needs to be conservative.
2520 	 *
2521 	 * Callbacks execution is fully ordered against preceding grace period
2522 	 * completion (materialized by rnp->gp_seq update) thanks to the
2523 	 * smp_mb__after_unlock_lock() upon node locking required for callbacks
2524 	 * advancing. In NOCB mode this ordering is then further relayed through
2525 	 * the nocb locking that protects both callbacks advancing and extraction.
2526 	 */
2527 	rcu_nocb_lock_irqsave(rdp, flags);
2528 	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2529 	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2530 	div = READ_ONCE(rcu_divisor);
2531 	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2532 	bl = max(rdp->blimit, pending >> div);
2533 	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2534 	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2535 		const long npj = NSEC_PER_SEC / HZ;
2536 		long rrn = READ_ONCE(rcu_resched_ns);
2537 
2538 		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2539 		tlimit = local_clock() + rrn;
2540 		jlimit = jiffies + (rrn + npj + 1) / npj;
2541 		jlimit_check = true;
2542 	}
2543 	trace_rcu_batch_start(rcu_state.name,
2544 			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2545 	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2546 	if (rcu_rdp_is_offloaded(rdp))
2547 		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2548 
2549 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2550 	rcu_nocb_unlock_irqrestore(rdp, flags);
2551 
2552 	/* Invoke callbacks. */
2553 	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2554 	rhp = rcu_cblist_dequeue(&rcl);
2555 
2556 	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2557 		rcu_callback_t f;
2558 
2559 		count++;
2560 		debug_rcu_head_unqueue(rhp);
2561 
2562 		rcu_lock_acquire(&rcu_callback_map);
2563 		trace_rcu_invoke_callback(rcu_state.name, rhp);
2564 
2565 		f = rhp->func;
2566 		debug_rcu_head_callback(rhp);
2567 		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2568 		f(rhp);
2569 
2570 		rcu_lock_release(&rcu_callback_map);
2571 
2572 		/*
2573 		 * Stop only if limit reached and CPU has something to do.
2574 		 */
2575 		if (in_serving_softirq()) {
2576 			if (count >= bl && (need_resched() || !is_idle_task(current)))
2577 				break;
2578 			/*
2579 			 * Make sure we don't spend too much time here and deprive other
2580 			 * softirq vectors of CPU cycles.
2581 			 */
2582 			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2583 				break;
2584 		} else {
2585 			// In rcuc/rcuoc context, so no worries about
2586 			// depriving other softirq vectors of CPU cycles.
2587 			local_bh_enable();
2588 			lockdep_assert_irqs_enabled();
2589 			cond_resched_tasks_rcu_qs();
2590 			lockdep_assert_irqs_enabled();
2591 			local_bh_disable();
2592 			// But rcuc kthreads can delay quiescent-state
2593 			// reporting, so check time limits for them.
2594 			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2595 			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2596 				rdp->rcu_cpu_has_work = 1;
2597 				break;
2598 			}
2599 		}
2600 	}
2601 
2602 	rcu_nocb_lock_irqsave(rdp, flags);
2603 	rdp->n_cbs_invoked += count;
2604 	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2605 			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2606 
2607 	/* Update counts and requeue any remaining callbacks. */
2608 	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2609 	rcu_segcblist_add_len(&rdp->cblist, -count);
2610 
2611 	/* Reinstate batch limit if we have worked down the excess. */
2612 	count = rcu_segcblist_n_cbs(&rdp->cblist);
2613 	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2614 		rdp->blimit = blimit;
2615 
2616 	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2617 	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2618 		rdp->qlen_last_fqs_check = 0;
2619 		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2620 	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2621 		rdp->qlen_last_fqs_check = count;
2622 
2623 	/*
2624 	 * The following usually indicates a double call_rcu().  To track
2625 	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2626 	 */
2627 	empty = rcu_segcblist_empty(&rdp->cblist);
2628 	WARN_ON_ONCE(count == 0 && !empty);
2629 	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2630 		     count != 0 && empty);
2631 	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2632 	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2633 
2634 	rcu_nocb_unlock_irqrestore(rdp, flags);
2635 
2636 	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2637 }
2638 
2639 /*
2640  * This function is invoked from each scheduling-clock interrupt,
2641  * and checks to see if this CPU is in a non-context-switch quiescent
2642  * state, for example, user mode or idle loop.  It also schedules RCU
2643  * core processing.  If the current grace period has gone on too long,
2644  * it will ask the scheduler to manufacture a context switch for the sole
2645  * purpose of providing the needed quiescent state.
2646  */
rcu_sched_clock_irq(int user)2647 void rcu_sched_clock_irq(int user)
2648 {
2649 	unsigned long j;
2650 
2651 	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2652 		j = jiffies;
2653 		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2654 		__this_cpu_write(rcu_data.last_sched_clock, j);
2655 	}
2656 	trace_rcu_utilization(TPS("Start scheduler-tick"));
2657 	lockdep_assert_irqs_disabled();
2658 	raw_cpu_inc(rcu_data.ticks_this_gp);
2659 	/* The load-acquire pairs with the store-release setting to true. */
2660 	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2661 		/* Idle and userspace execution already are quiescent states. */
2662 		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2663 			set_tsk_need_resched(current);
2664 			set_preempt_need_resched();
2665 		}
2666 		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2667 	}
2668 	rcu_flavor_sched_clock_irq(user);
2669 	if (rcu_pending(user))
2670 		invoke_rcu_core();
2671 	if (user || rcu_is_cpu_rrupt_from_idle())
2672 		rcu_note_voluntary_context_switch(current);
2673 	lockdep_assert_irqs_disabled();
2674 
2675 	trace_rcu_utilization(TPS("End scheduler-tick"));
2676 }
2677 
2678 /*
2679  * Scan the leaf rcu_node structures.  For each structure on which all
2680  * CPUs have reported a quiescent state and on which there are tasks
2681  * blocking the current grace period, initiate RCU priority boosting.
2682  * Otherwise, invoke the specified function to check dyntick state for
2683  * each CPU that has not yet reported a quiescent state.
2684  */
force_qs_rnp(int (* f)(struct rcu_data * rdp))2685 static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2686 {
2687 	int cpu;
2688 	unsigned long flags;
2689 	struct rcu_node *rnp;
2690 
2691 	rcu_state.cbovld = rcu_state.cbovldnext;
2692 	rcu_state.cbovldnext = false;
2693 	rcu_for_each_leaf_node(rnp) {
2694 		unsigned long mask = 0;
2695 		unsigned long rsmask = 0;
2696 
2697 		cond_resched_tasks_rcu_qs();
2698 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2699 		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2700 		if (rnp->qsmask == 0) {
2701 			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2702 				/*
2703 				 * No point in scanning bits because they
2704 				 * are all zero.  But we might need to
2705 				 * priority-boost blocked readers.
2706 				 */
2707 				rcu_initiate_boost(rnp, flags);
2708 				/* rcu_initiate_boost() releases rnp->lock */
2709 				continue;
2710 			}
2711 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2712 			continue;
2713 		}
2714 		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2715 			struct rcu_data *rdp;
2716 			int ret;
2717 
2718 			rdp = per_cpu_ptr(&rcu_data, cpu);
2719 			ret = f(rdp);
2720 			if (ret > 0) {
2721 				mask |= rdp->grpmask;
2722 				rcu_disable_urgency_upon_qs(rdp);
2723 			}
2724 			if (ret < 0)
2725 				rsmask |= rdp->grpmask;
2726 		}
2727 		if (mask != 0) {
2728 			/* Idle/offline CPUs, report (releases rnp->lock). */
2729 			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2730 		} else {
2731 			/* Nothing to do here, so just drop the lock. */
2732 			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2733 		}
2734 
2735 		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2736 			resched_cpu(cpu);
2737 	}
2738 }
2739 
2740 /*
2741  * Force quiescent states on reluctant CPUs, and also detect which
2742  * CPUs are in dyntick-idle mode.
2743  */
rcu_force_quiescent_state(void)2744 void rcu_force_quiescent_state(void)
2745 {
2746 	unsigned long flags;
2747 	bool ret;
2748 	struct rcu_node *rnp;
2749 	struct rcu_node *rnp_old = NULL;
2750 
2751 	if (!rcu_gp_in_progress())
2752 		return;
2753 	/* Funnel through hierarchy to reduce memory contention. */
2754 	rnp = raw_cpu_read(rcu_data.mynode);
2755 	for (; rnp != NULL; rnp = rnp->parent) {
2756 		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2757 		       !raw_spin_trylock(&rnp->fqslock);
2758 		if (rnp_old != NULL)
2759 			raw_spin_unlock(&rnp_old->fqslock);
2760 		if (ret)
2761 			return;
2762 		rnp_old = rnp;
2763 	}
2764 	/* rnp_old == rcu_get_root(), rnp == NULL. */
2765 
2766 	/* Reached the root of the rcu_node tree, acquire lock. */
2767 	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2768 	raw_spin_unlock(&rnp_old->fqslock);
2769 	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2770 		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2771 		return;  /* Someone beat us to it. */
2772 	}
2773 	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
2774 	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2775 	rcu_gp_kthread_wake();
2776 }
2777 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2778 
2779 // Workqueue handler for an RCU reader for kernels enforcing struct RCU
2780 // grace periods.
strict_work_handler(struct work_struct * work)2781 static void strict_work_handler(struct work_struct *work)
2782 {
2783 	rcu_read_lock();
2784 	rcu_read_unlock();
2785 }
2786 
2787 /* Perform RCU core processing work for the current CPU.  */
rcu_core(void)2788 static __latent_entropy void rcu_core(void)
2789 {
2790 	unsigned long flags;
2791 	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2792 	struct rcu_node *rnp = rdp->mynode;
2793 
2794 	if (cpu_is_offline(smp_processor_id()))
2795 		return;
2796 	trace_rcu_utilization(TPS("Start RCU core"));
2797 	WARN_ON_ONCE(!rdp->beenonline);
2798 
2799 	/* Report any deferred quiescent states if preemption enabled. */
2800 	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2801 		rcu_preempt_deferred_qs(current);
2802 	} else if (rcu_preempt_need_deferred_qs(current)) {
2803 		set_tsk_need_resched(current);
2804 		set_preempt_need_resched();
2805 	}
2806 
2807 	/* Update RCU state based on any recent quiescent states. */
2808 	rcu_check_quiescent_state(rdp);
2809 
2810 	/* No grace period and unregistered callbacks? */
2811 	if (!rcu_gp_in_progress() &&
2812 	    rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) {
2813 		local_irq_save(flags);
2814 		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2815 			rcu_accelerate_cbs_unlocked(rnp, rdp);
2816 		local_irq_restore(flags);
2817 	}
2818 
2819 	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2820 
2821 	/* If there are callbacks ready, invoke them. */
2822 	if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2823 	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2824 		rcu_do_batch(rdp);
2825 		/* Re-invoke RCU core processing if there are callbacks remaining. */
2826 		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2827 			invoke_rcu_core();
2828 	}
2829 
2830 	/* Do any needed deferred wakeups of rcuo kthreads. */
2831 	do_nocb_deferred_wakeup(rdp);
2832 	trace_rcu_utilization(TPS("End RCU core"));
2833 
2834 	// If strict GPs, schedule an RCU reader in a clean environment.
2835 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2836 		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2837 }
2838 
rcu_core_si(void)2839 static void rcu_core_si(void)
2840 {
2841 	rcu_core();
2842 }
2843 
rcu_wake_cond(struct task_struct * t,int status)2844 static void rcu_wake_cond(struct task_struct *t, int status)
2845 {
2846 	/*
2847 	 * If the thread is yielding, only wake it when this
2848 	 * is invoked from idle
2849 	 */
2850 	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2851 		wake_up_process(t);
2852 }
2853 
invoke_rcu_core_kthread(void)2854 static void invoke_rcu_core_kthread(void)
2855 {
2856 	struct task_struct *t;
2857 	unsigned long flags;
2858 
2859 	local_irq_save(flags);
2860 	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2861 	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2862 	if (t != NULL && t != current)
2863 		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2864 	local_irq_restore(flags);
2865 }
2866 
2867 /*
2868  * Wake up this CPU's rcuc kthread to do RCU core processing.
2869  */
invoke_rcu_core(void)2870 static void invoke_rcu_core(void)
2871 {
2872 	if (!cpu_online(smp_processor_id()))
2873 		return;
2874 	if (use_softirq)
2875 		raise_softirq(RCU_SOFTIRQ);
2876 	else
2877 		invoke_rcu_core_kthread();
2878 }
2879 
rcu_cpu_kthread_park(unsigned int cpu)2880 static void rcu_cpu_kthread_park(unsigned int cpu)
2881 {
2882 	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2883 }
2884 
rcu_cpu_kthread_should_run(unsigned int cpu)2885 static int rcu_cpu_kthread_should_run(unsigned int cpu)
2886 {
2887 	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2888 }
2889 
2890 /*
2891  * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2892  * the RCU softirq used in configurations of RCU that do not support RCU
2893  * priority boosting.
2894  */
rcu_cpu_kthread(unsigned int cpu)2895 static void rcu_cpu_kthread(unsigned int cpu)
2896 {
2897 	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2898 	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2899 	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2900 	int spincnt;
2901 
2902 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2903 	for (spincnt = 0; spincnt < 10; spincnt++) {
2904 		WRITE_ONCE(*j, jiffies);
2905 		local_bh_disable();
2906 		*statusp = RCU_KTHREAD_RUNNING;
2907 		local_irq_disable();
2908 		work = *workp;
2909 		WRITE_ONCE(*workp, 0);
2910 		local_irq_enable();
2911 		if (work)
2912 			rcu_core();
2913 		local_bh_enable();
2914 		if (!READ_ONCE(*workp)) {
2915 			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2916 			*statusp = RCU_KTHREAD_WAITING;
2917 			return;
2918 		}
2919 	}
2920 	*statusp = RCU_KTHREAD_YIELDING;
2921 	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2922 	schedule_timeout_idle(2);
2923 	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2924 	*statusp = RCU_KTHREAD_WAITING;
2925 	WRITE_ONCE(*j, jiffies);
2926 }
2927 
2928 static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2929 	.store			= &rcu_data.rcu_cpu_kthread_task,
2930 	.thread_should_run	= rcu_cpu_kthread_should_run,
2931 	.thread_fn		= rcu_cpu_kthread,
2932 	.thread_comm		= "rcuc/%u",
2933 	.setup			= rcu_cpu_kthread_setup,
2934 	.park			= rcu_cpu_kthread_park,
2935 };
2936 
2937 /*
2938  * Spawn per-CPU RCU core processing kthreads.
2939  */
rcu_spawn_core_kthreads(void)2940 static int __init rcu_spawn_core_kthreads(void)
2941 {
2942 	int cpu;
2943 
2944 	for_each_possible_cpu(cpu)
2945 		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2946 	if (use_softirq)
2947 		return 0;
2948 	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2949 		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2950 	return 0;
2951 }
2952 
rcutree_enqueue(struct rcu_data * rdp,struct rcu_head * head,rcu_callback_t func)2953 static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
2954 {
2955 	rcu_segcblist_enqueue(&rdp->cblist, head);
2956 	trace_rcu_callback(rcu_state.name, head,
2957 			   rcu_segcblist_n_cbs(&rdp->cblist));
2958 	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2959 }
2960 
2961 /*
2962  * Handle any core-RCU processing required by a call_rcu() invocation.
2963  */
call_rcu_core(struct rcu_data * rdp,struct rcu_head * head,rcu_callback_t func,unsigned long flags)2964 static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2965 			  rcu_callback_t func, unsigned long flags)
2966 {
2967 	rcutree_enqueue(rdp, head, func);
2968 	/*
2969 	 * If called from an extended quiescent state, invoke the RCU
2970 	 * core in order to force a re-evaluation of RCU's idleness.
2971 	 */
2972 	if (!rcu_is_watching())
2973 		invoke_rcu_core();
2974 
2975 	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2976 	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2977 		return;
2978 
2979 	/*
2980 	 * Force the grace period if too many callbacks or too long waiting.
2981 	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2982 	 * if some other CPU has recently done so.  Also, don't bother
2983 	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2984 	 * is the only one waiting for a grace period to complete.
2985 	 */
2986 	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2987 		     rdp->qlen_last_fqs_check + qhimark)) {
2988 
2989 		/* Are we ignoring a completed grace period? */
2990 		note_gp_changes(rdp);
2991 
2992 		/* Start a new grace period if one not already started. */
2993 		if (!rcu_gp_in_progress()) {
2994 			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2995 		} else {
2996 			/* Give the grace period a kick. */
2997 			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2998 			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2999 			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3000 				rcu_force_quiescent_state();
3001 			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
3002 			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3003 		}
3004 	}
3005 }
3006 
3007 /*
3008  * RCU callback function to leak a callback.
3009  */
rcu_leak_callback(struct rcu_head * rhp)3010 static void rcu_leak_callback(struct rcu_head *rhp)
3011 {
3012 }
3013 
3014 /*
3015  * Check and if necessary update the leaf rcu_node structure's
3016  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3017  * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
3018  * structure's ->lock.
3019  */
check_cb_ovld_locked(struct rcu_data * rdp,struct rcu_node * rnp)3020 static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
3021 {
3022 	raw_lockdep_assert_held_rcu_node(rnp);
3023 	if (qovld_calc <= 0)
3024 		return; // Early boot and wildcard value set.
3025 	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
3026 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
3027 	else
3028 		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
3029 }
3030 
3031 /*
3032  * Check and if necessary update the leaf rcu_node structure's
3033  * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3034  * number of queued RCU callbacks.  No locks need be held, but the
3035  * caller must have disabled interrupts.
3036  *
3037  * Note that this function ignores the possibility that there are a lot
3038  * of callbacks all of which have already seen the end of their respective
3039  * grace periods.  This omission is due to the need for no-CBs CPUs to
3040  * be holding ->nocb_lock to do this check, which is too heavy for a
3041  * common-case operation.
3042  */
check_cb_ovld(struct rcu_data * rdp)3043 static void check_cb_ovld(struct rcu_data *rdp)
3044 {
3045 	struct rcu_node *const rnp = rdp->mynode;
3046 
3047 	if (qovld_calc <= 0 ||
3048 	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3049 	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3050 		return; // Early boot wildcard value or already set correctly.
3051 	raw_spin_lock_rcu_node(rnp);
3052 	check_cb_ovld_locked(rdp, rnp);
3053 	raw_spin_unlock_rcu_node(rnp);
3054 }
3055 
3056 static void
__call_rcu_common(struct rcu_head * head,rcu_callback_t func,bool lazy_in)3057 __call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
3058 {
3059 	static atomic_t doublefrees;
3060 	unsigned long flags;
3061 	bool lazy;
3062 	struct rcu_data *rdp;
3063 
3064 	/* Misaligned rcu_head! */
3065 	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3066 
3067 	if (debug_rcu_head_queue(head)) {
3068 		/*
3069 		 * Probable double call_rcu(), so leak the callback.
3070 		 * Use rcu:rcu_callback trace event to find the previous
3071 		 * time callback was passed to call_rcu().
3072 		 */
3073 		if (atomic_inc_return(&doublefrees) < 4) {
3074 			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3075 			mem_dump_obj(head);
3076 		}
3077 		WRITE_ONCE(head->func, rcu_leak_callback);
3078 		return;
3079 	}
3080 	head->func = func;
3081 	head->next = NULL;
3082 	kasan_record_aux_stack(head);
3083 
3084 	local_irq_save(flags);
3085 	rdp = this_cpu_ptr(&rcu_data);
3086 	RCU_LOCKDEP_WARN(!rcu_rdp_cpu_online(rdp), "Callback enqueued on offline CPU!");
3087 
3088 	lazy = lazy_in && !rcu_async_should_hurry();
3089 
3090 	/* Add the callback to our list. */
3091 	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3092 		// This can trigger due to call_rcu() from offline CPU:
3093 		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3094 		WARN_ON_ONCE(!rcu_is_watching());
3095 		// Very early boot, before rcu_init().  Initialize if needed
3096 		// and then drop through to queue the callback.
3097 		if (rcu_segcblist_empty(&rdp->cblist))
3098 			rcu_segcblist_init(&rdp->cblist);
3099 	}
3100 
3101 	check_cb_ovld(rdp);
3102 
3103 	if (unlikely(rcu_rdp_is_offloaded(rdp)))
3104 		call_rcu_nocb(rdp, head, func, flags, lazy);
3105 	else
3106 		call_rcu_core(rdp, head, func, flags);
3107 	local_irq_restore(flags);
3108 }
3109 
3110 #ifdef CONFIG_RCU_LAZY
3111 static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
3112 module_param(enable_rcu_lazy, bool, 0444);
3113 
3114 /**
3115  * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
3116  * flush all lazy callbacks (including the new one) to the main ->cblist while
3117  * doing so.
3118  *
3119  * @head: structure to be used for queueing the RCU updates.
3120  * @func: actual callback function to be invoked after the grace period
3121  *
3122  * The callback function will be invoked some time after a full grace
3123  * period elapses, in other words after all pre-existing RCU read-side
3124  * critical sections have completed.
3125  *
3126  * Use this API instead of call_rcu() if you don't want the callback to be
3127  * delayed for very long periods of time, which can happen on systems without
3128  * memory pressure and on systems which are lightly loaded or mostly idle.
3129  * This function will cause callbacks to be invoked sooner than later at the
3130  * expense of extra power. Other than that, this function is identical to, and
3131  * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
3132  * ordering and other functionality.
3133  */
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)3134 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
3135 {
3136 	__call_rcu_common(head, func, false);
3137 }
3138 EXPORT_SYMBOL_GPL(call_rcu_hurry);
3139 #else
3140 #define enable_rcu_lazy		false
3141 #endif
3142 
3143 /**
3144  * call_rcu() - Queue an RCU callback for invocation after a grace period.
3145  * By default the callbacks are 'lazy' and are kept hidden from the main
3146  * ->cblist to prevent starting of grace periods too soon.
3147  * If you desire grace periods to start very soon, use call_rcu_hurry().
3148  *
3149  * @head: structure to be used for queueing the RCU updates.
3150  * @func: actual callback function to be invoked after the grace period
3151  *
3152  * The callback function will be invoked some time after a full grace
3153  * period elapses, in other words after all pre-existing RCU read-side
3154  * critical sections have completed.  However, the callback function
3155  * might well execute concurrently with RCU read-side critical sections
3156  * that started after call_rcu() was invoked.
3157  *
3158  * It is perfectly legal to repost an RCU callback, potentially with
3159  * a different callback function, from within its callback function.
3160  * The specified function will be invoked after another full grace period
3161  * has elapsed.  This use case is similar in form to the common practice
3162  * of reposting a timer from within its own handler.
3163  *
3164  * RCU read-side critical sections are delimited by rcu_read_lock()
3165  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3166  * v5.0 and later, regions of code across which interrupts, preemption,
3167  * or softirqs have been disabled also serve as RCU read-side critical
3168  * sections.  This includes hardware interrupt handlers, softirq handlers,
3169  * and NMI handlers.
3170  *
3171  * Note that all CPUs must agree that the grace period extended beyond
3172  * all pre-existing RCU read-side critical section.  On systems with more
3173  * than one CPU, this means that when "func()" is invoked, each CPU is
3174  * guaranteed to have executed a full memory barrier since the end of its
3175  * last RCU read-side critical section whose beginning preceded the call
3176  * to call_rcu().  It also means that each CPU executing an RCU read-side
3177  * critical section that continues beyond the start of "func()" must have
3178  * executed a memory barrier after the call_rcu() but before the beginning
3179  * of that RCU read-side critical section.  Note that these guarantees
3180  * include CPUs that are offline, idle, or executing in user mode, as
3181  * well as CPUs that are executing in the kernel.
3182  *
3183  * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3184  * resulting RCU callback function "func()", then both CPU A and CPU B are
3185  * guaranteed to execute a full memory barrier during the time interval
3186  * between the call to call_rcu() and the invocation of "func()" -- even
3187  * if CPU A and CPU B are the same CPU (but again only if the system has
3188  * more than one CPU).
3189  *
3190  * Implementation of these memory-ordering guarantees is described here:
3191  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3192  *
3193  * Specific to call_rcu() (as opposed to the other call_rcu*() functions),
3194  * in kernels built with CONFIG_RCU_LAZY=y, call_rcu() might delay for many
3195  * seconds before starting the grace period needed by the corresponding
3196  * callback.  This delay can significantly improve energy-efficiency
3197  * on low-utilization battery-powered devices.  To avoid this delay,
3198  * in latency-sensitive kernel code, use call_rcu_hurry().
3199  */
call_rcu(struct rcu_head * head,rcu_callback_t func)3200 void call_rcu(struct rcu_head *head, rcu_callback_t func)
3201 {
3202 	__call_rcu_common(head, func, enable_rcu_lazy);
3203 }
3204 EXPORT_SYMBOL_GPL(call_rcu);
3205 
3206 /*
3207  * During early boot, any blocking grace-period wait automatically
3208  * implies a grace period.
3209  *
3210  * Later on, this could in theory be the case for kernels built with
3211  * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3212  * is not a common case.  Furthermore, this optimization would cause
3213  * the rcu_gp_oldstate structure to expand by 50%, so this potential
3214  * grace-period optimization is ignored once the scheduler is running.
3215  */
rcu_blocking_is_gp(void)3216 static int rcu_blocking_is_gp(void)
3217 {
3218 	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3219 		might_sleep();
3220 		return false;
3221 	}
3222 	return true;
3223 }
3224 
3225 /*
3226  * Helper function for the synchronize_rcu() API.
3227  */
synchronize_rcu_normal(void)3228 static void synchronize_rcu_normal(void)
3229 {
3230 	struct rcu_synchronize rs;
3231 
3232 	trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request"));
3233 
3234 	if (!READ_ONCE(rcu_normal_wake_from_gp)) {
3235 		wait_rcu_gp(call_rcu_hurry);
3236 		goto trace_complete_out;
3237 	}
3238 
3239 	init_rcu_head_on_stack(&rs.head);
3240 	init_completion(&rs.completion);
3241 
3242 	/*
3243 	 * This code might be preempted, therefore take a GP
3244 	 * snapshot before adding a request.
3245 	 */
3246 	if (IS_ENABLED(CONFIG_PROVE_RCU))
3247 		get_state_synchronize_rcu_full(&rs.oldstate);
3248 
3249 	rcu_sr_normal_add_req(&rs);
3250 
3251 	/* Kick a GP and start waiting. */
3252 	(void) start_poll_synchronize_rcu();
3253 
3254 	/* Now we can wait. */
3255 	wait_for_completion(&rs.completion);
3256 	destroy_rcu_head_on_stack(&rs.head);
3257 
3258 trace_complete_out:
3259 	trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete"));
3260 }
3261 
3262 /**
3263  * synchronize_rcu - wait until a grace period has elapsed.
3264  *
3265  * Control will return to the caller some time after a full grace
3266  * period has elapsed, in other words after all currently executing RCU
3267  * read-side critical sections have completed.  Note, however, that
3268  * upon return from synchronize_rcu(), the caller might well be executing
3269  * concurrently with new RCU read-side critical sections that began while
3270  * synchronize_rcu() was waiting.
3271  *
3272  * RCU read-side critical sections are delimited by rcu_read_lock()
3273  * and rcu_read_unlock(), and may be nested.  In addition, but only in
3274  * v5.0 and later, regions of code across which interrupts, preemption,
3275  * or softirqs have been disabled also serve as RCU read-side critical
3276  * sections.  This includes hardware interrupt handlers, softirq handlers,
3277  * and NMI handlers.
3278  *
3279  * Note that this guarantee implies further memory-ordering guarantees.
3280  * On systems with more than one CPU, when synchronize_rcu() returns,
3281  * each CPU is guaranteed to have executed a full memory barrier since
3282  * the end of its last RCU read-side critical section whose beginning
3283  * preceded the call to synchronize_rcu().  In addition, each CPU having
3284  * an RCU read-side critical section that extends beyond the return from
3285  * synchronize_rcu() is guaranteed to have executed a full memory barrier
3286  * after the beginning of synchronize_rcu() and before the beginning of
3287  * that RCU read-side critical section.  Note that these guarantees include
3288  * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3289  * that are executing in the kernel.
3290  *
3291  * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3292  * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3293  * to have executed a full memory barrier during the execution of
3294  * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3295  * again only if the system has more than one CPU).
3296  *
3297  * Implementation of these memory-ordering guarantees is described here:
3298  * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3299  */
synchronize_rcu(void)3300 void synchronize_rcu(void)
3301 {
3302 	unsigned long flags;
3303 	struct rcu_node *rnp;
3304 
3305 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3306 			 lock_is_held(&rcu_lock_map) ||
3307 			 lock_is_held(&rcu_sched_lock_map),
3308 			 "Illegal synchronize_rcu() in RCU read-side critical section");
3309 	if (!rcu_blocking_is_gp()) {
3310 		if (rcu_gp_is_expedited())
3311 			synchronize_rcu_expedited();
3312 		else
3313 			synchronize_rcu_normal();
3314 		return;
3315 	}
3316 
3317 	// Context allows vacuous grace periods.
3318 	// Note well that this code runs with !PREEMPT && !SMP.
3319 	// In addition, all code that advances grace periods runs at
3320 	// process level.  Therefore, this normal GP overlaps with other
3321 	// normal GPs only by being fully nested within them, which allows
3322 	// reuse of ->gp_seq_polled_snap.
3323 	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3324 	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3325 
3326 	// Update the normal grace-period counters to record
3327 	// this grace period, but only those used by the boot CPU.
3328 	// The rcu_scheduler_starting() will take care of the rest of
3329 	// these counters.
3330 	local_irq_save(flags);
3331 	WARN_ON_ONCE(num_online_cpus() > 1);
3332 	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3333 	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3334 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3335 	local_irq_restore(flags);
3336 }
3337 EXPORT_SYMBOL_GPL(synchronize_rcu);
3338 
3339 /**
3340  * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3341  * @rgosp: Place to put state cookie
3342  *
3343  * Stores into @rgosp a value that will always be treated by functions
3344  * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3345  * has already completed.
3346  */
get_completed_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3347 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3348 {
3349 	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3350 	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3351 }
3352 EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3353 
3354 /**
3355  * get_state_synchronize_rcu - Snapshot current RCU state
3356  *
3357  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3358  * or poll_state_synchronize_rcu() to determine whether or not a full
3359  * grace period has elapsed in the meantime.
3360  */
get_state_synchronize_rcu(void)3361 unsigned long get_state_synchronize_rcu(void)
3362 {
3363 	/*
3364 	 * Any prior manipulation of RCU-protected data must happen
3365 	 * before the load from ->gp_seq.
3366 	 */
3367 	smp_mb();  /* ^^^ */
3368 	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3369 }
3370 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3371 
3372 /**
3373  * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3374  * @rgosp: location to place combined normal/expedited grace-period state
3375  *
3376  * Places the normal and expedited grace-period states in @rgosp.  This
3377  * state value can be passed to a later call to cond_synchronize_rcu_full()
3378  * or poll_state_synchronize_rcu_full() to determine whether or not a
3379  * grace period (whether normal or expedited) has elapsed in the meantime.
3380  * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3381  * long, but is guaranteed to see all grace periods.  In contrast, the
3382  * combined state occupies less memory, but can sometimes fail to take
3383  * grace periods into account.
3384  *
3385  * This does not guarantee that the needed grace period will actually
3386  * start.
3387  */
get_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3388 void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3389 {
3390 	/*
3391 	 * Any prior manipulation of RCU-protected data must happen
3392 	 * before the loads from ->gp_seq and ->expedited_sequence.
3393 	 */
3394 	smp_mb();  /* ^^^ */
3395 
3396 	// Yes, rcu_state.gp_seq, not rnp_root->gp_seq, the latter's use
3397 	// in poll_state_synchronize_rcu_full() notwithstanding.  Use of
3398 	// the latter here would result in too-short grace periods due to
3399 	// interactions with newly onlined CPUs.
3400 	rgosp->rgos_norm = rcu_seq_snap(&rcu_state.gp_seq);
3401 	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3402 }
3403 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3404 
3405 /*
3406  * Helper function for start_poll_synchronize_rcu() and
3407  * start_poll_synchronize_rcu_full().
3408  */
start_poll_synchronize_rcu_common(void)3409 static void start_poll_synchronize_rcu_common(void)
3410 {
3411 	unsigned long flags;
3412 	bool needwake;
3413 	struct rcu_data *rdp;
3414 	struct rcu_node *rnp;
3415 
3416 	local_irq_save(flags);
3417 	rdp = this_cpu_ptr(&rcu_data);
3418 	rnp = rdp->mynode;
3419 	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3420 	// Note it is possible for a grace period to have elapsed between
3421 	// the above call to get_state_synchronize_rcu() and the below call
3422 	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3423 	// get a grace period that no one needed.  These accesses are ordered
3424 	// by smp_mb(), and we are accessing them in the opposite order
3425 	// from which they are updated at grace-period start, as required.
3426 	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3427 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3428 	if (needwake)
3429 		rcu_gp_kthread_wake();
3430 }
3431 
3432 /**
3433  * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3434  *
3435  * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3436  * or poll_state_synchronize_rcu() to determine whether or not a full
3437  * grace period has elapsed in the meantime.  If the needed grace period
3438  * is not already slated to start, notifies RCU core of the need for that
3439  * grace period.
3440  */
start_poll_synchronize_rcu(void)3441 unsigned long start_poll_synchronize_rcu(void)
3442 {
3443 	unsigned long gp_seq = get_state_synchronize_rcu();
3444 
3445 	start_poll_synchronize_rcu_common();
3446 	return gp_seq;
3447 }
3448 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3449 
3450 /**
3451  * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3452  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3453  *
3454  * Places the normal and expedited grace-period states in *@rgos.  This
3455  * state value can be passed to a later call to cond_synchronize_rcu_full()
3456  * or poll_state_synchronize_rcu_full() to determine whether or not a
3457  * grace period (whether normal or expedited) has elapsed in the meantime.
3458  * If the needed grace period is not already slated to start, notifies
3459  * RCU core of the need for that grace period.
3460  */
start_poll_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3461 void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3462 {
3463 	get_state_synchronize_rcu_full(rgosp);
3464 
3465 	start_poll_synchronize_rcu_common();
3466 }
3467 EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3468 
3469 /**
3470  * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3471  * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3472  *
3473  * If a full RCU grace period has elapsed since the earlier call from
3474  * which @oldstate was obtained, return @true, otherwise return @false.
3475  * If @false is returned, it is the caller's responsibility to invoke this
3476  * function later on until it does return @true.  Alternatively, the caller
3477  * can explicitly wait for a grace period, for example, by passing @oldstate
3478  * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3479  * on the one hand or by directly invoking either synchronize_rcu() or
3480  * synchronize_rcu_expedited() on the other.
3481  *
3482  * Yes, this function does not take counter wrap into account.
3483  * But counter wrap is harmless.  If the counter wraps, we have waited for
3484  * more than a billion grace periods (and way more on a 64-bit system!).
3485  * Those needing to keep old state values for very long time periods
3486  * (many hours even on 32-bit systems) should check them occasionally and
3487  * either refresh them or set a flag indicating that the grace period has
3488  * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3489  * to get a guaranteed-completed grace-period state.
3490  *
3491  * In addition, because oldstate compresses the grace-period state for
3492  * both normal and expedited grace periods into a single unsigned long,
3493  * it can miss a grace period when synchronize_rcu() runs concurrently
3494  * with synchronize_rcu_expedited().  If this is unacceptable, please
3495  * instead use the _full() variant of these polling APIs.
3496  *
3497  * This function provides the same memory-ordering guarantees that
3498  * would be provided by a synchronize_rcu() that was invoked at the call
3499  * to the function that provided @oldstate, and that returned at the end
3500  * of this function.
3501  */
poll_state_synchronize_rcu(unsigned long oldstate)3502 bool poll_state_synchronize_rcu(unsigned long oldstate)
3503 {
3504 	if (oldstate == RCU_GET_STATE_COMPLETED ||
3505 	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3506 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3507 		return true;
3508 	}
3509 	return false;
3510 }
3511 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3512 
3513 /**
3514  * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3515  * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3516  *
3517  * If a full RCU grace period has elapsed since the earlier call from
3518  * which *rgosp was obtained, return @true, otherwise return @false.
3519  * If @false is returned, it is the caller's responsibility to invoke this
3520  * function later on until it does return @true.  Alternatively, the caller
3521  * can explicitly wait for a grace period, for example, by passing @rgosp
3522  * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3523  *
3524  * Yes, this function does not take counter wrap into account.
3525  * But counter wrap is harmless.  If the counter wraps, we have waited
3526  * for more than a billion grace periods (and way more on a 64-bit
3527  * system!).  Those needing to keep rcu_gp_oldstate values for very
3528  * long time periods (many hours even on 32-bit systems) should check
3529  * them occasionally and either refresh them or set a flag indicating
3530  * that the grace period has completed.  Alternatively, they can use
3531  * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3532  * grace-period state.
3533  *
3534  * This function provides the same memory-ordering guarantees that would
3535  * be provided by a synchronize_rcu() that was invoked at the call to
3536  * the function that provided @rgosp, and that returned at the end of this
3537  * function.  And this guarantee requires that the root rcu_node structure's
3538  * ->gp_seq field be checked instead of that of the rcu_state structure.
3539  * The problem is that the just-ending grace-period's callbacks can be
3540  * invoked between the time that the root rcu_node structure's ->gp_seq
3541  * field is updated and the time that the rcu_state structure's ->gp_seq
3542  * field is updated.  Therefore, if a single synchronize_rcu() is to
3543  * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3544  * then the root rcu_node structure is the one that needs to be polled.
3545  */
poll_state_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3546 bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3547 {
3548 	struct rcu_node *rnp = rcu_get_root();
3549 
3550 	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3551 	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3552 	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3553 	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3554 	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3555 		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3556 		return true;
3557 	}
3558 	return false;
3559 }
3560 EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3561 
3562 /**
3563  * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3564  * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3565  *
3566  * If a full RCU grace period has elapsed since the earlier call to
3567  * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3568  * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3569  *
3570  * Yes, this function does not take counter wrap into account.
3571  * But counter wrap is harmless.  If the counter wraps, we have waited for
3572  * more than 2 billion grace periods (and way more on a 64-bit system!),
3573  * so waiting for a couple of additional grace periods should be just fine.
3574  *
3575  * This function provides the same memory-ordering guarantees that
3576  * would be provided by a synchronize_rcu() that was invoked at the call
3577  * to the function that provided @oldstate and that returned at the end
3578  * of this function.
3579  */
cond_synchronize_rcu(unsigned long oldstate)3580 void cond_synchronize_rcu(unsigned long oldstate)
3581 {
3582 	if (!poll_state_synchronize_rcu(oldstate))
3583 		synchronize_rcu();
3584 }
3585 EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3586 
3587 /**
3588  * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3589  * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3590  *
3591  * If a full RCU grace period has elapsed since the call to
3592  * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3593  * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3594  * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3595  * for a full grace period.
3596  *
3597  * Yes, this function does not take counter wrap into account.
3598  * But counter wrap is harmless.  If the counter wraps, we have waited for
3599  * more than 2 billion grace periods (and way more on a 64-bit system!),
3600  * so waiting for a couple of additional grace periods should be just fine.
3601  *
3602  * This function provides the same memory-ordering guarantees that
3603  * would be provided by a synchronize_rcu() that was invoked at the call
3604  * to the function that provided @rgosp and that returned at the end of
3605  * this function.
3606  */
cond_synchronize_rcu_full(struct rcu_gp_oldstate * rgosp)3607 void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3608 {
3609 	if (!poll_state_synchronize_rcu_full(rgosp))
3610 		synchronize_rcu();
3611 }
3612 EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3613 
3614 /*
3615  * Check to see if there is any immediate RCU-related work to be done by
3616  * the current CPU, returning 1 if so and zero otherwise.  The checks are
3617  * in order of increasing expense: checks that can be carried out against
3618  * CPU-local state are performed first.  However, we must check for CPU
3619  * stalls first, else we might not get a chance.
3620  */
rcu_pending(int user)3621 static int rcu_pending(int user)
3622 {
3623 	bool gp_in_progress;
3624 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3625 	struct rcu_node *rnp = rdp->mynode;
3626 
3627 	lockdep_assert_irqs_disabled();
3628 
3629 	/* Check for CPU stalls, if enabled. */
3630 	check_cpu_stall(rdp);
3631 
3632 	/* Does this CPU need a deferred NOCB wakeup? */
3633 	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3634 		return 1;
3635 
3636 	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3637 	gp_in_progress = rcu_gp_in_progress();
3638 	if ((user || rcu_is_cpu_rrupt_from_idle() ||
3639 	     (gp_in_progress &&
3640 	      time_before(jiffies, READ_ONCE(rcu_state.gp_start) +
3641 			  nohz_full_patience_delay_jiffies))) &&
3642 	    rcu_nohz_full_cpu())
3643 		return 0;
3644 
3645 	/* Is the RCU core waiting for a quiescent state from this CPU? */
3646 	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3647 		return 1;
3648 
3649 	/* Does this CPU have callbacks ready to invoke? */
3650 	if (!rcu_rdp_is_offloaded(rdp) &&
3651 	    rcu_segcblist_ready_cbs(&rdp->cblist))
3652 		return 1;
3653 
3654 	/* Has RCU gone idle with this CPU needing another grace period? */
3655 	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3656 	    !rcu_rdp_is_offloaded(rdp) &&
3657 	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3658 		return 1;
3659 
3660 	/* Have RCU grace period completed or started?  */
3661 	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3662 	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3663 		return 1;
3664 
3665 	/* nothing to do */
3666 	return 0;
3667 }
3668 
3669 /*
3670  * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3671  * the compiler is expected to optimize this away.
3672  */
rcu_barrier_trace(const char * s,int cpu,unsigned long done)3673 static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3674 {
3675 	trace_rcu_barrier(rcu_state.name, s, cpu,
3676 			  atomic_read(&rcu_state.barrier_cpu_count), done);
3677 }
3678 
3679 /*
3680  * RCU callback function for rcu_barrier().  If we are last, wake
3681  * up the task executing rcu_barrier().
3682  *
3683  * Note that the value of rcu_state.barrier_sequence must be captured
3684  * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3685  * other CPUs might count the value down to zero before this CPU gets
3686  * around to invoking rcu_barrier_trace(), which might result in bogus
3687  * data from the next instance of rcu_barrier().
3688  */
rcu_barrier_callback(struct rcu_head * rhp)3689 static void rcu_barrier_callback(struct rcu_head *rhp)
3690 {
3691 	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3692 
3693 	rhp->next = rhp; // Mark the callback as having been invoked.
3694 	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3695 		rcu_barrier_trace(TPS("LastCB"), -1, s);
3696 		complete(&rcu_state.barrier_completion);
3697 	} else {
3698 		rcu_barrier_trace(TPS("CB"), -1, s);
3699 	}
3700 }
3701 
3702 /*
3703  * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3704  */
rcu_barrier_entrain(struct rcu_data * rdp)3705 static void rcu_barrier_entrain(struct rcu_data *rdp)
3706 {
3707 	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3708 	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3709 	bool wake_nocb = false;
3710 	bool was_alldone = false;
3711 
3712 	lockdep_assert_held(&rcu_state.barrier_lock);
3713 	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3714 		return;
3715 	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3716 	rdp->barrier_head.func = rcu_barrier_callback;
3717 	debug_rcu_head_queue(&rdp->barrier_head);
3718 	rcu_nocb_lock(rdp);
3719 	/*
3720 	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3721 	 * queue. This way we don't wait for bypass timer that can reach seconds
3722 	 * if it's fully lazy.
3723 	 */
3724 	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3725 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3726 	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3727 	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3728 		atomic_inc(&rcu_state.barrier_cpu_count);
3729 	} else {
3730 		debug_rcu_head_unqueue(&rdp->barrier_head);
3731 		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3732 	}
3733 	rcu_nocb_unlock(rdp);
3734 	if (wake_nocb)
3735 		wake_nocb_gp(rdp, false);
3736 	smp_store_release(&rdp->barrier_seq_snap, gseq);
3737 }
3738 
3739 /*
3740  * Called with preemption disabled, and from cross-cpu IRQ context.
3741  */
rcu_barrier_handler(void * cpu_in)3742 static void rcu_barrier_handler(void *cpu_in)
3743 {
3744 	uintptr_t cpu = (uintptr_t)cpu_in;
3745 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3746 
3747 	lockdep_assert_irqs_disabled();
3748 	WARN_ON_ONCE(cpu != rdp->cpu);
3749 	WARN_ON_ONCE(cpu != smp_processor_id());
3750 	raw_spin_lock(&rcu_state.barrier_lock);
3751 	rcu_barrier_entrain(rdp);
3752 	raw_spin_unlock(&rcu_state.barrier_lock);
3753 }
3754 
3755 /**
3756  * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3757  *
3758  * Note that this primitive does not necessarily wait for an RCU grace period
3759  * to complete.  For example, if there are no RCU callbacks queued anywhere
3760  * in the system, then rcu_barrier() is within its rights to return
3761  * immediately, without waiting for anything, much less an RCU grace period.
3762  */
rcu_barrier(void)3763 void rcu_barrier(void)
3764 {
3765 	uintptr_t cpu;
3766 	unsigned long flags;
3767 	unsigned long gseq;
3768 	struct rcu_data *rdp;
3769 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3770 
3771 	rcu_barrier_trace(TPS("Begin"), -1, s);
3772 
3773 	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3774 	mutex_lock(&rcu_state.barrier_mutex);
3775 
3776 	/* Did someone else do our work for us? */
3777 	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3778 		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
3779 		smp_mb(); /* caller's subsequent code after above check. */
3780 		mutex_unlock(&rcu_state.barrier_mutex);
3781 		return;
3782 	}
3783 
3784 	/* Mark the start of the barrier operation. */
3785 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3786 	rcu_seq_start(&rcu_state.barrier_sequence);
3787 	gseq = rcu_state.barrier_sequence;
3788 	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
3789 
3790 	/*
3791 	 * Initialize the count to two rather than to zero in order
3792 	 * to avoid a too-soon return to zero in case of an immediate
3793 	 * invocation of the just-enqueued callback (or preemption of
3794 	 * this task).  Exclude CPU-hotplug operations to ensure that no
3795 	 * offline non-offloaded CPU has callbacks queued.
3796 	 */
3797 	init_completion(&rcu_state.barrier_completion);
3798 	atomic_set(&rcu_state.barrier_cpu_count, 2);
3799 	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3800 
3801 	/*
3802 	 * Force each CPU with callbacks to register a new callback.
3803 	 * When that callback is invoked, we will know that all of the
3804 	 * corresponding CPU's preceding callbacks have been invoked.
3805 	 */
3806 	for_each_possible_cpu(cpu) {
3807 		rdp = per_cpu_ptr(&rcu_data, cpu);
3808 retry:
3809 		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
3810 			continue;
3811 		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
3812 		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
3813 			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3814 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3815 			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
3816 			continue;
3817 		}
3818 		if (!rcu_rdp_cpu_online(rdp)) {
3819 			rcu_barrier_entrain(rdp);
3820 			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3821 			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3822 			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
3823 			continue;
3824 		}
3825 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
3826 		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
3827 			schedule_timeout_uninterruptible(1);
3828 			goto retry;
3829 		}
3830 		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
3831 		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
3832 	}
3833 
3834 	/*
3835 	 * Now that we have an rcu_barrier_callback() callback on each
3836 	 * CPU, and thus each counted, remove the initial count.
3837 	 */
3838 	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
3839 		complete(&rcu_state.barrier_completion);
3840 
3841 	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3842 	wait_for_completion(&rcu_state.barrier_completion);
3843 
3844 	/* Mark the end of the barrier operation. */
3845 	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
3846 	rcu_seq_end(&rcu_state.barrier_sequence);
3847 	gseq = rcu_state.barrier_sequence;
3848 	for_each_possible_cpu(cpu) {
3849 		rdp = per_cpu_ptr(&rcu_data, cpu);
3850 
3851 		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
3852 	}
3853 
3854 	/* Other rcu_barrier() invocations can now safely proceed. */
3855 	mutex_unlock(&rcu_state.barrier_mutex);
3856 }
3857 EXPORT_SYMBOL_GPL(rcu_barrier);
3858 
3859 static unsigned long rcu_barrier_last_throttle;
3860 
3861 /**
3862  * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
3863  *
3864  * This can be thought of as guard rails around rcu_barrier() that
3865  * permits unrestricted userspace use, at least assuming the hardware's
3866  * try_cmpxchg() is robust.  There will be at most one call per second to
3867  * rcu_barrier() system-wide from use of this function, which means that
3868  * callers might needlessly wait a second or three.
3869  *
3870  * This is intended for use by test suites to avoid OOM by flushing RCU
3871  * callbacks from the previous test before starting the next.  See the
3872  * rcutree.do_rcu_barrier module parameter for more information.
3873  *
3874  * Why not simply make rcu_barrier() more scalable?  That might be
3875  * the eventual endpoint, but let's keep it simple for the time being.
3876  * Note that the module parameter infrastructure serializes calls to a
3877  * given .set() function, but should concurrent .set() invocation ever be
3878  * possible, we are ready!
3879  */
rcu_barrier_throttled(void)3880 static void rcu_barrier_throttled(void)
3881 {
3882 	unsigned long j = jiffies;
3883 	unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
3884 	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3885 
3886 	while (time_in_range(j, old, old + HZ / 16) ||
3887 	       !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
3888 		schedule_timeout_idle(HZ / 16);
3889 		if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
3890 			smp_mb(); /* caller's subsequent code after above check. */
3891 			return;
3892 		}
3893 		j = jiffies;
3894 		old = READ_ONCE(rcu_barrier_last_throttle);
3895 	}
3896 	rcu_barrier();
3897 }
3898 
3899 /*
3900  * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
3901  * request arrives.  We insist on a true value to allow for possible
3902  * future expansion.
3903  */
param_set_do_rcu_barrier(const char * val,const struct kernel_param * kp)3904 static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
3905 {
3906 	bool b;
3907 	int ret;
3908 
3909 	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
3910 		return -EAGAIN;
3911 	ret = kstrtobool(val, &b);
3912 	if (!ret && b) {
3913 		atomic_inc((atomic_t *)kp->arg);
3914 		rcu_barrier_throttled();
3915 		atomic_dec((atomic_t *)kp->arg);
3916 	}
3917 	return ret;
3918 }
3919 
3920 /*
3921  * Output the number of outstanding rcutree.do_rcu_barrier requests.
3922  */
param_get_do_rcu_barrier(char * buffer,const struct kernel_param * kp)3923 static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
3924 {
3925 	return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
3926 }
3927 
3928 static const struct kernel_param_ops do_rcu_barrier_ops = {
3929 	.set = param_set_do_rcu_barrier,
3930 	.get = param_get_do_rcu_barrier,
3931 };
3932 static atomic_t do_rcu_barrier;
3933 module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
3934 
3935 /*
3936  * Compute the mask of online CPUs for the specified rcu_node structure.
3937  * This will not be stable unless the rcu_node structure's ->lock is
3938  * held, but the bit corresponding to the current CPU will be stable
3939  * in most contexts.
3940  */
rcu_rnp_online_cpus(struct rcu_node * rnp)3941 static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
3942 {
3943 	return READ_ONCE(rnp->qsmaskinitnext);
3944 }
3945 
3946 /*
3947  * Is the CPU corresponding to the specified rcu_data structure online
3948  * from RCU's perspective?  This perspective is given by that structure's
3949  * ->qsmaskinitnext field rather than by the global cpu_online_mask.
3950  */
rcu_rdp_cpu_online(struct rcu_data * rdp)3951 static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
3952 {
3953 	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
3954 }
3955 
rcu_cpu_online(int cpu)3956 bool rcu_cpu_online(int cpu)
3957 {
3958 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3959 
3960 	return rcu_rdp_cpu_online(rdp);
3961 }
3962 
3963 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
3964 
3965 /*
3966  * Is the current CPU online as far as RCU is concerned?
3967  *
3968  * Disable preemption to avoid false positives that could otherwise
3969  * happen due to the current CPU number being sampled, this task being
3970  * preempted, its old CPU being taken offline, resuming on some other CPU,
3971  * then determining that its old CPU is now offline.
3972  *
3973  * Disable checking if in an NMI handler because we cannot safely
3974  * report errors from NMI handlers anyway.  In addition, it is OK to use
3975  * RCU on an offline processor during initial boot, hence the check for
3976  * rcu_scheduler_fully_active.
3977  */
rcu_lockdep_current_cpu_online(void)3978 bool rcu_lockdep_current_cpu_online(void)
3979 {
3980 	struct rcu_data *rdp;
3981 	bool ret = false;
3982 
3983 	if (in_nmi() || !rcu_scheduler_fully_active)
3984 		return true;
3985 	preempt_disable_notrace();
3986 	rdp = this_cpu_ptr(&rcu_data);
3987 	/*
3988 	 * Strictly, we care here about the case where the current CPU is
3989 	 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
3990 	 * not being up to date. So arch_spin_is_locked() might have a
3991 	 * false positive if it's held by some *other* CPU, but that's
3992 	 * OK because that just means a false *negative* on the warning.
3993 	 */
3994 	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
3995 		ret = true;
3996 	preempt_enable_notrace();
3997 	return ret;
3998 }
3999 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4000 
4001 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4002 
4003 // Has rcu_init() been invoked?  This is used (for example) to determine
4004 // whether spinlocks may be acquired safely.
rcu_init_invoked(void)4005 static bool rcu_init_invoked(void)
4006 {
4007 	return !!READ_ONCE(rcu_state.n_online_cpus);
4008 }
4009 
4010 /*
4011  * All CPUs for the specified rcu_node structure have gone offline,
4012  * and all tasks that were preempted within an RCU read-side critical
4013  * section while running on one of those CPUs have since exited their RCU
4014  * read-side critical section.  Some other CPU is reporting this fact with
4015  * the specified rcu_node structure's ->lock held and interrupts disabled.
4016  * This function therefore goes up the tree of rcu_node structures,
4017  * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4018  * the leaf rcu_node structure's ->qsmaskinit field has already been
4019  * updated.
4020  *
4021  * This function does check that the specified rcu_node structure has
4022  * all CPUs offline and no blocked tasks, so it is OK to invoke it
4023  * prematurely.  That said, invoking it after the fact will cost you
4024  * a needless lock acquisition.  So once it has done its work, don't
4025  * invoke it again.
4026  */
rcu_cleanup_dead_rnp(struct rcu_node * rnp_leaf)4027 static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4028 {
4029 	long mask;
4030 	struct rcu_node *rnp = rnp_leaf;
4031 
4032 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4033 	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4034 	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4035 	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4036 		return;
4037 	for (;;) {
4038 		mask = rnp->grpmask;
4039 		rnp = rnp->parent;
4040 		if (!rnp)
4041 			break;
4042 		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4043 		rnp->qsmaskinit &= ~mask;
4044 		/* Between grace periods, so better already be zero! */
4045 		WARN_ON_ONCE(rnp->qsmask);
4046 		if (rnp->qsmaskinit) {
4047 			raw_spin_unlock_rcu_node(rnp);
4048 			/* irqs remain disabled. */
4049 			return;
4050 		}
4051 		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4052 	}
4053 }
4054 
4055 /*
4056  * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4057  * first CPU in a given leaf rcu_node structure coming online.  The caller
4058  * must hold the corresponding leaf rcu_node ->lock with interrupts
4059  * disabled.
4060  */
rcu_init_new_rnp(struct rcu_node * rnp_leaf)4061 static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4062 {
4063 	long mask;
4064 	long oldmask;
4065 	struct rcu_node *rnp = rnp_leaf;
4066 
4067 	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4068 	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4069 	for (;;) {
4070 		mask = rnp->grpmask;
4071 		rnp = rnp->parent;
4072 		if (rnp == NULL)
4073 			return;
4074 		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4075 		oldmask = rnp->qsmaskinit;
4076 		rnp->qsmaskinit |= mask;
4077 		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4078 		if (oldmask)
4079 			return;
4080 	}
4081 }
4082 
4083 /*
4084  * Do boot-time initialization of a CPU's per-CPU RCU data.
4085  */
4086 static void __init
rcu_boot_init_percpu_data(int cpu)4087 rcu_boot_init_percpu_data(int cpu)
4088 {
4089 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4090 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4091 
4092 	/* Set up local state, ensuring consistent view of global state. */
4093 	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4094 	INIT_WORK(&rdp->strict_work, strict_work_handler);
4095 	WARN_ON_ONCE(ct->nesting != 1);
4096 	WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu)));
4097 	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4098 	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4099 	rdp->rcu_ofl_gp_state = RCU_GP_CLEANED;
4100 	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4101 	rdp->rcu_onl_gp_state = RCU_GP_CLEANED;
4102 	rdp->last_sched_clock = jiffies;
4103 	rdp->cpu = cpu;
4104 	rcu_boot_init_nocb_percpu_data(rdp);
4105 }
4106 
rcu_thread_affine_rnp(struct task_struct * t,struct rcu_node * rnp)4107 static void rcu_thread_affine_rnp(struct task_struct *t, struct rcu_node *rnp)
4108 {
4109 	cpumask_var_t affinity;
4110 	int cpu;
4111 
4112 	if (!zalloc_cpumask_var(&affinity, GFP_KERNEL))
4113 		return;
4114 
4115 	for_each_leaf_node_possible_cpu(rnp, cpu)
4116 		cpumask_set_cpu(cpu, affinity);
4117 
4118 	kthread_affine_preferred(t, affinity);
4119 
4120 	free_cpumask_var(affinity);
4121 }
4122 
4123 struct kthread_worker *rcu_exp_gp_kworker;
4124 
rcu_spawn_exp_par_gp_kworker(struct rcu_node * rnp)4125 static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
4126 {
4127 	struct kthread_worker *kworker;
4128 	const char *name = "rcu_exp_par_gp_kthread_worker/%d";
4129 	struct sched_param param = { .sched_priority = kthread_prio };
4130 	int rnp_index = rnp - rcu_get_root();
4131 
4132 	if (rnp->exp_kworker)
4133 		return;
4134 
4135 	kworker = kthread_create_worker(0, name, rnp_index);
4136 	if (IS_ERR_OR_NULL(kworker)) {
4137 		pr_err("Failed to create par gp kworker on %d/%d\n",
4138 		       rnp->grplo, rnp->grphi);
4139 		return;
4140 	}
4141 	WRITE_ONCE(rnp->exp_kworker, kworker);
4142 
4143 	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4144 		sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
4145 
4146 	rcu_thread_affine_rnp(kworker->task, rnp);
4147 	wake_up_process(kworker->task);
4148 }
4149 
rcu_start_exp_gp_kworker(void)4150 static void __init rcu_start_exp_gp_kworker(void)
4151 {
4152 	const char *name = "rcu_exp_gp_kthread_worker";
4153 	struct sched_param param = { .sched_priority = kthread_prio };
4154 
4155 	rcu_exp_gp_kworker = kthread_run_worker(0, name);
4156 	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4157 		pr_err("Failed to create %s!\n", name);
4158 		rcu_exp_gp_kworker = NULL;
4159 		return;
4160 	}
4161 
4162 	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4163 		sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4164 }
4165 
rcu_spawn_rnp_kthreads(struct rcu_node * rnp)4166 static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
4167 {
4168 	if (rcu_scheduler_fully_active) {
4169 		mutex_lock(&rnp->kthread_mutex);
4170 		rcu_spawn_one_boost_kthread(rnp);
4171 		rcu_spawn_exp_par_gp_kworker(rnp);
4172 		mutex_unlock(&rnp->kthread_mutex);
4173 	}
4174 }
4175 
4176 /*
4177  * Invoked early in the CPU-online process, when pretty much all services
4178  * are available.  The incoming CPU is not present.
4179  *
4180  * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4181  * offline event can be happening at a given time.  Note also that we can
4182  * accept some slop in the rsp->gp_seq access due to the fact that this
4183  * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4184  * And any offloaded callbacks are being numbered elsewhere.
4185  */
rcutree_prepare_cpu(unsigned int cpu)4186 int rcutree_prepare_cpu(unsigned int cpu)
4187 {
4188 	unsigned long flags;
4189 	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4190 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4191 	struct rcu_node *rnp = rcu_get_root();
4192 
4193 	/* Set up local state, ensuring consistent view of global state. */
4194 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4195 	rdp->qlen_last_fqs_check = 0;
4196 	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4197 	rdp->blimit = blimit;
4198 	ct->nesting = 1;	/* CPU not up, no tearing. */
4199 	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4200 
4201 	/*
4202 	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4203 	 * (re-)initialized.
4204 	 */
4205 	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4206 		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4207 
4208 	/*
4209 	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4210 	 * propagation up the rcu_node tree will happen at the beginning
4211 	 * of the next grace period.
4212 	 */
4213 	rnp = rdp->mynode;
4214 	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4215 	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4216 	rdp->gp_seq_needed = rdp->gp_seq;
4217 	rdp->cpu_no_qs.b.norm = true;
4218 	rdp->core_needs_qs = false;
4219 	rdp->rcu_iw_pending = false;
4220 	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4221 	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4222 	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4223 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4224 	rcu_spawn_rnp_kthreads(rnp);
4225 	rcu_spawn_cpu_nocb_kthread(cpu);
4226 	ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
4227 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4228 
4229 	return 0;
4230 }
4231 
4232 /*
4233  * Has the specified (known valid) CPU ever been fully online?
4234  */
rcu_cpu_beenfullyonline(int cpu)4235 bool rcu_cpu_beenfullyonline(int cpu)
4236 {
4237 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4238 
4239 	return smp_load_acquire(&rdp->beenonline);
4240 }
4241 
4242 /*
4243  * Near the end of the CPU-online process.  Pretty much all services
4244  * enabled, and the CPU is now very much alive.
4245  */
rcutree_online_cpu(unsigned int cpu)4246 int rcutree_online_cpu(unsigned int cpu)
4247 {
4248 	unsigned long flags;
4249 	struct rcu_data *rdp;
4250 	struct rcu_node *rnp;
4251 
4252 	rdp = per_cpu_ptr(&rcu_data, cpu);
4253 	rnp = rdp->mynode;
4254 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4255 	rnp->ffmask |= rdp->grpmask;
4256 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4257 	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4258 		return 0; /* Too early in boot for scheduler work. */
4259 	sync_sched_exp_online_cleanup(cpu);
4260 
4261 	// Stop-machine done, so allow nohz_full to disable tick.
4262 	tick_dep_clear(TICK_DEP_BIT_RCU);
4263 	return 0;
4264 }
4265 
4266 /*
4267  * Mark the specified CPU as being online so that subsequent grace periods
4268  * (both expedited and normal) will wait on it.  Note that this means that
4269  * incoming CPUs are not allowed to use RCU read-side critical sections
4270  * until this function is called.  Failing to observe this restriction
4271  * will result in lockdep splats.
4272  *
4273  * Note that this function is special in that it is invoked directly
4274  * from the incoming CPU rather than from the cpuhp_step mechanism.
4275  * This is because this function must be invoked at a precise location.
4276  * This incoming CPU must not have enabled interrupts yet.
4277  *
4278  * This mirrors the effects of rcutree_report_cpu_dead().
4279  */
rcutree_report_cpu_starting(unsigned int cpu)4280 void rcutree_report_cpu_starting(unsigned int cpu)
4281 {
4282 	unsigned long mask;
4283 	struct rcu_data *rdp;
4284 	struct rcu_node *rnp;
4285 	bool newcpu;
4286 
4287 	lockdep_assert_irqs_disabled();
4288 	rdp = per_cpu_ptr(&rcu_data, cpu);
4289 	if (rdp->cpu_started)
4290 		return;
4291 	rdp->cpu_started = true;
4292 
4293 	rnp = rdp->mynode;
4294 	mask = rdp->grpmask;
4295 	arch_spin_lock(&rcu_state.ofl_lock);
4296 	rcu_watching_online();
4297 	raw_spin_lock(&rcu_state.barrier_lock);
4298 	raw_spin_lock_rcu_node(rnp);
4299 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4300 	raw_spin_unlock(&rcu_state.barrier_lock);
4301 	newcpu = !(rnp->expmaskinitnext & mask);
4302 	rnp->expmaskinitnext |= mask;
4303 	/* Allow lockless access for expedited grace periods. */
4304 	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4305 	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4306 	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4307 	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4308 	rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state);
4309 
4310 	/* An incoming CPU should never be blocking a grace period. */
4311 	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4312 		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4313 		unsigned long flags;
4314 
4315 		local_irq_save(flags);
4316 		rcu_disable_urgency_upon_qs(rdp);
4317 		/* Report QS -after- changing ->qsmaskinitnext! */
4318 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4319 	} else {
4320 		raw_spin_unlock_rcu_node(rnp);
4321 	}
4322 	arch_spin_unlock(&rcu_state.ofl_lock);
4323 	smp_store_release(&rdp->beenonline, true);
4324 	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4325 }
4326 
4327 /*
4328  * The outgoing function has no further need of RCU, so remove it from
4329  * the rcu_node tree's ->qsmaskinitnext bit masks.
4330  *
4331  * Note that this function is special in that it is invoked directly
4332  * from the outgoing CPU rather than from the cpuhp_step mechanism.
4333  * This is because this function must be invoked at a precise location.
4334  *
4335  * This mirrors the effect of rcutree_report_cpu_starting().
4336  */
rcutree_report_cpu_dead(void)4337 void rcutree_report_cpu_dead(void)
4338 {
4339 	unsigned long flags;
4340 	unsigned long mask;
4341 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4342 	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4343 
4344 	/*
4345 	 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
4346 	 * may introduce a new READ-side while it is actually off the QS masks.
4347 	 */
4348 	lockdep_assert_irqs_disabled();
4349 	// Do any dangling deferred wakeups.
4350 	do_nocb_deferred_wakeup(rdp);
4351 
4352 	rcu_preempt_deferred_qs(current);
4353 
4354 	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4355 	mask = rdp->grpmask;
4356 	arch_spin_lock(&rcu_state.ofl_lock);
4357 	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4358 	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4359 	rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state);
4360 	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4361 		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4362 		rcu_disable_urgency_upon_qs(rdp);
4363 		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4364 		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4365 	}
4366 	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4367 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4368 	arch_spin_unlock(&rcu_state.ofl_lock);
4369 	rdp->cpu_started = false;
4370 }
4371 
4372 #ifdef CONFIG_HOTPLUG_CPU
4373 /*
4374  * The outgoing CPU has just passed through the dying-idle state, and we
4375  * are being invoked from the CPU that was IPIed to continue the offline
4376  * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4377  */
rcutree_migrate_callbacks(int cpu)4378 void rcutree_migrate_callbacks(int cpu)
4379 {
4380 	unsigned long flags;
4381 	struct rcu_data *my_rdp;
4382 	struct rcu_node *my_rnp;
4383 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4384 	bool needwake;
4385 
4386 	if (rcu_rdp_is_offloaded(rdp))
4387 		return;
4388 
4389 	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4390 	if (rcu_segcblist_empty(&rdp->cblist)) {
4391 		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4392 		return;  /* No callbacks to migrate. */
4393 	}
4394 
4395 	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4396 	rcu_barrier_entrain(rdp);
4397 	my_rdp = this_cpu_ptr(&rcu_data);
4398 	my_rnp = my_rdp->mynode;
4399 	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4400 	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4401 	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4402 	/* Leverage recent GPs and set GP for new callbacks. */
4403 	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4404 		   rcu_advance_cbs(my_rnp, my_rdp);
4405 	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4406 	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4407 	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4408 	rcu_segcblist_disable(&rdp->cblist);
4409 	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4410 	check_cb_ovld_locked(my_rdp, my_rnp);
4411 	if (rcu_rdp_is_offloaded(my_rdp)) {
4412 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4413 		__call_rcu_nocb_wake(my_rdp, true, flags);
4414 	} else {
4415 		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4416 		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4417 	}
4418 	local_irq_restore(flags);
4419 	if (needwake)
4420 		rcu_gp_kthread_wake();
4421 	lockdep_assert_irqs_enabled();
4422 	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4423 		  !rcu_segcblist_empty(&rdp->cblist),
4424 		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4425 		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4426 		  rcu_segcblist_first_cb(&rdp->cblist));
4427 }
4428 
4429 /*
4430  * The CPU has been completely removed, and some other CPU is reporting
4431  * this fact from process context.  Do the remainder of the cleanup.
4432  * There can only be one CPU hotplug operation at a time, so no need for
4433  * explicit locking.
4434  */
rcutree_dead_cpu(unsigned int cpu)4435 int rcutree_dead_cpu(unsigned int cpu)
4436 {
4437 	ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
4438 	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4439 	// Stop-machine done, so allow nohz_full to disable tick.
4440 	tick_dep_clear(TICK_DEP_BIT_RCU);
4441 	return 0;
4442 }
4443 
4444 /*
4445  * Near the end of the offline process.  Trace the fact that this CPU
4446  * is going offline.
4447  */
rcutree_dying_cpu(unsigned int cpu)4448 int rcutree_dying_cpu(unsigned int cpu)
4449 {
4450 	bool blkd;
4451 	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4452 	struct rcu_node *rnp = rdp->mynode;
4453 
4454 	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4455 	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4456 			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4457 	return 0;
4458 }
4459 
4460 /*
4461  * Near the beginning of the process.  The CPU is still very much alive
4462  * with pretty much all services enabled.
4463  */
rcutree_offline_cpu(unsigned int cpu)4464 int rcutree_offline_cpu(unsigned int cpu)
4465 {
4466 	unsigned long flags;
4467 	struct rcu_data *rdp;
4468 	struct rcu_node *rnp;
4469 
4470 	rdp = per_cpu_ptr(&rcu_data, cpu);
4471 	rnp = rdp->mynode;
4472 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4473 	rnp->ffmask &= ~rdp->grpmask;
4474 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4475 
4476 	// nohz_full CPUs need the tick for stop-machine to work quickly
4477 	tick_dep_set(TICK_DEP_BIT_RCU);
4478 	return 0;
4479 }
4480 #endif /* #ifdef CONFIG_HOTPLUG_CPU */
4481 
4482 /*
4483  * On non-huge systems, use expedited RCU grace periods to make suspend
4484  * and hibernation run faster.
4485  */
rcu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)4486 static int rcu_pm_notify(struct notifier_block *self,
4487 			 unsigned long action, void *hcpu)
4488 {
4489 	switch (action) {
4490 	case PM_HIBERNATION_PREPARE:
4491 	case PM_SUSPEND_PREPARE:
4492 		rcu_async_hurry();
4493 		rcu_expedite_gp();
4494 		break;
4495 	case PM_POST_HIBERNATION:
4496 	case PM_POST_SUSPEND:
4497 		rcu_unexpedite_gp();
4498 		rcu_async_relax();
4499 		break;
4500 	default:
4501 		break;
4502 	}
4503 	return NOTIFY_OK;
4504 }
4505 
4506 /*
4507  * Spawn the kthreads that handle RCU's grace periods.
4508  */
rcu_spawn_gp_kthread(void)4509 static int __init rcu_spawn_gp_kthread(void)
4510 {
4511 	unsigned long flags;
4512 	struct rcu_node *rnp;
4513 	struct sched_param sp;
4514 	struct task_struct *t;
4515 	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4516 
4517 	rcu_scheduler_fully_active = 1;
4518 	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4519 	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4520 		return 0;
4521 	if (kthread_prio) {
4522 		sp.sched_priority = kthread_prio;
4523 		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4524 	}
4525 	rnp = rcu_get_root();
4526 	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4527 	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4528 	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4529 	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4530 	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4531 	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4532 	wake_up_process(t);
4533 	/* This is a pre-SMP initcall, we expect a single CPU */
4534 	WARN_ON(num_online_cpus() > 1);
4535 	/*
4536 	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4537 	 * due to rcu_scheduler_fully_active.
4538 	 */
4539 	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4540 	rcu_spawn_rnp_kthreads(rdp->mynode);
4541 	rcu_spawn_core_kthreads();
4542 	/* Create kthread worker for expedited GPs */
4543 	rcu_start_exp_gp_kworker();
4544 	return 0;
4545 }
4546 early_initcall(rcu_spawn_gp_kthread);
4547 
4548 /*
4549  * This function is invoked towards the end of the scheduler's
4550  * initialization process.  Before this is called, the idle task might
4551  * contain synchronous grace-period primitives (during which time, this idle
4552  * task is booting the system, and such primitives are no-ops).  After this
4553  * function is called, any synchronous grace-period primitives are run as
4554  * expedited, with the requesting task driving the grace period forward.
4555  * A later core_initcall() rcu_set_runtime_mode() will switch to full
4556  * runtime RCU functionality.
4557  */
rcu_scheduler_starting(void)4558 void rcu_scheduler_starting(void)
4559 {
4560 	unsigned long flags;
4561 	struct rcu_node *rnp;
4562 
4563 	WARN_ON(num_online_cpus() != 1);
4564 	WARN_ON(nr_context_switches() > 0);
4565 	rcu_test_sync_prims();
4566 
4567 	// Fix up the ->gp_seq counters.
4568 	local_irq_save(flags);
4569 	rcu_for_each_node_breadth_first(rnp)
4570 		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4571 	local_irq_restore(flags);
4572 
4573 	// Switch out of early boot mode.
4574 	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4575 	rcu_test_sync_prims();
4576 }
4577 
4578 /*
4579  * Helper function for rcu_init() that initializes the rcu_state structure.
4580  */
rcu_init_one(void)4581 static void __init rcu_init_one(void)
4582 {
4583 	static const char * const buf[] = RCU_NODE_NAME_INIT;
4584 	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4585 	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4586 	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4587 
4588 	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4589 	int cpustride = 1;
4590 	int i;
4591 	int j;
4592 	struct rcu_node *rnp;
4593 
4594 	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4595 
4596 	/* Silence gcc 4.8 false positive about array index out of range. */
4597 	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4598 		panic("rcu_init_one: rcu_num_lvls out of range");
4599 
4600 	/* Initialize the level-tracking arrays. */
4601 
4602 	for (i = 1; i < rcu_num_lvls; i++)
4603 		rcu_state.level[i] =
4604 			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4605 	rcu_init_levelspread(levelspread, num_rcu_lvl);
4606 
4607 	/* Initialize the elements themselves, starting from the leaves. */
4608 
4609 	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4610 		cpustride *= levelspread[i];
4611 		rnp = rcu_state.level[i];
4612 		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4613 			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4614 			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4615 						   &rcu_node_class[i], buf[i]);
4616 			raw_spin_lock_init(&rnp->fqslock);
4617 			lockdep_set_class_and_name(&rnp->fqslock,
4618 						   &rcu_fqs_class[i], fqs[i]);
4619 			rnp->gp_seq = rcu_state.gp_seq;
4620 			rnp->gp_seq_needed = rcu_state.gp_seq;
4621 			rnp->completedqs = rcu_state.gp_seq;
4622 			rnp->qsmask = 0;
4623 			rnp->qsmaskinit = 0;
4624 			rnp->grplo = j * cpustride;
4625 			rnp->grphi = (j + 1) * cpustride - 1;
4626 			if (rnp->grphi >= nr_cpu_ids)
4627 				rnp->grphi = nr_cpu_ids - 1;
4628 			if (i == 0) {
4629 				rnp->grpnum = 0;
4630 				rnp->grpmask = 0;
4631 				rnp->parent = NULL;
4632 			} else {
4633 				rnp->grpnum = j % levelspread[i - 1];
4634 				rnp->grpmask = BIT(rnp->grpnum);
4635 				rnp->parent = rcu_state.level[i - 1] +
4636 					      j / levelspread[i - 1];
4637 			}
4638 			rnp->level = i;
4639 			INIT_LIST_HEAD(&rnp->blkd_tasks);
4640 			rcu_init_one_nocb(rnp);
4641 			init_waitqueue_head(&rnp->exp_wq[0]);
4642 			init_waitqueue_head(&rnp->exp_wq[1]);
4643 			init_waitqueue_head(&rnp->exp_wq[2]);
4644 			init_waitqueue_head(&rnp->exp_wq[3]);
4645 			spin_lock_init(&rnp->exp_lock);
4646 			mutex_init(&rnp->kthread_mutex);
4647 			raw_spin_lock_init(&rnp->exp_poll_lock);
4648 			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4649 			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4650 		}
4651 	}
4652 
4653 	init_swait_queue_head(&rcu_state.gp_wq);
4654 	init_swait_queue_head(&rcu_state.expedited_wq);
4655 	rnp = rcu_first_leaf_node();
4656 	for_each_possible_cpu(i) {
4657 		while (i > rnp->grphi)
4658 			rnp++;
4659 		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4660 		per_cpu_ptr(&rcu_data, i)->barrier_head.next =
4661 			&per_cpu_ptr(&rcu_data, i)->barrier_head;
4662 		rcu_boot_init_percpu_data(i);
4663 	}
4664 }
4665 
4666 /*
4667  * Force priority from the kernel command-line into range.
4668  */
sanitize_kthread_prio(void)4669 static void __init sanitize_kthread_prio(void)
4670 {
4671 	int kthread_prio_in = kthread_prio;
4672 
4673 	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4674 	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4675 		kthread_prio = 2;
4676 	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4677 		kthread_prio = 1;
4678 	else if (kthread_prio < 0)
4679 		kthread_prio = 0;
4680 	else if (kthread_prio > 99)
4681 		kthread_prio = 99;
4682 
4683 	if (kthread_prio != kthread_prio_in)
4684 		pr_alert("%s: Limited prio to %d from %d\n",
4685 			 __func__, kthread_prio, kthread_prio_in);
4686 }
4687 
4688 /*
4689  * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4690  * replace the definitions in tree.h because those are needed to size
4691  * the ->node array in the rcu_state structure.
4692  */
rcu_init_geometry(void)4693 void rcu_init_geometry(void)
4694 {
4695 	ulong d;
4696 	int i;
4697 	static unsigned long old_nr_cpu_ids;
4698 	int rcu_capacity[RCU_NUM_LVLS];
4699 	static bool initialized;
4700 
4701 	if (initialized) {
4702 		/*
4703 		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4704 		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4705 		 */
4706 		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4707 		return;
4708 	}
4709 
4710 	old_nr_cpu_ids = nr_cpu_ids;
4711 	initialized = true;
4712 
4713 	/*
4714 	 * Initialize any unspecified boot parameters.
4715 	 * The default values of jiffies_till_first_fqs and
4716 	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4717 	 * value, which is a function of HZ, then adding one for each
4718 	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4719 	 */
4720 	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4721 	if (jiffies_till_first_fqs == ULONG_MAX)
4722 		jiffies_till_first_fqs = d;
4723 	if (jiffies_till_next_fqs == ULONG_MAX)
4724 		jiffies_till_next_fqs = d;
4725 	adjust_jiffies_till_sched_qs();
4726 
4727 	/* If the compile-time values are accurate, just leave. */
4728 	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4729 	    nr_cpu_ids == NR_CPUS)
4730 		return;
4731 	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4732 		rcu_fanout_leaf, nr_cpu_ids);
4733 
4734 	/*
4735 	 * The boot-time rcu_fanout_leaf parameter must be at least two
4736 	 * and cannot exceed the number of bits in the rcu_node masks.
4737 	 * Complain and fall back to the compile-time values if this
4738 	 * limit is exceeded.
4739 	 */
4740 	if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) {
4741 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4742 		WARN_ON(1);
4743 		return;
4744 	}
4745 
4746 	/*
4747 	 * Compute number of nodes that can be handled an rcu_node tree
4748 	 * with the given number of levels.
4749 	 */
4750 	rcu_capacity[0] = rcu_fanout_leaf;
4751 	for (i = 1; i < RCU_NUM_LVLS; i++)
4752 		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4753 
4754 	/*
4755 	 * The tree must be able to accommodate the configured number of CPUs.
4756 	 * If this limit is exceeded, fall back to the compile-time values.
4757 	 */
4758 	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4759 		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4760 		WARN_ON(1);
4761 		return;
4762 	}
4763 
4764 	/* Calculate the number of levels in the tree. */
4765 	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4766 	}
4767 	rcu_num_lvls = i + 1;
4768 
4769 	/* Calculate the number of rcu_nodes at each level of the tree. */
4770 	for (i = 0; i < rcu_num_lvls; i++) {
4771 		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4772 		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4773 	}
4774 
4775 	/* Calculate the total number of rcu_node structures. */
4776 	rcu_num_nodes = 0;
4777 	for (i = 0; i < rcu_num_lvls; i++)
4778 		rcu_num_nodes += num_rcu_lvl[i];
4779 }
4780 
4781 /*
4782  * Dump out the structure of the rcu_node combining tree associated
4783  * with the rcu_state structure.
4784  */
rcu_dump_rcu_node_tree(void)4785 static void __init rcu_dump_rcu_node_tree(void)
4786 {
4787 	int level = 0;
4788 	struct rcu_node *rnp;
4789 
4790 	pr_info("rcu_node tree layout dump\n");
4791 	pr_info(" ");
4792 	rcu_for_each_node_breadth_first(rnp) {
4793 		if (rnp->level != level) {
4794 			pr_cont("\n");
4795 			pr_info(" ");
4796 			level = rnp->level;
4797 		}
4798 		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4799 	}
4800 	pr_cont("\n");
4801 }
4802 
4803 struct workqueue_struct *rcu_gp_wq;
4804 
rcu_init(void)4805 void __init rcu_init(void)
4806 {
4807 	int cpu = smp_processor_id();
4808 
4809 	rcu_early_boot_tests();
4810 
4811 	rcu_bootup_announce();
4812 	sanitize_kthread_prio();
4813 	rcu_init_geometry();
4814 	rcu_init_one();
4815 	if (dump_tree)
4816 		rcu_dump_rcu_node_tree();
4817 	if (use_softirq)
4818 		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4819 
4820 	/*
4821 	 * We don't need protection against CPU-hotplug here because
4822 	 * this is called early in boot, before either interrupts
4823 	 * or the scheduler are operational.
4824 	 */
4825 	pm_notifier(rcu_pm_notify, 0);
4826 	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4827 	rcutree_prepare_cpu(cpu);
4828 	rcutree_report_cpu_starting(cpu);
4829 	rcutree_online_cpu(cpu);
4830 
4831 	/* Create workqueue for Tree SRCU and for expedited GPs. */
4832 	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4833 	WARN_ON(!rcu_gp_wq);
4834 
4835 	sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0);
4836 	WARN_ON(!sync_wq);
4837 
4838 	/* Fill in default value for rcutree.qovld boot parameter. */
4839 	/* -After- the rcu_node ->lock fields are initialized! */
4840 	if (qovld < 0)
4841 		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4842 	else
4843 		qovld_calc = qovld;
4844 
4845 	// Kick-start in case any polled grace periods started early.
4846 	(void)start_poll_synchronize_rcu_expedited();
4847 
4848 	rcu_test_sync_prims();
4849 
4850 	tasks_cblist_init_generic();
4851 }
4852 
4853 #include "tree_stall.h"
4854 #include "tree_exp.h"
4855 #include "tree_nocb.h"
4856 #include "tree_plugin.h"
4857