xref: /linux/mm/kmemleak.c (revision 3a39d672e7f48b8d6b91a09afa4b55352773b4b5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object trees
18  *   (object_tree_root, object_phys_tree_root, object_percpu_tree_root). The
19  *   object_list is the main list holding the metadata (struct
20  *   kmemleak_object) for the allocated memory blocks. The object trees are
21  *   red black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The kmemleak_object structures are added to
23  *   the object_list and the object tree root in the create_object() function
24  *   called from the kmemleak_alloc{,_phys,_percpu}() callback and removed in
25  *   delete_object() called from the kmemleak_free{,_phys,_percpu}() callback
26  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
27  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
28  *   that some members of this structure may be protected by other means
29  *   (atomic or kmemleak_lock). This lock is also held when scanning the
30  *   corresponding memory block to avoid the kernel freeing it via the
31  *   kmemleak_free() callback. This is less heavyweight than holding a global
32  *   lock like kmemleak_lock during scanning.
33  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
34  *   unreferenced objects at a time. The gray_list contains the objects which
35  *   are already referenced or marked as false positives and need to be
36  *   scanned. This list is only modified during a scanning episode when the
37  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
38  *   Note that the kmemleak_object.use_count is incremented when an object is
39  *   added to the gray_list and therefore cannot be freed. This mutex also
40  *   prevents multiple users of the "kmemleak" debugfs file together with
41  *   modifications to the memory scanning parameters including the scan_thread
42  *   pointer
43  *
44  * Locks and mutexes are acquired/nested in the following order:
45  *
46  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
47  *
48  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
49  * regions.
50  *
51  * The kmemleak_object structures have a use_count incremented or decremented
52  * using the get_object()/put_object() functions. When the use_count becomes
53  * 0, this count can no longer be incremented and put_object() schedules the
54  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
55  * function must be protected by rcu_read_lock() to avoid accessing a freed
56  * structure.
57  */
58 
59 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
60 
61 #include <linux/init.h>
62 #include <linux/kernel.h>
63 #include <linux/list.h>
64 #include <linux/sched/signal.h>
65 #include <linux/sched/task.h>
66 #include <linux/sched/task_stack.h>
67 #include <linux/jiffies.h>
68 #include <linux/delay.h>
69 #include <linux/export.h>
70 #include <linux/kthread.h>
71 #include <linux/rbtree.h>
72 #include <linux/fs.h>
73 #include <linux/debugfs.h>
74 #include <linux/seq_file.h>
75 #include <linux/cpumask.h>
76 #include <linux/spinlock.h>
77 #include <linux/module.h>
78 #include <linux/mutex.h>
79 #include <linux/rcupdate.h>
80 #include <linux/stacktrace.h>
81 #include <linux/stackdepot.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96 
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100 
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105 
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE		16	/* stack trace length */
110 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
111 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
112 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
114 
115 #define BYTES_PER_POINTER	sizeof(void *)
116 
117 /* scanning area inside a memory block */
118 struct kmemleak_scan_area {
119 	struct hlist_node node;
120 	unsigned long start;
121 	size_t size;
122 };
123 
124 #define KMEMLEAK_GREY	0
125 #define KMEMLEAK_BLACK	-1
126 
127 /*
128  * Structure holding the metadata for each allocated memory block.
129  * Modifications to such objects should be made while holding the
130  * object->lock. Insertions or deletions from object_list, gray_list or
131  * rb_node are already protected by the corresponding locks or mutex (see
132  * the notes on locking above). These objects are reference-counted
133  * (use_count) and freed using the RCU mechanism.
134  */
135 struct kmemleak_object {
136 	raw_spinlock_t lock;
137 	unsigned int flags;		/* object status flags */
138 	struct list_head object_list;
139 	struct list_head gray_list;
140 	struct rb_node rb_node;
141 	struct rcu_head rcu;		/* object_list lockless traversal */
142 	/* object usage count; object freed when use_count == 0 */
143 	atomic_t use_count;
144 	unsigned int del_state;		/* deletion state */
145 	unsigned long pointer;
146 	size_t size;
147 	/* pass surplus references to this pointer */
148 	unsigned long excess_ref;
149 	/* minimum number of a pointers found before it is considered leak */
150 	int min_count;
151 	/* the total number of pointers found pointing to this object */
152 	int count;
153 	/* checksum for detecting modified objects */
154 	u32 checksum;
155 	depot_stack_handle_t trace_handle;
156 	/* memory ranges to be scanned inside an object (empty for all) */
157 	struct hlist_head area_list;
158 	unsigned long jiffies;		/* creation timestamp */
159 	pid_t pid;			/* pid of the current task */
160 	char comm[TASK_COMM_LEN];	/* executable name */
161 };
162 
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED	(1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED		(1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN		(1 << 2)
169 /* flag set to fully scan the object when scan_area allocation failed */
170 #define OBJECT_FULL_SCAN	(1 << 3)
171 /* flag set for object allocated with physical address */
172 #define OBJECT_PHYS		(1 << 4)
173 /* flag set for per-CPU pointers */
174 #define OBJECT_PERCPU		(1 << 5)
175 
176 /* set when __remove_object() called */
177 #define DELSTATE_REMOVED	(1 << 0)
178 /* set to temporarily prevent deletion from object_list */
179 #define DELSTATE_NO_DELETE	(1 << 1)
180 
181 #define HEX_PREFIX		"    "
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE		16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE		1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII		1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES		2
190 
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* memory pool allocation */
196 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
197 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
198 static LIST_HEAD(mem_pool_free_list);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root = RB_ROOT;
201 /* search tree for object (with OBJECT_PHYS flag) boundaries */
202 static struct rb_root object_phys_tree_root = RB_ROOT;
203 /* search tree for object (with OBJECT_PERCPU flag) boundaries */
204 static struct rb_root object_percpu_tree_root = RB_ROOT;
205 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
206 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
207 
208 /* allocation caches for kmemleak internal data */
209 static struct kmem_cache *object_cache;
210 static struct kmem_cache *scan_area_cache;
211 
212 /* set if tracing memory operations is enabled */
213 static int kmemleak_enabled = 1;
214 /* same as above but only for the kmemleak_free() callback */
215 static int kmemleak_free_enabled = 1;
216 /* set in the late_initcall if there were no errors */
217 static int kmemleak_late_initialized;
218 /* set if a kmemleak warning was issued */
219 static int kmemleak_warning;
220 /* set if a fatal kmemleak error has occurred */
221 static int kmemleak_error;
222 
223 /* minimum and maximum address that may be valid pointers */
224 static unsigned long min_addr = ULONG_MAX;
225 static unsigned long max_addr;
226 
227 /* minimum and maximum address that may be valid per-CPU pointers */
228 static unsigned long min_percpu_addr = ULONG_MAX;
229 static unsigned long max_percpu_addr;
230 
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245 
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248 
249 static void kmemleak_disable(void);
250 
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)	do {		\
255 	pr_warn(x);				\
256 	dump_stack();				\
257 	kmemleak_warning = 1;			\
258 } while (0)
259 
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)	do {	\
266 	kmemleak_warn(x);		\
267 	kmemleak_disable();		\
268 } while (0)
269 
270 #define warn_or_seq_printf(seq, fmt, ...)	do {	\
271 	if (seq)					\
272 		seq_printf(seq, fmt, ##__VA_ARGS__);	\
273 	else						\
274 		pr_warn(fmt, ##__VA_ARGS__);		\
275 } while (0)
276 
warn_or_seq_hex_dump(struct seq_file * seq,int prefix_type,int rowsize,int groupsize,const void * buf,size_t len,bool ascii)277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278 				 int rowsize, int groupsize, const void *buf,
279 				 size_t len, bool ascii)
280 {
281 	if (seq)
282 		seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283 			     buf, len, ascii);
284 	else
285 		print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286 			       rowsize, groupsize, buf, len, ascii);
287 }
288 
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
hex_dump_object(struct seq_file * seq,struct kmemleak_object * object)295 static void hex_dump_object(struct seq_file *seq,
296 			    struct kmemleak_object *object)
297 {
298 	const u8 *ptr = (const u8 *)object->pointer;
299 	size_t len;
300 
301 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302 		return;
303 
304 	if (object->flags & OBJECT_PERCPU)
305 		ptr = (const u8 *)this_cpu_ptr((void __percpu *)object->pointer);
306 
307 	/* limit the number of lines to HEX_MAX_LINES */
308 	len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
309 
310 	if (object->flags & OBJECT_PERCPU)
311 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes on cpu %d):\n",
312 				   len, raw_smp_processor_id());
313 	else
314 		warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
315 	kasan_disable_current();
316 	warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
317 			     HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
318 	kasan_enable_current();
319 }
320 
321 /*
322  * Object colors, encoded with count and min_count:
323  * - white - orphan object, not enough references to it (count < min_count)
324  * - gray  - not orphan, not marked as false positive (min_count == 0) or
325  *		sufficient references to it (count >= min_count)
326  * - black - ignore, it doesn't contain references (e.g. text section)
327  *		(min_count == -1). No function defined for this color.
328  * Newly created objects don't have any color assigned (object->count == -1)
329  * before the next memory scan when they become white.
330  */
color_white(const struct kmemleak_object * object)331 static bool color_white(const struct kmemleak_object *object)
332 {
333 	return object->count != KMEMLEAK_BLACK &&
334 		object->count < object->min_count;
335 }
336 
color_gray(const struct kmemleak_object * object)337 static bool color_gray(const struct kmemleak_object *object)
338 {
339 	return object->min_count != KMEMLEAK_BLACK &&
340 		object->count >= object->min_count;
341 }
342 
343 /*
344  * Objects are considered unreferenced only if their color is white, they have
345  * not be deleted and have a minimum age to avoid false positives caused by
346  * pointers temporarily stored in CPU registers.
347  */
unreferenced_object(struct kmemleak_object * object)348 static bool unreferenced_object(struct kmemleak_object *object)
349 {
350 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
351 		time_before_eq(object->jiffies + jiffies_min_age,
352 			       jiffies_last_scan);
353 }
354 
355 /*
356  * Printing of the unreferenced objects information to the seq file. The
357  * print_unreferenced function must be called with the object->lock held.
358  */
print_unreferenced(struct seq_file * seq,struct kmemleak_object * object)359 static void print_unreferenced(struct seq_file *seq,
360 			       struct kmemleak_object *object)
361 {
362 	int i;
363 	unsigned long *entries;
364 	unsigned int nr_entries;
365 
366 	nr_entries = stack_depot_fetch(object->trace_handle, &entries);
367 	warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
368 			  object->pointer, object->size);
369 	warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu\n",
370 			   object->comm, object->pid, object->jiffies);
371 	hex_dump_object(seq, object);
372 	warn_or_seq_printf(seq, "  backtrace (crc %x):\n", object->checksum);
373 
374 	for (i = 0; i < nr_entries; i++) {
375 		void *ptr = (void *)entries[i];
376 		warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
377 	}
378 }
379 
380 /*
381  * Print the kmemleak_object information. This function is used mainly for
382  * debugging special cases when kmemleak operations. It must be called with
383  * the object->lock held.
384  */
dump_object_info(struct kmemleak_object * object)385 static void dump_object_info(struct kmemleak_object *object)
386 {
387 	pr_notice("Object 0x%08lx (size %zu):\n",
388 			object->pointer, object->size);
389 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
390 			object->comm, object->pid, object->jiffies);
391 	pr_notice("  min_count = %d\n", object->min_count);
392 	pr_notice("  count = %d\n", object->count);
393 	pr_notice("  flags = 0x%x\n", object->flags);
394 	pr_notice("  checksum = %u\n", object->checksum);
395 	pr_notice("  backtrace:\n");
396 	if (object->trace_handle)
397 		stack_depot_print(object->trace_handle);
398 }
399 
object_tree(unsigned long objflags)400 static struct rb_root *object_tree(unsigned long objflags)
401 {
402 	if (objflags & OBJECT_PHYS)
403 		return &object_phys_tree_root;
404 	if (objflags & OBJECT_PERCPU)
405 		return &object_percpu_tree_root;
406 	return &object_tree_root;
407 }
408 
409 /*
410  * Look-up a memory block metadata (kmemleak_object) in the object search
411  * tree based on a pointer value. If alias is 0, only values pointing to the
412  * beginning of the memory block are allowed. The kmemleak_lock must be held
413  * when calling this function.
414  */
__lookup_object(unsigned long ptr,int alias,unsigned int objflags)415 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
416 					       unsigned int objflags)
417 {
418 	struct rb_node *rb = object_tree(objflags)->rb_node;
419 	unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
420 
421 	while (rb) {
422 		struct kmemleak_object *object;
423 		unsigned long untagged_objp;
424 
425 		object = rb_entry(rb, struct kmemleak_object, rb_node);
426 		untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
427 
428 		if (untagged_ptr < untagged_objp)
429 			rb = object->rb_node.rb_left;
430 		else if (untagged_objp + object->size <= untagged_ptr)
431 			rb = object->rb_node.rb_right;
432 		else if (untagged_objp == untagged_ptr || alias)
433 			return object;
434 		else {
435 			kmemleak_warn("Found object by alias at 0x%08lx\n",
436 				      ptr);
437 			dump_object_info(object);
438 			break;
439 		}
440 	}
441 	return NULL;
442 }
443 
444 /* Look-up a kmemleak object which allocated with virtual address. */
lookup_object(unsigned long ptr,int alias)445 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
446 {
447 	return __lookup_object(ptr, alias, 0);
448 }
449 
450 /*
451  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
452  * that once an object's use_count reached 0, the RCU freeing was already
453  * registered and the object should no longer be used. This function must be
454  * called under the protection of rcu_read_lock().
455  */
get_object(struct kmemleak_object * object)456 static int get_object(struct kmemleak_object *object)
457 {
458 	return atomic_inc_not_zero(&object->use_count);
459 }
460 
461 /*
462  * Memory pool allocation and freeing. kmemleak_lock must not be held.
463  */
mem_pool_alloc(gfp_t gfp)464 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
465 {
466 	unsigned long flags;
467 	struct kmemleak_object *object;
468 
469 	/* try the slab allocator first */
470 	if (object_cache) {
471 		object = kmem_cache_alloc_noprof(object_cache,
472 						 gfp_nested_mask(gfp));
473 		if (object)
474 			return object;
475 	}
476 
477 	/* slab allocation failed, try the memory pool */
478 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
479 	object = list_first_entry_or_null(&mem_pool_free_list,
480 					  typeof(*object), object_list);
481 	if (object)
482 		list_del(&object->object_list);
483 	else if (mem_pool_free_count)
484 		object = &mem_pool[--mem_pool_free_count];
485 	else
486 		pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
487 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
488 
489 	return object;
490 }
491 
492 /*
493  * Return the object to either the slab allocator or the memory pool.
494  */
mem_pool_free(struct kmemleak_object * object)495 static void mem_pool_free(struct kmemleak_object *object)
496 {
497 	unsigned long flags;
498 
499 	if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
500 		kmem_cache_free(object_cache, object);
501 		return;
502 	}
503 
504 	/* add the object to the memory pool free list */
505 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
506 	list_add(&object->object_list, &mem_pool_free_list);
507 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
508 }
509 
510 /*
511  * RCU callback to free a kmemleak_object.
512  */
free_object_rcu(struct rcu_head * rcu)513 static void free_object_rcu(struct rcu_head *rcu)
514 {
515 	struct hlist_node *tmp;
516 	struct kmemleak_scan_area *area;
517 	struct kmemleak_object *object =
518 		container_of(rcu, struct kmemleak_object, rcu);
519 
520 	/*
521 	 * Once use_count is 0 (guaranteed by put_object), there is no other
522 	 * code accessing this object, hence no need for locking.
523 	 */
524 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
525 		hlist_del(&area->node);
526 		kmem_cache_free(scan_area_cache, area);
527 	}
528 	mem_pool_free(object);
529 }
530 
531 /*
532  * Decrement the object use_count. Once the count is 0, free the object using
533  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
534  * delete_object() path, the delayed RCU freeing ensures that there is no
535  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
536  * is also possible.
537  */
put_object(struct kmemleak_object * object)538 static void put_object(struct kmemleak_object *object)
539 {
540 	if (!atomic_dec_and_test(&object->use_count))
541 		return;
542 
543 	/* should only get here after delete_object was called */
544 	WARN_ON(object->flags & OBJECT_ALLOCATED);
545 
546 	/*
547 	 * It may be too early for the RCU callbacks, however, there is no
548 	 * concurrent object_list traversal when !object_cache and all objects
549 	 * came from the memory pool. Free the object directly.
550 	 */
551 	if (object_cache)
552 		call_rcu(&object->rcu, free_object_rcu);
553 	else
554 		free_object_rcu(&object->rcu);
555 }
556 
557 /*
558  * Look up an object in the object search tree and increase its use_count.
559  */
__find_and_get_object(unsigned long ptr,int alias,unsigned int objflags)560 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
561 						     unsigned int objflags)
562 {
563 	unsigned long flags;
564 	struct kmemleak_object *object;
565 
566 	rcu_read_lock();
567 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
568 	object = __lookup_object(ptr, alias, objflags);
569 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
570 
571 	/* check whether the object is still available */
572 	if (object && !get_object(object))
573 		object = NULL;
574 	rcu_read_unlock();
575 
576 	return object;
577 }
578 
579 /* Look up and get an object which allocated with virtual address. */
find_and_get_object(unsigned long ptr,int alias)580 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
581 {
582 	return __find_and_get_object(ptr, alias, 0);
583 }
584 
585 /*
586  * Remove an object from its object tree and object_list. Must be called with
587  * the kmemleak_lock held _if_ kmemleak is still enabled.
588  */
__remove_object(struct kmemleak_object * object)589 static void __remove_object(struct kmemleak_object *object)
590 {
591 	rb_erase(&object->rb_node, object_tree(object->flags));
592 	if (!(object->del_state & DELSTATE_NO_DELETE))
593 		list_del_rcu(&object->object_list);
594 	object->del_state |= DELSTATE_REMOVED;
595 }
596 
__find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)597 static struct kmemleak_object *__find_and_remove_object(unsigned long ptr,
598 							int alias,
599 							unsigned int objflags)
600 {
601 	struct kmemleak_object *object;
602 
603 	object = __lookup_object(ptr, alias, objflags);
604 	if (object)
605 		__remove_object(object);
606 
607 	return object;
608 }
609 
610 /*
611  * Look up an object in the object search tree and remove it from both object
612  * tree root and object_list. The returned object's use_count should be at
613  * least 1, as initially set by create_object().
614  */
find_and_remove_object(unsigned long ptr,int alias,unsigned int objflags)615 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
616 						      unsigned int objflags)
617 {
618 	unsigned long flags;
619 	struct kmemleak_object *object;
620 
621 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
622 	object = __find_and_remove_object(ptr, alias, objflags);
623 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
624 
625 	return object;
626 }
627 
set_track_prepare(void)628 static noinline depot_stack_handle_t set_track_prepare(void)
629 {
630 	depot_stack_handle_t trace_handle;
631 	unsigned long entries[MAX_TRACE];
632 	unsigned int nr_entries;
633 
634 	/*
635 	 * Use object_cache to determine whether kmemleak_init() has
636 	 * been invoked. stack_depot_early_init() is called before
637 	 * kmemleak_init() in mm_core_init().
638 	 */
639 	if (!object_cache)
640 		return 0;
641 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
642 	trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
643 
644 	return trace_handle;
645 }
646 
__alloc_object(gfp_t gfp)647 static struct kmemleak_object *__alloc_object(gfp_t gfp)
648 {
649 	struct kmemleak_object *object;
650 
651 	object = mem_pool_alloc(gfp);
652 	if (!object) {
653 		pr_warn("Cannot allocate a kmemleak_object structure\n");
654 		kmemleak_disable();
655 		return NULL;
656 	}
657 
658 	INIT_LIST_HEAD(&object->object_list);
659 	INIT_LIST_HEAD(&object->gray_list);
660 	INIT_HLIST_HEAD(&object->area_list);
661 	raw_spin_lock_init(&object->lock);
662 	atomic_set(&object->use_count, 1);
663 	object->excess_ref = 0;
664 	object->count = 0;			/* white color initially */
665 	object->checksum = 0;
666 	object->del_state = 0;
667 
668 	/* task information */
669 	if (in_hardirq()) {
670 		object->pid = 0;
671 		strscpy(object->comm, "hardirq");
672 	} else if (in_serving_softirq()) {
673 		object->pid = 0;
674 		strscpy(object->comm, "softirq");
675 	} else {
676 		object->pid = current->pid;
677 		/*
678 		 * There is a small chance of a race with set_task_comm(),
679 		 * however using get_task_comm() here may cause locking
680 		 * dependency issues with current->alloc_lock. In the worst
681 		 * case, the command line is not correct.
682 		 */
683 		strscpy(object->comm, current->comm);
684 	}
685 
686 	/* kernel backtrace */
687 	object->trace_handle = set_track_prepare();
688 
689 	return object;
690 }
691 
__link_object(struct kmemleak_object * object,unsigned long ptr,size_t size,int min_count,unsigned int objflags)692 static int __link_object(struct kmemleak_object *object, unsigned long ptr,
693 			 size_t size, int min_count, unsigned int objflags)
694 {
695 
696 	struct kmemleak_object *parent;
697 	struct rb_node **link, *rb_parent;
698 	unsigned long untagged_ptr;
699 	unsigned long untagged_objp;
700 
701 	object->flags = OBJECT_ALLOCATED | objflags;
702 	object->pointer = ptr;
703 	object->size = kfence_ksize((void *)ptr) ?: size;
704 	object->min_count = min_count;
705 	object->jiffies = jiffies;
706 
707 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
708 	/*
709 	 * Only update min_addr and max_addr with object storing virtual
710 	 * address. And update min_percpu_addr max_percpu_addr for per-CPU
711 	 * objects.
712 	 */
713 	if (objflags & OBJECT_PERCPU) {
714 		min_percpu_addr = min(min_percpu_addr, untagged_ptr);
715 		max_percpu_addr = max(max_percpu_addr, untagged_ptr + size);
716 	} else if (!(objflags & OBJECT_PHYS)) {
717 		min_addr = min(min_addr, untagged_ptr);
718 		max_addr = max(max_addr, untagged_ptr + size);
719 	}
720 	link = &object_tree(objflags)->rb_node;
721 	rb_parent = NULL;
722 	while (*link) {
723 		rb_parent = *link;
724 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
725 		untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
726 		if (untagged_ptr + size <= untagged_objp)
727 			link = &parent->rb_node.rb_left;
728 		else if (untagged_objp + parent->size <= untagged_ptr)
729 			link = &parent->rb_node.rb_right;
730 		else {
731 			kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
732 				      ptr);
733 			/*
734 			 * No need for parent->lock here since "parent" cannot
735 			 * be freed while the kmemleak_lock is held.
736 			 */
737 			dump_object_info(parent);
738 			return -EEXIST;
739 		}
740 	}
741 	rb_link_node(&object->rb_node, rb_parent, link);
742 	rb_insert_color(&object->rb_node, object_tree(objflags));
743 	list_add_tail_rcu(&object->object_list, &object_list);
744 
745 	return 0;
746 }
747 
748 /*
749  * Create the metadata (struct kmemleak_object) corresponding to an allocated
750  * memory block and add it to the object_list and object tree.
751  */
__create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp,unsigned int objflags)752 static void __create_object(unsigned long ptr, size_t size,
753 				int min_count, gfp_t gfp, unsigned int objflags)
754 {
755 	struct kmemleak_object *object;
756 	unsigned long flags;
757 	int ret;
758 
759 	object = __alloc_object(gfp);
760 	if (!object)
761 		return;
762 
763 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
764 	ret = __link_object(object, ptr, size, min_count, objflags);
765 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
766 	if (ret)
767 		mem_pool_free(object);
768 }
769 
770 /* Create kmemleak object which allocated with virtual address. */
create_object(unsigned long ptr,size_t size,int min_count,gfp_t gfp)771 static void create_object(unsigned long ptr, size_t size,
772 			  int min_count, gfp_t gfp)
773 {
774 	__create_object(ptr, size, min_count, gfp, 0);
775 }
776 
777 /* Create kmemleak object which allocated with physical address. */
create_object_phys(unsigned long ptr,size_t size,int min_count,gfp_t gfp)778 static void create_object_phys(unsigned long ptr, size_t size,
779 			       int min_count, gfp_t gfp)
780 {
781 	__create_object(ptr, size, min_count, gfp, OBJECT_PHYS);
782 }
783 
784 /* Create kmemleak object corresponding to a per-CPU allocation. */
create_object_percpu(unsigned long ptr,size_t size,int min_count,gfp_t gfp)785 static void create_object_percpu(unsigned long ptr, size_t size,
786 				 int min_count, gfp_t gfp)
787 {
788 	__create_object(ptr, size, min_count, gfp, OBJECT_PERCPU);
789 }
790 
791 /*
792  * Mark the object as not allocated and schedule RCU freeing via put_object().
793  */
__delete_object(struct kmemleak_object * object)794 static void __delete_object(struct kmemleak_object *object)
795 {
796 	unsigned long flags;
797 
798 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
799 	WARN_ON(atomic_read(&object->use_count) < 1);
800 
801 	/*
802 	 * Locking here also ensures that the corresponding memory block
803 	 * cannot be freed when it is being scanned.
804 	 */
805 	raw_spin_lock_irqsave(&object->lock, flags);
806 	object->flags &= ~OBJECT_ALLOCATED;
807 	raw_spin_unlock_irqrestore(&object->lock, flags);
808 	put_object(object);
809 }
810 
811 /*
812  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
813  * delete it.
814  */
delete_object_full(unsigned long ptr,unsigned int objflags)815 static void delete_object_full(unsigned long ptr, unsigned int objflags)
816 {
817 	struct kmemleak_object *object;
818 
819 	object = find_and_remove_object(ptr, 0, objflags);
820 	if (!object) {
821 #ifdef DEBUG
822 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
823 			      ptr);
824 #endif
825 		return;
826 	}
827 	__delete_object(object);
828 }
829 
830 /*
831  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
832  * delete it. If the memory block is partially freed, the function may create
833  * additional metadata for the remaining parts of the block.
834  */
delete_object_part(unsigned long ptr,size_t size,unsigned int objflags)835 static void delete_object_part(unsigned long ptr, size_t size,
836 			       unsigned int objflags)
837 {
838 	struct kmemleak_object *object, *object_l, *object_r;
839 	unsigned long start, end, flags;
840 
841 	object_l = __alloc_object(GFP_KERNEL);
842 	if (!object_l)
843 		return;
844 
845 	object_r = __alloc_object(GFP_KERNEL);
846 	if (!object_r)
847 		goto out;
848 
849 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
850 	object = __find_and_remove_object(ptr, 1, objflags);
851 	if (!object) {
852 #ifdef DEBUG
853 		kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
854 			      ptr, size);
855 #endif
856 		goto unlock;
857 	}
858 
859 	/*
860 	 * Create one or two objects that may result from the memory block
861 	 * split. Note that partial freeing is only done by free_bootmem() and
862 	 * this happens before kmemleak_init() is called.
863 	 */
864 	start = object->pointer;
865 	end = object->pointer + object->size;
866 	if ((ptr > start) &&
867 	    !__link_object(object_l, start, ptr - start,
868 			   object->min_count, objflags))
869 		object_l = NULL;
870 	if ((ptr + size < end) &&
871 	    !__link_object(object_r, ptr + size, end - ptr - size,
872 			   object->min_count, objflags))
873 		object_r = NULL;
874 
875 unlock:
876 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
877 	if (object)
878 		__delete_object(object);
879 
880 out:
881 	if (object_l)
882 		mem_pool_free(object_l);
883 	if (object_r)
884 		mem_pool_free(object_r);
885 }
886 
__paint_it(struct kmemleak_object * object,int color)887 static void __paint_it(struct kmemleak_object *object, int color)
888 {
889 	object->min_count = color;
890 	if (color == KMEMLEAK_BLACK)
891 		object->flags |= OBJECT_NO_SCAN;
892 }
893 
paint_it(struct kmemleak_object * object,int color)894 static void paint_it(struct kmemleak_object *object, int color)
895 {
896 	unsigned long flags;
897 
898 	raw_spin_lock_irqsave(&object->lock, flags);
899 	__paint_it(object, color);
900 	raw_spin_unlock_irqrestore(&object->lock, flags);
901 }
902 
paint_ptr(unsigned long ptr,int color,unsigned int objflags)903 static void paint_ptr(unsigned long ptr, int color, unsigned int objflags)
904 {
905 	struct kmemleak_object *object;
906 
907 	object = __find_and_get_object(ptr, 0, objflags);
908 	if (!object) {
909 		kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
910 			      ptr,
911 			      (color == KMEMLEAK_GREY) ? "Grey" :
912 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
913 		return;
914 	}
915 	paint_it(object, color);
916 	put_object(object);
917 }
918 
919 /*
920  * Mark an object permanently as gray-colored so that it can no longer be
921  * reported as a leak. This is used in general to mark a false positive.
922  */
make_gray_object(unsigned long ptr)923 static void make_gray_object(unsigned long ptr)
924 {
925 	paint_ptr(ptr, KMEMLEAK_GREY, 0);
926 }
927 
928 /*
929  * Mark the object as black-colored so that it is ignored from scans and
930  * reporting.
931  */
make_black_object(unsigned long ptr,unsigned int objflags)932 static void make_black_object(unsigned long ptr, unsigned int objflags)
933 {
934 	paint_ptr(ptr, KMEMLEAK_BLACK, objflags);
935 }
936 
937 /*
938  * Add a scanning area to the object. If at least one such area is added,
939  * kmemleak will only scan these ranges rather than the whole memory block.
940  */
add_scan_area(unsigned long ptr,size_t size,gfp_t gfp)941 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
942 {
943 	unsigned long flags;
944 	struct kmemleak_object *object;
945 	struct kmemleak_scan_area *area = NULL;
946 	unsigned long untagged_ptr;
947 	unsigned long untagged_objp;
948 
949 	object = find_and_get_object(ptr, 1);
950 	if (!object) {
951 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
952 			      ptr);
953 		return;
954 	}
955 
956 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
957 	untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
958 
959 	if (scan_area_cache)
960 		area = kmem_cache_alloc_noprof(scan_area_cache,
961 					       gfp_nested_mask(gfp));
962 
963 	raw_spin_lock_irqsave(&object->lock, flags);
964 	if (!area) {
965 		pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
966 		/* mark the object for full scan to avoid false positives */
967 		object->flags |= OBJECT_FULL_SCAN;
968 		goto out_unlock;
969 	}
970 	if (size == SIZE_MAX) {
971 		size = untagged_objp + object->size - untagged_ptr;
972 	} else if (untagged_ptr + size > untagged_objp + object->size) {
973 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
974 		dump_object_info(object);
975 		kmem_cache_free(scan_area_cache, area);
976 		goto out_unlock;
977 	}
978 
979 	INIT_HLIST_NODE(&area->node);
980 	area->start = ptr;
981 	area->size = size;
982 
983 	hlist_add_head(&area->node, &object->area_list);
984 out_unlock:
985 	raw_spin_unlock_irqrestore(&object->lock, flags);
986 	put_object(object);
987 }
988 
989 /*
990  * Any surplus references (object already gray) to 'ptr' are passed to
991  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
992  * vm_struct may be used as an alternative reference to the vmalloc'ed object
993  * (see free_thread_stack()).
994  */
object_set_excess_ref(unsigned long ptr,unsigned long excess_ref)995 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
996 {
997 	unsigned long flags;
998 	struct kmemleak_object *object;
999 
1000 	object = find_and_get_object(ptr, 0);
1001 	if (!object) {
1002 		kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
1003 			      ptr);
1004 		return;
1005 	}
1006 
1007 	raw_spin_lock_irqsave(&object->lock, flags);
1008 	object->excess_ref = excess_ref;
1009 	raw_spin_unlock_irqrestore(&object->lock, flags);
1010 	put_object(object);
1011 }
1012 
1013 /*
1014  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
1015  * pointer. Such object will not be scanned by kmemleak but references to it
1016  * are searched.
1017  */
object_no_scan(unsigned long ptr)1018 static void object_no_scan(unsigned long ptr)
1019 {
1020 	unsigned long flags;
1021 	struct kmemleak_object *object;
1022 
1023 	object = find_and_get_object(ptr, 0);
1024 	if (!object) {
1025 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
1026 		return;
1027 	}
1028 
1029 	raw_spin_lock_irqsave(&object->lock, flags);
1030 	object->flags |= OBJECT_NO_SCAN;
1031 	raw_spin_unlock_irqrestore(&object->lock, flags);
1032 	put_object(object);
1033 }
1034 
1035 /**
1036  * kmemleak_alloc - register a newly allocated object
1037  * @ptr:	pointer to beginning of the object
1038  * @size:	size of the object
1039  * @min_count:	minimum number of references to this object. If during memory
1040  *		scanning a number of references less than @min_count is found,
1041  *		the object is reported as a memory leak. If @min_count is 0,
1042  *		the object is never reported as a leak. If @min_count is -1,
1043  *		the object is ignored (not scanned and not reported as a leak)
1044  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1045  *
1046  * This function is called from the kernel allocators when a new object
1047  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
1048  */
kmemleak_alloc(const void * ptr,size_t size,int min_count,gfp_t gfp)1049 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
1050 			  gfp_t gfp)
1051 {
1052 	pr_debug("%s(0x%px, %zu, %d)\n", __func__, ptr, size, min_count);
1053 
1054 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1055 		create_object((unsigned long)ptr, size, min_count, gfp);
1056 }
1057 EXPORT_SYMBOL_GPL(kmemleak_alloc);
1058 
1059 /**
1060  * kmemleak_alloc_percpu - register a newly allocated __percpu object
1061  * @ptr:	__percpu pointer to beginning of the object
1062  * @size:	size of the object
1063  * @gfp:	flags used for kmemleak internal memory allocations
1064  *
1065  * This function is called from the kernel percpu allocator when a new object
1066  * (memory block) is allocated (alloc_percpu).
1067  */
kmemleak_alloc_percpu(const void __percpu * ptr,size_t size,gfp_t gfp)1068 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
1069 				 gfp_t gfp)
1070 {
1071 	pr_debug("%s(0x%px, %zu)\n", __func__, ptr, size);
1072 
1073 	if (kmemleak_enabled && ptr && !IS_ERR_PCPU(ptr))
1074 		create_object_percpu((__force unsigned long)ptr, size, 0, gfp);
1075 }
1076 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1077 
1078 /**
1079  * kmemleak_vmalloc - register a newly vmalloc'ed object
1080  * @area:	pointer to vm_struct
1081  * @size:	size of the object
1082  * @gfp:	__vmalloc() flags used for kmemleak internal memory allocations
1083  *
1084  * This function is called from the vmalloc() kernel allocator when a new
1085  * object (memory block) is allocated.
1086  */
kmemleak_vmalloc(const struct vm_struct * area,size_t size,gfp_t gfp)1087 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1088 {
1089 	pr_debug("%s(0x%px, %zu)\n", __func__, area, size);
1090 
1091 	/*
1092 	 * A min_count = 2 is needed because vm_struct contains a reference to
1093 	 * the virtual address of the vmalloc'ed block.
1094 	 */
1095 	if (kmemleak_enabled) {
1096 		create_object((unsigned long)area->addr, size, 2, gfp);
1097 		object_set_excess_ref((unsigned long)area,
1098 				      (unsigned long)area->addr);
1099 	}
1100 }
1101 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1102 
1103 /**
1104  * kmemleak_free - unregister a previously registered object
1105  * @ptr:	pointer to beginning of the object
1106  *
1107  * This function is called from the kernel allocators when an object (memory
1108  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1109  */
kmemleak_free(const void * ptr)1110 void __ref kmemleak_free(const void *ptr)
1111 {
1112 	pr_debug("%s(0x%px)\n", __func__, ptr);
1113 
1114 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1115 		delete_object_full((unsigned long)ptr, 0);
1116 }
1117 EXPORT_SYMBOL_GPL(kmemleak_free);
1118 
1119 /**
1120  * kmemleak_free_part - partially unregister a previously registered object
1121  * @ptr:	pointer to the beginning or inside the object. This also
1122  *		represents the start of the range to be freed
1123  * @size:	size to be unregistered
1124  *
1125  * This function is called when only a part of a memory block is freed
1126  * (usually from the bootmem allocator).
1127  */
kmemleak_free_part(const void * ptr,size_t size)1128 void __ref kmemleak_free_part(const void *ptr, size_t size)
1129 {
1130 	pr_debug("%s(0x%px)\n", __func__, ptr);
1131 
1132 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1133 		delete_object_part((unsigned long)ptr, size, 0);
1134 }
1135 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1136 
1137 /**
1138  * kmemleak_free_percpu - unregister a previously registered __percpu object
1139  * @ptr:	__percpu pointer to beginning of the object
1140  *
1141  * This function is called from the kernel percpu allocator when an object
1142  * (memory block) is freed (free_percpu).
1143  */
kmemleak_free_percpu(const void __percpu * ptr)1144 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1145 {
1146 	pr_debug("%s(0x%px)\n", __func__, ptr);
1147 
1148 	if (kmemleak_free_enabled && ptr && !IS_ERR_PCPU(ptr))
1149 		delete_object_full((__force unsigned long)ptr, OBJECT_PERCPU);
1150 }
1151 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1152 
1153 /**
1154  * kmemleak_update_trace - update object allocation stack trace
1155  * @ptr:	pointer to beginning of the object
1156  *
1157  * Override the object allocation stack trace for cases where the actual
1158  * allocation place is not always useful.
1159  */
kmemleak_update_trace(const void * ptr)1160 void __ref kmemleak_update_trace(const void *ptr)
1161 {
1162 	struct kmemleak_object *object;
1163 	depot_stack_handle_t trace_handle;
1164 	unsigned long flags;
1165 
1166 	pr_debug("%s(0x%px)\n", __func__, ptr);
1167 
1168 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1169 		return;
1170 
1171 	object = find_and_get_object((unsigned long)ptr, 1);
1172 	if (!object) {
1173 #ifdef DEBUG
1174 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1175 			      ptr);
1176 #endif
1177 		return;
1178 	}
1179 
1180 	trace_handle = set_track_prepare();
1181 	raw_spin_lock_irqsave(&object->lock, flags);
1182 	object->trace_handle = trace_handle;
1183 	raw_spin_unlock_irqrestore(&object->lock, flags);
1184 
1185 	put_object(object);
1186 }
1187 EXPORT_SYMBOL(kmemleak_update_trace);
1188 
1189 /**
1190  * kmemleak_not_leak - mark an allocated object as false positive
1191  * @ptr:	pointer to beginning of the object
1192  *
1193  * Calling this function on an object will cause the memory block to no longer
1194  * be reported as leak and always be scanned.
1195  */
kmemleak_not_leak(const void * ptr)1196 void __ref kmemleak_not_leak(const void *ptr)
1197 {
1198 	pr_debug("%s(0x%px)\n", __func__, ptr);
1199 
1200 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1201 		make_gray_object((unsigned long)ptr);
1202 }
1203 EXPORT_SYMBOL(kmemleak_not_leak);
1204 
1205 /**
1206  * kmemleak_ignore - ignore an allocated object
1207  * @ptr:	pointer to beginning of the object
1208  *
1209  * Calling this function on an object will cause the memory block to be
1210  * ignored (not scanned and not reported as a leak). This is usually done when
1211  * it is known that the corresponding block is not a leak and does not contain
1212  * any references to other allocated memory blocks.
1213  */
kmemleak_ignore(const void * ptr)1214 void __ref kmemleak_ignore(const void *ptr)
1215 {
1216 	pr_debug("%s(0x%px)\n", __func__, ptr);
1217 
1218 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1219 		make_black_object((unsigned long)ptr, 0);
1220 }
1221 EXPORT_SYMBOL(kmemleak_ignore);
1222 
1223 /**
1224  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1225  * @ptr:	pointer to beginning or inside the object. This also
1226  *		represents the start of the scan area
1227  * @size:	size of the scan area
1228  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1229  *
1230  * This function is used when it is known that only certain parts of an object
1231  * contain references to other objects. Kmemleak will only scan these areas
1232  * reducing the number false negatives.
1233  */
kmemleak_scan_area(const void * ptr,size_t size,gfp_t gfp)1234 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1235 {
1236 	pr_debug("%s(0x%px)\n", __func__, ptr);
1237 
1238 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1239 		add_scan_area((unsigned long)ptr, size, gfp);
1240 }
1241 EXPORT_SYMBOL(kmemleak_scan_area);
1242 
1243 /**
1244  * kmemleak_no_scan - do not scan an allocated object
1245  * @ptr:	pointer to beginning of the object
1246  *
1247  * This function notifies kmemleak not to scan the given memory block. Useful
1248  * in situations where it is known that the given object does not contain any
1249  * references to other objects. Kmemleak will not scan such objects reducing
1250  * the number of false negatives.
1251  */
kmemleak_no_scan(const void * ptr)1252 void __ref kmemleak_no_scan(const void *ptr)
1253 {
1254 	pr_debug("%s(0x%px)\n", __func__, ptr);
1255 
1256 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1257 		object_no_scan((unsigned long)ptr);
1258 }
1259 EXPORT_SYMBOL(kmemleak_no_scan);
1260 
1261 /**
1262  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1263  *			 address argument
1264  * @phys:	physical address of the object
1265  * @size:	size of the object
1266  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1267  */
kmemleak_alloc_phys(phys_addr_t phys,size_t size,gfp_t gfp)1268 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1269 {
1270 	pr_debug("%s(0x%px, %zu)\n", __func__, &phys, size);
1271 
1272 	if (kmemleak_enabled)
1273 		/*
1274 		 * Create object with OBJECT_PHYS flag and
1275 		 * assume min_count 0.
1276 		 */
1277 		create_object_phys((unsigned long)phys, size, 0, gfp);
1278 }
1279 EXPORT_SYMBOL(kmemleak_alloc_phys);
1280 
1281 /**
1282  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1283  *			     physical address argument
1284  * @phys:	physical address if the beginning or inside an object. This
1285  *		also represents the start of the range to be freed
1286  * @size:	size to be unregistered
1287  */
kmemleak_free_part_phys(phys_addr_t phys,size_t size)1288 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1289 {
1290 	pr_debug("%s(0x%px)\n", __func__, &phys);
1291 
1292 	if (kmemleak_enabled)
1293 		delete_object_part((unsigned long)phys, size, OBJECT_PHYS);
1294 }
1295 EXPORT_SYMBOL(kmemleak_free_part_phys);
1296 
1297 /**
1298  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1299  *			  address argument
1300  * @phys:	physical address of the object
1301  */
kmemleak_ignore_phys(phys_addr_t phys)1302 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1303 {
1304 	pr_debug("%s(0x%px)\n", __func__, &phys);
1305 
1306 	if (kmemleak_enabled)
1307 		make_black_object((unsigned long)phys, OBJECT_PHYS);
1308 }
1309 EXPORT_SYMBOL(kmemleak_ignore_phys);
1310 
1311 /*
1312  * Update an object's checksum and return true if it was modified.
1313  */
update_checksum(struct kmemleak_object * object)1314 static bool update_checksum(struct kmemleak_object *object)
1315 {
1316 	u32 old_csum = object->checksum;
1317 
1318 	if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1319 		return false;
1320 
1321 	kasan_disable_current();
1322 	kcsan_disable_current();
1323 	if (object->flags & OBJECT_PERCPU) {
1324 		unsigned int cpu;
1325 
1326 		object->checksum = 0;
1327 		for_each_possible_cpu(cpu) {
1328 			void *ptr = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1329 
1330 			object->checksum ^= crc32(0, kasan_reset_tag((void *)ptr), object->size);
1331 		}
1332 	} else {
1333 		object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1334 	}
1335 	kasan_enable_current();
1336 	kcsan_enable_current();
1337 
1338 	return object->checksum != old_csum;
1339 }
1340 
1341 /*
1342  * Update an object's references. object->lock must be held by the caller.
1343  */
update_refs(struct kmemleak_object * object)1344 static void update_refs(struct kmemleak_object *object)
1345 {
1346 	if (!color_white(object)) {
1347 		/* non-orphan, ignored or new */
1348 		return;
1349 	}
1350 
1351 	/*
1352 	 * Increase the object's reference count (number of pointers to the
1353 	 * memory block). If this count reaches the required minimum, the
1354 	 * object's color will become gray and it will be added to the
1355 	 * gray_list.
1356 	 */
1357 	object->count++;
1358 	if (color_gray(object)) {
1359 		/* put_object() called when removing from gray_list */
1360 		WARN_ON(!get_object(object));
1361 		list_add_tail(&object->gray_list, &gray_list);
1362 	}
1363 }
1364 
pointer_update_refs(struct kmemleak_object * scanned,unsigned long pointer,unsigned int objflags)1365 static void pointer_update_refs(struct kmemleak_object *scanned,
1366 			 unsigned long pointer, unsigned int objflags)
1367 {
1368 	struct kmemleak_object *object;
1369 	unsigned long untagged_ptr;
1370 	unsigned long excess_ref;
1371 
1372 	untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1373 	if (objflags & OBJECT_PERCPU) {
1374 		if (untagged_ptr < min_percpu_addr || untagged_ptr >= max_percpu_addr)
1375 			return;
1376 	} else {
1377 		if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1378 			return;
1379 	}
1380 
1381 	/*
1382 	 * No need for get_object() here since we hold kmemleak_lock.
1383 	 * object->use_count cannot be dropped to 0 while the object
1384 	 * is still present in object_tree_root and object_list
1385 	 * (with updates protected by kmemleak_lock).
1386 	 */
1387 	object = __lookup_object(pointer, 1, objflags);
1388 	if (!object)
1389 		return;
1390 	if (object == scanned)
1391 		/* self referenced, ignore */
1392 		return;
1393 
1394 	/*
1395 	 * Avoid the lockdep recursive warning on object->lock being
1396 	 * previously acquired in scan_object(). These locks are
1397 	 * enclosed by scan_mutex.
1398 	 */
1399 	raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1400 	/* only pass surplus references (object already gray) */
1401 	if (color_gray(object)) {
1402 		excess_ref = object->excess_ref;
1403 		/* no need for update_refs() if object already gray */
1404 	} else {
1405 		excess_ref = 0;
1406 		update_refs(object);
1407 	}
1408 	raw_spin_unlock(&object->lock);
1409 
1410 	if (excess_ref) {
1411 		object = lookup_object(excess_ref, 0);
1412 		if (!object)
1413 			return;
1414 		if (object == scanned)
1415 			/* circular reference, ignore */
1416 			return;
1417 		raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1418 		update_refs(object);
1419 		raw_spin_unlock(&object->lock);
1420 	}
1421 }
1422 
1423 /*
1424  * Memory scanning is a long process and it needs to be interruptible. This
1425  * function checks whether such interrupt condition occurred.
1426  */
scan_should_stop(void)1427 static int scan_should_stop(void)
1428 {
1429 	if (!kmemleak_enabled)
1430 		return 1;
1431 
1432 	/*
1433 	 * This function may be called from either process or kthread context,
1434 	 * hence the need to check for both stop conditions.
1435 	 */
1436 	if (current->mm)
1437 		return signal_pending(current);
1438 	else
1439 		return kthread_should_stop();
1440 
1441 	return 0;
1442 }
1443 
1444 /*
1445  * Scan a memory block (exclusive range) for valid pointers and add those
1446  * found to the gray list.
1447  */
scan_block(void * _start,void * _end,struct kmemleak_object * scanned)1448 static void scan_block(void *_start, void *_end,
1449 		       struct kmemleak_object *scanned)
1450 {
1451 	unsigned long *ptr;
1452 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1453 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1454 	unsigned long flags;
1455 
1456 	raw_spin_lock_irqsave(&kmemleak_lock, flags);
1457 	for (ptr = start; ptr < end; ptr++) {
1458 		unsigned long pointer;
1459 
1460 		if (scan_should_stop())
1461 			break;
1462 
1463 		kasan_disable_current();
1464 		pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1465 		kasan_enable_current();
1466 
1467 		pointer_update_refs(scanned, pointer, 0);
1468 		pointer_update_refs(scanned, pointer, OBJECT_PERCPU);
1469 	}
1470 	raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1471 }
1472 
1473 /*
1474  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1475  */
1476 #ifdef CONFIG_SMP
scan_large_block(void * start,void * end)1477 static void scan_large_block(void *start, void *end)
1478 {
1479 	void *next;
1480 
1481 	while (start < end) {
1482 		next = min(start + MAX_SCAN_SIZE, end);
1483 		scan_block(start, next, NULL);
1484 		start = next;
1485 		cond_resched();
1486 	}
1487 }
1488 #endif
1489 
1490 /*
1491  * Scan a memory block corresponding to a kmemleak_object. A condition is
1492  * that object->use_count >= 1.
1493  */
scan_object(struct kmemleak_object * object)1494 static void scan_object(struct kmemleak_object *object)
1495 {
1496 	struct kmemleak_scan_area *area;
1497 	unsigned long flags;
1498 
1499 	/*
1500 	 * Once the object->lock is acquired, the corresponding memory block
1501 	 * cannot be freed (the same lock is acquired in delete_object).
1502 	 */
1503 	raw_spin_lock_irqsave(&object->lock, flags);
1504 	if (object->flags & OBJECT_NO_SCAN)
1505 		goto out;
1506 	if (!(object->flags & OBJECT_ALLOCATED))
1507 		/* already freed object */
1508 		goto out;
1509 
1510 	if (object->flags & OBJECT_PERCPU) {
1511 		unsigned int cpu;
1512 
1513 		for_each_possible_cpu(cpu) {
1514 			void *start = per_cpu_ptr((void __percpu *)object->pointer, cpu);
1515 			void *end = start + object->size;
1516 
1517 			scan_block(start, end, object);
1518 
1519 			raw_spin_unlock_irqrestore(&object->lock, flags);
1520 			cond_resched();
1521 			raw_spin_lock_irqsave(&object->lock, flags);
1522 			if (!(object->flags & OBJECT_ALLOCATED))
1523 				break;
1524 		}
1525 	} else if (hlist_empty(&object->area_list) ||
1526 	    object->flags & OBJECT_FULL_SCAN) {
1527 		void *start = object->flags & OBJECT_PHYS ?
1528 				__va((phys_addr_t)object->pointer) :
1529 				(void *)object->pointer;
1530 		void *end = start + object->size;
1531 		void *next;
1532 
1533 		do {
1534 			next = min(start + MAX_SCAN_SIZE, end);
1535 			scan_block(start, next, object);
1536 
1537 			start = next;
1538 			if (start >= end)
1539 				break;
1540 
1541 			raw_spin_unlock_irqrestore(&object->lock, flags);
1542 			cond_resched();
1543 			raw_spin_lock_irqsave(&object->lock, flags);
1544 		} while (object->flags & OBJECT_ALLOCATED);
1545 	} else {
1546 		hlist_for_each_entry(area, &object->area_list, node)
1547 			scan_block((void *)area->start,
1548 				   (void *)(area->start + area->size),
1549 				   object);
1550 	}
1551 out:
1552 	raw_spin_unlock_irqrestore(&object->lock, flags);
1553 }
1554 
1555 /*
1556  * Scan the objects already referenced (gray objects). More objects will be
1557  * referenced and, if there are no memory leaks, all the objects are scanned.
1558  */
scan_gray_list(void)1559 static void scan_gray_list(void)
1560 {
1561 	struct kmemleak_object *object, *tmp;
1562 
1563 	/*
1564 	 * The list traversal is safe for both tail additions and removals
1565 	 * from inside the loop. The kmemleak objects cannot be freed from
1566 	 * outside the loop because their use_count was incremented.
1567 	 */
1568 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1569 	while (&object->gray_list != &gray_list) {
1570 		cond_resched();
1571 
1572 		/* may add new objects to the list */
1573 		if (!scan_should_stop())
1574 			scan_object(object);
1575 
1576 		tmp = list_entry(object->gray_list.next, typeof(*object),
1577 				 gray_list);
1578 
1579 		/* remove the object from the list and release it */
1580 		list_del(&object->gray_list);
1581 		put_object(object);
1582 
1583 		object = tmp;
1584 	}
1585 	WARN_ON(!list_empty(&gray_list));
1586 }
1587 
1588 /*
1589  * Conditionally call resched() in an object iteration loop while making sure
1590  * that the given object won't go away without RCU read lock by performing a
1591  * get_object() if necessaary.
1592  */
kmemleak_cond_resched(struct kmemleak_object * object)1593 static void kmemleak_cond_resched(struct kmemleak_object *object)
1594 {
1595 	if (!get_object(object))
1596 		return;	/* Try next object */
1597 
1598 	raw_spin_lock_irq(&kmemleak_lock);
1599 	if (object->del_state & DELSTATE_REMOVED)
1600 		goto unlock_put;	/* Object removed */
1601 	object->del_state |= DELSTATE_NO_DELETE;
1602 	raw_spin_unlock_irq(&kmemleak_lock);
1603 
1604 	rcu_read_unlock();
1605 	cond_resched();
1606 	rcu_read_lock();
1607 
1608 	raw_spin_lock_irq(&kmemleak_lock);
1609 	if (object->del_state & DELSTATE_REMOVED)
1610 		list_del_rcu(&object->object_list);
1611 	object->del_state &= ~DELSTATE_NO_DELETE;
1612 unlock_put:
1613 	raw_spin_unlock_irq(&kmemleak_lock);
1614 	put_object(object);
1615 }
1616 
1617 /*
1618  * Scan data sections and all the referenced memory blocks allocated via the
1619  * kernel's standard allocators. This function must be called with the
1620  * scan_mutex held.
1621  */
kmemleak_scan(void)1622 static void kmemleak_scan(void)
1623 {
1624 	struct kmemleak_object *object;
1625 	struct zone *zone;
1626 	int __maybe_unused i;
1627 	int new_leaks = 0;
1628 
1629 	jiffies_last_scan = jiffies;
1630 
1631 	/* prepare the kmemleak_object's */
1632 	rcu_read_lock();
1633 	list_for_each_entry_rcu(object, &object_list, object_list) {
1634 		raw_spin_lock_irq(&object->lock);
1635 #ifdef DEBUG
1636 		/*
1637 		 * With a few exceptions there should be a maximum of
1638 		 * 1 reference to any object at this point.
1639 		 */
1640 		if (atomic_read(&object->use_count) > 1) {
1641 			pr_debug("object->use_count = %d\n",
1642 				 atomic_read(&object->use_count));
1643 			dump_object_info(object);
1644 		}
1645 #endif
1646 
1647 		/* ignore objects outside lowmem (paint them black) */
1648 		if ((object->flags & OBJECT_PHYS) &&
1649 		   !(object->flags & OBJECT_NO_SCAN)) {
1650 			unsigned long phys = object->pointer;
1651 
1652 			if (PHYS_PFN(phys) < min_low_pfn ||
1653 			    PHYS_PFN(phys + object->size) >= max_low_pfn)
1654 				__paint_it(object, KMEMLEAK_BLACK);
1655 		}
1656 
1657 		/* reset the reference count (whiten the object) */
1658 		object->count = 0;
1659 		if (color_gray(object) && get_object(object))
1660 			list_add_tail(&object->gray_list, &gray_list);
1661 
1662 		raw_spin_unlock_irq(&object->lock);
1663 
1664 		if (need_resched())
1665 			kmemleak_cond_resched(object);
1666 	}
1667 	rcu_read_unlock();
1668 
1669 #ifdef CONFIG_SMP
1670 	/* per-cpu sections scanning */
1671 	for_each_possible_cpu(i)
1672 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1673 				 __per_cpu_end + per_cpu_offset(i));
1674 #endif
1675 
1676 	/*
1677 	 * Struct page scanning for each node.
1678 	 */
1679 	get_online_mems();
1680 	for_each_populated_zone(zone) {
1681 		unsigned long start_pfn = zone->zone_start_pfn;
1682 		unsigned long end_pfn = zone_end_pfn(zone);
1683 		unsigned long pfn;
1684 
1685 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1686 			struct page *page = pfn_to_online_page(pfn);
1687 
1688 			if (!(pfn & 63))
1689 				cond_resched();
1690 
1691 			if (!page)
1692 				continue;
1693 
1694 			/* only scan pages belonging to this zone */
1695 			if (page_zone(page) != zone)
1696 				continue;
1697 			/* only scan if page is in use */
1698 			if (page_count(page) == 0)
1699 				continue;
1700 			scan_block(page, page + 1, NULL);
1701 		}
1702 	}
1703 	put_online_mems();
1704 
1705 	/*
1706 	 * Scanning the task stacks (may introduce false negatives).
1707 	 */
1708 	if (kmemleak_stack_scan) {
1709 		struct task_struct *p, *g;
1710 
1711 		rcu_read_lock();
1712 		for_each_process_thread(g, p) {
1713 			void *stack = try_get_task_stack(p);
1714 			if (stack) {
1715 				scan_block(stack, stack + THREAD_SIZE, NULL);
1716 				put_task_stack(p);
1717 			}
1718 		}
1719 		rcu_read_unlock();
1720 	}
1721 
1722 	/*
1723 	 * Scan the objects already referenced from the sections scanned
1724 	 * above.
1725 	 */
1726 	scan_gray_list();
1727 
1728 	/*
1729 	 * Check for new or unreferenced objects modified since the previous
1730 	 * scan and color them gray until the next scan.
1731 	 */
1732 	rcu_read_lock();
1733 	list_for_each_entry_rcu(object, &object_list, object_list) {
1734 		if (need_resched())
1735 			kmemleak_cond_resched(object);
1736 
1737 		/*
1738 		 * This is racy but we can save the overhead of lock/unlock
1739 		 * calls. The missed objects, if any, should be caught in
1740 		 * the next scan.
1741 		 */
1742 		if (!color_white(object))
1743 			continue;
1744 		raw_spin_lock_irq(&object->lock);
1745 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1746 		    && update_checksum(object) && get_object(object)) {
1747 			/* color it gray temporarily */
1748 			object->count = object->min_count;
1749 			list_add_tail(&object->gray_list, &gray_list);
1750 		}
1751 		raw_spin_unlock_irq(&object->lock);
1752 	}
1753 	rcu_read_unlock();
1754 
1755 	/*
1756 	 * Re-scan the gray list for modified unreferenced objects.
1757 	 */
1758 	scan_gray_list();
1759 
1760 	/*
1761 	 * If scanning was stopped do not report any new unreferenced objects.
1762 	 */
1763 	if (scan_should_stop())
1764 		return;
1765 
1766 	/*
1767 	 * Scanning result reporting.
1768 	 */
1769 	rcu_read_lock();
1770 	list_for_each_entry_rcu(object, &object_list, object_list) {
1771 		if (need_resched())
1772 			kmemleak_cond_resched(object);
1773 
1774 		/*
1775 		 * This is racy but we can save the overhead of lock/unlock
1776 		 * calls. The missed objects, if any, should be caught in
1777 		 * the next scan.
1778 		 */
1779 		if (!color_white(object))
1780 			continue;
1781 		raw_spin_lock_irq(&object->lock);
1782 		if (unreferenced_object(object) &&
1783 		    !(object->flags & OBJECT_REPORTED)) {
1784 			object->flags |= OBJECT_REPORTED;
1785 
1786 			if (kmemleak_verbose)
1787 				print_unreferenced(NULL, object);
1788 
1789 			new_leaks++;
1790 		}
1791 		raw_spin_unlock_irq(&object->lock);
1792 	}
1793 	rcu_read_unlock();
1794 
1795 	if (new_leaks) {
1796 		kmemleak_found_leaks = true;
1797 
1798 		pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1799 			new_leaks);
1800 	}
1801 
1802 }
1803 
1804 /*
1805  * Thread function performing automatic memory scanning. Unreferenced objects
1806  * at the end of a memory scan are reported but only the first time.
1807  */
kmemleak_scan_thread(void * arg)1808 static int kmemleak_scan_thread(void *arg)
1809 {
1810 	static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1811 
1812 	pr_info("Automatic memory scanning thread started\n");
1813 	set_user_nice(current, 10);
1814 
1815 	/*
1816 	 * Wait before the first scan to allow the system to fully initialize.
1817 	 */
1818 	if (first_run) {
1819 		signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1820 		first_run = 0;
1821 		while (timeout && !kthread_should_stop())
1822 			timeout = schedule_timeout_interruptible(timeout);
1823 	}
1824 
1825 	while (!kthread_should_stop()) {
1826 		signed long timeout = READ_ONCE(jiffies_scan_wait);
1827 
1828 		mutex_lock(&scan_mutex);
1829 		kmemleak_scan();
1830 		mutex_unlock(&scan_mutex);
1831 
1832 		/* wait before the next scan */
1833 		while (timeout && !kthread_should_stop())
1834 			timeout = schedule_timeout_interruptible(timeout);
1835 	}
1836 
1837 	pr_info("Automatic memory scanning thread ended\n");
1838 
1839 	return 0;
1840 }
1841 
1842 /*
1843  * Start the automatic memory scanning thread. This function must be called
1844  * with the scan_mutex held.
1845  */
start_scan_thread(void)1846 static void start_scan_thread(void)
1847 {
1848 	if (scan_thread)
1849 		return;
1850 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1851 	if (IS_ERR(scan_thread)) {
1852 		pr_warn("Failed to create the scan thread\n");
1853 		scan_thread = NULL;
1854 	}
1855 }
1856 
1857 /*
1858  * Stop the automatic memory scanning thread.
1859  */
stop_scan_thread(void)1860 static void stop_scan_thread(void)
1861 {
1862 	if (scan_thread) {
1863 		kthread_stop(scan_thread);
1864 		scan_thread = NULL;
1865 	}
1866 }
1867 
1868 /*
1869  * Iterate over the object_list and return the first valid object at or after
1870  * the required position with its use_count incremented. The function triggers
1871  * a memory scanning when the pos argument points to the first position.
1872  */
kmemleak_seq_start(struct seq_file * seq,loff_t * pos)1873 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1874 {
1875 	struct kmemleak_object *object;
1876 	loff_t n = *pos;
1877 	int err;
1878 
1879 	err = mutex_lock_interruptible(&scan_mutex);
1880 	if (err < 0)
1881 		return ERR_PTR(err);
1882 
1883 	rcu_read_lock();
1884 	list_for_each_entry_rcu(object, &object_list, object_list) {
1885 		if (n-- > 0)
1886 			continue;
1887 		if (get_object(object))
1888 			goto out;
1889 	}
1890 	object = NULL;
1891 out:
1892 	return object;
1893 }
1894 
1895 /*
1896  * Return the next object in the object_list. The function decrements the
1897  * use_count of the previous object and increases that of the next one.
1898  */
kmemleak_seq_next(struct seq_file * seq,void * v,loff_t * pos)1899 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1900 {
1901 	struct kmemleak_object *prev_obj = v;
1902 	struct kmemleak_object *next_obj = NULL;
1903 	struct kmemleak_object *obj = prev_obj;
1904 
1905 	++(*pos);
1906 
1907 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1908 		if (get_object(obj)) {
1909 			next_obj = obj;
1910 			break;
1911 		}
1912 	}
1913 
1914 	put_object(prev_obj);
1915 	return next_obj;
1916 }
1917 
1918 /*
1919  * Decrement the use_count of the last object required, if any.
1920  */
kmemleak_seq_stop(struct seq_file * seq,void * v)1921 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1922 {
1923 	if (!IS_ERR(v)) {
1924 		/*
1925 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1926 		 * waiting was interrupted, so only release it if !IS_ERR.
1927 		 */
1928 		rcu_read_unlock();
1929 		mutex_unlock(&scan_mutex);
1930 		if (v)
1931 			put_object(v);
1932 	}
1933 }
1934 
1935 /*
1936  * Print the information for an unreferenced object to the seq file.
1937  */
kmemleak_seq_show(struct seq_file * seq,void * v)1938 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1939 {
1940 	struct kmemleak_object *object = v;
1941 	unsigned long flags;
1942 
1943 	raw_spin_lock_irqsave(&object->lock, flags);
1944 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1945 		print_unreferenced(seq, object);
1946 	raw_spin_unlock_irqrestore(&object->lock, flags);
1947 	return 0;
1948 }
1949 
1950 static const struct seq_operations kmemleak_seq_ops = {
1951 	.start = kmemleak_seq_start,
1952 	.next  = kmemleak_seq_next,
1953 	.stop  = kmemleak_seq_stop,
1954 	.show  = kmemleak_seq_show,
1955 };
1956 
kmemleak_open(struct inode * inode,struct file * file)1957 static int kmemleak_open(struct inode *inode, struct file *file)
1958 {
1959 	return seq_open(file, &kmemleak_seq_ops);
1960 }
1961 
dump_str_object_info(const char * str)1962 static int dump_str_object_info(const char *str)
1963 {
1964 	unsigned long flags;
1965 	struct kmemleak_object *object;
1966 	unsigned long addr;
1967 
1968 	if (kstrtoul(str, 0, &addr))
1969 		return -EINVAL;
1970 	object = find_and_get_object(addr, 0);
1971 	if (!object) {
1972 		pr_info("Unknown object at 0x%08lx\n", addr);
1973 		return -EINVAL;
1974 	}
1975 
1976 	raw_spin_lock_irqsave(&object->lock, flags);
1977 	dump_object_info(object);
1978 	raw_spin_unlock_irqrestore(&object->lock, flags);
1979 
1980 	put_object(object);
1981 	return 0;
1982 }
1983 
1984 /*
1985  * We use grey instead of black to ensure we can do future scans on the same
1986  * objects. If we did not do future scans these black objects could
1987  * potentially contain references to newly allocated objects in the future and
1988  * we'd end up with false positives.
1989  */
kmemleak_clear(void)1990 static void kmemleak_clear(void)
1991 {
1992 	struct kmemleak_object *object;
1993 
1994 	rcu_read_lock();
1995 	list_for_each_entry_rcu(object, &object_list, object_list) {
1996 		raw_spin_lock_irq(&object->lock);
1997 		if ((object->flags & OBJECT_REPORTED) &&
1998 		    unreferenced_object(object))
1999 			__paint_it(object, KMEMLEAK_GREY);
2000 		raw_spin_unlock_irq(&object->lock);
2001 	}
2002 	rcu_read_unlock();
2003 
2004 	kmemleak_found_leaks = false;
2005 }
2006 
2007 static void __kmemleak_do_cleanup(void);
2008 
2009 /*
2010  * File write operation to configure kmemleak at run-time. The following
2011  * commands can be written to the /sys/kernel/debug/kmemleak file:
2012  *   off	- disable kmemleak (irreversible)
2013  *   stack=on	- enable the task stacks scanning
2014  *   stack=off	- disable the tasks stacks scanning
2015  *   scan=on	- start the automatic memory scanning thread
2016  *   scan=off	- stop the automatic memory scanning thread
2017  *   scan=...	- set the automatic memory scanning period in seconds (0 to
2018  *		  disable it)
2019  *   scan	- trigger a memory scan
2020  *   clear	- mark all current reported unreferenced kmemleak objects as
2021  *		  grey to ignore printing them, or free all kmemleak objects
2022  *		  if kmemleak has been disabled.
2023  *   dump=...	- dump information about the object found at the given address
2024  */
kmemleak_write(struct file * file,const char __user * user_buf,size_t size,loff_t * ppos)2025 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
2026 			      size_t size, loff_t *ppos)
2027 {
2028 	char buf[64];
2029 	int buf_size;
2030 	int ret;
2031 
2032 	buf_size = min(size, (sizeof(buf) - 1));
2033 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
2034 		return -EFAULT;
2035 	buf[buf_size] = 0;
2036 
2037 	ret = mutex_lock_interruptible(&scan_mutex);
2038 	if (ret < 0)
2039 		return ret;
2040 
2041 	if (strncmp(buf, "clear", 5) == 0) {
2042 		if (kmemleak_enabled)
2043 			kmemleak_clear();
2044 		else
2045 			__kmemleak_do_cleanup();
2046 		goto out;
2047 	}
2048 
2049 	if (!kmemleak_enabled) {
2050 		ret = -EPERM;
2051 		goto out;
2052 	}
2053 
2054 	if (strncmp(buf, "off", 3) == 0)
2055 		kmemleak_disable();
2056 	else if (strncmp(buf, "stack=on", 8) == 0)
2057 		kmemleak_stack_scan = 1;
2058 	else if (strncmp(buf, "stack=off", 9) == 0)
2059 		kmemleak_stack_scan = 0;
2060 	else if (strncmp(buf, "scan=on", 7) == 0)
2061 		start_scan_thread();
2062 	else if (strncmp(buf, "scan=off", 8) == 0)
2063 		stop_scan_thread();
2064 	else if (strncmp(buf, "scan=", 5) == 0) {
2065 		unsigned secs;
2066 		unsigned long msecs;
2067 
2068 		ret = kstrtouint(buf + 5, 0, &secs);
2069 		if (ret < 0)
2070 			goto out;
2071 
2072 		msecs = secs * MSEC_PER_SEC;
2073 		if (msecs > UINT_MAX)
2074 			msecs = UINT_MAX;
2075 
2076 		stop_scan_thread();
2077 		if (msecs) {
2078 			WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
2079 			start_scan_thread();
2080 		}
2081 	} else if (strncmp(buf, "scan", 4) == 0)
2082 		kmemleak_scan();
2083 	else if (strncmp(buf, "dump=", 5) == 0)
2084 		ret = dump_str_object_info(buf + 5);
2085 	else
2086 		ret = -EINVAL;
2087 
2088 out:
2089 	mutex_unlock(&scan_mutex);
2090 	if (ret < 0)
2091 		return ret;
2092 
2093 	/* ignore the rest of the buffer, only one command at a time */
2094 	*ppos += size;
2095 	return size;
2096 }
2097 
2098 static const struct file_operations kmemleak_fops = {
2099 	.owner		= THIS_MODULE,
2100 	.open		= kmemleak_open,
2101 	.read		= seq_read,
2102 	.write		= kmemleak_write,
2103 	.llseek		= seq_lseek,
2104 	.release	= seq_release,
2105 };
2106 
__kmemleak_do_cleanup(void)2107 static void __kmemleak_do_cleanup(void)
2108 {
2109 	struct kmemleak_object *object, *tmp;
2110 
2111 	/*
2112 	 * Kmemleak has already been disabled, no need for RCU list traversal
2113 	 * or kmemleak_lock held.
2114 	 */
2115 	list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2116 		__remove_object(object);
2117 		__delete_object(object);
2118 	}
2119 }
2120 
2121 /*
2122  * Stop the memory scanning thread and free the kmemleak internal objects if
2123  * no previous scan thread (otherwise, kmemleak may still have some useful
2124  * information on memory leaks).
2125  */
kmemleak_do_cleanup(struct work_struct * work)2126 static void kmemleak_do_cleanup(struct work_struct *work)
2127 {
2128 	stop_scan_thread();
2129 
2130 	mutex_lock(&scan_mutex);
2131 	/*
2132 	 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2133 	 * longer track object freeing. Ordering of the scan thread stopping and
2134 	 * the memory accesses below is guaranteed by the kthread_stop()
2135 	 * function.
2136 	 */
2137 	kmemleak_free_enabled = 0;
2138 	mutex_unlock(&scan_mutex);
2139 
2140 	if (!kmemleak_found_leaks)
2141 		__kmemleak_do_cleanup();
2142 	else
2143 		pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2144 }
2145 
2146 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2147 
2148 /*
2149  * Disable kmemleak. No memory allocation/freeing will be traced once this
2150  * function is called. Disabling kmemleak is an irreversible operation.
2151  */
kmemleak_disable(void)2152 static void kmemleak_disable(void)
2153 {
2154 	/* atomically check whether it was already invoked */
2155 	if (cmpxchg(&kmemleak_error, 0, 1))
2156 		return;
2157 
2158 	/* stop any memory operation tracing */
2159 	kmemleak_enabled = 0;
2160 
2161 	/* check whether it is too early for a kernel thread */
2162 	if (kmemleak_late_initialized)
2163 		schedule_work(&cleanup_work);
2164 	else
2165 		kmemleak_free_enabled = 0;
2166 
2167 	pr_info("Kernel memory leak detector disabled\n");
2168 }
2169 
2170 /*
2171  * Allow boot-time kmemleak disabling (enabled by default).
2172  */
kmemleak_boot_config(char * str)2173 static int __init kmemleak_boot_config(char *str)
2174 {
2175 	if (!str)
2176 		return -EINVAL;
2177 	if (strcmp(str, "off") == 0)
2178 		kmemleak_disable();
2179 	else if (strcmp(str, "on") == 0) {
2180 		kmemleak_skip_disable = 1;
2181 		stack_depot_request_early_init();
2182 	}
2183 	else
2184 		return -EINVAL;
2185 	return 0;
2186 }
2187 early_param("kmemleak", kmemleak_boot_config);
2188 
2189 /*
2190  * Kmemleak initialization.
2191  */
kmemleak_init(void)2192 void __init kmemleak_init(void)
2193 {
2194 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2195 	if (!kmemleak_skip_disable) {
2196 		kmemleak_disable();
2197 		return;
2198 	}
2199 #endif
2200 
2201 	if (kmemleak_error)
2202 		return;
2203 
2204 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2205 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2206 
2207 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2208 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2209 
2210 	/* register the data/bss sections */
2211 	create_object((unsigned long)_sdata, _edata - _sdata,
2212 		      KMEMLEAK_GREY, GFP_ATOMIC);
2213 	create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2214 		      KMEMLEAK_GREY, GFP_ATOMIC);
2215 	/* only register .data..ro_after_init if not within .data */
2216 	if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2217 		create_object((unsigned long)__start_ro_after_init,
2218 			      __end_ro_after_init - __start_ro_after_init,
2219 			      KMEMLEAK_GREY, GFP_ATOMIC);
2220 }
2221 
2222 /*
2223  * Late initialization function.
2224  */
kmemleak_late_init(void)2225 static int __init kmemleak_late_init(void)
2226 {
2227 	kmemleak_late_initialized = 1;
2228 
2229 	debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2230 
2231 	if (kmemleak_error) {
2232 		/*
2233 		 * Some error occurred and kmemleak was disabled. There is a
2234 		 * small chance that kmemleak_disable() was called immediately
2235 		 * after setting kmemleak_late_initialized and we may end up with
2236 		 * two clean-up threads but serialized by scan_mutex.
2237 		 */
2238 		schedule_work(&cleanup_work);
2239 		return -ENOMEM;
2240 	}
2241 
2242 	if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2243 		mutex_lock(&scan_mutex);
2244 		start_scan_thread();
2245 		mutex_unlock(&scan_mutex);
2246 	}
2247 
2248 	pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2249 		mem_pool_free_count);
2250 
2251 	return 0;
2252 }
2253 late_initcall(kmemleak_late_init);
2254