xref: /linux/mm/page-writeback.c (revision e9ef810dfee7a2227da9d423aecb0ced35faddbe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 #include "swap.h"
45 
46 /*
47  * Sleep at most 200ms at a time in balance_dirty_pages().
48  */
49 #define MAX_PAUSE		max(HZ/5, 1)
50 
51 /*
52  * Try to keep balance_dirty_pages() call intervals higher than this many pages
53  * by raising pause time to max_pause when falls below it.
54  */
55 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
56 
57 /*
58  * Estimate write bandwidth or update dirty limit at 200ms intervals.
59  */
60 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
61 
62 #define RATELIMIT_CALC_SHIFT	10
63 
64 /*
65  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
66  * will look to see if it needs to force writeback or throttling.
67  */
68 static long ratelimit_pages = 32;
69 
70 /* The following parameters are exported via /proc/sys/vm */
71 
72 /*
73  * Start background writeback (via writeback threads) at this percentage
74  */
75 static int dirty_background_ratio = 10;
76 
77 /*
78  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
79  * dirty_background_ratio * the amount of dirtyable memory
80  */
81 static unsigned long dirty_background_bytes;
82 
83 /*
84  * free highmem will not be subtracted from the total free memory
85  * for calculating free ratios if vm_highmem_is_dirtyable is true
86  */
87 static int vm_highmem_is_dirtyable;
88 
89 /*
90  * The generator of dirty data starts writeback at this percentage
91  */
92 static int vm_dirty_ratio = 20;
93 
94 /*
95  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
96  * vm_dirty_ratio * the amount of dirtyable memory
97  */
98 static unsigned long vm_dirty_bytes;
99 
100 /*
101  * The interval between `kupdate'-style writebacks
102  */
103 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
104 
105 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
106 
107 /*
108  * The longest time for which data is allowed to remain dirty
109  */
110 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
111 
112 /*
113  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114  * a full sync is triggered after this time elapses without any disk activity.
115  */
116 int laptop_mode;
117 
118 EXPORT_SYMBOL(laptop_mode);
119 
120 /* End of sysctl-exported parameters */
121 
122 struct wb_domain global_wb_domain;
123 
124 /*
125  * Length of period for aging writeout fractions of bdis. This is an
126  * arbitrarily chosen number. The longer the period, the slower fractions will
127  * reflect changes in current writeout rate.
128  */
129 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
130 
131 #ifdef CONFIG_CGROUP_WRITEBACK
132 
133 #define GDTC_INIT(__wb)		.wb = (__wb),				\
134 				.dom = &global_wb_domain,		\
135 				.wb_completions = &(__wb)->completions
136 
137 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
138 
139 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
140 				.dom = mem_cgroup_wb_domain(__wb),	\
141 				.wb_completions = &(__wb)->memcg_completions, \
142 				.gdtc = __gdtc
143 
mdtc_valid(struct dirty_throttle_control * dtc)144 static bool mdtc_valid(struct dirty_throttle_control *dtc)
145 {
146 	return dtc->dom;
147 }
148 
dtc_dom(struct dirty_throttle_control * dtc)149 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
150 {
151 	return dtc->dom;
152 }
153 
mdtc_gdtc(struct dirty_throttle_control * mdtc)154 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
155 {
156 	return mdtc->gdtc;
157 }
158 
wb_memcg_completions(struct bdi_writeback * wb)159 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
160 {
161 	return &wb->memcg_completions;
162 }
163 
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)164 static void wb_min_max_ratio(struct bdi_writeback *wb,
165 			     unsigned long *minp, unsigned long *maxp)
166 {
167 	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
168 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
169 	unsigned long long min = wb->bdi->min_ratio;
170 	unsigned long long max = wb->bdi->max_ratio;
171 
172 	/*
173 	 * @wb may already be clean by the time control reaches here and
174 	 * the total may not include its bw.
175 	 */
176 	if (this_bw < tot_bw) {
177 		if (min) {
178 			min *= this_bw;
179 			min = div64_ul(min, tot_bw);
180 		}
181 		if (max < 100 * BDI_RATIO_SCALE) {
182 			max *= this_bw;
183 			max = div64_ul(max, tot_bw);
184 		}
185 	}
186 
187 	*minp = min;
188 	*maxp = max;
189 }
190 
191 #else	/* CONFIG_CGROUP_WRITEBACK */
192 
193 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
194 				.wb_completions = &(__wb)->completions
195 #define GDTC_INIT_NO_WB
196 #define MDTC_INIT(__wb, __gdtc)
197 
mdtc_valid(struct dirty_throttle_control * dtc)198 static bool mdtc_valid(struct dirty_throttle_control *dtc)
199 {
200 	return false;
201 }
202 
dtc_dom(struct dirty_throttle_control * dtc)203 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
204 {
205 	return &global_wb_domain;
206 }
207 
mdtc_gdtc(struct dirty_throttle_control * mdtc)208 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
209 {
210 	return NULL;
211 }
212 
wb_memcg_completions(struct bdi_writeback * wb)213 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
214 {
215 	return NULL;
216 }
217 
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)218 static void wb_min_max_ratio(struct bdi_writeback *wb,
219 			     unsigned long *minp, unsigned long *maxp)
220 {
221 	*minp = wb->bdi->min_ratio;
222 	*maxp = wb->bdi->max_ratio;
223 }
224 
225 #endif	/* CONFIG_CGROUP_WRITEBACK */
226 
227 /*
228  * In a memory zone, there is a certain amount of pages we consider
229  * available for the page cache, which is essentially the number of
230  * free and reclaimable pages, minus some zone reserves to protect
231  * lowmem and the ability to uphold the zone's watermarks without
232  * requiring writeback.
233  *
234  * This number of dirtyable pages is the base value of which the
235  * user-configurable dirty ratio is the effective number of pages that
236  * are allowed to be actually dirtied.  Per individual zone, or
237  * globally by using the sum of dirtyable pages over all zones.
238  *
239  * Because the user is allowed to specify the dirty limit globally as
240  * absolute number of bytes, calculating the per-zone dirty limit can
241  * require translating the configured limit into a percentage of
242  * global dirtyable memory first.
243  */
244 
245 /**
246  * node_dirtyable_memory - number of dirtyable pages in a node
247  * @pgdat: the node
248  *
249  * Return: the node's number of pages potentially available for dirty
250  * page cache.  This is the base value for the per-node dirty limits.
251  */
node_dirtyable_memory(struct pglist_data * pgdat)252 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
253 {
254 	unsigned long nr_pages = 0;
255 	int z;
256 
257 	for (z = 0; z < MAX_NR_ZONES; z++) {
258 		struct zone *zone = pgdat->node_zones + z;
259 
260 		if (!populated_zone(zone))
261 			continue;
262 
263 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
264 	}
265 
266 	/*
267 	 * Pages reserved for the kernel should not be considered
268 	 * dirtyable, to prevent a situation where reclaim has to
269 	 * clean pages in order to balance the zones.
270 	 */
271 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
272 
273 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
274 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
275 
276 	return nr_pages;
277 }
278 
highmem_dirtyable_memory(unsigned long total)279 static unsigned long highmem_dirtyable_memory(unsigned long total)
280 {
281 #ifdef CONFIG_HIGHMEM
282 	int node;
283 	unsigned long x = 0;
284 	int i;
285 
286 	for_each_node_state(node, N_HIGH_MEMORY) {
287 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
288 			struct zone *z;
289 			unsigned long nr_pages;
290 
291 			if (!is_highmem_idx(i))
292 				continue;
293 
294 			z = &NODE_DATA(node)->node_zones[i];
295 			if (!populated_zone(z))
296 				continue;
297 
298 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
299 			/* watch for underflows */
300 			nr_pages -= min(nr_pages, high_wmark_pages(z));
301 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
302 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
303 			x += nr_pages;
304 		}
305 	}
306 
307 	/*
308 	 * Make sure that the number of highmem pages is never larger
309 	 * than the number of the total dirtyable memory. This can only
310 	 * occur in very strange VM situations but we want to make sure
311 	 * that this does not occur.
312 	 */
313 	return min(x, total);
314 #else
315 	return 0;
316 #endif
317 }
318 
319 /**
320  * global_dirtyable_memory - number of globally dirtyable pages
321  *
322  * Return: the global number of pages potentially available for dirty
323  * page cache.  This is the base value for the global dirty limits.
324  */
global_dirtyable_memory(void)325 static unsigned long global_dirtyable_memory(void)
326 {
327 	unsigned long x;
328 
329 	x = global_zone_page_state(NR_FREE_PAGES);
330 	/*
331 	 * Pages reserved for the kernel should not be considered
332 	 * dirtyable, to prevent a situation where reclaim has to
333 	 * clean pages in order to balance the zones.
334 	 */
335 	x -= min(x, totalreserve_pages);
336 
337 	x += global_node_page_state(NR_INACTIVE_FILE);
338 	x += global_node_page_state(NR_ACTIVE_FILE);
339 
340 	if (!vm_highmem_is_dirtyable)
341 		x -= highmem_dirtyable_memory(x);
342 
343 	return x + 1;	/* Ensure that we never return 0 */
344 }
345 
346 /**
347  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
348  * @dtc: dirty_throttle_control of interest
349  *
350  * Calculate @dtc->thresh and ->bg_thresh considering
351  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
352  * must ensure that @dtc->avail is set before calling this function.  The
353  * dirty limits will be lifted by 1/4 for real-time tasks.
354  */
domain_dirty_limits(struct dirty_throttle_control * dtc)355 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
356 {
357 	const unsigned long available_memory = dtc->avail;
358 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
359 	unsigned long bytes = vm_dirty_bytes;
360 	unsigned long bg_bytes = dirty_background_bytes;
361 	/* convert ratios to per-PAGE_SIZE for higher precision */
362 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
363 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
364 	unsigned long thresh;
365 	unsigned long bg_thresh;
366 	struct task_struct *tsk;
367 
368 	/* gdtc is !NULL iff @dtc is for memcg domain */
369 	if (gdtc) {
370 		unsigned long global_avail = gdtc->avail;
371 
372 		/*
373 		 * The byte settings can't be applied directly to memcg
374 		 * domains.  Convert them to ratios by scaling against
375 		 * globally available memory.  As the ratios are in
376 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
377 		 * number of pages.
378 		 */
379 		if (bytes)
380 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
381 				    PAGE_SIZE);
382 		if (bg_bytes)
383 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
384 				       PAGE_SIZE);
385 		bytes = bg_bytes = 0;
386 	}
387 
388 	if (bytes)
389 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
390 	else
391 		thresh = (ratio * available_memory) / PAGE_SIZE;
392 
393 	if (bg_bytes)
394 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
395 	else
396 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
397 
398 	tsk = current;
399 	if (rt_or_dl_task(tsk)) {
400 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
401 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
402 	}
403 	/*
404 	 * Dirty throttling logic assumes the limits in page units fit into
405 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
406 	 */
407 	if (thresh > UINT_MAX)
408 		thresh = UINT_MAX;
409 	/* This makes sure bg_thresh is within 32-bits as well */
410 	if (bg_thresh >= thresh)
411 		bg_thresh = thresh / 2;
412 	dtc->thresh = thresh;
413 	dtc->bg_thresh = bg_thresh;
414 
415 	/* we should eventually report the domain in the TP */
416 	if (!gdtc)
417 		trace_global_dirty_state(bg_thresh, thresh);
418 }
419 
420 /**
421  * global_dirty_limits - background-writeback and dirty-throttling thresholds
422  * @pbackground: out parameter for bg_thresh
423  * @pdirty: out parameter for thresh
424  *
425  * Calculate bg_thresh and thresh for global_wb_domain.  See
426  * domain_dirty_limits() for details.
427  */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)428 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
429 {
430 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
431 
432 	gdtc.avail = global_dirtyable_memory();
433 	domain_dirty_limits(&gdtc);
434 
435 	*pbackground = gdtc.bg_thresh;
436 	*pdirty = gdtc.thresh;
437 }
438 
439 /**
440  * node_dirty_limit - maximum number of dirty pages allowed in a node
441  * @pgdat: the node
442  *
443  * Return: the maximum number of dirty pages allowed in a node, based
444  * on the node's dirtyable memory.
445  */
node_dirty_limit(struct pglist_data * pgdat)446 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
447 {
448 	unsigned long node_memory = node_dirtyable_memory(pgdat);
449 	struct task_struct *tsk = current;
450 	unsigned long dirty;
451 
452 	if (vm_dirty_bytes)
453 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
454 			node_memory / global_dirtyable_memory();
455 	else
456 		dirty = vm_dirty_ratio * node_memory / 100;
457 
458 	if (rt_or_dl_task(tsk))
459 		dirty += dirty / 4;
460 
461 	/*
462 	 * Dirty throttling logic assumes the limits in page units fit into
463 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
464 	 */
465 	return min_t(unsigned long, dirty, UINT_MAX);
466 }
467 
468 /**
469  * node_dirty_ok - tells whether a node is within its dirty limits
470  * @pgdat: the node to check
471  *
472  * Return: %true when the dirty pages in @pgdat are within the node's
473  * dirty limit, %false if the limit is exceeded.
474  */
node_dirty_ok(struct pglist_data * pgdat)475 bool node_dirty_ok(struct pglist_data *pgdat)
476 {
477 	unsigned long limit = node_dirty_limit(pgdat);
478 	unsigned long nr_pages = 0;
479 
480 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
481 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
482 
483 	return nr_pages <= limit;
484 }
485 
486 #ifdef CONFIG_SYSCTL
dirty_background_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)487 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
488 		void *buffer, size_t *lenp, loff_t *ppos)
489 {
490 	int ret;
491 
492 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
493 	if (ret == 0 && write)
494 		dirty_background_bytes = 0;
495 	return ret;
496 }
497 
dirty_background_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)498 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
499 		void *buffer, size_t *lenp, loff_t *ppos)
500 {
501 	int ret;
502 	unsigned long old_bytes = dirty_background_bytes;
503 
504 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
505 	if (ret == 0 && write) {
506 		if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
507 								UINT_MAX) {
508 			dirty_background_bytes = old_bytes;
509 			return -ERANGE;
510 		}
511 		dirty_background_ratio = 0;
512 	}
513 	return ret;
514 }
515 
dirty_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)516 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
517 		size_t *lenp, loff_t *ppos)
518 {
519 	int old_ratio = vm_dirty_ratio;
520 	int ret;
521 
522 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
523 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
524 		vm_dirty_bytes = 0;
525 		writeback_set_ratelimit();
526 	}
527 	return ret;
528 }
529 
dirty_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)530 static int dirty_bytes_handler(const struct ctl_table *table, int write,
531 		void *buffer, size_t *lenp, loff_t *ppos)
532 {
533 	unsigned long old_bytes = vm_dirty_bytes;
534 	int ret;
535 
536 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
537 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
538 		if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
539 			vm_dirty_bytes = old_bytes;
540 			return -ERANGE;
541 		}
542 		writeback_set_ratelimit();
543 		vm_dirty_ratio = 0;
544 	}
545 	return ret;
546 }
547 #endif
548 
wp_next_time(unsigned long cur_time)549 static unsigned long wp_next_time(unsigned long cur_time)
550 {
551 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
552 	/* 0 has a special meaning... */
553 	if (!cur_time)
554 		return 1;
555 	return cur_time;
556 }
557 
wb_domain_writeout_add(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac,long nr)558 static void wb_domain_writeout_add(struct wb_domain *dom,
559 				   struct fprop_local_percpu *completions,
560 				   unsigned int max_prop_frac, long nr)
561 {
562 	__fprop_add_percpu_max(&dom->completions, completions,
563 			       max_prop_frac, nr);
564 	/* First event after period switching was turned off? */
565 	if (unlikely(!dom->period_time)) {
566 		/*
567 		 * We can race with other wb_domain_writeout_add calls here but
568 		 * it does not cause any harm since the resulting time when
569 		 * timer will fire and what is in writeout_period_time will be
570 		 * roughly the same.
571 		 */
572 		dom->period_time = wp_next_time(jiffies);
573 		mod_timer(&dom->period_timer, dom->period_time);
574 	}
575 }
576 
577 /*
578  * Increment @wb's writeout completion count and the global writeout
579  * completion count. Called from __folio_end_writeback().
580  */
__wb_writeout_add(struct bdi_writeback * wb,long nr)581 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
582 {
583 	struct wb_domain *cgdom;
584 
585 	wb_stat_mod(wb, WB_WRITTEN, nr);
586 	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
587 			       wb->bdi->max_prop_frac, nr);
588 
589 	cgdom = mem_cgroup_wb_domain(wb);
590 	if (cgdom)
591 		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
592 				       wb->bdi->max_prop_frac, nr);
593 }
594 
wb_writeout_inc(struct bdi_writeback * wb)595 void wb_writeout_inc(struct bdi_writeback *wb)
596 {
597 	unsigned long flags;
598 
599 	local_irq_save(flags);
600 	__wb_writeout_add(wb, 1);
601 	local_irq_restore(flags);
602 }
603 EXPORT_SYMBOL_GPL(wb_writeout_inc);
604 
605 /*
606  * On idle system, we can be called long after we scheduled because we use
607  * deferred timers so count with missed periods.
608  */
writeout_period(struct timer_list * t)609 static void writeout_period(struct timer_list *t)
610 {
611 	struct wb_domain *dom = timer_container_of(dom, t, period_timer);
612 	int miss_periods = (jiffies - dom->period_time) /
613 						 VM_COMPLETIONS_PERIOD_LEN;
614 
615 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
616 		dom->period_time = wp_next_time(dom->period_time +
617 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
618 		mod_timer(&dom->period_timer, dom->period_time);
619 	} else {
620 		/*
621 		 * Aging has zeroed all fractions. Stop wasting CPU on period
622 		 * updates.
623 		 */
624 		dom->period_time = 0;
625 	}
626 }
627 
wb_domain_init(struct wb_domain * dom,gfp_t gfp)628 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
629 {
630 	memset(dom, 0, sizeof(*dom));
631 
632 	spin_lock_init(&dom->lock);
633 
634 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
635 
636 	dom->dirty_limit_tstamp = jiffies;
637 
638 	return fprop_global_init(&dom->completions, gfp);
639 }
640 
641 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)642 void wb_domain_exit(struct wb_domain *dom)
643 {
644 	timer_delete_sync(&dom->period_timer);
645 	fprop_global_destroy(&dom->completions);
646 }
647 #endif
648 
649 /*
650  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
651  * registered backing devices, which, for obvious reasons, can not
652  * exceed 100%.
653  */
654 static unsigned int bdi_min_ratio;
655 
bdi_check_pages_limit(unsigned long pages)656 static int bdi_check_pages_limit(unsigned long pages)
657 {
658 	unsigned long max_dirty_pages = global_dirtyable_memory();
659 
660 	if (pages > max_dirty_pages)
661 		return -EINVAL;
662 
663 	return 0;
664 }
665 
bdi_ratio_from_pages(unsigned long pages)666 static unsigned long bdi_ratio_from_pages(unsigned long pages)
667 {
668 	unsigned long background_thresh;
669 	unsigned long dirty_thresh;
670 	unsigned long ratio;
671 
672 	global_dirty_limits(&background_thresh, &dirty_thresh);
673 	if (!dirty_thresh)
674 		return -EINVAL;
675 	ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
676 
677 	return ratio;
678 }
679 
bdi_get_bytes(unsigned int ratio)680 static u64 bdi_get_bytes(unsigned int ratio)
681 {
682 	unsigned long background_thresh;
683 	unsigned long dirty_thresh;
684 	u64 bytes;
685 
686 	global_dirty_limits(&background_thresh, &dirty_thresh);
687 	bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
688 
689 	return bytes;
690 }
691 
__bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)692 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
693 {
694 	unsigned int delta;
695 	int ret = 0;
696 
697 	if (min_ratio > 100 * BDI_RATIO_SCALE)
698 		return -EINVAL;
699 
700 	spin_lock_bh(&bdi_lock);
701 	if (min_ratio > bdi->max_ratio) {
702 		ret = -EINVAL;
703 	} else {
704 		if (min_ratio < bdi->min_ratio) {
705 			delta = bdi->min_ratio - min_ratio;
706 			bdi_min_ratio -= delta;
707 			bdi->min_ratio = min_ratio;
708 		} else {
709 			delta = min_ratio - bdi->min_ratio;
710 			if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
711 				bdi_min_ratio += delta;
712 				bdi->min_ratio = min_ratio;
713 			} else {
714 				ret = -EINVAL;
715 			}
716 		}
717 	}
718 	spin_unlock_bh(&bdi_lock);
719 
720 	return ret;
721 }
722 
__bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)723 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
724 {
725 	int ret = 0;
726 
727 	if (max_ratio > 100 * BDI_RATIO_SCALE)
728 		return -EINVAL;
729 
730 	spin_lock_bh(&bdi_lock);
731 	if (bdi->min_ratio > max_ratio) {
732 		ret = -EINVAL;
733 	} else {
734 		bdi->max_ratio = max_ratio;
735 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
736 						(100 * BDI_RATIO_SCALE);
737 	}
738 	spin_unlock_bh(&bdi_lock);
739 
740 	return ret;
741 }
742 
bdi_set_min_ratio_no_scale(struct backing_dev_info * bdi,unsigned int min_ratio)743 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
744 {
745 	return __bdi_set_min_ratio(bdi, min_ratio);
746 }
747 
bdi_set_max_ratio_no_scale(struct backing_dev_info * bdi,unsigned int max_ratio)748 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
749 {
750 	return __bdi_set_max_ratio(bdi, max_ratio);
751 }
752 
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)753 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
754 {
755 	return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
756 }
757 
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)758 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
759 {
760 	return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
761 }
762 EXPORT_SYMBOL(bdi_set_max_ratio);
763 
bdi_get_min_bytes(struct backing_dev_info * bdi)764 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
765 {
766 	return bdi_get_bytes(bdi->min_ratio);
767 }
768 
bdi_set_min_bytes(struct backing_dev_info * bdi,u64 min_bytes)769 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
770 {
771 	int ret;
772 	unsigned long pages = min_bytes >> PAGE_SHIFT;
773 	long min_ratio;
774 
775 	ret = bdi_check_pages_limit(pages);
776 	if (ret)
777 		return ret;
778 
779 	min_ratio = bdi_ratio_from_pages(pages);
780 	if (min_ratio < 0)
781 		return min_ratio;
782 	return __bdi_set_min_ratio(bdi, min_ratio);
783 }
784 
bdi_get_max_bytes(struct backing_dev_info * bdi)785 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
786 {
787 	return bdi_get_bytes(bdi->max_ratio);
788 }
789 
bdi_set_max_bytes(struct backing_dev_info * bdi,u64 max_bytes)790 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
791 {
792 	int ret;
793 	unsigned long pages = max_bytes >> PAGE_SHIFT;
794 	long max_ratio;
795 
796 	ret = bdi_check_pages_limit(pages);
797 	if (ret)
798 		return ret;
799 
800 	max_ratio = bdi_ratio_from_pages(pages);
801 	if (max_ratio < 0)
802 		return max_ratio;
803 	return __bdi_set_max_ratio(bdi, max_ratio);
804 }
805 
bdi_set_strict_limit(struct backing_dev_info * bdi,unsigned int strict_limit)806 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
807 {
808 	if (strict_limit > 1)
809 		return -EINVAL;
810 
811 	spin_lock_bh(&bdi_lock);
812 	if (strict_limit)
813 		bdi->capabilities |= BDI_CAP_STRICTLIMIT;
814 	else
815 		bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
816 	spin_unlock_bh(&bdi_lock);
817 
818 	return 0;
819 }
820 
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)821 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
822 					   unsigned long bg_thresh)
823 {
824 	return (thresh + bg_thresh) / 2;
825 }
826 
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)827 static unsigned long hard_dirty_limit(struct wb_domain *dom,
828 				      unsigned long thresh)
829 {
830 	return max(thresh, dom->dirty_limit);
831 }
832 
833 /*
834  * Memory which can be further allocated to a memcg domain is capped by
835  * system-wide clean memory excluding the amount being used in the domain.
836  */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)837 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
838 			    unsigned long filepages, unsigned long headroom)
839 {
840 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
841 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
842 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
843 	unsigned long other_clean = global_clean - min(global_clean, clean);
844 
845 	mdtc->avail = filepages + min(headroom, other_clean);
846 }
847 
dtc_is_global(struct dirty_throttle_control * dtc)848 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
849 {
850 	return mdtc_gdtc(dtc) == NULL;
851 }
852 
853 /*
854  * Dirty background will ignore pages being written as we're trying to
855  * decide whether to put more under writeback.
856  */
domain_dirty_avail(struct dirty_throttle_control * dtc,bool include_writeback)857 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
858 			       bool include_writeback)
859 {
860 	if (dtc_is_global(dtc)) {
861 		dtc->avail = global_dirtyable_memory();
862 		dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
863 		if (include_writeback)
864 			dtc->dirty += global_node_page_state(NR_WRITEBACK);
865 	} else {
866 		unsigned long filepages = 0, headroom = 0, writeback = 0;
867 
868 		mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
869 				    &writeback);
870 		if (include_writeback)
871 			dtc->dirty += writeback;
872 		mdtc_calc_avail(dtc, filepages, headroom);
873 	}
874 }
875 
876 /**
877  * __wb_calc_thresh - @wb's share of dirty threshold
878  * @dtc: dirty_throttle_context of interest
879  * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
880  *
881  * Note that balance_dirty_pages() will only seriously take dirty throttling
882  * threshold as a hard limit when sleeping max_pause per page is not enough
883  * to keep the dirty pages under control. For example, when the device is
884  * completely stalled due to some error conditions, or when there are 1000
885  * dd tasks writing to a slow 10MB/s USB key.
886  * In the other normal situations, it acts more gently by throttling the tasks
887  * more (rather than completely block them) when the wb dirty pages go high.
888  *
889  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
890  * - starving fast devices
891  * - piling up dirty pages (that will take long time to sync) on slow devices
892  *
893  * The wb's share of dirty limit will be adapting to its throughput and
894  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
895  *
896  * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
897  * "dirty" in the context of dirty balancing includes all PG_dirty and
898  * PG_writeback pages.
899  */
__wb_calc_thresh(struct dirty_throttle_control * dtc,unsigned long thresh)900 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
901 				      unsigned long thresh)
902 {
903 	struct wb_domain *dom = dtc_dom(dtc);
904 	struct bdi_writeback *wb = dtc->wb;
905 	u64 wb_thresh;
906 	u64 wb_max_thresh;
907 	unsigned long numerator, denominator;
908 	unsigned long wb_min_ratio, wb_max_ratio;
909 
910 	/*
911 	 * Calculate this wb's share of the thresh ratio.
912 	 */
913 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
914 			      &numerator, &denominator);
915 
916 	wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
917 	wb_thresh *= numerator;
918 	wb_thresh = div64_ul(wb_thresh, denominator);
919 
920 	wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
921 
922 	wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
923 
924 	/*
925 	 * It's very possible that wb_thresh is close to 0 not because the
926 	 * device is slow, but that it has remained inactive for long time.
927 	 * Honour such devices a reasonable good (hopefully IO efficient)
928 	 * threshold, so that the occasional writes won't be blocked and active
929 	 * writes can rampup the threshold quickly.
930 	 */
931 	if (thresh > dtc->dirty) {
932 		if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT))
933 			wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100);
934 		else
935 			wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8);
936 	}
937 
938 	wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
939 	if (wb_thresh > wb_max_thresh)
940 		wb_thresh = wb_max_thresh;
941 
942 	return wb_thresh;
943 }
944 
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)945 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
946 {
947 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
948 
949 	domain_dirty_avail(&gdtc, true);
950 	return __wb_calc_thresh(&gdtc, thresh);
951 }
952 
cgwb_calc_thresh(struct bdi_writeback * wb)953 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
954 {
955 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
956 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
957 
958 	domain_dirty_avail(&gdtc, true);
959 	domain_dirty_avail(&mdtc, true);
960 	domain_dirty_limits(&mdtc);
961 
962 	return __wb_calc_thresh(&mdtc, mdtc.thresh);
963 }
964 
965 /*
966  *                           setpoint - dirty 3
967  *        f(dirty) := 1.0 + (----------------)
968  *                           limit - setpoint
969  *
970  * it's a 3rd order polynomial that subjects to
971  *
972  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
973  * (2) f(setpoint) = 1.0 => the balance point
974  * (3) f(limit)    = 0   => the hard limit
975  * (4) df/dx      <= 0	 => negative feedback control
976  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
977  *     => fast response on large errors; small oscillation near setpoint
978  */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)979 static long long pos_ratio_polynom(unsigned long setpoint,
980 					  unsigned long dirty,
981 					  unsigned long limit)
982 {
983 	long long pos_ratio;
984 	long x;
985 
986 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
987 		      (limit - setpoint) | 1);
988 	pos_ratio = x;
989 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
990 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
991 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
992 
993 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
994 }
995 
996 /*
997  * Dirty position control.
998  *
999  * (o) global/bdi setpoints
1000  *
1001  * We want the dirty pages be balanced around the global/wb setpoints.
1002  * When the number of dirty pages is higher/lower than the setpoint, the
1003  * dirty position control ratio (and hence task dirty ratelimit) will be
1004  * decreased/increased to bring the dirty pages back to the setpoint.
1005  *
1006  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1007  *
1008  *     if (dirty < setpoint) scale up   pos_ratio
1009  *     if (dirty > setpoint) scale down pos_ratio
1010  *
1011  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
1012  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
1013  *
1014  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1015  *
1016  * (o) global control line
1017  *
1018  *     ^ pos_ratio
1019  *     |
1020  *     |            |<===== global dirty control scope ======>|
1021  * 2.0  * * * * * * *
1022  *     |            .*
1023  *     |            . *
1024  *     |            .   *
1025  *     |            .     *
1026  *     |            .        *
1027  *     |            .            *
1028  * 1.0 ................................*
1029  *     |            .                  .     *
1030  *     |            .                  .          *
1031  *     |            .                  .              *
1032  *     |            .                  .                 *
1033  *     |            .                  .                    *
1034  *   0 +------------.------------------.----------------------*------------->
1035  *           freerun^          setpoint^                 limit^   dirty pages
1036  *
1037  * (o) wb control line
1038  *
1039  *     ^ pos_ratio
1040  *     |
1041  *     |            *
1042  *     |              *
1043  *     |                *
1044  *     |                  *
1045  *     |                    * |<=========== span ============>|
1046  * 1.0 .......................*
1047  *     |                      . *
1048  *     |                      .   *
1049  *     |                      .     *
1050  *     |                      .       *
1051  *     |                      .         *
1052  *     |                      .           *
1053  *     |                      .             *
1054  *     |                      .               *
1055  *     |                      .                 *
1056  *     |                      .                   *
1057  *     |                      .                     *
1058  * 1/4 ...............................................* * * * * * * * * * * *
1059  *     |                      .                         .
1060  *     |                      .                           .
1061  *     |                      .                             .
1062  *   0 +----------------------.-------------------------------.------------->
1063  *                wb_setpoint^                    x_intercept^
1064  *
1065  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1066  * be smoothly throttled down to normal if it starts high in situations like
1067  * - start writing to a slow SD card and a fast disk at the same time. The SD
1068  *   card's wb_dirty may rush to many times higher than wb_setpoint.
1069  * - the wb dirty thresh drops quickly due to change of JBOD workload
1070  */
wb_position_ratio(struct dirty_throttle_control * dtc)1071 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1072 {
1073 	struct bdi_writeback *wb = dtc->wb;
1074 	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1075 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1076 	unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1077 	unsigned long wb_thresh = dtc->wb_thresh;
1078 	unsigned long x_intercept;
1079 	unsigned long setpoint;		/* dirty pages' target balance point */
1080 	unsigned long wb_setpoint;
1081 	unsigned long span;
1082 	long long pos_ratio;		/* for scaling up/down the rate limit */
1083 	long x;
1084 
1085 	dtc->pos_ratio = 0;
1086 
1087 	if (unlikely(dtc->dirty >= limit))
1088 		return;
1089 
1090 	/*
1091 	 * global setpoint
1092 	 *
1093 	 * See comment for pos_ratio_polynom().
1094 	 */
1095 	setpoint = (freerun + limit) / 2;
1096 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1097 
1098 	/*
1099 	 * The strictlimit feature is a tool preventing mistrusted filesystems
1100 	 * from growing a large number of dirty pages before throttling. For
1101 	 * such filesystems balance_dirty_pages always checks wb counters
1102 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
1103 	 * This is especially important for fuse which sets bdi->max_ratio to
1104 	 * 1% by default.
1105 	 *
1106 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1107 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
1108 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1109 	 * limits are set by default to 10% and 20% (background and throttle).
1110 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1111 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1112 	 * about ~6K pages (as the average of background and throttle wb
1113 	 * limits). The 3rd order polynomial will provide positive feedback if
1114 	 * wb_dirty is under wb_setpoint and vice versa.
1115 	 *
1116 	 * Note, that we cannot use global counters in these calculations
1117 	 * because we want to throttle process writing to a strictlimit wb
1118 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1119 	 * in the example above).
1120 	 */
1121 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1122 		long long wb_pos_ratio;
1123 
1124 		if (dtc->wb_dirty >= wb_thresh)
1125 			return;
1126 
1127 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1128 						    dtc->wb_bg_thresh);
1129 
1130 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1131 			return;
1132 
1133 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1134 						 wb_thresh);
1135 
1136 		/*
1137 		 * Typically, for strictlimit case, wb_setpoint << setpoint
1138 		 * and pos_ratio >> wb_pos_ratio. In the other words global
1139 		 * state ("dirty") is not limiting factor and we have to
1140 		 * make decision based on wb counters. But there is an
1141 		 * important case when global pos_ratio should get precedence:
1142 		 * global limits are exceeded (e.g. due to activities on other
1143 		 * wb's) while given strictlimit wb is below limit.
1144 		 *
1145 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
1146 		 * but it would look too non-natural for the case of all
1147 		 * activity in the system coming from a single strictlimit wb
1148 		 * with bdi->max_ratio == 100%.
1149 		 *
1150 		 * Note that min() below somewhat changes the dynamics of the
1151 		 * control system. Normally, pos_ratio value can be well over 3
1152 		 * (when globally we are at freerun and wb is well below wb
1153 		 * setpoint). Now the maximum pos_ratio in the same situation
1154 		 * is 2. We might want to tweak this if we observe the control
1155 		 * system is too slow to adapt.
1156 		 */
1157 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1158 		return;
1159 	}
1160 
1161 	/*
1162 	 * We have computed basic pos_ratio above based on global situation. If
1163 	 * the wb is over/under its share of dirty pages, we want to scale
1164 	 * pos_ratio further down/up. That is done by the following mechanism.
1165 	 */
1166 
1167 	/*
1168 	 * wb setpoint
1169 	 *
1170 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1171 	 *
1172 	 *                        x_intercept - wb_dirty
1173 	 *                     := --------------------------
1174 	 *                        x_intercept - wb_setpoint
1175 	 *
1176 	 * The main wb control line is a linear function that subjects to
1177 	 *
1178 	 * (1) f(wb_setpoint) = 1.0
1179 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1180 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1181 	 *
1182 	 * For single wb case, the dirty pages are observed to fluctuate
1183 	 * regularly within range
1184 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1185 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1186 	 * fluctuation range for pos_ratio.
1187 	 *
1188 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1189 	 * own size, so move the slope over accordingly and choose a slope that
1190 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1191 	 */
1192 	if (unlikely(wb_thresh > dtc->thresh))
1193 		wb_thresh = dtc->thresh;
1194 	/*
1195 	 * scale global setpoint to wb's:
1196 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1197 	 */
1198 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1199 	wb_setpoint = setpoint * (u64)x >> 16;
1200 	/*
1201 	 * Use span=(8*write_bw) in single wb case as indicated by
1202 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1203 	 *
1204 	 *        wb_thresh                    thresh - wb_thresh
1205 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1206 	 *         thresh                           thresh
1207 	 */
1208 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1209 	x_intercept = wb_setpoint + span;
1210 
1211 	if (dtc->wb_dirty < x_intercept - span / 4) {
1212 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1213 				      (x_intercept - wb_setpoint) | 1);
1214 	} else
1215 		pos_ratio /= 4;
1216 
1217 	/*
1218 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1219 	 * It may push the desired control point of global dirty pages higher
1220 	 * than setpoint.
1221 	 */
1222 	x_intercept = wb_thresh / 2;
1223 	if (dtc->wb_dirty < x_intercept) {
1224 		if (dtc->wb_dirty > x_intercept / 8)
1225 			pos_ratio = div_u64(pos_ratio * x_intercept,
1226 					    dtc->wb_dirty);
1227 		else
1228 			pos_ratio *= 8;
1229 	}
1230 
1231 	dtc->pos_ratio = pos_ratio;
1232 }
1233 
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1234 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1235 				      unsigned long elapsed,
1236 				      unsigned long written)
1237 {
1238 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1239 	unsigned long avg = wb->avg_write_bandwidth;
1240 	unsigned long old = wb->write_bandwidth;
1241 	u64 bw;
1242 
1243 	/*
1244 	 * bw = written * HZ / elapsed
1245 	 *
1246 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1247 	 * write_bandwidth = ---------------------------------------------------
1248 	 *                                          period
1249 	 *
1250 	 * @written may have decreased due to folio_redirty_for_writepage().
1251 	 * Avoid underflowing @bw calculation.
1252 	 */
1253 	bw = written - min(written, wb->written_stamp);
1254 	bw *= HZ;
1255 	if (unlikely(elapsed > period)) {
1256 		bw = div64_ul(bw, elapsed);
1257 		avg = bw;
1258 		goto out;
1259 	}
1260 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1261 	bw >>= ilog2(period);
1262 
1263 	/*
1264 	 * one more level of smoothing, for filtering out sudden spikes
1265 	 */
1266 	if (avg > old && old >= (unsigned long)bw)
1267 		avg -= (avg - old) >> 3;
1268 
1269 	if (avg < old && old <= (unsigned long)bw)
1270 		avg += (old - avg) >> 3;
1271 
1272 out:
1273 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1274 	avg = max(avg, 1LU);
1275 	if (wb_has_dirty_io(wb)) {
1276 		long delta = avg - wb->avg_write_bandwidth;
1277 		WARN_ON_ONCE(atomic_long_add_return(delta,
1278 					&wb->bdi->tot_write_bandwidth) <= 0);
1279 	}
1280 	wb->write_bandwidth = bw;
1281 	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1282 }
1283 
update_dirty_limit(struct dirty_throttle_control * dtc)1284 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1285 {
1286 	struct wb_domain *dom = dtc_dom(dtc);
1287 	unsigned long thresh = dtc->thresh;
1288 	unsigned long limit = dom->dirty_limit;
1289 
1290 	/*
1291 	 * Follow up in one step.
1292 	 */
1293 	if (limit < thresh) {
1294 		limit = thresh;
1295 		goto update;
1296 	}
1297 
1298 	/*
1299 	 * Follow down slowly. Use the higher one as the target, because thresh
1300 	 * may drop below dirty. This is exactly the reason to introduce
1301 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1302 	 */
1303 	thresh = max(thresh, dtc->dirty);
1304 	if (limit > thresh) {
1305 		limit -= (limit - thresh) >> 5;
1306 		goto update;
1307 	}
1308 	return;
1309 update:
1310 	dom->dirty_limit = limit;
1311 }
1312 
domain_update_dirty_limit(struct dirty_throttle_control * dtc,unsigned long now)1313 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1314 				      unsigned long now)
1315 {
1316 	struct wb_domain *dom = dtc_dom(dtc);
1317 
1318 	/*
1319 	 * check locklessly first to optimize away locking for the most time
1320 	 */
1321 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1322 		return;
1323 
1324 	spin_lock(&dom->lock);
1325 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1326 		update_dirty_limit(dtc);
1327 		dom->dirty_limit_tstamp = now;
1328 	}
1329 	spin_unlock(&dom->lock);
1330 }
1331 
1332 /*
1333  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1334  *
1335  * Normal wb tasks will be curbed at or below it in long term.
1336  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1337  */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1338 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1339 				      unsigned long dirtied,
1340 				      unsigned long elapsed)
1341 {
1342 	struct bdi_writeback *wb = dtc->wb;
1343 	unsigned long dirty = dtc->dirty;
1344 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1345 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1346 	unsigned long setpoint = (freerun + limit) / 2;
1347 	unsigned long write_bw = wb->avg_write_bandwidth;
1348 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1349 	unsigned long dirty_rate;
1350 	unsigned long task_ratelimit;
1351 	unsigned long balanced_dirty_ratelimit;
1352 	unsigned long step;
1353 	unsigned long x;
1354 	unsigned long shift;
1355 
1356 	/*
1357 	 * The dirty rate will match the writeout rate in long term, except
1358 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1359 	 */
1360 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1361 
1362 	/*
1363 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1364 	 */
1365 	task_ratelimit = (u64)dirty_ratelimit *
1366 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1367 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1368 
1369 	/*
1370 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1371 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1372 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1373 	 * formula will yield the balanced rate limit (write_bw / N).
1374 	 *
1375 	 * Note that the expanded form is not a pure rate feedback:
1376 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1377 	 * but also takes pos_ratio into account:
1378 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1379 	 *
1380 	 * (1) is not realistic because pos_ratio also takes part in balancing
1381 	 * the dirty rate.  Consider the state
1382 	 *	pos_ratio = 0.5						     (3)
1383 	 *	rate = 2 * (write_bw / N)				     (4)
1384 	 * If (1) is used, it will stuck in that state! Because each dd will
1385 	 * be throttled at
1386 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1387 	 * yielding
1388 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1389 	 * put (6) into (1) we get
1390 	 *	rate_(i+1) = rate_(i)					     (7)
1391 	 *
1392 	 * So we end up using (2) to always keep
1393 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1394 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1395 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1396 	 * the dirty count meet the setpoint, but also where the slope of
1397 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1398 	 */
1399 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1400 					   dirty_rate | 1);
1401 	/*
1402 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1403 	 */
1404 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1405 		balanced_dirty_ratelimit = write_bw;
1406 
1407 	/*
1408 	 * We could safely do this and return immediately:
1409 	 *
1410 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1411 	 *
1412 	 * However to get a more stable dirty_ratelimit, the below elaborated
1413 	 * code makes use of task_ratelimit to filter out singular points and
1414 	 * limit the step size.
1415 	 *
1416 	 * The below code essentially only uses the relative value of
1417 	 *
1418 	 *	task_ratelimit - dirty_ratelimit
1419 	 *	= (pos_ratio - 1) * dirty_ratelimit
1420 	 *
1421 	 * which reflects the direction and size of dirty position error.
1422 	 */
1423 
1424 	/*
1425 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1426 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1427 	 * For example, when
1428 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1429 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1430 	 * lowering dirty_ratelimit will help meet both the position and rate
1431 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1432 	 * only help meet the rate target. After all, what the users ultimately
1433 	 * feel and care are stable dirty rate and small position error.
1434 	 *
1435 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1436 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1437 	 * keeps jumping around randomly and can even leap far away at times
1438 	 * due to the small 200ms estimation period of dirty_rate (we want to
1439 	 * keep that period small to reduce time lags).
1440 	 */
1441 	step = 0;
1442 
1443 	/*
1444 	 * For strictlimit case, calculations above were based on wb counters
1445 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1446 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1447 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1448 	 * "dirty" and wb_setpoint as "setpoint".
1449 	 */
1450 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1451 		dirty = dtc->wb_dirty;
1452 		setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1453 	}
1454 
1455 	if (dirty < setpoint) {
1456 		x = min3(wb->balanced_dirty_ratelimit,
1457 			 balanced_dirty_ratelimit, task_ratelimit);
1458 		if (dirty_ratelimit < x)
1459 			step = x - dirty_ratelimit;
1460 	} else {
1461 		x = max3(wb->balanced_dirty_ratelimit,
1462 			 balanced_dirty_ratelimit, task_ratelimit);
1463 		if (dirty_ratelimit > x)
1464 			step = dirty_ratelimit - x;
1465 	}
1466 
1467 	/*
1468 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1469 	 * rate itself is constantly fluctuating. So decrease the track speed
1470 	 * when it gets close to the target. Helps eliminate pointless tremors.
1471 	 */
1472 	shift = dirty_ratelimit / (2 * step + 1);
1473 	if (shift < BITS_PER_LONG)
1474 		step = DIV_ROUND_UP(step >> shift, 8);
1475 	else
1476 		step = 0;
1477 
1478 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1479 		dirty_ratelimit += step;
1480 	else
1481 		dirty_ratelimit -= step;
1482 
1483 	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1484 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1485 
1486 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1487 }
1488 
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,bool update_ratelimit)1489 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1490 				  struct dirty_throttle_control *mdtc,
1491 				  bool update_ratelimit)
1492 {
1493 	struct bdi_writeback *wb = gdtc->wb;
1494 	unsigned long now = jiffies;
1495 	unsigned long elapsed;
1496 	unsigned long dirtied;
1497 	unsigned long written;
1498 
1499 	spin_lock(&wb->list_lock);
1500 
1501 	/*
1502 	 * Lockless checks for elapsed time are racy and delayed update after
1503 	 * IO completion doesn't do it at all (to make sure written pages are
1504 	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1505 	 * division errors.
1506 	 */
1507 	elapsed = max(now - wb->bw_time_stamp, 1UL);
1508 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1509 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1510 
1511 	if (update_ratelimit) {
1512 		domain_update_dirty_limit(gdtc, now);
1513 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1514 
1515 		/*
1516 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1517 		 * compiler has no way to figure that out.  Help it.
1518 		 */
1519 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1520 			domain_update_dirty_limit(mdtc, now);
1521 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1522 		}
1523 	}
1524 	wb_update_write_bandwidth(wb, elapsed, written);
1525 
1526 	wb->dirtied_stamp = dirtied;
1527 	wb->written_stamp = written;
1528 	WRITE_ONCE(wb->bw_time_stamp, now);
1529 	spin_unlock(&wb->list_lock);
1530 }
1531 
wb_update_bandwidth(struct bdi_writeback * wb)1532 void wb_update_bandwidth(struct bdi_writeback *wb)
1533 {
1534 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1535 
1536 	__wb_update_bandwidth(&gdtc, NULL, false);
1537 }
1538 
1539 /* Interval after which we consider wb idle and don't estimate bandwidth */
1540 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1541 
wb_bandwidth_estimate_start(struct bdi_writeback * wb)1542 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1543 {
1544 	unsigned long now = jiffies;
1545 	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1546 
1547 	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1548 	    !atomic_read(&wb->writeback_inodes)) {
1549 		spin_lock(&wb->list_lock);
1550 		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1551 		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1552 		WRITE_ONCE(wb->bw_time_stamp, now);
1553 		spin_unlock(&wb->list_lock);
1554 	}
1555 }
1556 
1557 /*
1558  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1559  * will look to see if it needs to start dirty throttling.
1560  *
1561  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1562  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1563  * (the number of pages we may dirty without exceeding the dirty limits).
1564  */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1565 static unsigned long dirty_poll_interval(unsigned long dirty,
1566 					 unsigned long thresh)
1567 {
1568 	if (thresh > dirty)
1569 		return 1UL << (ilog2(thresh - dirty) >> 1);
1570 
1571 	return 1;
1572 }
1573 
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1574 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1575 				  unsigned long wb_dirty)
1576 {
1577 	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1578 	unsigned long t;
1579 
1580 	/*
1581 	 * Limit pause time for small memory systems. If sleeping for too long
1582 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1583 	 * idle.
1584 	 *
1585 	 * 8 serves as the safety ratio.
1586 	 */
1587 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1588 	t++;
1589 
1590 	return min_t(unsigned long, t, MAX_PAUSE);
1591 }
1592 
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1593 static long wb_min_pause(struct bdi_writeback *wb,
1594 			 long max_pause,
1595 			 unsigned long task_ratelimit,
1596 			 unsigned long dirty_ratelimit,
1597 			 int *nr_dirtied_pause)
1598 {
1599 	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1600 	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1601 	long t;		/* target pause */
1602 	long pause;	/* estimated next pause */
1603 	int pages;	/* target nr_dirtied_pause */
1604 
1605 	/* target for 10ms pause on 1-dd case */
1606 	t = max(1, HZ / 100);
1607 
1608 	/*
1609 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1610 	 * overheads.
1611 	 *
1612 	 * (N * 10ms) on 2^N concurrent tasks.
1613 	 */
1614 	if (hi > lo)
1615 		t += (hi - lo) * (10 * HZ) / 1024;
1616 
1617 	/*
1618 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1619 	 * on the much more stable dirty_ratelimit. However the next pause time
1620 	 * will be computed based on task_ratelimit and the two rate limits may
1621 	 * depart considerably at some time. Especially if task_ratelimit goes
1622 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1623 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1624 	 * result task_ratelimit won't be executed faithfully, which could
1625 	 * eventually bring down dirty_ratelimit.
1626 	 *
1627 	 * We apply two rules to fix it up:
1628 	 * 1) try to estimate the next pause time and if necessary, use a lower
1629 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1630 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1631 	 * 2) limit the target pause time to max_pause/2, so that the normal
1632 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1633 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1634 	 */
1635 	t = min(t, 1 + max_pause / 2);
1636 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1637 
1638 	/*
1639 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1640 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1641 	 * When the 16 consecutive reads are often interrupted by some dirty
1642 	 * throttling pause during the async writes, cfq will go into idles
1643 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1644 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1645 	 */
1646 	if (pages < DIRTY_POLL_THRESH) {
1647 		t = max_pause;
1648 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1649 		if (pages > DIRTY_POLL_THRESH) {
1650 			pages = DIRTY_POLL_THRESH;
1651 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1652 		}
1653 	}
1654 
1655 	pause = HZ * pages / (task_ratelimit + 1);
1656 	if (pause > max_pause) {
1657 		t = max_pause;
1658 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1659 	}
1660 
1661 	*nr_dirtied_pause = pages;
1662 	/*
1663 	 * The minimal pause time will normally be half the target pause time.
1664 	 */
1665 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1666 }
1667 
wb_dirty_limits(struct dirty_throttle_control * dtc)1668 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1669 {
1670 	struct bdi_writeback *wb = dtc->wb;
1671 	unsigned long wb_reclaimable;
1672 
1673 	/*
1674 	 * wb_thresh is not treated as some limiting factor as
1675 	 * dirty_thresh, due to reasons
1676 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1677 	 * - in a system with HDD and USB key, the USB key may somehow
1678 	 *   go into state (wb_dirty >> wb_thresh) either because
1679 	 *   wb_dirty starts high, or because wb_thresh drops low.
1680 	 *   In this case we don't want to hard throttle the USB key
1681 	 *   dirtiers for 100 seconds until wb_dirty drops under
1682 	 *   wb_thresh. Instead the auxiliary wb control line in
1683 	 *   wb_position_ratio() will let the dirtier task progress
1684 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1685 	 */
1686 	dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1687 	dtc->wb_bg_thresh = dtc->thresh ?
1688 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1689 
1690 	/*
1691 	 * In order to avoid the stacked BDI deadlock we need
1692 	 * to ensure we accurately count the 'dirty' pages when
1693 	 * the threshold is low.
1694 	 *
1695 	 * Otherwise it would be possible to get thresh+n pages
1696 	 * reported dirty, even though there are thresh-m pages
1697 	 * actually dirty; with m+n sitting in the percpu
1698 	 * deltas.
1699 	 */
1700 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1701 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1702 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1703 	} else {
1704 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1705 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1706 	}
1707 }
1708 
domain_poll_intv(struct dirty_throttle_control * dtc,bool strictlimit)1709 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1710 				      bool strictlimit)
1711 {
1712 	unsigned long dirty, thresh;
1713 
1714 	if (strictlimit) {
1715 		dirty = dtc->wb_dirty;
1716 		thresh = dtc->wb_thresh;
1717 	} else {
1718 		dirty = dtc->dirty;
1719 		thresh = dtc->thresh;
1720 	}
1721 
1722 	return dirty_poll_interval(dirty, thresh);
1723 }
1724 
1725 /*
1726  * Throttle it only when the background writeback cannot catch-up. This avoids
1727  * (excessively) small writeouts when the wb limits are ramping up in case of
1728  * !strictlimit.
1729  *
1730  * In strictlimit case make decision based on the wb counters and limits. Small
1731  * writeouts when the wb limits are ramping up are the price we consciously pay
1732  * for strictlimit-ing.
1733  */
domain_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1734 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1735 				 bool strictlimit)
1736 {
1737 	unsigned long dirty, thresh, bg_thresh;
1738 
1739 	if (unlikely(strictlimit)) {
1740 		wb_dirty_limits(dtc);
1741 		dirty = dtc->wb_dirty;
1742 		thresh = dtc->wb_thresh;
1743 		bg_thresh = dtc->wb_bg_thresh;
1744 	} else {
1745 		dirty = dtc->dirty;
1746 		thresh = dtc->thresh;
1747 		bg_thresh = dtc->bg_thresh;
1748 	}
1749 	dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1750 }
1751 
balance_domain_limits(struct dirty_throttle_control * dtc,bool strictlimit)1752 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1753 				  bool strictlimit)
1754 {
1755 	domain_dirty_avail(dtc, true);
1756 	domain_dirty_limits(dtc);
1757 	domain_dirty_freerun(dtc, strictlimit);
1758 }
1759 
wb_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1760 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1761 			     bool strictlimit)
1762 {
1763 	dtc->freerun = false;
1764 
1765 	/* was already handled in domain_dirty_freerun */
1766 	if (strictlimit)
1767 		return;
1768 
1769 	wb_dirty_limits(dtc);
1770 	/*
1771 	 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1772 	 * freerun ceiling.
1773 	 */
1774 	if (!(current->flags & PF_LOCAL_THROTTLE))
1775 		return;
1776 
1777 	dtc->freerun = dtc->wb_dirty <
1778 		       dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1779 }
1780 
wb_dirty_exceeded(struct dirty_throttle_control * dtc,bool strictlimit)1781 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1782 				     bool strictlimit)
1783 {
1784 	dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1785 		((dtc->dirty > dtc->thresh) || strictlimit);
1786 }
1787 
1788 /*
1789  * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1790  * in freerun state. Please don't use these invalid fields in freerun case.
1791  */
balance_wb_limits(struct dirty_throttle_control * dtc,bool strictlimit)1792 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1793 			      bool strictlimit)
1794 {
1795 	wb_dirty_freerun(dtc, strictlimit);
1796 	if (dtc->freerun)
1797 		return;
1798 
1799 	wb_dirty_exceeded(dtc, strictlimit);
1800 	wb_position_ratio(dtc);
1801 }
1802 
1803 /*
1804  * balance_dirty_pages() must be called by processes which are generating dirty
1805  * data.  It looks at the number of dirty pages in the machine and will force
1806  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1807  * If we're over `background_thresh' then the writeback threads are woken to
1808  * perform some writeout.
1809  */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied,unsigned int flags)1810 static int balance_dirty_pages(struct bdi_writeback *wb,
1811 			       unsigned long pages_dirtied, unsigned int flags)
1812 {
1813 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1814 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1815 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1816 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1817 						     &mdtc_stor : NULL;
1818 	struct dirty_throttle_control *sdtc;
1819 	unsigned long nr_dirty;
1820 	long period;
1821 	long pause;
1822 	long max_pause;
1823 	long min_pause;
1824 	int nr_dirtied_pause;
1825 	unsigned long task_ratelimit;
1826 	unsigned long dirty_ratelimit;
1827 	struct backing_dev_info *bdi = wb->bdi;
1828 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1829 	unsigned long start_time = jiffies;
1830 	int ret = 0;
1831 
1832 	for (;;) {
1833 		unsigned long now = jiffies;
1834 
1835 		nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1836 
1837 		balance_domain_limits(gdtc, strictlimit);
1838 		if (mdtc) {
1839 			/*
1840 			 * If @wb belongs to !root memcg, repeat the same
1841 			 * basic calculations for the memcg domain.
1842 			 */
1843 			balance_domain_limits(mdtc, strictlimit);
1844 		}
1845 
1846 		/*
1847 		 * In laptop mode, we wait until hitting the higher threshold
1848 		 * before starting background writeout, and then write out all
1849 		 * the way down to the lower threshold.  So slow writers cause
1850 		 * minimal disk activity.
1851 		 *
1852 		 * In normal mode, we start background writeout at the lower
1853 		 * background_thresh, to keep the amount of dirty memory low.
1854 		 */
1855 		if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1856 		    !writeback_in_progress(wb))
1857 			wb_start_background_writeback(wb);
1858 
1859 		/*
1860 		 * If memcg domain is in effect, @dirty should be under
1861 		 * both global and memcg freerun ceilings.
1862 		 */
1863 		if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1864 			unsigned long intv;
1865 			unsigned long m_intv;
1866 
1867 free_running:
1868 			intv = domain_poll_intv(gdtc, strictlimit);
1869 			m_intv = ULONG_MAX;
1870 
1871 			current->dirty_paused_when = now;
1872 			current->nr_dirtied = 0;
1873 			if (mdtc)
1874 				m_intv = domain_poll_intv(mdtc, strictlimit);
1875 			current->nr_dirtied_pause = min(intv, m_intv);
1876 			break;
1877 		}
1878 
1879 		/* Start writeback even when in laptop mode */
1880 		if (unlikely(!writeback_in_progress(wb)))
1881 			wb_start_background_writeback(wb);
1882 
1883 		mem_cgroup_flush_foreign(wb);
1884 
1885 		/*
1886 		 * Calculate global domain's pos_ratio and select the
1887 		 * global dtc by default.
1888 		 */
1889 		balance_wb_limits(gdtc, strictlimit);
1890 		if (gdtc->freerun)
1891 			goto free_running;
1892 		sdtc = gdtc;
1893 
1894 		if (mdtc) {
1895 			/*
1896 			 * If memcg domain is in effect, calculate its
1897 			 * pos_ratio.  @wb should satisfy constraints from
1898 			 * both global and memcg domains.  Choose the one
1899 			 * w/ lower pos_ratio.
1900 			 */
1901 			balance_wb_limits(mdtc, strictlimit);
1902 			if (mdtc->freerun)
1903 				goto free_running;
1904 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1905 				sdtc = mdtc;
1906 		}
1907 
1908 		wb->dirty_exceeded = gdtc->dirty_exceeded ||
1909 				     (mdtc && mdtc->dirty_exceeded);
1910 		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1911 					   BANDWIDTH_INTERVAL))
1912 			__wb_update_bandwidth(gdtc, mdtc, true);
1913 
1914 		/* throttle according to the chosen dtc */
1915 		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1916 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1917 							RATELIMIT_CALC_SHIFT;
1918 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1919 		min_pause = wb_min_pause(wb, max_pause,
1920 					 task_ratelimit, dirty_ratelimit,
1921 					 &nr_dirtied_pause);
1922 
1923 		if (unlikely(task_ratelimit == 0)) {
1924 			period = max_pause;
1925 			pause = max_pause;
1926 			goto pause;
1927 		}
1928 		period = HZ * pages_dirtied / task_ratelimit;
1929 		pause = period;
1930 		if (current->dirty_paused_when)
1931 			pause -= now - current->dirty_paused_when;
1932 		/*
1933 		 * For less than 1s think time (ext3/4 may block the dirtier
1934 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1935 		 * however at much less frequency), try to compensate it in
1936 		 * future periods by updating the virtual time; otherwise just
1937 		 * do a reset, as it may be a light dirtier.
1938 		 */
1939 		if (pause < min_pause) {
1940 			trace_balance_dirty_pages(wb,
1941 						  sdtc,
1942 						  dirty_ratelimit,
1943 						  task_ratelimit,
1944 						  pages_dirtied,
1945 						  period,
1946 						  min(pause, 0L),
1947 						  start_time);
1948 			if (pause < -HZ) {
1949 				current->dirty_paused_when = now;
1950 				current->nr_dirtied = 0;
1951 			} else if (period) {
1952 				current->dirty_paused_when += period;
1953 				current->nr_dirtied = 0;
1954 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1955 				current->nr_dirtied_pause += pages_dirtied;
1956 			break;
1957 		}
1958 		if (unlikely(pause > max_pause)) {
1959 			/* for occasional dropped task_ratelimit */
1960 			now += min(pause - max_pause, max_pause);
1961 			pause = max_pause;
1962 		}
1963 
1964 pause:
1965 		trace_balance_dirty_pages(wb,
1966 					  sdtc,
1967 					  dirty_ratelimit,
1968 					  task_ratelimit,
1969 					  pages_dirtied,
1970 					  period,
1971 					  pause,
1972 					  start_time);
1973 		if (flags & BDP_ASYNC) {
1974 			ret = -EAGAIN;
1975 			break;
1976 		}
1977 		__set_current_state(TASK_KILLABLE);
1978 		bdi->last_bdp_sleep = jiffies;
1979 		io_schedule_timeout(pause);
1980 
1981 		current->dirty_paused_when = now + pause;
1982 		current->nr_dirtied = 0;
1983 		current->nr_dirtied_pause = nr_dirtied_pause;
1984 
1985 		/*
1986 		 * This is typically equal to (dirty < thresh) and can also
1987 		 * keep "1000+ dd on a slow USB stick" under control.
1988 		 */
1989 		if (task_ratelimit)
1990 			break;
1991 
1992 		/*
1993 		 * In the case of an unresponsive NFS server and the NFS dirty
1994 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1995 		 * to go through, so that tasks on them still remain responsive.
1996 		 *
1997 		 * In theory 1 page is enough to keep the consumer-producer
1998 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1999 		 * more page. However wb_dirty has accounting errors.  So use
2000 		 * the larger and more IO friendly wb_stat_error.
2001 		 */
2002 		if (sdtc->wb_dirty <= wb_stat_error())
2003 			break;
2004 
2005 		if (fatal_signal_pending(current))
2006 			break;
2007 	}
2008 	return ret;
2009 }
2010 
2011 static DEFINE_PER_CPU(int, bdp_ratelimits);
2012 
2013 /*
2014  * Normal tasks are throttled by
2015  *	loop {
2016  *		dirty tsk->nr_dirtied_pause pages;
2017  *		take a snap in balance_dirty_pages();
2018  *	}
2019  * However there is a worst case. If every task exit immediately when dirtied
2020  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2021  * called to throttle the page dirties. The solution is to save the not yet
2022  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2023  * randomly into the running tasks. This works well for the above worst case,
2024  * as the new task will pick up and accumulate the old task's leaked dirty
2025  * count and eventually get throttled.
2026  */
2027 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2028 
2029 /**
2030  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2031  * @mapping: address_space which was dirtied.
2032  * @flags: BDP flags.
2033  *
2034  * Processes which are dirtying memory should call in here once for each page
2035  * which was newly dirtied.  The function will periodically check the system's
2036  * dirty state and will initiate writeback if needed.
2037  *
2038  * See balance_dirty_pages_ratelimited() for details.
2039  *
2040  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2041  * indicate that memory is out of balance and the caller must wait
2042  * for I/O to complete.  Otherwise, it will return 0 to indicate
2043  * that either memory was already in balance, or it was able to sleep
2044  * until the amount of dirty memory returned to balance.
2045  */
balance_dirty_pages_ratelimited_flags(struct address_space * mapping,unsigned int flags)2046 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2047 					unsigned int flags)
2048 {
2049 	struct inode *inode = mapping->host;
2050 	struct backing_dev_info *bdi = inode_to_bdi(inode);
2051 	struct bdi_writeback *wb = NULL;
2052 	int ratelimit;
2053 	int ret = 0;
2054 	int *p;
2055 
2056 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2057 		return ret;
2058 
2059 	if (inode_cgwb_enabled(inode))
2060 		wb = wb_get_create_current(bdi, GFP_KERNEL);
2061 	if (!wb)
2062 		wb = &bdi->wb;
2063 
2064 	ratelimit = current->nr_dirtied_pause;
2065 	if (wb->dirty_exceeded)
2066 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2067 
2068 	preempt_disable();
2069 	/*
2070 	 * This prevents one CPU to accumulate too many dirtied pages without
2071 	 * calling into balance_dirty_pages(), which can happen when there are
2072 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
2073 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
2074 	 */
2075 	p =  this_cpu_ptr(&bdp_ratelimits);
2076 	if (unlikely(current->nr_dirtied >= ratelimit))
2077 		*p = 0;
2078 	else if (unlikely(*p >= ratelimit_pages)) {
2079 		*p = 0;
2080 		ratelimit = 0;
2081 	}
2082 	/*
2083 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2084 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2085 	 * the dirty throttling and livelock other long-run dirtiers.
2086 	 */
2087 	p = this_cpu_ptr(&dirty_throttle_leaks);
2088 	if (*p > 0 && current->nr_dirtied < ratelimit) {
2089 		unsigned long nr_pages_dirtied;
2090 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2091 		*p -= nr_pages_dirtied;
2092 		current->nr_dirtied += nr_pages_dirtied;
2093 	}
2094 	preempt_enable();
2095 
2096 	if (unlikely(current->nr_dirtied >= ratelimit))
2097 		ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2098 
2099 	wb_put(wb);
2100 	return ret;
2101 }
2102 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2103 
2104 /**
2105  * balance_dirty_pages_ratelimited - balance dirty memory state.
2106  * @mapping: address_space which was dirtied.
2107  *
2108  * Processes which are dirtying memory should call in here once for each page
2109  * which was newly dirtied.  The function will periodically check the system's
2110  * dirty state and will initiate writeback if needed.
2111  *
2112  * Once we're over the dirty memory limit we decrease the ratelimiting
2113  * by a lot, to prevent individual processes from overshooting the limit
2114  * by (ratelimit_pages) each.
2115  */
balance_dirty_pages_ratelimited(struct address_space * mapping)2116 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2117 {
2118 	balance_dirty_pages_ratelimited_flags(mapping, 0);
2119 }
2120 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2121 
2122 /*
2123  * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2124  * and thresh, but it's for background writeback.
2125  */
wb_bg_dirty_limits(struct dirty_throttle_control * dtc)2126 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2127 {
2128 	struct bdi_writeback *wb = dtc->wb;
2129 
2130 	dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2131 	if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2132 		dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2133 	else
2134 		dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2135 }
2136 
domain_over_bg_thresh(struct dirty_throttle_control * dtc)2137 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2138 {
2139 	domain_dirty_avail(dtc, false);
2140 	domain_dirty_limits(dtc);
2141 	if (dtc->dirty > dtc->bg_thresh)
2142 		return true;
2143 
2144 	wb_bg_dirty_limits(dtc);
2145 	if (dtc->wb_dirty > dtc->wb_bg_thresh)
2146 		return true;
2147 
2148 	return false;
2149 }
2150 
2151 /**
2152  * wb_over_bg_thresh - does @wb need to be written back?
2153  * @wb: bdi_writeback of interest
2154  *
2155  * Determines whether background writeback should keep writing @wb or it's
2156  * clean enough.
2157  *
2158  * Return: %true if writeback should continue.
2159  */
wb_over_bg_thresh(struct bdi_writeback * wb)2160 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2161 {
2162 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2163 	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2164 
2165 	if (domain_over_bg_thresh(&gdtc))
2166 		return true;
2167 
2168 	if (mdtc_valid(&mdtc))
2169 		return domain_over_bg_thresh(&mdtc);
2170 
2171 	return false;
2172 }
2173 
2174 #ifdef CONFIG_SYSCTL
2175 /*
2176  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2177  */
dirty_writeback_centisecs_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2178 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2179 		void *buffer, size_t *length, loff_t *ppos)
2180 {
2181 	unsigned int old_interval = dirty_writeback_interval;
2182 	int ret;
2183 
2184 	ret = proc_dointvec(table, write, buffer, length, ppos);
2185 
2186 	/*
2187 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2188 	 * and a different non-zero value will wakeup the writeback threads.
2189 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2190 	 * iterate over all bdis and wbs.
2191 	 * The reason we do this is to make the change take effect immediately.
2192 	 */
2193 	if (!ret && write && dirty_writeback_interval &&
2194 		dirty_writeback_interval != old_interval)
2195 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2196 
2197 	return ret;
2198 }
2199 #endif
2200 
laptop_mode_timer_fn(struct timer_list * t)2201 void laptop_mode_timer_fn(struct timer_list *t)
2202 {
2203 	struct backing_dev_info *backing_dev_info =
2204 		timer_container_of(backing_dev_info, t, laptop_mode_wb_timer);
2205 
2206 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2207 }
2208 
2209 /*
2210  * We've spun up the disk and we're in laptop mode: schedule writeback
2211  * of all dirty data a few seconds from now.  If the flush is already scheduled
2212  * then push it back - the user is still using the disk.
2213  */
laptop_io_completion(struct backing_dev_info * info)2214 void laptop_io_completion(struct backing_dev_info *info)
2215 {
2216 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2217 }
2218 
2219 /*
2220  * We're in laptop mode and we've just synced. The sync's writes will have
2221  * caused another writeback to be scheduled by laptop_io_completion.
2222  * Nothing needs to be written back anymore, so we unschedule the writeback.
2223  */
laptop_sync_completion(void)2224 void laptop_sync_completion(void)
2225 {
2226 	struct backing_dev_info *bdi;
2227 
2228 	rcu_read_lock();
2229 
2230 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2231 		timer_delete(&bdi->laptop_mode_wb_timer);
2232 
2233 	rcu_read_unlock();
2234 }
2235 
2236 /*
2237  * If ratelimit_pages is too high then we can get into dirty-data overload
2238  * if a large number of processes all perform writes at the same time.
2239  *
2240  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2241  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2242  * thresholds.
2243  */
2244 
writeback_set_ratelimit(void)2245 void writeback_set_ratelimit(void)
2246 {
2247 	struct wb_domain *dom = &global_wb_domain;
2248 	unsigned long background_thresh;
2249 	unsigned long dirty_thresh;
2250 
2251 	global_dirty_limits(&background_thresh, &dirty_thresh);
2252 	dom->dirty_limit = dirty_thresh;
2253 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2254 	if (ratelimit_pages < 16)
2255 		ratelimit_pages = 16;
2256 }
2257 
page_writeback_cpu_online(unsigned int cpu)2258 static int page_writeback_cpu_online(unsigned int cpu)
2259 {
2260 	writeback_set_ratelimit();
2261 	return 0;
2262 }
2263 
2264 #ifdef CONFIG_SYSCTL
2265 
2266 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2267 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2268 
2269 static const struct ctl_table vm_page_writeback_sysctls[] = {
2270 	{
2271 		.procname   = "dirty_background_ratio",
2272 		.data       = &dirty_background_ratio,
2273 		.maxlen     = sizeof(dirty_background_ratio),
2274 		.mode       = 0644,
2275 		.proc_handler   = dirty_background_ratio_handler,
2276 		.extra1     = SYSCTL_ZERO,
2277 		.extra2     = SYSCTL_ONE_HUNDRED,
2278 	},
2279 	{
2280 		.procname   = "dirty_background_bytes",
2281 		.data       = &dirty_background_bytes,
2282 		.maxlen     = sizeof(dirty_background_bytes),
2283 		.mode       = 0644,
2284 		.proc_handler   = dirty_background_bytes_handler,
2285 		.extra1     = SYSCTL_LONG_ONE,
2286 	},
2287 	{
2288 		.procname   = "dirty_ratio",
2289 		.data       = &vm_dirty_ratio,
2290 		.maxlen     = sizeof(vm_dirty_ratio),
2291 		.mode       = 0644,
2292 		.proc_handler   = dirty_ratio_handler,
2293 		.extra1     = SYSCTL_ZERO,
2294 		.extra2     = SYSCTL_ONE_HUNDRED,
2295 	},
2296 	{
2297 		.procname   = "dirty_bytes",
2298 		.data       = &vm_dirty_bytes,
2299 		.maxlen     = sizeof(vm_dirty_bytes),
2300 		.mode       = 0644,
2301 		.proc_handler   = dirty_bytes_handler,
2302 		.extra1     = (void *)&dirty_bytes_min,
2303 	},
2304 	{
2305 		.procname   = "dirty_writeback_centisecs",
2306 		.data       = &dirty_writeback_interval,
2307 		.maxlen     = sizeof(dirty_writeback_interval),
2308 		.mode       = 0644,
2309 		.proc_handler   = dirty_writeback_centisecs_handler,
2310 	},
2311 	{
2312 		.procname   = "dirty_expire_centisecs",
2313 		.data       = &dirty_expire_interval,
2314 		.maxlen     = sizeof(dirty_expire_interval),
2315 		.mode       = 0644,
2316 		.proc_handler   = proc_dointvec_minmax,
2317 		.extra1     = SYSCTL_ZERO,
2318 	},
2319 #ifdef CONFIG_HIGHMEM
2320 	{
2321 		.procname	= "highmem_is_dirtyable",
2322 		.data		= &vm_highmem_is_dirtyable,
2323 		.maxlen		= sizeof(vm_highmem_is_dirtyable),
2324 		.mode		= 0644,
2325 		.proc_handler	= proc_dointvec_minmax,
2326 		.extra1		= SYSCTL_ZERO,
2327 		.extra2		= SYSCTL_ONE,
2328 	},
2329 #endif
2330 	{
2331 		.procname	= "laptop_mode",
2332 		.data		= &laptop_mode,
2333 		.maxlen		= sizeof(laptop_mode),
2334 		.mode		= 0644,
2335 		.proc_handler	= proc_dointvec_jiffies,
2336 	},
2337 };
2338 #endif
2339 
2340 /*
2341  * Called early on to tune the page writeback dirty limits.
2342  *
2343  * We used to scale dirty pages according to how total memory
2344  * related to pages that could be allocated for buffers.
2345  *
2346  * However, that was when we used "dirty_ratio" to scale with
2347  * all memory, and we don't do that any more. "dirty_ratio"
2348  * is now applied to total non-HIGHPAGE memory, and as such we can't
2349  * get into the old insane situation any more where we had
2350  * large amounts of dirty pages compared to a small amount of
2351  * non-HIGHMEM memory.
2352  *
2353  * But we might still want to scale the dirty_ratio by how
2354  * much memory the box has..
2355  */
page_writeback_init(void)2356 void __init page_writeback_init(void)
2357 {
2358 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2359 
2360 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2361 			  page_writeback_cpu_online, NULL);
2362 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2363 			  page_writeback_cpu_online);
2364 #ifdef CONFIG_SYSCTL
2365 	register_sysctl_init("vm", vm_page_writeback_sysctls);
2366 #endif
2367 }
2368 
2369 /**
2370  * tag_pages_for_writeback - tag pages to be written by writeback
2371  * @mapping: address space structure to write
2372  * @start: starting page index
2373  * @end: ending page index (inclusive)
2374  *
2375  * This function scans the page range from @start to @end (inclusive) and tags
2376  * all pages that have DIRTY tag set with a special TOWRITE tag.  The caller
2377  * can then use the TOWRITE tag to identify pages eligible for writeback.
2378  * This mechanism is used to avoid livelocking of writeback by a process
2379  * steadily creating new dirty pages in the file (thus it is important for this
2380  * function to be quick so that it can tag pages faster than a dirtying process
2381  * can create them).
2382  */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2383 void tag_pages_for_writeback(struct address_space *mapping,
2384 			     pgoff_t start, pgoff_t end)
2385 {
2386 	XA_STATE(xas, &mapping->i_pages, start);
2387 	unsigned int tagged = 0;
2388 	void *page;
2389 
2390 	xas_lock_irq(&xas);
2391 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2392 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2393 		if (++tagged % XA_CHECK_SCHED)
2394 			continue;
2395 
2396 		xas_pause(&xas);
2397 		xas_unlock_irq(&xas);
2398 		cond_resched();
2399 		xas_lock_irq(&xas);
2400 	}
2401 	xas_unlock_irq(&xas);
2402 }
2403 EXPORT_SYMBOL(tag_pages_for_writeback);
2404 
folio_prepare_writeback(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio)2405 static bool folio_prepare_writeback(struct address_space *mapping,
2406 		struct writeback_control *wbc, struct folio *folio)
2407 {
2408 	/*
2409 	 * Folio truncated or invalidated. We can freely skip it then,
2410 	 * even for data integrity operations: the folio has disappeared
2411 	 * concurrently, so there could be no real expectation of this
2412 	 * data integrity operation even if there is now a new, dirty
2413 	 * folio at the same pagecache index.
2414 	 */
2415 	if (unlikely(folio->mapping != mapping))
2416 		return false;
2417 
2418 	/*
2419 	 * Did somebody else write it for us?
2420 	 */
2421 	if (!folio_test_dirty(folio))
2422 		return false;
2423 
2424 	if (folio_test_writeback(folio)) {
2425 		if (wbc->sync_mode == WB_SYNC_NONE)
2426 			return false;
2427 		folio_wait_writeback(folio);
2428 	}
2429 	BUG_ON(folio_test_writeback(folio));
2430 
2431 	if (!folio_clear_dirty_for_io(folio))
2432 		return false;
2433 
2434 	return true;
2435 }
2436 
wbc_to_tag(struct writeback_control * wbc)2437 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2438 {
2439 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2440 		return PAGECACHE_TAG_TOWRITE;
2441 	return PAGECACHE_TAG_DIRTY;
2442 }
2443 
wbc_end(struct writeback_control * wbc)2444 static pgoff_t wbc_end(struct writeback_control *wbc)
2445 {
2446 	if (wbc->range_cyclic)
2447 		return -1;
2448 	return wbc->range_end >> PAGE_SHIFT;
2449 }
2450 
writeback_get_folio(struct address_space * mapping,struct writeback_control * wbc)2451 static struct folio *writeback_get_folio(struct address_space *mapping,
2452 		struct writeback_control *wbc)
2453 {
2454 	struct folio *folio;
2455 
2456 retry:
2457 	folio = folio_batch_next(&wbc->fbatch);
2458 	if (!folio) {
2459 		folio_batch_release(&wbc->fbatch);
2460 		cond_resched();
2461 		filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2462 				wbc_to_tag(wbc), &wbc->fbatch);
2463 		folio = folio_batch_next(&wbc->fbatch);
2464 		if (!folio)
2465 			return NULL;
2466 	}
2467 
2468 	folio_lock(folio);
2469 	if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2470 		folio_unlock(folio);
2471 		goto retry;
2472 	}
2473 
2474 	trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2475 	return folio;
2476 }
2477 
2478 /**
2479  * writeback_iter - iterate folio of a mapping for writeback
2480  * @mapping: address space structure to write
2481  * @wbc: writeback context
2482  * @folio: previously iterated folio (%NULL to start)
2483  * @error: in-out pointer for writeback errors (see below)
2484  *
2485  * This function returns the next folio for the writeback operation described by
2486  * @wbc on @mapping and  should be called in a while loop in the ->writepages
2487  * implementation.
2488  *
2489  * To start the writeback operation, %NULL is passed in the @folio argument, and
2490  * for every subsequent iteration the folio returned previously should be passed
2491  * back in.
2492  *
2493  * If there was an error in the per-folio writeback inside the writeback_iter()
2494  * loop, @error should be set to the error value.
2495  *
2496  * Once the writeback described in @wbc has finished, this function will return
2497  * %NULL and if there was an error in any iteration restore it to @error.
2498  *
2499  * Note: callers should not manually break out of the loop using break or goto
2500  * but must keep calling writeback_iter() until it returns %NULL.
2501  *
2502  * Return: the folio to write or %NULL if the loop is done.
2503  */
writeback_iter(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio,int * error)2504 struct folio *writeback_iter(struct address_space *mapping,
2505 		struct writeback_control *wbc, struct folio *folio, int *error)
2506 {
2507 	if (!folio) {
2508 		folio_batch_init(&wbc->fbatch);
2509 		wbc->saved_err = *error = 0;
2510 
2511 		/*
2512 		 * For range cyclic writeback we remember where we stopped so
2513 		 * that we can continue where we stopped.
2514 		 *
2515 		 * For non-cyclic writeback we always start at the beginning of
2516 		 * the passed in range.
2517 		 */
2518 		if (wbc->range_cyclic)
2519 			wbc->index = mapping->writeback_index;
2520 		else
2521 			wbc->index = wbc->range_start >> PAGE_SHIFT;
2522 
2523 		/*
2524 		 * To avoid livelocks when other processes dirty new pages, we
2525 		 * first tag pages which should be written back and only then
2526 		 * start writing them.
2527 		 *
2528 		 * For data-integrity writeback we have to be careful so that we
2529 		 * do not miss some pages (e.g., because some other process has
2530 		 * cleared the TOWRITE tag we set).  The rule we follow is that
2531 		 * TOWRITE tag can be cleared only by the process clearing the
2532 		 * DIRTY tag (and submitting the page for I/O).
2533 		 */
2534 		if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2535 			tag_pages_for_writeback(mapping, wbc->index,
2536 					wbc_end(wbc));
2537 	} else {
2538 		wbc->nr_to_write -= folio_nr_pages(folio);
2539 
2540 		WARN_ON_ONCE(*error > 0);
2541 
2542 		/*
2543 		 * For integrity writeback we have to keep going until we have
2544 		 * written all the folios we tagged for writeback above, even if
2545 		 * we run past wbc->nr_to_write or encounter errors.
2546 		 * We stash away the first error we encounter in wbc->saved_err
2547 		 * so that it can be retrieved when we're done.  This is because
2548 		 * the file system may still have state to clear for each folio.
2549 		 *
2550 		 * For background writeback we exit as soon as we run past
2551 		 * wbc->nr_to_write or encounter the first error.
2552 		 */
2553 		if (wbc->sync_mode == WB_SYNC_ALL) {
2554 			if (*error && !wbc->saved_err)
2555 				wbc->saved_err = *error;
2556 		} else {
2557 			if (*error || wbc->nr_to_write <= 0)
2558 				goto done;
2559 		}
2560 	}
2561 
2562 	folio = writeback_get_folio(mapping, wbc);
2563 	if (!folio) {
2564 		/*
2565 		 * To avoid deadlocks between range_cyclic writeback and callers
2566 		 * that hold folios in writeback to aggregate I/O until
2567 		 * the writeback iteration finishes, we do not loop back to the
2568 		 * start of the file.  Doing so causes a folio lock/folio
2569 		 * writeback access order inversion - we should only ever lock
2570 		 * multiple folios in ascending folio->index order, and looping
2571 		 * back to the start of the file violates that rule and causes
2572 		 * deadlocks.
2573 		 */
2574 		if (wbc->range_cyclic)
2575 			mapping->writeback_index = 0;
2576 
2577 		/*
2578 		 * Return the first error we encountered (if there was any) to
2579 		 * the caller.
2580 		 */
2581 		*error = wbc->saved_err;
2582 	}
2583 	return folio;
2584 
2585 done:
2586 	if (wbc->range_cyclic)
2587 		mapping->writeback_index = folio_next_index(folio);
2588 	folio_batch_release(&wbc->fbatch);
2589 	return NULL;
2590 }
2591 EXPORT_SYMBOL_GPL(writeback_iter);
2592 
2593 /**
2594  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2595  * @mapping: address space structure to write
2596  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2597  * @writepage: function called for each page
2598  * @data: data passed to writepage function
2599  *
2600  * Return: %0 on success, negative error code otherwise
2601  *
2602  * Note: please use writeback_iter() instead.
2603  */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2604 int write_cache_pages(struct address_space *mapping,
2605 		      struct writeback_control *wbc, writepage_t writepage,
2606 		      void *data)
2607 {
2608 	struct folio *folio = NULL;
2609 	int error;
2610 
2611 	while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2612 		error = writepage(folio, wbc, data);
2613 		if (error == AOP_WRITEPAGE_ACTIVATE) {
2614 			folio_unlock(folio);
2615 			error = 0;
2616 		}
2617 	}
2618 
2619 	return error;
2620 }
2621 EXPORT_SYMBOL(write_cache_pages);
2622 
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2623 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2624 {
2625 	int ret;
2626 	struct bdi_writeback *wb;
2627 
2628 	if (wbc->nr_to_write <= 0)
2629 		return 0;
2630 	wb = inode_to_wb_wbc(mapping->host, wbc);
2631 	wb_bandwidth_estimate_start(wb);
2632 	while (1) {
2633 		if (mapping->a_ops->writepages)
2634 			ret = mapping->a_ops->writepages(mapping, wbc);
2635 		else
2636 			/* deal with chardevs and other special files */
2637 			ret = 0;
2638 		if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2639 			break;
2640 
2641 		/*
2642 		 * Lacking an allocation context or the locality or writeback
2643 		 * state of any of the inode's pages, throttle based on
2644 		 * writeback activity on the local node. It's as good a
2645 		 * guess as any.
2646 		 */
2647 		reclaim_throttle(NODE_DATA(numa_node_id()),
2648 			VMSCAN_THROTTLE_WRITEBACK);
2649 	}
2650 	/*
2651 	 * Usually few pages are written by now from those we've just submitted
2652 	 * but if there's constant writeback being submitted, this makes sure
2653 	 * writeback bandwidth is updated once in a while.
2654 	 */
2655 	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2656 				   BANDWIDTH_INTERVAL))
2657 		wb_update_bandwidth(wb);
2658 	return ret;
2659 }
2660 
2661 /*
2662  * For address_spaces which do not use buffers nor write back.
2663  */
noop_dirty_folio(struct address_space * mapping,struct folio * folio)2664 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2665 {
2666 	if (!folio_test_dirty(folio))
2667 		return !folio_test_set_dirty(folio);
2668 	return false;
2669 }
2670 EXPORT_SYMBOL(noop_dirty_folio);
2671 
2672 /*
2673  * Helper function for set_page_dirty family.
2674  *
2675  * NOTE: This relies on being atomic wrt interrupts.
2676  */
folio_account_dirtied(struct folio * folio,struct address_space * mapping)2677 static void folio_account_dirtied(struct folio *folio,
2678 		struct address_space *mapping)
2679 {
2680 	struct inode *inode = mapping->host;
2681 
2682 	trace_writeback_dirty_folio(folio, mapping);
2683 
2684 	if (mapping_can_writeback(mapping)) {
2685 		struct bdi_writeback *wb;
2686 		long nr = folio_nr_pages(folio);
2687 
2688 		inode_attach_wb(inode, folio);
2689 		wb = inode_to_wb(inode);
2690 
2691 		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2692 		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2693 		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2694 		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2695 		wb_stat_mod(wb, WB_DIRTIED, nr);
2696 		task_io_account_write(nr * PAGE_SIZE);
2697 		current->nr_dirtied += nr;
2698 		__this_cpu_add(bdp_ratelimits, nr);
2699 
2700 		mem_cgroup_track_foreign_dirty(folio, wb);
2701 	}
2702 }
2703 
2704 /*
2705  * Helper function for deaccounting dirty page without writeback.
2706  *
2707  */
folio_account_cleaned(struct folio * folio,struct bdi_writeback * wb)2708 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2709 {
2710 	long nr = folio_nr_pages(folio);
2711 
2712 	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2713 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2714 	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2715 	task_io_account_cancelled_write(nr * PAGE_SIZE);
2716 }
2717 
2718 /*
2719  * Mark the folio dirty, and set it dirty in the page cache.
2720  *
2721  * If warn is true, then emit a warning if the folio is not uptodate and has
2722  * not been truncated.
2723  *
2724  * It is the caller's responsibility to prevent the folio from being truncated
2725  * while this function is in progress, although it may have been truncated
2726  * before this function is called.  Most callers have the folio locked.
2727  * A few have the folio blocked from truncation through other means (e.g.
2728  * zap_vma_pages() has it mapped and is holding the page table lock).
2729  * When called from mark_buffer_dirty(), the filesystem should hold a
2730  * reference to the buffer_head that is being marked dirty, which causes
2731  * try_to_free_buffers() to fail.
2732  */
__folio_mark_dirty(struct folio * folio,struct address_space * mapping,int warn)2733 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2734 			     int warn)
2735 {
2736 	unsigned long flags;
2737 
2738 	xa_lock_irqsave(&mapping->i_pages, flags);
2739 	if (folio->mapping) {	/* Race with truncate? */
2740 		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2741 		folio_account_dirtied(folio, mapping);
2742 		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2743 				PAGECACHE_TAG_DIRTY);
2744 	}
2745 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2746 }
2747 
2748 /**
2749  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2750  * @mapping: Address space this folio belongs to.
2751  * @folio: Folio to be marked as dirty.
2752  *
2753  * Filesystems which do not use buffer heads should call this function
2754  * from their dirty_folio address space operation.  It ignores the
2755  * contents of folio_get_private(), so if the filesystem marks individual
2756  * blocks as dirty, the filesystem should handle that itself.
2757  *
2758  * This is also sometimes used by filesystems which use buffer_heads when
2759  * a single buffer is being dirtied: we want to set the folio dirty in
2760  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2761  * whereas block_dirty_folio() is a "top-down" dirtying.
2762  *
2763  * The caller must ensure this doesn't race with truncation.  Most will
2764  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2765  * folio mapped and the pte lock held, which also locks out truncation.
2766  */
filemap_dirty_folio(struct address_space * mapping,struct folio * folio)2767 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2768 {
2769 	if (folio_test_set_dirty(folio))
2770 		return false;
2771 
2772 	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2773 
2774 	if (mapping->host) {
2775 		/* !PageAnon && !swapper_space */
2776 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2777 	}
2778 	return true;
2779 }
2780 EXPORT_SYMBOL(filemap_dirty_folio);
2781 
2782 /**
2783  * folio_redirty_for_writepage - Decline to write a dirty folio.
2784  * @wbc: The writeback control.
2785  * @folio: The folio.
2786  *
2787  * When a writepage implementation decides that it doesn't want to write
2788  * @folio for some reason, it should call this function, unlock @folio and
2789  * return 0.
2790  *
2791  * Return: True if we redirtied the folio.  False if someone else dirtied
2792  * it first.
2793  */
folio_redirty_for_writepage(struct writeback_control * wbc,struct folio * folio)2794 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2795 		struct folio *folio)
2796 {
2797 	struct address_space *mapping = folio->mapping;
2798 	long nr = folio_nr_pages(folio);
2799 	bool ret;
2800 
2801 	wbc->pages_skipped += nr;
2802 	ret = filemap_dirty_folio(mapping, folio);
2803 	if (mapping && mapping_can_writeback(mapping)) {
2804 		struct inode *inode = mapping->host;
2805 		struct bdi_writeback *wb;
2806 		struct wb_lock_cookie cookie = {};
2807 
2808 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2809 		current->nr_dirtied -= nr;
2810 		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2811 		wb_stat_mod(wb, WB_DIRTIED, -nr);
2812 		unlocked_inode_to_wb_end(inode, &cookie);
2813 	}
2814 	return ret;
2815 }
2816 EXPORT_SYMBOL(folio_redirty_for_writepage);
2817 
2818 /**
2819  * folio_mark_dirty - Mark a folio as being modified.
2820  * @folio: The folio.
2821  *
2822  * The folio may not be truncated while this function is running.
2823  * Holding the folio lock is sufficient to prevent truncation, but some
2824  * callers cannot acquire a sleeping lock.  These callers instead hold
2825  * the page table lock for a page table which contains at least one page
2826  * in this folio.  Truncation will block on the page table lock as it
2827  * unmaps pages before removing the folio from its mapping.
2828  *
2829  * Return: True if the folio was newly dirtied, false if it was already dirty.
2830  */
folio_mark_dirty(struct folio * folio)2831 bool folio_mark_dirty(struct folio *folio)
2832 {
2833 	struct address_space *mapping = folio_mapping(folio);
2834 
2835 	if (likely(mapping)) {
2836 		/*
2837 		 * readahead/folio_deactivate could remain
2838 		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2839 		 * About readahead, if the folio is written, the flags would be
2840 		 * reset. So no problem.
2841 		 * About folio_deactivate, if the folio is redirtied,
2842 		 * the flag will be reset. So no problem. but if the
2843 		 * folio is used by readahead it will confuse readahead
2844 		 * and make it restart the size rampup process. But it's
2845 		 * a trivial problem.
2846 		 */
2847 		if (folio_test_reclaim(folio))
2848 			folio_clear_reclaim(folio);
2849 		return mapping->a_ops->dirty_folio(mapping, folio);
2850 	}
2851 
2852 	return noop_dirty_folio(mapping, folio);
2853 }
2854 EXPORT_SYMBOL(folio_mark_dirty);
2855 
2856 /*
2857  * folio_mark_dirty() is racy if the caller has no reference against
2858  * folio->mapping->host, and if the folio is unlocked.  This is because another
2859  * CPU could truncate the folio off the mapping and then free the mapping.
2860  *
2861  * Usually, the folio _is_ locked, or the caller is a user-space process which
2862  * holds a reference on the inode by having an open file.
2863  *
2864  * In other cases, the folio should be locked before running folio_mark_dirty().
2865  */
folio_mark_dirty_lock(struct folio * folio)2866 bool folio_mark_dirty_lock(struct folio *folio)
2867 {
2868 	bool ret;
2869 
2870 	folio_lock(folio);
2871 	ret = folio_mark_dirty(folio);
2872 	folio_unlock(folio);
2873 	return ret;
2874 }
2875 EXPORT_SYMBOL(folio_mark_dirty_lock);
2876 
2877 /*
2878  * This cancels just the dirty bit on the kernel page itself, it does NOT
2879  * actually remove dirty bits on any mmap's that may be around. It also
2880  * leaves the page tagged dirty, so any sync activity will still find it on
2881  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2882  * look at the dirty bits in the VM.
2883  *
2884  * Doing this should *normally* only ever be done when a page is truncated,
2885  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2886  * this when it notices that somebody has cleaned out all the buffers on a
2887  * page without actually doing it through the VM. Can you say "ext3 is
2888  * horribly ugly"? Thought you could.
2889  */
__folio_cancel_dirty(struct folio * folio)2890 void __folio_cancel_dirty(struct folio *folio)
2891 {
2892 	struct address_space *mapping = folio_mapping(folio);
2893 
2894 	if (mapping_can_writeback(mapping)) {
2895 		struct inode *inode = mapping->host;
2896 		struct bdi_writeback *wb;
2897 		struct wb_lock_cookie cookie = {};
2898 
2899 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2900 
2901 		if (folio_test_clear_dirty(folio))
2902 			folio_account_cleaned(folio, wb);
2903 
2904 		unlocked_inode_to_wb_end(inode, &cookie);
2905 	} else {
2906 		folio_clear_dirty(folio);
2907 	}
2908 }
2909 EXPORT_SYMBOL(__folio_cancel_dirty);
2910 
2911 /*
2912  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2913  * Returns true if the folio was previously dirty.
2914  *
2915  * This is for preparing to put the folio under writeout.  We leave
2916  * the folio tagged as dirty in the xarray so that a concurrent
2917  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2918  * The ->writepage implementation will run either folio_start_writeback()
2919  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2920  * and xarray dirty tag back into sync.
2921  *
2922  * This incoherency between the folio's dirty flag and xarray tag is
2923  * unfortunate, but it only exists while the folio is locked.
2924  */
folio_clear_dirty_for_io(struct folio * folio)2925 bool folio_clear_dirty_for_io(struct folio *folio)
2926 {
2927 	struct address_space *mapping = folio_mapping(folio);
2928 	bool ret = false;
2929 
2930 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2931 
2932 	if (mapping && mapping_can_writeback(mapping)) {
2933 		struct inode *inode = mapping->host;
2934 		struct bdi_writeback *wb;
2935 		struct wb_lock_cookie cookie = {};
2936 
2937 		/*
2938 		 * Yes, Virginia, this is indeed insane.
2939 		 *
2940 		 * We use this sequence to make sure that
2941 		 *  (a) we account for dirty stats properly
2942 		 *  (b) we tell the low-level filesystem to
2943 		 *      mark the whole folio dirty if it was
2944 		 *      dirty in a pagetable. Only to then
2945 		 *  (c) clean the folio again and return 1 to
2946 		 *      cause the writeback.
2947 		 *
2948 		 * This way we avoid all nasty races with the
2949 		 * dirty bit in multiple places and clearing
2950 		 * them concurrently from different threads.
2951 		 *
2952 		 * Note! Normally the "folio_mark_dirty(folio)"
2953 		 * has no effect on the actual dirty bit - since
2954 		 * that will already usually be set. But we
2955 		 * need the side effects, and it can help us
2956 		 * avoid races.
2957 		 *
2958 		 * We basically use the folio "master dirty bit"
2959 		 * as a serialization point for all the different
2960 		 * threads doing their things.
2961 		 */
2962 		if (folio_mkclean(folio))
2963 			folio_mark_dirty(folio);
2964 		/*
2965 		 * We carefully synchronise fault handlers against
2966 		 * installing a dirty pte and marking the folio dirty
2967 		 * at this point.  We do this by having them hold the
2968 		 * page lock while dirtying the folio, and folios are
2969 		 * always locked coming in here, so we get the desired
2970 		 * exclusion.
2971 		 */
2972 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2973 		if (folio_test_clear_dirty(folio)) {
2974 			long nr = folio_nr_pages(folio);
2975 			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2976 			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2977 			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2978 			ret = true;
2979 		}
2980 		unlocked_inode_to_wb_end(inode, &cookie);
2981 		return ret;
2982 	}
2983 	return folio_test_clear_dirty(folio);
2984 }
2985 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2986 
wb_inode_writeback_start(struct bdi_writeback * wb)2987 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2988 {
2989 	atomic_inc(&wb->writeback_inodes);
2990 }
2991 
wb_inode_writeback_end(struct bdi_writeback * wb)2992 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2993 {
2994 	unsigned long flags;
2995 	atomic_dec(&wb->writeback_inodes);
2996 	/*
2997 	 * Make sure estimate of writeback throughput gets updated after
2998 	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2999 	 * (which is the interval other bandwidth updates use for batching) so
3000 	 * that if multiple inodes end writeback at a similar time, they get
3001 	 * batched into one bandwidth update.
3002 	 */
3003 	spin_lock_irqsave(&wb->work_lock, flags);
3004 	if (test_bit(WB_registered, &wb->state))
3005 		queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3006 	spin_unlock_irqrestore(&wb->work_lock, flags);
3007 }
3008 
__folio_end_writeback(struct folio * folio)3009 bool __folio_end_writeback(struct folio *folio)
3010 {
3011 	long nr = folio_nr_pages(folio);
3012 	struct address_space *mapping = folio_mapping(folio);
3013 	bool ret;
3014 
3015 	if (mapping && mapping_use_writeback_tags(mapping)) {
3016 		struct inode *inode = mapping->host;
3017 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3018 		unsigned long flags;
3019 
3020 		xa_lock_irqsave(&mapping->i_pages, flags);
3021 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3022 		__xa_clear_mark(&mapping->i_pages, folio_index(folio),
3023 					PAGECACHE_TAG_WRITEBACK);
3024 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3025 			struct bdi_writeback *wb = inode_to_wb(inode);
3026 
3027 			wb_stat_mod(wb, WB_WRITEBACK, -nr);
3028 			__wb_writeout_add(wb, nr);
3029 			if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3030 				wb_inode_writeback_end(wb);
3031 		}
3032 
3033 		if (mapping->host && !mapping_tagged(mapping,
3034 						     PAGECACHE_TAG_WRITEBACK))
3035 			sb_clear_inode_writeback(mapping->host);
3036 
3037 		xa_unlock_irqrestore(&mapping->i_pages, flags);
3038 	} else {
3039 		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3040 	}
3041 
3042 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3043 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3044 	node_stat_mod_folio(folio, NR_WRITTEN, nr);
3045 
3046 	return ret;
3047 }
3048 
__folio_start_writeback(struct folio * folio,bool keep_write)3049 void __folio_start_writeback(struct folio *folio, bool keep_write)
3050 {
3051 	long nr = folio_nr_pages(folio);
3052 	struct address_space *mapping = folio_mapping(folio);
3053 	int access_ret;
3054 
3055 	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3056 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3057 
3058 	if (mapping && mapping_use_writeback_tags(mapping)) {
3059 		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3060 		struct inode *inode = mapping->host;
3061 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3062 		unsigned long flags;
3063 		bool on_wblist;
3064 
3065 		xas_lock_irqsave(&xas, flags);
3066 		xas_load(&xas);
3067 		folio_test_set_writeback(folio);
3068 
3069 		on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3070 
3071 		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3072 		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3073 			struct bdi_writeback *wb = inode_to_wb(inode);
3074 
3075 			wb_stat_mod(wb, WB_WRITEBACK, nr);
3076 			if (!on_wblist)
3077 				wb_inode_writeback_start(wb);
3078 		}
3079 
3080 		/*
3081 		 * We can come through here when swapping anonymous
3082 		 * folios, so we don't necessarily have an inode to
3083 		 * track for sync.
3084 		 */
3085 		if (mapping->host && !on_wblist)
3086 			sb_mark_inode_writeback(mapping->host);
3087 		if (!folio_test_dirty(folio))
3088 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3089 		if (!keep_write)
3090 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3091 		xas_unlock_irqrestore(&xas, flags);
3092 	} else {
3093 		folio_test_set_writeback(folio);
3094 	}
3095 
3096 	lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3097 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3098 
3099 	access_ret = arch_make_folio_accessible(folio);
3100 	/*
3101 	 * If writeback has been triggered on a page that cannot be made
3102 	 * accessible, it is too late to recover here.
3103 	 */
3104 	VM_BUG_ON_FOLIO(access_ret != 0, folio);
3105 }
3106 EXPORT_SYMBOL(__folio_start_writeback);
3107 
3108 /**
3109  * folio_wait_writeback - Wait for a folio to finish writeback.
3110  * @folio: The folio to wait for.
3111  *
3112  * If the folio is currently being written back to storage, wait for the
3113  * I/O to complete.
3114  *
3115  * Context: Sleeps.  Must be called in process context and with
3116  * no spinlocks held.  Caller should hold a reference on the folio.
3117  * If the folio is not locked, writeback may start again after writeback
3118  * has finished.
3119  */
folio_wait_writeback(struct folio * folio)3120 void folio_wait_writeback(struct folio *folio)
3121 {
3122 	while (folio_test_writeback(folio)) {
3123 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3124 		folio_wait_bit(folio, PG_writeback);
3125 	}
3126 }
3127 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3128 
3129 /**
3130  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3131  * @folio: The folio to wait for.
3132  *
3133  * If the folio is currently being written back to storage, wait for the
3134  * I/O to complete or a fatal signal to arrive.
3135  *
3136  * Context: Sleeps.  Must be called in process context and with
3137  * no spinlocks held.  Caller should hold a reference on the folio.
3138  * If the folio is not locked, writeback may start again after writeback
3139  * has finished.
3140  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3141  */
folio_wait_writeback_killable(struct folio * folio)3142 int folio_wait_writeback_killable(struct folio *folio)
3143 {
3144 	while (folio_test_writeback(folio)) {
3145 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3146 		if (folio_wait_bit_killable(folio, PG_writeback))
3147 			return -EINTR;
3148 	}
3149 
3150 	return 0;
3151 }
3152 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3153 
3154 /**
3155  * folio_wait_stable() - wait for writeback to finish, if necessary.
3156  * @folio: The folio to wait on.
3157  *
3158  * This function determines if the given folio is related to a backing
3159  * device that requires folio contents to be held stable during writeback.
3160  * If so, then it will wait for any pending writeback to complete.
3161  *
3162  * Context: Sleeps.  Must be called in process context and with
3163  * no spinlocks held.  Caller should hold a reference on the folio.
3164  * If the folio is not locked, writeback may start again after writeback
3165  * has finished.
3166  */
folio_wait_stable(struct folio * folio)3167 void folio_wait_stable(struct folio *folio)
3168 {
3169 	if (mapping_stable_writes(folio_mapping(folio)))
3170 		folio_wait_writeback(folio);
3171 }
3172 EXPORT_SYMBOL_GPL(folio_wait_stable);
3173