xref: /linux/fs/f2fs/f2fs.h (revision 81d8e5e2132215d21f2cddffcd2b16d08c0389fa)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/f2fs.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #ifndef _LINUX_F2FS_H
9 #define _LINUX_F2FS_H
10 
11 #include <linux/uio.h>
12 #include <linux/types.h>
13 #include <linux/page-flags.h>
14 #include <linux/slab.h>
15 #include <linux/crc32.h>
16 #include <linux/magic.h>
17 #include <linux/kobject.h>
18 #include <linux/sched.h>
19 #include <linux/cred.h>
20 #include <linux/sched/mm.h>
21 #include <linux/vmalloc.h>
22 #include <linux/bio.h>
23 #include <linux/blkdev.h>
24 #include <linux/quotaops.h>
25 #include <linux/part_stat.h>
26 #include <linux/rw_hint.h>
27 
28 #include <linux/fscrypt.h>
29 #include <linux/fsverity.h>
30 
31 struct pagevec;
32 
33 #ifdef CONFIG_F2FS_CHECK_FS
34 #define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
35 #else
36 #define f2fs_bug_on(sbi, condition)					\
37 	do {								\
38 		if (WARN_ON(condition))					\
39 			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
40 	} while (0)
41 #endif
42 
43 enum {
44 	FAULT_KMALLOC,
45 	FAULT_KVMALLOC,
46 	FAULT_PAGE_ALLOC,
47 	FAULT_PAGE_GET,
48 	FAULT_ALLOC_BIO,	/* it's obsolete due to bio_alloc() will never fail */
49 	FAULT_ALLOC_NID,
50 	FAULT_ORPHAN,
51 	FAULT_BLOCK,
52 	FAULT_DIR_DEPTH,
53 	FAULT_EVICT_INODE,
54 	FAULT_TRUNCATE,
55 	FAULT_READ_IO,
56 	FAULT_CHECKPOINT,
57 	FAULT_DISCARD,
58 	FAULT_WRITE_IO,
59 	FAULT_SLAB_ALLOC,
60 	FAULT_DQUOT_INIT,
61 	FAULT_LOCK_OP,
62 	FAULT_BLKADDR_VALIDITY,
63 	FAULT_BLKADDR_CONSISTENCE,
64 	FAULT_NO_SEGMENT,
65 	FAULT_INCONSISTENT_FOOTER,
66 	FAULT_MAX,
67 };
68 
69 #ifdef CONFIG_F2FS_FAULT_INJECTION
70 #define F2FS_ALL_FAULT_TYPE		(GENMASK(FAULT_MAX - 1, 0))
71 
72 struct f2fs_fault_info {
73 	atomic_t inject_ops;
74 	int inject_rate;
75 	unsigned int inject_type;
76 };
77 
78 extern const char *f2fs_fault_name[FAULT_MAX];
79 #define IS_FAULT_SET(fi, type) ((fi)->inject_type & BIT(type))
80 
81 /* maximum retry count for injected failure */
82 #define DEFAULT_FAILURE_RETRY_COUNT		8
83 #else
84 #define DEFAULT_FAILURE_RETRY_COUNT		1
85 #endif
86 
87 /*
88  * For mount options
89  */
90 #define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000001
91 #define F2FS_MOUNT_DISCARD		0x00000002
92 #define F2FS_MOUNT_NOHEAP		0x00000004
93 #define F2FS_MOUNT_XATTR_USER		0x00000008
94 #define F2FS_MOUNT_POSIX_ACL		0x00000010
95 #define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000020
96 #define F2FS_MOUNT_INLINE_XATTR		0x00000040
97 #define F2FS_MOUNT_INLINE_DATA		0x00000080
98 #define F2FS_MOUNT_INLINE_DENTRY	0x00000100
99 #define F2FS_MOUNT_FLUSH_MERGE		0x00000200
100 #define F2FS_MOUNT_NOBARRIER		0x00000400
101 #define F2FS_MOUNT_FASTBOOT		0x00000800
102 #define F2FS_MOUNT_READ_EXTENT_CACHE	0x00001000
103 #define F2FS_MOUNT_DATA_FLUSH		0x00002000
104 #define F2FS_MOUNT_FAULT_INJECTION	0x00004000
105 #define F2FS_MOUNT_USRQUOTA		0x00008000
106 #define F2FS_MOUNT_GRPQUOTA		0x00010000
107 #define F2FS_MOUNT_PRJQUOTA		0x00020000
108 #define F2FS_MOUNT_QUOTA		0x00040000
109 #define F2FS_MOUNT_INLINE_XATTR_SIZE	0x00080000
110 #define F2FS_MOUNT_RESERVE_ROOT		0x00100000
111 #define F2FS_MOUNT_DISABLE_CHECKPOINT	0x00200000
112 #define F2FS_MOUNT_NORECOVERY		0x00400000
113 #define F2FS_MOUNT_ATGC			0x00800000
114 #define F2FS_MOUNT_MERGE_CHECKPOINT	0x01000000
115 #define	F2FS_MOUNT_GC_MERGE		0x02000000
116 #define F2FS_MOUNT_COMPRESS_CACHE	0x04000000
117 #define F2FS_MOUNT_AGE_EXTENT_CACHE	0x08000000
118 #define F2FS_MOUNT_NAT_BITS		0x10000000
119 #define F2FS_MOUNT_INLINECRYPT		0x20000000
120 /*
121  * Some f2fs environments expect to be able to pass the "lazytime" option
122  * string rather than using the MS_LAZYTIME flag, so this must remain.
123  */
124 #define F2FS_MOUNT_LAZYTIME		0x40000000
125 
126 #define F2FS_OPTION(sbi)	((sbi)->mount_opt)
127 #define clear_opt(sbi, option)	(F2FS_OPTION(sbi).opt &= ~F2FS_MOUNT_##option)
128 #define set_opt(sbi, option)	(F2FS_OPTION(sbi).opt |= F2FS_MOUNT_##option)
129 #define test_opt(sbi, option)	(F2FS_OPTION(sbi).opt & F2FS_MOUNT_##option)
130 
131 #define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
132 		typecheck(unsigned long long, b) &&			\
133 		((long long)((a) - (b)) > 0))
134 
135 typedef u32 block_t;	/*
136 			 * should not change u32, since it is the on-disk block
137 			 * address format, __le32.
138 			 */
139 typedef u32 nid_t;
140 
141 #define COMPRESS_EXT_NUM		16
142 
143 enum blkzone_allocation_policy {
144 	BLKZONE_ALLOC_PRIOR_SEQ,	/* Prioritize writing to sequential zones */
145 	BLKZONE_ALLOC_ONLY_SEQ,		/* Only allow writing to sequential zones */
146 	BLKZONE_ALLOC_PRIOR_CONV,	/* Prioritize writing to conventional zones */
147 };
148 
149 /*
150  * An implementation of an rwsem that is explicitly unfair to readers. This
151  * prevents priority inversion when a low-priority reader acquires the read lock
152  * while sleeping on the write lock but the write lock is needed by
153  * higher-priority clients.
154  */
155 
156 struct f2fs_rwsem {
157         struct rw_semaphore internal_rwsem;
158 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
159         wait_queue_head_t read_waiters;
160 #endif
161 };
162 
163 struct f2fs_mount_info {
164 	unsigned int opt;
165 	block_t root_reserved_blocks;	/* root reserved blocks */
166 	kuid_t s_resuid;		/* reserved blocks for uid */
167 	kgid_t s_resgid;		/* reserved blocks for gid */
168 	int active_logs;		/* # of active logs */
169 	int inline_xattr_size;		/* inline xattr size */
170 #ifdef CONFIG_F2FS_FAULT_INJECTION
171 	struct f2fs_fault_info fault_info;	/* For fault injection */
172 #endif
173 #ifdef CONFIG_QUOTA
174 	/* Names of quota files with journalled quota */
175 	char *s_qf_names[MAXQUOTAS];
176 	int s_jquota_fmt;			/* Format of quota to use */
177 #endif
178 	/* For which write hints are passed down to block layer */
179 	int alloc_mode;			/* segment allocation policy */
180 	int fsync_mode;			/* fsync policy */
181 	int fs_mode;			/* fs mode: LFS or ADAPTIVE */
182 	int bggc_mode;			/* bggc mode: off, on or sync */
183 	int memory_mode;		/* memory mode */
184 	int errors;			/* errors parameter */
185 	int discard_unit;		/*
186 					 * discard command's offset/size should
187 					 * be aligned to this unit: block,
188 					 * segment or section
189 					 */
190 	struct fscrypt_dummy_policy dummy_enc_policy; /* test dummy encryption */
191 	block_t unusable_cap_perc;	/* percentage for cap */
192 	block_t unusable_cap;		/* Amount of space allowed to be
193 					 * unusable when disabling checkpoint
194 					 */
195 
196 	/* For compression */
197 	unsigned char compress_algorithm;	/* algorithm type */
198 	unsigned char compress_log_size;	/* cluster log size */
199 	unsigned char compress_level;		/* compress level */
200 	bool compress_chksum;			/* compressed data chksum */
201 	unsigned char compress_ext_cnt;		/* extension count */
202 	unsigned char nocompress_ext_cnt;		/* nocompress extension count */
203 	int compress_mode;			/* compression mode */
204 	unsigned char extensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN];	/* extensions */
205 	unsigned char noextensions[COMPRESS_EXT_NUM][F2FS_EXTENSION_LEN]; /* extensions */
206 };
207 
208 #define F2FS_FEATURE_ENCRYPT			0x00000001
209 #define F2FS_FEATURE_BLKZONED			0x00000002
210 #define F2FS_FEATURE_ATOMIC_WRITE		0x00000004
211 #define F2FS_FEATURE_EXTRA_ATTR			0x00000008
212 #define F2FS_FEATURE_PRJQUOTA			0x00000010
213 #define F2FS_FEATURE_INODE_CHKSUM		0x00000020
214 #define F2FS_FEATURE_FLEXIBLE_INLINE_XATTR	0x00000040
215 #define F2FS_FEATURE_QUOTA_INO			0x00000080
216 #define F2FS_FEATURE_INODE_CRTIME		0x00000100
217 #define F2FS_FEATURE_LOST_FOUND			0x00000200
218 #define F2FS_FEATURE_VERITY			0x00000400
219 #define F2FS_FEATURE_SB_CHKSUM			0x00000800
220 #define F2FS_FEATURE_CASEFOLD			0x00001000
221 #define F2FS_FEATURE_COMPRESSION		0x00002000
222 #define F2FS_FEATURE_RO				0x00004000
223 #define F2FS_FEATURE_DEVICE_ALIAS		0x00008000
224 
225 #define __F2FS_HAS_FEATURE(raw_super, mask)				\
226 	((raw_super->feature & cpu_to_le32(mask)) != 0)
227 #define F2FS_HAS_FEATURE(sbi, mask)	__F2FS_HAS_FEATURE(sbi->raw_super, mask)
228 
229 /*
230  * Default values for user and/or group using reserved blocks
231  */
232 #define	F2FS_DEF_RESUID		0
233 #define	F2FS_DEF_RESGID		0
234 
235 /*
236  * For checkpoint manager
237  */
238 enum {
239 	NAT_BITMAP,
240 	SIT_BITMAP
241 };
242 
243 #define	CP_UMOUNT	0x00000001
244 #define	CP_FASTBOOT	0x00000002
245 #define	CP_SYNC		0x00000004
246 #define	CP_RECOVERY	0x00000008
247 #define	CP_DISCARD	0x00000010
248 #define CP_TRIMMED	0x00000020
249 #define CP_PAUSE	0x00000040
250 #define CP_RESIZE 	0x00000080
251 
252 #define DEF_MAX_DISCARD_REQUEST		8	/* issue 8 discards per round */
253 #define DEF_MIN_DISCARD_ISSUE_TIME	50	/* 50 ms, if exists */
254 #define DEF_MID_DISCARD_ISSUE_TIME	500	/* 500 ms, if device busy */
255 #define DEF_MAX_DISCARD_ISSUE_TIME	60000	/* 60 s, if no candidates */
256 #define DEF_DISCARD_URGENT_UTIL		80	/* do more discard over 80% */
257 #define DEF_CP_INTERVAL			60	/* 60 secs */
258 #define DEF_IDLE_INTERVAL		5	/* 5 secs */
259 #define DEF_DISABLE_INTERVAL		5	/* 5 secs */
260 #define DEF_DISABLE_QUICK_INTERVAL	1	/* 1 secs */
261 #define DEF_UMOUNT_DISCARD_TIMEOUT	5	/* 5 secs */
262 
263 struct cp_control {
264 	int reason;
265 	__u64 trim_start;
266 	__u64 trim_end;
267 	__u64 trim_minlen;
268 };
269 
270 /*
271  * indicate meta/data type
272  */
273 enum {
274 	META_CP,
275 	META_NAT,
276 	META_SIT,
277 	META_SSA,
278 	META_MAX,
279 	META_POR,
280 	DATA_GENERIC,		/* check range only */
281 	DATA_GENERIC_ENHANCE,	/* strong check on range and segment bitmap */
282 	DATA_GENERIC_ENHANCE_READ,	/*
283 					 * strong check on range and segment
284 					 * bitmap but no warning due to race
285 					 * condition of read on truncated area
286 					 * by extent_cache
287 					 */
288 	DATA_GENERIC_ENHANCE_UPDATE,	/*
289 					 * strong check on range and segment
290 					 * bitmap for update case
291 					 */
292 	META_GENERIC,
293 };
294 
295 /* for the list of ino */
296 enum {
297 	ORPHAN_INO,		/* for orphan ino list */
298 	APPEND_INO,		/* for append ino list */
299 	UPDATE_INO,		/* for update ino list */
300 	TRANS_DIR_INO,		/* for transactions dir ino list */
301 	XATTR_DIR_INO,		/* for xattr updated dir ino list */
302 	FLUSH_INO,		/* for multiple device flushing */
303 	MAX_INO_ENTRY,		/* max. list */
304 };
305 
306 struct ino_entry {
307 	struct list_head list;		/* list head */
308 	nid_t ino;			/* inode number */
309 	unsigned int dirty_device;	/* dirty device bitmap */
310 };
311 
312 /* for the list of inodes to be GCed */
313 struct inode_entry {
314 	struct list_head list;	/* list head */
315 	struct inode *inode;	/* vfs inode pointer */
316 };
317 
318 struct fsync_node_entry {
319 	struct list_head list;	/* list head */
320 	struct page *page;	/* warm node page pointer */
321 	unsigned int seq_id;	/* sequence id */
322 };
323 
324 struct ckpt_req {
325 	struct completion wait;		/* completion for checkpoint done */
326 	struct llist_node llnode;	/* llist_node to be linked in wait queue */
327 	int ret;			/* return code of checkpoint */
328 	ktime_t queue_time;		/* request queued time */
329 };
330 
331 struct ckpt_req_control {
332 	struct task_struct *f2fs_issue_ckpt;	/* checkpoint task */
333 	int ckpt_thread_ioprio;			/* checkpoint merge thread ioprio */
334 	wait_queue_head_t ckpt_wait_queue;	/* waiting queue for wake-up */
335 	atomic_t issued_ckpt;		/* # of actually issued ckpts */
336 	atomic_t total_ckpt;		/* # of total ckpts */
337 	atomic_t queued_ckpt;		/* # of queued ckpts */
338 	struct llist_head issue_list;	/* list for command issue */
339 	spinlock_t stat_lock;		/* lock for below checkpoint time stats */
340 	unsigned int cur_time;		/* cur wait time in msec for currently issued checkpoint */
341 	unsigned int peak_time;		/* peak wait time in msec until now */
342 };
343 
344 /* for the bitmap indicate blocks to be discarded */
345 struct discard_entry {
346 	struct list_head list;	/* list head */
347 	block_t start_blkaddr;	/* start blockaddr of current segment */
348 	unsigned char discard_map[SIT_VBLOCK_MAP_SIZE];	/* segment discard bitmap */
349 };
350 
351 /* minimum discard granularity, unit: block count */
352 #define MIN_DISCARD_GRANULARITY		1
353 /* default discard granularity of inner discard thread, unit: block count */
354 #define DEFAULT_DISCARD_GRANULARITY		16
355 /* default maximum discard granularity of ordered discard, unit: block count */
356 #define DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY	16
357 
358 /* max discard pend list number */
359 #define MAX_PLIST_NUM		512
360 #define plist_idx(blk_num)	((blk_num) >= MAX_PLIST_NUM ?		\
361 					(MAX_PLIST_NUM - 1) : ((blk_num) - 1))
362 
363 enum {
364 	D_PREP,			/* initial */
365 	D_PARTIAL,		/* partially submitted */
366 	D_SUBMIT,		/* all submitted */
367 	D_DONE,			/* finished */
368 };
369 
370 struct discard_info {
371 	block_t lstart;			/* logical start address */
372 	block_t len;			/* length */
373 	block_t start;			/* actual start address in dev */
374 };
375 
376 struct discard_cmd {
377 	struct rb_node rb_node;		/* rb node located in rb-tree */
378 	struct discard_info di;		/* discard info */
379 	struct list_head list;		/* command list */
380 	struct completion wait;		/* compleation */
381 	struct block_device *bdev;	/* bdev */
382 	unsigned short ref;		/* reference count */
383 	unsigned char state;		/* state */
384 	unsigned char queued;		/* queued discard */
385 	int error;			/* bio error */
386 	spinlock_t lock;		/* for state/bio_ref updating */
387 	unsigned short bio_ref;		/* bio reference count */
388 };
389 
390 enum {
391 	DPOLICY_BG,
392 	DPOLICY_FORCE,
393 	DPOLICY_FSTRIM,
394 	DPOLICY_UMOUNT,
395 	MAX_DPOLICY,
396 };
397 
398 enum {
399 	DPOLICY_IO_AWARE_DISABLE,	/* force to not be aware of IO */
400 	DPOLICY_IO_AWARE_ENABLE,	/* force to be aware of IO */
401 	DPOLICY_IO_AWARE_MAX,
402 };
403 
404 struct discard_policy {
405 	int type;			/* type of discard */
406 	unsigned int min_interval;	/* used for candidates exist */
407 	unsigned int mid_interval;	/* used for device busy */
408 	unsigned int max_interval;	/* used for candidates not exist */
409 	unsigned int max_requests;	/* # of discards issued per round */
410 	unsigned int io_aware_gran;	/* minimum granularity discard not be aware of I/O */
411 	bool io_aware;			/* issue discard in idle time */
412 	bool sync;			/* submit discard with REQ_SYNC flag */
413 	bool ordered;			/* issue discard by lba order */
414 	bool timeout;			/* discard timeout for put_super */
415 	unsigned int granularity;	/* discard granularity */
416 };
417 
418 struct discard_cmd_control {
419 	struct task_struct *f2fs_issue_discard;	/* discard thread */
420 	struct list_head entry_list;		/* 4KB discard entry list */
421 	struct list_head pend_list[MAX_PLIST_NUM];/* store pending entries */
422 	struct list_head wait_list;		/* store on-flushing entries */
423 	struct list_head fstrim_list;		/* in-flight discard from fstrim */
424 	wait_queue_head_t discard_wait_queue;	/* waiting queue for wake-up */
425 	struct mutex cmd_lock;
426 	unsigned int nr_discards;		/* # of discards in the list */
427 	unsigned int max_discards;		/* max. discards to be issued */
428 	unsigned int max_discard_request;	/* max. discard request per round */
429 	unsigned int min_discard_issue_time;	/* min. interval between discard issue */
430 	unsigned int mid_discard_issue_time;	/* mid. interval between discard issue */
431 	unsigned int max_discard_issue_time;	/* max. interval between discard issue */
432 	unsigned int discard_io_aware_gran; /* minimum discard granularity not be aware of I/O */
433 	unsigned int discard_urgent_util;	/* utilization which issue discard proactively */
434 	unsigned int discard_granularity;	/* discard granularity */
435 	unsigned int max_ordered_discard;	/* maximum discard granularity issued by lba order */
436 	unsigned int discard_io_aware;		/* io_aware policy */
437 	unsigned int undiscard_blks;		/* # of undiscard blocks */
438 	unsigned int next_pos;			/* next discard position */
439 	atomic_t issued_discard;		/* # of issued discard */
440 	atomic_t queued_discard;		/* # of queued discard */
441 	atomic_t discard_cmd_cnt;		/* # of cached cmd count */
442 	struct rb_root_cached root;		/* root of discard rb-tree */
443 	bool rbtree_check;			/* config for consistence check */
444 	bool discard_wake;			/* to wake up discard thread */
445 };
446 
447 /* for the list of fsync inodes, used only during recovery */
448 struct fsync_inode_entry {
449 	struct list_head list;	/* list head */
450 	struct inode *inode;	/* vfs inode pointer */
451 	block_t blkaddr;	/* block address locating the last fsync */
452 	block_t last_dentry;	/* block address locating the last dentry */
453 };
454 
455 #define nats_in_cursum(jnl)		(le16_to_cpu((jnl)->n_nats))
456 #define sits_in_cursum(jnl)		(le16_to_cpu((jnl)->n_sits))
457 
458 #define nat_in_journal(jnl, i)		((jnl)->nat_j.entries[i].ne)
459 #define nid_in_journal(jnl, i)		((jnl)->nat_j.entries[i].nid)
460 #define sit_in_journal(jnl, i)		((jnl)->sit_j.entries[i].se)
461 #define segno_in_journal(jnl, i)	((jnl)->sit_j.entries[i].segno)
462 
463 #define MAX_NAT_JENTRIES(jnl)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(jnl))
464 #define MAX_SIT_JENTRIES(jnl)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(jnl))
465 
update_nats_in_cursum(struct f2fs_journal * journal,int i)466 static inline int update_nats_in_cursum(struct f2fs_journal *journal, int i)
467 {
468 	int before = nats_in_cursum(journal);
469 
470 	journal->n_nats = cpu_to_le16(before + i);
471 	return before;
472 }
473 
update_sits_in_cursum(struct f2fs_journal * journal,int i)474 static inline int update_sits_in_cursum(struct f2fs_journal *journal, int i)
475 {
476 	int before = sits_in_cursum(journal);
477 
478 	journal->n_sits = cpu_to_le16(before + i);
479 	return before;
480 }
481 
__has_cursum_space(struct f2fs_journal * journal,int size,int type)482 static inline bool __has_cursum_space(struct f2fs_journal *journal,
483 							int size, int type)
484 {
485 	if (type == NAT_JOURNAL)
486 		return size <= MAX_NAT_JENTRIES(journal);
487 	return size <= MAX_SIT_JENTRIES(journal);
488 }
489 
490 /* for inline stuff */
491 #define DEF_INLINE_RESERVED_SIZE	1
492 static inline int get_extra_isize(struct inode *inode);
493 static inline int get_inline_xattr_addrs(struct inode *inode);
494 #define MAX_INLINE_DATA(inode)	(sizeof(__le32) *			\
495 				(CUR_ADDRS_PER_INODE(inode) -		\
496 				get_inline_xattr_addrs(inode) -	\
497 				DEF_INLINE_RESERVED_SIZE))
498 
499 /* for inline dir */
500 #define NR_INLINE_DENTRY(inode)	(MAX_INLINE_DATA(inode) * BITS_PER_BYTE / \
501 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
502 				BITS_PER_BYTE + 1))
503 #define INLINE_DENTRY_BITMAP_SIZE(inode) \
504 	DIV_ROUND_UP(NR_INLINE_DENTRY(inode), BITS_PER_BYTE)
505 #define INLINE_RESERVED_SIZE(inode)	(MAX_INLINE_DATA(inode) - \
506 				((SIZE_OF_DIR_ENTRY + F2FS_SLOT_LEN) * \
507 				NR_INLINE_DENTRY(inode) + \
508 				INLINE_DENTRY_BITMAP_SIZE(inode)))
509 
510 /*
511  * For INODE and NODE manager
512  */
513 /* for directory operations */
514 
515 struct f2fs_filename {
516 	/*
517 	 * The filename the user specified.  This is NULL for some
518 	 * filesystem-internal operations, e.g. converting an inline directory
519 	 * to a non-inline one, or roll-forward recovering an encrypted dentry.
520 	 */
521 	const struct qstr *usr_fname;
522 
523 	/*
524 	 * The on-disk filename.  For encrypted directories, this is encrypted.
525 	 * This may be NULL for lookups in an encrypted dir without the key.
526 	 */
527 	struct fscrypt_str disk_name;
528 
529 	/* The dirhash of this filename */
530 	f2fs_hash_t hash;
531 
532 #ifdef CONFIG_FS_ENCRYPTION
533 	/*
534 	 * For lookups in encrypted directories: either the buffer backing
535 	 * disk_name, or a buffer that holds the decoded no-key name.
536 	 */
537 	struct fscrypt_str crypto_buf;
538 #endif
539 #if IS_ENABLED(CONFIG_UNICODE)
540 	/*
541 	 * For casefolded directories: the casefolded name, but it's left NULL
542 	 * if the original name is not valid Unicode, if the original name is
543 	 * "." or "..", if the directory is both casefolded and encrypted and
544 	 * its encryption key is unavailable, or if the filesystem is doing an
545 	 * internal operation where usr_fname is also NULL.  In all these cases
546 	 * we fall back to treating the name as an opaque byte sequence.
547 	 */
548 	struct qstr cf_name;
549 #endif
550 };
551 
552 struct f2fs_dentry_ptr {
553 	struct inode *inode;
554 	void *bitmap;
555 	struct f2fs_dir_entry *dentry;
556 	__u8 (*filename)[F2FS_SLOT_LEN];
557 	int max;
558 	int nr_bitmap;
559 };
560 
make_dentry_ptr_block(struct inode * inode,struct f2fs_dentry_ptr * d,struct f2fs_dentry_block * t)561 static inline void make_dentry_ptr_block(struct inode *inode,
562 		struct f2fs_dentry_ptr *d, struct f2fs_dentry_block *t)
563 {
564 	d->inode = inode;
565 	d->max = NR_DENTRY_IN_BLOCK;
566 	d->nr_bitmap = SIZE_OF_DENTRY_BITMAP;
567 	d->bitmap = t->dentry_bitmap;
568 	d->dentry = t->dentry;
569 	d->filename = t->filename;
570 }
571 
make_dentry_ptr_inline(struct inode * inode,struct f2fs_dentry_ptr * d,void * t)572 static inline void make_dentry_ptr_inline(struct inode *inode,
573 					struct f2fs_dentry_ptr *d, void *t)
574 {
575 	int entry_cnt = NR_INLINE_DENTRY(inode);
576 	int bitmap_size = INLINE_DENTRY_BITMAP_SIZE(inode);
577 	int reserved_size = INLINE_RESERVED_SIZE(inode);
578 
579 	d->inode = inode;
580 	d->max = entry_cnt;
581 	d->nr_bitmap = bitmap_size;
582 	d->bitmap = t;
583 	d->dentry = t + bitmap_size + reserved_size;
584 	d->filename = t + bitmap_size + reserved_size +
585 					SIZE_OF_DIR_ENTRY * entry_cnt;
586 }
587 
588 /*
589  * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
590  * as its node offset to distinguish from index node blocks.
591  * But some bits are used to mark the node block.
592  */
593 #define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
594 				>> OFFSET_BIT_SHIFT)
595 enum {
596 	ALLOC_NODE,			/* allocate a new node page if needed */
597 	LOOKUP_NODE,			/* look up a node without readahead */
598 	LOOKUP_NODE_RA,			/*
599 					 * look up a node with readahead called
600 					 * by get_data_block.
601 					 */
602 };
603 
604 #define DEFAULT_RETRY_IO_COUNT	8	/* maximum retry read IO or flush count */
605 
606 /* congestion wait timeout value, default: 20ms */
607 #define	DEFAULT_IO_TIMEOUT	(msecs_to_jiffies(20))
608 
609 /* maximum retry quota flush count */
610 #define DEFAULT_RETRY_QUOTA_FLUSH_COUNT		8
611 
612 /* maximum retry of EIO'ed page */
613 #define MAX_RETRY_PAGE_EIO			100
614 
615 #define F2FS_LINK_MAX	0xffffffff	/* maximum link count per file */
616 
617 #define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
618 
619 /* dirty segments threshold for triggering CP */
620 #define DEFAULT_DIRTY_THRESHOLD		4
621 
622 #define RECOVERY_MAX_RA_BLOCKS		BIO_MAX_VECS
623 #define RECOVERY_MIN_RA_BLOCKS		1
624 
625 #define F2FS_ONSTACK_PAGES	16	/* nr of onstack pages */
626 
627 /* for in-memory extent cache entry */
628 #define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
629 
630 /* number of extent info in extent cache we try to shrink */
631 #define READ_EXTENT_CACHE_SHRINK_NUMBER	128
632 
633 /* number of age extent info in extent cache we try to shrink */
634 #define AGE_EXTENT_CACHE_SHRINK_NUMBER	128
635 #define LAST_AGE_WEIGHT			30
636 #define SAME_AGE_REGION			1024
637 
638 /*
639  * Define data block with age less than 1GB as hot data
640  * define data block with age less than 10GB but more than 1GB as warm data
641  */
642 #define DEF_HOT_DATA_AGE_THRESHOLD	262144
643 #define DEF_WARM_DATA_AGE_THRESHOLD	2621440
644 
645 /* default max read extent count per inode */
646 #define DEF_MAX_READ_EXTENT_COUNT	10240
647 
648 /* extent cache type */
649 enum extent_type {
650 	EX_READ,
651 	EX_BLOCK_AGE,
652 	NR_EXTENT_CACHES,
653 };
654 
655 struct extent_info {
656 	unsigned int fofs;		/* start offset in a file */
657 	unsigned int len;		/* length of the extent */
658 	union {
659 		/* read extent_cache */
660 		struct {
661 			/* start block address of the extent */
662 			block_t blk;
663 #ifdef CONFIG_F2FS_FS_COMPRESSION
664 			/* physical extent length of compressed blocks */
665 			unsigned int c_len;
666 #endif
667 		};
668 		/* block age extent_cache */
669 		struct {
670 			/* block age of the extent */
671 			unsigned long long age;
672 			/* last total blocks allocated */
673 			unsigned long long last_blocks;
674 		};
675 	};
676 };
677 
678 struct extent_node {
679 	struct rb_node rb_node;		/* rb node located in rb-tree */
680 	struct extent_info ei;		/* extent info */
681 	struct list_head list;		/* node in global extent list of sbi */
682 	struct extent_tree *et;		/* extent tree pointer */
683 };
684 
685 struct extent_tree {
686 	nid_t ino;			/* inode number */
687 	enum extent_type type;		/* keep the extent tree type */
688 	struct rb_root_cached root;	/* root of extent info rb-tree */
689 	struct extent_node *cached_en;	/* recently accessed extent node */
690 	struct list_head list;		/* to be used by sbi->zombie_list */
691 	rwlock_t lock;			/* protect extent info rb-tree */
692 	atomic_t node_cnt;		/* # of extent node in rb-tree*/
693 	bool largest_updated;		/* largest extent updated */
694 	struct extent_info largest;	/* largest cached extent for EX_READ */
695 };
696 
697 struct extent_tree_info {
698 	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
699 	struct mutex extent_tree_lock;	/* locking extent radix tree */
700 	struct list_head extent_list;		/* lru list for shrinker */
701 	spinlock_t extent_lock;			/* locking extent lru list */
702 	atomic_t total_ext_tree;		/* extent tree count */
703 	struct list_head zombie_list;		/* extent zombie tree list */
704 	atomic_t total_zombie_tree;		/* extent zombie tree count */
705 	atomic_t total_ext_node;		/* extent info count */
706 };
707 
708 /*
709  * State of block returned by f2fs_map_blocks.
710  */
711 #define F2FS_MAP_NEW		(1U << 0)
712 #define F2FS_MAP_MAPPED		(1U << 1)
713 #define F2FS_MAP_DELALLOC	(1U << 2)
714 #define F2FS_MAP_FLAGS		(F2FS_MAP_NEW | F2FS_MAP_MAPPED |\
715 				F2FS_MAP_DELALLOC)
716 
717 struct f2fs_map_blocks {
718 	struct block_device *m_bdev;	/* for multi-device dio */
719 	block_t m_pblk;
720 	block_t m_lblk;
721 	unsigned int m_len;
722 	unsigned int m_flags;
723 	pgoff_t *m_next_pgofs;		/* point next possible non-hole pgofs */
724 	pgoff_t *m_next_extent;		/* point to next possible extent */
725 	int m_seg_type;
726 	bool m_may_create;		/* indicate it is from write path */
727 	bool m_multidev_dio;		/* indicate it allows multi-device dio */
728 };
729 
730 /* for flag in get_data_block */
731 enum {
732 	F2FS_GET_BLOCK_DEFAULT,
733 	F2FS_GET_BLOCK_FIEMAP,
734 	F2FS_GET_BLOCK_BMAP,
735 	F2FS_GET_BLOCK_DIO,
736 	F2FS_GET_BLOCK_PRE_DIO,
737 	F2FS_GET_BLOCK_PRE_AIO,
738 	F2FS_GET_BLOCK_PRECACHE,
739 };
740 
741 /*
742  * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
743  */
744 #define FADVISE_COLD_BIT	0x01
745 #define FADVISE_LOST_PINO_BIT	0x02
746 #define FADVISE_ENCRYPT_BIT	0x04
747 #define FADVISE_ENC_NAME_BIT	0x08
748 #define FADVISE_KEEP_SIZE_BIT	0x10
749 #define FADVISE_HOT_BIT		0x20
750 #define FADVISE_VERITY_BIT	0x40
751 #define FADVISE_TRUNC_BIT	0x80
752 
753 #define FADVISE_MODIFIABLE_BITS	(FADVISE_COLD_BIT | FADVISE_HOT_BIT)
754 
755 #define file_is_cold(inode)	is_file(inode, FADVISE_COLD_BIT)
756 #define file_set_cold(inode)	set_file(inode, FADVISE_COLD_BIT)
757 #define file_clear_cold(inode)	clear_file(inode, FADVISE_COLD_BIT)
758 
759 #define file_wrong_pino(inode)	is_file(inode, FADVISE_LOST_PINO_BIT)
760 #define file_lost_pino(inode)	set_file(inode, FADVISE_LOST_PINO_BIT)
761 #define file_got_pino(inode)	clear_file(inode, FADVISE_LOST_PINO_BIT)
762 
763 #define file_is_encrypt(inode)	is_file(inode, FADVISE_ENCRYPT_BIT)
764 #define file_set_encrypt(inode)	set_file(inode, FADVISE_ENCRYPT_BIT)
765 
766 #define file_enc_name(inode)	is_file(inode, FADVISE_ENC_NAME_BIT)
767 #define file_set_enc_name(inode) set_file(inode, FADVISE_ENC_NAME_BIT)
768 
769 #define file_keep_isize(inode)	is_file(inode, FADVISE_KEEP_SIZE_BIT)
770 #define file_set_keep_isize(inode) set_file(inode, FADVISE_KEEP_SIZE_BIT)
771 
772 #define file_is_hot(inode)	is_file(inode, FADVISE_HOT_BIT)
773 #define file_set_hot(inode)	set_file(inode, FADVISE_HOT_BIT)
774 #define file_clear_hot(inode)	clear_file(inode, FADVISE_HOT_BIT)
775 
776 #define file_is_verity(inode)	is_file(inode, FADVISE_VERITY_BIT)
777 #define file_set_verity(inode)	set_file(inode, FADVISE_VERITY_BIT)
778 
779 #define file_should_truncate(inode)	is_file(inode, FADVISE_TRUNC_BIT)
780 #define file_need_truncate(inode)	set_file(inode, FADVISE_TRUNC_BIT)
781 #define file_dont_truncate(inode)	clear_file(inode, FADVISE_TRUNC_BIT)
782 
783 #define DEF_DIR_LEVEL		0
784 
785 /* used for f2fs_inode_info->flags */
786 enum {
787 	FI_NEW_INODE,		/* indicate newly allocated inode */
788 	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
789 	FI_AUTO_RECOVER,	/* indicate inode is recoverable */
790 	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
791 	FI_INC_LINK,		/* need to increment i_nlink */
792 	FI_ACL_MODE,		/* indicate acl mode */
793 	FI_NO_ALLOC,		/* should not allocate any blocks */
794 	FI_FREE_NID,		/* free allocated nide */
795 	FI_NO_EXTENT,		/* not to use the extent cache */
796 	FI_INLINE_XATTR,	/* used for inline xattr */
797 	FI_INLINE_DATA,		/* used for inline data*/
798 	FI_INLINE_DENTRY,	/* used for inline dentry */
799 	FI_APPEND_WRITE,	/* inode has appended data */
800 	FI_UPDATE_WRITE,	/* inode has in-place-update data */
801 	FI_NEED_IPU,		/* used for ipu per file */
802 	FI_ATOMIC_FILE,		/* indicate atomic file */
803 	FI_DATA_EXIST,		/* indicate data exists */
804 	FI_SKIP_WRITES,		/* should skip data page writeback */
805 	FI_OPU_WRITE,		/* used for opu per file */
806 	FI_DIRTY_FILE,		/* indicate regular/symlink has dirty pages */
807 	FI_PREALLOCATED_ALL,	/* all blocks for write were preallocated */
808 	FI_HOT_DATA,		/* indicate file is hot */
809 	FI_EXTRA_ATTR,		/* indicate file has extra attribute */
810 	FI_PROJ_INHERIT,	/* indicate file inherits projectid */
811 	FI_PIN_FILE,		/* indicate file should not be gced */
812 	FI_VERITY_IN_PROGRESS,	/* building fs-verity Merkle tree */
813 	FI_COMPRESSED_FILE,	/* indicate file's data can be compressed */
814 	FI_COMPRESS_CORRUPT,	/* indicate compressed cluster is corrupted */
815 	FI_MMAP_FILE,		/* indicate file was mmapped */
816 	FI_ENABLE_COMPRESS,	/* enable compression in "user" compression mode */
817 	FI_COMPRESS_RELEASED,	/* compressed blocks were released */
818 	FI_ALIGNED_WRITE,	/* enable aligned write */
819 	FI_COW_FILE,		/* indicate COW file */
820 	FI_ATOMIC_COMMITTED,	/* indicate atomic commit completed except disk sync */
821 	FI_ATOMIC_DIRTIED,	/* indicate atomic file is dirtied */
822 	FI_ATOMIC_REPLACE,	/* indicate atomic replace */
823 	FI_OPENED_FILE,		/* indicate file has been opened */
824 	FI_MAX,			/* max flag, never be used */
825 };
826 
827 struct f2fs_inode_info {
828 	struct inode vfs_inode;		/* serve a vfs inode */
829 	unsigned long i_flags;		/* keep an inode flags for ioctl */
830 	unsigned char i_advise;		/* use to give file attribute hints */
831 	unsigned char i_dir_level;	/* use for dentry level for large dir */
832 	union {
833 		unsigned int i_current_depth;	/* only for directory depth */
834 		unsigned short i_gc_failures;	/* for gc failure statistic */
835 	};
836 	unsigned int i_pino;		/* parent inode number */
837 	umode_t i_acl_mode;		/* keep file acl mode temporarily */
838 
839 	/* Use below internally in f2fs*/
840 	unsigned long flags[BITS_TO_LONGS(FI_MAX)];	/* use to pass per-file flags */
841 	unsigned int ioprio_hint;	/* hint for IO priority */
842 	struct f2fs_rwsem i_sem;	/* protect fi info */
843 	atomic_t dirty_pages;		/* # of dirty pages */
844 	f2fs_hash_t chash;		/* hash value of given file name */
845 	unsigned int clevel;		/* maximum level of given file name */
846 	struct task_struct *task;	/* lookup and create consistency */
847 	struct task_struct *cp_task;	/* separate cp/wb IO stats*/
848 	struct task_struct *wb_task;	/* indicate inode is in context of writeback */
849 	nid_t i_xattr_nid;		/* node id that contains xattrs */
850 	loff_t	last_disk_size;		/* lastly written file size */
851 	spinlock_t i_size_lock;		/* protect last_disk_size */
852 
853 #ifdef CONFIG_QUOTA
854 	struct dquot __rcu *i_dquot[MAXQUOTAS];
855 
856 	/* quota space reservation, managed internally by quota code */
857 	qsize_t i_reserved_quota;
858 #endif
859 	struct list_head dirty_list;	/* dirty list for dirs and files */
860 	struct list_head gdirty_list;	/* linked in global dirty list */
861 
862 	/* linked in global inode list for cache donation */
863 	struct list_head gdonate_list;
864 	pgoff_t donate_start, donate_end; /* inclusive */
865 
866 	struct task_struct *atomic_write_task;	/* store atomic write task */
867 	struct extent_tree *extent_tree[NR_EXTENT_CACHES];
868 					/* cached extent_tree entry */
869 	union {
870 		struct inode *cow_inode;	/* copy-on-write inode for atomic write */
871 		struct inode *atomic_inode;
872 					/* point to atomic_inode, available only for cow_inode */
873 	};
874 
875 	/* avoid racing between foreground op and gc */
876 	struct f2fs_rwsem i_gc_rwsem[2];
877 	struct f2fs_rwsem i_xattr_sem; /* avoid racing between reading and changing EAs */
878 
879 	int i_extra_isize;		/* size of extra space located in i_addr */
880 	kprojid_t i_projid;		/* id for project quota */
881 	int i_inline_xattr_size;	/* inline xattr size */
882 	struct timespec64 i_crtime;	/* inode creation time */
883 	struct timespec64 i_disk_time[3];/* inode disk times */
884 
885 	/* for file compress */
886 	atomic_t i_compr_blocks;		/* # of compressed blocks */
887 	unsigned char i_compress_algorithm;	/* algorithm type */
888 	unsigned char i_log_cluster_size;	/* log of cluster size */
889 	unsigned char i_compress_level;		/* compress level (lz4hc,zstd) */
890 	unsigned char i_compress_flag;		/* compress flag */
891 	unsigned int i_cluster_size;		/* cluster size */
892 
893 	unsigned int atomic_write_cnt;
894 	loff_t original_i_size;		/* original i_size before atomic write */
895 };
896 
get_read_extent_info(struct extent_info * ext,struct f2fs_extent * i_ext)897 static inline void get_read_extent_info(struct extent_info *ext,
898 					struct f2fs_extent *i_ext)
899 {
900 	ext->fofs = le32_to_cpu(i_ext->fofs);
901 	ext->blk = le32_to_cpu(i_ext->blk);
902 	ext->len = le32_to_cpu(i_ext->len);
903 }
904 
set_raw_read_extent(struct extent_info * ext,struct f2fs_extent * i_ext)905 static inline void set_raw_read_extent(struct extent_info *ext,
906 					struct f2fs_extent *i_ext)
907 {
908 	i_ext->fofs = cpu_to_le32(ext->fofs);
909 	i_ext->blk = cpu_to_le32(ext->blk);
910 	i_ext->len = cpu_to_le32(ext->len);
911 }
912 
__is_discard_mergeable(struct discard_info * back,struct discard_info * front,unsigned int max_len)913 static inline bool __is_discard_mergeable(struct discard_info *back,
914 			struct discard_info *front, unsigned int max_len)
915 {
916 	return (back->lstart + back->len == front->lstart) &&
917 		(back->len + front->len <= max_len);
918 }
919 
__is_discard_back_mergeable(struct discard_info * cur,struct discard_info * back,unsigned int max_len)920 static inline bool __is_discard_back_mergeable(struct discard_info *cur,
921 			struct discard_info *back, unsigned int max_len)
922 {
923 	return __is_discard_mergeable(back, cur, max_len);
924 }
925 
__is_discard_front_mergeable(struct discard_info * cur,struct discard_info * front,unsigned int max_len)926 static inline bool __is_discard_front_mergeable(struct discard_info *cur,
927 			struct discard_info *front, unsigned int max_len)
928 {
929 	return __is_discard_mergeable(cur, front, max_len);
930 }
931 
932 /*
933  * For free nid management
934  */
935 enum nid_state {
936 	FREE_NID,		/* newly added to free nid list */
937 	PREALLOC_NID,		/* it is preallocated */
938 	MAX_NID_STATE,
939 };
940 
941 enum nat_state {
942 	TOTAL_NAT,
943 	DIRTY_NAT,
944 	RECLAIMABLE_NAT,
945 	MAX_NAT_STATE,
946 };
947 
948 struct f2fs_nm_info {
949 	block_t nat_blkaddr;		/* base disk address of NAT */
950 	nid_t max_nid;			/* maximum possible node ids */
951 	nid_t available_nids;		/* # of available node ids */
952 	nid_t next_scan_nid;		/* the next nid to be scanned */
953 	nid_t max_rf_node_blocks;	/* max # of nodes for recovery */
954 	unsigned int ram_thresh;	/* control the memory footprint */
955 	unsigned int ra_nid_pages;	/* # of nid pages to be readaheaded */
956 	unsigned int dirty_nats_ratio;	/* control dirty nats ratio threshold */
957 
958 	/* NAT cache management */
959 	struct radix_tree_root nat_root;/* root of the nat entry cache */
960 	struct radix_tree_root nat_set_root;/* root of the nat set cache */
961 	struct f2fs_rwsem nat_tree_lock;	/* protect nat entry tree */
962 	struct list_head nat_entries;	/* cached nat entry list (clean) */
963 	spinlock_t nat_list_lock;	/* protect clean nat entry list */
964 	unsigned int nat_cnt[MAX_NAT_STATE]; /* the # of cached nat entries */
965 	unsigned int nat_blocks;	/* # of nat blocks */
966 
967 	/* free node ids management */
968 	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
969 	struct list_head free_nid_list;		/* list for free nids excluding preallocated nids */
970 	unsigned int nid_cnt[MAX_NID_STATE];	/* the number of free node id */
971 	spinlock_t nid_list_lock;	/* protect nid lists ops */
972 	struct mutex build_lock;	/* lock for build free nids */
973 	unsigned char **free_nid_bitmap;
974 	unsigned char *nat_block_bitmap;
975 	unsigned short *free_nid_count;	/* free nid count of NAT block */
976 
977 	/* for checkpoint */
978 	char *nat_bitmap;		/* NAT bitmap pointer */
979 
980 	unsigned int nat_bits_blocks;	/* # of nat bits blocks */
981 	unsigned char *nat_bits;	/* NAT bits blocks */
982 	unsigned char *full_nat_bits;	/* full NAT pages */
983 	unsigned char *empty_nat_bits;	/* empty NAT pages */
984 #ifdef CONFIG_F2FS_CHECK_FS
985 	char *nat_bitmap_mir;		/* NAT bitmap mirror */
986 #endif
987 	int bitmap_size;		/* bitmap size */
988 };
989 
990 /*
991  * this structure is used as one of function parameters.
992  * all the information are dedicated to a given direct node block determined
993  * by the data offset in a file.
994  */
995 struct dnode_of_data {
996 	struct inode *inode;		/* vfs inode pointer */
997 	struct page *inode_page;	/* its inode page, NULL is possible */
998 	struct page *node_page;		/* cached direct node page */
999 	nid_t nid;			/* node id of the direct node block */
1000 	unsigned int ofs_in_node;	/* data offset in the node page */
1001 	bool inode_page_locked;		/* inode page is locked or not */
1002 	bool node_changed;		/* is node block changed */
1003 	char cur_level;			/* level of hole node page */
1004 	char max_level;			/* level of current page located */
1005 	block_t	data_blkaddr;		/* block address of the node block */
1006 };
1007 
set_new_dnode(struct dnode_of_data * dn,struct inode * inode,struct page * ipage,struct page * npage,nid_t nid)1008 static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
1009 		struct page *ipage, struct page *npage, nid_t nid)
1010 {
1011 	memset(dn, 0, sizeof(*dn));
1012 	dn->inode = inode;
1013 	dn->inode_page = ipage;
1014 	dn->node_page = npage;
1015 	dn->nid = nid;
1016 }
1017 
1018 /*
1019  * For SIT manager
1020  *
1021  * By default, there are 6 active log areas across the whole main area.
1022  * When considering hot and cold data separation to reduce cleaning overhead,
1023  * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
1024  * respectively.
1025  * In the current design, you should not change the numbers intentionally.
1026  * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
1027  * logs individually according to the underlying devices. (default: 6)
1028  * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
1029  * data and 8 for node logs.
1030  */
1031 #define	NR_CURSEG_DATA_TYPE	(3)
1032 #define NR_CURSEG_NODE_TYPE	(3)
1033 #define NR_CURSEG_INMEM_TYPE	(2)
1034 #define NR_CURSEG_RO_TYPE	(2)
1035 #define NR_CURSEG_PERSIST_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
1036 #define NR_CURSEG_TYPE		(NR_CURSEG_INMEM_TYPE + NR_CURSEG_PERSIST_TYPE)
1037 
1038 enum log_type {
1039 	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
1040 	CURSEG_WARM_DATA,	/* data blocks */
1041 	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
1042 	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
1043 	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
1044 	CURSEG_COLD_NODE,	/* indirect node blocks */
1045 	NR_PERSISTENT_LOG,	/* number of persistent log */
1046 	CURSEG_COLD_DATA_PINNED = NR_PERSISTENT_LOG,
1047 				/* pinned file that needs consecutive block address */
1048 	CURSEG_ALL_DATA_ATGC,	/* SSR alloctor in hot/warm/cold data area */
1049 	NO_CHECK_TYPE,		/* number of persistent & inmem log */
1050 };
1051 
1052 struct flush_cmd {
1053 	struct completion wait;
1054 	struct llist_node llnode;
1055 	nid_t ino;
1056 	int ret;
1057 };
1058 
1059 struct flush_cmd_control {
1060 	struct task_struct *f2fs_issue_flush;	/* flush thread */
1061 	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
1062 	atomic_t issued_flush;			/* # of issued flushes */
1063 	atomic_t queued_flush;			/* # of queued flushes */
1064 	struct llist_head issue_list;		/* list for command issue */
1065 	struct llist_node *dispatch_list;	/* list for command dispatch */
1066 };
1067 
1068 struct f2fs_sm_info {
1069 	struct sit_info *sit_info;		/* whole segment information */
1070 	struct free_segmap_info *free_info;	/* free segment information */
1071 	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
1072 	struct curseg_info *curseg_array;	/* active segment information */
1073 
1074 	struct f2fs_rwsem curseg_lock;	/* for preventing curseg change */
1075 
1076 	block_t seg0_blkaddr;		/* block address of 0'th segment */
1077 	block_t main_blkaddr;		/* start block address of main area */
1078 	block_t ssa_blkaddr;		/* start block address of SSA area */
1079 
1080 	unsigned int segment_count;	/* total # of segments */
1081 	unsigned int main_segments;	/* # of segments in main area */
1082 	unsigned int reserved_segments;	/* # of reserved segments */
1083 	unsigned int ovp_segments;	/* # of overprovision segments */
1084 
1085 	/* a threshold to reclaim prefree segments */
1086 	unsigned int rec_prefree_segments;
1087 
1088 	struct list_head sit_entry_set;	/* sit entry set list */
1089 
1090 	unsigned int ipu_policy;	/* in-place-update policy */
1091 	unsigned int min_ipu_util;	/* in-place-update threshold */
1092 	unsigned int min_fsync_blocks;	/* threshold for fsync */
1093 	unsigned int min_seq_blocks;	/* threshold for sequential blocks */
1094 	unsigned int min_hot_blocks;	/* threshold for hot block allocation */
1095 	unsigned int min_ssr_sections;	/* threshold to trigger SSR allocation */
1096 
1097 	/* for flush command control */
1098 	struct flush_cmd_control *fcc_info;
1099 
1100 	/* for discard command control */
1101 	struct discard_cmd_control *dcc_info;
1102 };
1103 
1104 /*
1105  * For superblock
1106  */
1107 /*
1108  * COUNT_TYPE for monitoring
1109  *
1110  * f2fs monitors the number of several block types such as on-writeback,
1111  * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
1112  */
1113 #define WB_DATA_TYPE(p, f)			\
1114 	(f || f2fs_is_cp_guaranteed(p) ? F2FS_WB_CP_DATA : F2FS_WB_DATA)
1115 enum count_type {
1116 	F2FS_DIRTY_DENTS,
1117 	F2FS_DIRTY_DATA,
1118 	F2FS_DIRTY_QDATA,
1119 	F2FS_DIRTY_NODES,
1120 	F2FS_DIRTY_META,
1121 	F2FS_DIRTY_IMETA,
1122 	F2FS_WB_CP_DATA,
1123 	F2FS_WB_DATA,
1124 	F2FS_RD_DATA,
1125 	F2FS_RD_NODE,
1126 	F2FS_RD_META,
1127 	F2FS_DIO_WRITE,
1128 	F2FS_DIO_READ,
1129 	NR_COUNT_TYPE,
1130 };
1131 
1132 /*
1133  * The below are the page types of bios used in submit_bio().
1134  * The available types are:
1135  * DATA			User data pages. It operates as async mode.
1136  * NODE			Node pages. It operates as async mode.
1137  * META			FS metadata pages such as SIT, NAT, CP.
1138  * NR_PAGE_TYPE		The number of page types.
1139  * META_FLUSH		Make sure the previous pages are written
1140  *			with waiting the bio's completion
1141  * ...			Only can be used with META.
1142  */
1143 #define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
1144 #define PAGE_TYPE_ON_MAIN(type)	((type) == DATA || (type) == NODE)
1145 enum page_type {
1146 	DATA = 0,
1147 	NODE = 1,	/* should not change this */
1148 	META,
1149 	NR_PAGE_TYPE,
1150 	META_FLUSH,
1151 	IPU,		/* the below types are used by tracepoints only. */
1152 	OPU,
1153 };
1154 
1155 enum temp_type {
1156 	HOT = 0,	/* must be zero for meta bio */
1157 	WARM,
1158 	COLD,
1159 	NR_TEMP_TYPE,
1160 };
1161 
1162 enum need_lock_type {
1163 	LOCK_REQ = 0,
1164 	LOCK_DONE,
1165 	LOCK_RETRY,
1166 };
1167 
1168 enum cp_reason_type {
1169 	CP_NO_NEEDED,
1170 	CP_NON_REGULAR,
1171 	CP_COMPRESSED,
1172 	CP_HARDLINK,
1173 	CP_SB_NEED_CP,
1174 	CP_WRONG_PINO,
1175 	CP_NO_SPC_ROLL,
1176 	CP_NODE_NEED_CP,
1177 	CP_FASTBOOT_MODE,
1178 	CP_SPEC_LOG_NUM,
1179 	CP_RECOVER_DIR,
1180 	CP_XATTR_DIR,
1181 };
1182 
1183 enum iostat_type {
1184 	/* WRITE IO */
1185 	APP_DIRECT_IO,			/* app direct write IOs */
1186 	APP_BUFFERED_IO,		/* app buffered write IOs */
1187 	APP_WRITE_IO,			/* app write IOs */
1188 	APP_MAPPED_IO,			/* app mapped IOs */
1189 	APP_BUFFERED_CDATA_IO,		/* app buffered write IOs on compressed file */
1190 	APP_MAPPED_CDATA_IO,		/* app mapped write IOs on compressed file */
1191 	FS_DATA_IO,			/* data IOs from kworker/fsync/reclaimer */
1192 	FS_CDATA_IO,			/* data IOs from kworker/fsync/reclaimer on compressed file */
1193 	FS_NODE_IO,			/* node IOs from kworker/fsync/reclaimer */
1194 	FS_META_IO,			/* meta IOs from kworker/reclaimer */
1195 	FS_GC_DATA_IO,			/* data IOs from forground gc */
1196 	FS_GC_NODE_IO,			/* node IOs from forground gc */
1197 	FS_CP_DATA_IO,			/* data IOs from checkpoint */
1198 	FS_CP_NODE_IO,			/* node IOs from checkpoint */
1199 	FS_CP_META_IO,			/* meta IOs from checkpoint */
1200 
1201 	/* READ IO */
1202 	APP_DIRECT_READ_IO,		/* app direct read IOs */
1203 	APP_BUFFERED_READ_IO,		/* app buffered read IOs */
1204 	APP_READ_IO,			/* app read IOs */
1205 	APP_MAPPED_READ_IO,		/* app mapped read IOs */
1206 	APP_BUFFERED_CDATA_READ_IO,	/* app buffered read IOs on compressed file  */
1207 	APP_MAPPED_CDATA_READ_IO,	/* app mapped read IOs on compressed file  */
1208 	FS_DATA_READ_IO,		/* data read IOs */
1209 	FS_GDATA_READ_IO,		/* data read IOs from background gc */
1210 	FS_CDATA_READ_IO,		/* compressed data read IOs */
1211 	FS_NODE_READ_IO,		/* node read IOs */
1212 	FS_META_READ_IO,		/* meta read IOs */
1213 
1214 	/* other */
1215 	FS_DISCARD_IO,			/* discard */
1216 	FS_FLUSH_IO,			/* flush */
1217 	FS_ZONE_RESET_IO,		/* zone reset */
1218 	NR_IO_TYPE,
1219 };
1220 
1221 struct f2fs_io_info {
1222 	struct f2fs_sb_info *sbi;	/* f2fs_sb_info pointer */
1223 	nid_t ino;		/* inode number */
1224 	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
1225 	enum temp_type temp;	/* contains HOT/WARM/COLD */
1226 	enum req_op op;		/* contains REQ_OP_ */
1227 	blk_opf_t op_flags;	/* req_flag_bits */
1228 	block_t new_blkaddr;	/* new block address to be written */
1229 	block_t old_blkaddr;	/* old block address before Cow */
1230 	struct page *page;	/* page to be written */
1231 	struct page *encrypted_page;	/* encrypted page */
1232 	struct page *compressed_page;	/* compressed page */
1233 	struct list_head list;		/* serialize IOs */
1234 	unsigned int compr_blocks;	/* # of compressed block addresses */
1235 	unsigned int need_lock:8;	/* indicate we need to lock cp_rwsem */
1236 	unsigned int version:8;		/* version of the node */
1237 	unsigned int submitted:1;	/* indicate IO submission */
1238 	unsigned int in_list:1;		/* indicate fio is in io_list */
1239 	unsigned int is_por:1;		/* indicate IO is from recovery or not */
1240 	unsigned int encrypted:1;	/* indicate file is encrypted */
1241 	unsigned int meta_gc:1;		/* require meta inode GC */
1242 	enum iostat_type io_type;	/* io type */
1243 	struct writeback_control *io_wbc; /* writeback control */
1244 	struct bio **bio;		/* bio for ipu */
1245 	sector_t *last_block;		/* last block number in bio */
1246 };
1247 
1248 struct bio_entry {
1249 	struct bio *bio;
1250 	struct list_head list;
1251 };
1252 
1253 #define is_read_io(rw) ((rw) == READ)
1254 struct f2fs_bio_info {
1255 	struct f2fs_sb_info *sbi;	/* f2fs superblock */
1256 	struct bio *bio;		/* bios to merge */
1257 	sector_t last_block_in_bio;	/* last block number */
1258 	struct f2fs_io_info fio;	/* store buffered io info. */
1259 #ifdef CONFIG_BLK_DEV_ZONED
1260 	struct completion zone_wait;	/* condition value for the previous open zone to close */
1261 	struct bio *zone_pending_bio;	/* pending bio for the previous zone */
1262 	void *bi_private;		/* previous bi_private for pending bio */
1263 #endif
1264 	struct f2fs_rwsem io_rwsem;	/* blocking op for bio */
1265 	spinlock_t io_lock;		/* serialize DATA/NODE IOs */
1266 	struct list_head io_list;	/* track fios */
1267 	struct list_head bio_list;	/* bio entry list head */
1268 	struct f2fs_rwsem bio_list_lock;	/* lock to protect bio entry list */
1269 };
1270 
1271 #define FDEV(i)				(sbi->devs[i])
1272 #define RDEV(i)				(raw_super->devs[i])
1273 struct f2fs_dev_info {
1274 	struct file *bdev_file;
1275 	struct block_device *bdev;
1276 	char path[MAX_PATH_LEN];
1277 	unsigned int total_segments;
1278 	block_t start_blk;
1279 	block_t end_blk;
1280 #ifdef CONFIG_BLK_DEV_ZONED
1281 	unsigned int nr_blkz;		/* Total number of zones */
1282 	unsigned long *blkz_seq;	/* Bitmap indicating sequential zones */
1283 #endif
1284 };
1285 
1286 enum inode_type {
1287 	DIR_INODE,			/* for dirty dir inode */
1288 	FILE_INODE,			/* for dirty regular/symlink inode */
1289 	DIRTY_META,			/* for all dirtied inode metadata */
1290 	DONATE_INODE,			/* for all inode to donate pages */
1291 	NR_INODE_TYPE,
1292 };
1293 
1294 /* for inner inode cache management */
1295 struct inode_management {
1296 	struct radix_tree_root ino_root;	/* ino entry array */
1297 	spinlock_t ino_lock;			/* for ino entry lock */
1298 	struct list_head ino_list;		/* inode list head */
1299 	unsigned long ino_num;			/* number of entries */
1300 };
1301 
1302 /* for GC_AT */
1303 struct atgc_management {
1304 	bool atgc_enabled;			/* ATGC is enabled or not */
1305 	struct rb_root_cached root;		/* root of victim rb-tree */
1306 	struct list_head victim_list;		/* linked with all victim entries */
1307 	unsigned int victim_count;		/* victim count in rb-tree */
1308 	unsigned int candidate_ratio;		/* candidate ratio */
1309 	unsigned int max_candidate_count;	/* max candidate count */
1310 	unsigned int age_weight;		/* age weight, vblock_weight = 100 - age_weight */
1311 	unsigned long long age_threshold;	/* age threshold */
1312 };
1313 
1314 struct f2fs_gc_control {
1315 	unsigned int victim_segno;	/* target victim segment number */
1316 	int init_gc_type;		/* FG_GC or BG_GC */
1317 	bool no_bg_gc;			/* check the space and stop bg_gc */
1318 	bool should_migrate_blocks;	/* should migrate blocks */
1319 	bool err_gc_skipped;		/* return EAGAIN if GC skipped */
1320 	bool one_time;			/* require one time GC in one migration unit */
1321 	unsigned int nr_free_secs;	/* # of free sections to do GC */
1322 };
1323 
1324 /*
1325  * For s_flag in struct f2fs_sb_info
1326  * Modification on enum should be synchronized with s_flag array
1327  */
1328 enum {
1329 	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
1330 	SBI_IS_CLOSE,				/* specify unmounting */
1331 	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
1332 	SBI_POR_DOING,				/* recovery is doing or not */
1333 	SBI_NEED_SB_WRITE,			/* need to recover superblock */
1334 	SBI_NEED_CP,				/* need to checkpoint */
1335 	SBI_IS_SHUTDOWN,			/* shutdown by ioctl */
1336 	SBI_IS_RECOVERED,			/* recovered orphan/data */
1337 	SBI_CP_DISABLED,			/* CP was disabled last mount */
1338 	SBI_CP_DISABLED_QUICK,			/* CP was disabled quickly */
1339 	SBI_QUOTA_NEED_FLUSH,			/* need to flush quota info in CP */
1340 	SBI_QUOTA_SKIP_FLUSH,			/* skip flushing quota in current CP */
1341 	SBI_QUOTA_NEED_REPAIR,			/* quota file may be corrupted */
1342 	SBI_IS_RESIZEFS,			/* resizefs is in process */
1343 	SBI_IS_FREEZING,			/* freezefs is in process */
1344 	SBI_IS_WRITABLE,			/* remove ro mountoption transiently */
1345 	MAX_SBI_FLAG,
1346 };
1347 
1348 enum {
1349 	CP_TIME,
1350 	REQ_TIME,
1351 	DISCARD_TIME,
1352 	GC_TIME,
1353 	DISABLE_TIME,
1354 	UMOUNT_DISCARD_TIMEOUT,
1355 	MAX_TIME,
1356 };
1357 
1358 /* Note that you need to keep synchronization with this gc_mode_names array */
1359 enum {
1360 	GC_NORMAL,
1361 	GC_IDLE_CB,
1362 	GC_IDLE_GREEDY,
1363 	GC_IDLE_AT,
1364 	GC_URGENT_HIGH,
1365 	GC_URGENT_LOW,
1366 	GC_URGENT_MID,
1367 	MAX_GC_MODE,
1368 };
1369 
1370 enum {
1371 	BGGC_MODE_ON,		/* background gc is on */
1372 	BGGC_MODE_OFF,		/* background gc is off */
1373 	BGGC_MODE_SYNC,		/*
1374 				 * background gc is on, migrating blocks
1375 				 * like foreground gc
1376 				 */
1377 };
1378 
1379 enum {
1380 	FS_MODE_ADAPTIVE,		/* use both lfs/ssr allocation */
1381 	FS_MODE_LFS,			/* use lfs allocation only */
1382 	FS_MODE_FRAGMENT_SEG,		/* segment fragmentation mode */
1383 	FS_MODE_FRAGMENT_BLK,		/* block fragmentation mode */
1384 };
1385 
1386 enum {
1387 	ALLOC_MODE_DEFAULT,	/* stay default */
1388 	ALLOC_MODE_REUSE,	/* reuse segments as much as possible */
1389 };
1390 
1391 enum fsync_mode {
1392 	FSYNC_MODE_POSIX,	/* fsync follows posix semantics */
1393 	FSYNC_MODE_STRICT,	/* fsync behaves in line with ext4 */
1394 	FSYNC_MODE_NOBARRIER,	/* fsync behaves nobarrier based on posix */
1395 };
1396 
1397 enum {
1398 	COMPR_MODE_FS,		/*
1399 				 * automatically compress compression
1400 				 * enabled files
1401 				 */
1402 	COMPR_MODE_USER,	/*
1403 				 * automatical compression is disabled.
1404 				 * user can control the file compression
1405 				 * using ioctls
1406 				 */
1407 };
1408 
1409 enum {
1410 	DISCARD_UNIT_BLOCK,	/* basic discard unit is block */
1411 	DISCARD_UNIT_SEGMENT,	/* basic discard unit is segment */
1412 	DISCARD_UNIT_SECTION,	/* basic discard unit is section */
1413 };
1414 
1415 enum {
1416 	MEMORY_MODE_NORMAL,	/* memory mode for normal devices */
1417 	MEMORY_MODE_LOW,	/* memory mode for low memry devices */
1418 };
1419 
1420 enum errors_option {
1421 	MOUNT_ERRORS_READONLY,	/* remount fs ro on errors */
1422 	MOUNT_ERRORS_CONTINUE,	/* continue on errors */
1423 	MOUNT_ERRORS_PANIC,	/* panic on errors */
1424 };
1425 
1426 enum {
1427 	BACKGROUND,
1428 	FOREGROUND,
1429 	MAX_CALL_TYPE,
1430 	TOTAL_CALL = FOREGROUND,
1431 };
1432 
1433 static inline int f2fs_test_bit(unsigned int nr, char *addr);
1434 static inline void f2fs_set_bit(unsigned int nr, char *addr);
1435 static inline void f2fs_clear_bit(unsigned int nr, char *addr);
1436 
1437 /*
1438  * Layout of f2fs page.private:
1439  *
1440  * Layout A: lowest bit should be 1
1441  * | bit0 = 1 | bit1 | bit2 | ... | bit MAX | private data .... |
1442  * bit 0	PAGE_PRIVATE_NOT_POINTER
1443  * bit 1	PAGE_PRIVATE_ONGOING_MIGRATION
1444  * bit 2	PAGE_PRIVATE_INLINE_INODE
1445  * bit 3	PAGE_PRIVATE_REF_RESOURCE
1446  * bit 4	PAGE_PRIVATE_ATOMIC_WRITE
1447  * bit 5-	f2fs private data
1448  *
1449  * Layout B: lowest bit should be 0
1450  * page.private is a wrapped pointer.
1451  */
1452 enum {
1453 	PAGE_PRIVATE_NOT_POINTER,		/* private contains non-pointer data */
1454 	PAGE_PRIVATE_ONGOING_MIGRATION,		/* data page which is on-going migrating */
1455 	PAGE_PRIVATE_INLINE_INODE,		/* inode page contains inline data */
1456 	PAGE_PRIVATE_REF_RESOURCE,		/* dirty page has referenced resources */
1457 	PAGE_PRIVATE_ATOMIC_WRITE,		/* data page from atomic write path */
1458 	PAGE_PRIVATE_MAX
1459 };
1460 
1461 /* For compression */
1462 enum compress_algorithm_type {
1463 	COMPRESS_LZO,
1464 	COMPRESS_LZ4,
1465 	COMPRESS_ZSTD,
1466 	COMPRESS_LZORLE,
1467 	COMPRESS_MAX,
1468 };
1469 
1470 enum compress_flag {
1471 	COMPRESS_CHKSUM,
1472 	COMPRESS_MAX_FLAG,
1473 };
1474 
1475 #define	COMPRESS_WATERMARK			20
1476 #define	COMPRESS_PERCENT			20
1477 
1478 #define COMPRESS_DATA_RESERVED_SIZE		4
1479 struct compress_data {
1480 	__le32 clen;			/* compressed data size */
1481 	__le32 chksum;			/* compressed data chksum */
1482 	__le32 reserved[COMPRESS_DATA_RESERVED_SIZE];	/* reserved */
1483 	u8 cdata[];			/* compressed data */
1484 };
1485 
1486 #define COMPRESS_HEADER_SIZE	(sizeof(struct compress_data))
1487 
1488 #define F2FS_COMPRESSED_PAGE_MAGIC	0xF5F2C000
1489 
1490 #define F2FS_ZSTD_DEFAULT_CLEVEL	1
1491 
1492 #define	COMPRESS_LEVEL_OFFSET	8
1493 
1494 /* compress context */
1495 struct compress_ctx {
1496 	struct inode *inode;		/* inode the context belong to */
1497 	pgoff_t cluster_idx;		/* cluster index number */
1498 	unsigned int cluster_size;	/* page count in cluster */
1499 	unsigned int log_cluster_size;	/* log of cluster size */
1500 	struct page **rpages;		/* pages store raw data in cluster */
1501 	unsigned int nr_rpages;		/* total page number in rpages */
1502 	struct page **cpages;		/* pages store compressed data in cluster */
1503 	unsigned int nr_cpages;		/* total page number in cpages */
1504 	unsigned int valid_nr_cpages;	/* valid page number in cpages */
1505 	void *rbuf;			/* virtual mapped address on rpages */
1506 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1507 	size_t rlen;			/* valid data length in rbuf */
1508 	size_t clen;			/* valid data length in cbuf */
1509 	void *private;			/* payload buffer for specified compression algorithm */
1510 	void *private2;			/* extra payload buffer */
1511 };
1512 
1513 /* compress context for write IO path */
1514 struct compress_io_ctx {
1515 	u32 magic;			/* magic number to indicate page is compressed */
1516 	struct inode *inode;		/* inode the context belong to */
1517 	struct page **rpages;		/* pages store raw data in cluster */
1518 	unsigned int nr_rpages;		/* total page number in rpages */
1519 	atomic_t pending_pages;		/* in-flight compressed page count */
1520 };
1521 
1522 /* Context for decompressing one cluster on the read IO path */
1523 struct decompress_io_ctx {
1524 	u32 magic;			/* magic number to indicate page is compressed */
1525 	struct inode *inode;		/* inode the context belong to */
1526 	pgoff_t cluster_idx;		/* cluster index number */
1527 	unsigned int cluster_size;	/* page count in cluster */
1528 	unsigned int log_cluster_size;	/* log of cluster size */
1529 	struct page **rpages;		/* pages store raw data in cluster */
1530 	unsigned int nr_rpages;		/* total page number in rpages */
1531 	struct page **cpages;		/* pages store compressed data in cluster */
1532 	unsigned int nr_cpages;		/* total page number in cpages */
1533 	struct page **tpages;		/* temp pages to pad holes in cluster */
1534 	void *rbuf;			/* virtual mapped address on rpages */
1535 	struct compress_data *cbuf;	/* virtual mapped address on cpages */
1536 	size_t rlen;			/* valid data length in rbuf */
1537 	size_t clen;			/* valid data length in cbuf */
1538 
1539 	/*
1540 	 * The number of compressed pages remaining to be read in this cluster.
1541 	 * This is initially nr_cpages.  It is decremented by 1 each time a page
1542 	 * has been read (or failed to be read).  When it reaches 0, the cluster
1543 	 * is decompressed (or an error is reported).
1544 	 *
1545 	 * If an error occurs before all the pages have been submitted for I/O,
1546 	 * then this will never reach 0.  In this case the I/O submitter is
1547 	 * responsible for calling f2fs_decompress_end_io() instead.
1548 	 */
1549 	atomic_t remaining_pages;
1550 
1551 	/*
1552 	 * Number of references to this decompress_io_ctx.
1553 	 *
1554 	 * One reference is held for I/O completion.  This reference is dropped
1555 	 * after the pagecache pages are updated and unlocked -- either after
1556 	 * decompression (and verity if enabled), or after an error.
1557 	 *
1558 	 * In addition, each compressed page holds a reference while it is in a
1559 	 * bio.  These references are necessary prevent compressed pages from
1560 	 * being freed while they are still in a bio.
1561 	 */
1562 	refcount_t refcnt;
1563 
1564 	bool failed;			/* IO error occurred before decompression? */
1565 	bool need_verity;		/* need fs-verity verification after decompression? */
1566 	void *private;			/* payload buffer for specified decompression algorithm */
1567 	void *private2;			/* extra payload buffer */
1568 	struct work_struct verity_work;	/* work to verify the decompressed pages */
1569 	struct work_struct free_work;	/* work for late free this structure itself */
1570 };
1571 
1572 #define NULL_CLUSTER			((unsigned int)(~0))
1573 #define MIN_COMPRESS_LOG_SIZE		2
1574 #define MAX_COMPRESS_LOG_SIZE		8
1575 #define MAX_COMPRESS_WINDOW_SIZE(log_size)	((PAGE_SIZE) << (log_size))
1576 
1577 struct f2fs_sb_info {
1578 	struct super_block *sb;			/* pointer to VFS super block */
1579 	struct proc_dir_entry *s_proc;		/* proc entry */
1580 	struct f2fs_super_block *raw_super;	/* raw super block pointer */
1581 	struct f2fs_rwsem sb_lock;		/* lock for raw super block */
1582 	int valid_super_block;			/* valid super block no */
1583 	unsigned long s_flag;				/* flags for sbi */
1584 	struct mutex writepages;		/* mutex for writepages() */
1585 
1586 #ifdef CONFIG_BLK_DEV_ZONED
1587 	unsigned int blocks_per_blkz;		/* F2FS blocks per zone */
1588 	unsigned int max_open_zones;		/* max open zone resources of the zoned device */
1589 	/* For adjust the priority writing position of data in zone UFS */
1590 	unsigned int blkzone_alloc_policy;
1591 #endif
1592 
1593 	/* for node-related operations */
1594 	struct f2fs_nm_info *nm_info;		/* node manager */
1595 	struct inode *node_inode;		/* cache node blocks */
1596 
1597 	/* for segment-related operations */
1598 	struct f2fs_sm_info *sm_info;		/* segment manager */
1599 
1600 	/* for bio operations */
1601 	struct f2fs_bio_info *write_io[NR_PAGE_TYPE];	/* for write bios */
1602 	/* keep migration IO order for LFS mode */
1603 	struct f2fs_rwsem io_order_lock;
1604 	pgoff_t page_eio_ofs[NR_PAGE_TYPE];	/* EIO page offset */
1605 	int page_eio_cnt[NR_PAGE_TYPE];		/* EIO count */
1606 
1607 	/* for checkpoint */
1608 	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
1609 	int cur_cp_pack;			/* remain current cp pack */
1610 	spinlock_t cp_lock;			/* for flag in ckpt */
1611 	struct inode *meta_inode;		/* cache meta blocks */
1612 	struct f2fs_rwsem cp_global_sem;	/* checkpoint procedure lock */
1613 	struct f2fs_rwsem cp_rwsem;		/* blocking FS operations */
1614 	struct f2fs_rwsem node_write;		/* locking node writes */
1615 	struct f2fs_rwsem node_change;	/* locking node change */
1616 	wait_queue_head_t cp_wait;
1617 	unsigned long last_time[MAX_TIME];	/* to store time in jiffies */
1618 	long interval_time[MAX_TIME];		/* to store thresholds */
1619 	struct ckpt_req_control cprc_info;	/* for checkpoint request control */
1620 
1621 	struct inode_management im[MAX_INO_ENTRY];	/* manage inode cache */
1622 
1623 	spinlock_t fsync_node_lock;		/* for node entry lock */
1624 	struct list_head fsync_node_list;	/* node list head */
1625 	unsigned int fsync_seg_id;		/* sequence id */
1626 	unsigned int fsync_node_num;		/* number of node entries */
1627 
1628 	/* for orphan inode, use 0'th array */
1629 	unsigned int max_orphans;		/* max orphan inodes */
1630 
1631 	/* for inode management */
1632 	struct list_head inode_list[NR_INODE_TYPE];	/* dirty inode list */
1633 	spinlock_t inode_lock[NR_INODE_TYPE];	/* for dirty inode list lock */
1634 	struct mutex flush_lock;		/* for flush exclusion */
1635 
1636 	/* for extent tree cache */
1637 	struct extent_tree_info extent_tree[NR_EXTENT_CACHES];
1638 	atomic64_t allocated_data_blocks;	/* for block age extent_cache */
1639 	unsigned int max_read_extent_count;	/* max read extent count per inode */
1640 
1641 	/* The threshold used for hot and warm data seperation*/
1642 	unsigned int hot_data_age_threshold;
1643 	unsigned int warm_data_age_threshold;
1644 	unsigned int last_age_weight;
1645 
1646 	/* control donate caches */
1647 	unsigned int donate_files;
1648 
1649 	/* basic filesystem units */
1650 	unsigned int log_sectors_per_block;	/* log2 sectors per block */
1651 	unsigned int log_blocksize;		/* log2 block size */
1652 	unsigned int blocksize;			/* block size */
1653 	unsigned int root_ino_num;		/* root inode number*/
1654 	unsigned int node_ino_num;		/* node inode number*/
1655 	unsigned int meta_ino_num;		/* meta inode number*/
1656 	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
1657 	unsigned int blocks_per_seg;		/* blocks per segment */
1658 	unsigned int unusable_blocks_per_sec;	/* unusable blocks per section */
1659 	unsigned int segs_per_sec;		/* segments per section */
1660 	unsigned int secs_per_zone;		/* sections per zone */
1661 	unsigned int total_sections;		/* total section count */
1662 	unsigned int total_node_count;		/* total node block count */
1663 	unsigned int total_valid_node_count;	/* valid node block count */
1664 	int dir_level;				/* directory level */
1665 	bool readdir_ra;			/* readahead inode in readdir */
1666 	u64 max_io_bytes;			/* max io bytes to merge IOs */
1667 
1668 	block_t user_block_count;		/* # of user blocks */
1669 	block_t total_valid_block_count;	/* # of valid blocks */
1670 	block_t discard_blks;			/* discard command candidats */
1671 	block_t last_valid_block_count;		/* for recovery */
1672 	block_t reserved_blocks;		/* configurable reserved blocks */
1673 	block_t current_reserved_blocks;	/* current reserved blocks */
1674 
1675 	/* Additional tracking for no checkpoint mode */
1676 	block_t unusable_block_count;		/* # of blocks saved by last cp */
1677 
1678 	unsigned int nquota_files;		/* # of quota sysfile */
1679 	struct f2fs_rwsem quota_sem;		/* blocking cp for flags */
1680 	struct task_struct *umount_lock_holder;	/* s_umount lock holder */
1681 
1682 	/* # of pages, see count_type */
1683 	atomic_t nr_pages[NR_COUNT_TYPE];
1684 	/* # of allocated blocks */
1685 	struct percpu_counter alloc_valid_block_count;
1686 	/* # of node block writes as roll forward recovery */
1687 	struct percpu_counter rf_node_block_count;
1688 
1689 	/* writeback control */
1690 	atomic_t wb_sync_req[META];	/* count # of WB_SYNC threads */
1691 
1692 	/* valid inode count */
1693 	struct percpu_counter total_valid_inode_count;
1694 
1695 	struct f2fs_mount_info mount_opt;	/* mount options */
1696 
1697 	/* for cleaning operations */
1698 	struct f2fs_rwsem gc_lock;		/*
1699 						 * semaphore for GC, avoid
1700 						 * race between GC and GC or CP
1701 						 */
1702 	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
1703 	struct atgc_management am;		/* atgc management */
1704 	unsigned int cur_victim_sec;		/* current victim section num */
1705 	unsigned int gc_mode;			/* current GC state */
1706 	unsigned int next_victim_seg[2];	/* next segment in victim section */
1707 	spinlock_t gc_remaining_trials_lock;
1708 	/* remaining trial count for GC_URGENT_* and GC_IDLE_* */
1709 	unsigned int gc_remaining_trials;
1710 
1711 	/* for skip statistic */
1712 	unsigned long long skipped_gc_rwsem;		/* FG_GC only */
1713 
1714 	/* threshold for gc trials on pinned files */
1715 	unsigned short gc_pin_file_threshold;
1716 	struct f2fs_rwsem pin_sem;
1717 
1718 	/* maximum # of trials to find a victim segment for SSR and GC */
1719 	unsigned int max_victim_search;
1720 	/* migration granularity of garbage collection, unit: segment */
1721 	unsigned int migration_granularity;
1722 	/* migration window granularity of garbage collection, unit: segment */
1723 	unsigned int migration_window_granularity;
1724 
1725 	/*
1726 	 * for stat information.
1727 	 * one is for the LFS mode, and the other is for the SSR mode.
1728 	 */
1729 #ifdef CONFIG_F2FS_STAT_FS
1730 	struct f2fs_stat_info *stat_info;	/* FS status information */
1731 	atomic_t meta_count[META_MAX];		/* # of meta blocks */
1732 	unsigned int segment_count[2];		/* # of allocated segments */
1733 	unsigned int block_count[2];		/* # of allocated blocks */
1734 	atomic_t inplace_count;		/* # of inplace update */
1735 	/* # of lookup extent cache */
1736 	atomic64_t total_hit_ext[NR_EXTENT_CACHES];
1737 	/* # of hit rbtree extent node */
1738 	atomic64_t read_hit_rbtree[NR_EXTENT_CACHES];
1739 	/* # of hit cached extent node */
1740 	atomic64_t read_hit_cached[NR_EXTENT_CACHES];
1741 	/* # of hit largest extent node in read extent cache */
1742 	atomic64_t read_hit_largest;
1743 	atomic_t inline_xattr;			/* # of inline_xattr inodes */
1744 	atomic_t inline_inode;			/* # of inline_data inodes */
1745 	atomic_t inline_dir;			/* # of inline_dentry inodes */
1746 	atomic_t compr_inode;			/* # of compressed inodes */
1747 	atomic64_t compr_blocks;		/* # of compressed blocks */
1748 	atomic_t swapfile_inode;		/* # of swapfile inodes */
1749 	atomic_t atomic_files;			/* # of opened atomic file */
1750 	atomic_t max_aw_cnt;			/* max # of atomic writes */
1751 	unsigned int io_skip_bggc;		/* skip background gc for in-flight IO */
1752 	unsigned int other_skip_bggc;		/* skip background gc for other reasons */
1753 	unsigned int ndirty_inode[NR_INODE_TYPE];	/* # of dirty inodes */
1754 	atomic_t cp_call_count[MAX_CALL_TYPE];	/* # of cp call */
1755 #endif
1756 	spinlock_t stat_lock;			/* lock for stat operations */
1757 
1758 	/* to attach REQ_META|REQ_FUA flags */
1759 	unsigned int data_io_flag;
1760 	unsigned int node_io_flag;
1761 
1762 	/* For sysfs support */
1763 	struct kobject s_kobj;			/* /sys/fs/f2fs/<devname> */
1764 	struct completion s_kobj_unregister;
1765 
1766 	struct kobject s_stat_kobj;		/* /sys/fs/f2fs/<devname>/stat */
1767 	struct completion s_stat_kobj_unregister;
1768 
1769 	struct kobject s_feature_list_kobj;		/* /sys/fs/f2fs/<devname>/feature_list */
1770 	struct completion s_feature_list_kobj_unregister;
1771 
1772 	/* For shrinker support */
1773 	struct list_head s_list;
1774 	struct mutex umount_mutex;
1775 	unsigned int shrinker_run_no;
1776 
1777 	/* For multi devices */
1778 	int s_ndevs;				/* number of devices */
1779 	struct f2fs_dev_info *devs;		/* for device list */
1780 	unsigned int dirty_device;		/* for checkpoint data flush */
1781 	spinlock_t dev_lock;			/* protect dirty_device */
1782 	bool aligned_blksize;			/* all devices has the same logical blksize */
1783 	unsigned int first_zoned_segno;		/* first zoned segno */
1784 
1785 	/* For write statistics */
1786 	u64 sectors_written_start;
1787 	u64 kbytes_written;
1788 
1789 	/* Precomputed FS UUID checksum for seeding other checksums */
1790 	__u32 s_chksum_seed;
1791 
1792 	struct workqueue_struct *post_read_wq;	/* post read workqueue */
1793 
1794 	/*
1795 	 * If we are in irq context, let's update error information into
1796 	 * on-disk superblock in the work.
1797 	 */
1798 	struct work_struct s_error_work;
1799 	unsigned char errors[MAX_F2FS_ERRORS];		/* error flags */
1800 	unsigned char stop_reason[MAX_STOP_REASON];	/* stop reason */
1801 	spinlock_t error_lock;			/* protect errors/stop_reason array */
1802 	bool error_dirty;			/* errors of sb is dirty */
1803 
1804 	struct kmem_cache *inline_xattr_slab;	/* inline xattr entry */
1805 	unsigned int inline_xattr_slab_size;	/* default inline xattr slab size */
1806 
1807 	/* For reclaimed segs statistics per each GC mode */
1808 	unsigned int gc_segment_mode;		/* GC state for reclaimed segments */
1809 	unsigned int gc_reclaimed_segs[MAX_GC_MODE];	/* Reclaimed segs for each mode */
1810 
1811 	unsigned long seq_file_ra_mul;		/* multiplier for ra_pages of seq. files in fadvise */
1812 
1813 	int max_fragment_chunk;			/* max chunk size for block fragmentation mode */
1814 	int max_fragment_hole;			/* max hole size for block fragmentation mode */
1815 
1816 	/* For atomic write statistics */
1817 	atomic64_t current_atomic_write;
1818 	s64 peak_atomic_write;
1819 	u64 committed_atomic_block;
1820 	u64 revoked_atomic_block;
1821 
1822 	/* carve out reserved_blocks from total blocks */
1823 	bool carve_out;
1824 
1825 #ifdef CONFIG_F2FS_FS_COMPRESSION
1826 	struct kmem_cache *page_array_slab;	/* page array entry */
1827 	unsigned int page_array_slab_size;	/* default page array slab size */
1828 
1829 	/* For runtime compression statistics */
1830 	u64 compr_written_block;
1831 	u64 compr_saved_block;
1832 	u32 compr_new_inode;
1833 
1834 	/* For compressed block cache */
1835 	struct inode *compress_inode;		/* cache compressed blocks */
1836 	unsigned int compress_percent;		/* cache page percentage */
1837 	unsigned int compress_watermark;	/* cache page watermark */
1838 	atomic_t compress_page_hit;		/* cache hit count */
1839 #endif
1840 
1841 #ifdef CONFIG_F2FS_IOSTAT
1842 	/* For app/fs IO statistics */
1843 	spinlock_t iostat_lock;
1844 	unsigned long long iostat_count[NR_IO_TYPE];
1845 	unsigned long long iostat_bytes[NR_IO_TYPE];
1846 	unsigned long long prev_iostat_bytes[NR_IO_TYPE];
1847 	bool iostat_enable;
1848 	unsigned long iostat_next_period;
1849 	unsigned int iostat_period_ms;
1850 
1851 	/* For io latency related statistics info in one iostat period */
1852 	spinlock_t iostat_lat_lock;
1853 	struct iostat_lat_info *iostat_io_lat;
1854 #endif
1855 };
1856 
1857 /* Definitions to access f2fs_sb_info */
1858 #define SEGS_TO_BLKS(sbi, segs)					\
1859 		((segs) << (sbi)->log_blocks_per_seg)
1860 #define BLKS_TO_SEGS(sbi, blks)					\
1861 		((blks) >> (sbi)->log_blocks_per_seg)
1862 
1863 #define BLKS_PER_SEG(sbi)	((sbi)->blocks_per_seg)
1864 #define BLKS_PER_SEC(sbi)	(SEGS_TO_BLKS(sbi, (sbi)->segs_per_sec))
1865 #define SEGS_PER_SEC(sbi)	((sbi)->segs_per_sec)
1866 
1867 __printf(3, 4)
1868 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, const char *fmt, ...);
1869 
1870 #define f2fs_err(sbi, fmt, ...)						\
1871 	f2fs_printk(sbi, false, KERN_ERR fmt, ##__VA_ARGS__)
1872 #define f2fs_warn(sbi, fmt, ...)					\
1873 	f2fs_printk(sbi, false, KERN_WARNING fmt, ##__VA_ARGS__)
1874 #define f2fs_notice(sbi, fmt, ...)					\
1875 	f2fs_printk(sbi, false, KERN_NOTICE fmt, ##__VA_ARGS__)
1876 #define f2fs_info(sbi, fmt, ...)					\
1877 	f2fs_printk(sbi, false, KERN_INFO fmt, ##__VA_ARGS__)
1878 #define f2fs_debug(sbi, fmt, ...)					\
1879 	f2fs_printk(sbi, false, KERN_DEBUG fmt, ##__VA_ARGS__)
1880 
1881 #define f2fs_err_ratelimited(sbi, fmt, ...)				\
1882 	f2fs_printk(sbi, true, KERN_ERR fmt, ##__VA_ARGS__)
1883 #define f2fs_warn_ratelimited(sbi, fmt, ...)				\
1884 	f2fs_printk(sbi, true, KERN_WARNING fmt, ##__VA_ARGS__)
1885 #define f2fs_info_ratelimited(sbi, fmt, ...)				\
1886 	f2fs_printk(sbi, true, KERN_INFO fmt, ##__VA_ARGS__)
1887 
1888 #ifdef CONFIG_F2FS_FAULT_INJECTION
1889 #define time_to_inject(sbi, type) __time_to_inject(sbi, type, __func__,	\
1890 									__builtin_return_address(0))
__time_to_inject(struct f2fs_sb_info * sbi,int type,const char * func,const char * parent_func)1891 static inline bool __time_to_inject(struct f2fs_sb_info *sbi, int type,
1892 				const char *func, const char *parent_func)
1893 {
1894 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
1895 
1896 	if (!ffi->inject_rate)
1897 		return false;
1898 
1899 	if (!IS_FAULT_SET(ffi, type))
1900 		return false;
1901 
1902 	atomic_inc(&ffi->inject_ops);
1903 	if (atomic_read(&ffi->inject_ops) >= ffi->inject_rate) {
1904 		atomic_set(&ffi->inject_ops, 0);
1905 		f2fs_info_ratelimited(sbi, "inject %s in %s of %pS",
1906 				f2fs_fault_name[type], func, parent_func);
1907 		return true;
1908 	}
1909 	return false;
1910 }
1911 #else
time_to_inject(struct f2fs_sb_info * sbi,int type)1912 static inline bool time_to_inject(struct f2fs_sb_info *sbi, int type)
1913 {
1914 	return false;
1915 }
1916 #endif
1917 
1918 /*
1919  * Test if the mounted volume is a multi-device volume.
1920  *   - For a single regular disk volume, sbi->s_ndevs is 0.
1921  *   - For a single zoned disk volume, sbi->s_ndevs is 1.
1922  *   - For a multi-device volume, sbi->s_ndevs is always 2 or more.
1923  */
f2fs_is_multi_device(struct f2fs_sb_info * sbi)1924 static inline bool f2fs_is_multi_device(struct f2fs_sb_info *sbi)
1925 {
1926 	return sbi->s_ndevs > 1;
1927 }
1928 
f2fs_update_time(struct f2fs_sb_info * sbi,int type)1929 static inline void f2fs_update_time(struct f2fs_sb_info *sbi, int type)
1930 {
1931 	unsigned long now = jiffies;
1932 
1933 	sbi->last_time[type] = now;
1934 
1935 	/* DISCARD_TIME and GC_TIME are based on REQ_TIME */
1936 	if (type == REQ_TIME) {
1937 		sbi->last_time[DISCARD_TIME] = now;
1938 		sbi->last_time[GC_TIME] = now;
1939 	}
1940 }
1941 
f2fs_time_over(struct f2fs_sb_info * sbi,int type)1942 static inline bool f2fs_time_over(struct f2fs_sb_info *sbi, int type)
1943 {
1944 	unsigned long interval = sbi->interval_time[type] * HZ;
1945 
1946 	return time_after(jiffies, sbi->last_time[type] + interval);
1947 }
1948 
f2fs_time_to_wait(struct f2fs_sb_info * sbi,int type)1949 static inline unsigned int f2fs_time_to_wait(struct f2fs_sb_info *sbi,
1950 						int type)
1951 {
1952 	unsigned long interval = sbi->interval_time[type] * HZ;
1953 	unsigned int wait_ms = 0;
1954 	long delta;
1955 
1956 	delta = (sbi->last_time[type] + interval) - jiffies;
1957 	if (delta > 0)
1958 		wait_ms = jiffies_to_msecs(delta);
1959 
1960 	return wait_ms;
1961 }
1962 
1963 /*
1964  * Inline functions
1965  */
__f2fs_crc32(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1966 static inline u32 __f2fs_crc32(struct f2fs_sb_info *sbi, u32 crc,
1967 			      const void *address, unsigned int length)
1968 {
1969 	return crc32(crc, address, length);
1970 }
1971 
f2fs_crc32(struct f2fs_sb_info * sbi,const void * address,unsigned int length)1972 static inline u32 f2fs_crc32(struct f2fs_sb_info *sbi, const void *address,
1973 			   unsigned int length)
1974 {
1975 	return __f2fs_crc32(sbi, F2FS_SUPER_MAGIC, address, length);
1976 }
1977 
f2fs_crc_valid(struct f2fs_sb_info * sbi,__u32 blk_crc,void * buf,size_t buf_size)1978 static inline bool f2fs_crc_valid(struct f2fs_sb_info *sbi, __u32 blk_crc,
1979 				  void *buf, size_t buf_size)
1980 {
1981 	return f2fs_crc32(sbi, buf, buf_size) == blk_crc;
1982 }
1983 
f2fs_chksum(struct f2fs_sb_info * sbi,u32 crc,const void * address,unsigned int length)1984 static inline u32 f2fs_chksum(struct f2fs_sb_info *sbi, u32 crc,
1985 			      const void *address, unsigned int length)
1986 {
1987 	return __f2fs_crc32(sbi, crc, address, length);
1988 }
1989 
F2FS_I(struct inode * inode)1990 static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
1991 {
1992 	return container_of(inode, struct f2fs_inode_info, vfs_inode);
1993 }
1994 
F2FS_SB(struct super_block * sb)1995 static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
1996 {
1997 	return sb->s_fs_info;
1998 }
1999 
F2FS_I_SB(struct inode * inode)2000 static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
2001 {
2002 	return F2FS_SB(inode->i_sb);
2003 }
2004 
F2FS_M_SB(struct address_space * mapping)2005 static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
2006 {
2007 	return F2FS_I_SB(mapping->host);
2008 }
2009 
F2FS_F_SB(struct folio * folio)2010 static inline struct f2fs_sb_info *F2FS_F_SB(struct folio *folio)
2011 {
2012 	return F2FS_M_SB(folio->mapping);
2013 }
2014 
F2FS_P_SB(struct page * page)2015 static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
2016 {
2017 	return F2FS_F_SB(page_folio(page));
2018 }
2019 
F2FS_RAW_SUPER(struct f2fs_sb_info * sbi)2020 static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
2021 {
2022 	return (struct f2fs_super_block *)(sbi->raw_super);
2023 }
2024 
F2FS_SUPER_BLOCK(struct folio * folio,pgoff_t index)2025 static inline struct f2fs_super_block *F2FS_SUPER_BLOCK(struct folio *folio,
2026 								pgoff_t index)
2027 {
2028 	pgoff_t idx_in_folio = index % (1 << folio_order(folio));
2029 
2030 	return (struct f2fs_super_block *)
2031 		(page_address(folio_page(folio, idx_in_folio)) +
2032 						F2FS_SUPER_OFFSET);
2033 }
2034 
F2FS_CKPT(struct f2fs_sb_info * sbi)2035 static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
2036 {
2037 	return (struct f2fs_checkpoint *)(sbi->ckpt);
2038 }
2039 
F2FS_NODE(const struct page * page)2040 static inline struct f2fs_node *F2FS_NODE(const struct page *page)
2041 {
2042 	return (struct f2fs_node *)page_address(page);
2043 }
2044 
F2FS_INODE(struct page * page)2045 static inline struct f2fs_inode *F2FS_INODE(struct page *page)
2046 {
2047 	return &((struct f2fs_node *)page_address(page))->i;
2048 }
2049 
NM_I(struct f2fs_sb_info * sbi)2050 static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
2051 {
2052 	return (struct f2fs_nm_info *)(sbi->nm_info);
2053 }
2054 
SM_I(struct f2fs_sb_info * sbi)2055 static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
2056 {
2057 	return (struct f2fs_sm_info *)(sbi->sm_info);
2058 }
2059 
SIT_I(struct f2fs_sb_info * sbi)2060 static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
2061 {
2062 	return (struct sit_info *)(SM_I(sbi)->sit_info);
2063 }
2064 
FREE_I(struct f2fs_sb_info * sbi)2065 static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
2066 {
2067 	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
2068 }
2069 
DIRTY_I(struct f2fs_sb_info * sbi)2070 static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
2071 {
2072 	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
2073 }
2074 
META_MAPPING(struct f2fs_sb_info * sbi)2075 static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
2076 {
2077 	return sbi->meta_inode->i_mapping;
2078 }
2079 
NODE_MAPPING(struct f2fs_sb_info * sbi)2080 static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
2081 {
2082 	return sbi->node_inode->i_mapping;
2083 }
2084 
is_sbi_flag_set(struct f2fs_sb_info * sbi,unsigned int type)2085 static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
2086 {
2087 	return test_bit(type, &sbi->s_flag);
2088 }
2089 
set_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2090 static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2091 {
2092 	set_bit(type, &sbi->s_flag);
2093 }
2094 
clear_sbi_flag(struct f2fs_sb_info * sbi,unsigned int type)2095 static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
2096 {
2097 	clear_bit(type, &sbi->s_flag);
2098 }
2099 
cur_cp_version(struct f2fs_checkpoint * cp)2100 static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
2101 {
2102 	return le64_to_cpu(cp->checkpoint_ver);
2103 }
2104 
f2fs_qf_ino(struct super_block * sb,int type)2105 static inline unsigned long f2fs_qf_ino(struct super_block *sb, int type)
2106 {
2107 	if (type < F2FS_MAX_QUOTAS)
2108 		return le32_to_cpu(F2FS_SB(sb)->raw_super->qf_ino[type]);
2109 	return 0;
2110 }
2111 
cur_cp_crc(struct f2fs_checkpoint * cp)2112 static inline __u64 cur_cp_crc(struct f2fs_checkpoint *cp)
2113 {
2114 	size_t crc_offset = le32_to_cpu(cp->checksum_offset);
2115 	return le32_to_cpu(*((__le32 *)((unsigned char *)cp + crc_offset)));
2116 }
2117 
__is_set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2118 static inline bool __is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2119 {
2120 	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2121 
2122 	return ckpt_flags & f;
2123 }
2124 
is_set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2125 static inline bool is_set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2126 {
2127 	return __is_set_ckpt_flags(F2FS_CKPT(sbi), f);
2128 }
2129 
__set_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2130 static inline void __set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2131 {
2132 	unsigned int ckpt_flags;
2133 
2134 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2135 	ckpt_flags |= f;
2136 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2137 }
2138 
set_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2139 static inline void set_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2140 {
2141 	unsigned long flags;
2142 
2143 	spin_lock_irqsave(&sbi->cp_lock, flags);
2144 	__set_ckpt_flags(F2FS_CKPT(sbi), f);
2145 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2146 }
2147 
__clear_ckpt_flags(struct f2fs_checkpoint * cp,unsigned int f)2148 static inline void __clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
2149 {
2150 	unsigned int ckpt_flags;
2151 
2152 	ckpt_flags = le32_to_cpu(cp->ckpt_flags);
2153 	ckpt_flags &= (~f);
2154 	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
2155 }
2156 
clear_ckpt_flags(struct f2fs_sb_info * sbi,unsigned int f)2157 static inline void clear_ckpt_flags(struct f2fs_sb_info *sbi, unsigned int f)
2158 {
2159 	unsigned long flags;
2160 
2161 	spin_lock_irqsave(&sbi->cp_lock, flags);
2162 	__clear_ckpt_flags(F2FS_CKPT(sbi), f);
2163 	spin_unlock_irqrestore(&sbi->cp_lock, flags);
2164 }
2165 
2166 #define init_f2fs_rwsem(sem)					\
2167 do {								\
2168 	static struct lock_class_key __key;			\
2169 								\
2170 	__init_f2fs_rwsem((sem), #sem, &__key);			\
2171 } while (0)
2172 
__init_f2fs_rwsem(struct f2fs_rwsem * sem,const char * sem_name,struct lock_class_key * key)2173 static inline void __init_f2fs_rwsem(struct f2fs_rwsem *sem,
2174 		const char *sem_name, struct lock_class_key *key)
2175 {
2176 	__init_rwsem(&sem->internal_rwsem, sem_name, key);
2177 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2178 	init_waitqueue_head(&sem->read_waiters);
2179 #endif
2180 }
2181 
f2fs_rwsem_is_locked(struct f2fs_rwsem * sem)2182 static inline int f2fs_rwsem_is_locked(struct f2fs_rwsem *sem)
2183 {
2184 	return rwsem_is_locked(&sem->internal_rwsem);
2185 }
2186 
f2fs_rwsem_is_contended(struct f2fs_rwsem * sem)2187 static inline int f2fs_rwsem_is_contended(struct f2fs_rwsem *sem)
2188 {
2189 	return rwsem_is_contended(&sem->internal_rwsem);
2190 }
2191 
f2fs_down_read(struct f2fs_rwsem * sem)2192 static inline void f2fs_down_read(struct f2fs_rwsem *sem)
2193 {
2194 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2195 	wait_event(sem->read_waiters, down_read_trylock(&sem->internal_rwsem));
2196 #else
2197 	down_read(&sem->internal_rwsem);
2198 #endif
2199 }
2200 
f2fs_down_read_trylock(struct f2fs_rwsem * sem)2201 static inline int f2fs_down_read_trylock(struct f2fs_rwsem *sem)
2202 {
2203 	return down_read_trylock(&sem->internal_rwsem);
2204 }
2205 
f2fs_up_read(struct f2fs_rwsem * sem)2206 static inline void f2fs_up_read(struct f2fs_rwsem *sem)
2207 {
2208 	up_read(&sem->internal_rwsem);
2209 }
2210 
f2fs_down_write(struct f2fs_rwsem * sem)2211 static inline void f2fs_down_write(struct f2fs_rwsem *sem)
2212 {
2213 	down_write(&sem->internal_rwsem);
2214 }
2215 
2216 #ifdef CONFIG_DEBUG_LOCK_ALLOC
f2fs_down_read_nested(struct f2fs_rwsem * sem,int subclass)2217 static inline void f2fs_down_read_nested(struct f2fs_rwsem *sem, int subclass)
2218 {
2219 	down_read_nested(&sem->internal_rwsem, subclass);
2220 }
2221 
f2fs_down_write_nested(struct f2fs_rwsem * sem,int subclass)2222 static inline void f2fs_down_write_nested(struct f2fs_rwsem *sem, int subclass)
2223 {
2224 	down_write_nested(&sem->internal_rwsem, subclass);
2225 }
2226 #else
2227 #define f2fs_down_read_nested(sem, subclass) f2fs_down_read(sem)
2228 #define f2fs_down_write_nested(sem, subclass) f2fs_down_write(sem)
2229 #endif
2230 
f2fs_down_write_trylock(struct f2fs_rwsem * sem)2231 static inline int f2fs_down_write_trylock(struct f2fs_rwsem *sem)
2232 {
2233 	return down_write_trylock(&sem->internal_rwsem);
2234 }
2235 
f2fs_up_write(struct f2fs_rwsem * sem)2236 static inline void f2fs_up_write(struct f2fs_rwsem *sem)
2237 {
2238 	up_write(&sem->internal_rwsem);
2239 #ifdef CONFIG_F2FS_UNFAIR_RWSEM
2240 	wake_up_all(&sem->read_waiters);
2241 #endif
2242 }
2243 
disable_nat_bits(struct f2fs_sb_info * sbi,bool lock)2244 static inline void disable_nat_bits(struct f2fs_sb_info *sbi, bool lock)
2245 {
2246 	unsigned long flags;
2247 	unsigned char *nat_bits;
2248 
2249 	/*
2250 	 * In order to re-enable nat_bits we need to call fsck.f2fs by
2251 	 * set_sbi_flag(sbi, SBI_NEED_FSCK). But it may give huge cost,
2252 	 * so let's rely on regular fsck or unclean shutdown.
2253 	 */
2254 
2255 	if (lock)
2256 		spin_lock_irqsave(&sbi->cp_lock, flags);
2257 	__clear_ckpt_flags(F2FS_CKPT(sbi), CP_NAT_BITS_FLAG);
2258 	nat_bits = NM_I(sbi)->nat_bits;
2259 	NM_I(sbi)->nat_bits = NULL;
2260 	if (lock)
2261 		spin_unlock_irqrestore(&sbi->cp_lock, flags);
2262 
2263 	kvfree(nat_bits);
2264 }
2265 
enabled_nat_bits(struct f2fs_sb_info * sbi,struct cp_control * cpc)2266 static inline bool enabled_nat_bits(struct f2fs_sb_info *sbi,
2267 					struct cp_control *cpc)
2268 {
2269 	bool set = is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
2270 
2271 	return (cpc) ? (cpc->reason & CP_UMOUNT) && set : set;
2272 }
2273 
f2fs_lock_op(struct f2fs_sb_info * sbi)2274 static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
2275 {
2276 	f2fs_down_read(&sbi->cp_rwsem);
2277 }
2278 
f2fs_trylock_op(struct f2fs_sb_info * sbi)2279 static inline int f2fs_trylock_op(struct f2fs_sb_info *sbi)
2280 {
2281 	if (time_to_inject(sbi, FAULT_LOCK_OP))
2282 		return 0;
2283 	return f2fs_down_read_trylock(&sbi->cp_rwsem);
2284 }
2285 
f2fs_unlock_op(struct f2fs_sb_info * sbi)2286 static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
2287 {
2288 	f2fs_up_read(&sbi->cp_rwsem);
2289 }
2290 
f2fs_lock_all(struct f2fs_sb_info * sbi)2291 static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
2292 {
2293 	f2fs_down_write(&sbi->cp_rwsem);
2294 }
2295 
f2fs_unlock_all(struct f2fs_sb_info * sbi)2296 static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
2297 {
2298 	f2fs_up_write(&sbi->cp_rwsem);
2299 }
2300 
__get_cp_reason(struct f2fs_sb_info * sbi)2301 static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
2302 {
2303 	int reason = CP_SYNC;
2304 
2305 	if (test_opt(sbi, FASTBOOT))
2306 		reason = CP_FASTBOOT;
2307 	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2308 		reason = CP_UMOUNT;
2309 	return reason;
2310 }
2311 
__remain_node_summaries(int reason)2312 static inline bool __remain_node_summaries(int reason)
2313 {
2314 	return (reason & (CP_UMOUNT | CP_FASTBOOT));
2315 }
2316 
__exist_node_summaries(struct f2fs_sb_info * sbi)2317 static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
2318 {
2319 	return (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG) ||
2320 			is_set_ckpt_flags(sbi, CP_FASTBOOT_FLAG));
2321 }
2322 
2323 /*
2324  * Check whether the inode has blocks or not
2325  */
F2FS_HAS_BLOCKS(struct inode * inode)2326 static inline int F2FS_HAS_BLOCKS(struct inode *inode)
2327 {
2328 	block_t xattr_block = F2FS_I(inode)->i_xattr_nid ? 1 : 0;
2329 
2330 	return (inode->i_blocks >> F2FS_LOG_SECTORS_PER_BLOCK) > xattr_block;
2331 }
2332 
f2fs_has_xattr_block(unsigned int ofs)2333 static inline bool f2fs_has_xattr_block(unsigned int ofs)
2334 {
2335 	return ofs == XATTR_NODE_OFFSET;
2336 }
2337 
__allow_reserved_blocks(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2338 static inline bool __allow_reserved_blocks(struct f2fs_sb_info *sbi,
2339 					struct inode *inode, bool cap)
2340 {
2341 	if (!inode)
2342 		return true;
2343 	if (!test_opt(sbi, RESERVE_ROOT))
2344 		return false;
2345 	if (IS_NOQUOTA(inode))
2346 		return true;
2347 	if (uid_eq(F2FS_OPTION(sbi).s_resuid, current_fsuid()))
2348 		return true;
2349 	if (!gid_eq(F2FS_OPTION(sbi).s_resgid, GLOBAL_ROOT_GID) &&
2350 					in_group_p(F2FS_OPTION(sbi).s_resgid))
2351 		return true;
2352 	if (cap && capable(CAP_SYS_RESOURCE))
2353 		return true;
2354 	return false;
2355 }
2356 
get_available_block_count(struct f2fs_sb_info * sbi,struct inode * inode,bool cap)2357 static inline unsigned int get_available_block_count(struct f2fs_sb_info *sbi,
2358 						struct inode *inode, bool cap)
2359 {
2360 	block_t avail_user_block_count;
2361 
2362 	avail_user_block_count = sbi->user_block_count -
2363 					sbi->current_reserved_blocks;
2364 
2365 	if (!__allow_reserved_blocks(sbi, inode, cap))
2366 		avail_user_block_count -= F2FS_OPTION(sbi).root_reserved_blocks;
2367 
2368 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2369 		if (avail_user_block_count > sbi->unusable_block_count)
2370 			avail_user_block_count -= sbi->unusable_block_count;
2371 		else
2372 			avail_user_block_count = 0;
2373 	}
2374 
2375 	return avail_user_block_count;
2376 }
2377 
2378 static inline void f2fs_i_blocks_write(struct inode *, block_t, bool, bool);
inc_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,blkcnt_t * count,bool partial)2379 static inline int inc_valid_block_count(struct f2fs_sb_info *sbi,
2380 				 struct inode *inode, blkcnt_t *count, bool partial)
2381 {
2382 	long long diff = 0, release = 0;
2383 	block_t avail_user_block_count;
2384 	int ret;
2385 
2386 	ret = dquot_reserve_block(inode, *count);
2387 	if (ret)
2388 		return ret;
2389 
2390 	if (time_to_inject(sbi, FAULT_BLOCK)) {
2391 		release = *count;
2392 		goto release_quota;
2393 	}
2394 
2395 	/*
2396 	 * let's increase this in prior to actual block count change in order
2397 	 * for f2fs_sync_file to avoid data races when deciding checkpoint.
2398 	 */
2399 	percpu_counter_add(&sbi->alloc_valid_block_count, (*count));
2400 
2401 	spin_lock(&sbi->stat_lock);
2402 
2403 	avail_user_block_count = get_available_block_count(sbi, inode, true);
2404 	diff = (long long)sbi->total_valid_block_count + *count -
2405 						avail_user_block_count;
2406 	if (unlikely(diff > 0)) {
2407 		if (!partial) {
2408 			spin_unlock(&sbi->stat_lock);
2409 			release = *count;
2410 			goto enospc;
2411 		}
2412 		if (diff > *count)
2413 			diff = *count;
2414 		*count -= diff;
2415 		release = diff;
2416 		if (!*count) {
2417 			spin_unlock(&sbi->stat_lock);
2418 			goto enospc;
2419 		}
2420 	}
2421 	sbi->total_valid_block_count += (block_t)(*count);
2422 
2423 	spin_unlock(&sbi->stat_lock);
2424 
2425 	if (unlikely(release)) {
2426 		percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2427 		dquot_release_reservation_block(inode, release);
2428 	}
2429 	f2fs_i_blocks_write(inode, *count, true, true);
2430 	return 0;
2431 
2432 enospc:
2433 	percpu_counter_sub(&sbi->alloc_valid_block_count, release);
2434 release_quota:
2435 	dquot_release_reservation_block(inode, release);
2436 	return -ENOSPC;
2437 }
2438 
2439 #define PAGE_PRIVATE_GET_FUNC(name, flagname) \
2440 static inline bool page_private_##name(struct page *page) \
2441 { \
2442 	return PagePrivate(page) && \
2443 		test_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)) && \
2444 		test_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2445 }
2446 
2447 #define PAGE_PRIVATE_SET_FUNC(name, flagname) \
2448 static inline void set_page_private_##name(struct page *page) \
2449 { \
2450 	if (!PagePrivate(page)) \
2451 		attach_page_private(page, (void *)0); \
2452 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page)); \
2453 	set_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2454 }
2455 
2456 #define PAGE_PRIVATE_CLEAR_FUNC(name, flagname) \
2457 static inline void clear_page_private_##name(struct page *page) \
2458 { \
2459 	clear_bit(PAGE_PRIVATE_##flagname, &page_private(page)); \
2460 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER)) \
2461 		detach_page_private(page); \
2462 }
2463 
2464 PAGE_PRIVATE_GET_FUNC(nonpointer, NOT_POINTER);
2465 PAGE_PRIVATE_GET_FUNC(inline, INLINE_INODE);
2466 PAGE_PRIVATE_GET_FUNC(gcing, ONGOING_MIGRATION);
2467 PAGE_PRIVATE_GET_FUNC(atomic, ATOMIC_WRITE);
2468 
2469 PAGE_PRIVATE_SET_FUNC(reference, REF_RESOURCE);
2470 PAGE_PRIVATE_SET_FUNC(inline, INLINE_INODE);
2471 PAGE_PRIVATE_SET_FUNC(gcing, ONGOING_MIGRATION);
2472 PAGE_PRIVATE_SET_FUNC(atomic, ATOMIC_WRITE);
2473 
2474 PAGE_PRIVATE_CLEAR_FUNC(reference, REF_RESOURCE);
2475 PAGE_PRIVATE_CLEAR_FUNC(inline, INLINE_INODE);
2476 PAGE_PRIVATE_CLEAR_FUNC(gcing, ONGOING_MIGRATION);
2477 PAGE_PRIVATE_CLEAR_FUNC(atomic, ATOMIC_WRITE);
2478 
get_page_private_data(struct page * page)2479 static inline unsigned long get_page_private_data(struct page *page)
2480 {
2481 	unsigned long data = page_private(page);
2482 
2483 	if (!test_bit(PAGE_PRIVATE_NOT_POINTER, &data))
2484 		return 0;
2485 	return data >> PAGE_PRIVATE_MAX;
2486 }
2487 
set_page_private_data(struct page * page,unsigned long data)2488 static inline void set_page_private_data(struct page *page, unsigned long data)
2489 {
2490 	if (!PagePrivate(page))
2491 		attach_page_private(page, (void *)0);
2492 	set_bit(PAGE_PRIVATE_NOT_POINTER, &page_private(page));
2493 	page_private(page) |= data << PAGE_PRIVATE_MAX;
2494 }
2495 
clear_page_private_data(struct page * page)2496 static inline void clear_page_private_data(struct page *page)
2497 {
2498 	page_private(page) &= GENMASK(PAGE_PRIVATE_MAX - 1, 0);
2499 	if (page_private(page) == BIT(PAGE_PRIVATE_NOT_POINTER))
2500 		detach_page_private(page);
2501 }
2502 
clear_page_private_all(struct page * page)2503 static inline void clear_page_private_all(struct page *page)
2504 {
2505 	clear_page_private_data(page);
2506 	clear_page_private_reference(page);
2507 	clear_page_private_gcing(page);
2508 	clear_page_private_inline(page);
2509 	clear_page_private_atomic(page);
2510 
2511 	f2fs_bug_on(F2FS_P_SB(page), page_private(page));
2512 }
2513 
dec_valid_block_count(struct f2fs_sb_info * sbi,struct inode * inode,block_t count)2514 static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
2515 						struct inode *inode,
2516 						block_t count)
2517 {
2518 	blkcnt_t sectors = count << F2FS_LOG_SECTORS_PER_BLOCK;
2519 
2520 	spin_lock(&sbi->stat_lock);
2521 	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
2522 	sbi->total_valid_block_count -= (block_t)count;
2523 	if (sbi->reserved_blocks &&
2524 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2525 		sbi->current_reserved_blocks = min(sbi->reserved_blocks,
2526 					sbi->current_reserved_blocks + count);
2527 	spin_unlock(&sbi->stat_lock);
2528 	if (unlikely(inode->i_blocks < sectors)) {
2529 		f2fs_warn(sbi, "Inconsistent i_blocks, ino:%lu, iblocks:%llu, sectors:%llu",
2530 			  inode->i_ino,
2531 			  (unsigned long long)inode->i_blocks,
2532 			  (unsigned long long)sectors);
2533 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2534 		return;
2535 	}
2536 	f2fs_i_blocks_write(inode, count, false, true);
2537 }
2538 
inc_page_count(struct f2fs_sb_info * sbi,int count_type)2539 static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
2540 {
2541 	atomic_inc(&sbi->nr_pages[count_type]);
2542 
2543 	if (count_type == F2FS_DIRTY_DENTS ||
2544 			count_type == F2FS_DIRTY_NODES ||
2545 			count_type == F2FS_DIRTY_META ||
2546 			count_type == F2FS_DIRTY_QDATA ||
2547 			count_type == F2FS_DIRTY_IMETA)
2548 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2549 }
2550 
inode_inc_dirty_pages(struct inode * inode)2551 static inline void inode_inc_dirty_pages(struct inode *inode)
2552 {
2553 	atomic_inc(&F2FS_I(inode)->dirty_pages);
2554 	inc_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2555 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2556 	if (IS_NOQUOTA(inode))
2557 		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2558 }
2559 
dec_page_count(struct f2fs_sb_info * sbi,int count_type)2560 static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
2561 {
2562 	atomic_dec(&sbi->nr_pages[count_type]);
2563 }
2564 
inode_dec_dirty_pages(struct inode * inode)2565 static inline void inode_dec_dirty_pages(struct inode *inode)
2566 {
2567 	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
2568 			!S_ISLNK(inode->i_mode))
2569 		return;
2570 
2571 	atomic_dec(&F2FS_I(inode)->dirty_pages);
2572 	dec_page_count(F2FS_I_SB(inode), S_ISDIR(inode->i_mode) ?
2573 				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA);
2574 	if (IS_NOQUOTA(inode))
2575 		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_QDATA);
2576 }
2577 
inc_atomic_write_cnt(struct inode * inode)2578 static inline void inc_atomic_write_cnt(struct inode *inode)
2579 {
2580 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2581 	struct f2fs_inode_info *fi = F2FS_I(inode);
2582 	u64 current_write;
2583 
2584 	fi->atomic_write_cnt++;
2585 	atomic64_inc(&sbi->current_atomic_write);
2586 	current_write = atomic64_read(&sbi->current_atomic_write);
2587 	if (current_write > sbi->peak_atomic_write)
2588 		sbi->peak_atomic_write = current_write;
2589 }
2590 
release_atomic_write_cnt(struct inode * inode)2591 static inline void release_atomic_write_cnt(struct inode *inode)
2592 {
2593 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2594 	struct f2fs_inode_info *fi = F2FS_I(inode);
2595 
2596 	atomic64_sub(fi->atomic_write_cnt, &sbi->current_atomic_write);
2597 	fi->atomic_write_cnt = 0;
2598 }
2599 
get_pages(struct f2fs_sb_info * sbi,int count_type)2600 static inline s64 get_pages(struct f2fs_sb_info *sbi, int count_type)
2601 {
2602 	return atomic_read(&sbi->nr_pages[count_type]);
2603 }
2604 
get_dirty_pages(struct inode * inode)2605 static inline int get_dirty_pages(struct inode *inode)
2606 {
2607 	return atomic_read(&F2FS_I(inode)->dirty_pages);
2608 }
2609 
get_blocktype_secs(struct f2fs_sb_info * sbi,int block_type)2610 static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
2611 {
2612 	return div_u64(get_pages(sbi, block_type) + BLKS_PER_SEC(sbi) - 1,
2613 							BLKS_PER_SEC(sbi));
2614 }
2615 
valid_user_blocks(struct f2fs_sb_info * sbi)2616 static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
2617 {
2618 	return sbi->total_valid_block_count;
2619 }
2620 
discard_blocks(struct f2fs_sb_info * sbi)2621 static inline block_t discard_blocks(struct f2fs_sb_info *sbi)
2622 {
2623 	return sbi->discard_blks;
2624 }
2625 
__bitmap_size(struct f2fs_sb_info * sbi,int flag)2626 static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
2627 {
2628 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2629 
2630 	/* return NAT or SIT bitmap */
2631 	if (flag == NAT_BITMAP)
2632 		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2633 	else if (flag == SIT_BITMAP)
2634 		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2635 
2636 	return 0;
2637 }
2638 
__cp_payload(struct f2fs_sb_info * sbi)2639 static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
2640 {
2641 	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
2642 }
2643 
__bitmap_ptr(struct f2fs_sb_info * sbi,int flag)2644 static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
2645 {
2646 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2647 	void *tmp_ptr = &ckpt->sit_nat_version_bitmap;
2648 	int offset;
2649 
2650 	if (is_set_ckpt_flags(sbi, CP_LARGE_NAT_BITMAP_FLAG)) {
2651 		offset = (flag == SIT_BITMAP) ?
2652 			le32_to_cpu(ckpt->nat_ver_bitmap_bytesize) : 0;
2653 		/*
2654 		 * if large_nat_bitmap feature is enabled, leave checksum
2655 		 * protection for all nat/sit bitmaps.
2656 		 */
2657 		return tmp_ptr + offset + sizeof(__le32);
2658 	}
2659 
2660 	if (__cp_payload(sbi) > 0) {
2661 		if (flag == NAT_BITMAP)
2662 			return tmp_ptr;
2663 		else
2664 			return (unsigned char *)ckpt + F2FS_BLKSIZE;
2665 	} else {
2666 		offset = (flag == NAT_BITMAP) ?
2667 			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
2668 		return tmp_ptr + offset;
2669 	}
2670 }
2671 
__start_cp_addr(struct f2fs_sb_info * sbi)2672 static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
2673 {
2674 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2675 
2676 	if (sbi->cur_cp_pack == 2)
2677 		start_addr += BLKS_PER_SEG(sbi);
2678 	return start_addr;
2679 }
2680 
__start_cp_next_addr(struct f2fs_sb_info * sbi)2681 static inline block_t __start_cp_next_addr(struct f2fs_sb_info *sbi)
2682 {
2683 	block_t start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
2684 
2685 	if (sbi->cur_cp_pack == 1)
2686 		start_addr += BLKS_PER_SEG(sbi);
2687 	return start_addr;
2688 }
2689 
__set_cp_next_pack(struct f2fs_sb_info * sbi)2690 static inline void __set_cp_next_pack(struct f2fs_sb_info *sbi)
2691 {
2692 	sbi->cur_cp_pack = (sbi->cur_cp_pack == 1) ? 2 : 1;
2693 }
2694 
__start_sum_addr(struct f2fs_sb_info * sbi)2695 static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
2696 {
2697 	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
2698 }
2699 
2700 extern void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync);
inc_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2701 static inline int inc_valid_node_count(struct f2fs_sb_info *sbi,
2702 					struct inode *inode, bool is_inode)
2703 {
2704 	block_t	valid_block_count;
2705 	unsigned int valid_node_count;
2706 	unsigned int avail_user_block_count;
2707 	int err;
2708 
2709 	if (is_inode) {
2710 		if (inode) {
2711 			err = dquot_alloc_inode(inode);
2712 			if (err)
2713 				return err;
2714 		}
2715 	} else {
2716 		err = dquot_reserve_block(inode, 1);
2717 		if (err)
2718 			return err;
2719 	}
2720 
2721 	if (time_to_inject(sbi, FAULT_BLOCK))
2722 		goto enospc;
2723 
2724 	spin_lock(&sbi->stat_lock);
2725 
2726 	valid_block_count = sbi->total_valid_block_count + 1;
2727 	avail_user_block_count = get_available_block_count(sbi, inode, false);
2728 
2729 	if (unlikely(valid_block_count > avail_user_block_count)) {
2730 		spin_unlock(&sbi->stat_lock);
2731 		goto enospc;
2732 	}
2733 
2734 	valid_node_count = sbi->total_valid_node_count + 1;
2735 	if (unlikely(valid_node_count > sbi->total_node_count)) {
2736 		spin_unlock(&sbi->stat_lock);
2737 		goto enospc;
2738 	}
2739 
2740 	sbi->total_valid_node_count++;
2741 	sbi->total_valid_block_count++;
2742 	spin_unlock(&sbi->stat_lock);
2743 
2744 	if (inode) {
2745 		if (is_inode)
2746 			f2fs_mark_inode_dirty_sync(inode, true);
2747 		else
2748 			f2fs_i_blocks_write(inode, 1, true, true);
2749 	}
2750 
2751 	percpu_counter_inc(&sbi->alloc_valid_block_count);
2752 	return 0;
2753 
2754 enospc:
2755 	if (is_inode) {
2756 		if (inode)
2757 			dquot_free_inode(inode);
2758 	} else {
2759 		dquot_release_reservation_block(inode, 1);
2760 	}
2761 	return -ENOSPC;
2762 }
2763 
dec_valid_node_count(struct f2fs_sb_info * sbi,struct inode * inode,bool is_inode)2764 static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
2765 					struct inode *inode, bool is_inode)
2766 {
2767 	spin_lock(&sbi->stat_lock);
2768 
2769 	if (unlikely(!sbi->total_valid_block_count ||
2770 			!sbi->total_valid_node_count)) {
2771 		f2fs_warn(sbi, "dec_valid_node_count: inconsistent block counts, total_valid_block:%u, total_valid_node:%u",
2772 			  sbi->total_valid_block_count,
2773 			  sbi->total_valid_node_count);
2774 		set_sbi_flag(sbi, SBI_NEED_FSCK);
2775 	} else {
2776 		sbi->total_valid_block_count--;
2777 		sbi->total_valid_node_count--;
2778 	}
2779 
2780 	if (sbi->reserved_blocks &&
2781 		sbi->current_reserved_blocks < sbi->reserved_blocks)
2782 		sbi->current_reserved_blocks++;
2783 
2784 	spin_unlock(&sbi->stat_lock);
2785 
2786 	if (is_inode) {
2787 		dquot_free_inode(inode);
2788 	} else {
2789 		if (unlikely(inode->i_blocks == 0)) {
2790 			f2fs_warn(sbi, "dec_valid_node_count: inconsistent i_blocks, ino:%lu, iblocks:%llu",
2791 				  inode->i_ino,
2792 				  (unsigned long long)inode->i_blocks);
2793 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2794 			return;
2795 		}
2796 		f2fs_i_blocks_write(inode, 1, false, true);
2797 	}
2798 }
2799 
valid_node_count(struct f2fs_sb_info * sbi)2800 static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
2801 {
2802 	return sbi->total_valid_node_count;
2803 }
2804 
inc_valid_inode_count(struct f2fs_sb_info * sbi)2805 static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
2806 {
2807 	percpu_counter_inc(&sbi->total_valid_inode_count);
2808 }
2809 
dec_valid_inode_count(struct f2fs_sb_info * sbi)2810 static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
2811 {
2812 	percpu_counter_dec(&sbi->total_valid_inode_count);
2813 }
2814 
valid_inode_count(struct f2fs_sb_info * sbi)2815 static inline s64 valid_inode_count(struct f2fs_sb_info *sbi)
2816 {
2817 	return percpu_counter_sum_positive(&sbi->total_valid_inode_count);
2818 }
2819 
f2fs_grab_cache_folio(struct address_space * mapping,pgoff_t index,bool for_write)2820 static inline struct folio *f2fs_grab_cache_folio(struct address_space *mapping,
2821 		pgoff_t index, bool for_write)
2822 {
2823 	struct folio *folio;
2824 	unsigned int flags;
2825 
2826 	if (IS_ENABLED(CONFIG_F2FS_FAULT_INJECTION)) {
2827 		fgf_t fgf_flags;
2828 
2829 		if (!for_write)
2830 			fgf_flags = FGP_LOCK | FGP_ACCESSED;
2831 		else
2832 			fgf_flags = FGP_LOCK;
2833 		folio = __filemap_get_folio(mapping, index, fgf_flags, 0);
2834 		if (!IS_ERR(folio))
2835 			return folio;
2836 
2837 		if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_ALLOC))
2838 			return ERR_PTR(-ENOMEM);
2839 	}
2840 
2841 	if (!for_write)
2842 		return filemap_grab_folio(mapping, index);
2843 
2844 	flags = memalloc_nofs_save();
2845 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2846 			mapping_gfp_mask(mapping));
2847 	memalloc_nofs_restore(flags);
2848 
2849 	return folio;
2850 }
2851 
f2fs_grab_cache_page(struct address_space * mapping,pgoff_t index,bool for_write)2852 static inline struct page *f2fs_grab_cache_page(struct address_space *mapping,
2853 						pgoff_t index, bool for_write)
2854 {
2855 	struct folio *folio = f2fs_grab_cache_folio(mapping, index, for_write);
2856 
2857 	if (IS_ERR(folio))
2858 		return NULL;
2859 	return &folio->page;
2860 }
2861 
f2fs_pagecache_get_page(struct address_space * mapping,pgoff_t index,fgf_t fgp_flags,gfp_t gfp_mask)2862 static inline struct page *f2fs_pagecache_get_page(
2863 				struct address_space *mapping, pgoff_t index,
2864 				fgf_t fgp_flags, gfp_t gfp_mask)
2865 {
2866 	if (time_to_inject(F2FS_M_SB(mapping), FAULT_PAGE_GET))
2867 		return NULL;
2868 
2869 	return pagecache_get_page(mapping, index, fgp_flags, gfp_mask);
2870 }
2871 
f2fs_folio_put(struct folio * folio,bool unlock)2872 static inline void f2fs_folio_put(struct folio *folio, bool unlock)
2873 {
2874 	if (!folio)
2875 		return;
2876 
2877 	if (unlock) {
2878 		f2fs_bug_on(F2FS_F_SB(folio), !folio_test_locked(folio));
2879 		folio_unlock(folio);
2880 	}
2881 	folio_put(folio);
2882 }
2883 
f2fs_put_page(struct page * page,int unlock)2884 static inline void f2fs_put_page(struct page *page, int unlock)
2885 {
2886 	if (!page)
2887 		return;
2888 	f2fs_folio_put(page_folio(page), unlock);
2889 }
2890 
f2fs_put_dnode(struct dnode_of_data * dn)2891 static inline void f2fs_put_dnode(struct dnode_of_data *dn)
2892 {
2893 	if (dn->node_page)
2894 		f2fs_put_page(dn->node_page, 1);
2895 	if (dn->inode_page && dn->node_page != dn->inode_page)
2896 		f2fs_put_page(dn->inode_page, 0);
2897 	dn->node_page = NULL;
2898 	dn->inode_page = NULL;
2899 }
2900 
f2fs_kmem_cache_create(const char * name,size_t size)2901 static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
2902 					size_t size)
2903 {
2904 	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
2905 }
2906 
f2fs_kmem_cache_alloc_nofail(struct kmem_cache * cachep,gfp_t flags)2907 static inline void *f2fs_kmem_cache_alloc_nofail(struct kmem_cache *cachep,
2908 						gfp_t flags)
2909 {
2910 	void *entry;
2911 
2912 	entry = kmem_cache_alloc(cachep, flags);
2913 	if (!entry)
2914 		entry = kmem_cache_alloc(cachep, flags | __GFP_NOFAIL);
2915 	return entry;
2916 }
2917 
f2fs_kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags,bool nofail,struct f2fs_sb_info * sbi)2918 static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
2919 			gfp_t flags, bool nofail, struct f2fs_sb_info *sbi)
2920 {
2921 	if (nofail)
2922 		return f2fs_kmem_cache_alloc_nofail(cachep, flags);
2923 
2924 	if (time_to_inject(sbi, FAULT_SLAB_ALLOC))
2925 		return NULL;
2926 
2927 	return kmem_cache_alloc(cachep, flags);
2928 }
2929 
is_inflight_io(struct f2fs_sb_info * sbi,int type)2930 static inline bool is_inflight_io(struct f2fs_sb_info *sbi, int type)
2931 {
2932 	if (get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_RD_NODE) ||
2933 		get_pages(sbi, F2FS_RD_META) || get_pages(sbi, F2FS_WB_DATA) ||
2934 		get_pages(sbi, F2FS_WB_CP_DATA) ||
2935 		get_pages(sbi, F2FS_DIO_READ) ||
2936 		get_pages(sbi, F2FS_DIO_WRITE))
2937 		return true;
2938 
2939 	if (type != DISCARD_TIME && SM_I(sbi) && SM_I(sbi)->dcc_info &&
2940 			atomic_read(&SM_I(sbi)->dcc_info->queued_discard))
2941 		return true;
2942 
2943 	if (SM_I(sbi) && SM_I(sbi)->fcc_info &&
2944 			atomic_read(&SM_I(sbi)->fcc_info->queued_flush))
2945 		return true;
2946 	return false;
2947 }
2948 
is_inflight_read_io(struct f2fs_sb_info * sbi)2949 static inline bool is_inflight_read_io(struct f2fs_sb_info *sbi)
2950 {
2951 	return get_pages(sbi, F2FS_RD_DATA) || get_pages(sbi, F2FS_DIO_READ);
2952 }
2953 
is_idle(struct f2fs_sb_info * sbi,int type)2954 static inline bool is_idle(struct f2fs_sb_info *sbi, int type)
2955 {
2956 	bool zoned_gc = (type == GC_TIME &&
2957 			F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_BLKZONED));
2958 
2959 	if (sbi->gc_mode == GC_URGENT_HIGH)
2960 		return true;
2961 
2962 	if (zoned_gc) {
2963 		if (is_inflight_read_io(sbi))
2964 			return false;
2965 	} else {
2966 		if (is_inflight_io(sbi, type))
2967 			return false;
2968 	}
2969 
2970 	if (sbi->gc_mode == GC_URGENT_MID)
2971 		return true;
2972 
2973 	if (sbi->gc_mode == GC_URGENT_LOW &&
2974 			(type == DISCARD_TIME || type == GC_TIME))
2975 		return true;
2976 
2977 	if (zoned_gc)
2978 		return true;
2979 
2980 	return f2fs_time_over(sbi, type);
2981 }
2982 
f2fs_radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * item)2983 static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
2984 				unsigned long index, void *item)
2985 {
2986 	while (radix_tree_insert(root, index, item))
2987 		cond_resched();
2988 }
2989 
2990 #define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
2991 
IS_INODE(struct page * page)2992 static inline bool IS_INODE(struct page *page)
2993 {
2994 	struct f2fs_node *p = F2FS_NODE(page);
2995 
2996 	return RAW_IS_INODE(p);
2997 }
2998 
offset_in_addr(struct f2fs_inode * i)2999 static inline int offset_in_addr(struct f2fs_inode *i)
3000 {
3001 	return (i->i_inline & F2FS_EXTRA_ATTR) ?
3002 			(le16_to_cpu(i->i_extra_isize) / sizeof(__le32)) : 0;
3003 }
3004 
blkaddr_in_node(struct f2fs_node * node)3005 static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
3006 {
3007 	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
3008 }
3009 
3010 static inline int f2fs_has_extra_attr(struct inode *inode);
get_dnode_base(struct inode * inode,struct page * node_page)3011 static inline unsigned int get_dnode_base(struct inode *inode,
3012 					struct page *node_page)
3013 {
3014 	if (!IS_INODE(node_page))
3015 		return 0;
3016 
3017 	return inode ? get_extra_isize(inode) :
3018 			offset_in_addr(&F2FS_NODE(node_page)->i);
3019 }
3020 
get_dnode_addr(struct inode * inode,struct page * node_page)3021 static inline __le32 *get_dnode_addr(struct inode *inode,
3022 					struct page *node_page)
3023 {
3024 	return blkaddr_in_node(F2FS_NODE(node_page)) +
3025 			get_dnode_base(inode, node_page);
3026 }
3027 
data_blkaddr(struct inode * inode,struct page * node_page,unsigned int offset)3028 static inline block_t data_blkaddr(struct inode *inode,
3029 			struct page *node_page, unsigned int offset)
3030 {
3031 	return le32_to_cpu(*(get_dnode_addr(inode, node_page) + offset));
3032 }
3033 
f2fs_data_blkaddr(struct dnode_of_data * dn)3034 static inline block_t f2fs_data_blkaddr(struct dnode_of_data *dn)
3035 {
3036 	return data_blkaddr(dn->inode, dn->node_page, dn->ofs_in_node);
3037 }
3038 
f2fs_test_bit(unsigned int nr,char * addr)3039 static inline int f2fs_test_bit(unsigned int nr, char *addr)
3040 {
3041 	int mask;
3042 
3043 	addr += (nr >> 3);
3044 	mask = BIT(7 - (nr & 0x07));
3045 	return mask & *addr;
3046 }
3047 
f2fs_set_bit(unsigned int nr,char * addr)3048 static inline void f2fs_set_bit(unsigned int nr, char *addr)
3049 {
3050 	int mask;
3051 
3052 	addr += (nr >> 3);
3053 	mask = BIT(7 - (nr & 0x07));
3054 	*addr |= mask;
3055 }
3056 
f2fs_clear_bit(unsigned int nr,char * addr)3057 static inline void f2fs_clear_bit(unsigned int nr, char *addr)
3058 {
3059 	int mask;
3060 
3061 	addr += (nr >> 3);
3062 	mask = BIT(7 - (nr & 0x07));
3063 	*addr &= ~mask;
3064 }
3065 
f2fs_test_and_set_bit(unsigned int nr,char * addr)3066 static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
3067 {
3068 	int mask;
3069 	int ret;
3070 
3071 	addr += (nr >> 3);
3072 	mask = BIT(7 - (nr & 0x07));
3073 	ret = mask & *addr;
3074 	*addr |= mask;
3075 	return ret;
3076 }
3077 
f2fs_test_and_clear_bit(unsigned int nr,char * addr)3078 static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
3079 {
3080 	int mask;
3081 	int ret;
3082 
3083 	addr += (nr >> 3);
3084 	mask = BIT(7 - (nr & 0x07));
3085 	ret = mask & *addr;
3086 	*addr &= ~mask;
3087 	return ret;
3088 }
3089 
f2fs_change_bit(unsigned int nr,char * addr)3090 static inline void f2fs_change_bit(unsigned int nr, char *addr)
3091 {
3092 	int mask;
3093 
3094 	addr += (nr >> 3);
3095 	mask = BIT(7 - (nr & 0x07));
3096 	*addr ^= mask;
3097 }
3098 
3099 /*
3100  * On-disk inode flags (f2fs_inode::i_flags)
3101  */
3102 #define F2FS_COMPR_FL			0x00000004 /* Compress file */
3103 #define F2FS_SYNC_FL			0x00000008 /* Synchronous updates */
3104 #define F2FS_IMMUTABLE_FL		0x00000010 /* Immutable file */
3105 #define F2FS_APPEND_FL			0x00000020 /* writes to file may only append */
3106 #define F2FS_NODUMP_FL			0x00000040 /* do not dump file */
3107 #define F2FS_NOATIME_FL			0x00000080 /* do not update atime */
3108 #define F2FS_NOCOMP_FL			0x00000400 /* Don't compress */
3109 #define F2FS_INDEX_FL			0x00001000 /* hash-indexed directory */
3110 #define F2FS_DIRSYNC_FL			0x00010000 /* dirsync behaviour (directories only) */
3111 #define F2FS_PROJINHERIT_FL		0x20000000 /* Create with parents projid */
3112 #define F2FS_CASEFOLD_FL		0x40000000 /* Casefolded file */
3113 #define F2FS_DEVICE_ALIAS_FL		0x80000000 /* File for aliasing a device */
3114 
3115 #define F2FS_QUOTA_DEFAULT_FL		(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL)
3116 
3117 /* Flags that should be inherited by new inodes from their parent. */
3118 #define F2FS_FL_INHERITED (F2FS_SYNC_FL | F2FS_NODUMP_FL | F2FS_NOATIME_FL | \
3119 			   F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3120 			   F2FS_CASEFOLD_FL)
3121 
3122 /* Flags that are appropriate for regular files (all but dir-specific ones). */
3123 #define F2FS_REG_FLMASK		(~(F2FS_DIRSYNC_FL | F2FS_PROJINHERIT_FL | \
3124 				F2FS_CASEFOLD_FL))
3125 
3126 /* Flags that are appropriate for non-directories/regular files. */
3127 #define F2FS_OTHER_FLMASK	(F2FS_NODUMP_FL | F2FS_NOATIME_FL)
3128 
3129 #define IS_DEVICE_ALIASING(inode)	(F2FS_I(inode)->i_flags & F2FS_DEVICE_ALIAS_FL)
3130 
f2fs_mask_flags(umode_t mode,__u32 flags)3131 static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
3132 {
3133 	if (S_ISDIR(mode))
3134 		return flags;
3135 	else if (S_ISREG(mode))
3136 		return flags & F2FS_REG_FLMASK;
3137 	else
3138 		return flags & F2FS_OTHER_FLMASK;
3139 }
3140 
__mark_inode_dirty_flag(struct inode * inode,int flag,bool set)3141 static inline void __mark_inode_dirty_flag(struct inode *inode,
3142 						int flag, bool set)
3143 {
3144 	switch (flag) {
3145 	case FI_INLINE_XATTR:
3146 	case FI_INLINE_DATA:
3147 	case FI_INLINE_DENTRY:
3148 	case FI_NEW_INODE:
3149 		if (set)
3150 			return;
3151 		fallthrough;
3152 	case FI_DATA_EXIST:
3153 	case FI_PIN_FILE:
3154 	case FI_COMPRESS_RELEASED:
3155 		f2fs_mark_inode_dirty_sync(inode, true);
3156 	}
3157 }
3158 
set_inode_flag(struct inode * inode,int flag)3159 static inline void set_inode_flag(struct inode *inode, int flag)
3160 {
3161 	set_bit(flag, F2FS_I(inode)->flags);
3162 	__mark_inode_dirty_flag(inode, flag, true);
3163 }
3164 
is_inode_flag_set(struct inode * inode,int flag)3165 static inline int is_inode_flag_set(struct inode *inode, int flag)
3166 {
3167 	return test_bit(flag, F2FS_I(inode)->flags);
3168 }
3169 
clear_inode_flag(struct inode * inode,int flag)3170 static inline void clear_inode_flag(struct inode *inode, int flag)
3171 {
3172 	clear_bit(flag, F2FS_I(inode)->flags);
3173 	__mark_inode_dirty_flag(inode, flag, false);
3174 }
3175 
f2fs_verity_in_progress(struct inode * inode)3176 static inline bool f2fs_verity_in_progress(struct inode *inode)
3177 {
3178 	return IS_ENABLED(CONFIG_FS_VERITY) &&
3179 	       is_inode_flag_set(inode, FI_VERITY_IN_PROGRESS);
3180 }
3181 
set_acl_inode(struct inode * inode,umode_t mode)3182 static inline void set_acl_inode(struct inode *inode, umode_t mode)
3183 {
3184 	F2FS_I(inode)->i_acl_mode = mode;
3185 	set_inode_flag(inode, FI_ACL_MODE);
3186 	f2fs_mark_inode_dirty_sync(inode, false);
3187 }
3188 
f2fs_i_links_write(struct inode * inode,bool inc)3189 static inline void f2fs_i_links_write(struct inode *inode, bool inc)
3190 {
3191 	if (inc)
3192 		inc_nlink(inode);
3193 	else
3194 		drop_nlink(inode);
3195 	f2fs_mark_inode_dirty_sync(inode, true);
3196 }
3197 
f2fs_i_blocks_write(struct inode * inode,block_t diff,bool add,bool claim)3198 static inline void f2fs_i_blocks_write(struct inode *inode,
3199 					block_t diff, bool add, bool claim)
3200 {
3201 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3202 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3203 
3204 	/* add = 1, claim = 1 should be dquot_reserve_block in pair */
3205 	if (add) {
3206 		if (claim)
3207 			dquot_claim_block(inode, diff);
3208 		else
3209 			dquot_alloc_block_nofail(inode, diff);
3210 	} else {
3211 		dquot_free_block(inode, diff);
3212 	}
3213 
3214 	f2fs_mark_inode_dirty_sync(inode, true);
3215 	if (clean || recover)
3216 		set_inode_flag(inode, FI_AUTO_RECOVER);
3217 }
3218 
3219 static inline bool f2fs_is_atomic_file(struct inode *inode);
3220 
f2fs_i_size_write(struct inode * inode,loff_t i_size)3221 static inline void f2fs_i_size_write(struct inode *inode, loff_t i_size)
3222 {
3223 	bool clean = !is_inode_flag_set(inode, FI_DIRTY_INODE);
3224 	bool recover = is_inode_flag_set(inode, FI_AUTO_RECOVER);
3225 
3226 	if (i_size_read(inode) == i_size)
3227 		return;
3228 
3229 	i_size_write(inode, i_size);
3230 
3231 	if (f2fs_is_atomic_file(inode))
3232 		return;
3233 
3234 	f2fs_mark_inode_dirty_sync(inode, true);
3235 	if (clean || recover)
3236 		set_inode_flag(inode, FI_AUTO_RECOVER);
3237 }
3238 
f2fs_i_depth_write(struct inode * inode,unsigned int depth)3239 static inline void f2fs_i_depth_write(struct inode *inode, unsigned int depth)
3240 {
3241 	F2FS_I(inode)->i_current_depth = depth;
3242 	f2fs_mark_inode_dirty_sync(inode, true);
3243 }
3244 
f2fs_i_gc_failures_write(struct inode * inode,unsigned int count)3245 static inline void f2fs_i_gc_failures_write(struct inode *inode,
3246 					unsigned int count)
3247 {
3248 	F2FS_I(inode)->i_gc_failures = count;
3249 	f2fs_mark_inode_dirty_sync(inode, true);
3250 }
3251 
f2fs_i_xnid_write(struct inode * inode,nid_t xnid)3252 static inline void f2fs_i_xnid_write(struct inode *inode, nid_t xnid)
3253 {
3254 	F2FS_I(inode)->i_xattr_nid = xnid;
3255 	f2fs_mark_inode_dirty_sync(inode, true);
3256 }
3257 
f2fs_i_pino_write(struct inode * inode,nid_t pino)3258 static inline void f2fs_i_pino_write(struct inode *inode, nid_t pino)
3259 {
3260 	F2FS_I(inode)->i_pino = pino;
3261 	f2fs_mark_inode_dirty_sync(inode, true);
3262 }
3263 
get_inline_info(struct inode * inode,struct f2fs_inode * ri)3264 static inline void get_inline_info(struct inode *inode, struct f2fs_inode *ri)
3265 {
3266 	struct f2fs_inode_info *fi = F2FS_I(inode);
3267 
3268 	if (ri->i_inline & F2FS_INLINE_XATTR)
3269 		set_bit(FI_INLINE_XATTR, fi->flags);
3270 	if (ri->i_inline & F2FS_INLINE_DATA)
3271 		set_bit(FI_INLINE_DATA, fi->flags);
3272 	if (ri->i_inline & F2FS_INLINE_DENTRY)
3273 		set_bit(FI_INLINE_DENTRY, fi->flags);
3274 	if (ri->i_inline & F2FS_DATA_EXIST)
3275 		set_bit(FI_DATA_EXIST, fi->flags);
3276 	if (ri->i_inline & F2FS_EXTRA_ATTR)
3277 		set_bit(FI_EXTRA_ATTR, fi->flags);
3278 	if (ri->i_inline & F2FS_PIN_FILE)
3279 		set_bit(FI_PIN_FILE, fi->flags);
3280 	if (ri->i_inline & F2FS_COMPRESS_RELEASED)
3281 		set_bit(FI_COMPRESS_RELEASED, fi->flags);
3282 }
3283 
set_raw_inline(struct inode * inode,struct f2fs_inode * ri)3284 static inline void set_raw_inline(struct inode *inode, struct f2fs_inode *ri)
3285 {
3286 	ri->i_inline = 0;
3287 
3288 	if (is_inode_flag_set(inode, FI_INLINE_XATTR))
3289 		ri->i_inline |= F2FS_INLINE_XATTR;
3290 	if (is_inode_flag_set(inode, FI_INLINE_DATA))
3291 		ri->i_inline |= F2FS_INLINE_DATA;
3292 	if (is_inode_flag_set(inode, FI_INLINE_DENTRY))
3293 		ri->i_inline |= F2FS_INLINE_DENTRY;
3294 	if (is_inode_flag_set(inode, FI_DATA_EXIST))
3295 		ri->i_inline |= F2FS_DATA_EXIST;
3296 	if (is_inode_flag_set(inode, FI_EXTRA_ATTR))
3297 		ri->i_inline |= F2FS_EXTRA_ATTR;
3298 	if (is_inode_flag_set(inode, FI_PIN_FILE))
3299 		ri->i_inline |= F2FS_PIN_FILE;
3300 	if (is_inode_flag_set(inode, FI_COMPRESS_RELEASED))
3301 		ri->i_inline |= F2FS_COMPRESS_RELEASED;
3302 }
3303 
f2fs_has_extra_attr(struct inode * inode)3304 static inline int f2fs_has_extra_attr(struct inode *inode)
3305 {
3306 	return is_inode_flag_set(inode, FI_EXTRA_ATTR);
3307 }
3308 
f2fs_has_inline_xattr(struct inode * inode)3309 static inline int f2fs_has_inline_xattr(struct inode *inode)
3310 {
3311 	return is_inode_flag_set(inode, FI_INLINE_XATTR);
3312 }
3313 
f2fs_compressed_file(struct inode * inode)3314 static inline int f2fs_compressed_file(struct inode *inode)
3315 {
3316 	return S_ISREG(inode->i_mode) &&
3317 		is_inode_flag_set(inode, FI_COMPRESSED_FILE);
3318 }
3319 
f2fs_need_compress_data(struct inode * inode)3320 static inline bool f2fs_need_compress_data(struct inode *inode)
3321 {
3322 	int compress_mode = F2FS_OPTION(F2FS_I_SB(inode)).compress_mode;
3323 
3324 	if (!f2fs_compressed_file(inode))
3325 		return false;
3326 
3327 	if (compress_mode == COMPR_MODE_FS)
3328 		return true;
3329 	else if (compress_mode == COMPR_MODE_USER &&
3330 			is_inode_flag_set(inode, FI_ENABLE_COMPRESS))
3331 		return true;
3332 
3333 	return false;
3334 }
3335 
addrs_per_page(struct inode * inode,bool is_inode)3336 static inline unsigned int addrs_per_page(struct inode *inode,
3337 							bool is_inode)
3338 {
3339 	unsigned int addrs = is_inode ? (CUR_ADDRS_PER_INODE(inode) -
3340 			get_inline_xattr_addrs(inode)) : DEF_ADDRS_PER_BLOCK;
3341 
3342 	if (f2fs_compressed_file(inode))
3343 		return ALIGN_DOWN(addrs, F2FS_I(inode)->i_cluster_size);
3344 	return addrs;
3345 }
3346 
inline_xattr_addr(struct inode * inode,struct page * page)3347 static inline void *inline_xattr_addr(struct inode *inode, struct page *page)
3348 {
3349 	struct f2fs_inode *ri = F2FS_INODE(page);
3350 
3351 	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
3352 					get_inline_xattr_addrs(inode)]);
3353 }
3354 
inline_xattr_size(struct inode * inode)3355 static inline int inline_xattr_size(struct inode *inode)
3356 {
3357 	if (f2fs_has_inline_xattr(inode))
3358 		return get_inline_xattr_addrs(inode) * sizeof(__le32);
3359 	return 0;
3360 }
3361 
3362 /*
3363  * Notice: check inline_data flag without inode page lock is unsafe.
3364  * It could change at any time by f2fs_convert_inline_page().
3365  */
f2fs_has_inline_data(struct inode * inode)3366 static inline int f2fs_has_inline_data(struct inode *inode)
3367 {
3368 	return is_inode_flag_set(inode, FI_INLINE_DATA);
3369 }
3370 
f2fs_exist_data(struct inode * inode)3371 static inline int f2fs_exist_data(struct inode *inode)
3372 {
3373 	return is_inode_flag_set(inode, FI_DATA_EXIST);
3374 }
3375 
f2fs_is_mmap_file(struct inode * inode)3376 static inline int f2fs_is_mmap_file(struct inode *inode)
3377 {
3378 	return is_inode_flag_set(inode, FI_MMAP_FILE);
3379 }
3380 
f2fs_is_pinned_file(struct inode * inode)3381 static inline bool f2fs_is_pinned_file(struct inode *inode)
3382 {
3383 	return is_inode_flag_set(inode, FI_PIN_FILE);
3384 }
3385 
f2fs_is_atomic_file(struct inode * inode)3386 static inline bool f2fs_is_atomic_file(struct inode *inode)
3387 {
3388 	return is_inode_flag_set(inode, FI_ATOMIC_FILE);
3389 }
3390 
f2fs_is_cow_file(struct inode * inode)3391 static inline bool f2fs_is_cow_file(struct inode *inode)
3392 {
3393 	return is_inode_flag_set(inode, FI_COW_FILE);
3394 }
3395 
inline_data_addr(struct inode * inode,struct page * page)3396 static inline void *inline_data_addr(struct inode *inode, struct page *page)
3397 {
3398 	__le32 *addr = get_dnode_addr(inode, page);
3399 
3400 	return (void *)(addr + DEF_INLINE_RESERVED_SIZE);
3401 }
3402 
f2fs_has_inline_dentry(struct inode * inode)3403 static inline int f2fs_has_inline_dentry(struct inode *inode)
3404 {
3405 	return is_inode_flag_set(inode, FI_INLINE_DENTRY);
3406 }
3407 
is_file(struct inode * inode,int type)3408 static inline int is_file(struct inode *inode, int type)
3409 {
3410 	return F2FS_I(inode)->i_advise & type;
3411 }
3412 
set_file(struct inode * inode,int type)3413 static inline void set_file(struct inode *inode, int type)
3414 {
3415 	if (is_file(inode, type))
3416 		return;
3417 	F2FS_I(inode)->i_advise |= type;
3418 	f2fs_mark_inode_dirty_sync(inode, true);
3419 }
3420 
clear_file(struct inode * inode,int type)3421 static inline void clear_file(struct inode *inode, int type)
3422 {
3423 	if (!is_file(inode, type))
3424 		return;
3425 	F2FS_I(inode)->i_advise &= ~type;
3426 	f2fs_mark_inode_dirty_sync(inode, true);
3427 }
3428 
f2fs_is_time_consistent(struct inode * inode)3429 static inline bool f2fs_is_time_consistent(struct inode *inode)
3430 {
3431 	struct timespec64 ts = inode_get_atime(inode);
3432 
3433 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time, &ts))
3434 		return false;
3435 	ts = inode_get_ctime(inode);
3436 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 1, &ts))
3437 		return false;
3438 	ts = inode_get_mtime(inode);
3439 	if (!timespec64_equal(F2FS_I(inode)->i_disk_time + 2, &ts))
3440 		return false;
3441 	return true;
3442 }
3443 
f2fs_skip_inode_update(struct inode * inode,int dsync)3444 static inline bool f2fs_skip_inode_update(struct inode *inode, int dsync)
3445 {
3446 	bool ret;
3447 
3448 	if (dsync) {
3449 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3450 
3451 		spin_lock(&sbi->inode_lock[DIRTY_META]);
3452 		ret = list_empty(&F2FS_I(inode)->gdirty_list);
3453 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
3454 		return ret;
3455 	}
3456 	if (!is_inode_flag_set(inode, FI_AUTO_RECOVER) ||
3457 			file_keep_isize(inode) ||
3458 			i_size_read(inode) & ~PAGE_MASK)
3459 		return false;
3460 
3461 	if (!f2fs_is_time_consistent(inode))
3462 		return false;
3463 
3464 	spin_lock(&F2FS_I(inode)->i_size_lock);
3465 	ret = F2FS_I(inode)->last_disk_size == i_size_read(inode);
3466 	spin_unlock(&F2FS_I(inode)->i_size_lock);
3467 
3468 	return ret;
3469 }
3470 
f2fs_readonly(struct super_block * sb)3471 static inline bool f2fs_readonly(struct super_block *sb)
3472 {
3473 	return sb_rdonly(sb);
3474 }
3475 
f2fs_cp_error(struct f2fs_sb_info * sbi)3476 static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
3477 {
3478 	return is_set_ckpt_flags(sbi, CP_ERROR_FLAG);
3479 }
3480 
f2fs_kmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3481 static inline void *f2fs_kmalloc(struct f2fs_sb_info *sbi,
3482 					size_t size, gfp_t flags)
3483 {
3484 	if (time_to_inject(sbi, FAULT_KMALLOC))
3485 		return NULL;
3486 
3487 	return kmalloc(size, flags);
3488 }
3489 
f2fs_getname(struct f2fs_sb_info * sbi)3490 static inline void *f2fs_getname(struct f2fs_sb_info *sbi)
3491 {
3492 	if (time_to_inject(sbi, FAULT_KMALLOC))
3493 		return NULL;
3494 
3495 	return __getname();
3496 }
3497 
f2fs_putname(char * buf)3498 static inline void f2fs_putname(char *buf)
3499 {
3500 	__putname(buf);
3501 }
3502 
f2fs_kzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3503 static inline void *f2fs_kzalloc(struct f2fs_sb_info *sbi,
3504 					size_t size, gfp_t flags)
3505 {
3506 	return f2fs_kmalloc(sbi, size, flags | __GFP_ZERO);
3507 }
3508 
f2fs_kvmalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3509 static inline void *f2fs_kvmalloc(struct f2fs_sb_info *sbi,
3510 					size_t size, gfp_t flags)
3511 {
3512 	if (time_to_inject(sbi, FAULT_KVMALLOC))
3513 		return NULL;
3514 
3515 	return kvmalloc(size, flags);
3516 }
3517 
f2fs_kvzalloc(struct f2fs_sb_info * sbi,size_t size,gfp_t flags)3518 static inline void *f2fs_kvzalloc(struct f2fs_sb_info *sbi,
3519 					size_t size, gfp_t flags)
3520 {
3521 	return f2fs_kvmalloc(sbi, size, flags | __GFP_ZERO);
3522 }
3523 
get_extra_isize(struct inode * inode)3524 static inline int get_extra_isize(struct inode *inode)
3525 {
3526 	return F2FS_I(inode)->i_extra_isize / sizeof(__le32);
3527 }
3528 
get_inline_xattr_addrs(struct inode * inode)3529 static inline int get_inline_xattr_addrs(struct inode *inode)
3530 {
3531 	return F2FS_I(inode)->i_inline_xattr_size;
3532 }
3533 
3534 #define f2fs_get_inode_mode(i) \
3535 	((is_inode_flag_set(i, FI_ACL_MODE)) ? \
3536 	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
3537 
3538 #define F2FS_MIN_EXTRA_ATTR_SIZE		(sizeof(__le32))
3539 
3540 #define F2FS_TOTAL_EXTRA_ATTR_SIZE			\
3541 	(offsetof(struct f2fs_inode, i_extra_end) -	\
3542 	offsetof(struct f2fs_inode, i_extra_isize))	\
3543 
3544 #define F2FS_OLD_ATTRIBUTE_SIZE	(offsetof(struct f2fs_inode, i_addr))
3545 #define F2FS_FITS_IN_INODE(f2fs_inode, extra_isize, field)		\
3546 		((offsetof(typeof(*(f2fs_inode)), field) +	\
3547 		sizeof((f2fs_inode)->field))			\
3548 		<= (F2FS_OLD_ATTRIBUTE_SIZE + (extra_isize)))	\
3549 
3550 #define __is_large_section(sbi)		(SEGS_PER_SEC(sbi) > 1)
3551 
3552 #define __is_meta_io(fio) (PAGE_TYPE_OF_BIO((fio)->type) == META)
3553 
3554 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3555 					block_t blkaddr, int type);
verify_blkaddr(struct f2fs_sb_info * sbi,block_t blkaddr,int type)3556 static inline void verify_blkaddr(struct f2fs_sb_info *sbi,
3557 					block_t blkaddr, int type)
3558 {
3559 	if (!f2fs_is_valid_blkaddr(sbi, blkaddr, type))
3560 		f2fs_err(sbi, "invalid blkaddr: %u, type: %d, run fsck to fix.",
3561 			 blkaddr, type);
3562 }
3563 
__is_valid_data_blkaddr(block_t blkaddr)3564 static inline bool __is_valid_data_blkaddr(block_t blkaddr)
3565 {
3566 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR ||
3567 			blkaddr == COMPRESS_ADDR)
3568 		return false;
3569 	return true;
3570 }
3571 
3572 /*
3573  * file.c
3574  */
3575 int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3576 int f2fs_do_truncate_blocks(struct inode *inode, u64 from, bool lock);
3577 int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock);
3578 int f2fs_truncate(struct inode *inode);
3579 int f2fs_getattr(struct mnt_idmap *idmap, const struct path *path,
3580 		 struct kstat *stat, u32 request_mask, unsigned int flags);
3581 int f2fs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3582 		 struct iattr *attr);
3583 int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end);
3584 void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count);
3585 int f2fs_do_shutdown(struct f2fs_sb_info *sbi, unsigned int flag,
3586 						bool readonly, bool need_lock);
3587 int f2fs_precache_extents(struct inode *inode);
3588 int f2fs_fileattr_get(struct dentry *dentry, struct fileattr *fa);
3589 int f2fs_fileattr_set(struct mnt_idmap *idmap,
3590 		      struct dentry *dentry, struct fileattr *fa);
3591 long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg);
3592 long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3593 int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid);
3594 int f2fs_pin_file_control(struct inode *inode, bool inc);
3595 
3596 /*
3597  * inode.c
3598  */
3599 void f2fs_set_inode_flags(struct inode *inode);
3600 bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page);
3601 void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page);
3602 struct inode *f2fs_iget(struct super_block *sb, unsigned long ino);
3603 struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino);
3604 int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink);
3605 void f2fs_update_inode(struct inode *inode, struct page *node_page);
3606 void f2fs_update_inode_page(struct inode *inode);
3607 int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc);
3608 void f2fs_evict_inode(struct inode *inode);
3609 void f2fs_handle_failed_inode(struct inode *inode);
3610 
3611 /*
3612  * namei.c
3613  */
3614 int f2fs_update_extension_list(struct f2fs_sb_info *sbi, const char *name,
3615 							bool hot, bool set);
3616 struct dentry *f2fs_get_parent(struct dentry *child);
3617 int f2fs_get_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
3618 		     struct inode **new_inode);
3619 
3620 /*
3621  * dir.c
3622  */
3623 #if IS_ENABLED(CONFIG_UNICODE)
3624 int f2fs_init_casefolded_name(const struct inode *dir,
3625 			      struct f2fs_filename *fname);
3626 void f2fs_free_casefolded_name(struct f2fs_filename *fname);
3627 #else
f2fs_init_casefolded_name(const struct inode * dir,struct f2fs_filename * fname)3628 static inline int f2fs_init_casefolded_name(const struct inode *dir,
3629 					    struct f2fs_filename *fname)
3630 {
3631 	return 0;
3632 }
3633 
f2fs_free_casefolded_name(struct f2fs_filename * fname)3634 static inline void f2fs_free_casefolded_name(struct f2fs_filename *fname)
3635 {
3636 }
3637 #endif /* CONFIG_UNICODE */
3638 
3639 int f2fs_setup_filename(struct inode *dir, const struct qstr *iname,
3640 			int lookup, struct f2fs_filename *fname);
3641 int f2fs_prepare_lookup(struct inode *dir, struct dentry *dentry,
3642 			struct f2fs_filename *fname);
3643 void f2fs_free_filename(struct f2fs_filename *fname);
3644 struct f2fs_dir_entry *f2fs_find_target_dentry(const struct f2fs_dentry_ptr *d,
3645 			const struct f2fs_filename *fname, int *max_slots,
3646 			bool use_hash);
3647 int f2fs_fill_dentries(struct dir_context *ctx, struct f2fs_dentry_ptr *d,
3648 			unsigned int start_pos, struct fscrypt_str *fstr);
3649 void f2fs_do_make_empty_dir(struct inode *inode, struct inode *parent,
3650 			struct f2fs_dentry_ptr *d);
3651 struct page *f2fs_init_inode_metadata(struct inode *inode, struct inode *dir,
3652 			const struct f2fs_filename *fname, struct page *dpage);
3653 void f2fs_update_parent_metadata(struct inode *dir, struct inode *inode,
3654 			unsigned int current_depth);
3655 int f2fs_room_for_filename(const void *bitmap, int slots, int max_slots);
3656 void f2fs_drop_nlink(struct inode *dir, struct inode *inode);
3657 struct f2fs_dir_entry *__f2fs_find_entry(struct inode *dir,
3658 					 const struct f2fs_filename *fname,
3659 					 struct page **res_page);
3660 struct f2fs_dir_entry *f2fs_find_entry(struct inode *dir,
3661 			const struct qstr *child, struct page **res_page);
3662 struct f2fs_dir_entry *f2fs_parent_dir(struct inode *dir, struct page **p);
3663 ino_t f2fs_inode_by_name(struct inode *dir, const struct qstr *qstr,
3664 			struct page **page);
3665 void f2fs_set_link(struct inode *dir, struct f2fs_dir_entry *de,
3666 			struct page *page, struct inode *inode);
3667 bool f2fs_has_enough_room(struct inode *dir, struct page *ipage,
3668 			  const struct f2fs_filename *fname);
3669 void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *d,
3670 			const struct fscrypt_str *name, f2fs_hash_t name_hash,
3671 			unsigned int bit_pos);
3672 int f2fs_add_regular_entry(struct inode *dir, const struct f2fs_filename *fname,
3673 			struct inode *inode, nid_t ino, umode_t mode);
3674 int f2fs_add_dentry(struct inode *dir, const struct f2fs_filename *fname,
3675 			struct inode *inode, nid_t ino, umode_t mode);
3676 int f2fs_do_add_link(struct inode *dir, const struct qstr *name,
3677 			struct inode *inode, nid_t ino, umode_t mode);
3678 void f2fs_delete_entry(struct f2fs_dir_entry *dentry, struct page *page,
3679 			struct inode *dir, struct inode *inode);
3680 int f2fs_do_tmpfile(struct inode *inode, struct inode *dir,
3681 					struct f2fs_filename *fname);
3682 bool f2fs_empty_dir(struct inode *dir);
3683 
f2fs_add_link(struct dentry * dentry,struct inode * inode)3684 static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
3685 {
3686 	if (fscrypt_is_nokey_name(dentry))
3687 		return -ENOKEY;
3688 	return f2fs_do_add_link(d_inode(dentry->d_parent), &dentry->d_name,
3689 				inode, inode->i_ino, inode->i_mode);
3690 }
3691 
3692 /*
3693  * super.c
3694  */
3695 int f2fs_inode_dirtied(struct inode *inode, bool sync);
3696 void f2fs_inode_synced(struct inode *inode);
3697 int f2fs_dquot_initialize(struct inode *inode);
3698 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly);
3699 int f2fs_do_quota_sync(struct super_block *sb, int type);
3700 loff_t max_file_blocks(struct inode *inode);
3701 void f2fs_quota_off_umount(struct super_block *sb);
3702 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag);
3703 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason);
3704 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error);
3705 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error);
3706 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover);
3707 int f2fs_sync_fs(struct super_block *sb, int sync);
3708 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi);
3709 
3710 /*
3711  * hash.c
3712  */
3713 void f2fs_hash_filename(const struct inode *dir, struct f2fs_filename *fname);
3714 
3715 /*
3716  * node.c
3717  */
3718 struct node_info;
3719 
3720 int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid);
3721 bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type);
3722 bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi,
3723 		const struct folio *folio);
3724 void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi);
3725 void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page);
3726 void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi);
3727 int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid);
3728 bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid);
3729 bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino);
3730 int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
3731 				struct node_info *ni, bool checkpoint_context);
3732 pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs);
3733 int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode);
3734 int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from);
3735 int f2fs_truncate_xattr_node(struct inode *inode);
3736 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
3737 					unsigned int seq_id);
3738 int f2fs_remove_inode_page(struct inode *inode);
3739 struct page *f2fs_new_inode_page(struct inode *inode);
3740 struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs);
3741 void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid);
3742 struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid);
3743 struct folio *f2fs_get_inode_folio(struct f2fs_sb_info *sbi, pgoff_t ino);
3744 struct page *f2fs_get_inode_page(struct f2fs_sb_info *sbi, pgoff_t ino);
3745 struct page *f2fs_get_xnode_page(struct f2fs_sb_info *sbi, pgoff_t xnid);
3746 struct page *f2fs_get_node_page_ra(struct page *parent, int start);
3747 int f2fs_move_node_page(struct page *node_page, int gc_type);
3748 void f2fs_flush_inline_data(struct f2fs_sb_info *sbi);
3749 int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
3750 			struct writeback_control *wbc, bool atomic,
3751 			unsigned int *seq_id);
3752 int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
3753 			struct writeback_control *wbc,
3754 			bool do_balance, enum iostat_type io_type);
3755 int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount);
3756 bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid);
3757 void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid);
3758 void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid);
3759 int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink);
3760 int f2fs_recover_inline_xattr(struct inode *inode, struct page *page);
3761 int f2fs_recover_xattr_data(struct inode *inode, struct page *page);
3762 int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page);
3763 int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
3764 			unsigned int segno, struct f2fs_summary_block *sum);
3765 int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3766 int f2fs_build_node_manager(struct f2fs_sb_info *sbi);
3767 void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi);
3768 int __init f2fs_create_node_manager_caches(void);
3769 void f2fs_destroy_node_manager_caches(void);
3770 
3771 /*
3772  * segment.c
3773  */
3774 bool f2fs_need_SSR(struct f2fs_sb_info *sbi);
3775 int f2fs_commit_atomic_write(struct inode *inode);
3776 void f2fs_abort_atomic_write(struct inode *inode, bool clean);
3777 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need);
3778 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg);
3779 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino);
3780 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi);
3781 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi);
3782 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free);
3783 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr,
3784 						unsigned int len);
3785 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr);
3786 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi);
3787 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi);
3788 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi);
3789 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi);
3790 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
3791 					struct cp_control *cpc);
3792 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi);
3793 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi);
3794 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable);
3795 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi);
3796 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra);
3797 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno);
3798 int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi);
3799 int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi);
3800 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi);
3801 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi);
3802 int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3803 					unsigned int start, unsigned int end);
3804 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force);
3805 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi);
3806 int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi);
3807 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range);
3808 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3809 					struct cp_control *cpc);
3810 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno);
3811 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, void *src,
3812 					block_t blk_addr);
3813 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3814 						enum iostat_type io_type);
3815 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio);
3816 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3817 			struct f2fs_io_info *fio);
3818 int f2fs_inplace_write_data(struct f2fs_io_info *fio);
3819 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3820 			block_t old_blkaddr, block_t new_blkaddr,
3821 			bool recover_curseg, bool recover_newaddr,
3822 			bool from_gc);
3823 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3824 			block_t old_addr, block_t new_addr,
3825 			unsigned char version, bool recover_curseg,
3826 			bool recover_newaddr);
3827 enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3828 						enum log_type seg_type);
3829 int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3830 			block_t old_blkaddr, block_t *new_blkaddr,
3831 			struct f2fs_summary *sum, int type,
3832 			struct f2fs_io_info *fio);
3833 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3834 					block_t blkaddr, unsigned int blkcnt);
3835 void f2fs_folio_wait_writeback(struct folio *folio, enum page_type type,
3836 		bool ordered, bool locked);
3837 #define f2fs_wait_on_page_writeback(page, type, ordered, locked)	\
3838 		f2fs_folio_wait_writeback(page_folio(page), type, ordered, locked)
3839 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr);
3840 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3841 								block_t len);
3842 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3843 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk);
3844 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3845 			unsigned int val, int alloc);
3846 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3847 int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi);
3848 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi);
3849 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi);
3850 int __init f2fs_create_segment_manager_caches(void);
3851 void f2fs_destroy_segment_manager_caches(void);
3852 int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint);
3853 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3854 			enum page_type type, enum temp_type temp);
3855 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi);
3856 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
3857 			unsigned int segno);
3858 unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
3859 			unsigned int segno);
3860 
3861 #define DEF_FRAGMENT_SIZE	4
3862 #define MIN_FRAGMENT_SIZE	1
3863 #define MAX_FRAGMENT_SIZE	512
3864 
f2fs_need_rand_seg(struct f2fs_sb_info * sbi)3865 static inline bool f2fs_need_rand_seg(struct f2fs_sb_info *sbi)
3866 {
3867 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG ||
3868 		F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK;
3869 }
3870 
3871 /*
3872  * checkpoint.c
3873  */
3874 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io,
3875 							unsigned char reason);
3876 void f2fs_flush_ckpt_thread(struct f2fs_sb_info *sbi);
3877 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3878 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index);
3879 struct page *f2fs_get_meta_page_retry(struct f2fs_sb_info *sbi, pgoff_t index);
3880 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index);
3881 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
3882 					block_t blkaddr, int type);
3883 bool f2fs_is_valid_blkaddr_raw(struct f2fs_sb_info *sbi,
3884 					block_t blkaddr, int type);
3885 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
3886 			int type, bool sync);
3887 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index,
3888 							unsigned int ra_blocks);
3889 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
3890 			long nr_to_write, enum iostat_type io_type);
3891 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3892 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type);
3893 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all);
3894 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode);
3895 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3896 					unsigned int devidx, int type);
3897 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
3898 					unsigned int devidx, int type);
3899 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi);
3900 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi);
3901 void f2fs_add_orphan_inode(struct inode *inode);
3902 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino);
3903 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi);
3904 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi);
3905 void f2fs_update_dirty_folio(struct inode *inode, struct folio *folio);
3906 void f2fs_remove_dirty_inode(struct inode *inode);
3907 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type,
3908 								bool from_cp);
3909 void f2fs_wait_on_all_pages(struct f2fs_sb_info *sbi, int type);
3910 u64 f2fs_get_sectors_written(struct f2fs_sb_info *sbi);
3911 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc);
3912 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi);
3913 int __init f2fs_create_checkpoint_caches(void);
3914 void f2fs_destroy_checkpoint_caches(void);
3915 int f2fs_issue_checkpoint(struct f2fs_sb_info *sbi);
3916 int f2fs_start_ckpt_thread(struct f2fs_sb_info *sbi);
3917 void f2fs_stop_ckpt_thread(struct f2fs_sb_info *sbi);
3918 void f2fs_init_ckpt_req_control(struct f2fs_sb_info *sbi);
3919 
3920 /*
3921  * data.c
3922  */
3923 int __init f2fs_init_bioset(void);
3924 void f2fs_destroy_bioset(void);
3925 bool f2fs_is_cp_guaranteed(struct page *page);
3926 int f2fs_init_bio_entry_cache(void);
3927 void f2fs_destroy_bio_entry_cache(void);
3928 void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
3929 			  enum page_type type);
3930 int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi);
3931 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type);
3932 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
3933 				struct inode *inode, struct page *page,
3934 				nid_t ino, enum page_type type);
3935 void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
3936 					struct bio **bio, struct page *page);
3937 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi);
3938 int f2fs_submit_page_bio(struct f2fs_io_info *fio);
3939 int f2fs_merge_page_bio(struct f2fs_io_info *fio);
3940 void f2fs_submit_page_write(struct f2fs_io_info *fio);
3941 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
3942 		block_t blk_addr, sector_t *sector);
3943 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr);
3944 void f2fs_set_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3945 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr);
3946 int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count);
3947 int f2fs_reserve_new_block(struct dnode_of_data *dn);
3948 int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index);
3949 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index);
3950 struct folio *f2fs_get_read_data_folio(struct inode *inode, pgoff_t index,
3951 		blk_opf_t op_flags, bool for_write, pgoff_t *next_pgofs);
3952 struct folio *f2fs_find_data_folio(struct inode *inode, pgoff_t index,
3953 		pgoff_t *next_pgofs);
3954 struct folio *f2fs_get_lock_data_folio(struct inode *inode, pgoff_t index,
3955 			bool for_write);
3956 struct page *f2fs_get_new_data_page(struct inode *inode,
3957 			struct page *ipage, pgoff_t index, bool new_i_size);
3958 int f2fs_do_write_data_page(struct f2fs_io_info *fio);
3959 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag);
3960 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3961 			u64 start, u64 len);
3962 int f2fs_encrypt_one_page(struct f2fs_io_info *fio);
3963 bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio);
3964 bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio);
3965 int f2fs_write_single_data_page(struct folio *folio, int *submitted,
3966 				struct bio **bio, sector_t *last_block,
3967 				struct writeback_control *wbc,
3968 				enum iostat_type io_type,
3969 				int compr_blocks, bool allow_balance);
3970 void f2fs_write_failed(struct inode *inode, loff_t to);
3971 void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length);
3972 bool f2fs_release_folio(struct folio *folio, gfp_t wait);
3973 bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len);
3974 void f2fs_clear_page_cache_dirty_tag(struct folio *folio);
3975 int f2fs_init_post_read_processing(void);
3976 void f2fs_destroy_post_read_processing(void);
3977 int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi);
3978 void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi);
3979 extern const struct iomap_ops f2fs_iomap_ops;
3980 
f2fs_find_data_page(struct inode * inode,pgoff_t index,pgoff_t * next_pgofs)3981 static inline struct page *f2fs_find_data_page(struct inode *inode,
3982 		pgoff_t index, pgoff_t *next_pgofs)
3983 {
3984 	struct folio *folio = f2fs_find_data_folio(inode, index, next_pgofs);
3985 
3986 	return &folio->page;
3987 }
3988 
f2fs_get_lock_data_page(struct inode * inode,pgoff_t index,bool for_write)3989 static inline struct page *f2fs_get_lock_data_page(struct inode *inode,
3990 		pgoff_t index, bool for_write)
3991 {
3992 	struct folio *folio = f2fs_get_lock_data_folio(inode, index, for_write);
3993 
3994 	return &folio->page;
3995 }
3996 
3997 /*
3998  * gc.c
3999  */
4000 int f2fs_start_gc_thread(struct f2fs_sb_info *sbi);
4001 void f2fs_stop_gc_thread(struct f2fs_sb_info *sbi);
4002 block_t f2fs_start_bidx_of_node(unsigned int node_ofs, struct inode *inode);
4003 int f2fs_gc(struct f2fs_sb_info *sbi, struct f2fs_gc_control *gc_control);
4004 void f2fs_build_gc_manager(struct f2fs_sb_info *sbi);
4005 int f2fs_gc_range(struct f2fs_sb_info *sbi,
4006 		unsigned int start_seg, unsigned int end_seg,
4007 		bool dry_run, unsigned int dry_run_sections);
4008 int f2fs_resize_fs(struct file *filp, __u64 block_count);
4009 int __init f2fs_create_garbage_collection_cache(void);
4010 void f2fs_destroy_garbage_collection_cache(void);
4011 /* victim selection function for cleaning and SSR */
4012 int f2fs_get_victim(struct f2fs_sb_info *sbi, unsigned int *result,
4013 			int gc_type, int type, char alloc_mode,
4014 			unsigned long long age, bool one_time);
4015 
4016 /*
4017  * recovery.c
4018  */
4019 int f2fs_recover_fsync_data(struct f2fs_sb_info *sbi, bool check_only);
4020 bool f2fs_space_for_roll_forward(struct f2fs_sb_info *sbi);
4021 int __init f2fs_create_recovery_cache(void);
4022 void f2fs_destroy_recovery_cache(void);
4023 
4024 /*
4025  * debug.c
4026  */
4027 #ifdef CONFIG_F2FS_STAT_FS
4028 enum {
4029 	DEVSTAT_INUSE,
4030 	DEVSTAT_DIRTY,
4031 	DEVSTAT_FULL,
4032 	DEVSTAT_FREE,
4033 	DEVSTAT_PREFREE,
4034 	DEVSTAT_MAX,
4035 };
4036 
4037 struct f2fs_dev_stats {
4038 	unsigned int devstats[2][DEVSTAT_MAX];		/* 0: segs, 1: secs */
4039 };
4040 
4041 struct f2fs_stat_info {
4042 	struct list_head stat_list;
4043 	struct f2fs_sb_info *sbi;
4044 	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
4045 	int main_area_segs, main_area_sections, main_area_zones;
4046 	unsigned long long hit_cached[NR_EXTENT_CACHES];
4047 	unsigned long long hit_rbtree[NR_EXTENT_CACHES];
4048 	unsigned long long total_ext[NR_EXTENT_CACHES];
4049 	unsigned long long hit_total[NR_EXTENT_CACHES];
4050 	int ext_tree[NR_EXTENT_CACHES];
4051 	int zombie_tree[NR_EXTENT_CACHES];
4052 	int ext_node[NR_EXTENT_CACHES];
4053 	/* to count memory footprint */
4054 	unsigned long long ext_mem[NR_EXTENT_CACHES];
4055 	/* for read extent cache */
4056 	unsigned long long hit_largest;
4057 	/* for block age extent cache */
4058 	unsigned long long allocated_data_blocks;
4059 	int ndirty_node, ndirty_dent, ndirty_meta, ndirty_imeta;
4060 	int ndirty_data, ndirty_qdata;
4061 	unsigned int ndirty_dirs, ndirty_files, ndirty_all;
4062 	unsigned int nquota_files, ndonate_files;
4063 	int nats, dirty_nats, sits, dirty_sits;
4064 	int free_nids, avail_nids, alloc_nids;
4065 	int total_count, utilization;
4066 	int nr_wb_cp_data, nr_wb_data;
4067 	int nr_rd_data, nr_rd_node, nr_rd_meta;
4068 	int nr_dio_read, nr_dio_write;
4069 	unsigned int io_skip_bggc, other_skip_bggc;
4070 	int nr_flushing, nr_flushed, flush_list_empty;
4071 	int nr_discarding, nr_discarded;
4072 	int nr_discard_cmd;
4073 	unsigned int undiscard_blks;
4074 	int nr_issued_ckpt, nr_total_ckpt, nr_queued_ckpt;
4075 	unsigned int cur_ckpt_time, peak_ckpt_time;
4076 	int inline_xattr, inline_inode, inline_dir, append, update, orphans;
4077 	int compr_inode, swapfile_inode;
4078 	unsigned long long compr_blocks;
4079 	int aw_cnt, max_aw_cnt;
4080 	unsigned int valid_count, valid_node_count, valid_inode_count, discard_blks;
4081 	unsigned int bimodal, avg_vblocks;
4082 	int util_free, util_valid, util_invalid;
4083 	int rsvd_segs, overp_segs;
4084 	int dirty_count, node_pages, meta_pages, compress_pages;
4085 	int compress_page_hit;
4086 	int prefree_count, free_segs, free_secs;
4087 	int cp_call_count[MAX_CALL_TYPE], cp_count;
4088 	int gc_call_count[MAX_CALL_TYPE];
4089 	int gc_segs[2][2];
4090 	int gc_secs[2][2];
4091 	int tot_blks, data_blks, node_blks;
4092 	int bg_data_blks, bg_node_blks;
4093 	int curseg[NR_CURSEG_TYPE];
4094 	int cursec[NR_CURSEG_TYPE];
4095 	int curzone[NR_CURSEG_TYPE];
4096 	unsigned int dirty_seg[NR_CURSEG_TYPE];
4097 	unsigned int full_seg[NR_CURSEG_TYPE];
4098 	unsigned int valid_blks[NR_CURSEG_TYPE];
4099 
4100 	unsigned int meta_count[META_MAX];
4101 	unsigned int segment_count[2];
4102 	unsigned int block_count[2];
4103 	unsigned int inplace_count;
4104 	unsigned long long base_mem, cache_mem, page_mem;
4105 	struct f2fs_dev_stats *dev_stats;
4106 };
4107 
F2FS_STAT(struct f2fs_sb_info * sbi)4108 static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
4109 {
4110 	return (struct f2fs_stat_info *)sbi->stat_info;
4111 }
4112 
4113 #define stat_inc_cp_call_count(sbi, foreground)				\
4114 		atomic_inc(&sbi->cp_call_count[(foreground)])
4115 #define stat_inc_cp_count(sbi)		(F2FS_STAT(sbi)->cp_count++)
4116 #define stat_io_skip_bggc_count(sbi)	((sbi)->io_skip_bggc++)
4117 #define stat_other_skip_bggc_count(sbi)	((sbi)->other_skip_bggc++)
4118 #define stat_inc_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]++)
4119 #define stat_dec_dirty_inode(sbi, type)	((sbi)->ndirty_inode[type]--)
4120 #define stat_inc_total_hit(sbi, type)		(atomic64_inc(&(sbi)->total_hit_ext[type]))
4121 #define stat_inc_rbtree_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_rbtree[type]))
4122 #define stat_inc_largest_node_hit(sbi)	(atomic64_inc(&(sbi)->read_hit_largest))
4123 #define stat_inc_cached_node_hit(sbi, type)	(atomic64_inc(&(sbi)->read_hit_cached[type]))
4124 #define stat_inc_inline_xattr(inode)					\
4125 	do {								\
4126 		if (f2fs_has_inline_xattr(inode))			\
4127 			(atomic_inc(&F2FS_I_SB(inode)->inline_xattr));	\
4128 	} while (0)
4129 #define stat_dec_inline_xattr(inode)					\
4130 	do {								\
4131 		if (f2fs_has_inline_xattr(inode))			\
4132 			(atomic_dec(&F2FS_I_SB(inode)->inline_xattr));	\
4133 	} while (0)
4134 #define stat_inc_inline_inode(inode)					\
4135 	do {								\
4136 		if (f2fs_has_inline_data(inode))			\
4137 			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
4138 	} while (0)
4139 #define stat_dec_inline_inode(inode)					\
4140 	do {								\
4141 		if (f2fs_has_inline_data(inode))			\
4142 			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
4143 	} while (0)
4144 #define stat_inc_inline_dir(inode)					\
4145 	do {								\
4146 		if (f2fs_has_inline_dentry(inode))			\
4147 			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
4148 	} while (0)
4149 #define stat_dec_inline_dir(inode)					\
4150 	do {								\
4151 		if (f2fs_has_inline_dentry(inode))			\
4152 			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
4153 	} while (0)
4154 #define stat_inc_compr_inode(inode)					\
4155 	do {								\
4156 		if (f2fs_compressed_file(inode))			\
4157 			(atomic_inc(&F2FS_I_SB(inode)->compr_inode));	\
4158 	} while (0)
4159 #define stat_dec_compr_inode(inode)					\
4160 	do {								\
4161 		if (f2fs_compressed_file(inode))			\
4162 			(atomic_dec(&F2FS_I_SB(inode)->compr_inode));	\
4163 	} while (0)
4164 #define stat_add_compr_blocks(inode, blocks)				\
4165 		(atomic64_add(blocks, &F2FS_I_SB(inode)->compr_blocks))
4166 #define stat_sub_compr_blocks(inode, blocks)				\
4167 		(atomic64_sub(blocks, &F2FS_I_SB(inode)->compr_blocks))
4168 #define stat_inc_swapfile_inode(inode)					\
4169 		(atomic_inc(&F2FS_I_SB(inode)->swapfile_inode))
4170 #define stat_dec_swapfile_inode(inode)					\
4171 		(atomic_dec(&F2FS_I_SB(inode)->swapfile_inode))
4172 #define stat_inc_atomic_inode(inode)					\
4173 			(atomic_inc(&F2FS_I_SB(inode)->atomic_files))
4174 #define stat_dec_atomic_inode(inode)					\
4175 			(atomic_dec(&F2FS_I_SB(inode)->atomic_files))
4176 #define stat_inc_meta_count(sbi, blkaddr)				\
4177 	do {								\
4178 		if (blkaddr < SIT_I(sbi)->sit_base_addr)		\
4179 			atomic_inc(&(sbi)->meta_count[META_CP]);	\
4180 		else if (blkaddr < NM_I(sbi)->nat_blkaddr)		\
4181 			atomic_inc(&(sbi)->meta_count[META_SIT]);	\
4182 		else if (blkaddr < SM_I(sbi)->ssa_blkaddr)		\
4183 			atomic_inc(&(sbi)->meta_count[META_NAT]);	\
4184 		else if (blkaddr < SM_I(sbi)->main_blkaddr)		\
4185 			atomic_inc(&(sbi)->meta_count[META_SSA]);	\
4186 	} while (0)
4187 #define stat_inc_seg_type(sbi, curseg)					\
4188 		((sbi)->segment_count[(curseg)->alloc_type]++)
4189 #define stat_inc_block_count(sbi, curseg)				\
4190 		((sbi)->block_count[(curseg)->alloc_type]++)
4191 #define stat_inc_inplace_blocks(sbi)					\
4192 		(atomic_inc(&(sbi)->inplace_count))
4193 #define stat_update_max_atomic_write(inode)				\
4194 	do {								\
4195 		int cur = atomic_read(&F2FS_I_SB(inode)->atomic_files);	\
4196 		int max = atomic_read(&F2FS_I_SB(inode)->max_aw_cnt);	\
4197 		if (cur > max)						\
4198 			atomic_set(&F2FS_I_SB(inode)->max_aw_cnt, cur);	\
4199 	} while (0)
4200 #define stat_inc_gc_call_count(sbi, foreground)				\
4201 		(F2FS_STAT(sbi)->gc_call_count[(foreground)]++)
4202 #define stat_inc_gc_sec_count(sbi, type, gc_type)			\
4203 		(F2FS_STAT(sbi)->gc_secs[(type)][(gc_type)]++)
4204 #define stat_inc_gc_seg_count(sbi, type, gc_type)			\
4205 		(F2FS_STAT(sbi)->gc_segs[(type)][(gc_type)]++)
4206 
4207 #define stat_inc_tot_blk_count(si, blks)				\
4208 	((si)->tot_blks += (blks))
4209 
4210 #define stat_inc_data_blk_count(sbi, blks, gc_type)			\
4211 	do {								\
4212 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4213 		stat_inc_tot_blk_count(si, blks);			\
4214 		si->data_blks += (blks);				\
4215 		si->bg_data_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4216 	} while (0)
4217 
4218 #define stat_inc_node_blk_count(sbi, blks, gc_type)			\
4219 	do {								\
4220 		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
4221 		stat_inc_tot_blk_count(si, blks);			\
4222 		si->node_blks += (blks);				\
4223 		si->bg_node_blks += ((gc_type) == BG_GC) ? (blks) : 0;	\
4224 	} while (0)
4225 
4226 int f2fs_build_stats(struct f2fs_sb_info *sbi);
4227 void f2fs_destroy_stats(struct f2fs_sb_info *sbi);
4228 void __init f2fs_create_root_stats(void);
4229 void f2fs_destroy_root_stats(void);
4230 void f2fs_update_sit_info(struct f2fs_sb_info *sbi);
4231 #else
4232 #define stat_inc_cp_call_count(sbi, foreground)		do { } while (0)
4233 #define stat_inc_cp_count(sbi)				do { } while (0)
4234 #define stat_io_skip_bggc_count(sbi)			do { } while (0)
4235 #define stat_other_skip_bggc_count(sbi)			do { } while (0)
4236 #define stat_inc_dirty_inode(sbi, type)			do { } while (0)
4237 #define stat_dec_dirty_inode(sbi, type)			do { } while (0)
4238 #define stat_inc_total_hit(sbi, type)			do { } while (0)
4239 #define stat_inc_rbtree_node_hit(sbi, type)		do { } while (0)
4240 #define stat_inc_largest_node_hit(sbi)			do { } while (0)
4241 #define stat_inc_cached_node_hit(sbi, type)		do { } while (0)
4242 #define stat_inc_inline_xattr(inode)			do { } while (0)
4243 #define stat_dec_inline_xattr(inode)			do { } while (0)
4244 #define stat_inc_inline_inode(inode)			do { } while (0)
4245 #define stat_dec_inline_inode(inode)			do { } while (0)
4246 #define stat_inc_inline_dir(inode)			do { } while (0)
4247 #define stat_dec_inline_dir(inode)			do { } while (0)
4248 #define stat_inc_compr_inode(inode)			do { } while (0)
4249 #define stat_dec_compr_inode(inode)			do { } while (0)
4250 #define stat_add_compr_blocks(inode, blocks)		do { } while (0)
4251 #define stat_sub_compr_blocks(inode, blocks)		do { } while (0)
4252 #define stat_inc_swapfile_inode(inode)			do { } while (0)
4253 #define stat_dec_swapfile_inode(inode)			do { } while (0)
4254 #define stat_inc_atomic_inode(inode)			do { } while (0)
4255 #define stat_dec_atomic_inode(inode)			do { } while (0)
4256 #define stat_update_max_atomic_write(inode)		do { } while (0)
4257 #define stat_inc_meta_count(sbi, blkaddr)		do { } while (0)
4258 #define stat_inc_seg_type(sbi, curseg)			do { } while (0)
4259 #define stat_inc_block_count(sbi, curseg)		do { } while (0)
4260 #define stat_inc_inplace_blocks(sbi)			do { } while (0)
4261 #define stat_inc_gc_call_count(sbi, foreground)		do { } while (0)
4262 #define stat_inc_gc_sec_count(sbi, type, gc_type)	do { } while (0)
4263 #define stat_inc_gc_seg_count(sbi, type, gc_type)	do { } while (0)
4264 #define stat_inc_tot_blk_count(si, blks)		do { } while (0)
4265 #define stat_inc_data_blk_count(sbi, blks, gc_type)	do { } while (0)
4266 #define stat_inc_node_blk_count(sbi, blks, gc_type)	do { } while (0)
4267 
f2fs_build_stats(struct f2fs_sb_info * sbi)4268 static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_stats(struct f2fs_sb_info * sbi)4269 static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
f2fs_create_root_stats(void)4270 static inline void __init f2fs_create_root_stats(void) { }
f2fs_destroy_root_stats(void)4271 static inline void f2fs_destroy_root_stats(void) { }
f2fs_update_sit_info(struct f2fs_sb_info * sbi)4272 static inline void f2fs_update_sit_info(struct f2fs_sb_info *sbi) {}
4273 #endif
4274 
4275 extern const struct file_operations f2fs_dir_operations;
4276 extern const struct file_operations f2fs_file_operations;
4277 extern const struct inode_operations f2fs_file_inode_operations;
4278 extern const struct address_space_operations f2fs_dblock_aops;
4279 extern const struct address_space_operations f2fs_node_aops;
4280 extern const struct address_space_operations f2fs_meta_aops;
4281 extern const struct inode_operations f2fs_dir_inode_operations;
4282 extern const struct inode_operations f2fs_symlink_inode_operations;
4283 extern const struct inode_operations f2fs_encrypted_symlink_inode_operations;
4284 extern const struct inode_operations f2fs_special_inode_operations;
4285 extern struct kmem_cache *f2fs_inode_entry_slab;
4286 
4287 /*
4288  * inline.c
4289  */
4290 bool f2fs_may_inline_data(struct inode *inode);
4291 bool f2fs_sanity_check_inline_data(struct inode *inode, struct page *ipage);
4292 bool f2fs_may_inline_dentry(struct inode *inode);
4293 void f2fs_do_read_inline_data(struct folio *folio, struct page *ipage);
4294 void f2fs_truncate_inline_inode(struct inode *inode,
4295 						struct page *ipage, u64 from);
4296 int f2fs_read_inline_data(struct inode *inode, struct folio *folio);
4297 int f2fs_convert_inline_page(struct dnode_of_data *dn, struct page *page);
4298 int f2fs_convert_inline_inode(struct inode *inode);
4299 int f2fs_try_convert_inline_dir(struct inode *dir, struct dentry *dentry);
4300 int f2fs_write_inline_data(struct inode *inode, struct folio *folio);
4301 int f2fs_recover_inline_data(struct inode *inode, struct page *npage);
4302 struct f2fs_dir_entry *f2fs_find_in_inline_dir(struct inode *dir,
4303 					const struct f2fs_filename *fname,
4304 					struct page **res_page,
4305 					bool use_hash);
4306 int f2fs_make_empty_inline_dir(struct inode *inode, struct inode *parent,
4307 			struct page *ipage);
4308 int f2fs_add_inline_entry(struct inode *dir, const struct f2fs_filename *fname,
4309 			struct inode *inode, nid_t ino, umode_t mode);
4310 void f2fs_delete_inline_entry(struct f2fs_dir_entry *dentry,
4311 				struct page *page, struct inode *dir,
4312 				struct inode *inode);
4313 bool f2fs_empty_inline_dir(struct inode *dir);
4314 int f2fs_read_inline_dir(struct file *file, struct dir_context *ctx,
4315 			struct fscrypt_str *fstr);
4316 int f2fs_inline_data_fiemap(struct inode *inode,
4317 			struct fiemap_extent_info *fieinfo,
4318 			__u64 start, __u64 len);
4319 
4320 /*
4321  * shrinker.c
4322  */
4323 unsigned long f2fs_shrink_count(struct shrinker *shrink,
4324 			struct shrink_control *sc);
4325 unsigned long f2fs_shrink_scan(struct shrinker *shrink,
4326 			struct shrink_control *sc);
4327 unsigned int f2fs_donate_files(void);
4328 void f2fs_reclaim_caches(unsigned int reclaim_caches_kb);
4329 void f2fs_join_shrinker(struct f2fs_sb_info *sbi);
4330 void f2fs_leave_shrinker(struct f2fs_sb_info *sbi);
4331 
4332 /*
4333  * extent_cache.c
4334  */
4335 bool sanity_check_extent_cache(struct inode *inode, struct page *ipage);
4336 void f2fs_init_extent_tree(struct inode *inode);
4337 void f2fs_drop_extent_tree(struct inode *inode);
4338 void f2fs_destroy_extent_node(struct inode *inode);
4339 void f2fs_destroy_extent_tree(struct inode *inode);
4340 void f2fs_init_extent_cache_info(struct f2fs_sb_info *sbi);
4341 int __init f2fs_create_extent_cache(void);
4342 void f2fs_destroy_extent_cache(void);
4343 
4344 /* read extent cache ops */
4345 void f2fs_init_read_extent_tree(struct inode *inode, struct page *ipage);
4346 bool f2fs_lookup_read_extent_cache(struct inode *inode, pgoff_t pgofs,
4347 			struct extent_info *ei);
4348 bool f2fs_lookup_read_extent_cache_block(struct inode *inode, pgoff_t index,
4349 			block_t *blkaddr);
4350 void f2fs_update_read_extent_cache(struct dnode_of_data *dn);
4351 void f2fs_update_read_extent_cache_range(struct dnode_of_data *dn,
4352 			pgoff_t fofs, block_t blkaddr, unsigned int len);
4353 unsigned int f2fs_shrink_read_extent_tree(struct f2fs_sb_info *sbi,
4354 			int nr_shrink);
4355 
4356 /* block age extent cache ops */
4357 void f2fs_init_age_extent_tree(struct inode *inode);
4358 bool f2fs_lookup_age_extent_cache(struct inode *inode, pgoff_t pgofs,
4359 			struct extent_info *ei);
4360 void f2fs_update_age_extent_cache(struct dnode_of_data *dn);
4361 void f2fs_update_age_extent_cache_range(struct dnode_of_data *dn,
4362 			pgoff_t fofs, unsigned int len);
4363 unsigned int f2fs_shrink_age_extent_tree(struct f2fs_sb_info *sbi,
4364 			int nr_shrink);
4365 
4366 /*
4367  * sysfs.c
4368  */
4369 #define MIN_RA_MUL	2
4370 #define MAX_RA_MUL	256
4371 
4372 int __init f2fs_init_sysfs(void);
4373 void f2fs_exit_sysfs(void);
4374 int f2fs_register_sysfs(struct f2fs_sb_info *sbi);
4375 void f2fs_unregister_sysfs(struct f2fs_sb_info *sbi);
4376 
4377 /* verity.c */
4378 extern const struct fsverity_operations f2fs_verityops;
4379 
4380 /*
4381  * crypto support
4382  */
f2fs_encrypted_file(struct inode * inode)4383 static inline bool f2fs_encrypted_file(struct inode *inode)
4384 {
4385 	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
4386 }
4387 
f2fs_set_encrypted_inode(struct inode * inode)4388 static inline void f2fs_set_encrypted_inode(struct inode *inode)
4389 {
4390 #ifdef CONFIG_FS_ENCRYPTION
4391 	file_set_encrypt(inode);
4392 	f2fs_set_inode_flags(inode);
4393 #endif
4394 }
4395 
4396 /*
4397  * Returns true if the reads of the inode's data need to undergo some
4398  * postprocessing step, like decryption or authenticity verification.
4399  */
f2fs_post_read_required(struct inode * inode)4400 static inline bool f2fs_post_read_required(struct inode *inode)
4401 {
4402 	return f2fs_encrypted_file(inode) || fsverity_active(inode) ||
4403 		f2fs_compressed_file(inode);
4404 }
4405 
f2fs_used_in_atomic_write(struct inode * inode)4406 static inline bool f2fs_used_in_atomic_write(struct inode *inode)
4407 {
4408 	return f2fs_is_atomic_file(inode) || f2fs_is_cow_file(inode);
4409 }
4410 
f2fs_meta_inode_gc_required(struct inode * inode)4411 static inline bool f2fs_meta_inode_gc_required(struct inode *inode)
4412 {
4413 	return f2fs_post_read_required(inode) || f2fs_used_in_atomic_write(inode);
4414 }
4415 
4416 /*
4417  * compress.c
4418  */
4419 #ifdef CONFIG_F2FS_FS_COMPRESSION
4420 enum cluster_check_type {
4421 	CLUSTER_IS_COMPR,   /* check only if compressed cluster */
4422 	CLUSTER_COMPR_BLKS, /* return # of compressed blocks in a cluster */
4423 	CLUSTER_RAW_BLKS    /* return # of raw blocks in a cluster */
4424 };
4425 bool f2fs_is_compressed_page(struct page *page);
4426 struct page *f2fs_compress_control_page(struct page *page);
4427 int f2fs_prepare_compress_overwrite(struct inode *inode,
4428 			struct page **pagep, pgoff_t index, void **fsdata);
4429 bool f2fs_compress_write_end(struct inode *inode, void *fsdata,
4430 					pgoff_t index, unsigned copied);
4431 int f2fs_truncate_partial_cluster(struct inode *inode, u64 from, bool lock);
4432 void f2fs_compress_write_end_io(struct bio *bio, struct page *page);
4433 bool f2fs_is_compress_backend_ready(struct inode *inode);
4434 bool f2fs_is_compress_level_valid(int alg, int lvl);
4435 int __init f2fs_init_compress_mempool(void);
4436 void f2fs_destroy_compress_mempool(void);
4437 void f2fs_decompress_cluster(struct decompress_io_ctx *dic, bool in_task);
4438 void f2fs_end_read_compressed_page(struct page *page, bool failed,
4439 				block_t blkaddr, bool in_task);
4440 bool f2fs_cluster_is_empty(struct compress_ctx *cc);
4441 bool f2fs_cluster_can_merge_page(struct compress_ctx *cc, pgoff_t index);
4442 bool f2fs_all_cluster_page_ready(struct compress_ctx *cc, struct page **pages,
4443 				int index, int nr_pages, bool uptodate);
4444 bool f2fs_sanity_check_cluster(struct dnode_of_data *dn);
4445 void f2fs_compress_ctx_add_page(struct compress_ctx *cc, struct folio *folio);
4446 int f2fs_write_multi_pages(struct compress_ctx *cc,
4447 						int *submitted,
4448 						struct writeback_control *wbc,
4449 						enum iostat_type io_type);
4450 int f2fs_is_compressed_cluster(struct inode *inode, pgoff_t index);
4451 bool f2fs_is_sparse_cluster(struct inode *inode, pgoff_t index);
4452 void f2fs_update_read_extent_tree_range_compressed(struct inode *inode,
4453 				pgoff_t fofs, block_t blkaddr,
4454 				unsigned int llen, unsigned int c_len);
4455 int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
4456 				unsigned nr_pages, sector_t *last_block_in_bio,
4457 				struct readahead_control *rac, bool for_write);
4458 struct decompress_io_ctx *f2fs_alloc_dic(struct compress_ctx *cc);
4459 void f2fs_decompress_end_io(struct decompress_io_ctx *dic, bool failed,
4460 				bool in_task);
4461 void f2fs_put_page_dic(struct page *page, bool in_task);
4462 unsigned int f2fs_cluster_blocks_are_contiguous(struct dnode_of_data *dn,
4463 						unsigned int ofs_in_node);
4464 int f2fs_init_compress_ctx(struct compress_ctx *cc);
4465 void f2fs_destroy_compress_ctx(struct compress_ctx *cc, bool reuse);
4466 void f2fs_init_compress_info(struct f2fs_sb_info *sbi);
4467 int f2fs_init_compress_inode(struct f2fs_sb_info *sbi);
4468 void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi);
4469 int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi);
4470 void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi);
4471 int __init f2fs_init_compress_cache(void);
4472 void f2fs_destroy_compress_cache(void);
4473 struct address_space *COMPRESS_MAPPING(struct f2fs_sb_info *sbi);
4474 void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4475 					block_t blkaddr, unsigned int len);
4476 void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4477 						nid_t ino, block_t blkaddr);
4478 bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi, struct page *page,
4479 								block_t blkaddr);
4480 void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi, nid_t ino);
4481 #define inc_compr_inode_stat(inode)					\
4482 	do {								\
4483 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4484 		sbi->compr_new_inode++;					\
4485 	} while (0)
4486 #define add_compr_block_stat(inode, blocks)				\
4487 	do {								\
4488 		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);		\
4489 		int diff = F2FS_I(inode)->i_cluster_size - blocks;	\
4490 		sbi->compr_written_block += blocks;			\
4491 		sbi->compr_saved_block += diff;				\
4492 	} while (0)
4493 #else
f2fs_is_compressed_page(struct page * page)4494 static inline bool f2fs_is_compressed_page(struct page *page) { return false; }
f2fs_is_compress_backend_ready(struct inode * inode)4495 static inline bool f2fs_is_compress_backend_ready(struct inode *inode)
4496 {
4497 	if (!f2fs_compressed_file(inode))
4498 		return true;
4499 	/* not support compression */
4500 	return false;
4501 }
f2fs_is_compress_level_valid(int alg,int lvl)4502 static inline bool f2fs_is_compress_level_valid(int alg, int lvl) { return false; }
f2fs_compress_control_page(struct page * page)4503 static inline struct page *f2fs_compress_control_page(struct page *page)
4504 {
4505 	WARN_ON_ONCE(1);
4506 	return ERR_PTR(-EINVAL);
4507 }
f2fs_init_compress_mempool(void)4508 static inline int __init f2fs_init_compress_mempool(void) { return 0; }
f2fs_destroy_compress_mempool(void)4509 static inline void f2fs_destroy_compress_mempool(void) { }
f2fs_decompress_cluster(struct decompress_io_ctx * dic,bool in_task)4510 static inline void f2fs_decompress_cluster(struct decompress_io_ctx *dic,
4511 				bool in_task) { }
f2fs_end_read_compressed_page(struct page * page,bool failed,block_t blkaddr,bool in_task)4512 static inline void f2fs_end_read_compressed_page(struct page *page,
4513 				bool failed, block_t blkaddr, bool in_task)
4514 {
4515 	WARN_ON_ONCE(1);
4516 }
f2fs_put_page_dic(struct page * page,bool in_task)4517 static inline void f2fs_put_page_dic(struct page *page, bool in_task)
4518 {
4519 	WARN_ON_ONCE(1);
4520 }
f2fs_cluster_blocks_are_contiguous(struct dnode_of_data * dn,unsigned int ofs_in_node)4521 static inline unsigned int f2fs_cluster_blocks_are_contiguous(
4522 			struct dnode_of_data *dn, unsigned int ofs_in_node) { return 0; }
f2fs_sanity_check_cluster(struct dnode_of_data * dn)4523 static inline bool f2fs_sanity_check_cluster(struct dnode_of_data *dn) { return false; }
f2fs_init_compress_inode(struct f2fs_sb_info * sbi)4524 static inline int f2fs_init_compress_inode(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_compress_inode(struct f2fs_sb_info * sbi)4525 static inline void f2fs_destroy_compress_inode(struct f2fs_sb_info *sbi) { }
f2fs_init_page_array_cache(struct f2fs_sb_info * sbi)4526 static inline int f2fs_init_page_array_cache(struct f2fs_sb_info *sbi) { return 0; }
f2fs_destroy_page_array_cache(struct f2fs_sb_info * sbi)4527 static inline void f2fs_destroy_page_array_cache(struct f2fs_sb_info *sbi) { }
f2fs_init_compress_cache(void)4528 static inline int __init f2fs_init_compress_cache(void) { return 0; }
f2fs_destroy_compress_cache(void)4529 static inline void f2fs_destroy_compress_cache(void) { }
f2fs_invalidate_compress_pages_range(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4530 static inline void f2fs_invalidate_compress_pages_range(struct f2fs_sb_info *sbi,
4531 				block_t blkaddr, unsigned int len) { }
f2fs_cache_compressed_page(struct f2fs_sb_info * sbi,struct page * page,nid_t ino,block_t blkaddr)4532 static inline void f2fs_cache_compressed_page(struct f2fs_sb_info *sbi,
4533 				struct page *page, nid_t ino, block_t blkaddr) { }
f2fs_load_compressed_page(struct f2fs_sb_info * sbi,struct page * page,block_t blkaddr)4534 static inline bool f2fs_load_compressed_page(struct f2fs_sb_info *sbi,
4535 				struct page *page, block_t blkaddr) { return false; }
f2fs_invalidate_compress_pages(struct f2fs_sb_info * sbi,nid_t ino)4536 static inline void f2fs_invalidate_compress_pages(struct f2fs_sb_info *sbi,
4537 							nid_t ino) { }
4538 #define inc_compr_inode_stat(inode)		do { } while (0)
f2fs_is_compressed_cluster(struct inode * inode,pgoff_t index)4539 static inline int f2fs_is_compressed_cluster(
4540 				struct inode *inode,
4541 				pgoff_t index) { return 0; }
f2fs_is_sparse_cluster(struct inode * inode,pgoff_t index)4542 static inline bool f2fs_is_sparse_cluster(
4543 				struct inode *inode,
4544 				pgoff_t index) { return true; }
f2fs_update_read_extent_tree_range_compressed(struct inode * inode,pgoff_t fofs,block_t blkaddr,unsigned int llen,unsigned int c_len)4545 static inline void f2fs_update_read_extent_tree_range_compressed(
4546 				struct inode *inode,
4547 				pgoff_t fofs, block_t blkaddr,
4548 				unsigned int llen, unsigned int c_len) { }
4549 #endif
4550 
set_compress_context(struct inode * inode)4551 static inline int set_compress_context(struct inode *inode)
4552 {
4553 #ifdef CONFIG_F2FS_FS_COMPRESSION
4554 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4555 	struct f2fs_inode_info *fi = F2FS_I(inode);
4556 
4557 	fi->i_compress_algorithm = F2FS_OPTION(sbi).compress_algorithm;
4558 	fi->i_log_cluster_size = F2FS_OPTION(sbi).compress_log_size;
4559 	fi->i_compress_flag = F2FS_OPTION(sbi).compress_chksum ?
4560 					BIT(COMPRESS_CHKSUM) : 0;
4561 	fi->i_cluster_size = BIT(fi->i_log_cluster_size);
4562 	if ((fi->i_compress_algorithm == COMPRESS_LZ4 ||
4563 		fi->i_compress_algorithm == COMPRESS_ZSTD) &&
4564 			F2FS_OPTION(sbi).compress_level)
4565 		fi->i_compress_level = F2FS_OPTION(sbi).compress_level;
4566 	fi->i_flags |= F2FS_COMPR_FL;
4567 	set_inode_flag(inode, FI_COMPRESSED_FILE);
4568 	stat_inc_compr_inode(inode);
4569 	inc_compr_inode_stat(inode);
4570 	f2fs_mark_inode_dirty_sync(inode, true);
4571 	return 0;
4572 #else
4573 	return -EOPNOTSUPP;
4574 #endif
4575 }
4576 
f2fs_disable_compressed_file(struct inode * inode)4577 static inline bool f2fs_disable_compressed_file(struct inode *inode)
4578 {
4579 	struct f2fs_inode_info *fi = F2FS_I(inode);
4580 
4581 	f2fs_down_write(&fi->i_sem);
4582 
4583 	if (!f2fs_compressed_file(inode)) {
4584 		f2fs_up_write(&fi->i_sem);
4585 		return true;
4586 	}
4587 	if (f2fs_is_mmap_file(inode) ||
4588 		(S_ISREG(inode->i_mode) && F2FS_HAS_BLOCKS(inode))) {
4589 		f2fs_up_write(&fi->i_sem);
4590 		return false;
4591 	}
4592 
4593 	fi->i_flags &= ~F2FS_COMPR_FL;
4594 	stat_dec_compr_inode(inode);
4595 	clear_inode_flag(inode, FI_COMPRESSED_FILE);
4596 	f2fs_mark_inode_dirty_sync(inode, true);
4597 
4598 	f2fs_up_write(&fi->i_sem);
4599 	return true;
4600 }
4601 
4602 #define F2FS_FEATURE_FUNCS(name, flagname) \
4603 static inline bool f2fs_sb_has_##name(struct f2fs_sb_info *sbi) \
4604 { \
4605 	return F2FS_HAS_FEATURE(sbi, F2FS_FEATURE_##flagname); \
4606 }
4607 
4608 F2FS_FEATURE_FUNCS(encrypt, ENCRYPT);
4609 F2FS_FEATURE_FUNCS(blkzoned, BLKZONED);
4610 F2FS_FEATURE_FUNCS(extra_attr, EXTRA_ATTR);
4611 F2FS_FEATURE_FUNCS(project_quota, PRJQUOTA);
4612 F2FS_FEATURE_FUNCS(inode_chksum, INODE_CHKSUM);
4613 F2FS_FEATURE_FUNCS(flexible_inline_xattr, FLEXIBLE_INLINE_XATTR);
4614 F2FS_FEATURE_FUNCS(quota_ino, QUOTA_INO);
4615 F2FS_FEATURE_FUNCS(inode_crtime, INODE_CRTIME);
4616 F2FS_FEATURE_FUNCS(lost_found, LOST_FOUND);
4617 F2FS_FEATURE_FUNCS(verity, VERITY);
4618 F2FS_FEATURE_FUNCS(sb_chksum, SB_CHKSUM);
4619 F2FS_FEATURE_FUNCS(casefold, CASEFOLD);
4620 F2FS_FEATURE_FUNCS(compression, COMPRESSION);
4621 F2FS_FEATURE_FUNCS(readonly, RO);
4622 F2FS_FEATURE_FUNCS(device_alias, DEVICE_ALIAS);
4623 
4624 #ifdef CONFIG_BLK_DEV_ZONED
f2fs_blkz_is_seq(struct f2fs_sb_info * sbi,int devi,block_t blkaddr)4625 static inline bool f2fs_blkz_is_seq(struct f2fs_sb_info *sbi, int devi,
4626 				    block_t blkaddr)
4627 {
4628 	unsigned int zno = blkaddr / sbi->blocks_per_blkz;
4629 
4630 	return test_bit(zno, FDEV(devi).blkz_seq);
4631 }
4632 #endif
4633 
f2fs_bdev_index(struct f2fs_sb_info * sbi,struct block_device * bdev)4634 static inline int f2fs_bdev_index(struct f2fs_sb_info *sbi,
4635 				  struct block_device *bdev)
4636 {
4637 	int i;
4638 
4639 	if (!f2fs_is_multi_device(sbi))
4640 		return 0;
4641 
4642 	for (i = 0; i < sbi->s_ndevs; i++)
4643 		if (FDEV(i).bdev == bdev)
4644 			return i;
4645 
4646 	WARN_ON(1);
4647 	return -1;
4648 }
4649 
f2fs_hw_should_discard(struct f2fs_sb_info * sbi)4650 static inline bool f2fs_hw_should_discard(struct f2fs_sb_info *sbi)
4651 {
4652 	return f2fs_sb_has_blkzoned(sbi);
4653 }
4654 
f2fs_bdev_support_discard(struct block_device * bdev)4655 static inline bool f2fs_bdev_support_discard(struct block_device *bdev)
4656 {
4657 	return bdev_max_discard_sectors(bdev) || bdev_is_zoned(bdev);
4658 }
4659 
f2fs_hw_support_discard(struct f2fs_sb_info * sbi)4660 static inline bool f2fs_hw_support_discard(struct f2fs_sb_info *sbi)
4661 {
4662 	int i;
4663 
4664 	if (!f2fs_is_multi_device(sbi))
4665 		return f2fs_bdev_support_discard(sbi->sb->s_bdev);
4666 
4667 	for (i = 0; i < sbi->s_ndevs; i++)
4668 		if (f2fs_bdev_support_discard(FDEV(i).bdev))
4669 			return true;
4670 	return false;
4671 }
4672 
f2fs_realtime_discard_enable(struct f2fs_sb_info * sbi)4673 static inline bool f2fs_realtime_discard_enable(struct f2fs_sb_info *sbi)
4674 {
4675 	return (test_opt(sbi, DISCARD) && f2fs_hw_support_discard(sbi)) ||
4676 					f2fs_hw_should_discard(sbi);
4677 }
4678 
f2fs_hw_is_readonly(struct f2fs_sb_info * sbi)4679 static inline bool f2fs_hw_is_readonly(struct f2fs_sb_info *sbi)
4680 {
4681 	int i;
4682 
4683 	if (!f2fs_is_multi_device(sbi))
4684 		return bdev_read_only(sbi->sb->s_bdev);
4685 
4686 	for (i = 0; i < sbi->s_ndevs; i++)
4687 		if (bdev_read_only(FDEV(i).bdev))
4688 			return true;
4689 	return false;
4690 }
4691 
f2fs_dev_is_readonly(struct f2fs_sb_info * sbi)4692 static inline bool f2fs_dev_is_readonly(struct f2fs_sb_info *sbi)
4693 {
4694 	return f2fs_sb_has_readonly(sbi) || f2fs_hw_is_readonly(sbi);
4695 }
4696 
f2fs_lfs_mode(struct f2fs_sb_info * sbi)4697 static inline bool f2fs_lfs_mode(struct f2fs_sb_info *sbi)
4698 {
4699 	return F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS;
4700 }
4701 
f2fs_valid_pinned_area(struct f2fs_sb_info * sbi,block_t blkaddr)4702 static inline bool f2fs_valid_pinned_area(struct f2fs_sb_info *sbi,
4703 					  block_t blkaddr)
4704 {
4705 	if (f2fs_sb_has_blkzoned(sbi)) {
4706 		int devi = f2fs_target_device_index(sbi, blkaddr);
4707 
4708 		return !bdev_is_zoned(FDEV(devi).bdev);
4709 	}
4710 	return true;
4711 }
4712 
f2fs_low_mem_mode(struct f2fs_sb_info * sbi)4713 static inline bool f2fs_low_mem_mode(struct f2fs_sb_info *sbi)
4714 {
4715 	return F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW;
4716 }
4717 
f2fs_may_compress(struct inode * inode)4718 static inline bool f2fs_may_compress(struct inode *inode)
4719 {
4720 	if (IS_SWAPFILE(inode) || f2fs_is_pinned_file(inode) ||
4721 		f2fs_is_atomic_file(inode) || f2fs_has_inline_data(inode) ||
4722 		f2fs_is_mmap_file(inode))
4723 		return false;
4724 	return S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode);
4725 }
4726 
f2fs_i_compr_blocks_update(struct inode * inode,u64 blocks,bool add)4727 static inline void f2fs_i_compr_blocks_update(struct inode *inode,
4728 						u64 blocks, bool add)
4729 {
4730 	struct f2fs_inode_info *fi = F2FS_I(inode);
4731 	int diff = fi->i_cluster_size - blocks;
4732 
4733 	/* don't update i_compr_blocks if saved blocks were released */
4734 	if (!add && !atomic_read(&fi->i_compr_blocks))
4735 		return;
4736 
4737 	if (add) {
4738 		atomic_add(diff, &fi->i_compr_blocks);
4739 		stat_add_compr_blocks(inode, diff);
4740 	} else {
4741 		atomic_sub(diff, &fi->i_compr_blocks);
4742 		stat_sub_compr_blocks(inode, diff);
4743 	}
4744 	f2fs_mark_inode_dirty_sync(inode, true);
4745 }
4746 
f2fs_allow_multi_device_dio(struct f2fs_sb_info * sbi,int flag)4747 static inline bool f2fs_allow_multi_device_dio(struct f2fs_sb_info *sbi,
4748 								int flag)
4749 {
4750 	if (!f2fs_is_multi_device(sbi))
4751 		return false;
4752 	if (flag != F2FS_GET_BLOCK_DIO)
4753 		return false;
4754 	return sbi->aligned_blksize;
4755 }
4756 
f2fs_need_verity(const struct inode * inode,pgoff_t idx)4757 static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
4758 {
4759 	return fsverity_active(inode) &&
4760 	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
4761 }
4762 
4763 #ifdef CONFIG_F2FS_FAULT_INJECTION
4764 extern int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate,
4765 							unsigned long type);
4766 #else
f2fs_build_fault_attr(struct f2fs_sb_info * sbi,unsigned long rate,unsigned long type)4767 static inline int f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
4768 					unsigned long rate, unsigned long type)
4769 {
4770 	return 0;
4771 }
4772 #endif
4773 
is_journalled_quota(struct f2fs_sb_info * sbi)4774 static inline bool is_journalled_quota(struct f2fs_sb_info *sbi)
4775 {
4776 #ifdef CONFIG_QUOTA
4777 	if (f2fs_sb_has_quota_ino(sbi))
4778 		return true;
4779 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
4780 		F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
4781 		F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
4782 		return true;
4783 #endif
4784 	return false;
4785 }
4786 
f2fs_block_unit_discard(struct f2fs_sb_info * sbi)4787 static inline bool f2fs_block_unit_discard(struct f2fs_sb_info *sbi)
4788 {
4789 	return F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK;
4790 }
4791 
f2fs_io_schedule_timeout(long timeout)4792 static inline void f2fs_io_schedule_timeout(long timeout)
4793 {
4794 	set_current_state(TASK_UNINTERRUPTIBLE);
4795 	io_schedule_timeout(timeout);
4796 }
4797 
f2fs_handle_page_eio(struct f2fs_sb_info * sbi,struct folio * folio,enum page_type type)4798 static inline void f2fs_handle_page_eio(struct f2fs_sb_info *sbi,
4799 				struct folio *folio, enum page_type type)
4800 {
4801 	pgoff_t ofs = folio->index;
4802 
4803 	if (unlikely(f2fs_cp_error(sbi)))
4804 		return;
4805 
4806 	if (ofs == sbi->page_eio_ofs[type]) {
4807 		if (sbi->page_eio_cnt[type]++ == MAX_RETRY_PAGE_EIO)
4808 			set_ckpt_flags(sbi, CP_ERROR_FLAG);
4809 	} else {
4810 		sbi->page_eio_ofs[type] = ofs;
4811 		sbi->page_eio_cnt[type] = 0;
4812 	}
4813 }
4814 
f2fs_is_readonly(struct f2fs_sb_info * sbi)4815 static inline bool f2fs_is_readonly(struct f2fs_sb_info *sbi)
4816 {
4817 	return f2fs_sb_has_readonly(sbi) || f2fs_readonly(sbi->sb);
4818 }
4819 
f2fs_truncate_meta_inode_pages(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int cnt)4820 static inline void f2fs_truncate_meta_inode_pages(struct f2fs_sb_info *sbi,
4821 					block_t blkaddr, unsigned int cnt)
4822 {
4823 	bool need_submit = false;
4824 	int i = 0;
4825 
4826 	do {
4827 		struct page *page;
4828 
4829 		page = find_get_page(META_MAPPING(sbi), blkaddr + i);
4830 		if (page) {
4831 			if (folio_test_writeback(page_folio(page)))
4832 				need_submit = true;
4833 			f2fs_put_page(page, 0);
4834 		}
4835 	} while (++i < cnt && !need_submit);
4836 
4837 	if (need_submit)
4838 		f2fs_submit_merged_write_cond(sbi, sbi->meta_inode,
4839 							NULL, 0, DATA);
4840 
4841 	truncate_inode_pages_range(META_MAPPING(sbi),
4842 			F2FS_BLK_TO_BYTES((loff_t)blkaddr),
4843 			F2FS_BLK_END_BYTES((loff_t)(blkaddr + cnt - 1)));
4844 }
4845 
f2fs_invalidate_internal_cache(struct f2fs_sb_info * sbi,block_t blkaddr,unsigned int len)4846 static inline void f2fs_invalidate_internal_cache(struct f2fs_sb_info *sbi,
4847 						block_t blkaddr, unsigned int len)
4848 {
4849 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4850 	f2fs_invalidate_compress_pages_range(sbi, blkaddr, len);
4851 }
4852 
4853 #define EFSBADCRC	EBADMSG		/* Bad CRC detected */
4854 #define EFSCORRUPTED	EUCLEAN		/* Filesystem is corrupted */
4855 
4856 #endif /* _LINUX_F2FS_H */
4857