1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/spinlock.h>
4 #include <linux/minmax.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "space-info.h"
8 #include "sysfs.h"
9 #include "volumes.h"
10 #include "free-space-cache.h"
11 #include "ordered-data.h"
12 #include "transaction.h"
13 #include "block-group.h"
14 #include "fs.h"
15 #include "accessors.h"
16 #include "extent-tree.h"
17 #include "zoned.h"
18 #include "delayed-inode.h"
19
20 /*
21 * HOW DOES SPACE RESERVATION WORK
22 *
23 * If you want to know about delalloc specifically, there is a separate comment
24 * for that with the delalloc code. This comment is about how the whole system
25 * works generally.
26 *
27 * BASIC CONCEPTS
28 *
29 * 1) space_info. This is the ultimate arbiter of how much space we can use.
30 * There's a description of the bytes_ fields with the struct declaration,
31 * refer to that for specifics on each field. Suffice it to say that for
32 * reservations we care about total_bytes - SUM(space_info->bytes_) when
33 * determining if there is space to make an allocation. There is a space_info
34 * for METADATA, SYSTEM, and DATA areas.
35 *
36 * 2) block_rsv's. These are basically buckets for every different type of
37 * metadata reservation we have. You can see the comment in the block_rsv
38 * code on the rules for each type, but generally block_rsv->reserved is how
39 * much space is accounted for in space_info->bytes_may_use.
40 *
41 * 3) btrfs_calc*_size. These are the worst case calculations we used based
42 * on the number of items we will want to modify. We have one for changing
43 * items, and one for inserting new items. Generally we use these helpers to
44 * determine the size of the block reserves, and then use the actual bytes
45 * values to adjust the space_info counters.
46 *
47 * MAKING RESERVATIONS, THE NORMAL CASE
48 *
49 * We call into either btrfs_reserve_data_bytes() or
50 * btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
51 * num_bytes we want to reserve.
52 *
53 * ->reserve
54 * space_info->bytes_may_use += num_bytes
55 *
56 * ->extent allocation
57 * Call btrfs_add_reserved_bytes() which does
58 * space_info->bytes_may_use -= num_bytes
59 * space_info->bytes_reserved += extent_bytes
60 *
61 * ->insert reference
62 * Call btrfs_update_block_group() which does
63 * space_info->bytes_reserved -= extent_bytes
64 * space_info->bytes_used += extent_bytes
65 *
66 * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
67 *
68 * Assume we are unable to simply make the reservation because we do not have
69 * enough space
70 *
71 * -> reserve_bytes
72 * create a reserve_ticket with ->bytes set to our reservation, add it to
73 * the tail of space_info->tickets, kick async flush thread
74 *
75 * ->handle_reserve_ticket
76 * wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
77 * on the ticket.
78 *
79 * -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
80 * Flushes various things attempting to free up space.
81 *
82 * -> btrfs_try_granting_tickets()
83 * This is called by anything that either subtracts space from
84 * space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
85 * space_info->total_bytes. This loops through the ->priority_tickets and
86 * then the ->tickets list checking to see if the reservation can be
87 * completed. If it can the space is added to space_info->bytes_may_use and
88 * the ticket is woken up.
89 *
90 * -> ticket wakeup
91 * Check if ->bytes == 0, if it does we got our reservation and we can carry
92 * on, if not return the appropriate error (ENOSPC, but can be EINTR if we
93 * were interrupted.)
94 *
95 * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
96 *
97 * Same as the above, except we add ourselves to the
98 * space_info->priority_tickets, and we do not use ticket->wait, we simply
99 * call flush_space() ourselves for the states that are safe for us to call
100 * without deadlocking and hope for the best.
101 *
102 * THE FLUSHING STATES
103 *
104 * Generally speaking we will have two cases for each state, a "nice" state
105 * and a "ALL THE THINGS" state. In btrfs we delay a lot of work in order to
106 * reduce the locking over head on the various trees, and even to keep from
107 * doing any work at all in the case of delayed refs. Each of these delayed
108 * things however hold reservations, and so letting them run allows us to
109 * reclaim space so we can make new reservations.
110 *
111 * FLUSH_DELAYED_ITEMS
112 * Every inode has a delayed item to update the inode. Take a simple write
113 * for example, we would update the inode item at write time to update the
114 * mtime, and then again at finish_ordered_io() time in order to update the
115 * isize or bytes. We keep these delayed items to coalesce these operations
116 * into a single operation done on demand. These are an easy way to reclaim
117 * metadata space.
118 *
119 * FLUSH_DELALLOC
120 * Look at the delalloc comment to get an idea of how much space is reserved
121 * for delayed allocation. We can reclaim some of this space simply by
122 * running delalloc, but usually we need to wait for ordered extents to
123 * reclaim the bulk of this space.
124 *
125 * FLUSH_DELAYED_REFS
126 * We have a block reserve for the outstanding delayed refs space, and every
127 * delayed ref operation holds a reservation. Running these is a quick way
128 * to reclaim space, but we want to hold this until the end because COW can
129 * churn a lot and we can avoid making some extent tree modifications if we
130 * are able to delay for as long as possible.
131 *
132 * RESET_ZONES
133 * This state works only for the zoned mode. On the zoned mode, we cannot
134 * reuse once allocated then freed region until we reset the zone, due to
135 * the sequential write zone requirement. The RESET_ZONES state resets the
136 * zones of an unused block group and let us reuse the space. The reusing
137 * is faster than removing the block group and allocating another block
138 * group on the zones.
139 *
140 * ALLOC_CHUNK
141 * We will skip this the first time through space reservation, because of
142 * overcommit and we don't want to have a lot of useless metadata space when
143 * our worst case reservations will likely never come true.
144 *
145 * RUN_DELAYED_IPUTS
146 * If we're freeing inodes we're likely freeing checksums, file extent
147 * items, and extent tree items. Loads of space could be freed up by these
148 * operations, however they won't be usable until the transaction commits.
149 *
150 * COMMIT_TRANS
151 * This will commit the transaction. Historically we had a lot of logic
152 * surrounding whether or not we'd commit the transaction, but this waits born
153 * out of a pre-tickets era where we could end up committing the transaction
154 * thousands of times in a row without making progress. Now thanks to our
155 * ticketing system we know if we're not making progress and can error
156 * everybody out after a few commits rather than burning the disk hoping for
157 * a different answer.
158 *
159 * OVERCOMMIT
160 *
161 * Because we hold so many reservations for metadata we will allow you to
162 * reserve more space than is currently free in the currently allocate
163 * metadata space. This only happens with metadata, data does not allow
164 * overcommitting.
165 *
166 * You can see the current logic for when we allow overcommit in
167 * btrfs_can_overcommit(), but it only applies to unallocated space. If there
168 * is no unallocated space to be had, all reservations are kept within the
169 * free space in the allocated metadata chunks.
170 *
171 * Because of overcommitting, you generally want to use the
172 * btrfs_can_overcommit() logic for metadata allocations, as it does the right
173 * thing with or without extra unallocated space.
174 */
175
176 struct reserve_ticket {
177 u64 bytes;
178 int error;
179 bool steal;
180 struct list_head list;
181 wait_queue_head_t wait;
182 spinlock_t lock;
183 };
184
185 /*
186 * after adding space to the filesystem, we need to clear the full flags
187 * on all the space infos.
188 */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)189 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
190 {
191 struct list_head *head = &info->space_info;
192 struct btrfs_space_info *found;
193
194 list_for_each_entry(found, head, list)
195 found->full = false;
196 }
197
198 /*
199 * Block groups with more than this value (percents) of unusable space will be
200 * scheduled for background reclaim.
201 */
202 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH (75)
203
204 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET (10ULL)
205
206 /*
207 * Calculate chunk size depending on volume type (regular or zoned).
208 */
calc_chunk_size(const struct btrfs_fs_info * fs_info,u64 flags)209 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
210 {
211 if (btrfs_is_zoned(fs_info))
212 return fs_info->zone_size;
213
214 ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK, "flags=%llu", flags);
215
216 if (flags & BTRFS_BLOCK_GROUP_DATA)
217 return BTRFS_MAX_DATA_CHUNK_SIZE;
218 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
219 return SZ_32M;
220
221 /* Handle BTRFS_BLOCK_GROUP_METADATA */
222 if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
223 return SZ_1G;
224
225 return SZ_256M;
226 }
227
228 /*
229 * Update default chunk size.
230 */
btrfs_update_space_info_chunk_size(struct btrfs_space_info * space_info,u64 chunk_size)231 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
232 u64 chunk_size)
233 {
234 WRITE_ONCE(space_info->chunk_size, chunk_size);
235 }
236
init_space_info(struct btrfs_fs_info * info,struct btrfs_space_info * space_info,u64 flags)237 static void init_space_info(struct btrfs_fs_info *info,
238 struct btrfs_space_info *space_info, u64 flags)
239 {
240 space_info->fs_info = info;
241 for (int i = 0; i < BTRFS_NR_RAID_TYPES; i++)
242 INIT_LIST_HEAD(&space_info->block_groups[i]);
243 init_rwsem(&space_info->groups_sem);
244 spin_lock_init(&space_info->lock);
245 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
246 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
247 INIT_LIST_HEAD(&space_info->ro_bgs);
248 INIT_LIST_HEAD(&space_info->tickets);
249 INIT_LIST_HEAD(&space_info->priority_tickets);
250 space_info->clamp = 1;
251 btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
252 space_info->subgroup_id = BTRFS_SUB_GROUP_PRIMARY;
253
254 if (btrfs_is_zoned(info))
255 space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
256 }
257
create_space_info_sub_group(struct btrfs_space_info * parent,u64 flags,enum btrfs_space_info_sub_group id,int index)258 static int create_space_info_sub_group(struct btrfs_space_info *parent, u64 flags,
259 enum btrfs_space_info_sub_group id, int index)
260 {
261 struct btrfs_fs_info *fs_info = parent->fs_info;
262 struct btrfs_space_info *sub_group;
263 int ret;
264
265 ASSERT(parent->subgroup_id == BTRFS_SUB_GROUP_PRIMARY,
266 "parent->subgroup_id=%d", parent->subgroup_id);
267 ASSERT(id != BTRFS_SUB_GROUP_PRIMARY, "id=%d", id);
268
269 sub_group = kzalloc(sizeof(*sub_group), GFP_NOFS);
270 if (!sub_group)
271 return -ENOMEM;
272
273 init_space_info(fs_info, sub_group, flags);
274 parent->sub_group[index] = sub_group;
275 sub_group->parent = parent;
276 sub_group->subgroup_id = id;
277
278 ret = btrfs_sysfs_add_space_info_type(sub_group);
279 if (ret) {
280 kfree(sub_group);
281 parent->sub_group[index] = NULL;
282 }
283 return ret;
284 }
285
create_space_info(struct btrfs_fs_info * info,u64 flags)286 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
287 {
288
289 struct btrfs_space_info *space_info;
290 int ret = 0;
291
292 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
293 if (!space_info)
294 return -ENOMEM;
295
296 init_space_info(info, space_info, flags);
297
298 if (btrfs_is_zoned(info)) {
299 if (flags & BTRFS_BLOCK_GROUP_DATA)
300 ret = create_space_info_sub_group(space_info, flags,
301 BTRFS_SUB_GROUP_DATA_RELOC,
302 0);
303 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
304 ret = create_space_info_sub_group(space_info, flags,
305 BTRFS_SUB_GROUP_TREELOG,
306 0);
307
308 if (ret)
309 goto out_free;
310 }
311
312 ret = btrfs_sysfs_add_space_info_type(space_info);
313 if (ret)
314 goto out_free;
315
316 list_add(&space_info->list, &info->space_info);
317 if (flags & BTRFS_BLOCK_GROUP_DATA)
318 info->data_sinfo = space_info;
319
320 return ret;
321
322 out_free:
323 kfree(space_info);
324 return ret;
325 }
326
btrfs_init_space_info(struct btrfs_fs_info * fs_info)327 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
328 {
329 struct btrfs_super_block *disk_super;
330 u64 features;
331 u64 flags;
332 int mixed = 0;
333 int ret;
334
335 disk_super = fs_info->super_copy;
336 if (!btrfs_super_root(disk_super))
337 return -EINVAL;
338
339 features = btrfs_super_incompat_flags(disk_super);
340 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
341 mixed = 1;
342
343 flags = BTRFS_BLOCK_GROUP_SYSTEM;
344 ret = create_space_info(fs_info, flags);
345 if (ret)
346 goto out;
347
348 if (mixed) {
349 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
350 ret = create_space_info(fs_info, flags);
351 } else {
352 flags = BTRFS_BLOCK_GROUP_METADATA;
353 ret = create_space_info(fs_info, flags);
354 if (ret)
355 goto out;
356
357 flags = BTRFS_BLOCK_GROUP_DATA;
358 ret = create_space_info(fs_info, flags);
359 }
360 out:
361 return ret;
362 }
363
btrfs_add_bg_to_space_info(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)364 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
365 struct btrfs_block_group *block_group)
366 {
367 struct btrfs_space_info *space_info = block_group->space_info;
368 int factor, index;
369
370 factor = btrfs_bg_type_to_factor(block_group->flags);
371
372 spin_lock(&space_info->lock);
373 space_info->total_bytes += block_group->length;
374 space_info->disk_total += block_group->length * factor;
375 space_info->bytes_used += block_group->used;
376 space_info->disk_used += block_group->used * factor;
377 space_info->bytes_readonly += block_group->bytes_super;
378 btrfs_space_info_update_bytes_zone_unusable(space_info, block_group->zone_unusable);
379 if (block_group->length > 0)
380 space_info->full = false;
381 btrfs_try_granting_tickets(space_info);
382 spin_unlock(&space_info->lock);
383
384 block_group->space_info = space_info;
385
386 index = btrfs_bg_flags_to_raid_index(block_group->flags);
387 down_write(&space_info->groups_sem);
388 list_add_tail(&block_group->list, &space_info->block_groups[index]);
389 up_write(&space_info->groups_sem);
390 }
391
btrfs_find_space_info(struct btrfs_fs_info * info,u64 flags)392 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
393 u64 flags)
394 {
395 struct list_head *head = &info->space_info;
396 struct btrfs_space_info *found;
397
398 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
399
400 list_for_each_entry(found, head, list) {
401 if (found->flags & flags)
402 return found;
403 }
404 return NULL;
405 }
406
calc_effective_data_chunk_size(struct btrfs_fs_info * fs_info)407 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info)
408 {
409 struct btrfs_space_info *data_sinfo;
410 u64 data_chunk_size;
411
412 /*
413 * Calculate the data_chunk_size, space_info->chunk_size is the
414 * "optimal" chunk size based on the fs size. However when we actually
415 * allocate the chunk we will strip this down further, making it no
416 * more than 10% of the disk or 1G, whichever is smaller.
417 *
418 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size)
419 * as it is.
420 */
421 data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
422 if (btrfs_is_zoned(fs_info))
423 return data_sinfo->chunk_size;
424 data_chunk_size = min(data_sinfo->chunk_size,
425 mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
426 return min_t(u64, data_chunk_size, SZ_1G);
427 }
428
calc_available_free_space(const struct btrfs_space_info * space_info,enum btrfs_reserve_flush_enum flush)429 static u64 calc_available_free_space(const struct btrfs_space_info *space_info,
430 enum btrfs_reserve_flush_enum flush)
431 {
432 struct btrfs_fs_info *fs_info = space_info->fs_info;
433 u64 profile;
434 u64 avail;
435 u64 data_chunk_size;
436 int factor;
437
438 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
439 profile = btrfs_system_alloc_profile(fs_info);
440 else
441 profile = btrfs_metadata_alloc_profile(fs_info);
442
443 avail = atomic64_read(&fs_info->free_chunk_space);
444
445 /*
446 * If we have dup, raid1 or raid10 then only half of the free
447 * space is actually usable. For raid56, the space info used
448 * doesn't include the parity drive, so we don't have to
449 * change the math
450 */
451 factor = btrfs_bg_type_to_factor(profile);
452 avail = div_u64(avail, factor);
453 if (avail == 0)
454 return 0;
455
456 data_chunk_size = calc_effective_data_chunk_size(fs_info);
457
458 /*
459 * Since data allocations immediately use block groups as part of the
460 * reservation, because we assume that data reservations will == actual
461 * usage, we could potentially overcommit and then immediately have that
462 * available space used by a data allocation, which could put us in a
463 * bind when we get close to filling the file system.
464 *
465 * To handle this simply remove the data_chunk_size from the available
466 * space. If we are relatively empty this won't affect our ability to
467 * overcommit much, and if we're very close to full it'll keep us from
468 * getting into a position where we've given ourselves very little
469 * metadata wiggle room.
470 */
471 if (avail <= data_chunk_size)
472 return 0;
473 avail -= data_chunk_size;
474
475 /*
476 * If we aren't flushing all things, let us overcommit up to
477 * 1/2th of the space. If we can flush, don't let us overcommit
478 * too much, let it overcommit up to 1/8 of the space.
479 */
480 if (flush == BTRFS_RESERVE_FLUSH_ALL)
481 avail >>= 3;
482 else
483 avail >>= 1;
484
485 /*
486 * On the zoned mode, we always allocate one zone as one chunk.
487 * Returning non-zone size aligned bytes here will result in
488 * less pressure for the async metadata reclaim process, and it
489 * will over-commit too much leading to ENOSPC. Align down to the
490 * zone size to avoid that.
491 */
492 if (btrfs_is_zoned(fs_info))
493 avail = ALIGN_DOWN(avail, fs_info->zone_size);
494
495 return avail;
496 }
497
check_can_overcommit(const struct btrfs_space_info * space_info,u64 space_info_used_bytes,u64 bytes,enum btrfs_reserve_flush_enum flush)498 static inline bool check_can_overcommit(const struct btrfs_space_info *space_info,
499 u64 space_info_used_bytes, u64 bytes,
500 enum btrfs_reserve_flush_enum flush)
501 {
502 const u64 avail = calc_available_free_space(space_info, flush);
503
504 return (space_info_used_bytes + bytes < space_info->total_bytes + avail);
505 }
506
can_overcommit(const struct btrfs_space_info * space_info,u64 space_info_used_bytes,u64 bytes,enum btrfs_reserve_flush_enum flush)507 static inline bool can_overcommit(const struct btrfs_space_info *space_info,
508 u64 space_info_used_bytes, u64 bytes,
509 enum btrfs_reserve_flush_enum flush)
510 {
511 /* Don't overcommit when in mixed mode. */
512 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
513 return false;
514
515 return check_can_overcommit(space_info, space_info_used_bytes, bytes, flush);
516 }
517
btrfs_can_overcommit(const struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)518 bool btrfs_can_overcommit(const struct btrfs_space_info *space_info, u64 bytes,
519 enum btrfs_reserve_flush_enum flush)
520 {
521 u64 used;
522
523 /* Don't overcommit when in mixed mode */
524 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
525 return false;
526
527 used = btrfs_space_info_used(space_info, true);
528
529 return check_can_overcommit(space_info, used, bytes, flush);
530 }
531
remove_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket,int error)532 static void remove_ticket(struct btrfs_space_info *space_info,
533 struct reserve_ticket *ticket, int error)
534 {
535 lockdep_assert_held(&space_info->lock);
536
537 if (!list_empty(&ticket->list)) {
538 list_del_init(&ticket->list);
539 ASSERT(space_info->reclaim_size >= ticket->bytes,
540 "space_info->reclaim_size=%llu ticket->bytes=%llu",
541 space_info->reclaim_size, ticket->bytes);
542 space_info->reclaim_size -= ticket->bytes;
543 }
544
545 spin_lock(&ticket->lock);
546 /*
547 * If we are called from a task waiting on the ticket, it may happen
548 * that before it sets an error on the ticket, a reclaim task was able
549 * to satisfy the ticket. In that case ignore the error.
550 */
551 if (error && ticket->bytes > 0)
552 ticket->error = error;
553 else
554 ticket->bytes = 0;
555
556 wake_up(&ticket->wait);
557 spin_unlock(&ticket->lock);
558 }
559
560 /*
561 * This is for space we already have accounted in space_info->bytes_may_use, so
562 * basically when we're returning space from block_rsv's.
563 */
btrfs_try_granting_tickets(struct btrfs_space_info * space_info)564 void btrfs_try_granting_tickets(struct btrfs_space_info *space_info)
565 {
566 struct list_head *head;
567 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
568 u64 used = btrfs_space_info_used(space_info, true);
569
570 lockdep_assert_held(&space_info->lock);
571
572 head = &space_info->priority_tickets;
573 again:
574 while (!list_empty(head)) {
575 struct reserve_ticket *ticket;
576 u64 used_after;
577
578 ticket = list_first_entry(head, struct reserve_ticket, list);
579 used_after = used + ticket->bytes;
580
581 /* Check and see if our ticket can be satisfied now. */
582 if (used_after <= space_info->total_bytes ||
583 can_overcommit(space_info, used, ticket->bytes, flush)) {
584 btrfs_space_info_update_bytes_may_use(space_info, ticket->bytes);
585 remove_ticket(space_info, ticket, 0);
586 space_info->tickets_id++;
587 used = used_after;
588 } else {
589 break;
590 }
591 }
592
593 if (head == &space_info->priority_tickets) {
594 head = &space_info->tickets;
595 flush = BTRFS_RESERVE_FLUSH_ALL;
596 goto again;
597 }
598 }
599
600 #define DUMP_BLOCK_RSV(fs_info, rsv_name) \
601 do { \
602 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
603 spin_lock(&__rsv->lock); \
604 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
605 __rsv->size, __rsv->reserved); \
606 spin_unlock(&__rsv->lock); \
607 } while (0)
608
space_info_flag_to_str(const struct btrfs_space_info * space_info)609 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
610 {
611 switch (space_info->flags) {
612 case BTRFS_BLOCK_GROUP_SYSTEM:
613 return "SYSTEM";
614 case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
615 return "DATA+METADATA";
616 case BTRFS_BLOCK_GROUP_DATA:
617 return "DATA";
618 case BTRFS_BLOCK_GROUP_METADATA:
619 return "METADATA";
620 default:
621 return "UNKNOWN";
622 }
623 }
624
dump_global_block_rsv(struct btrfs_fs_info * fs_info)625 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
626 {
627 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
628 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
629 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
630 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
631 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
632 }
633
__btrfs_dump_space_info(const struct btrfs_space_info * info)634 static void __btrfs_dump_space_info(const struct btrfs_space_info *info)
635 {
636 const struct btrfs_fs_info *fs_info = info->fs_info;
637 const char *flag_str = space_info_flag_to_str(info);
638 lockdep_assert_held(&info->lock);
639
640 /* The free space could be negative in case of overcommit */
641 btrfs_info(fs_info,
642 "space_info %s (sub-group id %d) has %lld free, is %sfull",
643 flag_str, info->subgroup_id,
644 (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
645 info->full ? "" : "not ");
646 btrfs_info(fs_info,
647 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
648 info->total_bytes, info->bytes_used, info->bytes_pinned,
649 info->bytes_reserved, info->bytes_may_use,
650 info->bytes_readonly, info->bytes_zone_unusable);
651 }
652
btrfs_dump_space_info(struct btrfs_space_info * info,u64 bytes,bool dump_block_groups)653 void btrfs_dump_space_info(struct btrfs_space_info *info, u64 bytes,
654 bool dump_block_groups)
655 {
656 struct btrfs_fs_info *fs_info = info->fs_info;
657 struct btrfs_block_group *cache;
658 u64 total_avail = 0;
659 int index = 0;
660
661 spin_lock(&info->lock);
662 __btrfs_dump_space_info(info);
663 dump_global_block_rsv(fs_info);
664 spin_unlock(&info->lock);
665
666 if (!dump_block_groups)
667 return;
668
669 down_read(&info->groups_sem);
670 again:
671 list_for_each_entry(cache, &info->block_groups[index], list) {
672 u64 avail;
673
674 spin_lock(&cache->lock);
675 avail = cache->length - cache->used - cache->pinned -
676 cache->reserved - cache->bytes_super - cache->zone_unusable;
677 btrfs_info(fs_info,
678 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
679 cache->start, cache->length, cache->used, cache->pinned,
680 cache->reserved, cache->delalloc_bytes,
681 cache->bytes_super, cache->zone_unusable,
682 avail, cache->ro ? "[readonly]" : "");
683 spin_unlock(&cache->lock);
684 btrfs_dump_free_space(cache, bytes);
685 total_avail += avail;
686 }
687 if (++index < BTRFS_NR_RAID_TYPES)
688 goto again;
689 up_read(&info->groups_sem);
690
691 btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
692 }
693
calc_reclaim_items_nr(const struct btrfs_fs_info * fs_info,u64 to_reclaim)694 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
695 u64 to_reclaim)
696 {
697 u64 bytes;
698 u64 nr;
699
700 bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
701 nr = div64_u64(to_reclaim, bytes);
702 if (!nr)
703 nr = 1;
704 return nr;
705 }
706
707 /*
708 * shrink metadata reservation for delalloc
709 */
shrink_delalloc(struct btrfs_space_info * space_info,u64 to_reclaim,bool wait_ordered,bool for_preempt)710 static void shrink_delalloc(struct btrfs_space_info *space_info,
711 u64 to_reclaim, bool wait_ordered,
712 bool for_preempt)
713 {
714 struct btrfs_fs_info *fs_info = space_info->fs_info;
715 struct btrfs_trans_handle *trans;
716 u64 delalloc_bytes;
717 u64 ordered_bytes;
718 u64 items;
719 long time_left;
720 int loops;
721
722 delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
723 ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
724 if (delalloc_bytes == 0 && ordered_bytes == 0)
725 return;
726
727 /* Calc the number of the pages we need flush for space reservation */
728 if (to_reclaim == U64_MAX) {
729 items = U64_MAX;
730 } else {
731 /*
732 * to_reclaim is set to however much metadata we need to
733 * reclaim, but reclaiming that much data doesn't really track
734 * exactly. What we really want to do is reclaim full inode's
735 * worth of reservations, however that's not available to us
736 * here. We will take a fraction of the delalloc bytes for our
737 * flushing loops and hope for the best. Delalloc will expand
738 * the amount we write to cover an entire dirty extent, which
739 * will reclaim the metadata reservation for that range. If
740 * it's not enough subsequent flush stages will be more
741 * aggressive.
742 */
743 to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
744 items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
745 }
746
747 trans = current->journal_info;
748
749 /*
750 * If we are doing more ordered than delalloc we need to just wait on
751 * ordered extents, otherwise we'll waste time trying to flush delalloc
752 * that likely won't give us the space back we need.
753 */
754 if (ordered_bytes > delalloc_bytes && !for_preempt)
755 wait_ordered = true;
756
757 loops = 0;
758 while ((delalloc_bytes || ordered_bytes) && loops < 3) {
759 u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
760 long nr_pages = min_t(u64, temp, LONG_MAX);
761 int async_pages;
762
763 btrfs_start_delalloc_roots(fs_info, nr_pages, true);
764
765 /*
766 * We need to make sure any outstanding async pages are now
767 * processed before we continue. This is because things like
768 * sync_inode() try to be smart and skip writing if the inode is
769 * marked clean. We don't use filemap_fwrite for flushing
770 * because we want to control how many pages we write out at a
771 * time, thus this is the only safe way to make sure we've
772 * waited for outstanding compressed workers to have started
773 * their jobs and thus have ordered extents set up properly.
774 *
775 * This exists because we do not want to wait for each
776 * individual inode to finish its async work, we simply want to
777 * start the IO on everybody, and then come back here and wait
778 * for all of the async work to catch up. Once we're done with
779 * that we know we'll have ordered extents for everything and we
780 * can decide if we wait for that or not.
781 *
782 * If we choose to replace this in the future, make absolutely
783 * sure that the proper waiting is being done in the async case,
784 * as there have been bugs in that area before.
785 */
786 async_pages = atomic_read(&fs_info->async_delalloc_pages);
787 if (!async_pages)
788 goto skip_async;
789
790 /*
791 * We don't want to wait forever, if we wrote less pages in this
792 * loop than we have outstanding, only wait for that number of
793 * pages, otherwise we can wait for all async pages to finish
794 * before continuing.
795 */
796 if (async_pages > nr_pages)
797 async_pages -= nr_pages;
798 else
799 async_pages = 0;
800 wait_event(fs_info->async_submit_wait,
801 atomic_read(&fs_info->async_delalloc_pages) <=
802 async_pages);
803 skip_async:
804 loops++;
805 if (wait_ordered && !trans) {
806 btrfs_wait_ordered_roots(fs_info, items, NULL);
807 } else {
808 time_left = schedule_timeout_killable(1);
809 if (time_left)
810 break;
811 }
812
813 /*
814 * If we are for preemption we just want a one-shot of delalloc
815 * flushing so we can stop flushing if we decide we don't need
816 * to anymore.
817 */
818 if (for_preempt)
819 break;
820
821 spin_lock(&space_info->lock);
822 if (list_empty(&space_info->tickets) &&
823 list_empty(&space_info->priority_tickets)) {
824 spin_unlock(&space_info->lock);
825 break;
826 }
827 spin_unlock(&space_info->lock);
828
829 delalloc_bytes = percpu_counter_sum_positive(
830 &fs_info->delalloc_bytes);
831 ordered_bytes = percpu_counter_sum_positive(
832 &fs_info->ordered_bytes);
833 }
834 }
835
836 /*
837 * Try to flush some data based on policy set by @state. This is only advisory
838 * and may fail for various reasons. The caller is supposed to examine the
839 * state of @space_info to detect the outcome.
840 */
flush_space(struct btrfs_space_info * space_info,u64 num_bytes,enum btrfs_flush_state state,bool for_preempt)841 static void flush_space(struct btrfs_space_info *space_info, u64 num_bytes,
842 enum btrfs_flush_state state, bool for_preempt)
843 {
844 struct btrfs_fs_info *fs_info = space_info->fs_info;
845 struct btrfs_root *root = fs_info->tree_root;
846 struct btrfs_trans_handle *trans;
847 int nr;
848 int ret = 0;
849
850 switch (state) {
851 case FLUSH_DELAYED_ITEMS_NR:
852 case FLUSH_DELAYED_ITEMS:
853 if (state == FLUSH_DELAYED_ITEMS_NR)
854 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
855 else
856 nr = -1;
857
858 trans = btrfs_join_transaction_nostart(root);
859 if (IS_ERR(trans)) {
860 ret = PTR_ERR(trans);
861 if (ret == -ENOENT)
862 ret = 0;
863 break;
864 }
865 ret = btrfs_run_delayed_items_nr(trans, nr);
866 btrfs_end_transaction(trans);
867 break;
868 case FLUSH_DELALLOC:
869 case FLUSH_DELALLOC_WAIT:
870 case FLUSH_DELALLOC_FULL:
871 if (state == FLUSH_DELALLOC_FULL)
872 num_bytes = U64_MAX;
873 shrink_delalloc(space_info, num_bytes,
874 state != FLUSH_DELALLOC, for_preempt);
875 break;
876 case FLUSH_DELAYED_REFS_NR:
877 case FLUSH_DELAYED_REFS:
878 trans = btrfs_join_transaction_nostart(root);
879 if (IS_ERR(trans)) {
880 ret = PTR_ERR(trans);
881 if (ret == -ENOENT)
882 ret = 0;
883 break;
884 }
885 if (state == FLUSH_DELAYED_REFS_NR)
886 btrfs_run_delayed_refs(trans, num_bytes);
887 else
888 btrfs_run_delayed_refs(trans, 0);
889 btrfs_end_transaction(trans);
890 break;
891 case ALLOC_CHUNK:
892 case ALLOC_CHUNK_FORCE:
893 trans = btrfs_join_transaction(root);
894 if (IS_ERR(trans)) {
895 ret = PTR_ERR(trans);
896 break;
897 }
898 ret = btrfs_chunk_alloc(trans, space_info,
899 btrfs_get_alloc_profile(fs_info, space_info->flags),
900 (state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
901 CHUNK_ALLOC_FORCE);
902 btrfs_end_transaction(trans);
903
904 if (ret > 0 || ret == -ENOSPC)
905 ret = 0;
906 break;
907 case RUN_DELAYED_IPUTS:
908 /*
909 * If we have pending delayed iputs then we could free up a
910 * bunch of pinned space, so make sure we run the iputs before
911 * we do our pinned bytes check below.
912 */
913 btrfs_run_delayed_iputs(fs_info);
914 btrfs_wait_on_delayed_iputs(fs_info);
915 break;
916 case COMMIT_TRANS:
917 ASSERT(current->journal_info == NULL);
918 /*
919 * We don't want to start a new transaction, just attach to the
920 * current one or wait it fully commits in case its commit is
921 * happening at the moment. Note: we don't use a nostart join
922 * because that does not wait for a transaction to fully commit
923 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
924 */
925 ret = btrfs_commit_current_transaction(root);
926 break;
927 case RESET_ZONES:
928 ret = btrfs_reset_unused_block_groups(space_info, num_bytes);
929 break;
930 default:
931 ret = -ENOSPC;
932 break;
933 }
934
935 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
936 ret, for_preempt);
937 return;
938 }
939
btrfs_calc_reclaim_metadata_size(const struct btrfs_space_info * space_info)940 static u64 btrfs_calc_reclaim_metadata_size(const struct btrfs_space_info *space_info)
941 {
942 u64 used;
943 u64 avail;
944 u64 to_reclaim = space_info->reclaim_size;
945
946 lockdep_assert_held(&space_info->lock);
947
948 avail = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL);
949 used = btrfs_space_info_used(space_info, true);
950
951 /*
952 * We may be flushing because suddenly we have less space than we had
953 * before, and now we're well over-committed based on our current free
954 * space. If that's the case add in our overage so we make sure to put
955 * appropriate pressure on the flushing state machine.
956 */
957 if (space_info->total_bytes + avail < used)
958 to_reclaim += used - (space_info->total_bytes + avail);
959
960 return to_reclaim;
961 }
962
need_preemptive_reclaim(const struct btrfs_space_info * space_info)963 static bool need_preemptive_reclaim(const struct btrfs_space_info *space_info)
964 {
965 struct btrfs_fs_info *fs_info = space_info->fs_info;
966 const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
967 u64 ordered, delalloc;
968 u64 thresh;
969 u64 used;
970
971 lockdep_assert_held(&space_info->lock);
972
973 /*
974 * We have tickets queued, bail so we don't compete with the async
975 * flushers.
976 */
977 if (space_info->reclaim_size)
978 return false;
979
980 thresh = mult_perc(space_info->total_bytes, 90);
981
982 /* If we're just plain full then async reclaim just slows us down. */
983 if ((space_info->bytes_used + space_info->bytes_reserved +
984 global_rsv_size) >= thresh)
985 return false;
986
987 used = space_info->bytes_may_use + space_info->bytes_pinned;
988
989 /* The total flushable belongs to the global rsv, don't flush. */
990 if (global_rsv_size >= used)
991 return false;
992
993 /*
994 * 128MiB is 1/4 of the maximum global rsv size. If we have less than
995 * that devoted to other reservations then there's no sense in flushing,
996 * we don't have a lot of things that need flushing.
997 */
998 if (used - global_rsv_size <= SZ_128M)
999 return false;
1000
1001 /*
1002 * If we have over half of the free space occupied by reservations or
1003 * pinned then we want to start flushing.
1004 *
1005 * We do not do the traditional thing here, which is to say
1006 *
1007 * if (used >= ((total_bytes + avail) / 2))
1008 * return 1;
1009 *
1010 * because this doesn't quite work how we want. If we had more than 50%
1011 * of the space_info used by bytes_used and we had 0 available we'd just
1012 * constantly run the background flusher. Instead we want it to kick in
1013 * if our reclaimable space exceeds our clamped free space.
1014 *
1015 * Our clamping range is 2^1 -> 2^8. Practically speaking that means
1016 * the following:
1017 *
1018 * Amount of RAM Minimum threshold Maximum threshold
1019 *
1020 * 256GiB 1GiB 128GiB
1021 * 128GiB 512MiB 64GiB
1022 * 64GiB 256MiB 32GiB
1023 * 32GiB 128MiB 16GiB
1024 * 16GiB 64MiB 8GiB
1025 *
1026 * These are the range our thresholds will fall in, corresponding to how
1027 * much delalloc we need for the background flusher to kick in.
1028 */
1029
1030 thresh = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL);
1031 used = space_info->bytes_used + space_info->bytes_reserved +
1032 space_info->bytes_readonly + global_rsv_size;
1033 if (used < space_info->total_bytes)
1034 thresh += space_info->total_bytes - used;
1035 thresh >>= space_info->clamp;
1036
1037 used = space_info->bytes_pinned;
1038
1039 /*
1040 * If we have more ordered bytes than delalloc bytes then we're either
1041 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
1042 * around. Preemptive flushing is only useful in that it can free up
1043 * space before tickets need to wait for things to finish. In the case
1044 * of ordered extents, preemptively waiting on ordered extents gets us
1045 * nothing, if our reservations are tied up in ordered extents we'll
1046 * simply have to slow down writers by forcing them to wait on ordered
1047 * extents.
1048 *
1049 * In the case that ordered is larger than delalloc, only include the
1050 * block reserves that we would actually be able to directly reclaim
1051 * from. In this case if we're heavy on metadata operations this will
1052 * clearly be heavy enough to warrant preemptive flushing. In the case
1053 * of heavy DIO or ordered reservations, preemptive flushing will just
1054 * waste time and cause us to slow down.
1055 *
1056 * We want to make sure we truly are maxed out on ordered however, so
1057 * cut ordered in half, and if it's still higher than delalloc then we
1058 * can keep flushing. This is to avoid the case where we start
1059 * flushing, and now delalloc == ordered and we stop preemptively
1060 * flushing when we could still have several gigs of delalloc to flush.
1061 */
1062 ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
1063 delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
1064 if (ordered >= delalloc)
1065 used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
1066 btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
1067 else
1068 used += space_info->bytes_may_use - global_rsv_size;
1069
1070 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
1071 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
1072 }
1073
steal_from_global_rsv(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1074 static bool steal_from_global_rsv(struct btrfs_space_info *space_info,
1075 struct reserve_ticket *ticket)
1076 {
1077 struct btrfs_fs_info *fs_info = space_info->fs_info;
1078 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1079 u64 min_bytes;
1080
1081 lockdep_assert_held(&space_info->lock);
1082
1083 if (!ticket->steal)
1084 return false;
1085
1086 if (global_rsv->space_info != space_info)
1087 return false;
1088
1089 spin_lock(&global_rsv->lock);
1090 min_bytes = mult_perc(global_rsv->size, 10);
1091 if (global_rsv->reserved < min_bytes + ticket->bytes) {
1092 spin_unlock(&global_rsv->lock);
1093 return false;
1094 }
1095 global_rsv->reserved -= ticket->bytes;
1096 if (global_rsv->reserved < global_rsv->size)
1097 global_rsv->full = false;
1098 spin_unlock(&global_rsv->lock);
1099
1100 remove_ticket(space_info, ticket, 0);
1101 space_info->tickets_id++;
1102
1103 return true;
1104 }
1105
1106 /*
1107 * We've exhausted our flushing, start failing tickets.
1108 *
1109 * @space_info - the space info we were flushing
1110 *
1111 * We call this when we've exhausted our flushing ability and haven't made
1112 * progress in satisfying tickets. The reservation code handles tickets in
1113 * order, so if there is a large ticket first and then smaller ones we could
1114 * very well satisfy the smaller tickets. This will attempt to wake up any
1115 * tickets in the list to catch this case.
1116 *
1117 * This function returns true if it was able to make progress by clearing out
1118 * other tickets, or if it stumbles across a ticket that was smaller than the
1119 * first ticket.
1120 */
maybe_fail_all_tickets(struct btrfs_space_info * space_info)1121 static bool maybe_fail_all_tickets(struct btrfs_space_info *space_info)
1122 {
1123 struct btrfs_fs_info *fs_info = space_info->fs_info;
1124 struct reserve_ticket *ticket;
1125 u64 tickets_id = space_info->tickets_id;
1126 const int abort_error = BTRFS_FS_ERROR(fs_info);
1127
1128 trace_btrfs_fail_all_tickets(fs_info, space_info);
1129
1130 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1131 btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1132 __btrfs_dump_space_info(space_info);
1133 }
1134
1135 while (!list_empty(&space_info->tickets) &&
1136 tickets_id == space_info->tickets_id) {
1137 ticket = list_first_entry(&space_info->tickets,
1138 struct reserve_ticket, list);
1139 if (unlikely(abort_error)) {
1140 remove_ticket(space_info, ticket, abort_error);
1141 } else {
1142 if (steal_from_global_rsv(space_info, ticket))
1143 return true;
1144
1145 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1146 btrfs_info(fs_info, "failing ticket with %llu bytes",
1147 ticket->bytes);
1148
1149 remove_ticket(space_info, ticket, -ENOSPC);
1150
1151 /*
1152 * We're just throwing tickets away, so more flushing may
1153 * not trip over btrfs_try_granting_tickets, so we need
1154 * to call it here to see if we can make progress with
1155 * the next ticket in the list.
1156 */
1157 btrfs_try_granting_tickets(space_info);
1158 }
1159 }
1160 return (tickets_id != space_info->tickets_id);
1161 }
1162
do_async_reclaim_metadata_space(struct btrfs_space_info * space_info)1163 static void do_async_reclaim_metadata_space(struct btrfs_space_info *space_info)
1164 {
1165 struct btrfs_fs_info *fs_info = space_info->fs_info;
1166 u64 to_reclaim;
1167 enum btrfs_flush_state flush_state;
1168 int commit_cycles = 0;
1169 u64 last_tickets_id;
1170 enum btrfs_flush_state final_state;
1171
1172 if (btrfs_is_zoned(fs_info))
1173 final_state = RESET_ZONES;
1174 else
1175 final_state = COMMIT_TRANS;
1176
1177 spin_lock(&space_info->lock);
1178 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info);
1179 if (!to_reclaim) {
1180 space_info->flush = false;
1181 spin_unlock(&space_info->lock);
1182 return;
1183 }
1184 last_tickets_id = space_info->tickets_id;
1185 spin_unlock(&space_info->lock);
1186
1187 flush_state = FLUSH_DELAYED_ITEMS_NR;
1188 do {
1189 flush_space(space_info, to_reclaim, flush_state, false);
1190 spin_lock(&space_info->lock);
1191 if (list_empty(&space_info->tickets)) {
1192 space_info->flush = false;
1193 spin_unlock(&space_info->lock);
1194 return;
1195 }
1196 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info);
1197 if (last_tickets_id == space_info->tickets_id) {
1198 flush_state++;
1199 } else {
1200 last_tickets_id = space_info->tickets_id;
1201 flush_state = FLUSH_DELAYED_ITEMS_NR;
1202 if (commit_cycles)
1203 commit_cycles--;
1204 }
1205
1206 /*
1207 * We do not want to empty the system of delalloc unless we're
1208 * under heavy pressure, so allow one trip through the flushing
1209 * logic before we start doing a FLUSH_DELALLOC_FULL.
1210 */
1211 if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1212 flush_state++;
1213
1214 /*
1215 * We don't want to force a chunk allocation until we've tried
1216 * pretty hard to reclaim space. Think of the case where we
1217 * freed up a bunch of space and so have a lot of pinned space
1218 * to reclaim. We would rather use that than possibly create a
1219 * underutilized metadata chunk. So if this is our first run
1220 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1221 * commit the transaction. If nothing has changed the next go
1222 * around then we can force a chunk allocation.
1223 */
1224 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1225 flush_state++;
1226
1227 if (flush_state > final_state) {
1228 commit_cycles++;
1229 if (commit_cycles > 2) {
1230 if (maybe_fail_all_tickets(space_info)) {
1231 flush_state = FLUSH_DELAYED_ITEMS_NR;
1232 commit_cycles--;
1233 } else {
1234 space_info->flush = false;
1235 }
1236 } else {
1237 flush_state = FLUSH_DELAYED_ITEMS_NR;
1238 }
1239 }
1240 spin_unlock(&space_info->lock);
1241 } while (flush_state <= final_state);
1242 }
1243
1244 /*
1245 * This is for normal flushers, it can wait as much time as needed. We will
1246 * loop and continuously try to flush as long as we are making progress. We
1247 * count progress as clearing off tickets each time we have to loop.
1248 */
btrfs_async_reclaim_metadata_space(struct work_struct * work)1249 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1250 {
1251 struct btrfs_fs_info *fs_info;
1252 struct btrfs_space_info *space_info;
1253
1254 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1255 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1256 do_async_reclaim_metadata_space(space_info);
1257 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) {
1258 if (space_info->sub_group[i])
1259 do_async_reclaim_metadata_space(space_info->sub_group[i]);
1260 }
1261 }
1262
1263 /*
1264 * This handles pre-flushing of metadata space before we get to the point that
1265 * we need to start blocking threads on tickets. The logic here is different
1266 * from the other flush paths because it doesn't rely on tickets to tell us how
1267 * much we need to flush, instead it attempts to keep us below the 80% full
1268 * watermark of space by flushing whichever reservation pool is currently the
1269 * largest.
1270 */
btrfs_preempt_reclaim_metadata_space(struct work_struct * work)1271 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1272 {
1273 struct btrfs_fs_info *fs_info;
1274 struct btrfs_space_info *space_info;
1275 struct btrfs_block_rsv *delayed_block_rsv;
1276 struct btrfs_block_rsv *delayed_refs_rsv;
1277 struct btrfs_block_rsv *global_rsv;
1278 struct btrfs_block_rsv *trans_rsv;
1279 int loops = 0;
1280
1281 fs_info = container_of(work, struct btrfs_fs_info,
1282 preempt_reclaim_work);
1283 space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1284 delayed_block_rsv = &fs_info->delayed_block_rsv;
1285 delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1286 global_rsv = &fs_info->global_block_rsv;
1287 trans_rsv = &fs_info->trans_block_rsv;
1288
1289 spin_lock(&space_info->lock);
1290 while (need_preemptive_reclaim(space_info)) {
1291 enum btrfs_flush_state flush;
1292 u64 delalloc_size = 0;
1293 u64 to_reclaim, block_rsv_size;
1294 const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1295 const u64 bytes_may_use = space_info->bytes_may_use;
1296 const u64 bytes_pinned = space_info->bytes_pinned;
1297
1298 spin_unlock(&space_info->lock);
1299 /*
1300 * We don't have a precise counter for the metadata being
1301 * reserved for delalloc, so we'll approximate it by subtracting
1302 * out the block rsv's space from the bytes_may_use. If that
1303 * amount is higher than the individual reserves, then we can
1304 * assume it's tied up in delalloc reservations.
1305 */
1306 block_rsv_size = global_rsv_size +
1307 btrfs_block_rsv_reserved(delayed_block_rsv) +
1308 btrfs_block_rsv_reserved(delayed_refs_rsv) +
1309 btrfs_block_rsv_reserved(trans_rsv);
1310 if (block_rsv_size < bytes_may_use)
1311 delalloc_size = bytes_may_use - block_rsv_size;
1312
1313 /*
1314 * We don't want to include the global_rsv in our calculation,
1315 * because that's space we can't touch. Subtract it from the
1316 * block_rsv_size for the next checks.
1317 */
1318 block_rsv_size -= global_rsv_size;
1319
1320 /*
1321 * We really want to avoid flushing delalloc too much, as it
1322 * could result in poor allocation patterns, so only flush it if
1323 * it's larger than the rest of the pools combined.
1324 */
1325 if (delalloc_size > block_rsv_size) {
1326 to_reclaim = delalloc_size;
1327 flush = FLUSH_DELALLOC;
1328 } else if (bytes_pinned >
1329 (btrfs_block_rsv_reserved(delayed_block_rsv) +
1330 btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1331 to_reclaim = bytes_pinned;
1332 flush = COMMIT_TRANS;
1333 } else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1334 btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1335 to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1336 flush = FLUSH_DELAYED_ITEMS_NR;
1337 } else {
1338 to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1339 flush = FLUSH_DELAYED_REFS_NR;
1340 }
1341
1342 loops++;
1343
1344 /*
1345 * We don't want to reclaim everything, just a portion, so scale
1346 * down the to_reclaim by 1/4. If it takes us down to 0,
1347 * reclaim 1 items worth.
1348 */
1349 to_reclaim >>= 2;
1350 if (!to_reclaim)
1351 to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1352 flush_space(space_info, to_reclaim, flush, true);
1353 cond_resched();
1354 spin_lock(&space_info->lock);
1355 }
1356
1357 /* We only went through once, back off our clamping. */
1358 if (loops == 1 && !space_info->reclaim_size)
1359 space_info->clamp = max(1, space_info->clamp - 1);
1360 trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1361 spin_unlock(&space_info->lock);
1362 }
1363
1364 /*
1365 * FLUSH_DELALLOC_WAIT:
1366 * Space is freed from flushing delalloc in one of two ways.
1367 *
1368 * 1) compression is on and we allocate less space than we reserved
1369 * 2) we are overwriting existing space
1370 *
1371 * For #1 that extra space is reclaimed as soon as the delalloc pages are
1372 * COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1373 * length to ->bytes_reserved, and subtracts the reserved space from
1374 * ->bytes_may_use.
1375 *
1376 * For #2 this is trickier. Once the ordered extent runs we will drop the
1377 * extent in the range we are overwriting, which creates a delayed ref for
1378 * that freed extent. This however is not reclaimed until the transaction
1379 * commits, thus the next stages.
1380 *
1381 * RUN_DELAYED_IPUTS
1382 * If we are freeing inodes, we want to make sure all delayed iputs have
1383 * completed, because they could have been on an inode with i_nlink == 0, and
1384 * thus have been truncated and freed up space. But again this space is not
1385 * immediately reusable, it comes in the form of a delayed ref, which must be
1386 * run and then the transaction must be committed.
1387 *
1388 * COMMIT_TRANS
1389 * This is where we reclaim all of the pinned space generated by running the
1390 * iputs
1391 *
1392 * RESET_ZONES
1393 * This state works only for the zoned mode. We scan the unused block group
1394 * list and reset the zones and reuse the block group.
1395 *
1396 * ALLOC_CHUNK_FORCE
1397 * For data we start with alloc chunk force, however we could have been full
1398 * before, and then the transaction commit could have freed new block groups,
1399 * so if we now have space to allocate do the force chunk allocation.
1400 */
1401 static const enum btrfs_flush_state data_flush_states[] = {
1402 FLUSH_DELALLOC_FULL,
1403 RUN_DELAYED_IPUTS,
1404 COMMIT_TRANS,
1405 RESET_ZONES,
1406 ALLOC_CHUNK_FORCE,
1407 };
1408
do_async_reclaim_data_space(struct btrfs_space_info * space_info)1409 static void do_async_reclaim_data_space(struct btrfs_space_info *space_info)
1410 {
1411 struct btrfs_fs_info *fs_info = space_info->fs_info;
1412 u64 last_tickets_id;
1413 enum btrfs_flush_state flush_state = 0;
1414
1415 spin_lock(&space_info->lock);
1416 if (list_empty(&space_info->tickets)) {
1417 space_info->flush = false;
1418 spin_unlock(&space_info->lock);
1419 return;
1420 }
1421 last_tickets_id = space_info->tickets_id;
1422 spin_unlock(&space_info->lock);
1423
1424 while (!space_info->full) {
1425 flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1426 spin_lock(&space_info->lock);
1427 if (list_empty(&space_info->tickets)) {
1428 space_info->flush = false;
1429 spin_unlock(&space_info->lock);
1430 return;
1431 }
1432
1433 /* Something happened, fail everything and bail. */
1434 if (unlikely(BTRFS_FS_ERROR(fs_info)))
1435 goto aborted_fs;
1436 last_tickets_id = space_info->tickets_id;
1437 spin_unlock(&space_info->lock);
1438 }
1439
1440 while (flush_state < ARRAY_SIZE(data_flush_states)) {
1441 flush_space(space_info, U64_MAX,
1442 data_flush_states[flush_state], false);
1443 spin_lock(&space_info->lock);
1444 if (list_empty(&space_info->tickets)) {
1445 space_info->flush = false;
1446 spin_unlock(&space_info->lock);
1447 return;
1448 }
1449
1450 if (last_tickets_id == space_info->tickets_id) {
1451 flush_state++;
1452 } else {
1453 last_tickets_id = space_info->tickets_id;
1454 flush_state = 0;
1455 }
1456
1457 if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1458 if (space_info->full) {
1459 if (maybe_fail_all_tickets(space_info))
1460 flush_state = 0;
1461 else
1462 space_info->flush = false;
1463 } else {
1464 flush_state = 0;
1465 }
1466
1467 /* Something happened, fail everything and bail. */
1468 if (unlikely(BTRFS_FS_ERROR(fs_info)))
1469 goto aborted_fs;
1470
1471 }
1472 spin_unlock(&space_info->lock);
1473 }
1474 return;
1475
1476 aborted_fs:
1477 maybe_fail_all_tickets(space_info);
1478 space_info->flush = false;
1479 spin_unlock(&space_info->lock);
1480 }
1481
btrfs_async_reclaim_data_space(struct work_struct * work)1482 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1483 {
1484 struct btrfs_fs_info *fs_info;
1485 struct btrfs_space_info *space_info;
1486
1487 fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1488 space_info = fs_info->data_sinfo;
1489 do_async_reclaim_data_space(space_info);
1490 for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++)
1491 if (space_info->sub_group[i])
1492 do_async_reclaim_data_space(space_info->sub_group[i]);
1493 }
1494
btrfs_init_async_reclaim_work(struct btrfs_fs_info * fs_info)1495 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1496 {
1497 INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1498 INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1499 INIT_WORK(&fs_info->preempt_reclaim_work,
1500 btrfs_preempt_reclaim_metadata_space);
1501 }
1502
1503 static const enum btrfs_flush_state priority_flush_states[] = {
1504 FLUSH_DELAYED_ITEMS_NR,
1505 FLUSH_DELAYED_ITEMS,
1506 RESET_ZONES,
1507 ALLOC_CHUNK,
1508 };
1509
1510 static const enum btrfs_flush_state evict_flush_states[] = {
1511 FLUSH_DELAYED_ITEMS_NR,
1512 FLUSH_DELAYED_ITEMS,
1513 FLUSH_DELAYED_REFS_NR,
1514 FLUSH_DELAYED_REFS,
1515 FLUSH_DELALLOC,
1516 FLUSH_DELALLOC_WAIT,
1517 FLUSH_DELALLOC_FULL,
1518 ALLOC_CHUNK,
1519 COMMIT_TRANS,
1520 RESET_ZONES,
1521 };
1522
is_ticket_served(struct reserve_ticket * ticket)1523 static bool is_ticket_served(struct reserve_ticket *ticket)
1524 {
1525 bool ret;
1526
1527 spin_lock(&ticket->lock);
1528 ret = (ticket->bytes == 0);
1529 spin_unlock(&ticket->lock);
1530
1531 return ret;
1532 }
1533
priority_reclaim_metadata_space(struct btrfs_space_info * space_info,struct reserve_ticket * ticket,const enum btrfs_flush_state * states,int states_nr)1534 static void priority_reclaim_metadata_space(struct btrfs_space_info *space_info,
1535 struct reserve_ticket *ticket,
1536 const enum btrfs_flush_state *states,
1537 int states_nr)
1538 {
1539 struct btrfs_fs_info *fs_info = space_info->fs_info;
1540 u64 to_reclaim;
1541 int flush_state = 0;
1542
1543 /*
1544 * This is the priority reclaim path, so to_reclaim could be >0 still
1545 * because we may have only satisfied the priority tickets and still
1546 * left non priority tickets on the list. We would then have
1547 * to_reclaim but ->bytes == 0.
1548 */
1549 if (is_ticket_served(ticket))
1550 return;
1551
1552 spin_lock(&space_info->lock);
1553 to_reclaim = btrfs_calc_reclaim_metadata_size(space_info);
1554 spin_unlock(&space_info->lock);
1555
1556 while (flush_state < states_nr) {
1557 flush_space(space_info, to_reclaim, states[flush_state], false);
1558 if (is_ticket_served(ticket))
1559 return;
1560 flush_state++;
1561 }
1562
1563 spin_lock(&space_info->lock);
1564 /*
1565 * Attempt to steal from the global rsv if we can, except if the fs was
1566 * turned into error mode due to a transaction abort when flushing space
1567 * above, in that case fail with the abort error instead of returning
1568 * success to the caller if we can steal from the global rsv - this is
1569 * just to have caller fail immediately instead of later when trying to
1570 * modify the fs, making it easier to debug -ENOSPC problems.
1571 */
1572 if (unlikely(BTRFS_FS_ERROR(fs_info)))
1573 remove_ticket(space_info, ticket, BTRFS_FS_ERROR(fs_info));
1574 else if (!steal_from_global_rsv(space_info, ticket))
1575 remove_ticket(space_info, ticket, -ENOSPC);
1576
1577 /*
1578 * We must run try_granting_tickets here because we could be a large
1579 * ticket in front of a smaller ticket that can now be satisfied with
1580 * the available space.
1581 */
1582 btrfs_try_granting_tickets(space_info);
1583 spin_unlock(&space_info->lock);
1584 }
1585
priority_reclaim_data_space(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1586 static void priority_reclaim_data_space(struct btrfs_space_info *space_info,
1587 struct reserve_ticket *ticket)
1588 {
1589 /* We could have been granted before we got here. */
1590 if (is_ticket_served(ticket))
1591 return;
1592
1593 spin_lock(&space_info->lock);
1594 while (!space_info->full) {
1595 spin_unlock(&space_info->lock);
1596 flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1597 if (is_ticket_served(ticket))
1598 return;
1599 spin_lock(&space_info->lock);
1600 }
1601
1602 remove_ticket(space_info, ticket, -ENOSPC);
1603 btrfs_try_granting_tickets(space_info);
1604 spin_unlock(&space_info->lock);
1605 }
1606
wait_reserve_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1607 static void wait_reserve_ticket(struct btrfs_space_info *space_info,
1608 struct reserve_ticket *ticket)
1609
1610 {
1611 DEFINE_WAIT(wait);
1612
1613 spin_lock(&ticket->lock);
1614 while (ticket->bytes > 0 && ticket->error == 0) {
1615 int ret;
1616
1617 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1618 spin_unlock(&ticket->lock);
1619 if (ret) {
1620 /*
1621 * Delete us from the list. After we unlock the space
1622 * info, we don't want the async reclaim job to reserve
1623 * space for this ticket. If that would happen, then the
1624 * ticket's task would not known that space was reserved
1625 * despite getting an error, resulting in a space leak
1626 * (bytes_may_use counter of our space_info).
1627 */
1628 spin_lock(&space_info->lock);
1629 remove_ticket(space_info, ticket, -EINTR);
1630 spin_unlock(&space_info->lock);
1631 return;
1632 }
1633
1634 schedule();
1635
1636 finish_wait(&ticket->wait, &wait);
1637 spin_lock(&ticket->lock);
1638 }
1639 spin_unlock(&ticket->lock);
1640 }
1641
1642 /*
1643 * Do the appropriate flushing and waiting for a ticket.
1644 *
1645 * @space_info: space info for the reservation
1646 * @ticket: ticket for the reservation
1647 * @start_ns: timestamp when the reservation started
1648 * @orig_bytes: amount of bytes originally reserved
1649 * @flush: how much we can flush
1650 *
1651 * This does the work of figuring out how to flush for the ticket, waiting for
1652 * the reservation, and returning the appropriate error if there is one.
1653 */
handle_reserve_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 start_ns,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1654 static int handle_reserve_ticket(struct btrfs_space_info *space_info,
1655 struct reserve_ticket *ticket,
1656 u64 start_ns, u64 orig_bytes,
1657 enum btrfs_reserve_flush_enum flush)
1658 {
1659 int ret;
1660
1661 switch (flush) {
1662 case BTRFS_RESERVE_FLUSH_DATA:
1663 case BTRFS_RESERVE_FLUSH_ALL:
1664 case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1665 wait_reserve_ticket(space_info, ticket);
1666 break;
1667 case BTRFS_RESERVE_FLUSH_LIMIT:
1668 priority_reclaim_metadata_space(space_info, ticket,
1669 priority_flush_states,
1670 ARRAY_SIZE(priority_flush_states));
1671 break;
1672 case BTRFS_RESERVE_FLUSH_EVICT:
1673 priority_reclaim_metadata_space(space_info, ticket,
1674 evict_flush_states,
1675 ARRAY_SIZE(evict_flush_states));
1676 break;
1677 case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1678 priority_reclaim_data_space(space_info, ticket);
1679 break;
1680 default:
1681 ASSERT(0, "flush=%d", flush);
1682 break;
1683 }
1684
1685 ret = ticket->error;
1686 ASSERT(list_empty(&ticket->list));
1687 /*
1688 * Check that we can't have an error set if the reservation succeeded,
1689 * as that would confuse tasks and lead them to error out without
1690 * releasing reserved space (if an error happens the expectation is that
1691 * space wasn't reserved at all).
1692 */
1693 ASSERT(!(ticket->bytes == 0 && ticket->error),
1694 "ticket->bytes=%llu ticket->error=%d", ticket->bytes, ticket->error);
1695 trace_btrfs_reserve_ticket(space_info->fs_info, space_info->flags,
1696 orig_bytes, start_ns, flush, ticket->error);
1697 return ret;
1698 }
1699
1700 /*
1701 * This returns true if this flush state will go through the ordinary flushing
1702 * code.
1703 */
is_normal_flushing(enum btrfs_reserve_flush_enum flush)1704 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1705 {
1706 return (flush == BTRFS_RESERVE_FLUSH_ALL) ||
1707 (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1708 }
1709
maybe_clamp_preempt(struct btrfs_space_info * space_info)1710 static inline void maybe_clamp_preempt(struct btrfs_space_info *space_info)
1711 {
1712 struct btrfs_fs_info *fs_info = space_info->fs_info;
1713 u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1714 u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1715
1716 /*
1717 * If we're heavy on ordered operations then clamping won't help us. We
1718 * need to clamp specifically to keep up with dirty'ing buffered
1719 * writers, because there's not a 1:1 correlation of writing delalloc
1720 * and freeing space, like there is with flushing delayed refs or
1721 * delayed nodes. If we're already more ordered than delalloc then
1722 * we're keeping up, otherwise we aren't and should probably clamp.
1723 */
1724 if (ordered < delalloc)
1725 space_info->clamp = min(space_info->clamp + 1, 8);
1726 }
1727
can_steal(enum btrfs_reserve_flush_enum flush)1728 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1729 {
1730 return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1731 flush == BTRFS_RESERVE_FLUSH_EVICT);
1732 }
1733
1734 /*
1735 * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1736 * fail as quickly as possible.
1737 */
can_ticket(enum btrfs_reserve_flush_enum flush)1738 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1739 {
1740 return (flush != BTRFS_RESERVE_NO_FLUSH &&
1741 flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1742 }
1743
1744 /*
1745 * Try to reserve bytes from the block_rsv's space.
1746 *
1747 * @space_info: space info we want to allocate from
1748 * @orig_bytes: number of bytes we want
1749 * @flush: whether or not we can flush to make our reservation
1750 *
1751 * This will reserve orig_bytes number of bytes from the space info associated
1752 * with the block_rsv. If there is not enough space it will make an attempt to
1753 * flush out space to make room. It will do this by flushing delalloc if
1754 * possible or committing the transaction. If flush is 0 then no attempts to
1755 * regain reservations will be made and this will fail if there is not enough
1756 * space already.
1757 */
reserve_bytes(struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1758 static int reserve_bytes(struct btrfs_space_info *space_info, u64 orig_bytes,
1759 enum btrfs_reserve_flush_enum flush)
1760 {
1761 struct btrfs_fs_info *fs_info = space_info->fs_info;
1762 struct work_struct *async_work;
1763 struct reserve_ticket ticket;
1764 u64 start_ns = 0;
1765 u64 used;
1766 int ret = -ENOSPC;
1767 bool pending_tickets;
1768
1769 ASSERT(orig_bytes, "orig_bytes=%llu", orig_bytes);
1770 /*
1771 * If have a transaction handle (current->journal_info != NULL), then
1772 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1773 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1774 * flushing methods can trigger transaction commits.
1775 */
1776 if (current->journal_info) {
1777 /* One assert per line for easier debugging. */
1778 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL, "flush=%d", flush);
1779 ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL, "flush=%d", flush);
1780 ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT, "flush=%d", flush);
1781 }
1782
1783 if (flush == BTRFS_RESERVE_FLUSH_DATA)
1784 async_work = &fs_info->async_data_reclaim_work;
1785 else
1786 async_work = &fs_info->async_reclaim_work;
1787
1788 spin_lock(&space_info->lock);
1789 used = btrfs_space_info_used(space_info, true);
1790
1791 /*
1792 * We don't want NO_FLUSH allocations to jump everybody, they can
1793 * generally handle ENOSPC in a different way, so treat them the same as
1794 * normal flushers when it comes to skipping pending tickets.
1795 */
1796 if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1797 pending_tickets = !list_empty(&space_info->tickets) ||
1798 !list_empty(&space_info->priority_tickets);
1799 else
1800 pending_tickets = !list_empty(&space_info->priority_tickets);
1801
1802 /*
1803 * Carry on if we have enough space (short-circuit) OR call
1804 * can_overcommit() to ensure we can overcommit to continue.
1805 */
1806 if (!pending_tickets &&
1807 ((used + orig_bytes <= space_info->total_bytes) ||
1808 can_overcommit(space_info, used, orig_bytes, flush))) {
1809 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes);
1810 ret = 0;
1811 }
1812
1813 /*
1814 * Things are dire, we need to make a reservation so we don't abort. We
1815 * will let this reservation go through as long as we have actual space
1816 * left to allocate for the block.
1817 */
1818 if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1819 used -= space_info->bytes_may_use;
1820 if (used + orig_bytes <= space_info->total_bytes) {
1821 btrfs_space_info_update_bytes_may_use(space_info, orig_bytes);
1822 ret = 0;
1823 }
1824 }
1825
1826 /*
1827 * If we couldn't make a reservation then setup our reservation ticket
1828 * and kick the async worker if it's not already running.
1829 *
1830 * If we are a priority flusher then we just need to add our ticket to
1831 * the list and we will do our own flushing further down.
1832 */
1833 if (ret && can_ticket(flush)) {
1834 ticket.bytes = orig_bytes;
1835 ticket.error = 0;
1836 space_info->reclaim_size += ticket.bytes;
1837 init_waitqueue_head(&ticket.wait);
1838 spin_lock_init(&ticket.lock);
1839 ticket.steal = can_steal(flush);
1840 if (trace_btrfs_reserve_ticket_enabled())
1841 start_ns = ktime_get_ns();
1842
1843 if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1844 flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1845 flush == BTRFS_RESERVE_FLUSH_DATA) {
1846 list_add_tail(&ticket.list, &space_info->tickets);
1847 if (!space_info->flush) {
1848 /*
1849 * We were forced to add a reserve ticket, so
1850 * our preemptive flushing is unable to keep
1851 * up. Clamp down on the threshold for the
1852 * preemptive flushing in order to keep up with
1853 * the workload.
1854 */
1855 maybe_clamp_preempt(space_info);
1856
1857 space_info->flush = true;
1858 trace_btrfs_trigger_flush(fs_info,
1859 space_info->flags,
1860 orig_bytes, flush,
1861 "enospc");
1862 queue_work(system_dfl_wq, async_work);
1863 }
1864 } else {
1865 list_add_tail(&ticket.list,
1866 &space_info->priority_tickets);
1867 }
1868 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1869 /*
1870 * We will do the space reservation dance during log replay,
1871 * which means we won't have fs_info->fs_root set, so don't do
1872 * the async reclaim as we will panic.
1873 */
1874 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1875 !work_busy(&fs_info->preempt_reclaim_work) &&
1876 need_preemptive_reclaim(space_info)) {
1877 trace_btrfs_trigger_flush(fs_info, space_info->flags,
1878 orig_bytes, flush, "preempt");
1879 queue_work(system_dfl_wq,
1880 &fs_info->preempt_reclaim_work);
1881 }
1882 }
1883 spin_unlock(&space_info->lock);
1884 if (!ret || !can_ticket(flush))
1885 return ret;
1886
1887 return handle_reserve_ticket(space_info, &ticket, start_ns, orig_bytes, flush);
1888 }
1889
1890 /*
1891 * Try to reserve metadata bytes from the block_rsv's space.
1892 *
1893 * @space_info: the space_info we're allocating for
1894 * @orig_bytes: number of bytes we want
1895 * @flush: whether or not we can flush to make our reservation
1896 *
1897 * This will reserve orig_bytes number of bytes from the space info associated
1898 * with the block_rsv. If there is not enough space it will make an attempt to
1899 * flush out space to make room. It will do this by flushing delalloc if
1900 * possible or committing the transaction. If flush is 0 then no attempts to
1901 * regain reservations will be made and this will fail if there is not enough
1902 * space already.
1903 */
btrfs_reserve_metadata_bytes(struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1904 int btrfs_reserve_metadata_bytes(struct btrfs_space_info *space_info,
1905 u64 orig_bytes,
1906 enum btrfs_reserve_flush_enum flush)
1907 {
1908 int ret;
1909
1910 ret = reserve_bytes(space_info, orig_bytes, flush);
1911 if (ret == -ENOSPC) {
1912 struct btrfs_fs_info *fs_info = space_info->fs_info;
1913
1914 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1915 space_info->flags, orig_bytes, 1);
1916
1917 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1918 btrfs_dump_space_info(space_info, orig_bytes, false);
1919 }
1920 return ret;
1921 }
1922
1923 /*
1924 * Try to reserve data bytes for an allocation.
1925 *
1926 * @space_info: the space_info we're allocating for
1927 * @bytes: number of bytes we need
1928 * @flush: how we are allowed to flush
1929 *
1930 * This will reserve bytes from the data space info. If there is not enough
1931 * space then we will attempt to flush space as specified by flush.
1932 */
btrfs_reserve_data_bytes(struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)1933 int btrfs_reserve_data_bytes(struct btrfs_space_info *space_info, u64 bytes,
1934 enum btrfs_reserve_flush_enum flush)
1935 {
1936 struct btrfs_fs_info *fs_info = space_info->fs_info;
1937 int ret;
1938
1939 ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1940 flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1941 flush == BTRFS_RESERVE_NO_FLUSH, "flush=%d", flush);
1942 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA,
1943 "current->journal_info=0x%lx flush=%d",
1944 (unsigned long)current->journal_info, flush);
1945
1946 ret = reserve_bytes(space_info, bytes, flush);
1947 if (ret == -ENOSPC) {
1948 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1949 space_info->flags, bytes, 1);
1950 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1951 btrfs_dump_space_info(space_info, bytes, false);
1952 }
1953 return ret;
1954 }
1955
1956 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info * fs_info)1957 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1958 {
1959 struct btrfs_space_info *space_info;
1960
1961 btrfs_info(fs_info, "dumping space info:");
1962 list_for_each_entry(space_info, &fs_info->space_info, list) {
1963 spin_lock(&space_info->lock);
1964 __btrfs_dump_space_info(space_info);
1965 spin_unlock(&space_info->lock);
1966 }
1967 dump_global_block_rsv(fs_info);
1968 }
1969
1970 /*
1971 * Account the unused space of all the readonly block group in the space_info.
1972 * takes mirrors into account.
1973 */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)1974 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1975 {
1976 struct btrfs_block_group *block_group;
1977 u64 free_bytes = 0;
1978 int factor;
1979
1980 /* It's df, we don't care if it's racy */
1981 if (data_race(list_empty(&sinfo->ro_bgs)))
1982 return 0;
1983
1984 spin_lock(&sinfo->lock);
1985 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1986 spin_lock(&block_group->lock);
1987
1988 if (!block_group->ro) {
1989 spin_unlock(&block_group->lock);
1990 continue;
1991 }
1992
1993 factor = btrfs_bg_type_to_factor(block_group->flags);
1994 free_bytes += (block_group->length -
1995 block_group->used) * factor;
1996
1997 spin_unlock(&block_group->lock);
1998 }
1999 spin_unlock(&sinfo->lock);
2000
2001 return free_bytes;
2002 }
2003
calc_pct_ratio(u64 x,u64 y)2004 static u64 calc_pct_ratio(u64 x, u64 y)
2005 {
2006 int ret;
2007
2008 if (!y)
2009 return 0;
2010 again:
2011 ret = check_mul_overflow(100, x, &x);
2012 if (ret)
2013 goto lose_precision;
2014 return div64_u64(x, y);
2015 lose_precision:
2016 x >>= 10;
2017 y >>= 10;
2018 if (!y)
2019 y = 1;
2020 goto again;
2021 }
2022
2023 /*
2024 * A reasonable buffer for unallocated space is 10 data block_groups.
2025 * If we claw this back repeatedly, we can still achieve efficient
2026 * utilization when near full, and not do too much reclaim while
2027 * always maintaining a solid buffer for workloads that quickly
2028 * allocate and pressure the unallocated space.
2029 */
calc_unalloc_target(struct btrfs_fs_info * fs_info)2030 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info)
2031 {
2032 u64 chunk_sz = calc_effective_data_chunk_size(fs_info);
2033
2034 return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz;
2035 }
2036
2037 /*
2038 * The fundamental goal of automatic reclaim is to protect the filesystem's
2039 * unallocated space and thus minimize the probability of the filesystem going
2040 * read only when a metadata allocation failure causes a transaction abort.
2041 *
2042 * However, relocations happen into the space_info's unused space, therefore
2043 * automatic reclaim must also back off as that space runs low. There is no
2044 * value in doing trivial "relocations" of re-writing the same block group
2045 * into a fresh one.
2046 *
2047 * Furthermore, we want to avoid doing too much reclaim even if there are good
2048 * candidates. This is because the allocator is pretty good at filling up the
2049 * holes with writes. So we want to do just enough reclaim to try and stay
2050 * safe from running out of unallocated space but not be wasteful about it.
2051 *
2052 * Therefore, the dynamic reclaim threshold is calculated as follows:
2053 * - calculate a target unallocated amount of 5 block group sized chunks
2054 * - ratchet up the intensity of reclaim depending on how far we are from
2055 * that target by using a formula of unalloc / target to set the threshold.
2056 *
2057 * Typically with 10 block groups as the target, the discrete values this comes
2058 * out to are 0, 10, 20, ... , 80, 90, and 99.
2059 */
calc_dynamic_reclaim_threshold(const struct btrfs_space_info * space_info)2060 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info)
2061 {
2062 struct btrfs_fs_info *fs_info = space_info->fs_info;
2063 u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
2064 u64 target = calc_unalloc_target(fs_info);
2065 u64 alloc = space_info->total_bytes;
2066 u64 used = btrfs_space_info_used(space_info, false);
2067 u64 unused = alloc - used;
2068 u64 want = target > unalloc ? target - unalloc : 0;
2069 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
2070
2071 /* If we have no unused space, don't bother, it won't work anyway. */
2072 if (unused < data_chunk_size)
2073 return 0;
2074
2075 /* Cast to int is OK because want <= target. */
2076 return calc_pct_ratio(want, target);
2077 }
2078
btrfs_calc_reclaim_threshold(const struct btrfs_space_info * space_info)2079 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info)
2080 {
2081 lockdep_assert_held(&space_info->lock);
2082
2083 if (READ_ONCE(space_info->dynamic_reclaim))
2084 return calc_dynamic_reclaim_threshold(space_info);
2085 return READ_ONCE(space_info->bg_reclaim_threshold);
2086 }
2087
2088 /*
2089 * Under "urgent" reclaim, we will reclaim even fresh block groups that have
2090 * recently seen successful allocations, as we are desperate to reclaim
2091 * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs.
2092 */
is_reclaim_urgent(struct btrfs_space_info * space_info)2093 static bool is_reclaim_urgent(struct btrfs_space_info *space_info)
2094 {
2095 struct btrfs_fs_info *fs_info = space_info->fs_info;
2096 u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
2097 u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
2098
2099 return unalloc < data_chunk_size;
2100 }
2101
do_reclaim_sweep(struct btrfs_space_info * space_info,int raid)2102 static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid)
2103 {
2104 struct btrfs_block_group *bg;
2105 int thresh_pct;
2106 bool try_again = true;
2107 bool urgent;
2108
2109 spin_lock(&space_info->lock);
2110 urgent = is_reclaim_urgent(space_info);
2111 thresh_pct = btrfs_calc_reclaim_threshold(space_info);
2112 spin_unlock(&space_info->lock);
2113
2114 down_read(&space_info->groups_sem);
2115 again:
2116 list_for_each_entry(bg, &space_info->block_groups[raid], list) {
2117 u64 thresh;
2118 bool reclaim = false;
2119
2120 btrfs_get_block_group(bg);
2121 spin_lock(&bg->lock);
2122 thresh = mult_perc(bg->length, thresh_pct);
2123 if (bg->used < thresh && bg->reclaim_mark) {
2124 try_again = false;
2125 reclaim = true;
2126 }
2127 bg->reclaim_mark++;
2128 spin_unlock(&bg->lock);
2129 if (reclaim)
2130 btrfs_mark_bg_to_reclaim(bg);
2131 btrfs_put_block_group(bg);
2132 }
2133
2134 /*
2135 * In situations where we are very motivated to reclaim (low unalloc)
2136 * use two passes to make the reclaim mark check best effort.
2137 *
2138 * If we have any staler groups, we don't touch the fresher ones, but if we
2139 * really need a block group, do take a fresh one.
2140 */
2141 if (try_again && urgent) {
2142 try_again = false;
2143 goto again;
2144 }
2145
2146 up_read(&space_info->groups_sem);
2147 }
2148
btrfs_space_info_update_reclaimable(struct btrfs_space_info * space_info,s64 bytes)2149 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes)
2150 {
2151 u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info);
2152
2153 lockdep_assert_held(&space_info->lock);
2154 space_info->reclaimable_bytes += bytes;
2155
2156 if (space_info->reclaimable_bytes >= chunk_sz)
2157 btrfs_set_periodic_reclaim_ready(space_info, true);
2158 }
2159
btrfs_set_periodic_reclaim_ready(struct btrfs_space_info * space_info,bool ready)2160 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready)
2161 {
2162 lockdep_assert_held(&space_info->lock);
2163 if (!READ_ONCE(space_info->periodic_reclaim))
2164 return;
2165 if (ready != space_info->periodic_reclaim_ready) {
2166 space_info->periodic_reclaim_ready = ready;
2167 if (!ready)
2168 space_info->reclaimable_bytes = 0;
2169 }
2170 }
2171
btrfs_should_periodic_reclaim(struct btrfs_space_info * space_info)2172 static bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info)
2173 {
2174 bool ret;
2175
2176 if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2177 return false;
2178 if (!READ_ONCE(space_info->periodic_reclaim))
2179 return false;
2180
2181 spin_lock(&space_info->lock);
2182 ret = space_info->periodic_reclaim_ready;
2183 btrfs_set_periodic_reclaim_ready(space_info, false);
2184 spin_unlock(&space_info->lock);
2185
2186 return ret;
2187 }
2188
btrfs_reclaim_sweep(const struct btrfs_fs_info * fs_info)2189 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info)
2190 {
2191 int raid;
2192 struct btrfs_space_info *space_info;
2193
2194 list_for_each_entry(space_info, &fs_info->space_info, list) {
2195 if (!btrfs_should_periodic_reclaim(space_info))
2196 continue;
2197 for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++)
2198 do_reclaim_sweep(space_info, raid);
2199 }
2200 }
2201
btrfs_return_free_space(struct btrfs_space_info * space_info,u64 len)2202 void btrfs_return_free_space(struct btrfs_space_info *space_info, u64 len)
2203 {
2204 struct btrfs_fs_info *fs_info = space_info->fs_info;
2205 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2206
2207 lockdep_assert_held(&space_info->lock);
2208
2209 /* Prioritize the global reservation to receive the freed space. */
2210 if (global_rsv->space_info != space_info)
2211 goto grant;
2212
2213 spin_lock(&global_rsv->lock);
2214 if (!global_rsv->full) {
2215 u64 to_add = min(len, global_rsv->size - global_rsv->reserved);
2216
2217 global_rsv->reserved += to_add;
2218 btrfs_space_info_update_bytes_may_use(space_info, to_add);
2219 if (global_rsv->reserved >= global_rsv->size)
2220 global_rsv->full = true;
2221 len -= to_add;
2222 }
2223 spin_unlock(&global_rsv->lock);
2224
2225 grant:
2226 /* Add to any tickets we may have. */
2227 if (len)
2228 btrfs_try_granting_tickets(space_info);
2229 }
2230