1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
4 */
5
6 #include <linux/bug.h>
7 #include <linux/completion.h>
8 #include <linux/crc-itu-t.h>
9 #include <linux/device.h>
10 #include <linux/errno.h>
11 #include <linux/firewire.h>
12 #include <linux/firewire-constants.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/kref.h>
16 #include <linux/list.h>
17 #include <linux/module.h>
18 #include <linux/mutex.h>
19 #include <linux/spinlock.h>
20 #include <linux/workqueue.h>
21
22 #include <linux/atomic.h>
23 #include <asm/byteorder.h>
24
25 #include "core.h"
26 #include <trace/events/firewire.h>
27
28 #define define_fw_printk_level(func, kern_level) \
29 void func(const struct fw_card *card, const char *fmt, ...) \
30 { \
31 struct va_format vaf; \
32 va_list args; \
33 \
34 va_start(args, fmt); \
35 vaf.fmt = fmt; \
36 vaf.va = &args; \
37 printk(kern_level KBUILD_MODNAME " %s: %pV", \
38 dev_name(card->device), &vaf); \
39 va_end(args); \
40 }
41 define_fw_printk_level(fw_err, KERN_ERR);
42 define_fw_printk_level(fw_notice, KERN_NOTICE);
43
fw_compute_block_crc(__be32 * block)44 int fw_compute_block_crc(__be32 *block)
45 {
46 int length;
47 u16 crc;
48
49 length = (be32_to_cpu(block[0]) >> 16) & 0xff;
50 crc = crc_itu_t(0, (u8 *)&block[1], length * 4);
51 *block |= cpu_to_be32(crc);
52
53 return length;
54 }
55
56 static DEFINE_MUTEX(card_mutex);
57 static LIST_HEAD(card_list);
58
59 static LIST_HEAD(descriptor_list);
60 static int descriptor_count;
61
62 static __be32 tmp_config_rom[256];
63 /* ROM header, bus info block, root dir header, capabilities = 7 quadlets */
64 static size_t config_rom_length = 1 + 4 + 1 + 1;
65
66 #define BIB_CRC(v) ((v) << 0)
67 #define BIB_CRC_LENGTH(v) ((v) << 16)
68 #define BIB_INFO_LENGTH(v) ((v) << 24)
69 #define BIB_BUS_NAME 0x31333934 /* "1394" */
70 #define BIB_LINK_SPEED(v) ((v) << 0)
71 #define BIB_GENERATION(v) ((v) << 4)
72 #define BIB_MAX_ROM(v) ((v) << 8)
73 #define BIB_MAX_RECEIVE(v) ((v) << 12)
74 #define BIB_CYC_CLK_ACC(v) ((v) << 16)
75 #define BIB_PMC ((1) << 27)
76 #define BIB_BMC ((1) << 28)
77 #define BIB_ISC ((1) << 29)
78 #define BIB_CMC ((1) << 30)
79 #define BIB_IRMC ((1) << 31)
80 #define NODE_CAPABILITIES 0x0c0083c0 /* per IEEE 1394 clause 8.3.2.6.5.2 */
81
82 /*
83 * IEEE-1394 specifies a default SPLIT_TIMEOUT value of 800 cycles (100 ms),
84 * but we have to make it longer because there are many devices whose firmware
85 * is just too slow for that.
86 */
87 #define DEFAULT_SPLIT_TIMEOUT (2 * 8000)
88
89 #define CANON_OUI 0x000085
90
generate_config_rom(struct fw_card * card,__be32 * config_rom)91 static void generate_config_rom(struct fw_card *card, __be32 *config_rom)
92 {
93 struct fw_descriptor *desc;
94 int i, j, k, length;
95
96 /*
97 * Initialize contents of config rom buffer. On the OHCI
98 * controller, block reads to the config rom accesses the host
99 * memory, but quadlet read access the hardware bus info block
100 * registers. That's just crack, but it means we should make
101 * sure the contents of bus info block in host memory matches
102 * the version stored in the OHCI registers.
103 */
104
105 config_rom[0] = cpu_to_be32(
106 BIB_CRC_LENGTH(4) | BIB_INFO_LENGTH(4) | BIB_CRC(0));
107 config_rom[1] = cpu_to_be32(BIB_BUS_NAME);
108 config_rom[2] = cpu_to_be32(
109 BIB_LINK_SPEED(card->link_speed) |
110 BIB_GENERATION(card->config_rom_generation++ % 14 + 2) |
111 BIB_MAX_ROM(2) |
112 BIB_MAX_RECEIVE(card->max_receive) |
113 BIB_BMC | BIB_ISC | BIB_CMC | BIB_IRMC);
114 config_rom[3] = cpu_to_be32(card->guid >> 32);
115 config_rom[4] = cpu_to_be32(card->guid);
116
117 /* Generate root directory. */
118 config_rom[6] = cpu_to_be32(NODE_CAPABILITIES);
119 i = 7;
120 j = 7 + descriptor_count;
121
122 /* Generate root directory entries for descriptors. */
123 list_for_each_entry (desc, &descriptor_list, link) {
124 if (desc->immediate > 0)
125 config_rom[i++] = cpu_to_be32(desc->immediate);
126 config_rom[i] = cpu_to_be32(desc->key | (j - i));
127 i++;
128 j += desc->length;
129 }
130
131 /* Update root directory length. */
132 config_rom[5] = cpu_to_be32((i - 5 - 1) << 16);
133
134 /* End of root directory, now copy in descriptors. */
135 list_for_each_entry (desc, &descriptor_list, link) {
136 for (k = 0; k < desc->length; k++)
137 config_rom[i + k] = cpu_to_be32(desc->data[k]);
138 i += desc->length;
139 }
140
141 /* Calculate CRCs for all blocks in the config rom. This
142 * assumes that CRC length and info length are identical for
143 * the bus info block, which is always the case for this
144 * implementation. */
145 for (i = 0; i < j; i += length + 1)
146 length = fw_compute_block_crc(config_rom + i);
147
148 WARN_ON(j != config_rom_length);
149 }
150
update_config_roms(void)151 static void update_config_roms(void)
152 {
153 struct fw_card *card;
154
155 list_for_each_entry (card, &card_list, link) {
156 generate_config_rom(card, tmp_config_rom);
157 card->driver->set_config_rom(card, tmp_config_rom,
158 config_rom_length);
159 }
160 }
161
required_space(struct fw_descriptor * desc)162 static size_t required_space(struct fw_descriptor *desc)
163 {
164 /* descriptor + entry into root dir + optional immediate entry */
165 return desc->length + 1 + (desc->immediate > 0 ? 1 : 0);
166 }
167
fw_core_add_descriptor(struct fw_descriptor * desc)168 int fw_core_add_descriptor(struct fw_descriptor *desc)
169 {
170 size_t i;
171
172 /*
173 * Check descriptor is valid; the length of all blocks in the
174 * descriptor has to add up to exactly the length of the
175 * block.
176 */
177 i = 0;
178 while (i < desc->length)
179 i += (desc->data[i] >> 16) + 1;
180
181 if (i != desc->length)
182 return -EINVAL;
183
184 guard(mutex)(&card_mutex);
185
186 if (config_rom_length + required_space(desc) > 256)
187 return -EBUSY;
188
189 list_add_tail(&desc->link, &descriptor_list);
190 config_rom_length += required_space(desc);
191 descriptor_count++;
192 if (desc->immediate > 0)
193 descriptor_count++;
194 update_config_roms();
195
196 return 0;
197 }
198 EXPORT_SYMBOL(fw_core_add_descriptor);
199
fw_core_remove_descriptor(struct fw_descriptor * desc)200 void fw_core_remove_descriptor(struct fw_descriptor *desc)
201 {
202 guard(mutex)(&card_mutex);
203
204 list_del(&desc->link);
205 config_rom_length -= required_space(desc);
206 descriptor_count--;
207 if (desc->immediate > 0)
208 descriptor_count--;
209 update_config_roms();
210 }
211 EXPORT_SYMBOL(fw_core_remove_descriptor);
212
reset_bus(struct fw_card * card,bool short_reset)213 static int reset_bus(struct fw_card *card, bool short_reset)
214 {
215 int reg = short_reset ? 5 : 1;
216 int bit = short_reset ? PHY_BUS_SHORT_RESET : PHY_BUS_RESET;
217
218 trace_bus_reset_initiate(card->index, card->generation, short_reset);
219
220 return card->driver->update_phy_reg(card, reg, 0, bit);
221 }
222
fw_schedule_bus_reset(struct fw_card * card,bool delayed,bool short_reset)223 void fw_schedule_bus_reset(struct fw_card *card, bool delayed, bool short_reset)
224 {
225 trace_bus_reset_schedule(card->index, card->generation, short_reset);
226
227 /* We don't try hard to sort out requests of long vs. short resets. */
228 card->br_short = short_reset;
229
230 /* Use an arbitrary short delay to combine multiple reset requests. */
231 fw_card_get(card);
232 if (!queue_delayed_work(fw_workqueue, &card->br_work, delayed ? msecs_to_jiffies(10) : 0))
233 fw_card_put(card);
234 }
235 EXPORT_SYMBOL(fw_schedule_bus_reset);
236
br_work(struct work_struct * work)237 static void br_work(struct work_struct *work)
238 {
239 struct fw_card *card = from_work(card, work, br_work.work);
240
241 /* Delay for 2s after last reset per IEEE 1394 clause 8.2.1. */
242 if (card->reset_jiffies != 0 &&
243 time_is_after_jiffies64(card->reset_jiffies + secs_to_jiffies(2))) {
244 trace_bus_reset_postpone(card->index, card->generation, card->br_short);
245
246 if (!queue_delayed_work(fw_workqueue, &card->br_work, secs_to_jiffies(2)))
247 fw_card_put(card);
248 return;
249 }
250
251 fw_send_phy_config(card, FW_PHY_CONFIG_NO_NODE_ID, card->generation,
252 FW_PHY_CONFIG_CURRENT_GAP_COUNT);
253 reset_bus(card, card->br_short);
254 fw_card_put(card);
255 }
256
allocate_broadcast_channel(struct fw_card * card,int generation)257 static void allocate_broadcast_channel(struct fw_card *card, int generation)
258 {
259 int channel, bandwidth = 0;
260
261 if (!card->broadcast_channel_allocated) {
262 fw_iso_resource_manage(card, generation, 1ULL << 31,
263 &channel, &bandwidth, true);
264 if (channel != 31) {
265 fw_notice(card, "failed to allocate broadcast channel\n");
266 return;
267 }
268 card->broadcast_channel_allocated = true;
269 }
270
271 device_for_each_child(card->device, (void *)(long)generation,
272 fw_device_set_broadcast_channel);
273 }
274
fw_schedule_bm_work(struct fw_card * card,unsigned long delay)275 void fw_schedule_bm_work(struct fw_card *card, unsigned long delay)
276 {
277 fw_card_get(card);
278 if (!schedule_delayed_work(&card->bm_work, delay))
279 fw_card_put(card);
280 }
281
282 enum bm_contention_outcome {
283 // The bus management contention window is not expired.
284 BM_CONTENTION_OUTCOME_WITHIN_WINDOW = 0,
285 // The IRM node has link off.
286 BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF,
287 // The IRM node complies IEEE 1394:1994 only.
288 BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY,
289 // Another bus reset, BM work has been rescheduled.
290 BM_CONTENTION_OUTCOME_AT_NEW_GENERATION,
291 // We have been unable to send the lock request to IRM node due to some local problem.
292 BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION,
293 // The lock request failed, maybe the IRM isn't really IRM capable after all.
294 BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM,
295 // Somebody else is BM.
296 BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM,
297 // The local node succeeds after contending for bus manager.
298 BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM,
299 };
300
contend_for_bm(struct fw_card * card)301 static enum bm_contention_outcome contend_for_bm(struct fw_card *card)
302 __must_hold(&card->lock)
303 {
304 int generation = card->generation;
305 int local_id = card->local_node->node_id;
306 __be32 data[2] = {
307 cpu_to_be32(BUS_MANAGER_ID_NOT_REGISTERED),
308 cpu_to_be32(local_id),
309 };
310 bool grace = time_is_before_jiffies64(card->reset_jiffies + msecs_to_jiffies(125));
311 bool irm_is_1394_1995_only = false;
312 bool keep_this_irm = false;
313 struct fw_node *irm_node;
314 struct fw_device *irm_device;
315 int irm_node_id;
316 int rcode;
317
318 lockdep_assert_held(&card->lock);
319
320 if (!grace) {
321 if (!is_next_generation(generation, card->bm_generation) || card->bm_abdicate)
322 return BM_CONTENTION_OUTCOME_WITHIN_WINDOW;
323 }
324
325 irm_node = card->irm_node;
326 if (!irm_node->link_on) {
327 fw_notice(card, "IRM has link off, making local node (%02x) root\n", local_id);
328 return BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF;
329 }
330
331 irm_device = fw_node_get_device(irm_node);
332 if (irm_device && irm_device->config_rom) {
333 irm_is_1394_1995_only = (irm_device->config_rom[2] & 0x000000f0) == 0;
334
335 // Canon MV5i works unreliably if it is not root node.
336 keep_this_irm = irm_device->config_rom[3] >> 8 == CANON_OUI;
337 }
338
339 if (irm_is_1394_1995_only && !keep_this_irm) {
340 fw_notice(card, "IRM is not 1394a compliant, making local node (%02x) root\n",
341 local_id);
342 return BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY;
343 }
344
345 irm_node_id = irm_node->node_id;
346
347 spin_unlock_irq(&card->lock);
348
349 rcode = fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP, irm_node_id, generation,
350 SCODE_100, CSR_REGISTER_BASE + CSR_BUS_MANAGER_ID, data,
351 sizeof(data));
352
353 spin_lock_irq(&card->lock);
354
355 switch (rcode) {
356 case RCODE_GENERATION:
357 return BM_CONTENTION_OUTCOME_AT_NEW_GENERATION;
358 case RCODE_SEND_ERROR:
359 return BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION;
360 case RCODE_COMPLETE:
361 {
362 int bm_id = be32_to_cpu(data[0]);
363
364 // Used by cdev layer for "struct fw_cdev_event_bus_reset".
365 if (bm_id != BUS_MANAGER_ID_NOT_REGISTERED)
366 card->bm_node_id = 0xffc0 & bm_id;
367 else
368 card->bm_node_id = local_id;
369
370 if (bm_id != BUS_MANAGER_ID_NOT_REGISTERED)
371 return BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM;
372 else
373 return BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM;
374 }
375 default:
376 if (!keep_this_irm) {
377 fw_notice(card, "BM lock failed (%s), making local node (%02x) root\n",
378 fw_rcode_string(rcode), local_id);
379 return BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY;
380 } else {
381 return BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM;
382 }
383 }
384 }
385
DEFINE_FREE(node_unref,struct fw_node *,if (_T)fw_node_put (_T))386 DEFINE_FREE(node_unref, struct fw_node *, if (_T) fw_node_put(_T))
387 DEFINE_FREE(card_unref, struct fw_card *, if (_T) fw_card_put(_T))
388
389 static void bm_work(struct work_struct *work)
390 {
391 static const char gap_count_table[] = {
392 63, 5, 7, 8, 10, 13, 16, 18, 21, 24, 26, 29, 32, 35, 37, 40
393 };
394 struct fw_card *card __free(card_unref) = from_work(card, work, bm_work.work);
395 struct fw_node *root_node __free(node_unref) = NULL;
396 int root_id, new_root_id, irm_id, local_id;
397 int expected_gap_count, generation;
398 bool stand_for_root = false;
399
400 spin_lock_irq(&card->lock);
401
402 if (card->local_node == NULL) {
403 spin_unlock_irq(&card->lock);
404 return;
405 }
406
407 generation = card->generation;
408
409 root_node = fw_node_get(card->root_node);
410
411 root_id = root_node->node_id;
412 irm_id = card->irm_node->node_id;
413 local_id = card->local_node->node_id;
414
415 if (card->bm_generation != generation) {
416 enum bm_contention_outcome result = contend_for_bm(card);
417
418 switch (result) {
419 case BM_CONTENTION_OUTCOME_WITHIN_WINDOW:
420 spin_unlock_irq(&card->lock);
421 fw_schedule_bm_work(card, msecs_to_jiffies(125));
422 return;
423 case BM_CONTENTION_OUTCOME_IRM_HAS_LINK_OFF:
424 stand_for_root = true;
425 break;
426 case BM_CONTENTION_OUTCOME_IRM_COMPLIES_1394_1995_ONLY:
427 stand_for_root = true;
428 break;
429 case BM_CONTENTION_OUTCOME_AT_NEW_GENERATION:
430 // BM work has been rescheduled.
431 spin_unlock_irq(&card->lock);
432 return;
433 case BM_CONTENTION_OUTCOME_LOCAL_PROBLEM_AT_TRANSACTION:
434 // Let's try again later and hope that the local problem has gone away by
435 // then.
436 spin_unlock_irq(&card->lock);
437 fw_schedule_bm_work(card, msecs_to_jiffies(125));
438 return;
439 case BM_CONTENTION_OUTCOME_IRM_IS_NOT_CAPABLE_FOR_IRM:
440 // Let's do a bus reset and pick the local node as root, and thus, IRM.
441 stand_for_root = true;
442 break;
443 case BM_CONTENTION_OUTCOME_IRM_HOLDS_ANOTHER_NODE_AS_BM:
444 if (local_id == irm_id) {
445 // Only acts as IRM.
446 spin_unlock_irq(&card->lock);
447 allocate_broadcast_channel(card, generation);
448 spin_lock_irq(&card->lock);
449 }
450 fallthrough;
451 case BM_CONTENTION_OUTCOME_IRM_HOLDS_LOCAL_NODE_AS_BM:
452 default:
453 card->bm_generation = generation;
454 break;
455 }
456 }
457
458 // We're bus manager for this generation, so next step is to make sure we have an active
459 // cycle master and do gap count optimization.
460 if (!stand_for_root) {
461 if (card->gap_count == GAP_COUNT_MISMATCHED) {
462 // If self IDs have inconsistent gap counts, do a
463 // bus reset ASAP. The config rom read might never
464 // complete, so don't wait for it. However, still
465 // send a PHY configuration packet prior to the
466 // bus reset. The PHY configuration packet might
467 // fail, but 1394-2008 8.4.5.2 explicitly permits
468 // it in this case, so it should be safe to try.
469 stand_for_root = true;
470
471 // We must always send a bus reset if the gap count
472 // is inconsistent, so bypass the 5-reset limit.
473 card->bm_retries = 0;
474 } else {
475 // Now investigate root node.
476 struct fw_device *root_device = fw_node_get_device(root_node);
477
478 if (root_device == NULL) {
479 // Either link_on is false, or we failed to read the
480 // config rom. In either case, pick another root.
481 stand_for_root = true;
482 } else {
483 bool root_device_is_running =
484 atomic_read(&root_device->state) == FW_DEVICE_RUNNING;
485
486 if (!root_device_is_running) {
487 // If we haven't probed this device yet, bail out now
488 // and let's try again once that's done.
489 spin_unlock_irq(&card->lock);
490 return;
491 } else if (!root_device->cmc) {
492 // Current root has an active link layer and we
493 // successfully read the config rom, but it's not
494 // cycle master capable.
495 stand_for_root = true;
496 }
497 }
498 }
499 }
500
501 if (stand_for_root) {
502 new_root_id = local_id;
503 } else {
504 // We will send out a force root packet for this node as part of the gap count
505 // optimization on behalf of the node.
506 new_root_id = root_id;
507 }
508
509 /*
510 * Pick a gap count from 1394a table E-1. The table doesn't cover
511 * the typically much larger 1394b beta repeater delays though.
512 */
513 if (!card->beta_repeaters_present &&
514 root_node->max_hops < ARRAY_SIZE(gap_count_table))
515 expected_gap_count = gap_count_table[root_node->max_hops];
516 else
517 expected_gap_count = 63;
518
519 // Finally, figure out if we should do a reset or not. If we have done less than 5 resets
520 // with the same physical topology and we have either a new root or a new gap count
521 // setting, let's do it.
522 if (card->bm_retries++ < 5 && (card->gap_count != expected_gap_count || new_root_id != root_id)) {
523 int card_gap_count = card->gap_count;
524
525 spin_unlock_irq(&card->lock);
526
527 fw_notice(card, "phy config: new root=%x, gap_count=%d\n",
528 new_root_id, expected_gap_count);
529 fw_send_phy_config(card, new_root_id, generation, expected_gap_count);
530 /*
531 * Where possible, use a short bus reset to minimize
532 * disruption to isochronous transfers. But in the event
533 * of a gap count inconsistency, use a long bus reset.
534 *
535 * As noted in 1394a 8.4.6.2, nodes on a mixed 1394/1394a bus
536 * may set different gap counts after a bus reset. On a mixed
537 * 1394/1394a bus, a short bus reset can get doubled. Some
538 * nodes may treat the double reset as one bus reset and others
539 * may treat it as two, causing a gap count inconsistency
540 * again. Using a long bus reset prevents this.
541 */
542 reset_bus(card, card_gap_count != 0);
543 /* Will allocate broadcast channel after the reset. */
544 } else {
545 struct fw_device *root_device = fw_node_get_device(root_node);
546
547 spin_unlock_irq(&card->lock);
548
549 if (root_device && root_device->cmc) {
550 // Make sure that the cycle master sends cycle start packets.
551 __be32 data = cpu_to_be32(CSR_STATE_BIT_CMSTR);
552 int rcode = fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
553 root_id, generation, SCODE_100,
554 CSR_REGISTER_BASE + CSR_STATE_SET,
555 &data, sizeof(data));
556 if (rcode == RCODE_GENERATION)
557 return;
558 }
559
560 if (local_id == irm_id)
561 allocate_broadcast_channel(card, generation);
562 }
563 }
564
fw_card_initialize(struct fw_card * card,const struct fw_card_driver * driver,struct device * device)565 void fw_card_initialize(struct fw_card *card,
566 const struct fw_card_driver *driver,
567 struct device *device)
568 {
569 static atomic_t index = ATOMIC_INIT(-1);
570
571 card->index = atomic_inc_return(&index);
572 card->driver = driver;
573 card->device = device;
574
575 card->transactions.current_tlabel = 0;
576 card->transactions.tlabel_mask = 0;
577 INIT_LIST_HEAD(&card->transactions.list);
578 spin_lock_init(&card->transactions.lock);
579
580 spin_lock_init(&card->topology_map.lock);
581
582 card->split_timeout.hi = DEFAULT_SPLIT_TIMEOUT / 8000;
583 card->split_timeout.lo = (DEFAULT_SPLIT_TIMEOUT % 8000) << 19;
584 card->split_timeout.cycles = DEFAULT_SPLIT_TIMEOUT;
585 card->split_timeout.jiffies = isoc_cycles_to_jiffies(DEFAULT_SPLIT_TIMEOUT);
586 spin_lock_init(&card->split_timeout.lock);
587
588 card->color = 0;
589 card->broadcast_channel = BROADCAST_CHANNEL_INITIAL;
590
591 kref_init(&card->kref);
592 init_completion(&card->done);
593
594 spin_lock_init(&card->lock);
595
596 card->local_node = NULL;
597
598 INIT_DELAYED_WORK(&card->br_work, br_work);
599 INIT_DELAYED_WORK(&card->bm_work, bm_work);
600 }
601 EXPORT_SYMBOL(fw_card_initialize);
602
DEFINE_FREE(workqueue_destroy,struct workqueue_struct *,if (_T)destroy_workqueue (_T))603 DEFINE_FREE(workqueue_destroy, struct workqueue_struct *, if (_T) destroy_workqueue(_T))
604
605 int fw_card_add(struct fw_card *card, u32 max_receive, u32 link_speed, u64 guid,
606 unsigned int supported_isoc_contexts)
607 {
608 struct workqueue_struct *isoc_wq __free(workqueue_destroy) = NULL;
609 struct workqueue_struct *async_wq __free(workqueue_destroy) = NULL;
610 int ret;
611
612 // This workqueue should be:
613 // * != WQ_BH Sleepable.
614 // * == WQ_UNBOUND Any core can process data for isoc context. The
615 // implementation of unit protocol could consumes the core
616 // longer somehow.
617 // * != WQ_MEM_RECLAIM Not used for any backend of block device.
618 // * == WQ_FREEZABLE Isochronous communication is at regular interval in real
619 // time, thus should be drained if possible at freeze phase.
620 // * == WQ_HIGHPRI High priority to process semi-realtime timestamped data.
621 // * == WQ_SYSFS Parameters are available via sysfs.
622 // * max_active == n_it + n_ir A hardIRQ could notify events for multiple isochronous
623 // contexts if they are scheduled to the same cycle.
624 isoc_wq = alloc_workqueue("firewire-isoc-card%u",
625 WQ_UNBOUND | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
626 supported_isoc_contexts, card->index);
627 if (!isoc_wq)
628 return -ENOMEM;
629
630 // This workqueue should be:
631 // * != WQ_BH Sleepable.
632 // * == WQ_UNBOUND Any core can process data for asynchronous context.
633 // * == WQ_MEM_RECLAIM Used for any backend of block device.
634 // * == WQ_FREEZABLE The target device would not be available when being freezed.
635 // * == WQ_HIGHPRI High priority to process semi-realtime timestamped data.
636 // * == WQ_SYSFS Parameters are available via sysfs.
637 // * max_active == 4 A hardIRQ could notify events for a pair of requests and
638 // response AR/AT contexts.
639 async_wq = alloc_workqueue("firewire-async-card%u",
640 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI | WQ_SYSFS,
641 4, card->index);
642 if (!async_wq)
643 return -ENOMEM;
644
645 card->isoc_wq = isoc_wq;
646 card->async_wq = async_wq;
647 card->max_receive = max_receive;
648 card->link_speed = link_speed;
649 card->guid = guid;
650
651 scoped_guard(mutex, &card_mutex) {
652 generate_config_rom(card, tmp_config_rom);
653 ret = card->driver->enable(card, tmp_config_rom, config_rom_length);
654 if (ret < 0) {
655 card->isoc_wq = NULL;
656 card->async_wq = NULL;
657 return ret;
658 }
659 retain_and_null_ptr(isoc_wq);
660 retain_and_null_ptr(async_wq);
661
662 list_add_tail(&card->link, &card_list);
663 }
664
665 return 0;
666 }
667 EXPORT_SYMBOL(fw_card_add);
668
669 /*
670 * The next few functions implement a dummy driver that is used once a card
671 * driver shuts down an fw_card. This allows the driver to cleanly unload,
672 * as all IO to the card will be handled (and failed) by the dummy driver
673 * instead of calling into the module. Only functions for iso context
674 * shutdown still need to be provided by the card driver.
675 *
676 * .read/write_csr() should never be called anymore after the dummy driver
677 * was bound since they are only used within request handler context.
678 * .set_config_rom() is never called since the card is taken out of card_list
679 * before switching to the dummy driver.
680 */
681
dummy_read_phy_reg(struct fw_card * card,int address)682 static int dummy_read_phy_reg(struct fw_card *card, int address)
683 {
684 return -ENODEV;
685 }
686
dummy_update_phy_reg(struct fw_card * card,int address,int clear_bits,int set_bits)687 static int dummy_update_phy_reg(struct fw_card *card, int address,
688 int clear_bits, int set_bits)
689 {
690 return -ENODEV;
691 }
692
dummy_send_request(struct fw_card * card,struct fw_packet * packet)693 static void dummy_send_request(struct fw_card *card, struct fw_packet *packet)
694 {
695 packet->callback(packet, card, RCODE_CANCELLED);
696 }
697
dummy_send_response(struct fw_card * card,struct fw_packet * packet)698 static void dummy_send_response(struct fw_card *card, struct fw_packet *packet)
699 {
700 packet->callback(packet, card, RCODE_CANCELLED);
701 }
702
dummy_cancel_packet(struct fw_card * card,struct fw_packet * packet)703 static int dummy_cancel_packet(struct fw_card *card, struct fw_packet *packet)
704 {
705 return -ENOENT;
706 }
707
dummy_enable_phys_dma(struct fw_card * card,int node_id,int generation)708 static int dummy_enable_phys_dma(struct fw_card *card,
709 int node_id, int generation)
710 {
711 return -ENODEV;
712 }
713
dummy_allocate_iso_context(struct fw_card * card,int type,int channel,size_t header_size)714 static struct fw_iso_context *dummy_allocate_iso_context(struct fw_card *card,
715 int type, int channel, size_t header_size)
716 {
717 return ERR_PTR(-ENODEV);
718 }
719
dummy_read_csr(struct fw_card * card,int csr_offset)720 static u32 dummy_read_csr(struct fw_card *card, int csr_offset)
721 {
722 return 0;
723 }
724
dummy_write_csr(struct fw_card * card,int csr_offset,u32 value)725 static void dummy_write_csr(struct fw_card *card, int csr_offset, u32 value)
726 {
727 }
728
dummy_start_iso(struct fw_iso_context * ctx,s32 cycle,u32 sync,u32 tags)729 static int dummy_start_iso(struct fw_iso_context *ctx,
730 s32 cycle, u32 sync, u32 tags)
731 {
732 return -ENODEV;
733 }
734
dummy_set_iso_channels(struct fw_iso_context * ctx,u64 * channels)735 static int dummy_set_iso_channels(struct fw_iso_context *ctx, u64 *channels)
736 {
737 return -ENODEV;
738 }
739
dummy_queue_iso(struct fw_iso_context * ctx,struct fw_iso_packet * p,struct fw_iso_buffer * buffer,unsigned long payload)740 static int dummy_queue_iso(struct fw_iso_context *ctx, struct fw_iso_packet *p,
741 struct fw_iso_buffer *buffer, unsigned long payload)
742 {
743 return -ENODEV;
744 }
745
dummy_flush_queue_iso(struct fw_iso_context * ctx)746 static void dummy_flush_queue_iso(struct fw_iso_context *ctx)
747 {
748 }
749
dummy_flush_iso_completions(struct fw_iso_context * ctx)750 static int dummy_flush_iso_completions(struct fw_iso_context *ctx)
751 {
752 return -ENODEV;
753 }
754
755 static const struct fw_card_driver dummy_driver_template = {
756 .read_phy_reg = dummy_read_phy_reg,
757 .update_phy_reg = dummy_update_phy_reg,
758 .send_request = dummy_send_request,
759 .send_response = dummy_send_response,
760 .cancel_packet = dummy_cancel_packet,
761 .enable_phys_dma = dummy_enable_phys_dma,
762 .read_csr = dummy_read_csr,
763 .write_csr = dummy_write_csr,
764 .allocate_iso_context = dummy_allocate_iso_context,
765 .start_iso = dummy_start_iso,
766 .set_iso_channels = dummy_set_iso_channels,
767 .queue_iso = dummy_queue_iso,
768 .flush_queue_iso = dummy_flush_queue_iso,
769 .flush_iso_completions = dummy_flush_iso_completions,
770 };
771
fw_card_release(struct kref * kref)772 void fw_card_release(struct kref *kref)
773 {
774 struct fw_card *card = container_of(kref, struct fw_card, kref);
775
776 complete(&card->done);
777 }
778 EXPORT_SYMBOL_GPL(fw_card_release);
779
fw_core_remove_card(struct fw_card * card)780 void fw_core_remove_card(struct fw_card *card)
781 {
782 struct fw_card_driver dummy_driver = dummy_driver_template;
783
784 might_sleep();
785
786 card->driver->update_phy_reg(card, 4,
787 PHY_LINK_ACTIVE | PHY_CONTENDER, 0);
788 fw_schedule_bus_reset(card, false, true);
789
790 scoped_guard(mutex, &card_mutex)
791 list_del_init(&card->link);
792
793 /* Switch off most of the card driver interface. */
794 dummy_driver.free_iso_context = card->driver->free_iso_context;
795 dummy_driver.stop_iso = card->driver->stop_iso;
796 card->driver = &dummy_driver;
797 drain_workqueue(card->isoc_wq);
798 drain_workqueue(card->async_wq);
799
800 scoped_guard(spinlock_irqsave, &card->lock)
801 fw_destroy_nodes(card);
802
803 /* Wait for all users, especially device workqueue jobs, to finish. */
804 fw_card_put(card);
805 wait_for_completion(&card->done);
806
807 destroy_workqueue(card->isoc_wq);
808 destroy_workqueue(card->async_wq);
809
810 WARN_ON(!list_empty(&card->transactions.list));
811 }
812 EXPORT_SYMBOL(fw_core_remove_card);
813
814 /**
815 * fw_card_read_cycle_time: read from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region
816 * for controller card.
817 * @card: The instance of card for 1394 OHCI controller.
818 * @cycle_time: The mutual reference to value of cycle time for the read operation.
819 *
820 * Read value from Isochronous Cycle Timer Register of 1394 OHCI in MMIO region for the given
821 * controller card. This function accesses the region without any lock primitives or IRQ mask.
822 * When returning successfully, the content of @value argument has value aligned to host endianness,
823 * formetted by CYCLE_TIME CSR Register of IEEE 1394 std.
824 *
825 * Context: Any context.
826 * Return:
827 * * 0 - Read successfully.
828 * * -ENODEV - The controller is unavailable due to being removed or unbound.
829 */
fw_card_read_cycle_time(struct fw_card * card,u32 * cycle_time)830 int fw_card_read_cycle_time(struct fw_card *card, u32 *cycle_time)
831 {
832 if (card->driver->read_csr == dummy_read_csr)
833 return -ENODEV;
834
835 // It's possible to switch to dummy driver between the above and the below. This is the best
836 // effort to return -ENODEV.
837 *cycle_time = card->driver->read_csr(card, CSR_CYCLE_TIME);
838 return 0;
839 }
840 EXPORT_SYMBOL_GPL(fw_card_read_cycle_time);
841