xref: /linux/fs/btrfs/space-info.c (revision e84d960149e71e8d5e4db69775ce31305898ed0c)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/spinlock.h>
4 #include <linux/minmax.h>
5 #include "misc.h"
6 #include "ctree.h"
7 #include "space-info.h"
8 #include "sysfs.h"
9 #include "volumes.h"
10 #include "free-space-cache.h"
11 #include "ordered-data.h"
12 #include "transaction.h"
13 #include "block-group.h"
14 #include "fs.h"
15 #include "accessors.h"
16 #include "extent-tree.h"
17 #include "zoned.h"
18 #include "delayed-inode.h"
19 
20 /*
21  * HOW DOES SPACE RESERVATION WORK
22  *
23  * If you want to know about delalloc specifically, there is a separate comment
24  * for that with the delalloc code.  This comment is about how the whole system
25  * works generally.
26  *
27  * BASIC CONCEPTS
28  *
29  *   1) space_info.  This is the ultimate arbiter of how much space we can use.
30  *   There's a description of the bytes_ fields with the struct declaration,
31  *   refer to that for specifics on each field.  Suffice it to say that for
32  *   reservations we care about total_bytes - SUM(space_info->bytes_) when
33  *   determining if there is space to make an allocation.  There is a space_info
34  *   for METADATA, SYSTEM, and DATA areas.
35  *
36  *   2) block_rsv's.  These are basically buckets for every different type of
37  *   metadata reservation we have.  You can see the comment in the block_rsv
38  *   code on the rules for each type, but generally block_rsv->reserved is how
39  *   much space is accounted for in space_info->bytes_may_use.
40  *
41  *   3) btrfs_calc*_size.  These are the worst case calculations we used based
42  *   on the number of items we will want to modify.  We have one for changing
43  *   items, and one for inserting new items.  Generally we use these helpers to
44  *   determine the size of the block reserves, and then use the actual bytes
45  *   values to adjust the space_info counters.
46  *
47  * MAKING RESERVATIONS, THE NORMAL CASE
48  *
49  *   We call into either btrfs_reserve_data_bytes() or
50  *   btrfs_reserve_metadata_bytes(), depending on which we're looking for, with
51  *   num_bytes we want to reserve.
52  *
53  *   ->reserve
54  *     space_info->bytes_may_use += num_bytes
55  *
56  *   ->extent allocation
57  *     Call btrfs_add_reserved_bytes() which does
58  *     space_info->bytes_may_use -= num_bytes
59  *     space_info->bytes_reserved += extent_bytes
60  *
61  *   ->insert reference
62  *     Call btrfs_update_block_group() which does
63  *     space_info->bytes_reserved -= extent_bytes
64  *     space_info->bytes_used += extent_bytes
65  *
66  * MAKING RESERVATIONS, FLUSHING NORMALLY (non-priority)
67  *
68  *   Assume we are unable to simply make the reservation because we do not have
69  *   enough space
70  *
71  *   -> reserve_bytes
72  *     create a reserve_ticket with ->bytes set to our reservation, add it to
73  *     the tail of space_info->tickets, kick async flush thread
74  *
75  *   ->handle_reserve_ticket
76  *     wait on ticket->wait for ->bytes to be reduced to 0, or ->error to be set
77  *     on the ticket.
78  *
79  *   -> btrfs_async_reclaim_metadata_space/btrfs_async_reclaim_data_space
80  *     Flushes various things attempting to free up space.
81  *
82  *   -> btrfs_try_granting_tickets()
83  *     This is called by anything that either subtracts space from
84  *     space_info->bytes_may_use, ->bytes_pinned, etc, or adds to the
85  *     space_info->total_bytes.  This loops through the ->priority_tickets and
86  *     then the ->tickets list checking to see if the reservation can be
87  *     completed.  If it can the space is added to space_info->bytes_may_use and
88  *     the ticket is woken up.
89  *
90  *   -> ticket wakeup
91  *     Check if ->bytes == 0, if it does we got our reservation and we can carry
92  *     on, if not return the appropriate error (ENOSPC, but can be EINTR if we
93  *     were interrupted.)
94  *
95  * MAKING RESERVATIONS, FLUSHING HIGH PRIORITY
96  *
97  *   Same as the above, except we add ourselves to the
98  *   space_info->priority_tickets, and we do not use ticket->wait, we simply
99  *   call flush_space() ourselves for the states that are safe for us to call
100  *   without deadlocking and hope for the best.
101  *
102  * THE FLUSHING STATES
103  *
104  *   Generally speaking we will have two cases for each state, a "nice" state
105  *   and a "ALL THE THINGS" state.  In btrfs we delay a lot of work in order to
106  *   reduce the locking over head on the various trees, and even to keep from
107  *   doing any work at all in the case of delayed refs.  Each of these delayed
108  *   things however hold reservations, and so letting them run allows us to
109  *   reclaim space so we can make new reservations.
110  *
111  *   FLUSH_DELAYED_ITEMS
112  *     Every inode has a delayed item to update the inode.  Take a simple write
113  *     for example, we would update the inode item at write time to update the
114  *     mtime, and then again at finish_ordered_io() time in order to update the
115  *     isize or bytes.  We keep these delayed items to coalesce these operations
116  *     into a single operation done on demand.  These are an easy way to reclaim
117  *     metadata space.
118  *
119  *   FLUSH_DELALLOC
120  *     Look at the delalloc comment to get an idea of how much space is reserved
121  *     for delayed allocation.  We can reclaim some of this space simply by
122  *     running delalloc, but usually we need to wait for ordered extents to
123  *     reclaim the bulk of this space.
124  *
125  *   FLUSH_DELAYED_REFS
126  *     We have a block reserve for the outstanding delayed refs space, and every
127  *     delayed ref operation holds a reservation.  Running these is a quick way
128  *     to reclaim space, but we want to hold this until the end because COW can
129  *     churn a lot and we can avoid making some extent tree modifications if we
130  *     are able to delay for as long as possible.
131  *
132  *   RESET_ZONES
133  *     This state works only for the zoned mode. On the zoned mode, we cannot
134  *     reuse once allocated then freed region until we reset the zone, due to
135  *     the sequential write zone requirement. The RESET_ZONES state resets the
136  *     zones of an unused block group and let us reuse the space. The reusing
137  *     is faster than removing the block group and allocating another block
138  *     group on the zones.
139  *
140  *   ALLOC_CHUNK
141  *     We will skip this the first time through space reservation, because of
142  *     overcommit and we don't want to have a lot of useless metadata space when
143  *     our worst case reservations will likely never come true.
144  *
145  *   RUN_DELAYED_IPUTS
146  *     If we're freeing inodes we're likely freeing checksums, file extent
147  *     items, and extent tree items.  Loads of space could be freed up by these
148  *     operations, however they won't be usable until the transaction commits.
149  *
150  *   COMMIT_TRANS
151  *     This will commit the transaction.  Historically we had a lot of logic
152  *     surrounding whether or not we'd commit the transaction, but this waits born
153  *     out of a pre-tickets era where we could end up committing the transaction
154  *     thousands of times in a row without making progress.  Now thanks to our
155  *     ticketing system we know if we're not making progress and can error
156  *     everybody out after a few commits rather than burning the disk hoping for
157  *     a different answer.
158  *
159  * OVERCOMMIT
160  *
161  *   Because we hold so many reservations for metadata we will allow you to
162  *   reserve more space than is currently free in the currently allocate
163  *   metadata space.  This only happens with metadata, data does not allow
164  *   overcommitting.
165  *
166  *   You can see the current logic for when we allow overcommit in
167  *   btrfs_can_overcommit(), but it only applies to unallocated space.  If there
168  *   is no unallocated space to be had, all reservations are kept within the
169  *   free space in the allocated metadata chunks.
170  *
171  *   Because of overcommitting, you generally want to use the
172  *   btrfs_can_overcommit() logic for metadata allocations, as it does the right
173  *   thing with or without extra unallocated space.
174  */
175 
176 struct reserve_ticket {
177 	u64 bytes;
178 	int error;
179 	bool steal;
180 	struct list_head list;
181 	wait_queue_head_t wait;
182 	spinlock_t lock;
183 };
184 
185 /*
186  * after adding space to the filesystem, we need to clear the full flags
187  * on all the space infos.
188  */
btrfs_clear_space_info_full(struct btrfs_fs_info * info)189 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
190 {
191 	struct list_head *head = &info->space_info;
192 	struct btrfs_space_info *found;
193 
194 	list_for_each_entry(found, head, list)
195 		found->full = false;
196 }
197 
198 /*
199  * Block groups with more than this value (percents) of unusable space will be
200  * scheduled for background reclaim.
201  */
202 #define BTRFS_DEFAULT_ZONED_RECLAIM_THRESH			(75)
203 
204 #define BTRFS_UNALLOC_BLOCK_GROUP_TARGET			(10ULL)
205 
206 /*
207  * Calculate chunk size depending on volume type (regular or zoned).
208  */
calc_chunk_size(const struct btrfs_fs_info * fs_info,u64 flags)209 static u64 calc_chunk_size(const struct btrfs_fs_info *fs_info, u64 flags)
210 {
211 	if (btrfs_is_zoned(fs_info))
212 		return fs_info->zone_size;
213 
214 	ASSERT(flags & BTRFS_BLOCK_GROUP_TYPE_MASK, "flags=%llu", flags);
215 
216 	if (flags & BTRFS_BLOCK_GROUP_DATA)
217 		return BTRFS_MAX_DATA_CHUNK_SIZE;
218 	else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
219 		return SZ_32M;
220 
221 	/* Handle BTRFS_BLOCK_GROUP_METADATA */
222 	if (fs_info->fs_devices->total_rw_bytes > 50ULL * SZ_1G)
223 		return SZ_1G;
224 
225 	return SZ_256M;
226 }
227 
228 /*
229  * Update default chunk size.
230  */
btrfs_update_space_info_chunk_size(struct btrfs_space_info * space_info,u64 chunk_size)231 void btrfs_update_space_info_chunk_size(struct btrfs_space_info *space_info,
232 					u64 chunk_size)
233 {
234 	WRITE_ONCE(space_info->chunk_size, chunk_size);
235 }
236 
init_space_info(struct btrfs_fs_info * info,struct btrfs_space_info * space_info,u64 flags)237 static void init_space_info(struct btrfs_fs_info *info,
238 			    struct btrfs_space_info *space_info, u64 flags)
239 {
240 	space_info->fs_info = info;
241 	for (int i = 0; i < BTRFS_NR_RAID_TYPES; i++)
242 		INIT_LIST_HEAD(&space_info->block_groups[i]);
243 	init_rwsem(&space_info->groups_sem);
244 	spin_lock_init(&space_info->lock);
245 	space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
246 	space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
247 	INIT_LIST_HEAD(&space_info->ro_bgs);
248 	INIT_LIST_HEAD(&space_info->tickets);
249 	INIT_LIST_HEAD(&space_info->priority_tickets);
250 	space_info->clamp = 1;
251 	btrfs_update_space_info_chunk_size(space_info, calc_chunk_size(info, flags));
252 	space_info->subgroup_id = BTRFS_SUB_GROUP_PRIMARY;
253 
254 	if (btrfs_is_zoned(info))
255 		space_info->bg_reclaim_threshold = BTRFS_DEFAULT_ZONED_RECLAIM_THRESH;
256 }
257 
create_space_info_sub_group(struct btrfs_space_info * parent,u64 flags,enum btrfs_space_info_sub_group id,int index)258 static int create_space_info_sub_group(struct btrfs_space_info *parent, u64 flags,
259 				       enum btrfs_space_info_sub_group id, int index)
260 {
261 	struct btrfs_fs_info *fs_info = parent->fs_info;
262 	struct btrfs_space_info *sub_group;
263 	int ret;
264 
265 	ASSERT(parent->subgroup_id == BTRFS_SUB_GROUP_PRIMARY,
266 	       "parent->subgroup_id=%d", parent->subgroup_id);
267 	ASSERT(id != BTRFS_SUB_GROUP_PRIMARY, "id=%d", id);
268 
269 	sub_group = kzalloc(sizeof(*sub_group), GFP_NOFS);
270 	if (!sub_group)
271 		return -ENOMEM;
272 
273 	init_space_info(fs_info, sub_group, flags);
274 	parent->sub_group[index] = sub_group;
275 	sub_group->parent = parent;
276 	sub_group->subgroup_id = id;
277 
278 	ret = btrfs_sysfs_add_space_info_type(sub_group);
279 	if (ret) {
280 		kfree(sub_group);
281 		parent->sub_group[index] = NULL;
282 	}
283 	return ret;
284 }
285 
create_space_info(struct btrfs_fs_info * info,u64 flags)286 static int create_space_info(struct btrfs_fs_info *info, u64 flags)
287 {
288 
289 	struct btrfs_space_info *space_info;
290 	int ret = 0;
291 
292 	space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
293 	if (!space_info)
294 		return -ENOMEM;
295 
296 	init_space_info(info, space_info, flags);
297 
298 	if (btrfs_is_zoned(info)) {
299 		if (flags & BTRFS_BLOCK_GROUP_DATA)
300 			ret = create_space_info_sub_group(space_info, flags,
301 							  BTRFS_SUB_GROUP_DATA_RELOC,
302 							  0);
303 		else if (flags & BTRFS_BLOCK_GROUP_METADATA)
304 			ret = create_space_info_sub_group(space_info, flags,
305 							  BTRFS_SUB_GROUP_TREELOG,
306 							  0);
307 
308 		if (ret)
309 			goto out_free;
310 	}
311 
312 	ret = btrfs_sysfs_add_space_info_type(space_info);
313 	if (ret)
314 		goto out_free;
315 
316 	list_add(&space_info->list, &info->space_info);
317 	if (flags & BTRFS_BLOCK_GROUP_DATA)
318 		info->data_sinfo = space_info;
319 
320 	return ret;
321 
322 out_free:
323 	kfree(space_info);
324 	return ret;
325 }
326 
btrfs_init_space_info(struct btrfs_fs_info * fs_info)327 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
328 {
329 	struct btrfs_super_block *disk_super;
330 	u64 features;
331 	u64 flags;
332 	int mixed = 0;
333 	int ret;
334 
335 	disk_super = fs_info->super_copy;
336 	if (!btrfs_super_root(disk_super))
337 		return -EINVAL;
338 
339 	features = btrfs_super_incompat_flags(disk_super);
340 	if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
341 		mixed = 1;
342 
343 	flags = BTRFS_BLOCK_GROUP_SYSTEM;
344 	ret = create_space_info(fs_info, flags);
345 	if (ret)
346 		goto out;
347 
348 	if (mixed) {
349 		flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
350 		ret = create_space_info(fs_info, flags);
351 	} else {
352 		flags = BTRFS_BLOCK_GROUP_METADATA;
353 		ret = create_space_info(fs_info, flags);
354 		if (ret)
355 			goto out;
356 
357 		flags = BTRFS_BLOCK_GROUP_DATA;
358 		ret = create_space_info(fs_info, flags);
359 	}
360 out:
361 	return ret;
362 }
363 
btrfs_add_bg_to_space_info(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)364 void btrfs_add_bg_to_space_info(struct btrfs_fs_info *info,
365 				struct btrfs_block_group *block_group)
366 {
367 	struct btrfs_space_info *space_info = block_group->space_info;
368 	int factor, index;
369 
370 	factor = btrfs_bg_type_to_factor(block_group->flags);
371 
372 	spin_lock(&space_info->lock);
373 	space_info->total_bytes += block_group->length;
374 	space_info->disk_total += block_group->length * factor;
375 	space_info->bytes_used += block_group->used;
376 	space_info->disk_used += block_group->used * factor;
377 	space_info->bytes_readonly += block_group->bytes_super;
378 	btrfs_space_info_update_bytes_zone_unusable(space_info, block_group->zone_unusable);
379 	if (block_group->length > 0)
380 		space_info->full = false;
381 	btrfs_try_granting_tickets(space_info);
382 	spin_unlock(&space_info->lock);
383 
384 	block_group->space_info = space_info;
385 
386 	index = btrfs_bg_flags_to_raid_index(block_group->flags);
387 	down_write(&space_info->groups_sem);
388 	list_add_tail(&block_group->list, &space_info->block_groups[index]);
389 	up_write(&space_info->groups_sem);
390 }
391 
btrfs_find_space_info(struct btrfs_fs_info * info,u64 flags)392 struct btrfs_space_info *btrfs_find_space_info(struct btrfs_fs_info *info,
393 					       u64 flags)
394 {
395 	struct list_head *head = &info->space_info;
396 	struct btrfs_space_info *found;
397 
398 	flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
399 
400 	list_for_each_entry(found, head, list) {
401 		if (found->flags & flags)
402 			return found;
403 	}
404 	return NULL;
405 }
406 
calc_effective_data_chunk_size(struct btrfs_fs_info * fs_info)407 static u64 calc_effective_data_chunk_size(struct btrfs_fs_info *fs_info)
408 {
409 	struct btrfs_space_info *data_sinfo;
410 	u64 data_chunk_size;
411 
412 	/*
413 	 * Calculate the data_chunk_size, space_info->chunk_size is the
414 	 * "optimal" chunk size based on the fs size.  However when we actually
415 	 * allocate the chunk we will strip this down further, making it no
416 	 * more than 10% of the disk or 1G, whichever is smaller.
417 	 *
418 	 * On the zoned mode, we need to use zone_size (= data_sinfo->chunk_size)
419 	 * as it is.
420 	 */
421 	data_sinfo = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
422 	if (btrfs_is_zoned(fs_info))
423 		return data_sinfo->chunk_size;
424 	data_chunk_size = min(data_sinfo->chunk_size,
425 			      mult_perc(fs_info->fs_devices->total_rw_bytes, 10));
426 	return min_t(u64, data_chunk_size, SZ_1G);
427 }
428 
calc_available_free_space(const struct btrfs_space_info * space_info,enum btrfs_reserve_flush_enum flush)429 static u64 calc_available_free_space(const struct btrfs_space_info *space_info,
430 				     enum btrfs_reserve_flush_enum flush)
431 {
432 	struct btrfs_fs_info *fs_info = space_info->fs_info;
433 	u64 profile;
434 	u64 avail;
435 	u64 data_chunk_size;
436 	int factor;
437 
438 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
439 		profile = btrfs_system_alloc_profile(fs_info);
440 	else
441 		profile = btrfs_metadata_alloc_profile(fs_info);
442 
443 	avail = atomic64_read(&fs_info->free_chunk_space);
444 
445 	/*
446 	 * If we have dup, raid1 or raid10 then only half of the free
447 	 * space is actually usable.  For raid56, the space info used
448 	 * doesn't include the parity drive, so we don't have to
449 	 * change the math
450 	 */
451 	factor = btrfs_bg_type_to_factor(profile);
452 	avail = div_u64(avail, factor);
453 	if (avail == 0)
454 		return 0;
455 
456 	data_chunk_size = calc_effective_data_chunk_size(fs_info);
457 
458 	/*
459 	 * Since data allocations immediately use block groups as part of the
460 	 * reservation, because we assume that data reservations will == actual
461 	 * usage, we could potentially overcommit and then immediately have that
462 	 * available space used by a data allocation, which could put us in a
463 	 * bind when we get close to filling the file system.
464 	 *
465 	 * To handle this simply remove the data_chunk_size from the available
466 	 * space.  If we are relatively empty this won't affect our ability to
467 	 * overcommit much, and if we're very close to full it'll keep us from
468 	 * getting into a position where we've given ourselves very little
469 	 * metadata wiggle room.
470 	 */
471 	if (avail <= data_chunk_size)
472 		return 0;
473 	avail -= data_chunk_size;
474 
475 	/*
476 	 * If we aren't flushing all things, let us overcommit up to
477 	 * 1/2th of the space. If we can flush, don't let us overcommit
478 	 * too much, let it overcommit up to 1/8 of the space.
479 	 */
480 	if (flush == BTRFS_RESERVE_FLUSH_ALL)
481 		avail >>= 3;
482 	else
483 		avail >>= 1;
484 
485 	/*
486 	 * On the zoned mode, we always allocate one zone as one chunk.
487 	 * Returning non-zone size aligned bytes here will result in
488 	 * less pressure for the async metadata reclaim process, and it
489 	 * will over-commit too much leading to ENOSPC. Align down to the
490 	 * zone size to avoid that.
491 	 */
492 	if (btrfs_is_zoned(fs_info))
493 		avail = ALIGN_DOWN(avail, fs_info->zone_size);
494 
495 	return avail;
496 }
497 
check_can_overcommit(const struct btrfs_space_info * space_info,u64 space_info_used_bytes,u64 bytes,enum btrfs_reserve_flush_enum flush)498 static inline bool check_can_overcommit(const struct btrfs_space_info *space_info,
499 					u64 space_info_used_bytes, u64 bytes,
500 					enum btrfs_reserve_flush_enum flush)
501 {
502 	const u64 avail = calc_available_free_space(space_info, flush);
503 
504 	return (space_info_used_bytes + bytes < space_info->total_bytes + avail);
505 }
506 
can_overcommit(const struct btrfs_space_info * space_info,u64 space_info_used_bytes,u64 bytes,enum btrfs_reserve_flush_enum flush)507 static inline bool can_overcommit(const struct btrfs_space_info *space_info,
508 				  u64 space_info_used_bytes, u64 bytes,
509 				  enum btrfs_reserve_flush_enum flush)
510 {
511 	/* Don't overcommit when in mixed mode. */
512 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
513 		return false;
514 
515 	return check_can_overcommit(space_info, space_info_used_bytes, bytes, flush);
516 }
517 
btrfs_can_overcommit(const struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)518 bool btrfs_can_overcommit(const struct btrfs_space_info *space_info, u64 bytes,
519 			  enum btrfs_reserve_flush_enum flush)
520 {
521 	u64 used;
522 
523 	/* Don't overcommit when in mixed mode */
524 	if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
525 		return false;
526 
527 	used = btrfs_space_info_used(space_info, true);
528 
529 	return check_can_overcommit(space_info, used, bytes, flush);
530 }
531 
remove_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket,int error)532 static void remove_ticket(struct btrfs_space_info *space_info,
533 			  struct reserve_ticket *ticket, int error)
534 {
535 	lockdep_assert_held(&space_info->lock);
536 
537 	if (!list_empty(&ticket->list)) {
538 		list_del_init(&ticket->list);
539 		ASSERT(space_info->reclaim_size >= ticket->bytes,
540 		       "space_info->reclaim_size=%llu ticket->bytes=%llu",
541 		       space_info->reclaim_size, ticket->bytes);
542 		space_info->reclaim_size -= ticket->bytes;
543 	}
544 
545 	spin_lock(&ticket->lock);
546 	/*
547 	 * If we are called from a task waiting on the ticket, it may happen
548 	 * that before it sets an error on the ticket, a reclaim task was able
549 	 * to satisfy the ticket. In that case ignore the error.
550 	 */
551 	if (error && ticket->bytes > 0)
552 		ticket->error = error;
553 	else
554 		ticket->bytes = 0;
555 
556 	wake_up(&ticket->wait);
557 	spin_unlock(&ticket->lock);
558 }
559 
560 /*
561  * This is for space we already have accounted in space_info->bytes_may_use, so
562  * basically when we're returning space from block_rsv's.
563  */
btrfs_try_granting_tickets(struct btrfs_space_info * space_info)564 void btrfs_try_granting_tickets(struct btrfs_space_info *space_info)
565 {
566 	struct list_head *head;
567 	enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
568 	u64 used = btrfs_space_info_used(space_info, true);
569 
570 	lockdep_assert_held(&space_info->lock);
571 
572 	head = &space_info->priority_tickets;
573 again:
574 	while (!list_empty(head)) {
575 		struct reserve_ticket *ticket;
576 		u64 used_after;
577 
578 		ticket = list_first_entry(head, struct reserve_ticket, list);
579 		used_after = used + ticket->bytes;
580 
581 		/* Check and see if our ticket can be satisfied now. */
582 		if (used_after <= space_info->total_bytes ||
583 		    can_overcommit(space_info, used, ticket->bytes, flush)) {
584 			btrfs_space_info_update_bytes_may_use(space_info, ticket->bytes);
585 			remove_ticket(space_info, ticket, 0);
586 			space_info->tickets_id++;
587 			used = used_after;
588 		} else {
589 			break;
590 		}
591 	}
592 
593 	if (head == &space_info->priority_tickets) {
594 		head = &space_info->tickets;
595 		flush = BTRFS_RESERVE_FLUSH_ALL;
596 		goto again;
597 	}
598 }
599 
600 #define DUMP_BLOCK_RSV(fs_info, rsv_name)				\
601 do {									\
602 	struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name;		\
603 	spin_lock(&__rsv->lock);					\
604 	btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu",	\
605 		   __rsv->size, __rsv->reserved);			\
606 	spin_unlock(&__rsv->lock);					\
607 } while (0)
608 
space_info_flag_to_str(const struct btrfs_space_info * space_info)609 static const char *space_info_flag_to_str(const struct btrfs_space_info *space_info)
610 {
611 	switch (space_info->flags) {
612 	case BTRFS_BLOCK_GROUP_SYSTEM:
613 		return "SYSTEM";
614 	case BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA:
615 		return "DATA+METADATA";
616 	case BTRFS_BLOCK_GROUP_DATA:
617 		return "DATA";
618 	case BTRFS_BLOCK_GROUP_METADATA:
619 		return "METADATA";
620 	default:
621 		return "UNKNOWN";
622 	}
623 }
624 
dump_global_block_rsv(struct btrfs_fs_info * fs_info)625 static void dump_global_block_rsv(struct btrfs_fs_info *fs_info)
626 {
627 	DUMP_BLOCK_RSV(fs_info, global_block_rsv);
628 	DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
629 	DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
630 	DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
631 	DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
632 }
633 
__btrfs_dump_space_info(const struct btrfs_space_info * info)634 static void __btrfs_dump_space_info(const struct btrfs_space_info *info)
635 {
636 	const struct btrfs_fs_info *fs_info = info->fs_info;
637 	const char *flag_str = space_info_flag_to_str(info);
638 	lockdep_assert_held(&info->lock);
639 
640 	/* The free space could be negative in case of overcommit */
641 	btrfs_info(fs_info,
642 		   "space_info %s (sub-group id %d) has %lld free, is %sfull",
643 		   flag_str, info->subgroup_id,
644 		   (s64)(info->total_bytes - btrfs_space_info_used(info, true)),
645 		   info->full ? "" : "not ");
646 	btrfs_info(fs_info,
647 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu zone_unusable=%llu",
648 		info->total_bytes, info->bytes_used, info->bytes_pinned,
649 		info->bytes_reserved, info->bytes_may_use,
650 		info->bytes_readonly, info->bytes_zone_unusable);
651 }
652 
btrfs_dump_space_info(struct btrfs_space_info * info,u64 bytes,bool dump_block_groups)653 void btrfs_dump_space_info(struct btrfs_space_info *info, u64 bytes,
654 			   bool dump_block_groups)
655 {
656 	struct btrfs_fs_info *fs_info = info->fs_info;
657 	struct btrfs_block_group *cache;
658 	u64 total_avail = 0;
659 	int index = 0;
660 
661 	spin_lock(&info->lock);
662 	__btrfs_dump_space_info(info);
663 	dump_global_block_rsv(fs_info);
664 	spin_unlock(&info->lock);
665 
666 	if (!dump_block_groups)
667 		return;
668 
669 	down_read(&info->groups_sem);
670 again:
671 	list_for_each_entry(cache, &info->block_groups[index], list) {
672 		u64 avail;
673 
674 		spin_lock(&cache->lock);
675 		avail = cache->length - cache->used - cache->pinned -
676 			cache->reserved - cache->bytes_super - cache->zone_unusable;
677 		btrfs_info(fs_info,
678 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %llu delalloc %llu super %llu zone_unusable (%llu bytes available) %s",
679 			   cache->start, cache->length, cache->used, cache->pinned,
680 			   cache->reserved, cache->delalloc_bytes,
681 			   cache->bytes_super, cache->zone_unusable,
682 			   avail, cache->ro ? "[readonly]" : "");
683 		spin_unlock(&cache->lock);
684 		btrfs_dump_free_space(cache, bytes);
685 		total_avail += avail;
686 	}
687 	if (++index < BTRFS_NR_RAID_TYPES)
688 		goto again;
689 	up_read(&info->groups_sem);
690 
691 	btrfs_info(fs_info, "%llu bytes available across all block groups", total_avail);
692 }
693 
calc_reclaim_items_nr(const struct btrfs_fs_info * fs_info,u64 to_reclaim)694 static inline u64 calc_reclaim_items_nr(const struct btrfs_fs_info *fs_info,
695 					u64 to_reclaim)
696 {
697 	u64 bytes;
698 	u64 nr;
699 
700 	bytes = btrfs_calc_insert_metadata_size(fs_info, 1);
701 	nr = div64_u64(to_reclaim, bytes);
702 	if (!nr)
703 		nr = 1;
704 	return nr;
705 }
706 
707 /*
708  * shrink metadata reservation for delalloc
709  */
shrink_delalloc(struct btrfs_space_info * space_info,u64 to_reclaim,bool wait_ordered,bool for_preempt)710 static void shrink_delalloc(struct btrfs_space_info *space_info,
711 			    u64 to_reclaim, bool wait_ordered,
712 			    bool for_preempt)
713 {
714 	struct btrfs_fs_info *fs_info = space_info->fs_info;
715 	struct btrfs_trans_handle *trans;
716 	u64 delalloc_bytes;
717 	u64 ordered_bytes;
718 	u64 items;
719 	long time_left;
720 	int loops;
721 
722 	delalloc_bytes = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
723 	ordered_bytes = percpu_counter_sum_positive(&fs_info->ordered_bytes);
724 	if (delalloc_bytes == 0 && ordered_bytes == 0)
725 		return;
726 
727 	/* Calc the number of the pages we need flush for space reservation */
728 	if (to_reclaim == U64_MAX) {
729 		items = U64_MAX;
730 	} else {
731 		/*
732 		 * to_reclaim is set to however much metadata we need to
733 		 * reclaim, but reclaiming that much data doesn't really track
734 		 * exactly.  What we really want to do is reclaim full inode's
735 		 * worth of reservations, however that's not available to us
736 		 * here.  We will take a fraction of the delalloc bytes for our
737 		 * flushing loops and hope for the best.  Delalloc will expand
738 		 * the amount we write to cover an entire dirty extent, which
739 		 * will reclaim the metadata reservation for that range.  If
740 		 * it's not enough subsequent flush stages will be more
741 		 * aggressive.
742 		 */
743 		to_reclaim = max(to_reclaim, delalloc_bytes >> 3);
744 		items = calc_reclaim_items_nr(fs_info, to_reclaim) * 2;
745 	}
746 
747 	trans = current->journal_info;
748 
749 	/*
750 	 * If we are doing more ordered than delalloc we need to just wait on
751 	 * ordered extents, otherwise we'll waste time trying to flush delalloc
752 	 * that likely won't give us the space back we need.
753 	 */
754 	if (ordered_bytes > delalloc_bytes && !for_preempt)
755 		wait_ordered = true;
756 
757 	loops = 0;
758 	while ((delalloc_bytes || ordered_bytes) && loops < 3) {
759 		u64 temp = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
760 		long nr_pages = min_t(u64, temp, LONG_MAX);
761 		int async_pages;
762 
763 		btrfs_start_delalloc_roots(fs_info, nr_pages, true);
764 
765 		/*
766 		 * We need to make sure any outstanding async pages are now
767 		 * processed before we continue.  This is because things like
768 		 * sync_inode() try to be smart and skip writing if the inode is
769 		 * marked clean.  We don't use filemap_fwrite for flushing
770 		 * because we want to control how many pages we write out at a
771 		 * time, thus this is the only safe way to make sure we've
772 		 * waited for outstanding compressed workers to have started
773 		 * their jobs and thus have ordered extents set up properly.
774 		 *
775 		 * This exists because we do not want to wait for each
776 		 * individual inode to finish its async work, we simply want to
777 		 * start the IO on everybody, and then come back here and wait
778 		 * for all of the async work to catch up.  Once we're done with
779 		 * that we know we'll have ordered extents for everything and we
780 		 * can decide if we wait for that or not.
781 		 *
782 		 * If we choose to replace this in the future, make absolutely
783 		 * sure that the proper waiting is being done in the async case,
784 		 * as there have been bugs in that area before.
785 		 */
786 		async_pages = atomic_read(&fs_info->async_delalloc_pages);
787 		if (!async_pages)
788 			goto skip_async;
789 
790 		/*
791 		 * We don't want to wait forever, if we wrote less pages in this
792 		 * loop than we have outstanding, only wait for that number of
793 		 * pages, otherwise we can wait for all async pages to finish
794 		 * before continuing.
795 		 */
796 		if (async_pages > nr_pages)
797 			async_pages -= nr_pages;
798 		else
799 			async_pages = 0;
800 		wait_event(fs_info->async_submit_wait,
801 			   atomic_read(&fs_info->async_delalloc_pages) <=
802 			   async_pages);
803 skip_async:
804 		loops++;
805 		if (wait_ordered && !trans) {
806 			btrfs_wait_ordered_roots(fs_info, items, NULL);
807 		} else {
808 			time_left = schedule_timeout_killable(1);
809 			if (time_left)
810 				break;
811 		}
812 
813 		/*
814 		 * If we are for preemption we just want a one-shot of delalloc
815 		 * flushing so we can stop flushing if we decide we don't need
816 		 * to anymore.
817 		 */
818 		if (for_preempt)
819 			break;
820 
821 		spin_lock(&space_info->lock);
822 		if (list_empty(&space_info->tickets) &&
823 		    list_empty(&space_info->priority_tickets)) {
824 			spin_unlock(&space_info->lock);
825 			break;
826 		}
827 		spin_unlock(&space_info->lock);
828 
829 		delalloc_bytes = percpu_counter_sum_positive(
830 						&fs_info->delalloc_bytes);
831 		ordered_bytes = percpu_counter_sum_positive(
832 						&fs_info->ordered_bytes);
833 	}
834 }
835 
836 /*
837  * Try to flush some data based on policy set by @state. This is only advisory
838  * and may fail for various reasons. The caller is supposed to examine the
839  * state of @space_info to detect the outcome.
840  */
flush_space(struct btrfs_space_info * space_info,u64 num_bytes,enum btrfs_flush_state state,bool for_preempt)841 static void flush_space(struct btrfs_space_info *space_info, u64 num_bytes,
842 			enum btrfs_flush_state state, bool for_preempt)
843 {
844 	struct btrfs_fs_info *fs_info = space_info->fs_info;
845 	struct btrfs_root *root = fs_info->tree_root;
846 	struct btrfs_trans_handle *trans;
847 	int nr;
848 	int ret = 0;
849 
850 	switch (state) {
851 	case FLUSH_DELAYED_ITEMS_NR:
852 	case FLUSH_DELAYED_ITEMS:
853 		if (state == FLUSH_DELAYED_ITEMS_NR)
854 			nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
855 		else
856 			nr = -1;
857 
858 		trans = btrfs_join_transaction_nostart(root);
859 		if (IS_ERR(trans)) {
860 			ret = PTR_ERR(trans);
861 			if (ret == -ENOENT)
862 				ret = 0;
863 			break;
864 		}
865 		ret = btrfs_run_delayed_items_nr(trans, nr);
866 		btrfs_end_transaction(trans);
867 		break;
868 	case FLUSH_DELALLOC:
869 	case FLUSH_DELALLOC_WAIT:
870 	case FLUSH_DELALLOC_FULL:
871 		if (state == FLUSH_DELALLOC_FULL)
872 			num_bytes = U64_MAX;
873 		shrink_delalloc(space_info, num_bytes,
874 				state != FLUSH_DELALLOC, for_preempt);
875 		break;
876 	case FLUSH_DELAYED_REFS_NR:
877 	case FLUSH_DELAYED_REFS:
878 		trans = btrfs_join_transaction_nostart(root);
879 		if (IS_ERR(trans)) {
880 			ret = PTR_ERR(trans);
881 			if (ret == -ENOENT)
882 				ret = 0;
883 			break;
884 		}
885 		if (state == FLUSH_DELAYED_REFS_NR)
886 			btrfs_run_delayed_refs(trans, num_bytes);
887 		else
888 			btrfs_run_delayed_refs(trans, 0);
889 		btrfs_end_transaction(trans);
890 		break;
891 	case ALLOC_CHUNK:
892 	case ALLOC_CHUNK_FORCE:
893 		trans = btrfs_join_transaction(root);
894 		if (IS_ERR(trans)) {
895 			ret = PTR_ERR(trans);
896 			break;
897 		}
898 		ret = btrfs_chunk_alloc(trans, space_info,
899 				btrfs_get_alloc_profile(fs_info, space_info->flags),
900 				(state == ALLOC_CHUNK) ? CHUNK_ALLOC_NO_FORCE :
901 					CHUNK_ALLOC_FORCE);
902 		btrfs_end_transaction(trans);
903 
904 		if (ret > 0 || ret == -ENOSPC)
905 			ret = 0;
906 		break;
907 	case RUN_DELAYED_IPUTS:
908 		/*
909 		 * If we have pending delayed iputs then we could free up a
910 		 * bunch of pinned space, so make sure we run the iputs before
911 		 * we do our pinned bytes check below.
912 		 */
913 		btrfs_run_delayed_iputs(fs_info);
914 		btrfs_wait_on_delayed_iputs(fs_info);
915 		break;
916 	case COMMIT_TRANS:
917 		ASSERT(current->journal_info == NULL);
918 		/*
919 		 * We don't want to start a new transaction, just attach to the
920 		 * current one or wait it fully commits in case its commit is
921 		 * happening at the moment. Note: we don't use a nostart join
922 		 * because that does not wait for a transaction to fully commit
923 		 * (only for it to be unblocked, state TRANS_STATE_UNBLOCKED).
924 		 */
925 		ret = btrfs_commit_current_transaction(root);
926 		break;
927 	case RESET_ZONES:
928 		ret = btrfs_reset_unused_block_groups(space_info, num_bytes);
929 		break;
930 	default:
931 		ret = -ENOSPC;
932 		break;
933 	}
934 
935 	trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
936 				ret, for_preempt);
937 	return;
938 }
939 
btrfs_calc_reclaim_metadata_size(const struct btrfs_space_info * space_info)940 static u64 btrfs_calc_reclaim_metadata_size(const struct btrfs_space_info *space_info)
941 {
942 	u64 used;
943 	u64 avail;
944 	u64 to_reclaim = space_info->reclaim_size;
945 
946 	lockdep_assert_held(&space_info->lock);
947 
948 	avail = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL);
949 	used = btrfs_space_info_used(space_info, true);
950 
951 	/*
952 	 * We may be flushing because suddenly we have less space than we had
953 	 * before, and now we're well over-committed based on our current free
954 	 * space.  If that's the case add in our overage so we make sure to put
955 	 * appropriate pressure on the flushing state machine.
956 	 */
957 	if (space_info->total_bytes + avail < used)
958 		to_reclaim += used - (space_info->total_bytes + avail);
959 
960 	return to_reclaim;
961 }
962 
need_preemptive_reclaim(const struct btrfs_space_info * space_info)963 static bool need_preemptive_reclaim(const struct btrfs_space_info *space_info)
964 {
965 	struct btrfs_fs_info *fs_info = space_info->fs_info;
966 	const u64 global_rsv_size = btrfs_block_rsv_reserved(&fs_info->global_block_rsv);
967 	u64 ordered, delalloc;
968 	u64 thresh;
969 	u64 used;
970 
971 	lockdep_assert_held(&space_info->lock);
972 
973 	/*
974 	 * We have tickets queued, bail so we don't compete with the async
975 	 * flushers.
976 	 */
977 	if (space_info->reclaim_size)
978 		return false;
979 
980 	thresh = mult_perc(space_info->total_bytes, 90);
981 
982 	/* If we're just plain full then async reclaim just slows us down. */
983 	if ((space_info->bytes_used + space_info->bytes_reserved +
984 	     global_rsv_size) >= thresh)
985 		return false;
986 
987 	used = space_info->bytes_may_use + space_info->bytes_pinned;
988 
989 	/* The total flushable belongs to the global rsv, don't flush. */
990 	if (global_rsv_size >= used)
991 		return false;
992 
993 	/*
994 	 * 128MiB is 1/4 of the maximum global rsv size.  If we have less than
995 	 * that devoted to other reservations then there's no sense in flushing,
996 	 * we don't have a lot of things that need flushing.
997 	 */
998 	if (used - global_rsv_size <= SZ_128M)
999 		return false;
1000 
1001 	/*
1002 	 * If we have over half of the free space occupied by reservations or
1003 	 * pinned then we want to start flushing.
1004 	 *
1005 	 * We do not do the traditional thing here, which is to say
1006 	 *
1007 	 *   if (used >= ((total_bytes + avail) / 2))
1008 	 *     return 1;
1009 	 *
1010 	 * because this doesn't quite work how we want.  If we had more than 50%
1011 	 * of the space_info used by bytes_used and we had 0 available we'd just
1012 	 * constantly run the background flusher.  Instead we want it to kick in
1013 	 * if our reclaimable space exceeds our clamped free space.
1014 	 *
1015 	 * Our clamping range is 2^1 -> 2^8.  Practically speaking that means
1016 	 * the following:
1017 	 *
1018 	 * Amount of RAM        Minimum threshold       Maximum threshold
1019 	 *
1020 	 *        256GiB                     1GiB                  128GiB
1021 	 *        128GiB                   512MiB                   64GiB
1022 	 *         64GiB                   256MiB                   32GiB
1023 	 *         32GiB                   128MiB                   16GiB
1024 	 *         16GiB                    64MiB                    8GiB
1025 	 *
1026 	 * These are the range our thresholds will fall in, corresponding to how
1027 	 * much delalloc we need for the background flusher to kick in.
1028 	 */
1029 
1030 	thresh = calc_available_free_space(space_info, BTRFS_RESERVE_FLUSH_ALL);
1031 	used = space_info->bytes_used + space_info->bytes_reserved +
1032 	       space_info->bytes_readonly + global_rsv_size;
1033 	if (used < space_info->total_bytes)
1034 		thresh += space_info->total_bytes - used;
1035 	thresh >>= space_info->clamp;
1036 
1037 	used = space_info->bytes_pinned;
1038 
1039 	/*
1040 	 * If we have more ordered bytes than delalloc bytes then we're either
1041 	 * doing a lot of DIO, or we simply don't have a lot of delalloc waiting
1042 	 * around.  Preemptive flushing is only useful in that it can free up
1043 	 * space before tickets need to wait for things to finish.  In the case
1044 	 * of ordered extents, preemptively waiting on ordered extents gets us
1045 	 * nothing, if our reservations are tied up in ordered extents we'll
1046 	 * simply have to slow down writers by forcing them to wait on ordered
1047 	 * extents.
1048 	 *
1049 	 * In the case that ordered is larger than delalloc, only include the
1050 	 * block reserves that we would actually be able to directly reclaim
1051 	 * from.  In this case if we're heavy on metadata operations this will
1052 	 * clearly be heavy enough to warrant preemptive flushing.  In the case
1053 	 * of heavy DIO or ordered reservations, preemptive flushing will just
1054 	 * waste time and cause us to slow down.
1055 	 *
1056 	 * We want to make sure we truly are maxed out on ordered however, so
1057 	 * cut ordered in half, and if it's still higher than delalloc then we
1058 	 * can keep flushing.  This is to avoid the case where we start
1059 	 * flushing, and now delalloc == ordered and we stop preemptively
1060 	 * flushing when we could still have several gigs of delalloc to flush.
1061 	 */
1062 	ordered = percpu_counter_read_positive(&fs_info->ordered_bytes) >> 1;
1063 	delalloc = percpu_counter_read_positive(&fs_info->delalloc_bytes);
1064 	if (ordered >= delalloc)
1065 		used += btrfs_block_rsv_reserved(&fs_info->delayed_refs_rsv) +
1066 			btrfs_block_rsv_reserved(&fs_info->delayed_block_rsv);
1067 	else
1068 		used += space_info->bytes_may_use - global_rsv_size;
1069 
1070 	return (used >= thresh && !btrfs_fs_closing(fs_info) &&
1071 		!test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
1072 }
1073 
steal_from_global_rsv(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1074 static bool steal_from_global_rsv(struct btrfs_space_info *space_info,
1075 				  struct reserve_ticket *ticket)
1076 {
1077 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1078 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
1079 	u64 min_bytes;
1080 
1081 	lockdep_assert_held(&space_info->lock);
1082 
1083 	if (!ticket->steal)
1084 		return false;
1085 
1086 	if (global_rsv->space_info != space_info)
1087 		return false;
1088 
1089 	spin_lock(&global_rsv->lock);
1090 	min_bytes = mult_perc(global_rsv->size, 10);
1091 	if (global_rsv->reserved < min_bytes + ticket->bytes) {
1092 		spin_unlock(&global_rsv->lock);
1093 		return false;
1094 	}
1095 	global_rsv->reserved -= ticket->bytes;
1096 	if (global_rsv->reserved < global_rsv->size)
1097 		global_rsv->full = false;
1098 	spin_unlock(&global_rsv->lock);
1099 
1100 	remove_ticket(space_info, ticket, 0);
1101 	space_info->tickets_id++;
1102 
1103 	return true;
1104 }
1105 
1106 /*
1107  * We've exhausted our flushing, start failing tickets.
1108  *
1109  * @space_info - the space info we were flushing
1110  *
1111  * We call this when we've exhausted our flushing ability and haven't made
1112  * progress in satisfying tickets.  The reservation code handles tickets in
1113  * order, so if there is a large ticket first and then smaller ones we could
1114  * very well satisfy the smaller tickets.  This will attempt to wake up any
1115  * tickets in the list to catch this case.
1116  *
1117  * This function returns true if it was able to make progress by clearing out
1118  * other tickets, or if it stumbles across a ticket that was smaller than the
1119  * first ticket.
1120  */
maybe_fail_all_tickets(struct btrfs_space_info * space_info)1121 static bool maybe_fail_all_tickets(struct btrfs_space_info *space_info)
1122 {
1123 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1124 	struct reserve_ticket *ticket;
1125 	u64 tickets_id = space_info->tickets_id;
1126 	const int abort_error = BTRFS_FS_ERROR(fs_info);
1127 
1128 	trace_btrfs_fail_all_tickets(fs_info, space_info);
1129 
1130 	if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1131 		btrfs_info(fs_info, "cannot satisfy tickets, dumping space info");
1132 		__btrfs_dump_space_info(space_info);
1133 	}
1134 
1135 	while (!list_empty(&space_info->tickets) &&
1136 	       tickets_id == space_info->tickets_id) {
1137 		ticket = list_first_entry(&space_info->tickets,
1138 					  struct reserve_ticket, list);
1139 		if (unlikely(abort_error)) {
1140 			remove_ticket(space_info, ticket, abort_error);
1141 		} else {
1142 			if (steal_from_global_rsv(space_info, ticket))
1143 				return true;
1144 
1145 			if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1146 				btrfs_info(fs_info, "failing ticket with %llu bytes",
1147 					   ticket->bytes);
1148 
1149 			remove_ticket(space_info, ticket, -ENOSPC);
1150 
1151 			/*
1152 			 * We're just throwing tickets away, so more flushing may
1153 			 * not trip over btrfs_try_granting_tickets, so we need
1154 			 * to call it here to see if we can make progress with
1155 			 * the next ticket in the list.
1156 			 */
1157 			btrfs_try_granting_tickets(space_info);
1158 		}
1159 	}
1160 	return (tickets_id != space_info->tickets_id);
1161 }
1162 
do_async_reclaim_metadata_space(struct btrfs_space_info * space_info)1163 static void do_async_reclaim_metadata_space(struct btrfs_space_info *space_info)
1164 {
1165 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1166 	u64 to_reclaim;
1167 	enum btrfs_flush_state flush_state;
1168 	int commit_cycles = 0;
1169 	u64 last_tickets_id;
1170 	enum btrfs_flush_state final_state;
1171 
1172 	if (btrfs_is_zoned(fs_info))
1173 		final_state = RESET_ZONES;
1174 	else
1175 		final_state = COMMIT_TRANS;
1176 
1177 	spin_lock(&space_info->lock);
1178 	to_reclaim = btrfs_calc_reclaim_metadata_size(space_info);
1179 	if (!to_reclaim) {
1180 		space_info->flush = false;
1181 		spin_unlock(&space_info->lock);
1182 		return;
1183 	}
1184 	last_tickets_id = space_info->tickets_id;
1185 	spin_unlock(&space_info->lock);
1186 
1187 	flush_state = FLUSH_DELAYED_ITEMS_NR;
1188 	do {
1189 		flush_space(space_info, to_reclaim, flush_state, false);
1190 		spin_lock(&space_info->lock);
1191 		if (list_empty(&space_info->tickets)) {
1192 			space_info->flush = false;
1193 			spin_unlock(&space_info->lock);
1194 			return;
1195 		}
1196 		to_reclaim = btrfs_calc_reclaim_metadata_size(space_info);
1197 		if (last_tickets_id == space_info->tickets_id) {
1198 			flush_state++;
1199 		} else {
1200 			last_tickets_id = space_info->tickets_id;
1201 			flush_state = FLUSH_DELAYED_ITEMS_NR;
1202 			if (commit_cycles)
1203 				commit_cycles--;
1204 		}
1205 
1206 		/*
1207 		 * We do not want to empty the system of delalloc unless we're
1208 		 * under heavy pressure, so allow one trip through the flushing
1209 		 * logic before we start doing a FLUSH_DELALLOC_FULL.
1210 		 */
1211 		if (flush_state == FLUSH_DELALLOC_FULL && !commit_cycles)
1212 			flush_state++;
1213 
1214 		/*
1215 		 * We don't want to force a chunk allocation until we've tried
1216 		 * pretty hard to reclaim space.  Think of the case where we
1217 		 * freed up a bunch of space and so have a lot of pinned space
1218 		 * to reclaim.  We would rather use that than possibly create a
1219 		 * underutilized metadata chunk.  So if this is our first run
1220 		 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
1221 		 * commit the transaction.  If nothing has changed the next go
1222 		 * around then we can force a chunk allocation.
1223 		 */
1224 		if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
1225 			flush_state++;
1226 
1227 		if (flush_state > final_state) {
1228 			commit_cycles++;
1229 			if (commit_cycles > 2) {
1230 				if (maybe_fail_all_tickets(space_info)) {
1231 					flush_state = FLUSH_DELAYED_ITEMS_NR;
1232 					commit_cycles--;
1233 				} else {
1234 					space_info->flush = false;
1235 				}
1236 			} else {
1237 				flush_state = FLUSH_DELAYED_ITEMS_NR;
1238 			}
1239 		}
1240 		spin_unlock(&space_info->lock);
1241 	} while (flush_state <= final_state);
1242 }
1243 
1244 /*
1245  * This is for normal flushers, it can wait as much time as needed. We will
1246  * loop and continuously try to flush as long as we are making progress.  We
1247  * count progress as clearing off tickets each time we have to loop.
1248  */
btrfs_async_reclaim_metadata_space(struct work_struct * work)1249 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
1250 {
1251 	struct btrfs_fs_info *fs_info;
1252 	struct btrfs_space_info *space_info;
1253 
1254 	fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
1255 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1256 	do_async_reclaim_metadata_space(space_info);
1257 	for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++) {
1258 		if (space_info->sub_group[i])
1259 			do_async_reclaim_metadata_space(space_info->sub_group[i]);
1260 	}
1261 }
1262 
1263 /*
1264  * This handles pre-flushing of metadata space before we get to the point that
1265  * we need to start blocking threads on tickets.  The logic here is different
1266  * from the other flush paths because it doesn't rely on tickets to tell us how
1267  * much we need to flush, instead it attempts to keep us below the 80% full
1268  * watermark of space by flushing whichever reservation pool is currently the
1269  * largest.
1270  */
btrfs_preempt_reclaim_metadata_space(struct work_struct * work)1271 static void btrfs_preempt_reclaim_metadata_space(struct work_struct *work)
1272 {
1273 	struct btrfs_fs_info *fs_info;
1274 	struct btrfs_space_info *space_info;
1275 	struct btrfs_block_rsv *delayed_block_rsv;
1276 	struct btrfs_block_rsv *delayed_refs_rsv;
1277 	struct btrfs_block_rsv *global_rsv;
1278 	struct btrfs_block_rsv *trans_rsv;
1279 	int loops = 0;
1280 
1281 	fs_info = container_of(work, struct btrfs_fs_info,
1282 			       preempt_reclaim_work);
1283 	space_info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
1284 	delayed_block_rsv = &fs_info->delayed_block_rsv;
1285 	delayed_refs_rsv = &fs_info->delayed_refs_rsv;
1286 	global_rsv = &fs_info->global_block_rsv;
1287 	trans_rsv = &fs_info->trans_block_rsv;
1288 
1289 	spin_lock(&space_info->lock);
1290 	while (need_preemptive_reclaim(space_info)) {
1291 		enum btrfs_flush_state flush;
1292 		u64 delalloc_size = 0;
1293 		u64 to_reclaim, block_rsv_size;
1294 		const u64 global_rsv_size = btrfs_block_rsv_reserved(global_rsv);
1295 		const u64 bytes_may_use = space_info->bytes_may_use;
1296 		const u64 bytes_pinned = space_info->bytes_pinned;
1297 
1298 		spin_unlock(&space_info->lock);
1299 		/*
1300 		 * We don't have a precise counter for the metadata being
1301 		 * reserved for delalloc, so we'll approximate it by subtracting
1302 		 * out the block rsv's space from the bytes_may_use.  If that
1303 		 * amount is higher than the individual reserves, then we can
1304 		 * assume it's tied up in delalloc reservations.
1305 		 */
1306 		block_rsv_size = global_rsv_size +
1307 			btrfs_block_rsv_reserved(delayed_block_rsv) +
1308 			btrfs_block_rsv_reserved(delayed_refs_rsv) +
1309 			btrfs_block_rsv_reserved(trans_rsv);
1310 		if (block_rsv_size < bytes_may_use)
1311 			delalloc_size = bytes_may_use - block_rsv_size;
1312 
1313 		/*
1314 		 * We don't want to include the global_rsv in our calculation,
1315 		 * because that's space we can't touch.  Subtract it from the
1316 		 * block_rsv_size for the next checks.
1317 		 */
1318 		block_rsv_size -= global_rsv_size;
1319 
1320 		/*
1321 		 * We really want to avoid flushing delalloc too much, as it
1322 		 * could result in poor allocation patterns, so only flush it if
1323 		 * it's larger than the rest of the pools combined.
1324 		 */
1325 		if (delalloc_size > block_rsv_size) {
1326 			to_reclaim = delalloc_size;
1327 			flush = FLUSH_DELALLOC;
1328 		} else if (bytes_pinned >
1329 			   (btrfs_block_rsv_reserved(delayed_block_rsv) +
1330 			    btrfs_block_rsv_reserved(delayed_refs_rsv))) {
1331 			to_reclaim = bytes_pinned;
1332 			flush = COMMIT_TRANS;
1333 		} else if (btrfs_block_rsv_reserved(delayed_block_rsv) >
1334 			   btrfs_block_rsv_reserved(delayed_refs_rsv)) {
1335 			to_reclaim = btrfs_block_rsv_reserved(delayed_block_rsv);
1336 			flush = FLUSH_DELAYED_ITEMS_NR;
1337 		} else {
1338 			to_reclaim = btrfs_block_rsv_reserved(delayed_refs_rsv);
1339 			flush = FLUSH_DELAYED_REFS_NR;
1340 		}
1341 
1342 		loops++;
1343 
1344 		/*
1345 		 * We don't want to reclaim everything, just a portion, so scale
1346 		 * down the to_reclaim by 1/4.  If it takes us down to 0,
1347 		 * reclaim 1 items worth.
1348 		 */
1349 		to_reclaim >>= 2;
1350 		if (!to_reclaim)
1351 			to_reclaim = btrfs_calc_insert_metadata_size(fs_info, 1);
1352 		flush_space(space_info, to_reclaim, flush, true);
1353 		cond_resched();
1354 		spin_lock(&space_info->lock);
1355 	}
1356 
1357 	/* We only went through once, back off our clamping. */
1358 	if (loops == 1 && !space_info->reclaim_size)
1359 		space_info->clamp = max(1, space_info->clamp - 1);
1360 	trace_btrfs_done_preemptive_reclaim(fs_info, space_info);
1361 	spin_unlock(&space_info->lock);
1362 }
1363 
1364 /*
1365  * FLUSH_DELALLOC_WAIT:
1366  *   Space is freed from flushing delalloc in one of two ways.
1367  *
1368  *   1) compression is on and we allocate less space than we reserved
1369  *   2) we are overwriting existing space
1370  *
1371  *   For #1 that extra space is reclaimed as soon as the delalloc pages are
1372  *   COWed, by way of btrfs_add_reserved_bytes() which adds the actual extent
1373  *   length to ->bytes_reserved, and subtracts the reserved space from
1374  *   ->bytes_may_use.
1375  *
1376  *   For #2 this is trickier.  Once the ordered extent runs we will drop the
1377  *   extent in the range we are overwriting, which creates a delayed ref for
1378  *   that freed extent.  This however is not reclaimed until the transaction
1379  *   commits, thus the next stages.
1380  *
1381  * RUN_DELAYED_IPUTS
1382  *   If we are freeing inodes, we want to make sure all delayed iputs have
1383  *   completed, because they could have been on an inode with i_nlink == 0, and
1384  *   thus have been truncated and freed up space.  But again this space is not
1385  *   immediately reusable, it comes in the form of a delayed ref, which must be
1386  *   run and then the transaction must be committed.
1387  *
1388  * COMMIT_TRANS
1389  *   This is where we reclaim all of the pinned space generated by running the
1390  *   iputs
1391  *
1392  * RESET_ZONES
1393  *   This state works only for the zoned mode. We scan the unused block group
1394  *   list and reset the zones and reuse the block group.
1395  *
1396  * ALLOC_CHUNK_FORCE
1397  *   For data we start with alloc chunk force, however we could have been full
1398  *   before, and then the transaction commit could have freed new block groups,
1399  *   so if we now have space to allocate do the force chunk allocation.
1400  */
1401 static const enum btrfs_flush_state data_flush_states[] = {
1402 	FLUSH_DELALLOC_FULL,
1403 	RUN_DELAYED_IPUTS,
1404 	COMMIT_TRANS,
1405 	RESET_ZONES,
1406 	ALLOC_CHUNK_FORCE,
1407 };
1408 
do_async_reclaim_data_space(struct btrfs_space_info * space_info)1409 static void do_async_reclaim_data_space(struct btrfs_space_info *space_info)
1410 {
1411 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1412 	u64 last_tickets_id;
1413 	enum btrfs_flush_state flush_state = 0;
1414 
1415 	spin_lock(&space_info->lock);
1416 	if (list_empty(&space_info->tickets)) {
1417 		space_info->flush = false;
1418 		spin_unlock(&space_info->lock);
1419 		return;
1420 	}
1421 	last_tickets_id = space_info->tickets_id;
1422 	spin_unlock(&space_info->lock);
1423 
1424 	while (!space_info->full) {
1425 		flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1426 		spin_lock(&space_info->lock);
1427 		if (list_empty(&space_info->tickets)) {
1428 			space_info->flush = false;
1429 			spin_unlock(&space_info->lock);
1430 			return;
1431 		}
1432 
1433 		/* Something happened, fail everything and bail. */
1434 		if (unlikely(BTRFS_FS_ERROR(fs_info)))
1435 			goto aborted_fs;
1436 		last_tickets_id = space_info->tickets_id;
1437 		spin_unlock(&space_info->lock);
1438 	}
1439 
1440 	while (flush_state < ARRAY_SIZE(data_flush_states)) {
1441 		flush_space(space_info, U64_MAX,
1442 			    data_flush_states[flush_state], false);
1443 		spin_lock(&space_info->lock);
1444 		if (list_empty(&space_info->tickets)) {
1445 			space_info->flush = false;
1446 			spin_unlock(&space_info->lock);
1447 			return;
1448 		}
1449 
1450 		if (last_tickets_id == space_info->tickets_id) {
1451 			flush_state++;
1452 		} else {
1453 			last_tickets_id = space_info->tickets_id;
1454 			flush_state = 0;
1455 		}
1456 
1457 		if (flush_state >= ARRAY_SIZE(data_flush_states)) {
1458 			if (space_info->full) {
1459 				if (maybe_fail_all_tickets(space_info))
1460 					flush_state = 0;
1461 				else
1462 					space_info->flush = false;
1463 			} else {
1464 				flush_state = 0;
1465 			}
1466 
1467 			/* Something happened, fail everything and bail. */
1468 			if (unlikely(BTRFS_FS_ERROR(fs_info)))
1469 				goto aborted_fs;
1470 
1471 		}
1472 		spin_unlock(&space_info->lock);
1473 	}
1474 	return;
1475 
1476 aborted_fs:
1477 	maybe_fail_all_tickets(space_info);
1478 	space_info->flush = false;
1479 	spin_unlock(&space_info->lock);
1480 }
1481 
btrfs_async_reclaim_data_space(struct work_struct * work)1482 static void btrfs_async_reclaim_data_space(struct work_struct *work)
1483 {
1484 	struct btrfs_fs_info *fs_info;
1485 	struct btrfs_space_info *space_info;
1486 
1487 	fs_info = container_of(work, struct btrfs_fs_info, async_data_reclaim_work);
1488 	space_info = fs_info->data_sinfo;
1489 	do_async_reclaim_data_space(space_info);
1490 	for (int i = 0; i < BTRFS_SPACE_INFO_SUB_GROUP_MAX; i++)
1491 		if (space_info->sub_group[i])
1492 			do_async_reclaim_data_space(space_info->sub_group[i]);
1493 }
1494 
btrfs_init_async_reclaim_work(struct btrfs_fs_info * fs_info)1495 void btrfs_init_async_reclaim_work(struct btrfs_fs_info *fs_info)
1496 {
1497 	INIT_WORK(&fs_info->async_reclaim_work, btrfs_async_reclaim_metadata_space);
1498 	INIT_WORK(&fs_info->async_data_reclaim_work, btrfs_async_reclaim_data_space);
1499 	INIT_WORK(&fs_info->preempt_reclaim_work,
1500 		  btrfs_preempt_reclaim_metadata_space);
1501 }
1502 
1503 static const enum btrfs_flush_state priority_flush_states[] = {
1504 	FLUSH_DELAYED_ITEMS_NR,
1505 	FLUSH_DELAYED_ITEMS,
1506 	RESET_ZONES,
1507 	ALLOC_CHUNK,
1508 };
1509 
1510 static const enum btrfs_flush_state evict_flush_states[] = {
1511 	FLUSH_DELAYED_ITEMS_NR,
1512 	FLUSH_DELAYED_ITEMS,
1513 	FLUSH_DELAYED_REFS_NR,
1514 	FLUSH_DELAYED_REFS,
1515 	FLUSH_DELALLOC,
1516 	FLUSH_DELALLOC_WAIT,
1517 	FLUSH_DELALLOC_FULL,
1518 	ALLOC_CHUNK,
1519 	COMMIT_TRANS,
1520 	RESET_ZONES,
1521 };
1522 
is_ticket_served(struct reserve_ticket * ticket)1523 static bool is_ticket_served(struct reserve_ticket *ticket)
1524 {
1525 	bool ret;
1526 
1527 	spin_lock(&ticket->lock);
1528 	ret = (ticket->bytes == 0);
1529 	spin_unlock(&ticket->lock);
1530 
1531 	return ret;
1532 }
1533 
priority_reclaim_metadata_space(struct btrfs_space_info * space_info,struct reserve_ticket * ticket,const enum btrfs_flush_state * states,int states_nr)1534 static void priority_reclaim_metadata_space(struct btrfs_space_info *space_info,
1535 					    struct reserve_ticket *ticket,
1536 					    const enum btrfs_flush_state *states,
1537 					    int states_nr)
1538 {
1539 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1540 	u64 to_reclaim;
1541 	int flush_state = 0;
1542 
1543 	/*
1544 	 * This is the priority reclaim path, so to_reclaim could be >0 still
1545 	 * because we may have only satisfied the priority tickets and still
1546 	 * left non priority tickets on the list.  We would then have
1547 	 * to_reclaim but ->bytes == 0.
1548 	 */
1549 	if (is_ticket_served(ticket))
1550 		return;
1551 
1552 	spin_lock(&space_info->lock);
1553 	to_reclaim = btrfs_calc_reclaim_metadata_size(space_info);
1554 	spin_unlock(&space_info->lock);
1555 
1556 	while (flush_state < states_nr) {
1557 		flush_space(space_info, to_reclaim, states[flush_state], false);
1558 		if (is_ticket_served(ticket))
1559 			return;
1560 		flush_state++;
1561 	}
1562 
1563 	spin_lock(&space_info->lock);
1564 	/*
1565 	 * Attempt to steal from the global rsv if we can, except if the fs was
1566 	 * turned into error mode due to a transaction abort when flushing space
1567 	 * above, in that case fail with the abort error instead of returning
1568 	 * success to the caller if we can steal from the global rsv - this is
1569 	 * just to have caller fail immediately instead of later when trying to
1570 	 * modify the fs, making it easier to debug -ENOSPC problems.
1571 	 */
1572 	if (unlikely(BTRFS_FS_ERROR(fs_info)))
1573 		remove_ticket(space_info, ticket, BTRFS_FS_ERROR(fs_info));
1574 	else if (!steal_from_global_rsv(space_info, ticket))
1575 		remove_ticket(space_info, ticket, -ENOSPC);
1576 
1577 	/*
1578 	 * We must run try_granting_tickets here because we could be a large
1579 	 * ticket in front of a smaller ticket that can now be satisfied with
1580 	 * the available space.
1581 	 */
1582 	btrfs_try_granting_tickets(space_info);
1583 	spin_unlock(&space_info->lock);
1584 }
1585 
priority_reclaim_data_space(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1586 static void priority_reclaim_data_space(struct btrfs_space_info *space_info,
1587 					struct reserve_ticket *ticket)
1588 {
1589 	/* We could have been granted before we got here. */
1590 	if (is_ticket_served(ticket))
1591 		return;
1592 
1593 	spin_lock(&space_info->lock);
1594 	while (!space_info->full) {
1595 		spin_unlock(&space_info->lock);
1596 		flush_space(space_info, U64_MAX, ALLOC_CHUNK_FORCE, false);
1597 		if (is_ticket_served(ticket))
1598 			return;
1599 		spin_lock(&space_info->lock);
1600 	}
1601 
1602 	remove_ticket(space_info, ticket, -ENOSPC);
1603 	btrfs_try_granting_tickets(space_info);
1604 	spin_unlock(&space_info->lock);
1605 }
1606 
wait_reserve_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket)1607 static void wait_reserve_ticket(struct btrfs_space_info *space_info,
1608 				struct reserve_ticket *ticket)
1609 
1610 {
1611 	DEFINE_WAIT(wait);
1612 
1613 	spin_lock(&ticket->lock);
1614 	while (ticket->bytes > 0 && ticket->error == 0) {
1615 		int ret;
1616 
1617 		ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
1618 		spin_unlock(&ticket->lock);
1619 		if (ret) {
1620 			/*
1621 			 * Delete us from the list. After we unlock the space
1622 			 * info, we don't want the async reclaim job to reserve
1623 			 * space for this ticket. If that would happen, then the
1624 			 * ticket's task would not known that space was reserved
1625 			 * despite getting an error, resulting in a space leak
1626 			 * (bytes_may_use counter of our space_info).
1627 			 */
1628 			spin_lock(&space_info->lock);
1629 			remove_ticket(space_info, ticket, -EINTR);
1630 			spin_unlock(&space_info->lock);
1631 			return;
1632 		}
1633 
1634 		schedule();
1635 
1636 		finish_wait(&ticket->wait, &wait);
1637 		spin_lock(&ticket->lock);
1638 	}
1639 	spin_unlock(&ticket->lock);
1640 }
1641 
1642 /*
1643  * Do the appropriate flushing and waiting for a ticket.
1644  *
1645  * @space_info: space info for the reservation
1646  * @ticket:     ticket for the reservation
1647  * @start_ns:   timestamp when the reservation started
1648  * @orig_bytes: amount of bytes originally reserved
1649  * @flush:      how much we can flush
1650  *
1651  * This does the work of figuring out how to flush for the ticket, waiting for
1652  * the reservation, and returning the appropriate error if there is one.
1653  */
handle_reserve_ticket(struct btrfs_space_info * space_info,struct reserve_ticket * ticket,u64 start_ns,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1654 static int handle_reserve_ticket(struct btrfs_space_info *space_info,
1655 				 struct reserve_ticket *ticket,
1656 				 u64 start_ns, u64 orig_bytes,
1657 				 enum btrfs_reserve_flush_enum flush)
1658 {
1659 	int ret;
1660 
1661 	switch (flush) {
1662 	case BTRFS_RESERVE_FLUSH_DATA:
1663 	case BTRFS_RESERVE_FLUSH_ALL:
1664 	case BTRFS_RESERVE_FLUSH_ALL_STEAL:
1665 		wait_reserve_ticket(space_info, ticket);
1666 		break;
1667 	case BTRFS_RESERVE_FLUSH_LIMIT:
1668 		priority_reclaim_metadata_space(space_info, ticket,
1669 						priority_flush_states,
1670 						ARRAY_SIZE(priority_flush_states));
1671 		break;
1672 	case BTRFS_RESERVE_FLUSH_EVICT:
1673 		priority_reclaim_metadata_space(space_info, ticket,
1674 						evict_flush_states,
1675 						ARRAY_SIZE(evict_flush_states));
1676 		break;
1677 	case BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE:
1678 		priority_reclaim_data_space(space_info, ticket);
1679 		break;
1680 	default:
1681 		ASSERT(0, "flush=%d", flush);
1682 		break;
1683 	}
1684 
1685 	ret = ticket->error;
1686 	ASSERT(list_empty(&ticket->list));
1687 	/*
1688 	 * Check that we can't have an error set if the reservation succeeded,
1689 	 * as that would confuse tasks and lead them to error out without
1690 	 * releasing reserved space (if an error happens the expectation is that
1691 	 * space wasn't reserved at all).
1692 	 */
1693 	ASSERT(!(ticket->bytes == 0 && ticket->error),
1694 	       "ticket->bytes=%llu ticket->error=%d", ticket->bytes, ticket->error);
1695 	trace_btrfs_reserve_ticket(space_info->fs_info, space_info->flags,
1696 				   orig_bytes, start_ns, flush, ticket->error);
1697 	return ret;
1698 }
1699 
1700 /*
1701  * This returns true if this flush state will go through the ordinary flushing
1702  * code.
1703  */
is_normal_flushing(enum btrfs_reserve_flush_enum flush)1704 static inline bool is_normal_flushing(enum btrfs_reserve_flush_enum flush)
1705 {
1706 	return	(flush == BTRFS_RESERVE_FLUSH_ALL) ||
1707 		(flush == BTRFS_RESERVE_FLUSH_ALL_STEAL);
1708 }
1709 
maybe_clamp_preempt(struct btrfs_space_info * space_info)1710 static inline void maybe_clamp_preempt(struct btrfs_space_info *space_info)
1711 {
1712 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1713 	u64 ordered = percpu_counter_sum_positive(&fs_info->ordered_bytes);
1714 	u64 delalloc = percpu_counter_sum_positive(&fs_info->delalloc_bytes);
1715 
1716 	/*
1717 	 * If we're heavy on ordered operations then clamping won't help us.  We
1718 	 * need to clamp specifically to keep up with dirty'ing buffered
1719 	 * writers, because there's not a 1:1 correlation of writing delalloc
1720 	 * and freeing space, like there is with flushing delayed refs or
1721 	 * delayed nodes.  If we're already more ordered than delalloc then
1722 	 * we're keeping up, otherwise we aren't and should probably clamp.
1723 	 */
1724 	if (ordered < delalloc)
1725 		space_info->clamp = min(space_info->clamp + 1, 8);
1726 }
1727 
can_steal(enum btrfs_reserve_flush_enum flush)1728 static inline bool can_steal(enum btrfs_reserve_flush_enum flush)
1729 {
1730 	return (flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1731 		flush == BTRFS_RESERVE_FLUSH_EVICT);
1732 }
1733 
1734 /*
1735  * NO_FLUSH and FLUSH_EMERGENCY don't want to create a ticket, they just want to
1736  * fail as quickly as possible.
1737  */
can_ticket(enum btrfs_reserve_flush_enum flush)1738 static inline bool can_ticket(enum btrfs_reserve_flush_enum flush)
1739 {
1740 	return (flush != BTRFS_RESERVE_NO_FLUSH &&
1741 		flush != BTRFS_RESERVE_FLUSH_EMERGENCY);
1742 }
1743 
1744 /*
1745  * Try to reserve bytes from the block_rsv's space.
1746  *
1747  * @space_info: space info we want to allocate from
1748  * @orig_bytes: number of bytes we want
1749  * @flush:      whether or not we can flush to make our reservation
1750  *
1751  * This will reserve orig_bytes number of bytes from the space info associated
1752  * with the block_rsv.  If there is not enough space it will make an attempt to
1753  * flush out space to make room.  It will do this by flushing delalloc if
1754  * possible or committing the transaction.  If flush is 0 then no attempts to
1755  * regain reservations will be made and this will fail if there is not enough
1756  * space already.
1757  */
reserve_bytes(struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1758 static int reserve_bytes(struct btrfs_space_info *space_info, u64 orig_bytes,
1759 			 enum btrfs_reserve_flush_enum flush)
1760 {
1761 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1762 	struct work_struct *async_work;
1763 	struct reserve_ticket ticket;
1764 	u64 start_ns = 0;
1765 	u64 used;
1766 	int ret = -ENOSPC;
1767 	bool pending_tickets;
1768 
1769 	ASSERT(orig_bytes, "orig_bytes=%llu", orig_bytes);
1770 	/*
1771 	 * If have a transaction handle (current->journal_info != NULL), then
1772 	 * the flush method can not be neither BTRFS_RESERVE_FLUSH_ALL* nor
1773 	 * BTRFS_RESERVE_FLUSH_EVICT, as we could deadlock because those
1774 	 * flushing methods can trigger transaction commits.
1775 	 */
1776 	if (current->journal_info) {
1777 		/* One assert per line for easier debugging. */
1778 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL, "flush=%d", flush);
1779 		ASSERT(flush != BTRFS_RESERVE_FLUSH_ALL_STEAL, "flush=%d", flush);
1780 		ASSERT(flush != BTRFS_RESERVE_FLUSH_EVICT, "flush=%d", flush);
1781 	}
1782 
1783 	if (flush == BTRFS_RESERVE_FLUSH_DATA)
1784 		async_work = &fs_info->async_data_reclaim_work;
1785 	else
1786 		async_work = &fs_info->async_reclaim_work;
1787 
1788 	spin_lock(&space_info->lock);
1789 	used = btrfs_space_info_used(space_info, true);
1790 
1791 	/*
1792 	 * We don't want NO_FLUSH allocations to jump everybody, they can
1793 	 * generally handle ENOSPC in a different way, so treat them the same as
1794 	 * normal flushers when it comes to skipping pending tickets.
1795 	 */
1796 	if (is_normal_flushing(flush) || (flush == BTRFS_RESERVE_NO_FLUSH))
1797 		pending_tickets = !list_empty(&space_info->tickets) ||
1798 			!list_empty(&space_info->priority_tickets);
1799 	else
1800 		pending_tickets = !list_empty(&space_info->priority_tickets);
1801 
1802 	/*
1803 	 * Carry on if we have enough space (short-circuit) OR call
1804 	 * can_overcommit() to ensure we can overcommit to continue.
1805 	 */
1806 	if (!pending_tickets &&
1807 	    ((used + orig_bytes <= space_info->total_bytes) ||
1808 	     can_overcommit(space_info, used, orig_bytes, flush))) {
1809 		btrfs_space_info_update_bytes_may_use(space_info, orig_bytes);
1810 		ret = 0;
1811 	}
1812 
1813 	/*
1814 	 * Things are dire, we need to make a reservation so we don't abort.  We
1815 	 * will let this reservation go through as long as we have actual space
1816 	 * left to allocate for the block.
1817 	 */
1818 	if (ret && unlikely(flush == BTRFS_RESERVE_FLUSH_EMERGENCY)) {
1819 		used -= space_info->bytes_may_use;
1820 		if (used + orig_bytes <= space_info->total_bytes) {
1821 			btrfs_space_info_update_bytes_may_use(space_info, orig_bytes);
1822 			ret = 0;
1823 		}
1824 	}
1825 
1826 	/*
1827 	 * If we couldn't make a reservation then setup our reservation ticket
1828 	 * and kick the async worker if it's not already running.
1829 	 *
1830 	 * If we are a priority flusher then we just need to add our ticket to
1831 	 * the list and we will do our own flushing further down.
1832 	 */
1833 	if (ret && can_ticket(flush)) {
1834 		ticket.bytes = orig_bytes;
1835 		ticket.error = 0;
1836 		space_info->reclaim_size += ticket.bytes;
1837 		init_waitqueue_head(&ticket.wait);
1838 		spin_lock_init(&ticket.lock);
1839 		ticket.steal = can_steal(flush);
1840 		if (trace_btrfs_reserve_ticket_enabled())
1841 			start_ns = ktime_get_ns();
1842 
1843 		if (flush == BTRFS_RESERVE_FLUSH_ALL ||
1844 		    flush == BTRFS_RESERVE_FLUSH_ALL_STEAL ||
1845 		    flush == BTRFS_RESERVE_FLUSH_DATA) {
1846 			list_add_tail(&ticket.list, &space_info->tickets);
1847 			if (!space_info->flush) {
1848 				/*
1849 				 * We were forced to add a reserve ticket, so
1850 				 * our preemptive flushing is unable to keep
1851 				 * up.  Clamp down on the threshold for the
1852 				 * preemptive flushing in order to keep up with
1853 				 * the workload.
1854 				 */
1855 				maybe_clamp_preempt(space_info);
1856 
1857 				space_info->flush = true;
1858 				trace_btrfs_trigger_flush(fs_info,
1859 							  space_info->flags,
1860 							  orig_bytes, flush,
1861 							  "enospc");
1862 				queue_work(system_dfl_wq, async_work);
1863 			}
1864 		} else {
1865 			list_add_tail(&ticket.list,
1866 				      &space_info->priority_tickets);
1867 		}
1868 	} else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
1869 		/*
1870 		 * We will do the space reservation dance during log replay,
1871 		 * which means we won't have fs_info->fs_root set, so don't do
1872 		 * the async reclaim as we will panic.
1873 		 */
1874 		if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
1875 		    !work_busy(&fs_info->preempt_reclaim_work) &&
1876 		    need_preemptive_reclaim(space_info)) {
1877 			trace_btrfs_trigger_flush(fs_info, space_info->flags,
1878 						  orig_bytes, flush, "preempt");
1879 			queue_work(system_dfl_wq,
1880 				   &fs_info->preempt_reclaim_work);
1881 		}
1882 	}
1883 	spin_unlock(&space_info->lock);
1884 	if (!ret || !can_ticket(flush))
1885 		return ret;
1886 
1887 	return handle_reserve_ticket(space_info, &ticket, start_ns, orig_bytes, flush);
1888 }
1889 
1890 /*
1891  * Try to reserve metadata bytes from the block_rsv's space.
1892  *
1893  * @space_info: the space_info we're allocating for
1894  * @orig_bytes: number of bytes we want
1895  * @flush:      whether or not we can flush to make our reservation
1896  *
1897  * This will reserve orig_bytes number of bytes from the space info associated
1898  * with the block_rsv.  If there is not enough space it will make an attempt to
1899  * flush out space to make room.  It will do this by flushing delalloc if
1900  * possible or committing the transaction.  If flush is 0 then no attempts to
1901  * regain reservations will be made and this will fail if there is not enough
1902  * space already.
1903  */
btrfs_reserve_metadata_bytes(struct btrfs_space_info * space_info,u64 orig_bytes,enum btrfs_reserve_flush_enum flush)1904 int btrfs_reserve_metadata_bytes(struct btrfs_space_info *space_info,
1905 				 u64 orig_bytes,
1906 				 enum btrfs_reserve_flush_enum flush)
1907 {
1908 	int ret;
1909 
1910 	ret = reserve_bytes(space_info, orig_bytes, flush);
1911 	if (ret == -ENOSPC) {
1912 		struct btrfs_fs_info *fs_info = space_info->fs_info;
1913 
1914 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1915 					      space_info->flags, orig_bytes, 1);
1916 
1917 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1918 			btrfs_dump_space_info(space_info, orig_bytes, false);
1919 	}
1920 	return ret;
1921 }
1922 
1923 /*
1924  * Try to reserve data bytes for an allocation.
1925  *
1926  * @space_info: the space_info we're allocating for
1927  * @bytes:   number of bytes we need
1928  * @flush:   how we are allowed to flush
1929  *
1930  * This will reserve bytes from the data space info.  If there is not enough
1931  * space then we will attempt to flush space as specified by flush.
1932  */
btrfs_reserve_data_bytes(struct btrfs_space_info * space_info,u64 bytes,enum btrfs_reserve_flush_enum flush)1933 int btrfs_reserve_data_bytes(struct btrfs_space_info *space_info, u64 bytes,
1934 			     enum btrfs_reserve_flush_enum flush)
1935 {
1936 	struct btrfs_fs_info *fs_info = space_info->fs_info;
1937 	int ret;
1938 
1939 	ASSERT(flush == BTRFS_RESERVE_FLUSH_DATA ||
1940 	       flush == BTRFS_RESERVE_FLUSH_FREE_SPACE_INODE ||
1941 	       flush == BTRFS_RESERVE_NO_FLUSH, "flush=%d", flush);
1942 	ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_DATA,
1943 	       "current->journal_info=0x%lx flush=%d",
1944 	       (unsigned long)current->journal_info, flush);
1945 
1946 	ret = reserve_bytes(space_info, bytes, flush);
1947 	if (ret == -ENOSPC) {
1948 		trace_btrfs_space_reservation(fs_info, "space_info:enospc",
1949 					      space_info->flags, bytes, 1);
1950 		if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
1951 			btrfs_dump_space_info(space_info, bytes, false);
1952 	}
1953 	return ret;
1954 }
1955 
1956 /* Dump all the space infos when we abort a transaction due to ENOSPC. */
btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info * fs_info)1957 __cold void btrfs_dump_space_info_for_trans_abort(struct btrfs_fs_info *fs_info)
1958 {
1959 	struct btrfs_space_info *space_info;
1960 
1961 	btrfs_info(fs_info, "dumping space info:");
1962 	list_for_each_entry(space_info, &fs_info->space_info, list) {
1963 		spin_lock(&space_info->lock);
1964 		__btrfs_dump_space_info(space_info);
1965 		spin_unlock(&space_info->lock);
1966 	}
1967 	dump_global_block_rsv(fs_info);
1968 }
1969 
1970 /*
1971  * Account the unused space of all the readonly block group in the space_info.
1972  * takes mirrors into account.
1973  */
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info * sinfo)1974 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
1975 {
1976 	struct btrfs_block_group *block_group;
1977 	u64 free_bytes = 0;
1978 	int factor;
1979 
1980 	/* It's df, we don't care if it's racy */
1981 	if (data_race(list_empty(&sinfo->ro_bgs)))
1982 		return 0;
1983 
1984 	spin_lock(&sinfo->lock);
1985 	list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
1986 		spin_lock(&block_group->lock);
1987 
1988 		if (!block_group->ro) {
1989 			spin_unlock(&block_group->lock);
1990 			continue;
1991 		}
1992 
1993 		factor = btrfs_bg_type_to_factor(block_group->flags);
1994 		free_bytes += (block_group->length -
1995 			       block_group->used) * factor;
1996 
1997 		spin_unlock(&block_group->lock);
1998 	}
1999 	spin_unlock(&sinfo->lock);
2000 
2001 	return free_bytes;
2002 }
2003 
calc_pct_ratio(u64 x,u64 y)2004 static u64 calc_pct_ratio(u64 x, u64 y)
2005 {
2006 	int ret;
2007 
2008 	if (!y)
2009 		return 0;
2010 again:
2011 	ret = check_mul_overflow(100, x, &x);
2012 	if (ret)
2013 		goto lose_precision;
2014 	return div64_u64(x, y);
2015 lose_precision:
2016 	x >>= 10;
2017 	y >>= 10;
2018 	if (!y)
2019 		y = 1;
2020 	goto again;
2021 }
2022 
2023 /*
2024  * A reasonable buffer for unallocated space is 10 data block_groups.
2025  * If we claw this back repeatedly, we can still achieve efficient
2026  * utilization when near full, and not do too much reclaim while
2027  * always maintaining a solid buffer for workloads that quickly
2028  * allocate and pressure the unallocated space.
2029  */
calc_unalloc_target(struct btrfs_fs_info * fs_info)2030 static u64 calc_unalloc_target(struct btrfs_fs_info *fs_info)
2031 {
2032 	u64 chunk_sz = calc_effective_data_chunk_size(fs_info);
2033 
2034 	return BTRFS_UNALLOC_BLOCK_GROUP_TARGET * chunk_sz;
2035 }
2036 
2037 /*
2038  * The fundamental goal of automatic reclaim is to protect the filesystem's
2039  * unallocated space and thus minimize the probability of the filesystem going
2040  * read only when a metadata allocation failure causes a transaction abort.
2041  *
2042  * However, relocations happen into the space_info's unused space, therefore
2043  * automatic reclaim must also back off as that space runs low. There is no
2044  * value in doing trivial "relocations" of re-writing the same block group
2045  * into a fresh one.
2046  *
2047  * Furthermore, we want to avoid doing too much reclaim even if there are good
2048  * candidates. This is because the allocator is pretty good at filling up the
2049  * holes with writes. So we want to do just enough reclaim to try and stay
2050  * safe from running out of unallocated space but not be wasteful about it.
2051  *
2052  * Therefore, the dynamic reclaim threshold is calculated as follows:
2053  * - calculate a target unallocated amount of 5 block group sized chunks
2054  * - ratchet up the intensity of reclaim depending on how far we are from
2055  *   that target by using a formula of unalloc / target to set the threshold.
2056  *
2057  * Typically with 10 block groups as the target, the discrete values this comes
2058  * out to are 0, 10, 20, ... , 80, 90, and 99.
2059  */
calc_dynamic_reclaim_threshold(const struct btrfs_space_info * space_info)2060 static int calc_dynamic_reclaim_threshold(const struct btrfs_space_info *space_info)
2061 {
2062 	struct btrfs_fs_info *fs_info = space_info->fs_info;
2063 	u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
2064 	u64 target = calc_unalloc_target(fs_info);
2065 	u64 alloc = space_info->total_bytes;
2066 	u64 used = btrfs_space_info_used(space_info, false);
2067 	u64 unused = alloc - used;
2068 	u64 want = target > unalloc ? target - unalloc : 0;
2069 	u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
2070 
2071 	/* If we have no unused space, don't bother, it won't work anyway. */
2072 	if (unused < data_chunk_size)
2073 		return 0;
2074 
2075 	/* Cast to int is OK because want <= target. */
2076 	return calc_pct_ratio(want, target);
2077 }
2078 
btrfs_calc_reclaim_threshold(const struct btrfs_space_info * space_info)2079 int btrfs_calc_reclaim_threshold(const struct btrfs_space_info *space_info)
2080 {
2081 	lockdep_assert_held(&space_info->lock);
2082 
2083 	if (READ_ONCE(space_info->dynamic_reclaim))
2084 		return calc_dynamic_reclaim_threshold(space_info);
2085 	return READ_ONCE(space_info->bg_reclaim_threshold);
2086 }
2087 
2088 /*
2089  * Under "urgent" reclaim, we will reclaim even fresh block groups that have
2090  * recently seen successful allocations, as we are desperate to reclaim
2091  * whatever we can to avoid ENOSPC in a transaction leading to a readonly fs.
2092  */
is_reclaim_urgent(struct btrfs_space_info * space_info)2093 static bool is_reclaim_urgent(struct btrfs_space_info *space_info)
2094 {
2095 	struct btrfs_fs_info *fs_info = space_info->fs_info;
2096 	u64 unalloc = atomic64_read(&fs_info->free_chunk_space);
2097 	u64 data_chunk_size = calc_effective_data_chunk_size(fs_info);
2098 
2099 	return unalloc < data_chunk_size;
2100 }
2101 
do_reclaim_sweep(struct btrfs_space_info * space_info,int raid)2102 static void do_reclaim_sweep(struct btrfs_space_info *space_info, int raid)
2103 {
2104 	struct btrfs_block_group *bg;
2105 	int thresh_pct;
2106 	bool try_again = true;
2107 	bool urgent;
2108 
2109 	spin_lock(&space_info->lock);
2110 	urgent = is_reclaim_urgent(space_info);
2111 	thresh_pct = btrfs_calc_reclaim_threshold(space_info);
2112 	spin_unlock(&space_info->lock);
2113 
2114 	down_read(&space_info->groups_sem);
2115 again:
2116 	list_for_each_entry(bg, &space_info->block_groups[raid], list) {
2117 		u64 thresh;
2118 		bool reclaim = false;
2119 
2120 		btrfs_get_block_group(bg);
2121 		spin_lock(&bg->lock);
2122 		thresh = mult_perc(bg->length, thresh_pct);
2123 		if (bg->used < thresh && bg->reclaim_mark) {
2124 			try_again = false;
2125 			reclaim = true;
2126 		}
2127 		bg->reclaim_mark++;
2128 		spin_unlock(&bg->lock);
2129 		if (reclaim)
2130 			btrfs_mark_bg_to_reclaim(bg);
2131 		btrfs_put_block_group(bg);
2132 	}
2133 
2134 	/*
2135 	 * In situations where we are very motivated to reclaim (low unalloc)
2136 	 * use two passes to make the reclaim mark check best effort.
2137 	 *
2138 	 * If we have any staler groups, we don't touch the fresher ones, but if we
2139 	 * really need a block group, do take a fresh one.
2140 	 */
2141 	if (try_again && urgent) {
2142 		try_again = false;
2143 		goto again;
2144 	}
2145 
2146 	up_read(&space_info->groups_sem);
2147 }
2148 
btrfs_space_info_update_reclaimable(struct btrfs_space_info * space_info,s64 bytes)2149 void btrfs_space_info_update_reclaimable(struct btrfs_space_info *space_info, s64 bytes)
2150 {
2151 	u64 chunk_sz = calc_effective_data_chunk_size(space_info->fs_info);
2152 
2153 	lockdep_assert_held(&space_info->lock);
2154 	space_info->reclaimable_bytes += bytes;
2155 
2156 	if (space_info->reclaimable_bytes >= chunk_sz)
2157 		btrfs_set_periodic_reclaim_ready(space_info, true);
2158 }
2159 
btrfs_set_periodic_reclaim_ready(struct btrfs_space_info * space_info,bool ready)2160 void btrfs_set_periodic_reclaim_ready(struct btrfs_space_info *space_info, bool ready)
2161 {
2162 	lockdep_assert_held(&space_info->lock);
2163 	if (!READ_ONCE(space_info->periodic_reclaim))
2164 		return;
2165 	if (ready != space_info->periodic_reclaim_ready) {
2166 		space_info->periodic_reclaim_ready = ready;
2167 		if (!ready)
2168 			space_info->reclaimable_bytes = 0;
2169 	}
2170 }
2171 
btrfs_should_periodic_reclaim(struct btrfs_space_info * space_info)2172 static bool btrfs_should_periodic_reclaim(struct btrfs_space_info *space_info)
2173 {
2174 	bool ret;
2175 
2176 	if (space_info->flags & BTRFS_BLOCK_GROUP_SYSTEM)
2177 		return false;
2178 	if (!READ_ONCE(space_info->periodic_reclaim))
2179 		return false;
2180 
2181 	spin_lock(&space_info->lock);
2182 	ret = space_info->periodic_reclaim_ready;
2183 	btrfs_set_periodic_reclaim_ready(space_info, false);
2184 	spin_unlock(&space_info->lock);
2185 
2186 	return ret;
2187 }
2188 
btrfs_reclaim_sweep(const struct btrfs_fs_info * fs_info)2189 void btrfs_reclaim_sweep(const struct btrfs_fs_info *fs_info)
2190 {
2191 	int raid;
2192 	struct btrfs_space_info *space_info;
2193 
2194 	list_for_each_entry(space_info, &fs_info->space_info, list) {
2195 		if (!btrfs_should_periodic_reclaim(space_info))
2196 			continue;
2197 		for (raid = 0; raid < BTRFS_NR_RAID_TYPES; raid++)
2198 			do_reclaim_sweep(space_info, raid);
2199 	}
2200 }
2201 
btrfs_return_free_space(struct btrfs_space_info * space_info,u64 len)2202 void btrfs_return_free_space(struct btrfs_space_info *space_info, u64 len)
2203 {
2204 	struct btrfs_fs_info *fs_info = space_info->fs_info;
2205 	struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2206 
2207 	lockdep_assert_held(&space_info->lock);
2208 
2209 	/* Prioritize the global reservation to receive the freed space. */
2210 	if (global_rsv->space_info != space_info)
2211 		goto grant;
2212 
2213 	spin_lock(&global_rsv->lock);
2214 	if (!global_rsv->full) {
2215 		u64 to_add = min(len, global_rsv->size - global_rsv->reserved);
2216 
2217 		global_rsv->reserved += to_add;
2218 		btrfs_space_info_update_bytes_may_use(space_info, to_add);
2219 		if (global_rsv->reserved >= global_rsv->size)
2220 			global_rsv->full = true;
2221 		len -= to_add;
2222 	}
2223 	spin_unlock(&global_rsv->lock);
2224 
2225 grant:
2226 	/* Add to any tickets we may have. */
2227 	if (len)
2228 		btrfs_try_granting_tickets(space_info);
2229 }
2230