1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * HID driver for Sony DualSense(TM) controller. 4 * 5 * Copyright (c) 2020-2022 Sony Interactive Entertainment 6 */ 7 8 #include <linux/bitfield.h> 9 #include <linux/bits.h> 10 #include <linux/cleanup.h> 11 #include <linux/crc32.h> 12 #include <linux/device.h> 13 #include <linux/hid.h> 14 #include <linux/idr.h> 15 #include <linux/input/mt.h> 16 #include <linux/leds.h> 17 #include <linux/led-class-multicolor.h> 18 #include <linux/module.h> 19 20 #include <linux/unaligned.h> 21 22 #include "hid-ids.h" 23 24 /* List of connected playstation devices. */ 25 static DEFINE_MUTEX(ps_devices_lock); 26 static LIST_HEAD(ps_devices_list); 27 28 static DEFINE_IDA(ps_player_id_allocator); 29 30 #define HID_PLAYSTATION_VERSION_PATCH 0x8000 31 32 enum PS_TYPE { 33 PS_TYPE_PS4_DUALSHOCK4, 34 PS_TYPE_PS5_DUALSENSE, 35 }; 36 37 /* Base class for playstation devices. */ 38 struct ps_device { 39 struct list_head list; 40 struct hid_device *hdev; 41 spinlock_t lock; /* Sync between event handler and workqueue */ 42 43 u32 player_id; 44 45 struct power_supply_desc battery_desc; 46 struct power_supply *battery; 47 u8 battery_capacity; 48 int battery_status; 49 50 const char *input_dev_name; /* Name of primary input device. */ 51 u8 mac_address[6]; /* Note: stored in little endian order. */ 52 u32 hw_version; 53 u32 fw_version; 54 55 int (*parse_report)(struct ps_device *dev, struct hid_report *report, u8 *data, int size); 56 void (*remove)(struct ps_device *dev); 57 }; 58 59 /* Calibration data for playstation motion sensors. */ 60 struct ps_calibration_data { 61 int abs_code; 62 short bias; 63 int sens_numer; 64 int sens_denom; 65 }; 66 67 struct ps_led_info { 68 const char *name; 69 const char *color; 70 int max_brightness; 71 enum led_brightness (*brightness_get)(struct led_classdev *cdev); 72 int (*brightness_set)(struct led_classdev *cdev, enum led_brightness); 73 int (*blink_set)(struct led_classdev *led, unsigned long *on, unsigned long *off); 74 }; 75 76 /* Seed values for DualShock4 / DualSense CRC32 for different report types. */ 77 #define PS_INPUT_CRC32_SEED 0xA1 78 #define PS_OUTPUT_CRC32_SEED 0xA2 79 #define PS_FEATURE_CRC32_SEED 0xA3 80 81 #define DS_INPUT_REPORT_USB 0x01 82 #define DS_INPUT_REPORT_USB_SIZE 64 83 #define DS_INPUT_REPORT_BT 0x31 84 #define DS_INPUT_REPORT_BT_SIZE 78 85 #define DS_OUTPUT_REPORT_USB 0x02 86 #define DS_OUTPUT_REPORT_USB_SIZE 63 87 #define DS_OUTPUT_REPORT_BT 0x31 88 #define DS_OUTPUT_REPORT_BT_SIZE 78 89 90 #define DS_FEATURE_REPORT_CALIBRATION 0x05 91 #define DS_FEATURE_REPORT_CALIBRATION_SIZE 41 92 #define DS_FEATURE_REPORT_PAIRING_INFO 0x09 93 #define DS_FEATURE_REPORT_PAIRING_INFO_SIZE 20 94 #define DS_FEATURE_REPORT_FIRMWARE_INFO 0x20 95 #define DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE 64 96 97 /* Button masks for DualSense input report. */ 98 #define DS_BUTTONS0_HAT_SWITCH GENMASK(3, 0) 99 #define DS_BUTTONS0_SQUARE BIT(4) 100 #define DS_BUTTONS0_CROSS BIT(5) 101 #define DS_BUTTONS0_CIRCLE BIT(6) 102 #define DS_BUTTONS0_TRIANGLE BIT(7) 103 #define DS_BUTTONS1_L1 BIT(0) 104 #define DS_BUTTONS1_R1 BIT(1) 105 #define DS_BUTTONS1_L2 BIT(2) 106 #define DS_BUTTONS1_R2 BIT(3) 107 #define DS_BUTTONS1_CREATE BIT(4) 108 #define DS_BUTTONS1_OPTIONS BIT(5) 109 #define DS_BUTTONS1_L3 BIT(6) 110 #define DS_BUTTONS1_R3 BIT(7) 111 #define DS_BUTTONS2_PS_HOME BIT(0) 112 #define DS_BUTTONS2_TOUCHPAD BIT(1) 113 #define DS_BUTTONS2_MIC_MUTE BIT(2) 114 115 /* Status fields of DualSense input report. */ 116 #define DS_STATUS0_BATTERY_CAPACITY GENMASK(3, 0) 117 #define DS_STATUS0_CHARGING GENMASK(7, 4) 118 #define DS_STATUS1_HP_DETECT BIT(0) 119 #define DS_STATUS1_MIC_DETECT BIT(1) 120 #define DS_STATUS1_JACK_DETECT (DS_STATUS1_HP_DETECT | DS_STATUS1_MIC_DETECT) 121 #define DS_STATUS1_MIC_MUTE BIT(2) 122 123 /* Feature version from DualSense Firmware Info report. */ 124 #define DS_FEATURE_VERSION_MINOR GENMASK(7, 0) 125 #define DS_FEATURE_VERSION_MAJOR GENMASK(15, 8) 126 #define DS_FEATURE_VERSION(major, minor) (FIELD_PREP(DS_FEATURE_VERSION_MAJOR, major) | \ 127 FIELD_PREP(DS_FEATURE_VERSION_MINOR, minor)) 128 /* 129 * Status of a DualSense touch point contact. 130 * Contact IDs, with highest bit set are 'inactive' 131 * and any associated data is then invalid. 132 */ 133 #define DS_TOUCH_POINT_INACTIVE BIT(7) 134 #define DS_TOUCH_POINT_X_LO GENMASK(7, 0) 135 #define DS_TOUCH_POINT_X_HI GENMASK(11, 8) 136 #define DS_TOUCH_POINT_X(hi, lo) (FIELD_PREP(DS_TOUCH_POINT_X_HI, hi) | \ 137 FIELD_PREP(DS_TOUCH_POINT_X_LO, lo)) 138 #define DS_TOUCH_POINT_Y_LO GENMASK(3, 0) 139 #define DS_TOUCH_POINT_Y_HI GENMASK(11, 4) 140 #define DS_TOUCH_POINT_Y(hi, lo) (FIELD_PREP(DS_TOUCH_POINT_Y_HI, hi) | \ 141 FIELD_PREP(DS_TOUCH_POINT_Y_LO, lo)) 142 143 /* Magic value required in tag field of Bluetooth output report. */ 144 #define DS_OUTPUT_TAG 0x10 145 #define DS_OUTPUT_SEQ_TAG GENMASK(3, 0) 146 #define DS_OUTPUT_SEQ_NO GENMASK(7, 4) 147 /* Flags for DualSense output report. */ 148 #define DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION BIT(0) 149 #define DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT BIT(1) 150 #define DS_OUTPUT_VALID_FLAG0_SPEAKER_VOLUME_ENABLE BIT(5) 151 #define DS_OUTPUT_VALID_FLAG0_MIC_VOLUME_ENABLE BIT(6) 152 #define DS_OUTPUT_VALID_FLAG0_AUDIO_CONTROL_ENABLE BIT(7) 153 #define DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE BIT(0) 154 #define DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE BIT(1) 155 #define DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE BIT(2) 156 #define DS_OUTPUT_VALID_FLAG1_RELEASE_LEDS BIT(3) 157 #define DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE BIT(4) 158 #define DS_OUTPUT_VALID_FLAG1_AUDIO_CONTROL2_ENABLE BIT(7) 159 #define DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE BIT(1) 160 #define DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2 BIT(2) 161 #define DS_OUTPUT_AUDIO_FLAGS_OUTPUT_PATH_SEL GENMASK(5, 4) 162 #define DS_OUTPUT_AUDIO_FLAGS2_SP_PREAMP_GAIN GENMASK(2, 0) 163 #define DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE BIT(4) 164 #define DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT BIT(1) 165 166 /* DualSense hardware limits */ 167 #define DS_ACC_RES_PER_G 8192 168 #define DS_ACC_RANGE (4 * DS_ACC_RES_PER_G) 169 #define DS_GYRO_RES_PER_DEG_S 1024 170 #define DS_GYRO_RANGE (2048 * DS_GYRO_RES_PER_DEG_S) 171 #define DS_TOUCHPAD_WIDTH 1920 172 #define DS_TOUCHPAD_HEIGHT 1080 173 174 struct dualsense { 175 struct ps_device base; 176 struct input_dev *gamepad; 177 struct input_dev *sensors; 178 struct input_dev *touchpad; 179 struct input_dev *jack; 180 181 /* Update version is used as a feature/capability version. */ 182 u16 update_version; 183 184 /* Calibration data for accelerometer and gyroscope. */ 185 struct ps_calibration_data accel_calib_data[3]; 186 struct ps_calibration_data gyro_calib_data[3]; 187 188 /* Timestamp for sensor data */ 189 bool sensor_timestamp_initialized; 190 u32 prev_sensor_timestamp; 191 u32 sensor_timestamp_us; 192 193 /* Compatible rumble state */ 194 bool use_vibration_v2; 195 bool update_rumble; 196 u8 motor_left; 197 u8 motor_right; 198 199 /* RGB lightbar */ 200 struct led_classdev_mc lightbar; 201 bool update_lightbar; 202 u8 lightbar_red; 203 u8 lightbar_green; 204 u8 lightbar_blue; 205 206 /* Audio Jack plugged state */ 207 u8 plugged_state; 208 u8 prev_plugged_state; 209 bool prev_plugged_state_valid; 210 211 /* Microphone */ 212 bool update_mic_mute; 213 bool mic_muted; 214 bool last_btn_mic_state; 215 216 /* Player leds */ 217 bool update_player_leds; 218 u8 player_leds_state; 219 struct led_classdev player_leds[5]; 220 221 struct work_struct output_worker; 222 bool output_worker_initialized; 223 void *output_report_dmabuf; 224 u8 output_seq; /* Sequence number for output report. */ 225 }; 226 227 struct dualsense_touch_point { 228 u8 contact; 229 u8 x_lo; 230 u8 x_hi:4, y_lo:4; 231 u8 y_hi; 232 } __packed; 233 static_assert(sizeof(struct dualsense_touch_point) == 4); 234 235 /* Main DualSense input report excluding any BT/USB specific headers. */ 236 struct dualsense_input_report { 237 u8 x, y; 238 u8 rx, ry; 239 u8 z, rz; 240 u8 seq_number; 241 u8 buttons[4]; 242 u8 reserved[4]; 243 244 /* Motion sensors */ 245 __le16 gyro[3]; /* x, y, z */ 246 __le16 accel[3]; /* x, y, z */ 247 __le32 sensor_timestamp; 248 u8 reserved2; 249 250 /* Touchpad */ 251 struct dualsense_touch_point points[2]; 252 253 u8 reserved3[12]; 254 u8 status[3]; 255 u8 reserved4[8]; 256 } __packed; 257 /* Common input report size shared equals the size of the USB report minus 1 byte for ReportID. */ 258 static_assert(sizeof(struct dualsense_input_report) == DS_INPUT_REPORT_USB_SIZE - 1); 259 260 /* Common data between DualSense BT/USB main output report. */ 261 struct dualsense_output_report_common { 262 u8 valid_flag0; 263 u8 valid_flag1; 264 265 /* For DualShock 4 compatibility mode. */ 266 u8 motor_right; 267 u8 motor_left; 268 269 /* Audio controls */ 270 u8 headphone_volume; /* 0x0 - 0x7f */ 271 u8 speaker_volume; /* 0x0 - 0xff */ 272 u8 mic_volume; /* 0x0 - 0x40 */ 273 u8 audio_control; 274 u8 mute_button_led; 275 276 u8 power_save_control; 277 u8 reserved2[27]; 278 u8 audio_control2; 279 280 /* LEDs and lightbar */ 281 u8 valid_flag2; 282 u8 reserved3[2]; 283 u8 lightbar_setup; 284 u8 led_brightness; 285 u8 player_leds; 286 u8 lightbar_red; 287 u8 lightbar_green; 288 u8 lightbar_blue; 289 } __packed; 290 static_assert(sizeof(struct dualsense_output_report_common) == 47); 291 292 struct dualsense_output_report_bt { 293 u8 report_id; /* 0x31 */ 294 u8 seq_tag; 295 u8 tag; 296 struct dualsense_output_report_common common; 297 u8 reserved[24]; 298 __le32 crc32; 299 } __packed; 300 static_assert(sizeof(struct dualsense_output_report_bt) == DS_OUTPUT_REPORT_BT_SIZE); 301 302 struct dualsense_output_report_usb { 303 u8 report_id; /* 0x02 */ 304 struct dualsense_output_report_common common; 305 u8 reserved[15]; 306 } __packed; 307 static_assert(sizeof(struct dualsense_output_report_usb) == DS_OUTPUT_REPORT_USB_SIZE); 308 309 /* 310 * The DualSense has a main output report used to control most features. It is 311 * largely the same between Bluetooth and USB except for different headers and CRC. 312 * This structure hide the differences between the two to simplify sending output reports. 313 */ 314 struct dualsense_output_report { 315 u8 *data; /* Start of data */ 316 u8 len; /* Size of output report */ 317 318 /* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */ 319 struct dualsense_output_report_bt *bt; 320 /* Points to USB data payload in case for a USB report else NULL. */ 321 struct dualsense_output_report_usb *usb; 322 /* Points to common section of report, so past any headers. */ 323 struct dualsense_output_report_common *common; 324 }; 325 326 #define DS4_INPUT_REPORT_USB 0x01 327 #define DS4_INPUT_REPORT_USB_SIZE 64 328 #define DS4_INPUT_REPORT_BT_MINIMAL 0x01 329 #define DS4_INPUT_REPORT_BT_MINIMAL_SIZE 10 330 #define DS4_INPUT_REPORT_BT 0x11 331 #define DS4_INPUT_REPORT_BT_SIZE 78 332 #define DS4_OUTPUT_REPORT_USB 0x05 333 #define DS4_OUTPUT_REPORT_USB_SIZE 32 334 #define DS4_OUTPUT_REPORT_BT 0x11 335 #define DS4_OUTPUT_REPORT_BT_SIZE 78 336 337 #define DS4_FEATURE_REPORT_CALIBRATION 0x02 338 #define DS4_FEATURE_REPORT_CALIBRATION_SIZE 37 339 #define DS4_FEATURE_REPORT_CALIBRATION_BT 0x05 340 #define DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE 41 341 #define DS4_FEATURE_REPORT_FIRMWARE_INFO 0xa3 342 #define DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE 49 343 #define DS4_FEATURE_REPORT_PAIRING_INFO 0x12 344 #define DS4_FEATURE_REPORT_PAIRING_INFO_SIZE 16 345 346 /* 347 * Status of a DualShock4 touch point contact. 348 * Contact IDs, with highest bit set are 'inactive' 349 * and any associated data is then invalid. 350 */ 351 #define DS4_TOUCH_POINT_INACTIVE BIT(7) 352 #define DS4_TOUCH_POINT_X(hi, lo) DS_TOUCH_POINT_X(hi, lo) 353 #define DS4_TOUCH_POINT_Y(hi, lo) DS_TOUCH_POINT_Y(hi, lo) 354 355 /* Status field of DualShock4 input report. */ 356 #define DS4_STATUS0_BATTERY_CAPACITY GENMASK(3, 0) 357 #define DS4_STATUS0_CABLE_STATE BIT(4) 358 /* Battery status within batery_status field. */ 359 #define DS4_BATTERY_STATUS_FULL 11 360 /* Status1 bit2 contains dongle connection state: 361 * 0 = connected 362 * 1 = disconnected 363 */ 364 #define DS4_STATUS1_DONGLE_STATE BIT(2) 365 366 /* The lower 6 bits of hw_control of the Bluetooth main output report 367 * control the interval at which Dualshock 4 reports data: 368 * 0x00 - 1ms 369 * 0x01 - 1ms 370 * 0x02 - 2ms 371 * 0x3E - 62ms 372 * 0x3F - disabled 373 */ 374 #define DS4_OUTPUT_HWCTL_BT_POLL_MASK 0x3F 375 /* Default to 4ms poll interval, which is same as USB (not adjustable). */ 376 #define DS4_BT_DEFAULT_POLL_INTERVAL_MS 4 377 #define DS4_OUTPUT_HWCTL_CRC32 0x40 378 #define DS4_OUTPUT_HWCTL_HID 0x80 379 380 /* Flags for DualShock4 output report. */ 381 #define DS4_OUTPUT_VALID_FLAG0_MOTOR 0x01 382 #define DS4_OUTPUT_VALID_FLAG0_LED 0x02 383 #define DS4_OUTPUT_VALID_FLAG0_LED_BLINK 0x04 384 385 /* DualShock4 hardware limits */ 386 #define DS4_ACC_RES_PER_G 8192 387 #define DS4_ACC_RANGE (4 * DS_ACC_RES_PER_G) 388 #define DS4_GYRO_RES_PER_DEG_S 1024 389 #define DS4_GYRO_RANGE (2048 * DS_GYRO_RES_PER_DEG_S) 390 #define DS4_LIGHTBAR_MAX_BLINK 255 /* 255 centiseconds */ 391 #define DS4_TOUCHPAD_WIDTH 1920 392 #define DS4_TOUCHPAD_HEIGHT 942 393 394 enum dualshock4_dongle_state { 395 DONGLE_DISCONNECTED, 396 DONGLE_CALIBRATING, 397 DONGLE_CONNECTED, 398 DONGLE_DISABLED 399 }; 400 401 struct dualshock4 { 402 struct ps_device base; 403 struct input_dev *gamepad; 404 struct input_dev *sensors; 405 struct input_dev *touchpad; 406 407 /* Calibration data for accelerometer and gyroscope. */ 408 struct ps_calibration_data accel_calib_data[3]; 409 struct ps_calibration_data gyro_calib_data[3]; 410 411 /* Only used on dongle to track state transitions. */ 412 enum dualshock4_dongle_state dongle_state; 413 /* Used during calibration. */ 414 struct work_struct dongle_hotplug_worker; 415 416 /* Timestamp for sensor data */ 417 bool sensor_timestamp_initialized; 418 u32 prev_sensor_timestamp; 419 u32 sensor_timestamp_us; 420 421 /* Bluetooth poll interval */ 422 bool update_bt_poll_interval; 423 u8 bt_poll_interval; 424 425 bool update_rumble; 426 u8 motor_left; 427 u8 motor_right; 428 429 /* Lightbar leds */ 430 bool update_lightbar; 431 bool update_lightbar_blink; 432 bool lightbar_enabled; /* For use by global LED control. */ 433 u8 lightbar_red; 434 u8 lightbar_green; 435 u8 lightbar_blue; 436 u8 lightbar_blink_on; /* In increments of 10ms. */ 437 u8 lightbar_blink_off; /* In increments of 10ms. */ 438 struct led_classdev lightbar_leds[4]; 439 440 struct work_struct output_worker; 441 bool output_worker_initialized; 442 void *output_report_dmabuf; 443 }; 444 445 struct dualshock4_touch_point { 446 u8 contact; 447 u8 x_lo; 448 u8 x_hi:4, y_lo:4; 449 u8 y_hi; 450 } __packed; 451 static_assert(sizeof(struct dualshock4_touch_point) == 4); 452 453 struct dualshock4_touch_report { 454 u8 timestamp; 455 struct dualshock4_touch_point points[2]; 456 } __packed; 457 static_assert(sizeof(struct dualshock4_touch_report) == 9); 458 459 /* Main DualShock4 input report excluding any BT/USB specific headers. */ 460 struct dualshock4_input_report_common { 461 u8 x, y; 462 u8 rx, ry; 463 u8 buttons[3]; 464 u8 z, rz; 465 466 /* Motion sensors */ 467 __le16 sensor_timestamp; 468 u8 sensor_temperature; 469 __le16 gyro[3]; /* x, y, z */ 470 __le16 accel[3]; /* x, y, z */ 471 u8 reserved2[5]; 472 473 u8 status[2]; 474 u8 reserved3; 475 } __packed; 476 static_assert(sizeof(struct dualshock4_input_report_common) == 32); 477 478 struct dualshock4_input_report_usb { 479 u8 report_id; /* 0x01 */ 480 struct dualshock4_input_report_common common; 481 u8 num_touch_reports; 482 struct dualshock4_touch_report touch_reports[3]; 483 u8 reserved[3]; 484 } __packed; 485 static_assert(sizeof(struct dualshock4_input_report_usb) == DS4_INPUT_REPORT_USB_SIZE); 486 487 struct dualshock4_input_report_bt { 488 u8 report_id; /* 0x11 */ 489 u8 reserved[2]; 490 struct dualshock4_input_report_common common; 491 u8 num_touch_reports; 492 struct dualshock4_touch_report touch_reports[4]; /* BT has 4 compared to 3 for USB */ 493 u8 reserved2[2]; 494 __le32 crc32; 495 } __packed; 496 static_assert(sizeof(struct dualshock4_input_report_bt) == DS4_INPUT_REPORT_BT_SIZE); 497 498 /* Common data between Bluetooth and USB DualShock4 output reports. */ 499 struct dualshock4_output_report_common { 500 u8 valid_flag0; 501 u8 valid_flag1; 502 503 u8 reserved; 504 505 u8 motor_right; 506 u8 motor_left; 507 508 u8 lightbar_red; 509 u8 lightbar_green; 510 u8 lightbar_blue; 511 u8 lightbar_blink_on; 512 u8 lightbar_blink_off; 513 } __packed; 514 515 struct dualshock4_output_report_usb { 516 u8 report_id; /* 0x5 */ 517 struct dualshock4_output_report_common common; 518 u8 reserved[21]; 519 } __packed; 520 static_assert(sizeof(struct dualshock4_output_report_usb) == DS4_OUTPUT_REPORT_USB_SIZE); 521 522 struct dualshock4_output_report_bt { 523 u8 report_id; /* 0x11 */ 524 u8 hw_control; 525 u8 audio_control; 526 struct dualshock4_output_report_common common; 527 u8 reserved[61]; 528 __le32 crc32; 529 } __packed; 530 static_assert(sizeof(struct dualshock4_output_report_bt) == DS4_OUTPUT_REPORT_BT_SIZE); 531 532 /* 533 * The DualShock4 has a main output report used to control most features. It is 534 * largely the same between Bluetooth and USB except for different headers and CRC. 535 * This structure hide the differences between the two to simplify sending output reports. 536 */ 537 struct dualshock4_output_report { 538 u8 *data; /* Start of data */ 539 u8 len; /* Size of output report */ 540 541 /* Points to Bluetooth data payload in case for a Bluetooth report else NULL. */ 542 struct dualshock4_output_report_bt *bt; 543 /* Points to USB data payload in case for a USB report else NULL. */ 544 struct dualshock4_output_report_usb *usb; 545 /* Points to common section of report, so past any headers. */ 546 struct dualshock4_output_report_common *common; 547 }; 548 549 /* 550 * Common gamepad buttons across DualShock 3 / 4 and DualSense. 551 * Note: for device with a touchpad, touchpad button is not included 552 * as it will be part of the touchpad device. 553 */ 554 static const int ps_gamepad_buttons[] = { 555 BTN_WEST, /* Square */ 556 BTN_NORTH, /* Triangle */ 557 BTN_EAST, /* Circle */ 558 BTN_SOUTH, /* Cross */ 559 BTN_TL, /* L1 */ 560 BTN_TR, /* R1 */ 561 BTN_TL2, /* L2 */ 562 BTN_TR2, /* R2 */ 563 BTN_SELECT, /* Create (PS5) / Share (PS4) */ 564 BTN_START, /* Option */ 565 BTN_THUMBL, /* L3 */ 566 BTN_THUMBR, /* R3 */ 567 BTN_MODE, /* PS Home */ 568 }; 569 570 static const struct {int x; int y; } ps_gamepad_hat_mapping[] = { 571 {0, -1}, {1, -1}, {1, 0}, {1, 1}, {0, 1}, {-1, 1}, {-1, 0}, {-1, -1}, 572 {0, 0}, 573 }; 574 575 static int dualshock4_get_calibration_data(struct dualshock4 *ds4); 576 static inline void dualsense_schedule_work(struct dualsense *ds); 577 static inline void dualshock4_schedule_work(struct dualshock4 *ds4); 578 static void dualsense_set_lightbar(struct dualsense *ds, u8 red, u8 green, u8 blue); 579 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4); 580 581 /* 582 * Add a new ps_device to ps_devices if it doesn't exist. 583 * Return error on duplicate device, which can happen if the same 584 * device is connected using both Bluetooth and USB. 585 */ 586 static int ps_devices_list_add(struct ps_device *dev) 587 { 588 struct ps_device *entry; 589 590 guard(mutex)(&ps_devices_lock); 591 592 list_for_each_entry(entry, &ps_devices_list, list) { 593 if (!memcmp(entry->mac_address, dev->mac_address, sizeof(dev->mac_address))) { 594 hid_err(dev->hdev, "Duplicate device found for MAC address %pMR.\n", 595 dev->mac_address); 596 return -EEXIST; 597 } 598 } 599 600 list_add_tail(&dev->list, &ps_devices_list); 601 return 0; 602 } 603 604 static int ps_devices_list_remove(struct ps_device *dev) 605 { 606 guard(mutex)(&ps_devices_lock); 607 608 list_del(&dev->list); 609 return 0; 610 } 611 612 static int ps_device_set_player_id(struct ps_device *dev) 613 { 614 int ret = ida_alloc(&ps_player_id_allocator, GFP_KERNEL); 615 616 if (ret < 0) 617 return ret; 618 619 dev->player_id = ret; 620 return 0; 621 } 622 623 static void ps_device_release_player_id(struct ps_device *dev) 624 { 625 ida_free(&ps_player_id_allocator, dev->player_id); 626 627 dev->player_id = U32_MAX; 628 } 629 630 static struct input_dev *ps_allocate_input_dev(struct hid_device *hdev, 631 const char *name_suffix) 632 { 633 struct input_dev *input_dev; 634 635 input_dev = devm_input_allocate_device(&hdev->dev); 636 if (!input_dev) 637 return ERR_PTR(-ENOMEM); 638 639 input_dev->id.bustype = hdev->bus; 640 input_dev->id.vendor = hdev->vendor; 641 input_dev->id.product = hdev->product; 642 input_dev->id.version = hdev->version; 643 input_dev->uniq = hdev->uniq; 644 645 if (name_suffix) { 646 input_dev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s %s", 647 hdev->name, name_suffix); 648 if (!input_dev->name) 649 return ERR_PTR(-ENOMEM); 650 } else { 651 input_dev->name = hdev->name; 652 } 653 654 input_set_drvdata(input_dev, hdev); 655 656 return input_dev; 657 } 658 659 static enum power_supply_property ps_power_supply_props[] = { 660 POWER_SUPPLY_PROP_STATUS, 661 POWER_SUPPLY_PROP_PRESENT, 662 POWER_SUPPLY_PROP_CAPACITY, 663 POWER_SUPPLY_PROP_SCOPE, 664 }; 665 666 static int ps_battery_get_property(struct power_supply *psy, 667 enum power_supply_property psp, 668 union power_supply_propval *val) 669 { 670 struct ps_device *dev = power_supply_get_drvdata(psy); 671 u8 battery_capacity; 672 int battery_status; 673 int ret = 0; 674 675 scoped_guard(spinlock_irqsave, &dev->lock) { 676 battery_capacity = dev->battery_capacity; 677 battery_status = dev->battery_status; 678 } 679 680 switch (psp) { 681 case POWER_SUPPLY_PROP_STATUS: 682 val->intval = battery_status; 683 break; 684 case POWER_SUPPLY_PROP_PRESENT: 685 val->intval = 1; 686 break; 687 case POWER_SUPPLY_PROP_CAPACITY: 688 val->intval = battery_capacity; 689 break; 690 case POWER_SUPPLY_PROP_SCOPE: 691 val->intval = POWER_SUPPLY_SCOPE_DEVICE; 692 break; 693 default: 694 ret = -EINVAL; 695 break; 696 } 697 698 return ret; 699 } 700 701 static int ps_device_register_battery(struct ps_device *dev) 702 { 703 struct power_supply *battery; 704 struct power_supply_config battery_cfg = { .drv_data = dev }; 705 int ret; 706 707 dev->battery_desc.type = POWER_SUPPLY_TYPE_BATTERY; 708 dev->battery_desc.properties = ps_power_supply_props; 709 dev->battery_desc.num_properties = ARRAY_SIZE(ps_power_supply_props); 710 dev->battery_desc.get_property = ps_battery_get_property; 711 dev->battery_desc.name = devm_kasprintf(&dev->hdev->dev, GFP_KERNEL, 712 "ps-controller-battery-%pMR", dev->mac_address); 713 if (!dev->battery_desc.name) 714 return -ENOMEM; 715 716 battery = devm_power_supply_register(&dev->hdev->dev, &dev->battery_desc, &battery_cfg); 717 if (IS_ERR(battery)) { 718 ret = PTR_ERR(battery); 719 hid_err(dev->hdev, "Unable to register battery device: %d\n", ret); 720 return ret; 721 } 722 dev->battery = battery; 723 724 ret = power_supply_powers(dev->battery, &dev->hdev->dev); 725 if (ret) { 726 hid_err(dev->hdev, "Unable to activate battery device: %d\n", ret); 727 return ret; 728 } 729 730 return 0; 731 } 732 733 /* Compute crc32 of HID data and compare against expected CRC. */ 734 static bool ps_check_crc32(u8 seed, u8 *data, size_t len, u32 report_crc) 735 { 736 u32 crc; 737 738 crc = crc32_le(0xFFFFFFFF, &seed, 1); 739 crc = ~crc32_le(crc, data, len); 740 741 return crc == report_crc; 742 } 743 744 static struct input_dev * 745 ps_gamepad_create(struct hid_device *hdev, 746 int (*play_effect)(struct input_dev *, void *, struct ff_effect *)) 747 { 748 struct input_dev *gamepad; 749 unsigned int i; 750 int ret; 751 752 gamepad = ps_allocate_input_dev(hdev, NULL); 753 if (IS_ERR(gamepad)) 754 return ERR_CAST(gamepad); 755 756 /* Set initial resting state for joysticks to 128 (center) */ 757 input_set_abs_params(gamepad, ABS_X, 0, 255, 0, 0); 758 gamepad->absinfo[ABS_X].value = 128; 759 input_set_abs_params(gamepad, ABS_Y, 0, 255, 0, 0); 760 gamepad->absinfo[ABS_Y].value = 128; 761 input_set_abs_params(gamepad, ABS_Z, 0, 255, 0, 0); 762 input_set_abs_params(gamepad, ABS_RX, 0, 255, 0, 0); 763 gamepad->absinfo[ABS_RX].value = 128; 764 input_set_abs_params(gamepad, ABS_RY, 0, 255, 0, 0); 765 gamepad->absinfo[ABS_RY].value = 128; 766 input_set_abs_params(gamepad, ABS_RZ, 0, 255, 0, 0); 767 768 input_set_abs_params(gamepad, ABS_HAT0X, -1, 1, 0, 0); 769 input_set_abs_params(gamepad, ABS_HAT0Y, -1, 1, 0, 0); 770 771 for (i = 0; i < ARRAY_SIZE(ps_gamepad_buttons); i++) 772 input_set_capability(gamepad, EV_KEY, ps_gamepad_buttons[i]); 773 774 #if IS_ENABLED(CONFIG_PLAYSTATION_FF) 775 if (play_effect) { 776 input_set_capability(gamepad, EV_FF, FF_RUMBLE); 777 ret = input_ff_create_memless(gamepad, NULL, play_effect); 778 if (ret) 779 return ERR_PTR(ret); 780 } 781 #endif 782 783 ret = input_register_device(gamepad); 784 if (ret) 785 return ERR_PTR(ret); 786 787 return gamepad; 788 } 789 790 static int ps_get_report(struct hid_device *hdev, u8 report_id, u8 *buf, 791 size_t size, bool check_crc) 792 { 793 int ret; 794 795 ret = hid_hw_raw_request(hdev, report_id, buf, size, HID_FEATURE_REPORT, 796 HID_REQ_GET_REPORT); 797 if (ret < 0) { 798 hid_err(hdev, "Failed to retrieve feature with reportID %d: %d\n", report_id, ret); 799 return ret; 800 } 801 802 if (ret != size) { 803 hid_err(hdev, "Invalid byte count transferred, expected %zu got %d\n", size, ret); 804 return -EINVAL; 805 } 806 807 if (buf[0] != report_id) { 808 hid_err(hdev, "Invalid reportID received, expected %d got %d\n", report_id, buf[0]); 809 return -EINVAL; 810 } 811 812 if (hdev->bus == BUS_BLUETOOTH && check_crc) { 813 /* Last 4 bytes contains crc32. */ 814 u8 crc_offset = size - 4; 815 u32 report_crc = get_unaligned_le32(&buf[crc_offset]); 816 817 if (!ps_check_crc32(PS_FEATURE_CRC32_SEED, buf, crc_offset, report_crc)) { 818 hid_err(hdev, "CRC check failed for reportID=%d\n", report_id); 819 return -EILSEQ; 820 } 821 } 822 823 return 0; 824 } 825 826 static int ps_led_register(struct ps_device *ps_dev, struct led_classdev *led, 827 const struct ps_led_info *led_info) 828 { 829 int ret; 830 831 if (led_info->name) { 832 led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL, "%s:%s:%s", 833 ps_dev->input_dev_name, led_info->color, 834 led_info->name); 835 } else { 836 /* Backwards compatible mode for hid-sony, but not compliant 837 * with LED class spec. 838 */ 839 led->name = devm_kasprintf(&ps_dev->hdev->dev, GFP_KERNEL, "%s:%s", 840 ps_dev->input_dev_name, led_info->color); 841 } 842 843 if (!led->name) 844 return -ENOMEM; 845 846 led->brightness = 0; 847 led->max_brightness = led_info->max_brightness; 848 led->flags = LED_CORE_SUSPENDRESUME; 849 led->brightness_get = led_info->brightness_get; 850 led->brightness_set_blocking = led_info->brightness_set; 851 led->blink_set = led_info->blink_set; 852 853 ret = devm_led_classdev_register(&ps_dev->hdev->dev, led); 854 if (ret) { 855 hid_err(ps_dev->hdev, "Failed to register LED %s: %d\n", led_info->name, ret); 856 return ret; 857 } 858 859 return 0; 860 } 861 862 /* Register a DualSense/DualShock4 RGB lightbar represented by a multicolor LED. */ 863 static int ps_lightbar_register(struct ps_device *ps_dev, struct led_classdev_mc *lightbar_mc_dev, 864 int (*brightness_set)(struct led_classdev *, enum led_brightness)) 865 { 866 struct hid_device *hdev = ps_dev->hdev; 867 struct mc_subled *mc_led_info; 868 struct led_classdev *led_cdev; 869 int ret; 870 871 mc_led_info = devm_kmalloc_array(&hdev->dev, 3, sizeof(*mc_led_info), 872 GFP_KERNEL | __GFP_ZERO); 873 if (!mc_led_info) 874 return -ENOMEM; 875 876 mc_led_info[0].color_index = LED_COLOR_ID_RED; 877 mc_led_info[1].color_index = LED_COLOR_ID_GREEN; 878 mc_led_info[2].color_index = LED_COLOR_ID_BLUE; 879 880 lightbar_mc_dev->subled_info = mc_led_info; 881 lightbar_mc_dev->num_colors = 3; 882 883 led_cdev = &lightbar_mc_dev->led_cdev; 884 led_cdev->name = devm_kasprintf(&hdev->dev, GFP_KERNEL, "%s:rgb:indicator", 885 ps_dev->input_dev_name); 886 if (!led_cdev->name) 887 return -ENOMEM; 888 led_cdev->brightness = 255; 889 led_cdev->max_brightness = 255; 890 led_cdev->brightness_set_blocking = brightness_set; 891 892 ret = devm_led_classdev_multicolor_register(&hdev->dev, lightbar_mc_dev); 893 if (ret < 0) { 894 hid_err(hdev, "Cannot register multicolor LED device\n"); 895 return ret; 896 } 897 898 return 0; 899 } 900 901 static struct input_dev *ps_sensors_create(struct hid_device *hdev, int accel_range, 902 int accel_res, int gyro_range, int gyro_res) 903 { 904 struct input_dev *sensors; 905 int ret; 906 907 sensors = ps_allocate_input_dev(hdev, "Motion Sensors"); 908 if (IS_ERR(sensors)) 909 return ERR_CAST(sensors); 910 911 __set_bit(INPUT_PROP_ACCELEROMETER, sensors->propbit); 912 __set_bit(EV_MSC, sensors->evbit); 913 __set_bit(MSC_TIMESTAMP, sensors->mscbit); 914 915 /* Accelerometer */ 916 input_set_abs_params(sensors, ABS_X, -accel_range, accel_range, 16, 0); 917 input_set_abs_params(sensors, ABS_Y, -accel_range, accel_range, 16, 0); 918 input_set_abs_params(sensors, ABS_Z, -accel_range, accel_range, 16, 0); 919 input_abs_set_res(sensors, ABS_X, accel_res); 920 input_abs_set_res(sensors, ABS_Y, accel_res); 921 input_abs_set_res(sensors, ABS_Z, accel_res); 922 923 /* Gyroscope */ 924 input_set_abs_params(sensors, ABS_RX, -gyro_range, gyro_range, 16, 0); 925 input_set_abs_params(sensors, ABS_RY, -gyro_range, gyro_range, 16, 0); 926 input_set_abs_params(sensors, ABS_RZ, -gyro_range, gyro_range, 16, 0); 927 input_abs_set_res(sensors, ABS_RX, gyro_res); 928 input_abs_set_res(sensors, ABS_RY, gyro_res); 929 input_abs_set_res(sensors, ABS_RZ, gyro_res); 930 931 ret = input_register_device(sensors); 932 if (ret) 933 return ERR_PTR(ret); 934 935 return sensors; 936 } 937 938 static struct input_dev *ps_touchpad_create(struct hid_device *hdev, int width, 939 int height, unsigned int num_contacts) 940 { 941 struct input_dev *touchpad; 942 int ret; 943 944 touchpad = ps_allocate_input_dev(hdev, "Touchpad"); 945 if (IS_ERR(touchpad)) 946 return ERR_CAST(touchpad); 947 948 /* Map button underneath touchpad to BTN_LEFT. */ 949 input_set_capability(touchpad, EV_KEY, BTN_LEFT); 950 __set_bit(INPUT_PROP_BUTTONPAD, touchpad->propbit); 951 952 input_set_abs_params(touchpad, ABS_MT_POSITION_X, 0, width - 1, 0, 0); 953 input_set_abs_params(touchpad, ABS_MT_POSITION_Y, 0, height - 1, 0, 0); 954 955 ret = input_mt_init_slots(touchpad, num_contacts, INPUT_MT_POINTER); 956 if (ret) 957 return ERR_PTR(ret); 958 959 ret = input_register_device(touchpad); 960 if (ret) 961 return ERR_PTR(ret); 962 963 return touchpad; 964 } 965 966 static struct input_dev *ps_headset_jack_create(struct hid_device *hdev) 967 { 968 struct input_dev *jack; 969 int ret; 970 971 jack = ps_allocate_input_dev(hdev, "Headset Jack"); 972 if (IS_ERR(jack)) 973 return ERR_CAST(jack); 974 975 input_set_capability(jack, EV_SW, SW_HEADPHONE_INSERT); 976 input_set_capability(jack, EV_SW, SW_MICROPHONE_INSERT); 977 978 ret = input_register_device(jack); 979 if (ret) 980 return ERR_PTR(ret); 981 982 return jack; 983 } 984 985 static ssize_t firmware_version_show(struct device *dev, 986 struct device_attribute *attr, char *buf) 987 { 988 struct hid_device *hdev = to_hid_device(dev); 989 struct ps_device *ps_dev = hid_get_drvdata(hdev); 990 991 return sysfs_emit(buf, "0x%08x\n", ps_dev->fw_version); 992 } 993 994 static DEVICE_ATTR_RO(firmware_version); 995 996 static ssize_t hardware_version_show(struct device *dev, 997 struct device_attribute *attr, char *buf) 998 { 999 struct hid_device *hdev = to_hid_device(dev); 1000 struct ps_device *ps_dev = hid_get_drvdata(hdev); 1001 1002 return sysfs_emit(buf, "0x%08x\n", ps_dev->hw_version); 1003 } 1004 1005 static DEVICE_ATTR_RO(hardware_version); 1006 1007 static struct attribute *ps_device_attrs[] = { 1008 &dev_attr_firmware_version.attr, 1009 &dev_attr_hardware_version.attr, 1010 NULL 1011 }; 1012 ATTRIBUTE_GROUPS(ps_device); 1013 1014 static int dualsense_get_calibration_data(struct dualsense *ds) 1015 { 1016 struct hid_device *hdev = ds->base.hdev; 1017 short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus; 1018 short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus; 1019 short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus; 1020 short gyro_speed_plus, gyro_speed_minus; 1021 short acc_x_plus, acc_x_minus; 1022 short acc_y_plus, acc_y_minus; 1023 short acc_z_plus, acc_z_minus; 1024 int speed_2x; 1025 int range_2g; 1026 int ret = 0; 1027 int i; 1028 u8 *buf; 1029 1030 buf = kzalloc(DS_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL); 1031 if (!buf) 1032 return -ENOMEM; 1033 1034 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_CALIBRATION, buf, 1035 DS_FEATURE_REPORT_CALIBRATION_SIZE, true); 1036 if (ret) { 1037 hid_err(ds->base.hdev, "Failed to retrieve DualSense calibration info: %d\n", ret); 1038 goto err_free; 1039 } 1040 1041 gyro_pitch_bias = get_unaligned_le16(&buf[1]); 1042 gyro_yaw_bias = get_unaligned_le16(&buf[3]); 1043 gyro_roll_bias = get_unaligned_le16(&buf[5]); 1044 gyro_pitch_plus = get_unaligned_le16(&buf[7]); 1045 gyro_pitch_minus = get_unaligned_le16(&buf[9]); 1046 gyro_yaw_plus = get_unaligned_le16(&buf[11]); 1047 gyro_yaw_minus = get_unaligned_le16(&buf[13]); 1048 gyro_roll_plus = get_unaligned_le16(&buf[15]); 1049 gyro_roll_minus = get_unaligned_le16(&buf[17]); 1050 gyro_speed_plus = get_unaligned_le16(&buf[19]); 1051 gyro_speed_minus = get_unaligned_le16(&buf[21]); 1052 acc_x_plus = get_unaligned_le16(&buf[23]); 1053 acc_x_minus = get_unaligned_le16(&buf[25]); 1054 acc_y_plus = get_unaligned_le16(&buf[27]); 1055 acc_y_minus = get_unaligned_le16(&buf[29]); 1056 acc_z_plus = get_unaligned_le16(&buf[31]); 1057 acc_z_minus = get_unaligned_le16(&buf[33]); 1058 1059 /* 1060 * Set gyroscope calibration and normalization parameters. 1061 * Data values will be normalized to 1/DS_GYRO_RES_PER_DEG_S degree/s. 1062 */ 1063 speed_2x = (gyro_speed_plus + gyro_speed_minus); 1064 ds->gyro_calib_data[0].abs_code = ABS_RX; 1065 ds->gyro_calib_data[0].bias = 0; 1066 ds->gyro_calib_data[0].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S; 1067 ds->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) + 1068 abs(gyro_pitch_minus - gyro_pitch_bias); 1069 1070 ds->gyro_calib_data[1].abs_code = ABS_RY; 1071 ds->gyro_calib_data[1].bias = 0; 1072 ds->gyro_calib_data[1].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S; 1073 ds->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) + 1074 abs(gyro_yaw_minus - gyro_yaw_bias); 1075 1076 ds->gyro_calib_data[2].abs_code = ABS_RZ; 1077 ds->gyro_calib_data[2].bias = 0; 1078 ds->gyro_calib_data[2].sens_numer = speed_2x * DS_GYRO_RES_PER_DEG_S; 1079 ds->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) + 1080 abs(gyro_roll_minus - gyro_roll_bias); 1081 1082 /* 1083 * Sanity check gyro calibration data. This is needed to prevent crashes 1084 * during report handling of virtual, clone or broken devices not implementing 1085 * calibration data properly. 1086 */ 1087 for (i = 0; i < ARRAY_SIZE(ds->gyro_calib_data); i++) { 1088 if (ds->gyro_calib_data[i].sens_denom == 0) { 1089 hid_warn(hdev, 1090 "Invalid gyro calibration data for axis (%d), disabling calibration.", 1091 ds->gyro_calib_data[i].abs_code); 1092 ds->gyro_calib_data[i].bias = 0; 1093 ds->gyro_calib_data[i].sens_numer = DS_GYRO_RANGE; 1094 ds->gyro_calib_data[i].sens_denom = S16_MAX; 1095 } 1096 } 1097 1098 /* 1099 * Set accelerometer calibration and normalization parameters. 1100 * Data values will be normalized to 1/DS_ACC_RES_PER_G g. 1101 */ 1102 range_2g = acc_x_plus - acc_x_minus; 1103 ds->accel_calib_data[0].abs_code = ABS_X; 1104 ds->accel_calib_data[0].bias = acc_x_plus - range_2g / 2; 1105 ds->accel_calib_data[0].sens_numer = 2 * DS_ACC_RES_PER_G; 1106 ds->accel_calib_data[0].sens_denom = range_2g; 1107 1108 range_2g = acc_y_plus - acc_y_minus; 1109 ds->accel_calib_data[1].abs_code = ABS_Y; 1110 ds->accel_calib_data[1].bias = acc_y_plus - range_2g / 2; 1111 ds->accel_calib_data[1].sens_numer = 2 * DS_ACC_RES_PER_G; 1112 ds->accel_calib_data[1].sens_denom = range_2g; 1113 1114 range_2g = acc_z_plus - acc_z_minus; 1115 ds->accel_calib_data[2].abs_code = ABS_Z; 1116 ds->accel_calib_data[2].bias = acc_z_plus - range_2g / 2; 1117 ds->accel_calib_data[2].sens_numer = 2 * DS_ACC_RES_PER_G; 1118 ds->accel_calib_data[2].sens_denom = range_2g; 1119 1120 /* 1121 * Sanity check accelerometer calibration data. This is needed to prevent crashes 1122 * during report handling of virtual, clone or broken devices not implementing calibration 1123 * data properly. 1124 */ 1125 for (i = 0; i < ARRAY_SIZE(ds->accel_calib_data); i++) { 1126 if (ds->accel_calib_data[i].sens_denom == 0) { 1127 hid_warn(hdev, 1128 "Invalid accelerometer calibration data for axis (%d), disabling calibration.", 1129 ds->accel_calib_data[i].abs_code); 1130 ds->accel_calib_data[i].bias = 0; 1131 ds->accel_calib_data[i].sens_numer = DS_ACC_RANGE; 1132 ds->accel_calib_data[i].sens_denom = S16_MAX; 1133 } 1134 } 1135 1136 err_free: 1137 kfree(buf); 1138 return ret; 1139 } 1140 1141 static int dualsense_get_firmware_info(struct dualsense *ds) 1142 { 1143 u8 *buf; 1144 int ret; 1145 1146 buf = kzalloc(DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL); 1147 if (!buf) 1148 return -ENOMEM; 1149 1150 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_FIRMWARE_INFO, buf, 1151 DS_FEATURE_REPORT_FIRMWARE_INFO_SIZE, true); 1152 if (ret) { 1153 hid_err(ds->base.hdev, "Failed to retrieve DualSense firmware info: %d\n", ret); 1154 goto err_free; 1155 } 1156 1157 ds->base.hw_version = get_unaligned_le32(&buf[24]); 1158 ds->base.fw_version = get_unaligned_le32(&buf[28]); 1159 1160 /* Update version is some kind of feature version. It is distinct from 1161 * the firmware version as there can be many different variations of a 1162 * controller over time with the same physical shell, but with different 1163 * PCBs and other internal changes. The update version (internal name) is 1164 * used as a means to detect what features are available and change behavior. 1165 * Note: the version is different between DualSense and DualSense Edge. 1166 */ 1167 ds->update_version = get_unaligned_le16(&buf[44]); 1168 1169 err_free: 1170 kfree(buf); 1171 return ret; 1172 } 1173 1174 static int dualsense_get_mac_address(struct dualsense *ds) 1175 { 1176 u8 *buf; 1177 int ret = 0; 1178 1179 buf = kzalloc(DS_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL); 1180 if (!buf) 1181 return -ENOMEM; 1182 1183 ret = ps_get_report(ds->base.hdev, DS_FEATURE_REPORT_PAIRING_INFO, buf, 1184 DS_FEATURE_REPORT_PAIRING_INFO_SIZE, true); 1185 if (ret) { 1186 hid_err(ds->base.hdev, "Failed to retrieve DualSense pairing info: %d\n", ret); 1187 goto err_free; 1188 } 1189 1190 memcpy(ds->base.mac_address, &buf[1], sizeof(ds->base.mac_address)); 1191 1192 err_free: 1193 kfree(buf); 1194 return ret; 1195 } 1196 1197 static int dualsense_lightbar_set_brightness(struct led_classdev *cdev, 1198 enum led_brightness brightness) 1199 { 1200 struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev); 1201 struct dualsense *ds = container_of(mc_cdev, struct dualsense, lightbar); 1202 u8 red, green, blue; 1203 1204 led_mc_calc_color_components(mc_cdev, brightness); 1205 red = mc_cdev->subled_info[0].brightness; 1206 green = mc_cdev->subled_info[1].brightness; 1207 blue = mc_cdev->subled_info[2].brightness; 1208 1209 dualsense_set_lightbar(ds, red, green, blue); 1210 return 0; 1211 } 1212 1213 static enum led_brightness dualsense_player_led_get_brightness(struct led_classdev *led) 1214 { 1215 struct hid_device *hdev = to_hid_device(led->dev->parent); 1216 struct dualsense *ds = hid_get_drvdata(hdev); 1217 1218 return !!(ds->player_leds_state & BIT(led - ds->player_leds)); 1219 } 1220 1221 static int dualsense_player_led_set_brightness(struct led_classdev *led, enum led_brightness value) 1222 { 1223 struct hid_device *hdev = to_hid_device(led->dev->parent); 1224 struct dualsense *ds = hid_get_drvdata(hdev); 1225 unsigned int led_index; 1226 1227 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1228 led_index = led - ds->player_leds; 1229 if (value == LED_OFF) 1230 ds->player_leds_state &= ~BIT(led_index); 1231 else 1232 ds->player_leds_state |= BIT(led_index); 1233 1234 ds->update_player_leds = true; 1235 } 1236 1237 dualsense_schedule_work(ds); 1238 1239 return 0; 1240 } 1241 1242 static void dualsense_init_output_report(struct dualsense *ds, 1243 struct dualsense_output_report *rp, void *buf) 1244 { 1245 struct hid_device *hdev = ds->base.hdev; 1246 1247 if (hdev->bus == BUS_BLUETOOTH) { 1248 struct dualsense_output_report_bt *bt = buf; 1249 1250 memset(bt, 0, sizeof(*bt)); 1251 bt->report_id = DS_OUTPUT_REPORT_BT; 1252 bt->tag = DS_OUTPUT_TAG; /* Tag must be set. Exact meaning is unclear. */ 1253 1254 /* 1255 * Highest 4-bit is a sequence number, which needs to be increased 1256 * every report. Lowest 4-bit is tag and can be zero for now. 1257 */ 1258 bt->seq_tag = FIELD_PREP(DS_OUTPUT_SEQ_NO, ds->output_seq) | 1259 FIELD_PREP(DS_OUTPUT_SEQ_TAG, 0x0); 1260 if (++ds->output_seq == 16) 1261 ds->output_seq = 0; 1262 1263 rp->data = buf; 1264 rp->len = sizeof(*bt); 1265 rp->bt = bt; 1266 rp->usb = NULL; 1267 rp->common = &bt->common; 1268 } else { /* USB */ 1269 struct dualsense_output_report_usb *usb = buf; 1270 1271 memset(usb, 0, sizeof(*usb)); 1272 usb->report_id = DS_OUTPUT_REPORT_USB; 1273 1274 rp->data = buf; 1275 rp->len = sizeof(*usb); 1276 rp->bt = NULL; 1277 rp->usb = usb; 1278 rp->common = &usb->common; 1279 } 1280 } 1281 1282 static inline void dualsense_schedule_work(struct dualsense *ds) 1283 { 1284 /* Using scoped_guard() instead of guard() to make sparse happy */ 1285 scoped_guard(spinlock_irqsave, &ds->base.lock) 1286 if (ds->output_worker_initialized) 1287 schedule_work(&ds->output_worker); 1288 } 1289 1290 /* 1291 * Helper function to send DualSense output reports. Applies a CRC at the end of a report 1292 * for Bluetooth reports. 1293 */ 1294 static void dualsense_send_output_report(struct dualsense *ds, 1295 struct dualsense_output_report *report) 1296 { 1297 struct hid_device *hdev = ds->base.hdev; 1298 1299 /* Bluetooth packets need to be signed with a CRC in the last 4 bytes. */ 1300 if (report->bt) { 1301 u32 crc; 1302 u8 seed = PS_OUTPUT_CRC32_SEED; 1303 1304 crc = crc32_le(0xFFFFFFFF, &seed, 1); 1305 crc = ~crc32_le(crc, report->data, report->len - 4); 1306 1307 report->bt->crc32 = cpu_to_le32(crc); 1308 } 1309 1310 hid_hw_output_report(hdev, report->data, report->len); 1311 } 1312 1313 static void dualsense_output_worker(struct work_struct *work) 1314 { 1315 struct dualsense *ds = container_of(work, struct dualsense, output_worker); 1316 struct dualsense_output_report report; 1317 struct dualsense_output_report_common *common; 1318 1319 dualsense_init_output_report(ds, &report, ds->output_report_dmabuf); 1320 common = report.common; 1321 1322 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1323 if (ds->update_rumble) { 1324 /* Select classic rumble style haptics and enable it. */ 1325 common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_HAPTICS_SELECT; 1326 if (ds->use_vibration_v2) 1327 common->valid_flag2 |= DS_OUTPUT_VALID_FLAG2_COMPATIBLE_VIBRATION2; 1328 else 1329 common->valid_flag0 |= DS_OUTPUT_VALID_FLAG0_COMPATIBLE_VIBRATION; 1330 common->motor_left = ds->motor_left; 1331 common->motor_right = ds->motor_right; 1332 ds->update_rumble = false; 1333 } 1334 1335 if (ds->update_lightbar) { 1336 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_LIGHTBAR_CONTROL_ENABLE; 1337 common->lightbar_red = ds->lightbar_red; 1338 common->lightbar_green = ds->lightbar_green; 1339 common->lightbar_blue = ds->lightbar_blue; 1340 1341 ds->update_lightbar = false; 1342 } 1343 1344 if (ds->update_player_leds) { 1345 common->valid_flag1 |= 1346 DS_OUTPUT_VALID_FLAG1_PLAYER_INDICATOR_CONTROL_ENABLE; 1347 common->player_leds = ds->player_leds_state; 1348 1349 ds->update_player_leds = false; 1350 } 1351 1352 if (ds->plugged_state != ds->prev_plugged_state) { 1353 u8 val = ds->plugged_state & DS_STATUS1_HP_DETECT; 1354 1355 if (val != (ds->prev_plugged_state & DS_STATUS1_HP_DETECT)) { 1356 common->valid_flag0 = DS_OUTPUT_VALID_FLAG0_AUDIO_CONTROL_ENABLE; 1357 /* 1358 * _--------> Output path setup in audio_flag0 1359 * / _------> Headphone (HP) Left channel sink 1360 * | / _----> Headphone (HP) Right channel sink 1361 * | | / _--> Internal Speaker (SP) sink 1362 * | | | / 1363 * | | | | L/R - Left/Right channel source 1364 * 0 L-R X X - Unrouted (muted) channel source 1365 * 1 L-L X 1366 * 2 L-L R 1367 * 3 X-X R 1368 */ 1369 if (val) { 1370 /* Mute SP and route L+R channels to HP */ 1371 common->audio_control = 0; 1372 } else { 1373 /* Mute HP and route R channel to SP */ 1374 common->audio_control = 1375 FIELD_PREP(DS_OUTPUT_AUDIO_FLAGS_OUTPUT_PATH_SEL, 1376 0x3); 1377 /* 1378 * Set SP hardware volume to 100%. 1379 * Note the accepted range seems to be [0x3d..0x64] 1380 */ 1381 common->valid_flag0 |= 1382 DS_OUTPUT_VALID_FLAG0_SPEAKER_VOLUME_ENABLE; 1383 common->speaker_volume = 0x64; 1384 /* Set SP preamp gain to +6dB */ 1385 common->valid_flag1 = 1386 DS_OUTPUT_VALID_FLAG1_AUDIO_CONTROL2_ENABLE; 1387 common->audio_control2 = 1388 FIELD_PREP(DS_OUTPUT_AUDIO_FLAGS2_SP_PREAMP_GAIN, 1389 0x2); 1390 } 1391 1392 input_report_switch(ds->jack, SW_HEADPHONE_INSERT, val); 1393 } 1394 1395 val = ds->plugged_state & DS_STATUS1_MIC_DETECT; 1396 if (val != (ds->prev_plugged_state & DS_STATUS1_MIC_DETECT)) 1397 input_report_switch(ds->jack, SW_MICROPHONE_INSERT, val); 1398 1399 input_sync(ds->jack); 1400 ds->prev_plugged_state = ds->plugged_state; 1401 } 1402 1403 if (ds->update_mic_mute) { 1404 common->valid_flag1 |= DS_OUTPUT_VALID_FLAG1_MIC_MUTE_LED_CONTROL_ENABLE; 1405 common->mute_button_led = ds->mic_muted; 1406 1407 if (ds->mic_muted) { 1408 /* Disable microphone */ 1409 common->valid_flag1 |= 1410 DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE; 1411 common->power_save_control |= DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE; 1412 } else { 1413 /* Enable microphone */ 1414 common->valid_flag1 |= 1415 DS_OUTPUT_VALID_FLAG1_POWER_SAVE_CONTROL_ENABLE; 1416 common->power_save_control &= 1417 ~DS_OUTPUT_POWER_SAVE_CONTROL_MIC_MUTE; 1418 } 1419 1420 ds->update_mic_mute = false; 1421 } 1422 } 1423 1424 dualsense_send_output_report(ds, &report); 1425 } 1426 1427 static int dualsense_parse_report(struct ps_device *ps_dev, struct hid_report *report, 1428 u8 *data, int size) 1429 { 1430 struct hid_device *hdev = ps_dev->hdev; 1431 struct dualsense *ds = container_of(ps_dev, struct dualsense, base); 1432 struct dualsense_input_report *ds_report; 1433 u8 battery_data, battery_capacity, charging_status, value; 1434 int battery_status; 1435 u32 sensor_timestamp; 1436 bool btn_mic_state; 1437 int i; 1438 1439 /* 1440 * DualSense in USB uses the full HID report for reportID 1, but 1441 * Bluetooth uses a minimal HID report for reportID 1 and reports 1442 * the full report using reportID 49. 1443 */ 1444 if (hdev->bus == BUS_USB && report->id == DS_INPUT_REPORT_USB && 1445 size == DS_INPUT_REPORT_USB_SIZE) { 1446 ds_report = (struct dualsense_input_report *)&data[1]; 1447 } else if (hdev->bus == BUS_BLUETOOTH && report->id == DS_INPUT_REPORT_BT && 1448 size == DS_INPUT_REPORT_BT_SIZE) { 1449 /* Last 4 bytes of input report contain crc32 */ 1450 u32 report_crc = get_unaligned_le32(&data[size - 4]); 1451 1452 if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) { 1453 hid_err(hdev, "DualSense input CRC's check failed\n"); 1454 return -EILSEQ; 1455 } 1456 1457 ds_report = (struct dualsense_input_report *)&data[2]; 1458 } else { 1459 hid_err(hdev, "Unhandled reportID=%d\n", report->id); 1460 return -1; 1461 } 1462 1463 input_report_abs(ds->gamepad, ABS_X, ds_report->x); 1464 input_report_abs(ds->gamepad, ABS_Y, ds_report->y); 1465 input_report_abs(ds->gamepad, ABS_RX, ds_report->rx); 1466 input_report_abs(ds->gamepad, ABS_RY, ds_report->ry); 1467 input_report_abs(ds->gamepad, ABS_Z, ds_report->z); 1468 input_report_abs(ds->gamepad, ABS_RZ, ds_report->rz); 1469 1470 value = ds_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH; 1471 if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping)) 1472 value = 8; /* center */ 1473 input_report_abs(ds->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x); 1474 input_report_abs(ds->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y); 1475 1476 input_report_key(ds->gamepad, BTN_WEST, ds_report->buttons[0] & DS_BUTTONS0_SQUARE); 1477 input_report_key(ds->gamepad, BTN_SOUTH, ds_report->buttons[0] & DS_BUTTONS0_CROSS); 1478 input_report_key(ds->gamepad, BTN_EAST, ds_report->buttons[0] & DS_BUTTONS0_CIRCLE); 1479 input_report_key(ds->gamepad, BTN_NORTH, ds_report->buttons[0] & DS_BUTTONS0_TRIANGLE); 1480 input_report_key(ds->gamepad, BTN_TL, ds_report->buttons[1] & DS_BUTTONS1_L1); 1481 input_report_key(ds->gamepad, BTN_TR, ds_report->buttons[1] & DS_BUTTONS1_R1); 1482 input_report_key(ds->gamepad, BTN_TL2, ds_report->buttons[1] & DS_BUTTONS1_L2); 1483 input_report_key(ds->gamepad, BTN_TR2, ds_report->buttons[1] & DS_BUTTONS1_R2); 1484 input_report_key(ds->gamepad, BTN_SELECT, ds_report->buttons[1] & DS_BUTTONS1_CREATE); 1485 input_report_key(ds->gamepad, BTN_START, ds_report->buttons[1] & DS_BUTTONS1_OPTIONS); 1486 input_report_key(ds->gamepad, BTN_THUMBL, ds_report->buttons[1] & DS_BUTTONS1_L3); 1487 input_report_key(ds->gamepad, BTN_THUMBR, ds_report->buttons[1] & DS_BUTTONS1_R3); 1488 input_report_key(ds->gamepad, BTN_MODE, ds_report->buttons[2] & DS_BUTTONS2_PS_HOME); 1489 input_sync(ds->gamepad); 1490 1491 /* 1492 * The DualSense has an internal microphone, which can be muted through a mute button 1493 * on the device. The driver is expected to read the button state and program the device 1494 * to mute/unmute audio at the hardware level. 1495 */ 1496 btn_mic_state = !!(ds_report->buttons[2] & DS_BUTTONS2_MIC_MUTE); 1497 if (btn_mic_state && !ds->last_btn_mic_state) { 1498 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1499 ds->update_mic_mute = true; 1500 ds->mic_muted = !ds->mic_muted; /* toggle */ 1501 } 1502 1503 /* Schedule updating of microphone state at hardware level. */ 1504 dualsense_schedule_work(ds); 1505 } 1506 ds->last_btn_mic_state = btn_mic_state; 1507 1508 /* 1509 * Parse HP/MIC plugged state data for USB use case, since Bluetooth 1510 * audio is currently not supported. 1511 */ 1512 if (hdev->bus == BUS_USB) { 1513 value = ds_report->status[1] & DS_STATUS1_JACK_DETECT; 1514 1515 if (!ds->prev_plugged_state_valid) { 1516 /* Initial handling of the plugged state report */ 1517 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1518 ds->plugged_state = (~value) & DS_STATUS1_JACK_DETECT; 1519 ds->prev_plugged_state_valid = true; 1520 } 1521 } 1522 1523 if (value != ds->plugged_state) { 1524 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1525 ds->prev_plugged_state = ds->plugged_state; 1526 ds->plugged_state = value; 1527 } 1528 1529 /* Schedule audio routing towards active endpoint. */ 1530 dualsense_schedule_work(ds); 1531 } 1532 } 1533 1534 /* Parse and calibrate gyroscope data. */ 1535 for (i = 0; i < ARRAY_SIZE(ds_report->gyro); i++) { 1536 int raw_data = (short)le16_to_cpu(ds_report->gyro[i]); 1537 int calib_data = mult_frac(ds->gyro_calib_data[i].sens_numer, 1538 raw_data, ds->gyro_calib_data[i].sens_denom); 1539 1540 input_report_abs(ds->sensors, ds->gyro_calib_data[i].abs_code, calib_data); 1541 } 1542 1543 /* Parse and calibrate accelerometer data. */ 1544 for (i = 0; i < ARRAY_SIZE(ds_report->accel); i++) { 1545 int raw_data = (short)le16_to_cpu(ds_report->accel[i]); 1546 int calib_data = mult_frac(ds->accel_calib_data[i].sens_numer, 1547 raw_data - ds->accel_calib_data[i].bias, 1548 ds->accel_calib_data[i].sens_denom); 1549 1550 input_report_abs(ds->sensors, ds->accel_calib_data[i].abs_code, calib_data); 1551 } 1552 1553 /* Convert timestamp (in 0.33us unit) to timestamp_us */ 1554 sensor_timestamp = le32_to_cpu(ds_report->sensor_timestamp); 1555 if (!ds->sensor_timestamp_initialized) { 1556 ds->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp, 3); 1557 ds->sensor_timestamp_initialized = true; 1558 } else { 1559 u32 delta; 1560 1561 if (ds->prev_sensor_timestamp > sensor_timestamp) 1562 delta = (U32_MAX - ds->prev_sensor_timestamp + sensor_timestamp + 1); 1563 else 1564 delta = sensor_timestamp - ds->prev_sensor_timestamp; 1565 ds->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta, 3); 1566 } 1567 ds->prev_sensor_timestamp = sensor_timestamp; 1568 input_event(ds->sensors, EV_MSC, MSC_TIMESTAMP, ds->sensor_timestamp_us); 1569 input_sync(ds->sensors); 1570 1571 for (i = 0; i < ARRAY_SIZE(ds_report->points); i++) { 1572 struct dualsense_touch_point *point = &ds_report->points[i]; 1573 bool active = (point->contact & DS_TOUCH_POINT_INACTIVE) ? false : true; 1574 1575 input_mt_slot(ds->touchpad, i); 1576 input_mt_report_slot_state(ds->touchpad, MT_TOOL_FINGER, active); 1577 1578 if (active) { 1579 input_report_abs(ds->touchpad, ABS_MT_POSITION_X, 1580 DS_TOUCH_POINT_X(point->x_hi, point->x_lo)); 1581 input_report_abs(ds->touchpad, ABS_MT_POSITION_Y, 1582 DS_TOUCH_POINT_Y(point->y_hi, point->y_lo)); 1583 } 1584 } 1585 input_mt_sync_frame(ds->touchpad); 1586 input_report_key(ds->touchpad, BTN_LEFT, ds_report->buttons[2] & DS_BUTTONS2_TOUCHPAD); 1587 input_sync(ds->touchpad); 1588 1589 battery_data = FIELD_GET(DS_STATUS0_BATTERY_CAPACITY, ds_report->status[0]); 1590 charging_status = FIELD_GET(DS_STATUS0_CHARGING, ds_report->status[0]); 1591 1592 switch (charging_status) { 1593 case 0x0: 1594 /* 1595 * Each unit of battery data corresponds to 10% 1596 * 0 = 0-9%, 1 = 10-19%, .. and 10 = 100% 1597 */ 1598 battery_capacity = min(battery_data * 10 + 5, 100); 1599 battery_status = POWER_SUPPLY_STATUS_DISCHARGING; 1600 break; 1601 case 0x1: 1602 battery_capacity = min(battery_data * 10 + 5, 100); 1603 battery_status = POWER_SUPPLY_STATUS_CHARGING; 1604 break; 1605 case 0x2: 1606 battery_capacity = 100; 1607 battery_status = POWER_SUPPLY_STATUS_FULL; 1608 break; 1609 case 0xa: /* voltage or temperature out of range */ 1610 case 0xb: /* temperature error */ 1611 battery_capacity = 0; 1612 battery_status = POWER_SUPPLY_STATUS_NOT_CHARGING; 1613 break; 1614 case 0xf: /* charging error */ 1615 default: 1616 battery_capacity = 0; 1617 battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 1618 } 1619 1620 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 1621 ps_dev->battery_capacity = battery_capacity; 1622 ps_dev->battery_status = battery_status; 1623 } 1624 1625 return 0; 1626 } 1627 1628 static int dualsense_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) 1629 { 1630 struct hid_device *hdev = input_get_drvdata(dev); 1631 struct dualsense *ds = hid_get_drvdata(hdev); 1632 1633 if (effect->type != FF_RUMBLE) 1634 return 0; 1635 1636 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1637 ds->update_rumble = true; 1638 ds->motor_left = effect->u.rumble.strong_magnitude / 256; 1639 ds->motor_right = effect->u.rumble.weak_magnitude / 256; 1640 } 1641 1642 dualsense_schedule_work(ds); 1643 return 0; 1644 } 1645 1646 static void dualsense_remove(struct ps_device *ps_dev) 1647 { 1648 struct dualsense *ds = container_of(ps_dev, struct dualsense, base); 1649 1650 scoped_guard(spinlock_irqsave, &ds->base.lock) 1651 ds->output_worker_initialized = false; 1652 1653 cancel_work_sync(&ds->output_worker); 1654 } 1655 1656 static int dualsense_reset_leds(struct dualsense *ds) 1657 { 1658 struct dualsense_output_report report; 1659 struct dualsense_output_report_bt *buf; 1660 1661 buf = kzalloc(sizeof(*buf), GFP_KERNEL); 1662 if (!buf) 1663 return -ENOMEM; 1664 1665 dualsense_init_output_report(ds, &report, buf); 1666 /* 1667 * On Bluetooth the DualSense outputs an animation on the lightbar 1668 * during startup and maintains a color afterwards. We need to explicitly 1669 * reconfigure the lightbar before we can do any programming later on. 1670 * In USB the lightbar is not on by default, but redoing the setup there 1671 * doesn't hurt. 1672 */ 1673 report.common->valid_flag2 = DS_OUTPUT_VALID_FLAG2_LIGHTBAR_SETUP_CONTROL_ENABLE; 1674 report.common->lightbar_setup = DS_OUTPUT_LIGHTBAR_SETUP_LIGHT_OUT; /* Fade light out. */ 1675 dualsense_send_output_report(ds, &report); 1676 1677 kfree(buf); 1678 return 0; 1679 } 1680 1681 static void dualsense_set_lightbar(struct dualsense *ds, u8 red, u8 green, u8 blue) 1682 { 1683 scoped_guard(spinlock_irqsave, &ds->base.lock) { 1684 ds->update_lightbar = true; 1685 ds->lightbar_red = red; 1686 ds->lightbar_green = green; 1687 ds->lightbar_blue = blue; 1688 } 1689 1690 dualsense_schedule_work(ds); 1691 } 1692 1693 static void dualsense_set_player_leds(struct dualsense *ds) 1694 { 1695 /* 1696 * The DualSense controller has a row of 5 LEDs used for player ids. 1697 * Behavior on the PlayStation 5 console is to center the player id 1698 * across the LEDs, so e.g. player 1 would be "--x--" with x being 'on'. 1699 * Follow a similar mapping here. 1700 */ 1701 static const int player_ids[5] = { 1702 BIT(2), 1703 BIT(3) | BIT(1), 1704 BIT(4) | BIT(2) | BIT(0), 1705 BIT(4) | BIT(3) | BIT(1) | BIT(0), 1706 BIT(4) | BIT(3) | BIT(2) | BIT(1) | BIT(0) 1707 }; 1708 1709 u8 player_id = ds->base.player_id % ARRAY_SIZE(player_ids); 1710 1711 ds->update_player_leds = true; 1712 ds->player_leds_state = player_ids[player_id]; 1713 dualsense_schedule_work(ds); 1714 } 1715 1716 static struct ps_device *dualsense_create(struct hid_device *hdev) 1717 { 1718 struct dualsense *ds; 1719 struct ps_device *ps_dev; 1720 u8 max_output_report_size; 1721 int i, ret; 1722 1723 static const struct ps_led_info player_leds_info[] = { 1724 { LED_FUNCTION_PLAYER1, "white", 1, dualsense_player_led_get_brightness, 1725 dualsense_player_led_set_brightness }, 1726 { LED_FUNCTION_PLAYER2, "white", 1, dualsense_player_led_get_brightness, 1727 dualsense_player_led_set_brightness }, 1728 { LED_FUNCTION_PLAYER3, "white", 1, dualsense_player_led_get_brightness, 1729 dualsense_player_led_set_brightness }, 1730 { LED_FUNCTION_PLAYER4, "white", 1, dualsense_player_led_get_brightness, 1731 dualsense_player_led_set_brightness }, 1732 { LED_FUNCTION_PLAYER5, "white", 1, dualsense_player_led_get_brightness, 1733 dualsense_player_led_set_brightness } 1734 }; 1735 1736 ds = devm_kzalloc(&hdev->dev, sizeof(*ds), GFP_KERNEL); 1737 if (!ds) 1738 return ERR_PTR(-ENOMEM); 1739 1740 /* 1741 * Patch version to allow userspace to distinguish between 1742 * hid-generic vs hid-playstation axis and button mapping. 1743 */ 1744 hdev->version |= HID_PLAYSTATION_VERSION_PATCH; 1745 1746 ps_dev = &ds->base; 1747 ps_dev->hdev = hdev; 1748 spin_lock_init(&ps_dev->lock); 1749 ps_dev->battery_capacity = 100; /* initial value until parse_report. */ 1750 ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 1751 ps_dev->parse_report = dualsense_parse_report; 1752 ps_dev->remove = dualsense_remove; 1753 INIT_WORK(&ds->output_worker, dualsense_output_worker); 1754 ds->output_worker_initialized = true; 1755 hid_set_drvdata(hdev, ds); 1756 1757 max_output_report_size = sizeof(struct dualsense_output_report_bt); 1758 ds->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL); 1759 if (!ds->output_report_dmabuf) 1760 return ERR_PTR(-ENOMEM); 1761 1762 ret = dualsense_get_mac_address(ds); 1763 if (ret) { 1764 hid_err(hdev, "Failed to get MAC address from DualSense\n"); 1765 return ERR_PTR(ret); 1766 } 1767 snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds->base.mac_address); 1768 1769 ret = dualsense_get_firmware_info(ds); 1770 if (ret) { 1771 hid_err(hdev, "Failed to get firmware info from DualSense\n"); 1772 return ERR_PTR(ret); 1773 } 1774 1775 /* Original DualSense firmware simulated classic controller rumble through 1776 * its new haptics hardware. It felt different from classic rumble users 1777 * were used to. Since then new firmwares were introduced to change behavior 1778 * and make this new 'v2' behavior default on PlayStation and other platforms. 1779 * The original DualSense requires a new enough firmware as bundled with PS5 1780 * software released in 2021. DualSense edge supports it out of the box. 1781 * Both devices also support the old mode, but it is not really used. 1782 */ 1783 if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER) { 1784 /* Feature version 2.21 introduced new vibration method. */ 1785 ds->use_vibration_v2 = ds->update_version >= DS_FEATURE_VERSION(2, 21); 1786 } else if (hdev->product == USB_DEVICE_ID_SONY_PS5_CONTROLLER_2) { 1787 ds->use_vibration_v2 = true; 1788 } 1789 1790 ret = ps_devices_list_add(ps_dev); 1791 if (ret) 1792 return ERR_PTR(ret); 1793 1794 ret = dualsense_get_calibration_data(ds); 1795 if (ret) { 1796 hid_err(hdev, "Failed to get calibration data from DualSense\n"); 1797 goto err; 1798 } 1799 1800 ds->gamepad = ps_gamepad_create(hdev, dualsense_play_effect); 1801 if (IS_ERR(ds->gamepad)) { 1802 ret = PTR_ERR(ds->gamepad); 1803 goto err; 1804 } 1805 /* Use gamepad input device name as primary device name for e.g. LEDs */ 1806 ps_dev->input_dev_name = dev_name(&ds->gamepad->dev); 1807 1808 ds->sensors = ps_sensors_create(hdev, DS_ACC_RANGE, DS_ACC_RES_PER_G, 1809 DS_GYRO_RANGE, DS_GYRO_RES_PER_DEG_S); 1810 if (IS_ERR(ds->sensors)) { 1811 ret = PTR_ERR(ds->sensors); 1812 goto err; 1813 } 1814 1815 ds->touchpad = ps_touchpad_create(hdev, DS_TOUCHPAD_WIDTH, DS_TOUCHPAD_HEIGHT, 2); 1816 if (IS_ERR(ds->touchpad)) { 1817 ret = PTR_ERR(ds->touchpad); 1818 goto err; 1819 } 1820 1821 /* Bluetooth audio is currently not supported. */ 1822 if (hdev->bus == BUS_USB) { 1823 ds->jack = ps_headset_jack_create(hdev); 1824 if (IS_ERR(ds->jack)) { 1825 ret = PTR_ERR(ds->jack); 1826 goto err; 1827 } 1828 } 1829 1830 ret = ps_device_register_battery(ps_dev); 1831 if (ret) 1832 goto err; 1833 1834 /* 1835 * The hardware may have control over the LEDs (e.g. in Bluetooth on startup). 1836 * Reset the LEDs (lightbar, mute, player leds), so we can control them 1837 * from software. 1838 */ 1839 ret = dualsense_reset_leds(ds); 1840 if (ret) 1841 goto err; 1842 1843 ret = ps_lightbar_register(ps_dev, &ds->lightbar, dualsense_lightbar_set_brightness); 1844 if (ret) 1845 goto err; 1846 1847 /* Set default lightbar color. */ 1848 dualsense_set_lightbar(ds, 0, 0, 128); /* blue */ 1849 1850 for (i = 0; i < ARRAY_SIZE(player_leds_info); i++) { 1851 const struct ps_led_info *led_info = &player_leds_info[i]; 1852 1853 ret = ps_led_register(ps_dev, &ds->player_leds[i], led_info); 1854 if (ret < 0) 1855 goto err; 1856 } 1857 1858 ret = ps_device_set_player_id(ps_dev); 1859 if (ret) { 1860 hid_err(hdev, "Failed to assign player id for DualSense: %d\n", ret); 1861 goto err; 1862 } 1863 1864 /* Set player LEDs to our player id. */ 1865 dualsense_set_player_leds(ds); 1866 1867 /* 1868 * Reporting hardware and firmware is important as there are frequent updates, which 1869 * can change behavior. 1870 */ 1871 hid_info(hdev, "Registered DualSense controller hw_version=0x%08x fw_version=0x%08x\n", 1872 ds->base.hw_version, ds->base.fw_version); 1873 1874 return &ds->base; 1875 1876 err: 1877 ps_devices_list_remove(ps_dev); 1878 return ERR_PTR(ret); 1879 } 1880 1881 static void dualshock4_dongle_calibration_work(struct work_struct *work) 1882 { 1883 struct dualshock4 *ds4 = container_of(work, struct dualshock4, dongle_hotplug_worker); 1884 enum dualshock4_dongle_state dongle_state; 1885 int ret; 1886 1887 ret = dualshock4_get_calibration_data(ds4); 1888 if (ret < 0) { 1889 /* This call is very unlikely to fail for the dongle. When it 1890 * fails we are probably in a very bad state, so mark the 1891 * dongle as disabled. We will re-enable the dongle if a new 1892 * DS4 hotplug is detect from sony_raw_event as any issues 1893 * are likely resolved then (the dongle is quite stupid). 1894 */ 1895 hid_err(ds4->base.hdev, 1896 "DualShock 4 USB dongle: calibration failed, disabling device\n"); 1897 dongle_state = DONGLE_DISABLED; 1898 } else { 1899 hid_info(ds4->base.hdev, "DualShock 4 USB dongle: calibration completed\n"); 1900 dongle_state = DONGLE_CONNECTED; 1901 } 1902 1903 scoped_guard(spinlock_irqsave, &ds4->base.lock) 1904 ds4->dongle_state = dongle_state; 1905 } 1906 1907 static int dualshock4_get_calibration_data(struct dualshock4 *ds4) 1908 { 1909 struct hid_device *hdev = ds4->base.hdev; 1910 short gyro_pitch_bias, gyro_pitch_plus, gyro_pitch_minus; 1911 short gyro_yaw_bias, gyro_yaw_plus, gyro_yaw_minus; 1912 short gyro_roll_bias, gyro_roll_plus, gyro_roll_minus; 1913 short gyro_speed_plus, gyro_speed_minus; 1914 short acc_x_plus, acc_x_minus; 1915 short acc_y_plus, acc_y_minus; 1916 short acc_z_plus, acc_z_minus; 1917 int speed_2x; 1918 int range_2g; 1919 int ret = 0; 1920 int i; 1921 u8 *buf; 1922 1923 if (ds4->base.hdev->bus == BUS_USB) { 1924 int retries; 1925 1926 buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_SIZE, GFP_KERNEL); 1927 if (!buf) { 1928 ret = -ENOMEM; 1929 goto transfer_failed; 1930 } 1931 1932 /* We should normally receive the feature report data we asked 1933 * for, but hidraw applications such as Steam can issue feature 1934 * reports as well. In particular for Dongle reconnects, Steam 1935 * and this function are competing resulting in often receiving 1936 * data for a different HID report, so retry a few times. 1937 */ 1938 for (retries = 0; retries < 3; retries++) { 1939 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION, buf, 1940 DS4_FEATURE_REPORT_CALIBRATION_SIZE, true); 1941 if (ret) { 1942 if (retries < 2) { 1943 hid_warn(hdev, 1944 "Retrying DualShock 4 get calibration report (0x02) request\n"); 1945 continue; 1946 } 1947 1948 hid_warn(hdev, 1949 "Failed to retrieve DualShock4 calibration info: %d\n", 1950 ret); 1951 ret = -EILSEQ; 1952 kfree(buf); 1953 goto transfer_failed; 1954 } else { 1955 break; 1956 } 1957 } 1958 } else { /* Bluetooth */ 1959 buf = kzalloc(DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, GFP_KERNEL); 1960 if (!buf) { 1961 ret = -ENOMEM; 1962 goto transfer_failed; 1963 } 1964 1965 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_CALIBRATION_BT, buf, 1966 DS4_FEATURE_REPORT_CALIBRATION_BT_SIZE, true); 1967 1968 if (ret) { 1969 hid_warn(hdev, "Failed to retrieve DualShock4 calibration info: %d\n", ret); 1970 kfree(buf); 1971 goto transfer_failed; 1972 } 1973 } 1974 1975 /* Transfer succeeded - parse the calibration data received. */ 1976 gyro_pitch_bias = get_unaligned_le16(&buf[1]); 1977 gyro_yaw_bias = get_unaligned_le16(&buf[3]); 1978 gyro_roll_bias = get_unaligned_le16(&buf[5]); 1979 if (ds4->base.hdev->bus == BUS_USB) { 1980 gyro_pitch_plus = get_unaligned_le16(&buf[7]); 1981 gyro_pitch_minus = get_unaligned_le16(&buf[9]); 1982 gyro_yaw_plus = get_unaligned_le16(&buf[11]); 1983 gyro_yaw_minus = get_unaligned_le16(&buf[13]); 1984 gyro_roll_plus = get_unaligned_le16(&buf[15]); 1985 gyro_roll_minus = get_unaligned_le16(&buf[17]); 1986 } else { 1987 /* BT + Dongle */ 1988 gyro_pitch_plus = get_unaligned_le16(&buf[7]); 1989 gyro_yaw_plus = get_unaligned_le16(&buf[9]); 1990 gyro_roll_plus = get_unaligned_le16(&buf[11]); 1991 gyro_pitch_minus = get_unaligned_le16(&buf[13]); 1992 gyro_yaw_minus = get_unaligned_le16(&buf[15]); 1993 gyro_roll_minus = get_unaligned_le16(&buf[17]); 1994 } 1995 gyro_speed_plus = get_unaligned_le16(&buf[19]); 1996 gyro_speed_minus = get_unaligned_le16(&buf[21]); 1997 acc_x_plus = get_unaligned_le16(&buf[23]); 1998 acc_x_minus = get_unaligned_le16(&buf[25]); 1999 acc_y_plus = get_unaligned_le16(&buf[27]); 2000 acc_y_minus = get_unaligned_le16(&buf[29]); 2001 acc_z_plus = get_unaligned_le16(&buf[31]); 2002 acc_z_minus = get_unaligned_le16(&buf[33]); 2003 2004 /* Done parsing the buffer, so let's free it. */ 2005 kfree(buf); 2006 2007 /* 2008 * Set gyroscope calibration and normalization parameters. 2009 * Data values will be normalized to 1/DS4_GYRO_RES_PER_DEG_S degree/s. 2010 */ 2011 speed_2x = (gyro_speed_plus + gyro_speed_minus); 2012 ds4->gyro_calib_data[0].abs_code = ABS_RX; 2013 ds4->gyro_calib_data[0].bias = 0; 2014 ds4->gyro_calib_data[0].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S; 2015 ds4->gyro_calib_data[0].sens_denom = abs(gyro_pitch_plus - gyro_pitch_bias) + 2016 abs(gyro_pitch_minus - gyro_pitch_bias); 2017 2018 ds4->gyro_calib_data[1].abs_code = ABS_RY; 2019 ds4->gyro_calib_data[1].bias = 0; 2020 ds4->gyro_calib_data[1].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S; 2021 ds4->gyro_calib_data[1].sens_denom = abs(gyro_yaw_plus - gyro_yaw_bias) + 2022 abs(gyro_yaw_minus - gyro_yaw_bias); 2023 2024 ds4->gyro_calib_data[2].abs_code = ABS_RZ; 2025 ds4->gyro_calib_data[2].bias = 0; 2026 ds4->gyro_calib_data[2].sens_numer = speed_2x * DS4_GYRO_RES_PER_DEG_S; 2027 ds4->gyro_calib_data[2].sens_denom = abs(gyro_roll_plus - gyro_roll_bias) + 2028 abs(gyro_roll_minus - gyro_roll_bias); 2029 2030 /* 2031 * Set accelerometer calibration and normalization parameters. 2032 * Data values will be normalized to 1/DS4_ACC_RES_PER_G g. 2033 */ 2034 range_2g = acc_x_plus - acc_x_minus; 2035 ds4->accel_calib_data[0].abs_code = ABS_X; 2036 ds4->accel_calib_data[0].bias = acc_x_plus - range_2g / 2; 2037 ds4->accel_calib_data[0].sens_numer = 2 * DS4_ACC_RES_PER_G; 2038 ds4->accel_calib_data[0].sens_denom = range_2g; 2039 2040 range_2g = acc_y_plus - acc_y_minus; 2041 ds4->accel_calib_data[1].abs_code = ABS_Y; 2042 ds4->accel_calib_data[1].bias = acc_y_plus - range_2g / 2; 2043 ds4->accel_calib_data[1].sens_numer = 2 * DS4_ACC_RES_PER_G; 2044 ds4->accel_calib_data[1].sens_denom = range_2g; 2045 2046 range_2g = acc_z_plus - acc_z_minus; 2047 ds4->accel_calib_data[2].abs_code = ABS_Z; 2048 ds4->accel_calib_data[2].bias = acc_z_plus - range_2g / 2; 2049 ds4->accel_calib_data[2].sens_numer = 2 * DS4_ACC_RES_PER_G; 2050 ds4->accel_calib_data[2].sens_denom = range_2g; 2051 2052 transfer_failed: 2053 /* 2054 * Sanity check gyro calibration data. This is needed to prevent crashes 2055 * during report handling of virtual, clone or broken devices not implementing 2056 * calibration data properly. 2057 */ 2058 for (i = 0; i < ARRAY_SIZE(ds4->gyro_calib_data); i++) { 2059 if (ds4->gyro_calib_data[i].sens_denom == 0) { 2060 ds4->gyro_calib_data[i].abs_code = ABS_RX + i; 2061 hid_warn(hdev, 2062 "Invalid gyro calibration data for axis (%d), disabling calibration.", 2063 ds4->gyro_calib_data[i].abs_code); 2064 ds4->gyro_calib_data[i].bias = 0; 2065 ds4->gyro_calib_data[i].sens_numer = DS4_GYRO_RANGE; 2066 ds4->gyro_calib_data[i].sens_denom = S16_MAX; 2067 } 2068 } 2069 2070 /* 2071 * Sanity check accelerometer calibration data. This is needed to prevent crashes 2072 * during report handling of virtual, clone or broken devices not implementing calibration 2073 * data properly. 2074 */ 2075 for (i = 0; i < ARRAY_SIZE(ds4->accel_calib_data); i++) { 2076 if (ds4->accel_calib_data[i].sens_denom == 0) { 2077 ds4->accel_calib_data[i].abs_code = ABS_X + i; 2078 hid_warn(hdev, 2079 "Invalid accelerometer calibration data for axis (%d), disabling calibration.", 2080 ds4->accel_calib_data[i].abs_code); 2081 ds4->accel_calib_data[i].bias = 0; 2082 ds4->accel_calib_data[i].sens_numer = DS4_ACC_RANGE; 2083 ds4->accel_calib_data[i].sens_denom = S16_MAX; 2084 } 2085 } 2086 2087 return ret; 2088 } 2089 2090 static int dualshock4_get_firmware_info(struct dualshock4 *ds4) 2091 { 2092 u8 *buf; 2093 int ret; 2094 2095 buf = kzalloc(DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, GFP_KERNEL); 2096 if (!buf) 2097 return -ENOMEM; 2098 2099 /* Note USB and BT support the same feature report, but this report 2100 * lacks CRC support, so must be disabled in ps_get_report. 2101 */ 2102 ret = ps_get_report(ds4->base.hdev, DS4_FEATURE_REPORT_FIRMWARE_INFO, buf, 2103 DS4_FEATURE_REPORT_FIRMWARE_INFO_SIZE, false); 2104 if (ret) { 2105 hid_err(ds4->base.hdev, "Failed to retrieve DualShock4 firmware info: %d\n", ret); 2106 goto err_free; 2107 } 2108 2109 ds4->base.hw_version = get_unaligned_le16(&buf[35]); 2110 ds4->base.fw_version = get_unaligned_le16(&buf[41]); 2111 2112 err_free: 2113 kfree(buf); 2114 return ret; 2115 } 2116 2117 static int dualshock4_get_mac_address(struct dualshock4 *ds4) 2118 { 2119 struct hid_device *hdev = ds4->base.hdev; 2120 u8 *buf; 2121 int ret = 0; 2122 2123 if (hdev->bus == BUS_USB) { 2124 buf = kzalloc(DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, GFP_KERNEL); 2125 if (!buf) 2126 return -ENOMEM; 2127 2128 ret = ps_get_report(hdev, DS4_FEATURE_REPORT_PAIRING_INFO, buf, 2129 DS4_FEATURE_REPORT_PAIRING_INFO_SIZE, false); 2130 if (ret) { 2131 hid_err(hdev, "Failed to retrieve DualShock4 pairing info: %d\n", ret); 2132 goto err_free; 2133 } 2134 2135 memcpy(ds4->base.mac_address, &buf[1], sizeof(ds4->base.mac_address)); 2136 } else { 2137 /* Rely on HIDP for Bluetooth */ 2138 if (strlen(hdev->uniq) != 17) 2139 return -EINVAL; 2140 2141 ret = sscanf(hdev->uniq, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx", 2142 &ds4->base.mac_address[5], &ds4->base.mac_address[4], 2143 &ds4->base.mac_address[3], &ds4->base.mac_address[2], 2144 &ds4->base.mac_address[1], &ds4->base.mac_address[0]); 2145 2146 if (ret != sizeof(ds4->base.mac_address)) 2147 return -EINVAL; 2148 2149 return 0; 2150 } 2151 2152 err_free: 2153 kfree(buf); 2154 return ret; 2155 } 2156 2157 static enum led_brightness dualshock4_led_get_brightness(struct led_classdev *led) 2158 { 2159 struct hid_device *hdev = to_hid_device(led->dev->parent); 2160 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2161 unsigned int led_index; 2162 2163 led_index = led - ds4->lightbar_leds; 2164 switch (led_index) { 2165 case 0: 2166 return ds4->lightbar_red; 2167 case 1: 2168 return ds4->lightbar_green; 2169 case 2: 2170 return ds4->lightbar_blue; 2171 case 3: 2172 return ds4->lightbar_enabled; 2173 } 2174 2175 return -1; 2176 } 2177 2178 static int dualshock4_led_set_blink(struct led_classdev *led, unsigned long *delay_on, 2179 unsigned long *delay_off) 2180 { 2181 struct hid_device *hdev = to_hid_device(led->dev->parent); 2182 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2183 2184 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2185 if (!*delay_on && !*delay_off) { 2186 /* Default to 1 Hz (50 centiseconds on, 50 centiseconds off). */ 2187 ds4->lightbar_blink_on = 50; 2188 ds4->lightbar_blink_off = 50; 2189 } else { 2190 /* Blink delays in centiseconds. */ 2191 ds4->lightbar_blink_on = min_t(unsigned long, *delay_on / 10, 2192 DS4_LIGHTBAR_MAX_BLINK); 2193 ds4->lightbar_blink_off = min_t(unsigned long, *delay_off / 10, 2194 DS4_LIGHTBAR_MAX_BLINK); 2195 } 2196 2197 ds4->update_lightbar_blink = true; 2198 } 2199 2200 dualshock4_schedule_work(ds4); 2201 2202 /* Report scaled values back to LED subsystem */ 2203 *delay_on = ds4->lightbar_blink_on * 10; 2204 *delay_off = ds4->lightbar_blink_off * 10; 2205 2206 return 0; 2207 } 2208 2209 static int dualshock4_led_set_brightness(struct led_classdev *led, enum led_brightness value) 2210 { 2211 struct hid_device *hdev = to_hid_device(led->dev->parent); 2212 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2213 unsigned int led_index; 2214 2215 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2216 led_index = led - ds4->lightbar_leds; 2217 switch (led_index) { 2218 case 0: 2219 ds4->lightbar_red = value; 2220 break; 2221 case 1: 2222 ds4->lightbar_green = value; 2223 break; 2224 case 2: 2225 ds4->lightbar_blue = value; 2226 break; 2227 case 3: 2228 ds4->lightbar_enabled = !!value; 2229 2230 /* brightness = 0 also cancels blinking in Linux. */ 2231 if (!ds4->lightbar_enabled) { 2232 ds4->lightbar_blink_off = 0; 2233 ds4->lightbar_blink_on = 0; 2234 ds4->update_lightbar_blink = true; 2235 } 2236 } 2237 2238 ds4->update_lightbar = true; 2239 } 2240 2241 dualshock4_schedule_work(ds4); 2242 2243 return 0; 2244 } 2245 2246 static void dualshock4_init_output_report(struct dualshock4 *ds4, 2247 struct dualshock4_output_report *rp, void *buf) 2248 { 2249 struct hid_device *hdev = ds4->base.hdev; 2250 2251 if (hdev->bus == BUS_BLUETOOTH) { 2252 struct dualshock4_output_report_bt *bt = buf; 2253 2254 memset(bt, 0, sizeof(*bt)); 2255 bt->report_id = DS4_OUTPUT_REPORT_BT; 2256 2257 rp->data = buf; 2258 rp->len = sizeof(*bt); 2259 rp->bt = bt; 2260 rp->usb = NULL; 2261 rp->common = &bt->common; 2262 } else { /* USB */ 2263 struct dualshock4_output_report_usb *usb = buf; 2264 2265 memset(usb, 0, sizeof(*usb)); 2266 usb->report_id = DS4_OUTPUT_REPORT_USB; 2267 2268 rp->data = buf; 2269 rp->len = sizeof(*usb); 2270 rp->bt = NULL; 2271 rp->usb = usb; 2272 rp->common = &usb->common; 2273 } 2274 } 2275 2276 static void dualshock4_output_worker(struct work_struct *work) 2277 { 2278 struct dualshock4 *ds4 = container_of(work, struct dualshock4, output_worker); 2279 struct dualshock4_output_report report; 2280 struct dualshock4_output_report_common *common; 2281 2282 dualshock4_init_output_report(ds4, &report, ds4->output_report_dmabuf); 2283 common = report.common; 2284 2285 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2286 /* 2287 * Some 3rd party gamepads expect updates to rumble and lightbar 2288 * together, and setting one may cancel the other. 2289 * 2290 * Let's maximise compatibility by always sending rumble and lightbar 2291 * updates together, even when only one has been scheduled, resulting 2292 * in: 2293 * 2294 * ds4->valid_flag0 >= 0x03 2295 * 2296 * Hopefully this will maximise compatibility with third-party pads. 2297 * 2298 * Any further update bits, such as 0x04 for lightbar blinking, will 2299 * be or'd on top of this like before. 2300 */ 2301 if (ds4->update_rumble || ds4->update_lightbar) { 2302 ds4->update_rumble = true; /* 0x01 */ 2303 ds4->update_lightbar = true; /* 0x02 */ 2304 } 2305 2306 if (ds4->update_rumble) { 2307 /* Select classic rumble style haptics and enable it. */ 2308 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_MOTOR; 2309 common->motor_left = ds4->motor_left; 2310 common->motor_right = ds4->motor_right; 2311 ds4->update_rumble = false; 2312 } 2313 2314 if (ds4->update_lightbar) { 2315 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED; 2316 /* Compatible behavior with hid-sony, which used a dummy global LED to 2317 * allow enabling/disabling the lightbar. The global LED maps to 2318 * lightbar_enabled. 2319 */ 2320 common->lightbar_red = ds4->lightbar_enabled ? ds4->lightbar_red : 0; 2321 common->lightbar_green = ds4->lightbar_enabled ? ds4->lightbar_green : 0; 2322 common->lightbar_blue = ds4->lightbar_enabled ? ds4->lightbar_blue : 0; 2323 ds4->update_lightbar = false; 2324 } 2325 2326 if (ds4->update_lightbar_blink) { 2327 common->valid_flag0 |= DS4_OUTPUT_VALID_FLAG0_LED_BLINK; 2328 common->lightbar_blink_on = ds4->lightbar_blink_on; 2329 common->lightbar_blink_off = ds4->lightbar_blink_off; 2330 ds4->update_lightbar_blink = false; 2331 } 2332 } 2333 2334 /* Bluetooth packets need additional flags as well as a CRC in the last 4 bytes. */ 2335 if (report.bt) { 2336 u32 crc; 2337 u8 seed = PS_OUTPUT_CRC32_SEED; 2338 2339 /* Hardware control flags need to set to let the device know 2340 * there is HID data as well as CRC. 2341 */ 2342 report.bt->hw_control = DS4_OUTPUT_HWCTL_HID | DS4_OUTPUT_HWCTL_CRC32; 2343 2344 if (ds4->update_bt_poll_interval) { 2345 report.bt->hw_control |= ds4->bt_poll_interval; 2346 ds4->update_bt_poll_interval = false; 2347 } 2348 2349 crc = crc32_le(0xFFFFFFFF, &seed, 1); 2350 crc = ~crc32_le(crc, report.data, report.len - 4); 2351 2352 report.bt->crc32 = cpu_to_le32(crc); 2353 } 2354 2355 hid_hw_output_report(ds4->base.hdev, report.data, report.len); 2356 } 2357 2358 static int dualshock4_parse_report(struct ps_device *ps_dev, struct hid_report *report, 2359 u8 *data, int size) 2360 { 2361 struct hid_device *hdev = ps_dev->hdev; 2362 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); 2363 struct dualshock4_input_report_common *ds4_report; 2364 struct dualshock4_touch_report *touch_reports; 2365 u8 battery_capacity, num_touch_reports, value; 2366 int battery_status, i, j; 2367 u16 sensor_timestamp; 2368 bool is_minimal = false; 2369 2370 /* 2371 * DualShock4 in USB uses the full HID report for reportID 1, but 2372 * Bluetooth uses a minimal HID report for reportID 1 and reports 2373 * the full report using reportID 17. 2374 */ 2375 if (hdev->bus == BUS_USB && report->id == DS4_INPUT_REPORT_USB && 2376 size == DS4_INPUT_REPORT_USB_SIZE) { 2377 struct dualshock4_input_report_usb *usb = 2378 (struct dualshock4_input_report_usb *)data; 2379 2380 ds4_report = &usb->common; 2381 num_touch_reports = usb->num_touch_reports; 2382 touch_reports = usb->touch_reports; 2383 } else if (hdev->bus == BUS_BLUETOOTH && report->id == DS4_INPUT_REPORT_BT && 2384 size == DS4_INPUT_REPORT_BT_SIZE) { 2385 struct dualshock4_input_report_bt *bt = (struct dualshock4_input_report_bt *)data; 2386 u32 report_crc = get_unaligned_le32(&bt->crc32); 2387 2388 /* Last 4 bytes of input report contains CRC. */ 2389 if (!ps_check_crc32(PS_INPUT_CRC32_SEED, data, size - 4, report_crc)) { 2390 hid_err(hdev, "DualShock4 input CRC's check failed\n"); 2391 return -EILSEQ; 2392 } 2393 2394 ds4_report = &bt->common; 2395 num_touch_reports = bt->num_touch_reports; 2396 touch_reports = bt->touch_reports; 2397 } else if (hdev->bus == BUS_BLUETOOTH && 2398 report->id == DS4_INPUT_REPORT_BT_MINIMAL && 2399 size == DS4_INPUT_REPORT_BT_MINIMAL_SIZE) { 2400 /* Some third-party pads never switch to the full 0x11 report. 2401 * The short 0x01 report is 10 bytes long: 2402 * u8 report_id == 0x01 2403 * u8 first_bytes_of_full_report[9] 2404 * So let's reuse the full report parser, and stop it after 2405 * parsing the buttons. 2406 */ 2407 ds4_report = (struct dualshock4_input_report_common *)&data[1]; 2408 is_minimal = true; 2409 } else { 2410 hid_err(hdev, "Unhandled reportID=%d\n", report->id); 2411 return -1; 2412 } 2413 2414 input_report_abs(ds4->gamepad, ABS_X, ds4_report->x); 2415 input_report_abs(ds4->gamepad, ABS_Y, ds4_report->y); 2416 input_report_abs(ds4->gamepad, ABS_RX, ds4_report->rx); 2417 input_report_abs(ds4->gamepad, ABS_RY, ds4_report->ry); 2418 input_report_abs(ds4->gamepad, ABS_Z, ds4_report->z); 2419 input_report_abs(ds4->gamepad, ABS_RZ, ds4_report->rz); 2420 2421 value = ds4_report->buttons[0] & DS_BUTTONS0_HAT_SWITCH; 2422 if (value >= ARRAY_SIZE(ps_gamepad_hat_mapping)) 2423 value = 8; /* center */ 2424 input_report_abs(ds4->gamepad, ABS_HAT0X, ps_gamepad_hat_mapping[value].x); 2425 input_report_abs(ds4->gamepad, ABS_HAT0Y, ps_gamepad_hat_mapping[value].y); 2426 2427 input_report_key(ds4->gamepad, BTN_WEST, ds4_report->buttons[0] & DS_BUTTONS0_SQUARE); 2428 input_report_key(ds4->gamepad, BTN_SOUTH, ds4_report->buttons[0] & DS_BUTTONS0_CROSS); 2429 input_report_key(ds4->gamepad, BTN_EAST, ds4_report->buttons[0] & DS_BUTTONS0_CIRCLE); 2430 input_report_key(ds4->gamepad, BTN_NORTH, ds4_report->buttons[0] & DS_BUTTONS0_TRIANGLE); 2431 input_report_key(ds4->gamepad, BTN_TL, ds4_report->buttons[1] & DS_BUTTONS1_L1); 2432 input_report_key(ds4->gamepad, BTN_TR, ds4_report->buttons[1] & DS_BUTTONS1_R1); 2433 input_report_key(ds4->gamepad, BTN_TL2, ds4_report->buttons[1] & DS_BUTTONS1_L2); 2434 input_report_key(ds4->gamepad, BTN_TR2, ds4_report->buttons[1] & DS_BUTTONS1_R2); 2435 input_report_key(ds4->gamepad, BTN_SELECT, ds4_report->buttons[1] & DS_BUTTONS1_CREATE); 2436 input_report_key(ds4->gamepad, BTN_START, ds4_report->buttons[1] & DS_BUTTONS1_OPTIONS); 2437 input_report_key(ds4->gamepad, BTN_THUMBL, ds4_report->buttons[1] & DS_BUTTONS1_L3); 2438 input_report_key(ds4->gamepad, BTN_THUMBR, ds4_report->buttons[1] & DS_BUTTONS1_R3); 2439 input_report_key(ds4->gamepad, BTN_MODE, ds4_report->buttons[2] & DS_BUTTONS2_PS_HOME); 2440 input_sync(ds4->gamepad); 2441 2442 if (is_minimal) 2443 return 0; 2444 2445 /* Parse and calibrate gyroscope data. */ 2446 for (i = 0; i < ARRAY_SIZE(ds4_report->gyro); i++) { 2447 int raw_data = (short)le16_to_cpu(ds4_report->gyro[i]); 2448 int calib_data = mult_frac(ds4->gyro_calib_data[i].sens_numer, 2449 raw_data, ds4->gyro_calib_data[i].sens_denom); 2450 2451 input_report_abs(ds4->sensors, ds4->gyro_calib_data[i].abs_code, calib_data); 2452 } 2453 2454 /* Parse and calibrate accelerometer data. */ 2455 for (i = 0; i < ARRAY_SIZE(ds4_report->accel); i++) { 2456 int raw_data = (short)le16_to_cpu(ds4_report->accel[i]); 2457 int calib_data = mult_frac(ds4->accel_calib_data[i].sens_numer, 2458 raw_data - ds4->accel_calib_data[i].bias, 2459 ds4->accel_calib_data[i].sens_denom); 2460 2461 input_report_abs(ds4->sensors, ds4->accel_calib_data[i].abs_code, calib_data); 2462 } 2463 2464 /* Convert timestamp (in 5.33us unit) to timestamp_us */ 2465 sensor_timestamp = le16_to_cpu(ds4_report->sensor_timestamp); 2466 if (!ds4->sensor_timestamp_initialized) { 2467 ds4->sensor_timestamp_us = DIV_ROUND_CLOSEST(sensor_timestamp * 16, 3); 2468 ds4->sensor_timestamp_initialized = true; 2469 } else { 2470 u16 delta; 2471 2472 if (ds4->prev_sensor_timestamp > sensor_timestamp) 2473 delta = (U16_MAX - ds4->prev_sensor_timestamp + sensor_timestamp + 1); 2474 else 2475 delta = sensor_timestamp - ds4->prev_sensor_timestamp; 2476 ds4->sensor_timestamp_us += DIV_ROUND_CLOSEST(delta * 16, 3); 2477 } 2478 ds4->prev_sensor_timestamp = sensor_timestamp; 2479 input_event(ds4->sensors, EV_MSC, MSC_TIMESTAMP, ds4->sensor_timestamp_us); 2480 input_sync(ds4->sensors); 2481 2482 for (i = 0; i < num_touch_reports; i++) { 2483 struct dualshock4_touch_report *touch_report = &touch_reports[i]; 2484 2485 for (j = 0; j < ARRAY_SIZE(touch_report->points); j++) { 2486 struct dualshock4_touch_point *point = &touch_report->points[j]; 2487 bool active = (point->contact & DS4_TOUCH_POINT_INACTIVE) ? false : true; 2488 2489 input_mt_slot(ds4->touchpad, j); 2490 input_mt_report_slot_state(ds4->touchpad, MT_TOOL_FINGER, active); 2491 2492 if (active) { 2493 input_report_abs(ds4->touchpad, ABS_MT_POSITION_X, 2494 DS4_TOUCH_POINT_X(point->x_hi, point->x_lo)); 2495 input_report_abs(ds4->touchpad, ABS_MT_POSITION_Y, 2496 DS4_TOUCH_POINT_Y(point->y_hi, point->y_lo)); 2497 } 2498 } 2499 input_mt_sync_frame(ds4->touchpad); 2500 input_sync(ds4->touchpad); 2501 } 2502 input_report_key(ds4->touchpad, BTN_LEFT, ds4_report->buttons[2] & DS_BUTTONS2_TOUCHPAD); 2503 2504 /* 2505 * Interpretation of the battery_capacity data depends on the cable state. 2506 * When no cable is connected (bit4 is 0): 2507 * - 0:10: percentage in units of 10%. 2508 * When a cable is plugged in: 2509 * - 0-10: percentage in units of 10%. 2510 * - 11: battery is full 2511 * - 14: not charging due to Voltage or temperature error 2512 * - 15: charge error 2513 */ 2514 if (ds4_report->status[0] & DS4_STATUS0_CABLE_STATE) { 2515 u8 battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY; 2516 2517 if (battery_data < 10) { 2518 /* Take the mid-point for each battery capacity value, 2519 * because on the hardware side 0 = 0-9%, 1=10-19%, etc. 2520 * This matches official platform behavior, which does 2521 * the same. 2522 */ 2523 battery_capacity = battery_data * 10 + 5; 2524 battery_status = POWER_SUPPLY_STATUS_CHARGING; 2525 } else if (battery_data == 10) { 2526 battery_capacity = 100; 2527 battery_status = POWER_SUPPLY_STATUS_CHARGING; 2528 } else if (battery_data == DS4_BATTERY_STATUS_FULL) { 2529 battery_capacity = 100; 2530 battery_status = POWER_SUPPLY_STATUS_FULL; 2531 } else { /* 14, 15 and undefined values */ 2532 battery_capacity = 0; 2533 battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 2534 } 2535 } else { 2536 u8 battery_data = ds4_report->status[0] & DS4_STATUS0_BATTERY_CAPACITY; 2537 2538 if (battery_data < 10) 2539 battery_capacity = battery_data * 10 + 5; 2540 else /* 10 */ 2541 battery_capacity = 100; 2542 2543 battery_status = POWER_SUPPLY_STATUS_DISCHARGING; 2544 } 2545 2546 scoped_guard(spinlock_irqsave, &ps_dev->lock) { 2547 ps_dev->battery_capacity = battery_capacity; 2548 ps_dev->battery_status = battery_status; 2549 } 2550 2551 return 0; 2552 } 2553 2554 static int dualshock4_dongle_parse_report(struct ps_device *ps_dev, struct hid_report *report, 2555 u8 *data, int size) 2556 { 2557 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); 2558 bool connected = false; 2559 2560 /* The dongle reports data using the main USB report (0x1) no matter whether a controller 2561 * is connected with mostly zeros. The report does contain dongle status, which we use to 2562 * determine if a controller is connected and if so we forward to the regular DualShock4 2563 * parsing code. 2564 */ 2565 if (data[0] == DS4_INPUT_REPORT_USB && size == DS4_INPUT_REPORT_USB_SIZE) { 2566 struct dualshock4_input_report_common *ds4_report = 2567 (struct dualshock4_input_report_common *)&data[1]; 2568 2569 connected = ds4_report->status[1] & DS4_STATUS1_DONGLE_STATE ? false : true; 2570 2571 if (ds4->dongle_state == DONGLE_DISCONNECTED && connected) { 2572 hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller connected\n"); 2573 2574 dualshock4_set_default_lightbar_colors(ds4); 2575 2576 scoped_guard(spinlock_irqsave, &ps_dev->lock) 2577 ds4->dongle_state = DONGLE_CALIBRATING; 2578 2579 schedule_work(&ds4->dongle_hotplug_worker); 2580 2581 /* Don't process the report since we don't have 2582 * calibration data, but let hidraw have it anyway. 2583 */ 2584 return 0; 2585 } else if ((ds4->dongle_state == DONGLE_CONNECTED || 2586 ds4->dongle_state == DONGLE_DISABLED) && !connected) { 2587 hid_info(ps_dev->hdev, "DualShock 4 USB dongle: controller disconnected\n"); 2588 2589 scoped_guard(spinlock_irqsave, &ps_dev->lock) 2590 ds4->dongle_state = DONGLE_DISCONNECTED; 2591 2592 /* Return 0, so hidraw can get the report. */ 2593 return 0; 2594 } else if (ds4->dongle_state == DONGLE_CALIBRATING || 2595 ds4->dongle_state == DONGLE_DISABLED || 2596 ds4->dongle_state == DONGLE_DISCONNECTED) { 2597 /* Return 0, so hidraw can get the report. */ 2598 return 0; 2599 } 2600 } 2601 2602 if (connected) 2603 return dualshock4_parse_report(ps_dev, report, data, size); 2604 2605 return 0; 2606 } 2607 2608 static int dualshock4_play_effect(struct input_dev *dev, void *data, struct ff_effect *effect) 2609 { 2610 struct hid_device *hdev = input_get_drvdata(dev); 2611 struct dualshock4 *ds4 = hid_get_drvdata(hdev); 2612 2613 if (effect->type != FF_RUMBLE) 2614 return 0; 2615 2616 scoped_guard(spinlock_irqsave, &ds4->base.lock) { 2617 ds4->update_rumble = true; 2618 ds4->motor_left = effect->u.rumble.strong_magnitude / 256; 2619 ds4->motor_right = effect->u.rumble.weak_magnitude / 256; 2620 } 2621 2622 dualshock4_schedule_work(ds4); 2623 return 0; 2624 } 2625 2626 static void dualshock4_remove(struct ps_device *ps_dev) 2627 { 2628 struct dualshock4 *ds4 = container_of(ps_dev, struct dualshock4, base); 2629 2630 scoped_guard(spinlock_irqsave, &ds4->base.lock) 2631 ds4->output_worker_initialized = false; 2632 2633 cancel_work_sync(&ds4->output_worker); 2634 2635 if (ps_dev->hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) 2636 cancel_work_sync(&ds4->dongle_hotplug_worker); 2637 } 2638 2639 static inline void dualshock4_schedule_work(struct dualshock4 *ds4) 2640 { 2641 /* Using scoped_guard() instead of guard() to make sparse happy */ 2642 scoped_guard(spinlock_irqsave, &ds4->base.lock) 2643 if (ds4->output_worker_initialized) 2644 schedule_work(&ds4->output_worker); 2645 } 2646 2647 static void dualshock4_set_bt_poll_interval(struct dualshock4 *ds4, u8 interval) 2648 { 2649 ds4->bt_poll_interval = interval; 2650 ds4->update_bt_poll_interval = true; 2651 dualshock4_schedule_work(ds4); 2652 } 2653 2654 /* Set default lightbar color based on player. */ 2655 static void dualshock4_set_default_lightbar_colors(struct dualshock4 *ds4) 2656 { 2657 /* Use same player colors as PlayStation 4. 2658 * Array of colors is in RGB. 2659 */ 2660 static const int player_colors[4][3] = { 2661 { 0x00, 0x00, 0x40 }, /* Blue */ 2662 { 0x40, 0x00, 0x00 }, /* Red */ 2663 { 0x00, 0x40, 0x00 }, /* Green */ 2664 { 0x20, 0x00, 0x20 } /* Pink */ 2665 }; 2666 2667 u8 player_id = ds4->base.player_id % ARRAY_SIZE(player_colors); 2668 2669 ds4->lightbar_enabled = true; 2670 ds4->lightbar_red = player_colors[player_id][0]; 2671 ds4->lightbar_green = player_colors[player_id][1]; 2672 ds4->lightbar_blue = player_colors[player_id][2]; 2673 2674 ds4->update_lightbar = true; 2675 dualshock4_schedule_work(ds4); 2676 } 2677 2678 static struct ps_device *dualshock4_create(struct hid_device *hdev) 2679 { 2680 struct dualshock4 *ds4; 2681 struct ps_device *ps_dev; 2682 u8 max_output_report_size; 2683 int i, ret; 2684 2685 /* The DualShock4 has an RGB lightbar, which the original hid-sony driver 2686 * exposed as a set of 4 LEDs for the 3 color channels and a global control. 2687 * Ideally this should have used the multi-color LED class, which didn't exist 2688 * yet. In addition the driver used a naming scheme not compliant with the LED 2689 * naming spec by using "<mac_address>:<color>", which contained many colons. 2690 * We use a more compliant by using "<device_name>:<color>" name now. Ideally 2691 * would have been "<device_name>:<color>:indicator", but that would break 2692 * existing applications (e.g. Android). Nothing matches against MAC address. 2693 */ 2694 static const struct ps_led_info lightbar_leds_info[] = { 2695 { NULL, "red", 255, dualshock4_led_get_brightness, 2696 dualshock4_led_set_brightness }, 2697 { NULL, "green", 255, dualshock4_led_get_brightness, 2698 dualshock4_led_set_brightness }, 2699 { NULL, "blue", 255, dualshock4_led_get_brightness, 2700 dualshock4_led_set_brightness }, 2701 { NULL, "global", 1, dualshock4_led_get_brightness, 2702 dualshock4_led_set_brightness, dualshock4_led_set_blink }, 2703 }; 2704 2705 ds4 = devm_kzalloc(&hdev->dev, sizeof(*ds4), GFP_KERNEL); 2706 if (!ds4) 2707 return ERR_PTR(-ENOMEM); 2708 2709 /* 2710 * Patch version to allow userspace to distinguish between 2711 * hid-generic vs hid-playstation axis and button mapping. 2712 */ 2713 hdev->version |= HID_PLAYSTATION_VERSION_PATCH; 2714 2715 ps_dev = &ds4->base; 2716 ps_dev->hdev = hdev; 2717 spin_lock_init(&ps_dev->lock); 2718 ps_dev->battery_capacity = 100; /* initial value until parse_report. */ 2719 ps_dev->battery_status = POWER_SUPPLY_STATUS_UNKNOWN; 2720 ps_dev->parse_report = dualshock4_parse_report; 2721 ps_dev->remove = dualshock4_remove; 2722 INIT_WORK(&ds4->output_worker, dualshock4_output_worker); 2723 ds4->output_worker_initialized = true; 2724 hid_set_drvdata(hdev, ds4); 2725 2726 max_output_report_size = sizeof(struct dualshock4_output_report_bt); 2727 ds4->output_report_dmabuf = devm_kzalloc(&hdev->dev, max_output_report_size, GFP_KERNEL); 2728 if (!ds4->output_report_dmabuf) 2729 return ERR_PTR(-ENOMEM); 2730 2731 if (hdev->product == USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE) { 2732 ds4->dongle_state = DONGLE_DISCONNECTED; 2733 INIT_WORK(&ds4->dongle_hotplug_worker, dualshock4_dongle_calibration_work); 2734 2735 /* Override parse report for dongle specific hotplug handling. */ 2736 ps_dev->parse_report = dualshock4_dongle_parse_report; 2737 } 2738 2739 ret = dualshock4_get_mac_address(ds4); 2740 if (ret) { 2741 hid_err(hdev, "Failed to get MAC address from DualShock4\n"); 2742 return ERR_PTR(ret); 2743 } 2744 snprintf(hdev->uniq, sizeof(hdev->uniq), "%pMR", ds4->base.mac_address); 2745 2746 ret = dualshock4_get_firmware_info(ds4); 2747 if (ret) { 2748 hid_warn(hdev, "Failed to get firmware info from DualShock4\n"); 2749 hid_warn(hdev, "HW/FW version data in sysfs will be invalid.\n"); 2750 } 2751 2752 ret = ps_devices_list_add(ps_dev); 2753 if (ret) 2754 return ERR_PTR(ret); 2755 2756 ret = dualshock4_get_calibration_data(ds4); 2757 if (ret) { 2758 hid_warn(hdev, "Failed to get calibration data from DualShock4\n"); 2759 hid_warn(hdev, "Gyroscope and accelerometer will be inaccurate.\n"); 2760 } 2761 2762 ds4->gamepad = ps_gamepad_create(hdev, dualshock4_play_effect); 2763 if (IS_ERR(ds4->gamepad)) { 2764 ret = PTR_ERR(ds4->gamepad); 2765 goto err; 2766 } 2767 2768 /* Use gamepad input device name as primary device name for e.g. LEDs */ 2769 ps_dev->input_dev_name = dev_name(&ds4->gamepad->dev); 2770 2771 ds4->sensors = ps_sensors_create(hdev, DS4_ACC_RANGE, DS4_ACC_RES_PER_G, 2772 DS4_GYRO_RANGE, DS4_GYRO_RES_PER_DEG_S); 2773 if (IS_ERR(ds4->sensors)) { 2774 ret = PTR_ERR(ds4->sensors); 2775 goto err; 2776 } 2777 2778 ds4->touchpad = ps_touchpad_create(hdev, DS4_TOUCHPAD_WIDTH, DS4_TOUCHPAD_HEIGHT, 2); 2779 if (IS_ERR(ds4->touchpad)) { 2780 ret = PTR_ERR(ds4->touchpad); 2781 goto err; 2782 } 2783 2784 ret = ps_device_register_battery(ps_dev); 2785 if (ret) 2786 goto err; 2787 2788 for (i = 0; i < ARRAY_SIZE(lightbar_leds_info); i++) { 2789 const struct ps_led_info *led_info = &lightbar_leds_info[i]; 2790 2791 ret = ps_led_register(ps_dev, &ds4->lightbar_leds[i], led_info); 2792 if (ret < 0) 2793 goto err; 2794 } 2795 2796 dualshock4_set_bt_poll_interval(ds4, DS4_BT_DEFAULT_POLL_INTERVAL_MS); 2797 2798 ret = ps_device_set_player_id(ps_dev); 2799 if (ret) { 2800 hid_err(hdev, "Failed to assign player id for DualShock4: %d\n", ret); 2801 goto err; 2802 } 2803 2804 dualshock4_set_default_lightbar_colors(ds4); 2805 2806 /* 2807 * Reporting hardware and firmware is important as there are frequent updates, which 2808 * can change behavior. 2809 */ 2810 hid_info(hdev, "Registered DualShock4 controller hw_version=0x%08x fw_version=0x%08x\n", 2811 ds4->base.hw_version, ds4->base.fw_version); 2812 return &ds4->base; 2813 2814 err: 2815 ps_devices_list_remove(ps_dev); 2816 return ERR_PTR(ret); 2817 } 2818 2819 static int ps_raw_event(struct hid_device *hdev, struct hid_report *report, 2820 u8 *data, int size) 2821 { 2822 struct ps_device *dev = hid_get_drvdata(hdev); 2823 2824 if (dev && dev->parse_report) 2825 return dev->parse_report(dev, report, data, size); 2826 2827 return 0; 2828 } 2829 2830 static int ps_probe(struct hid_device *hdev, const struct hid_device_id *id) 2831 { 2832 struct ps_device *dev; 2833 int ret; 2834 2835 ret = hid_parse(hdev); 2836 if (ret) { 2837 hid_err(hdev, "Parse failed\n"); 2838 return ret; 2839 } 2840 2841 ret = hid_hw_start(hdev, HID_CONNECT_HIDRAW); 2842 if (ret) { 2843 hid_err(hdev, "Failed to start HID device\n"); 2844 return ret; 2845 } 2846 2847 ret = hid_hw_open(hdev); 2848 if (ret) { 2849 hid_err(hdev, "Failed to open HID device\n"); 2850 goto err_stop; 2851 } 2852 2853 if (id->driver_data == PS_TYPE_PS4_DUALSHOCK4) { 2854 dev = dualshock4_create(hdev); 2855 if (IS_ERR(dev)) { 2856 hid_err(hdev, "Failed to create dualshock4.\n"); 2857 ret = PTR_ERR(dev); 2858 goto err_close; 2859 } 2860 } else if (id->driver_data == PS_TYPE_PS5_DUALSENSE) { 2861 dev = dualsense_create(hdev); 2862 if (IS_ERR(dev)) { 2863 hid_err(hdev, "Failed to create dualsense.\n"); 2864 ret = PTR_ERR(dev); 2865 goto err_close; 2866 } 2867 } 2868 2869 return ret; 2870 2871 err_close: 2872 hid_hw_close(hdev); 2873 err_stop: 2874 hid_hw_stop(hdev); 2875 return ret; 2876 } 2877 2878 static void ps_remove(struct hid_device *hdev) 2879 { 2880 struct ps_device *dev = hid_get_drvdata(hdev); 2881 2882 ps_devices_list_remove(dev); 2883 ps_device_release_player_id(dev); 2884 2885 if (dev->remove) 2886 dev->remove(dev); 2887 2888 hid_hw_close(hdev); 2889 hid_hw_stop(hdev); 2890 } 2891 2892 static const struct hid_device_id ps_devices[] = { 2893 /* Sony DualShock 4 controllers for PS4 */ 2894 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER), 2895 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2896 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER), 2897 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2898 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2), 2899 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2900 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_2), 2901 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2902 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS4_CONTROLLER_DONGLE), 2903 .driver_data = PS_TYPE_PS4_DUALSHOCK4 }, 2904 2905 /* Sony DualSense controllers for PS5 */ 2906 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER), 2907 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2908 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER), 2909 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2910 { HID_BLUETOOTH_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2), 2911 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2912 { HID_USB_DEVICE(USB_VENDOR_ID_SONY, USB_DEVICE_ID_SONY_PS5_CONTROLLER_2), 2913 .driver_data = PS_TYPE_PS5_DUALSENSE }, 2914 { } 2915 }; 2916 MODULE_DEVICE_TABLE(hid, ps_devices); 2917 2918 static struct hid_driver ps_driver = { 2919 .name = "playstation", 2920 .id_table = ps_devices, 2921 .probe = ps_probe, 2922 .remove = ps_remove, 2923 .raw_event = ps_raw_event, 2924 .driver = { 2925 .dev_groups = ps_device_groups, 2926 }, 2927 }; 2928 2929 static int __init ps_init(void) 2930 { 2931 return hid_register_driver(&ps_driver); 2932 } 2933 2934 static void __exit ps_exit(void) 2935 { 2936 hid_unregister_driver(&ps_driver); 2937 ida_destroy(&ps_player_id_allocator); 2938 } 2939 2940 module_init(ps_init); 2941 module_exit(ps_exit); 2942 2943 MODULE_AUTHOR("Sony Interactive Entertainment"); 2944 MODULE_DESCRIPTION("HID Driver for PlayStation peripherals."); 2945 MODULE_LICENSE("GPL"); 2946