xref: /linux/drivers/of/fdt.c (revision a1ff5a7d78a036d6c2178ee5acd6ba4946243800)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions for working with the Flattened Device Tree data format
4  *
5  * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
6  * benh@kernel.crashing.org
7  */
8 
9 #define pr_fmt(fmt)	"OF: fdt: " fmt
10 
11 #include <linux/acpi.h>
12 #include <linux/crash_dump.h>
13 #include <linux/crc32.h>
14 #include <linux/kernel.h>
15 #include <linux/initrd.h>
16 #include <linux/memblock.h>
17 #include <linux/mutex.h>
18 #include <linux/of.h>
19 #include <linux/of_fdt.h>
20 #include <linux/sizes.h>
21 #include <linux/string.h>
22 #include <linux/errno.h>
23 #include <linux/slab.h>
24 #include <linux/libfdt.h>
25 #include <linux/debugfs.h>
26 #include <linux/serial_core.h>
27 #include <linux/sysfs.h>
28 #include <linux/random.h>
29 
30 #include <asm/setup.h>  /* for COMMAND_LINE_SIZE */
31 #include <asm/page.h>
32 
33 #include "of_private.h"
34 
35 /*
36  * __dtb_empty_root_begin[] and __dtb_empty_root_end[] magically created by
37  * cmd_dt_S_dtb in scripts/Makefile.lib
38  */
39 extern uint8_t __dtb_empty_root_begin[];
40 extern uint8_t __dtb_empty_root_end[];
41 
42 /*
43  * of_fdt_limit_memory - limit the number of regions in the /memory node
44  * @limit: maximum entries
45  *
46  * Adjust the flattened device tree to have at most 'limit' number of
47  * memory entries in the /memory node. This function may be called
48  * any time after initial_boot_param is set.
49  */
of_fdt_limit_memory(int limit)50 void __init of_fdt_limit_memory(int limit)
51 {
52 	int memory;
53 	int len;
54 	const void *val;
55 	int cell_size = sizeof(uint32_t)*(dt_root_addr_cells + dt_root_size_cells);
56 
57 	memory = fdt_path_offset(initial_boot_params, "/memory");
58 	if (memory > 0) {
59 		val = fdt_getprop(initial_boot_params, memory, "reg", &len);
60 		if (len > limit*cell_size) {
61 			len = limit*cell_size;
62 			pr_debug("Limiting number of entries to %d\n", limit);
63 			fdt_setprop(initial_boot_params, memory, "reg", val,
64 					len);
65 		}
66 	}
67 }
68 
of_fdt_device_is_available(const void * blob,unsigned long node)69 bool of_fdt_device_is_available(const void *blob, unsigned long node)
70 {
71 	const char *status = fdt_getprop(blob, node, "status", NULL);
72 
73 	if (!status)
74 		return true;
75 
76 	if (!strcmp(status, "ok") || !strcmp(status, "okay"))
77 		return true;
78 
79 	return false;
80 }
81 
unflatten_dt_alloc(void ** mem,unsigned long size,unsigned long align)82 static void *unflatten_dt_alloc(void **mem, unsigned long size,
83 				       unsigned long align)
84 {
85 	void *res;
86 
87 	*mem = PTR_ALIGN(*mem, align);
88 	res = *mem;
89 	*mem += size;
90 
91 	return res;
92 }
93 
populate_properties(const void * blob,int offset,void ** mem,struct device_node * np,const char * nodename,bool dryrun)94 static void populate_properties(const void *blob,
95 				int offset,
96 				void **mem,
97 				struct device_node *np,
98 				const char *nodename,
99 				bool dryrun)
100 {
101 	struct property *pp, **pprev = NULL;
102 	int cur;
103 	bool has_name = false;
104 
105 	pprev = &np->properties;
106 	for (cur = fdt_first_property_offset(blob, offset);
107 	     cur >= 0;
108 	     cur = fdt_next_property_offset(blob, cur)) {
109 		const __be32 *val;
110 		const char *pname;
111 		u32 sz;
112 
113 		val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
114 		if (!val) {
115 			pr_warn("Cannot locate property at 0x%x\n", cur);
116 			continue;
117 		}
118 
119 		if (!pname) {
120 			pr_warn("Cannot find property name at 0x%x\n", cur);
121 			continue;
122 		}
123 
124 		if (!strcmp(pname, "name"))
125 			has_name = true;
126 
127 		pp = unflatten_dt_alloc(mem, sizeof(struct property),
128 					__alignof__(struct property));
129 		if (dryrun)
130 			continue;
131 
132 		/* We accept flattened tree phandles either in
133 		 * ePAPR-style "phandle" properties, or the
134 		 * legacy "linux,phandle" properties.  If both
135 		 * appear and have different values, things
136 		 * will get weird. Don't do that.
137 		 */
138 		if (!strcmp(pname, "phandle") ||
139 		    !strcmp(pname, "linux,phandle")) {
140 			if (!np->phandle)
141 				np->phandle = be32_to_cpup(val);
142 		}
143 
144 		/* And we process the "ibm,phandle" property
145 		 * used in pSeries dynamic device tree
146 		 * stuff
147 		 */
148 		if (!strcmp(pname, "ibm,phandle"))
149 			np->phandle = be32_to_cpup(val);
150 
151 		pp->name   = (char *)pname;
152 		pp->length = sz;
153 		pp->value  = (__be32 *)val;
154 		*pprev     = pp;
155 		pprev      = &pp->next;
156 	}
157 
158 	/* With version 0x10 we may not have the name property,
159 	 * recreate it here from the unit name if absent
160 	 */
161 	if (!has_name) {
162 		const char *p = nodename, *ps = p, *pa = NULL;
163 		int len;
164 
165 		while (*p) {
166 			if ((*p) == '@')
167 				pa = p;
168 			else if ((*p) == '/')
169 				ps = p + 1;
170 			p++;
171 		}
172 
173 		if (pa < ps)
174 			pa = p;
175 		len = (pa - ps) + 1;
176 		pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
177 					__alignof__(struct property));
178 		if (!dryrun) {
179 			pp->name   = "name";
180 			pp->length = len;
181 			pp->value  = pp + 1;
182 			*pprev     = pp;
183 			memcpy(pp->value, ps, len - 1);
184 			((char *)pp->value)[len - 1] = 0;
185 			pr_debug("fixed up name for %s -> %s\n",
186 				 nodename, (char *)pp->value);
187 		}
188 	}
189 }
190 
populate_node(const void * blob,int offset,void ** mem,struct device_node * dad,struct device_node ** pnp,bool dryrun)191 static int populate_node(const void *blob,
192 			  int offset,
193 			  void **mem,
194 			  struct device_node *dad,
195 			  struct device_node **pnp,
196 			  bool dryrun)
197 {
198 	struct device_node *np;
199 	const char *pathp;
200 	int len;
201 
202 	pathp = fdt_get_name(blob, offset, &len);
203 	if (!pathp) {
204 		*pnp = NULL;
205 		return len;
206 	}
207 
208 	len++;
209 
210 	np = unflatten_dt_alloc(mem, sizeof(struct device_node) + len,
211 				__alignof__(struct device_node));
212 	if (!dryrun) {
213 		char *fn;
214 		of_node_init(np);
215 		np->full_name = fn = ((char *)np) + sizeof(*np);
216 
217 		memcpy(fn, pathp, len);
218 
219 		if (dad != NULL) {
220 			np->parent = dad;
221 			np->sibling = dad->child;
222 			dad->child = np;
223 		}
224 	}
225 
226 	populate_properties(blob, offset, mem, np, pathp, dryrun);
227 	if (!dryrun) {
228 		np->name = of_get_property(np, "name", NULL);
229 		if (!np->name)
230 			np->name = "<NULL>";
231 	}
232 
233 	*pnp = np;
234 	return 0;
235 }
236 
reverse_nodes(struct device_node * parent)237 static void reverse_nodes(struct device_node *parent)
238 {
239 	struct device_node *child, *next;
240 
241 	/* In-depth first */
242 	child = parent->child;
243 	while (child) {
244 		reverse_nodes(child);
245 
246 		child = child->sibling;
247 	}
248 
249 	/* Reverse the nodes in the child list */
250 	child = parent->child;
251 	parent->child = NULL;
252 	while (child) {
253 		next = child->sibling;
254 
255 		child->sibling = parent->child;
256 		parent->child = child;
257 		child = next;
258 	}
259 }
260 
261 /**
262  * unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
263  * @blob: The parent device tree blob
264  * @mem: Memory chunk to use for allocating device nodes and properties
265  * @dad: Parent struct device_node
266  * @nodepp: The device_node tree created by the call
267  *
268  * Return: The size of unflattened device tree or error code
269  */
unflatten_dt_nodes(const void * blob,void * mem,struct device_node * dad,struct device_node ** nodepp)270 static int unflatten_dt_nodes(const void *blob,
271 			      void *mem,
272 			      struct device_node *dad,
273 			      struct device_node **nodepp)
274 {
275 	struct device_node *root;
276 	int offset = 0, depth = 0, initial_depth = 0;
277 #define FDT_MAX_DEPTH	64
278 	struct device_node *nps[FDT_MAX_DEPTH];
279 	void *base = mem;
280 	bool dryrun = !base;
281 	int ret;
282 
283 	if (nodepp)
284 		*nodepp = NULL;
285 
286 	/*
287 	 * We're unflattening device sub-tree if @dad is valid. There are
288 	 * possibly multiple nodes in the first level of depth. We need
289 	 * set @depth to 1 to make fdt_next_node() happy as it bails
290 	 * immediately when negative @depth is found. Otherwise, the device
291 	 * nodes except the first one won't be unflattened successfully.
292 	 */
293 	if (dad)
294 		depth = initial_depth = 1;
295 
296 	root = dad;
297 	nps[depth] = dad;
298 
299 	for (offset = 0;
300 	     offset >= 0 && depth >= initial_depth;
301 	     offset = fdt_next_node(blob, offset, &depth)) {
302 		if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH - 1))
303 			continue;
304 
305 		if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
306 		    !of_fdt_device_is_available(blob, offset))
307 			continue;
308 
309 		ret = populate_node(blob, offset, &mem, nps[depth],
310 				   &nps[depth+1], dryrun);
311 		if (ret < 0)
312 			return ret;
313 
314 		if (!dryrun && nodepp && !*nodepp)
315 			*nodepp = nps[depth+1];
316 		if (!dryrun && !root)
317 			root = nps[depth+1];
318 	}
319 
320 	if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
321 		pr_err("Error %d processing FDT\n", offset);
322 		return -EINVAL;
323 	}
324 
325 	/*
326 	 * Reverse the child list. Some drivers assumes node order matches .dts
327 	 * node order
328 	 */
329 	if (!dryrun)
330 		reverse_nodes(root);
331 
332 	return mem - base;
333 }
334 
335 /**
336  * __unflatten_device_tree - create tree of device_nodes from flat blob
337  * @blob: The blob to expand
338  * @dad: Parent device node
339  * @mynodes: The device_node tree created by the call
340  * @dt_alloc: An allocator that provides a virtual address to memory
341  * for the resulting tree
342  * @detached: if true set OF_DETACHED on @mynodes
343  *
344  * unflattens a device-tree, creating the tree of struct device_node. It also
345  * fills the "name" and "type" pointers of the nodes so the normal device-tree
346  * walking functions can be used.
347  *
348  * Return: NULL on failure or the memory chunk containing the unflattened
349  * device tree on success.
350  */
__unflatten_device_tree(const void * blob,struct device_node * dad,struct device_node ** mynodes,void * (* dt_alloc)(u64 size,u64 align),bool detached)351 void *__unflatten_device_tree(const void *blob,
352 			      struct device_node *dad,
353 			      struct device_node **mynodes,
354 			      void *(*dt_alloc)(u64 size, u64 align),
355 			      bool detached)
356 {
357 	int size;
358 	void *mem;
359 	int ret;
360 
361 	if (mynodes)
362 		*mynodes = NULL;
363 
364 	pr_debug(" -> unflatten_device_tree()\n");
365 
366 	if (!blob) {
367 		pr_debug("No device tree pointer\n");
368 		return NULL;
369 	}
370 
371 	pr_debug("Unflattening device tree:\n");
372 	pr_debug("magic: %08x\n", fdt_magic(blob));
373 	pr_debug("size: %08x\n", fdt_totalsize(blob));
374 	pr_debug("version: %08x\n", fdt_version(blob));
375 
376 	if (fdt_check_header(blob)) {
377 		pr_err("Invalid device tree blob header\n");
378 		return NULL;
379 	}
380 
381 	/* First pass, scan for size */
382 	size = unflatten_dt_nodes(blob, NULL, dad, NULL);
383 	if (size <= 0)
384 		return NULL;
385 
386 	size = ALIGN(size, 4);
387 	pr_debug("  size is %d, allocating...\n", size);
388 
389 	/* Allocate memory for the expanded device tree */
390 	mem = dt_alloc(size + 4, __alignof__(struct device_node));
391 	if (!mem)
392 		return NULL;
393 
394 	memset(mem, 0, size);
395 
396 	*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
397 
398 	pr_debug("  unflattening %p...\n", mem);
399 
400 	/* Second pass, do actual unflattening */
401 	ret = unflatten_dt_nodes(blob, mem, dad, mynodes);
402 
403 	if (be32_to_cpup(mem + size) != 0xdeadbeef)
404 		pr_warn("End of tree marker overwritten: %08x\n",
405 			be32_to_cpup(mem + size));
406 
407 	if (ret <= 0)
408 		return NULL;
409 
410 	if (detached && mynodes && *mynodes) {
411 		of_node_set_flag(*mynodes, OF_DETACHED);
412 		pr_debug("unflattened tree is detached\n");
413 	}
414 
415 	pr_debug(" <- unflatten_device_tree()\n");
416 	return mem;
417 }
418 
kernel_tree_alloc(u64 size,u64 align)419 static void *kernel_tree_alloc(u64 size, u64 align)
420 {
421 	return kzalloc(size, GFP_KERNEL);
422 }
423 
424 static DEFINE_MUTEX(of_fdt_unflatten_mutex);
425 
426 /**
427  * of_fdt_unflatten_tree - create tree of device_nodes from flat blob
428  * @blob: Flat device tree blob
429  * @dad: Parent device node
430  * @mynodes: The device tree created by the call
431  *
432  * unflattens the device-tree passed by the firmware, creating the
433  * tree of struct device_node. It also fills the "name" and "type"
434  * pointers of the nodes so the normal device-tree walking functions
435  * can be used.
436  *
437  * Return: NULL on failure or the memory chunk containing the unflattened
438  * device tree on success.
439  */
of_fdt_unflatten_tree(const unsigned long * blob,struct device_node * dad,struct device_node ** mynodes)440 void *of_fdt_unflatten_tree(const unsigned long *blob,
441 			    struct device_node *dad,
442 			    struct device_node **mynodes)
443 {
444 	void *mem;
445 
446 	mutex_lock(&of_fdt_unflatten_mutex);
447 	mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
448 				      true);
449 	mutex_unlock(&of_fdt_unflatten_mutex);
450 
451 	return mem;
452 }
453 EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
454 
455 /* Everything below here references initial_boot_params directly. */
456 int __initdata dt_root_addr_cells;
457 int __initdata dt_root_size_cells;
458 
459 void *initial_boot_params __ro_after_init;
460 
461 #ifdef CONFIG_OF_EARLY_FLATTREE
462 
463 static u32 of_fdt_crc32;
464 
465 /*
466  * fdt_reserve_elfcorehdr() - reserves memory for elf core header
467  *
468  * This function reserves the memory occupied by an elf core header
469  * described in the device tree. This region contains all the
470  * information about primary kernel's core image and is used by a dump
471  * capture kernel to access the system memory on primary kernel.
472  */
fdt_reserve_elfcorehdr(void)473 static void __init fdt_reserve_elfcorehdr(void)
474 {
475 	if (!IS_ENABLED(CONFIG_CRASH_DUMP) || !elfcorehdr_size)
476 		return;
477 
478 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
479 		pr_warn("elfcorehdr is overlapped\n");
480 		return;
481 	}
482 
483 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
484 
485 	pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
486 		elfcorehdr_size >> 10, elfcorehdr_addr);
487 }
488 
489 /**
490  * early_init_fdt_scan_reserved_mem() - create reserved memory regions
491  *
492  * This function grabs memory from early allocator for device exclusive use
493  * defined in device tree structures. It should be called by arch specific code
494  * once the early allocator (i.e. memblock) has been fully activated.
495  */
early_init_fdt_scan_reserved_mem(void)496 void __init early_init_fdt_scan_reserved_mem(void)
497 {
498 	int n;
499 	u64 base, size;
500 
501 	if (!initial_boot_params)
502 		return;
503 
504 	fdt_scan_reserved_mem();
505 	fdt_reserve_elfcorehdr();
506 
507 	/* Process header /memreserve/ fields */
508 	for (n = 0; ; n++) {
509 		fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
510 		if (!size)
511 			break;
512 		memblock_reserve(base, size);
513 	}
514 
515 	fdt_init_reserved_mem();
516 }
517 
518 /**
519  * early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
520  */
early_init_fdt_reserve_self(void)521 void __init early_init_fdt_reserve_self(void)
522 {
523 	if (!initial_boot_params)
524 		return;
525 
526 	/* Reserve the dtb region */
527 	memblock_reserve(__pa(initial_boot_params),
528 			 fdt_totalsize(initial_boot_params));
529 }
530 
531 /**
532  * of_scan_flat_dt - scan flattened tree blob and call callback on each.
533  * @it: callback function
534  * @data: context data pointer
535  *
536  * This function is used to scan the flattened device-tree, it is
537  * used to extract the memory information at boot before we can
538  * unflatten the tree
539  */
of_scan_flat_dt(int (* it)(unsigned long node,const char * uname,int depth,void * data),void * data)540 int __init of_scan_flat_dt(int (*it)(unsigned long node,
541 				     const char *uname, int depth,
542 				     void *data),
543 			   void *data)
544 {
545 	const void *blob = initial_boot_params;
546 	const char *pathp;
547 	int offset, rc = 0, depth = -1;
548 
549 	if (!blob)
550 		return 0;
551 
552 	for (offset = fdt_next_node(blob, -1, &depth);
553 	     offset >= 0 && depth >= 0 && !rc;
554 	     offset = fdt_next_node(blob, offset, &depth)) {
555 
556 		pathp = fdt_get_name(blob, offset, NULL);
557 		rc = it(offset, pathp, depth, data);
558 	}
559 	return rc;
560 }
561 
562 /**
563  * of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
564  * @parent: parent node
565  * @it: callback function
566  * @data: context data pointer
567  *
568  * This function is used to scan sub-nodes of a node.
569  */
of_scan_flat_dt_subnodes(unsigned long parent,int (* it)(unsigned long node,const char * uname,void * data),void * data)570 int __init of_scan_flat_dt_subnodes(unsigned long parent,
571 				    int (*it)(unsigned long node,
572 					      const char *uname,
573 					      void *data),
574 				    void *data)
575 {
576 	const void *blob = initial_boot_params;
577 	int node;
578 
579 	fdt_for_each_subnode(node, blob, parent) {
580 		const char *pathp;
581 		int rc;
582 
583 		pathp = fdt_get_name(blob, node, NULL);
584 		rc = it(node, pathp, data);
585 		if (rc)
586 			return rc;
587 	}
588 	return 0;
589 }
590 
591 /**
592  * of_get_flat_dt_subnode_by_name - get the subnode by given name
593  *
594  * @node: the parent node
595  * @uname: the name of subnode
596  * @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
597  */
598 
of_get_flat_dt_subnode_by_name(unsigned long node,const char * uname)599 int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
600 {
601 	return fdt_subnode_offset(initial_boot_params, node, uname);
602 }
603 
604 /*
605  * of_get_flat_dt_root - find the root node in the flat blob
606  */
of_get_flat_dt_root(void)607 unsigned long __init of_get_flat_dt_root(void)
608 {
609 	return 0;
610 }
611 
612 /*
613  * of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
614  *
615  * This function can be used within scan_flattened_dt callback to get
616  * access to properties
617  */
of_get_flat_dt_prop(unsigned long node,const char * name,int * size)618 const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
619 				       int *size)
620 {
621 	return fdt_getprop(initial_boot_params, node, name, size);
622 }
623 
624 /**
625  * of_fdt_is_compatible - Return true if given node from the given blob has
626  * compat in its compatible list
627  * @blob: A device tree blob
628  * @node: node to test
629  * @compat: compatible string to compare with compatible list.
630  *
631  * Return: a non-zero value on match with smaller values returned for more
632  * specific compatible values.
633  */
of_fdt_is_compatible(const void * blob,unsigned long node,const char * compat)634 static int of_fdt_is_compatible(const void *blob,
635 		      unsigned long node, const char *compat)
636 {
637 	const char *cp;
638 	int cplen;
639 	unsigned long l, score = 0;
640 
641 	cp = fdt_getprop(blob, node, "compatible", &cplen);
642 	if (cp == NULL)
643 		return 0;
644 	while (cplen > 0) {
645 		score++;
646 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
647 			return score;
648 		l = strlen(cp) + 1;
649 		cp += l;
650 		cplen -= l;
651 	}
652 
653 	return 0;
654 }
655 
656 /**
657  * of_flat_dt_is_compatible - Return true if given node has compat in compatible list
658  * @node: node to test
659  * @compat: compatible string to compare with compatible list.
660  */
of_flat_dt_is_compatible(unsigned long node,const char * compat)661 int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
662 {
663 	return of_fdt_is_compatible(initial_boot_params, node, compat);
664 }
665 
666 /*
667  * of_flat_dt_match - Return true if node matches a list of compatible values
668  */
of_flat_dt_match(unsigned long node,const char * const * compat)669 static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
670 {
671 	unsigned int tmp, score = 0;
672 
673 	if (!compat)
674 		return 0;
675 
676 	while (*compat) {
677 		tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
678 		if (tmp && (score == 0 || (tmp < score)))
679 			score = tmp;
680 		compat++;
681 	}
682 
683 	return score;
684 }
685 
686 /*
687  * of_get_flat_dt_phandle - Given a node in the flat blob, return the phandle
688  */
of_get_flat_dt_phandle(unsigned long node)689 uint32_t __init of_get_flat_dt_phandle(unsigned long node)
690 {
691 	return fdt_get_phandle(initial_boot_params, node);
692 }
693 
of_flat_dt_get_machine_name(void)694 const char * __init of_flat_dt_get_machine_name(void)
695 {
696 	const char *name;
697 	unsigned long dt_root = of_get_flat_dt_root();
698 
699 	name = of_get_flat_dt_prop(dt_root, "model", NULL);
700 	if (!name)
701 		name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
702 	return name;
703 }
704 
705 /**
706  * of_flat_dt_match_machine - Iterate match tables to find matching machine.
707  *
708  * @default_match: A machine specific ptr to return in case of no match.
709  * @get_next_compat: callback function to return next compatible match table.
710  *
711  * Iterate through machine match tables to find the best match for the machine
712  * compatible string in the FDT.
713  */
of_flat_dt_match_machine(const void * default_match,const void * (* get_next_compat)(const char * const **))714 const void * __init of_flat_dt_match_machine(const void *default_match,
715 		const void * (*get_next_compat)(const char * const**))
716 {
717 	const void *data = NULL;
718 	const void *best_data = default_match;
719 	const char *const *compat;
720 	unsigned long dt_root;
721 	unsigned int best_score = ~1, score = 0;
722 
723 	dt_root = of_get_flat_dt_root();
724 	while ((data = get_next_compat(&compat))) {
725 		score = of_flat_dt_match(dt_root, compat);
726 		if (score > 0 && score < best_score) {
727 			best_data = data;
728 			best_score = score;
729 		}
730 	}
731 	if (!best_data) {
732 		const char *prop;
733 		int size;
734 
735 		pr_err("\n unrecognized device tree list:\n[ ");
736 
737 		prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
738 		if (prop) {
739 			while (size > 0) {
740 				printk("'%s' ", prop);
741 				size -= strlen(prop) + 1;
742 				prop += strlen(prop) + 1;
743 			}
744 		}
745 		printk("]\n\n");
746 		return NULL;
747 	}
748 
749 	pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
750 
751 	return best_data;
752 }
753 
__early_init_dt_declare_initrd(unsigned long start,unsigned long end)754 static void __early_init_dt_declare_initrd(unsigned long start,
755 					   unsigned long end)
756 {
757 	/*
758 	 * __va() is not yet available this early on some platforms. In that
759 	 * case, the platform uses phys_initrd_start/phys_initrd_size instead
760 	 * and does the VA conversion itself.
761 	 */
762 	if (!IS_ENABLED(CONFIG_ARM64) &&
763 	    !(IS_ENABLED(CONFIG_RISCV) && IS_ENABLED(CONFIG_64BIT))) {
764 		initrd_start = (unsigned long)__va(start);
765 		initrd_end = (unsigned long)__va(end);
766 		initrd_below_start_ok = 1;
767 	}
768 }
769 
770 /**
771  * early_init_dt_check_for_initrd - Decode initrd location from flat tree
772  * @node: reference to node containing initrd location ('chosen')
773  */
early_init_dt_check_for_initrd(unsigned long node)774 static void __init early_init_dt_check_for_initrd(unsigned long node)
775 {
776 	u64 start, end;
777 	int len;
778 	const __be32 *prop;
779 
780 	if (!IS_ENABLED(CONFIG_BLK_DEV_INITRD))
781 		return;
782 
783 	pr_debug("Looking for initrd properties... ");
784 
785 	prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
786 	if (!prop)
787 		return;
788 	start = of_read_number(prop, len/4);
789 
790 	prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
791 	if (!prop)
792 		return;
793 	end = of_read_number(prop, len/4);
794 	if (start > end)
795 		return;
796 
797 	__early_init_dt_declare_initrd(start, end);
798 	phys_initrd_start = start;
799 	phys_initrd_size = end - start;
800 
801 	pr_debug("initrd_start=0x%llx  initrd_end=0x%llx\n", start, end);
802 }
803 
804 /**
805  * early_init_dt_check_for_elfcorehdr - Decode elfcorehdr location from flat
806  * tree
807  * @node: reference to node containing elfcorehdr location ('chosen')
808  */
early_init_dt_check_for_elfcorehdr(unsigned long node)809 static void __init early_init_dt_check_for_elfcorehdr(unsigned long node)
810 {
811 	const __be32 *prop;
812 	int len;
813 
814 	if (!IS_ENABLED(CONFIG_CRASH_DUMP))
815 		return;
816 
817 	pr_debug("Looking for elfcorehdr property... ");
818 
819 	prop = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
820 	if (!prop || (len < (dt_root_addr_cells + dt_root_size_cells)))
821 		return;
822 
823 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &prop);
824 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &prop);
825 
826 	pr_debug("elfcorehdr_start=0x%llx elfcorehdr_size=0x%llx\n",
827 		 elfcorehdr_addr, elfcorehdr_size);
828 }
829 
830 static unsigned long chosen_node_offset = -FDT_ERR_NOTFOUND;
831 
832 /*
833  * The main usage of linux,usable-memory-range is for crash dump kernel.
834  * Originally, the number of usable-memory regions is one. Now there may
835  * be two regions, low region and high region.
836  * To make compatibility with existing user-space and older kdump, the low
837  * region is always the last range of linux,usable-memory-range if exist.
838  */
839 #define MAX_USABLE_RANGES		2
840 
841 /**
842  * early_init_dt_check_for_usable_mem_range - Decode usable memory range
843  * location from flat tree
844  */
early_init_dt_check_for_usable_mem_range(void)845 void __init early_init_dt_check_for_usable_mem_range(void)
846 {
847 	struct memblock_region rgn[MAX_USABLE_RANGES] = {0};
848 	const __be32 *prop, *endp;
849 	int len, i;
850 	unsigned long node = chosen_node_offset;
851 
852 	if ((long)node < 0)
853 		return;
854 
855 	pr_debug("Looking for usable-memory-range property... ");
856 
857 	prop = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
858 	if (!prop || (len % (dt_root_addr_cells + dt_root_size_cells)))
859 		return;
860 
861 	endp = prop + (len / sizeof(__be32));
862 	for (i = 0; i < MAX_USABLE_RANGES && prop < endp; i++) {
863 		rgn[i].base = dt_mem_next_cell(dt_root_addr_cells, &prop);
864 		rgn[i].size = dt_mem_next_cell(dt_root_size_cells, &prop);
865 
866 		pr_debug("cap_mem_regions[%d]: base=%pa, size=%pa\n",
867 			 i, &rgn[i].base, &rgn[i].size);
868 	}
869 
870 	memblock_cap_memory_range(rgn[0].base, rgn[0].size);
871 	for (i = 1; i < MAX_USABLE_RANGES && rgn[i].size; i++)
872 		memblock_add(rgn[i].base, rgn[i].size);
873 }
874 
875 #ifdef CONFIG_SERIAL_EARLYCON
876 
early_init_dt_scan_chosen_stdout(void)877 int __init early_init_dt_scan_chosen_stdout(void)
878 {
879 	int offset;
880 	const char *p, *q, *options = NULL;
881 	int l;
882 	const struct earlycon_id *match;
883 	const void *fdt = initial_boot_params;
884 	int ret;
885 
886 	offset = fdt_path_offset(fdt, "/chosen");
887 	if (offset < 0)
888 		offset = fdt_path_offset(fdt, "/chosen@0");
889 	if (offset < 0)
890 		return -ENOENT;
891 
892 	p = fdt_getprop(fdt, offset, "stdout-path", &l);
893 	if (!p)
894 		p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
895 	if (!p || !l)
896 		return -ENOENT;
897 
898 	q = strchrnul(p, ':');
899 	if (*q != '\0')
900 		options = q + 1;
901 	l = q - p;
902 
903 	/* Get the node specified by stdout-path */
904 	offset = fdt_path_offset_namelen(fdt, p, l);
905 	if (offset < 0) {
906 		pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
907 		return 0;
908 	}
909 
910 	for (match = __earlycon_table; match < __earlycon_table_end; match++) {
911 		if (!match->compatible[0])
912 			continue;
913 
914 		if (fdt_node_check_compatible(fdt, offset, match->compatible))
915 			continue;
916 
917 		ret = of_setup_earlycon(match, offset, options);
918 		if (!ret || ret == -EALREADY)
919 			return 0;
920 	}
921 	return -ENODEV;
922 }
923 #endif
924 
925 /*
926  * early_init_dt_scan_root - fetch the top level address and size cells
927  */
early_init_dt_scan_root(void)928 int __init early_init_dt_scan_root(void)
929 {
930 	const __be32 *prop;
931 	const void *fdt = initial_boot_params;
932 	int node = fdt_path_offset(fdt, "/");
933 
934 	if (node < 0)
935 		return -ENODEV;
936 
937 	dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
938 	dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
939 
940 	prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
941 	if (prop)
942 		dt_root_size_cells = be32_to_cpup(prop);
943 	pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
944 
945 	prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
946 	if (prop)
947 		dt_root_addr_cells = be32_to_cpup(prop);
948 	pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
949 
950 	return 0;
951 }
952 
dt_mem_next_cell(int s,const __be32 ** cellp)953 u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
954 {
955 	const __be32 *p = *cellp;
956 
957 	*cellp = p + s;
958 	return of_read_number(p, s);
959 }
960 
961 /*
962  * early_init_dt_scan_memory - Look for and parse memory nodes
963  */
early_init_dt_scan_memory(void)964 int __init early_init_dt_scan_memory(void)
965 {
966 	int node, found_memory = 0;
967 	const void *fdt = initial_boot_params;
968 
969 	fdt_for_each_subnode(node, fdt, 0) {
970 		const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
971 		const __be32 *reg, *endp;
972 		int l;
973 		bool hotpluggable;
974 
975 		/* We are scanning "memory" nodes only */
976 		if (type == NULL || strcmp(type, "memory") != 0)
977 			continue;
978 
979 		if (!of_fdt_device_is_available(fdt, node))
980 			continue;
981 
982 		reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
983 		if (reg == NULL)
984 			reg = of_get_flat_dt_prop(node, "reg", &l);
985 		if (reg == NULL)
986 			continue;
987 
988 		endp = reg + (l / sizeof(__be32));
989 		hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
990 
991 		pr_debug("memory scan node %s, reg size %d,\n",
992 			 fdt_get_name(fdt, node, NULL), l);
993 
994 		while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
995 			u64 base, size;
996 
997 			base = dt_mem_next_cell(dt_root_addr_cells, &reg);
998 			size = dt_mem_next_cell(dt_root_size_cells, &reg);
999 
1000 			if (size == 0)
1001 				continue;
1002 			pr_debug(" - %llx, %llx\n", base, size);
1003 
1004 			early_init_dt_add_memory_arch(base, size);
1005 
1006 			found_memory = 1;
1007 
1008 			if (!hotpluggable)
1009 				continue;
1010 
1011 			if (memblock_mark_hotplug(base, size))
1012 				pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
1013 					base, base + size);
1014 		}
1015 	}
1016 	return found_memory;
1017 }
1018 
early_init_dt_scan_chosen(char * cmdline)1019 int __init early_init_dt_scan_chosen(char *cmdline)
1020 {
1021 	int l, node;
1022 	const char *p;
1023 	const void *rng_seed;
1024 	const void *fdt = initial_boot_params;
1025 
1026 	node = fdt_path_offset(fdt, "/chosen");
1027 	if (node < 0)
1028 		node = fdt_path_offset(fdt, "/chosen@0");
1029 	if (node < 0)
1030 		/* Handle the cmdline config options even if no /chosen node */
1031 		goto handle_cmdline;
1032 
1033 	chosen_node_offset = node;
1034 
1035 	early_init_dt_check_for_initrd(node);
1036 	early_init_dt_check_for_elfcorehdr(node);
1037 
1038 	rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
1039 	if (rng_seed && l > 0) {
1040 		add_bootloader_randomness(rng_seed, l);
1041 
1042 		/* try to clear seed so it won't be found. */
1043 		fdt_nop_property(initial_boot_params, node, "rng-seed");
1044 
1045 		/* update CRC check value */
1046 		of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1047 				fdt_totalsize(initial_boot_params));
1048 	}
1049 
1050 	/* Retrieve command line */
1051 	p = of_get_flat_dt_prop(node, "bootargs", &l);
1052 	if (p != NULL && l > 0)
1053 		strscpy(cmdline, p, min(l, COMMAND_LINE_SIZE));
1054 
1055 handle_cmdline:
1056 	/*
1057 	 * CONFIG_CMDLINE is meant to be a default in case nothing else
1058 	 * managed to set the command line, unless CONFIG_CMDLINE_FORCE
1059 	 * is set in which case we override whatever was found earlier.
1060 	 */
1061 #ifdef CONFIG_CMDLINE
1062 #if defined(CONFIG_CMDLINE_EXTEND)
1063 	strlcat(cmdline, " ", COMMAND_LINE_SIZE);
1064 	strlcat(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1065 #elif defined(CONFIG_CMDLINE_FORCE)
1066 	strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1067 #else
1068 	/* No arguments from boot loader, use kernel's  cmdl*/
1069 	if (!((char *)cmdline)[0])
1070 		strscpy(cmdline, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1071 #endif
1072 #endif /* CONFIG_CMDLINE */
1073 
1074 	pr_debug("Command line is: %s\n", (char *)cmdline);
1075 
1076 	return 0;
1077 }
1078 
1079 #ifndef MIN_MEMBLOCK_ADDR
1080 #define MIN_MEMBLOCK_ADDR	__pa(PAGE_OFFSET)
1081 #endif
1082 #ifndef MAX_MEMBLOCK_ADDR
1083 #define MAX_MEMBLOCK_ADDR	((phys_addr_t)~0)
1084 #endif
1085 
early_init_dt_add_memory_arch(u64 base,u64 size)1086 void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
1087 {
1088 	const u64 phys_offset = MIN_MEMBLOCK_ADDR;
1089 
1090 	if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
1091 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1092 			base, base + size);
1093 		return;
1094 	}
1095 
1096 	if (!PAGE_ALIGNED(base)) {
1097 		size -= PAGE_SIZE - (base & ~PAGE_MASK);
1098 		base = PAGE_ALIGN(base);
1099 	}
1100 	size &= PAGE_MASK;
1101 
1102 	if (base > MAX_MEMBLOCK_ADDR) {
1103 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1104 			base, base + size);
1105 		return;
1106 	}
1107 
1108 	if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
1109 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1110 			((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
1111 		size = MAX_MEMBLOCK_ADDR - base + 1;
1112 	}
1113 
1114 	if (base + size < phys_offset) {
1115 		pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
1116 			base, base + size);
1117 		return;
1118 	}
1119 	if (base < phys_offset) {
1120 		pr_warn("Ignoring memory range 0x%llx - 0x%llx\n",
1121 			base, phys_offset);
1122 		size -= phys_offset - base;
1123 		base = phys_offset;
1124 	}
1125 	memblock_add(base, size);
1126 }
1127 
early_init_dt_alloc_memory_arch(u64 size,u64 align)1128 static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
1129 {
1130 	void *ptr = memblock_alloc(size, align);
1131 
1132 	if (!ptr)
1133 		panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
1134 		      __func__, size, align);
1135 
1136 	return ptr;
1137 }
1138 
early_init_dt_verify(void * params)1139 bool __init early_init_dt_verify(void *params)
1140 {
1141 	if (!params)
1142 		return false;
1143 
1144 	/* check device tree validity */
1145 	if (fdt_check_header(params))
1146 		return false;
1147 
1148 	/* Setup flat device-tree pointer */
1149 	initial_boot_params = params;
1150 	of_fdt_crc32 = crc32_be(~0, initial_boot_params,
1151 				fdt_totalsize(initial_boot_params));
1152 
1153 	/* Initialize {size,address}-cells info */
1154 	early_init_dt_scan_root();
1155 
1156 	return true;
1157 }
1158 
1159 
early_init_dt_scan_nodes(void)1160 void __init early_init_dt_scan_nodes(void)
1161 {
1162 	int rc;
1163 
1164 	/* Retrieve various information from the /chosen node */
1165 	rc = early_init_dt_scan_chosen(boot_command_line);
1166 	if (rc)
1167 		pr_warn("No chosen node found, continuing without\n");
1168 
1169 	/* Setup memory, calling early_init_dt_add_memory_arch */
1170 	early_init_dt_scan_memory();
1171 
1172 	/* Handle linux,usable-memory-range property */
1173 	early_init_dt_check_for_usable_mem_range();
1174 }
1175 
early_init_dt_scan(void * params)1176 bool __init early_init_dt_scan(void *params)
1177 {
1178 	bool status;
1179 
1180 	status = early_init_dt_verify(params);
1181 	if (!status)
1182 		return false;
1183 
1184 	early_init_dt_scan_nodes();
1185 	return true;
1186 }
1187 
copy_device_tree(void * fdt)1188 static void *__init copy_device_tree(void *fdt)
1189 {
1190 	int size;
1191 	void *dt;
1192 
1193 	size = fdt_totalsize(fdt);
1194 	dt = early_init_dt_alloc_memory_arch(size,
1195 					     roundup_pow_of_two(FDT_V17_SIZE));
1196 
1197 	if (dt)
1198 		memcpy(dt, fdt, size);
1199 
1200 	return dt;
1201 }
1202 
1203 /**
1204  * unflatten_device_tree - create tree of device_nodes from flat blob
1205  *
1206  * unflattens the device-tree passed by the firmware, creating the
1207  * tree of struct device_node. It also fills the "name" and "type"
1208  * pointers of the nodes so the normal device-tree walking functions
1209  * can be used.
1210  */
unflatten_device_tree(void)1211 void __init unflatten_device_tree(void)
1212 {
1213 	void *fdt = initial_boot_params;
1214 
1215 	/* Don't use the bootloader provided DTB if ACPI is enabled */
1216 	if (!acpi_disabled)
1217 		fdt = NULL;
1218 
1219 	/*
1220 	 * Populate an empty root node when ACPI is enabled or bootloader
1221 	 * doesn't provide one.
1222 	 */
1223 	if (!fdt) {
1224 		fdt = (void *) __dtb_empty_root_begin;
1225 		/* fdt_totalsize() will be used for copy size */
1226 		if (fdt_totalsize(fdt) >
1227 		    __dtb_empty_root_end - __dtb_empty_root_begin) {
1228 			pr_err("invalid size in dtb_empty_root\n");
1229 			return;
1230 		}
1231 		of_fdt_crc32 = crc32_be(~0, fdt, fdt_totalsize(fdt));
1232 		fdt = copy_device_tree(fdt);
1233 	}
1234 
1235 	__unflatten_device_tree(fdt, NULL, &of_root,
1236 				early_init_dt_alloc_memory_arch, false);
1237 
1238 	/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
1239 	of_alias_scan(early_init_dt_alloc_memory_arch);
1240 
1241 	unittest_unflatten_overlay_base();
1242 }
1243 
1244 /**
1245  * unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
1246  *
1247  * Copies and unflattens the device-tree passed by the firmware, creating the
1248  * tree of struct device_node. It also fills the "name" and "type"
1249  * pointers of the nodes so the normal device-tree walking functions
1250  * can be used. This should only be used when the FDT memory has not been
1251  * reserved such is the case when the FDT is built-in to the kernel init
1252  * section. If the FDT memory is reserved already then unflatten_device_tree
1253  * should be used instead.
1254  */
unflatten_and_copy_device_tree(void)1255 void __init unflatten_and_copy_device_tree(void)
1256 {
1257 	if (initial_boot_params)
1258 		initial_boot_params = copy_device_tree(initial_boot_params);
1259 
1260 	unflatten_device_tree();
1261 }
1262 
1263 #ifdef CONFIG_SYSFS
of_fdt_raw_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t off,size_t count)1264 static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
1265 			       struct bin_attribute *bin_attr,
1266 			       char *buf, loff_t off, size_t count)
1267 {
1268 	memcpy(buf, initial_boot_params + off, count);
1269 	return count;
1270 }
1271 
of_fdt_raw_init(void)1272 static int __init of_fdt_raw_init(void)
1273 {
1274 	static struct bin_attribute of_fdt_raw_attr =
1275 		__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
1276 
1277 	if (!initial_boot_params)
1278 		return 0;
1279 
1280 	if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
1281 				     fdt_totalsize(initial_boot_params))) {
1282 		pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
1283 		return 0;
1284 	}
1285 	of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
1286 	return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
1287 }
1288 late_initcall(of_fdt_raw_init);
1289 #endif
1290 
1291 #endif /* CONFIG_OF_EARLY_FLATTREE */
1292