1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "misc.h"
12 #include "ctree.h"
13 #include "tree-log.h"
14 #include "disk-io.h"
15 #include "locking.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
22 #include "fs.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
26 #include "dir-item.h"
27 #include "file-item.h"
28 #include "file.h"
29 #include "orphan.h"
30 #include "tree-checker.h"
31
32 #define MAX_CONFLICT_INODES 10
33
34 /* magic values for the inode_only field in btrfs_log_inode:
35 *
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * during log replay
39 */
40 enum {
41 LOG_INODE_ALL,
42 LOG_INODE_EXISTS,
43 };
44
45 /*
46 * directory trouble cases
47 *
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
52 *
53 * mkdir foo/some_dir
54 * normal commit
55 * rename foo/some_dir foo2/some_dir
56 * mkdir foo/some_dir
57 * fsync foo/some_dir/some_file
58 *
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
62 *
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
65 *
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
69 *
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
72 *
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
75 *
76 * mkdir f1/foo
77 * normal commit
78 * rm -rf f1/foo
79 * fsync(f1)
80 *
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
85 * ugly details.
86 */
87
88 /*
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
93 *
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
96 */
97 enum {
98 LOG_WALK_PIN_ONLY,
99 LOG_WALK_REPLAY_INODES,
100 LOG_WALK_REPLAY_DIR_INDEX,
101 LOG_WALK_REPLAY_ALL,
102 };
103
104 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
105 struct btrfs_inode *inode,
106 int inode_only,
107 struct btrfs_log_ctx *ctx);
108 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
109 struct btrfs_root *root,
110 struct btrfs_path *path, u64 objectid);
111 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
112 struct btrfs_root *root,
113 struct btrfs_root *log,
114 struct btrfs_path *path,
115 u64 dirid, int del_all);
116 static void wait_log_commit(struct btrfs_root *root, int transid);
117
118 /*
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
121 *
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
125 *
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
131 *
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
135 *
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
139 */
140
btrfs_iget_logging(u64 objectid,struct btrfs_root * root)141 static struct inode *btrfs_iget_logging(u64 objectid, struct btrfs_root *root)
142 {
143 unsigned int nofs_flag;
144 struct inode *inode;
145
146 /*
147 * We're holding a transaction handle whether we are logging or
148 * replaying a log tree, so we must make sure NOFS semantics apply
149 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
150 * to allocate an inode, which can recurse back into the filesystem and
151 * attempt a transaction commit, resulting in a deadlock.
152 */
153 nofs_flag = memalloc_nofs_save();
154 inode = btrfs_iget(objectid, root);
155 memalloc_nofs_restore(nofs_flag);
156
157 return inode;
158 }
159
160 /*
161 * start a sub transaction and setup the log tree
162 * this increments the log tree writer count to make the people
163 * syncing the tree wait for us to finish
164 */
start_log_trans(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)165 static int start_log_trans(struct btrfs_trans_handle *trans,
166 struct btrfs_root *root,
167 struct btrfs_log_ctx *ctx)
168 {
169 struct btrfs_fs_info *fs_info = root->fs_info;
170 struct btrfs_root *tree_root = fs_info->tree_root;
171 const bool zoned = btrfs_is_zoned(fs_info);
172 int ret = 0;
173 bool created = false;
174
175 /*
176 * First check if the log root tree was already created. If not, create
177 * it before locking the root's log_mutex, just to keep lockdep happy.
178 */
179 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state)) {
180 mutex_lock(&tree_root->log_mutex);
181 if (!fs_info->log_root_tree) {
182 ret = btrfs_init_log_root_tree(trans, fs_info);
183 if (!ret) {
184 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &tree_root->state);
185 created = true;
186 }
187 }
188 mutex_unlock(&tree_root->log_mutex);
189 if (ret)
190 return ret;
191 }
192
193 mutex_lock(&root->log_mutex);
194
195 again:
196 if (root->log_root) {
197 int index = (root->log_transid + 1) % 2;
198
199 if (btrfs_need_log_full_commit(trans)) {
200 ret = BTRFS_LOG_FORCE_COMMIT;
201 goto out;
202 }
203
204 if (zoned && atomic_read(&root->log_commit[index])) {
205 wait_log_commit(root, root->log_transid - 1);
206 goto again;
207 }
208
209 if (!root->log_start_pid) {
210 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
211 root->log_start_pid = current->pid;
212 } else if (root->log_start_pid != current->pid) {
213 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
214 }
215 } else {
216 /*
217 * This means fs_info->log_root_tree was already created
218 * for some other FS trees. Do the full commit not to mix
219 * nodes from multiple log transactions to do sequential
220 * writing.
221 */
222 if (zoned && !created) {
223 ret = BTRFS_LOG_FORCE_COMMIT;
224 goto out;
225 }
226
227 ret = btrfs_add_log_tree(trans, root);
228 if (ret)
229 goto out;
230
231 set_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
232 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
233 root->log_start_pid = current->pid;
234 }
235
236 atomic_inc(&root->log_writers);
237 if (!ctx->logging_new_name) {
238 int index = root->log_transid % 2;
239 list_add_tail(&ctx->list, &root->log_ctxs[index]);
240 ctx->log_transid = root->log_transid;
241 }
242
243 out:
244 mutex_unlock(&root->log_mutex);
245 return ret;
246 }
247
248 /*
249 * returns 0 if there was a log transaction running and we were able
250 * to join, or returns -ENOENT if there were not transactions
251 * in progress
252 */
join_running_log_trans(struct btrfs_root * root)253 static int join_running_log_trans(struct btrfs_root *root)
254 {
255 const bool zoned = btrfs_is_zoned(root->fs_info);
256 int ret = -ENOENT;
257
258 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state))
259 return ret;
260
261 mutex_lock(&root->log_mutex);
262 again:
263 if (root->log_root) {
264 int index = (root->log_transid + 1) % 2;
265
266 ret = 0;
267 if (zoned && atomic_read(&root->log_commit[index])) {
268 wait_log_commit(root, root->log_transid - 1);
269 goto again;
270 }
271 atomic_inc(&root->log_writers);
272 }
273 mutex_unlock(&root->log_mutex);
274 return ret;
275 }
276
277 /*
278 * This either makes the current running log transaction wait
279 * until you call btrfs_end_log_trans() or it makes any future
280 * log transactions wait until you call btrfs_end_log_trans()
281 */
btrfs_pin_log_trans(struct btrfs_root * root)282 void btrfs_pin_log_trans(struct btrfs_root *root)
283 {
284 atomic_inc(&root->log_writers);
285 }
286
287 /*
288 * indicate we're done making changes to the log tree
289 * and wake up anyone waiting to do a sync
290 */
btrfs_end_log_trans(struct btrfs_root * root)291 void btrfs_end_log_trans(struct btrfs_root *root)
292 {
293 if (atomic_dec_and_test(&root->log_writers)) {
294 /* atomic_dec_and_test implies a barrier */
295 cond_wake_up_nomb(&root->log_writer_wait);
296 }
297 }
298
299 /*
300 * the walk control struct is used to pass state down the chain when
301 * processing the log tree. The stage field tells us which part
302 * of the log tree processing we are currently doing. The others
303 * are state fields used for that specific part
304 */
305 struct walk_control {
306 /* should we free the extent on disk when done? This is used
307 * at transaction commit time while freeing a log tree
308 */
309 int free;
310
311 /* pin only walk, we record which extents on disk belong to the
312 * log trees
313 */
314 int pin;
315
316 /* what stage of the replay code we're currently in */
317 int stage;
318
319 /*
320 * Ignore any items from the inode currently being processed. Needs
321 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
322 * the LOG_WALK_REPLAY_INODES stage.
323 */
324 bool ignore_cur_inode;
325
326 /* the root we are currently replaying */
327 struct btrfs_root *replay_dest;
328
329 /* the trans handle for the current replay */
330 struct btrfs_trans_handle *trans;
331
332 /* the function that gets used to process blocks we find in the
333 * tree. Note the extent_buffer might not be up to date when it is
334 * passed in, and it must be checked or read if you need the data
335 * inside it
336 */
337 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
338 struct walk_control *wc, u64 gen, int level);
339 };
340
341 /*
342 * process_func used to pin down extents, write them or wait on them
343 */
process_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)344 static int process_one_buffer(struct btrfs_root *log,
345 struct extent_buffer *eb,
346 struct walk_control *wc, u64 gen, int level)
347 {
348 struct btrfs_fs_info *fs_info = log->fs_info;
349 int ret = 0;
350
351 /*
352 * If this fs is mixed then we need to be able to process the leaves to
353 * pin down any logged extents, so we have to read the block.
354 */
355 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
356 struct btrfs_tree_parent_check check = {
357 .level = level,
358 .transid = gen
359 };
360
361 ret = btrfs_read_extent_buffer(eb, &check);
362 if (ret)
363 return ret;
364 }
365
366 if (wc->pin) {
367 ret = btrfs_pin_extent_for_log_replay(wc->trans, eb);
368 if (ret)
369 return ret;
370
371 if (btrfs_buffer_uptodate(eb, gen, 0) &&
372 btrfs_header_level(eb) == 0)
373 ret = btrfs_exclude_logged_extents(eb);
374 }
375 return ret;
376 }
377
378 /*
379 * Item overwrite used by replay and tree logging. eb, slot and key all refer
380 * to the src data we are copying out.
381 *
382 * root is the tree we are copying into, and path is a scratch
383 * path for use in this function (it should be released on entry and
384 * will be released on exit).
385 *
386 * If the key is already in the destination tree the existing item is
387 * overwritten. If the existing item isn't big enough, it is extended.
388 * If it is too large, it is truncated.
389 *
390 * If the key isn't in the destination yet, a new item is inserted.
391 */
overwrite_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)392 static int overwrite_item(struct btrfs_trans_handle *trans,
393 struct btrfs_root *root,
394 struct btrfs_path *path,
395 struct extent_buffer *eb, int slot,
396 struct btrfs_key *key)
397 {
398 int ret;
399 u32 item_size;
400 u64 saved_i_size = 0;
401 int save_old_i_size = 0;
402 unsigned long src_ptr;
403 unsigned long dst_ptr;
404 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
405
406 /*
407 * This is only used during log replay, so the root is always from a
408 * fs/subvolume tree. In case we ever need to support a log root, then
409 * we'll have to clone the leaf in the path, release the path and use
410 * the leaf before writing into the log tree. See the comments at
411 * copy_items() for more details.
412 */
413 ASSERT(btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
414
415 item_size = btrfs_item_size(eb, slot);
416 src_ptr = btrfs_item_ptr_offset(eb, slot);
417
418 /* Look for the key in the destination tree. */
419 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
420 if (ret < 0)
421 return ret;
422
423 if (ret == 0) {
424 char *src_copy;
425 char *dst_copy;
426 u32 dst_size = btrfs_item_size(path->nodes[0],
427 path->slots[0]);
428 if (dst_size != item_size)
429 goto insert;
430
431 if (item_size == 0) {
432 btrfs_release_path(path);
433 return 0;
434 }
435 dst_copy = kmalloc(item_size, GFP_NOFS);
436 src_copy = kmalloc(item_size, GFP_NOFS);
437 if (!dst_copy || !src_copy) {
438 btrfs_release_path(path);
439 kfree(dst_copy);
440 kfree(src_copy);
441 return -ENOMEM;
442 }
443
444 read_extent_buffer(eb, src_copy, src_ptr, item_size);
445
446 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
447 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
448 item_size);
449 ret = memcmp(dst_copy, src_copy, item_size);
450
451 kfree(dst_copy);
452 kfree(src_copy);
453 /*
454 * they have the same contents, just return, this saves
455 * us from cowing blocks in the destination tree and doing
456 * extra writes that may not have been done by a previous
457 * sync
458 */
459 if (ret == 0) {
460 btrfs_release_path(path);
461 return 0;
462 }
463
464 /*
465 * We need to load the old nbytes into the inode so when we
466 * replay the extents we've logged we get the right nbytes.
467 */
468 if (inode_item) {
469 struct btrfs_inode_item *item;
470 u64 nbytes;
471 u32 mode;
472
473 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
474 struct btrfs_inode_item);
475 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
476 item = btrfs_item_ptr(eb, slot,
477 struct btrfs_inode_item);
478 btrfs_set_inode_nbytes(eb, item, nbytes);
479
480 /*
481 * If this is a directory we need to reset the i_size to
482 * 0 so that we can set it up properly when replaying
483 * the rest of the items in this log.
484 */
485 mode = btrfs_inode_mode(eb, item);
486 if (S_ISDIR(mode))
487 btrfs_set_inode_size(eb, item, 0);
488 }
489 } else if (inode_item) {
490 struct btrfs_inode_item *item;
491 u32 mode;
492
493 /*
494 * New inode, set nbytes to 0 so that the nbytes comes out
495 * properly when we replay the extents.
496 */
497 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
498 btrfs_set_inode_nbytes(eb, item, 0);
499
500 /*
501 * If this is a directory we need to reset the i_size to 0 so
502 * that we can set it up properly when replaying the rest of
503 * the items in this log.
504 */
505 mode = btrfs_inode_mode(eb, item);
506 if (S_ISDIR(mode))
507 btrfs_set_inode_size(eb, item, 0);
508 }
509 insert:
510 btrfs_release_path(path);
511 /* try to insert the key into the destination tree */
512 path->skip_release_on_error = 1;
513 ret = btrfs_insert_empty_item(trans, root, path,
514 key, item_size);
515 path->skip_release_on_error = 0;
516
517 /* make sure any existing item is the correct size */
518 if (ret == -EEXIST || ret == -EOVERFLOW) {
519 u32 found_size;
520 found_size = btrfs_item_size(path->nodes[0],
521 path->slots[0]);
522 if (found_size > item_size)
523 btrfs_truncate_item(trans, path, item_size, 1);
524 else if (found_size < item_size)
525 btrfs_extend_item(trans, path, item_size - found_size);
526 } else if (ret) {
527 return ret;
528 }
529 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
530 path->slots[0]);
531
532 /* don't overwrite an existing inode if the generation number
533 * was logged as zero. This is done when the tree logging code
534 * is just logging an inode to make sure it exists after recovery.
535 *
536 * Also, don't overwrite i_size on directories during replay.
537 * log replay inserts and removes directory items based on the
538 * state of the tree found in the subvolume, and i_size is modified
539 * as it goes
540 */
541 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
542 struct btrfs_inode_item *src_item;
543 struct btrfs_inode_item *dst_item;
544
545 src_item = (struct btrfs_inode_item *)src_ptr;
546 dst_item = (struct btrfs_inode_item *)dst_ptr;
547
548 if (btrfs_inode_generation(eb, src_item) == 0) {
549 struct extent_buffer *dst_eb = path->nodes[0];
550 const u64 ino_size = btrfs_inode_size(eb, src_item);
551
552 /*
553 * For regular files an ino_size == 0 is used only when
554 * logging that an inode exists, as part of a directory
555 * fsync, and the inode wasn't fsynced before. In this
556 * case don't set the size of the inode in the fs/subvol
557 * tree, otherwise we would be throwing valid data away.
558 */
559 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
560 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
561 ino_size != 0)
562 btrfs_set_inode_size(dst_eb, dst_item, ino_size);
563 goto no_copy;
564 }
565
566 if (S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
567 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
568 save_old_i_size = 1;
569 saved_i_size = btrfs_inode_size(path->nodes[0],
570 dst_item);
571 }
572 }
573
574 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
575 src_ptr, item_size);
576
577 if (save_old_i_size) {
578 struct btrfs_inode_item *dst_item;
579 dst_item = (struct btrfs_inode_item *)dst_ptr;
580 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
581 }
582
583 /* make sure the generation is filled in */
584 if (key->type == BTRFS_INODE_ITEM_KEY) {
585 struct btrfs_inode_item *dst_item;
586 dst_item = (struct btrfs_inode_item *)dst_ptr;
587 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
588 btrfs_set_inode_generation(path->nodes[0], dst_item,
589 trans->transid);
590 }
591 }
592 no_copy:
593 btrfs_release_path(path);
594 return 0;
595 }
596
read_alloc_one_name(struct extent_buffer * eb,void * start,int len,struct fscrypt_str * name)597 static int read_alloc_one_name(struct extent_buffer *eb, void *start, int len,
598 struct fscrypt_str *name)
599 {
600 char *buf;
601
602 buf = kmalloc(len, GFP_NOFS);
603 if (!buf)
604 return -ENOMEM;
605
606 read_extent_buffer(eb, buf, (unsigned long)start, len);
607 name->name = buf;
608 name->len = len;
609 return 0;
610 }
611
612 /*
613 * simple helper to read an inode off the disk from a given root
614 * This can only be called for subvolume roots and not for the log
615 */
read_one_inode(struct btrfs_root * root,u64 objectid)616 static noinline struct inode *read_one_inode(struct btrfs_root *root,
617 u64 objectid)
618 {
619 struct inode *inode;
620
621 inode = btrfs_iget_logging(objectid, root);
622 if (IS_ERR(inode))
623 inode = NULL;
624 return inode;
625 }
626
627 /* replays a single extent in 'eb' at 'slot' with 'key' into the
628 * subvolume 'root'. path is released on entry and should be released
629 * on exit.
630 *
631 * extents in the log tree have not been allocated out of the extent
632 * tree yet. So, this completes the allocation, taking a reference
633 * as required if the extent already exists or creating a new extent
634 * if it isn't in the extent allocation tree yet.
635 *
636 * The extent is inserted into the file, dropping any existing extents
637 * from the file that overlap the new one.
638 */
replay_one_extent(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)639 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
640 struct btrfs_root *root,
641 struct btrfs_path *path,
642 struct extent_buffer *eb, int slot,
643 struct btrfs_key *key)
644 {
645 struct btrfs_drop_extents_args drop_args = { 0 };
646 struct btrfs_fs_info *fs_info = root->fs_info;
647 int found_type;
648 u64 extent_end;
649 u64 start = key->offset;
650 u64 nbytes = 0;
651 struct btrfs_file_extent_item *item;
652 struct inode *inode = NULL;
653 unsigned long size;
654 int ret = 0;
655
656 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
657 found_type = btrfs_file_extent_type(eb, item);
658
659 if (found_type == BTRFS_FILE_EXTENT_REG ||
660 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
661 nbytes = btrfs_file_extent_num_bytes(eb, item);
662 extent_end = start + nbytes;
663
664 /*
665 * We don't add to the inodes nbytes if we are prealloc or a
666 * hole.
667 */
668 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
669 nbytes = 0;
670 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
671 size = btrfs_file_extent_ram_bytes(eb, item);
672 nbytes = btrfs_file_extent_ram_bytes(eb, item);
673 extent_end = ALIGN(start + size,
674 fs_info->sectorsize);
675 } else {
676 ret = 0;
677 goto out;
678 }
679
680 inode = read_one_inode(root, key->objectid);
681 if (!inode) {
682 ret = -EIO;
683 goto out;
684 }
685
686 /*
687 * first check to see if we already have this extent in the
688 * file. This must be done before the btrfs_drop_extents run
689 * so we don't try to drop this extent.
690 */
691 ret = btrfs_lookup_file_extent(trans, root, path,
692 btrfs_ino(BTRFS_I(inode)), start, 0);
693
694 if (ret == 0 &&
695 (found_type == BTRFS_FILE_EXTENT_REG ||
696 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
697 struct btrfs_file_extent_item cmp1;
698 struct btrfs_file_extent_item cmp2;
699 struct btrfs_file_extent_item *existing;
700 struct extent_buffer *leaf;
701
702 leaf = path->nodes[0];
703 existing = btrfs_item_ptr(leaf, path->slots[0],
704 struct btrfs_file_extent_item);
705
706 read_extent_buffer(eb, &cmp1, (unsigned long)item,
707 sizeof(cmp1));
708 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
709 sizeof(cmp2));
710
711 /*
712 * we already have a pointer to this exact extent,
713 * we don't have to do anything
714 */
715 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
716 btrfs_release_path(path);
717 goto out;
718 }
719 }
720 btrfs_release_path(path);
721
722 /* drop any overlapping extents */
723 drop_args.start = start;
724 drop_args.end = extent_end;
725 drop_args.drop_cache = true;
726 ret = btrfs_drop_extents(trans, root, BTRFS_I(inode), &drop_args);
727 if (ret)
728 goto out;
729
730 if (found_type == BTRFS_FILE_EXTENT_REG ||
731 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
732 u64 offset;
733 unsigned long dest_offset;
734 struct btrfs_key ins;
735
736 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
737 btrfs_fs_incompat(fs_info, NO_HOLES))
738 goto update_inode;
739
740 ret = btrfs_insert_empty_item(trans, root, path, key,
741 sizeof(*item));
742 if (ret)
743 goto out;
744 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
745 path->slots[0]);
746 copy_extent_buffer(path->nodes[0], eb, dest_offset,
747 (unsigned long)item, sizeof(*item));
748
749 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
750 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
751 ins.type = BTRFS_EXTENT_ITEM_KEY;
752 offset = key->offset - btrfs_file_extent_offset(eb, item);
753
754 /*
755 * Manually record dirty extent, as here we did a shallow
756 * file extent item copy and skip normal backref update,
757 * but modifying extent tree all by ourselves.
758 * So need to manually record dirty extent for qgroup,
759 * as the owner of the file extent changed from log tree
760 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
761 */
762 ret = btrfs_qgroup_trace_extent(trans,
763 btrfs_file_extent_disk_bytenr(eb, item),
764 btrfs_file_extent_disk_num_bytes(eb, item));
765 if (ret < 0)
766 goto out;
767
768 if (ins.objectid > 0) {
769 u64 csum_start;
770 u64 csum_end;
771 LIST_HEAD(ordered_sums);
772
773 /*
774 * is this extent already allocated in the extent
775 * allocation tree? If so, just add a reference
776 */
777 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
778 ins.offset);
779 if (ret < 0) {
780 goto out;
781 } else if (ret == 0) {
782 struct btrfs_ref ref = {
783 .action = BTRFS_ADD_DELAYED_REF,
784 .bytenr = ins.objectid,
785 .num_bytes = ins.offset,
786 .owning_root = btrfs_root_id(root),
787 .ref_root = btrfs_root_id(root),
788 };
789 btrfs_init_data_ref(&ref, key->objectid, offset,
790 0, false);
791 ret = btrfs_inc_extent_ref(trans, &ref);
792 if (ret)
793 goto out;
794 } else {
795 /*
796 * insert the extent pointer in the extent
797 * allocation tree
798 */
799 ret = btrfs_alloc_logged_file_extent(trans,
800 btrfs_root_id(root),
801 key->objectid, offset, &ins);
802 if (ret)
803 goto out;
804 }
805 btrfs_release_path(path);
806
807 if (btrfs_file_extent_compression(eb, item)) {
808 csum_start = ins.objectid;
809 csum_end = csum_start + ins.offset;
810 } else {
811 csum_start = ins.objectid +
812 btrfs_file_extent_offset(eb, item);
813 csum_end = csum_start +
814 btrfs_file_extent_num_bytes(eb, item);
815 }
816
817 ret = btrfs_lookup_csums_list(root->log_root,
818 csum_start, csum_end - 1,
819 &ordered_sums, false);
820 if (ret < 0)
821 goto out;
822 ret = 0;
823 /*
824 * Now delete all existing cums in the csum root that
825 * cover our range. We do this because we can have an
826 * extent that is completely referenced by one file
827 * extent item and partially referenced by another
828 * file extent item (like after using the clone or
829 * extent_same ioctls). In this case if we end up doing
830 * the replay of the one that partially references the
831 * extent first, and we do not do the csum deletion
832 * below, we can get 2 csum items in the csum tree that
833 * overlap each other. For example, imagine our log has
834 * the two following file extent items:
835 *
836 * key (257 EXTENT_DATA 409600)
837 * extent data disk byte 12845056 nr 102400
838 * extent data offset 20480 nr 20480 ram 102400
839 *
840 * key (257 EXTENT_DATA 819200)
841 * extent data disk byte 12845056 nr 102400
842 * extent data offset 0 nr 102400 ram 102400
843 *
844 * Where the second one fully references the 100K extent
845 * that starts at disk byte 12845056, and the log tree
846 * has a single csum item that covers the entire range
847 * of the extent:
848 *
849 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
850 *
851 * After the first file extent item is replayed, the
852 * csum tree gets the following csum item:
853 *
854 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
855 *
856 * Which covers the 20K sub-range starting at offset 20K
857 * of our extent. Now when we replay the second file
858 * extent item, if we do not delete existing csum items
859 * that cover any of its blocks, we end up getting two
860 * csum items in our csum tree that overlap each other:
861 *
862 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
863 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
864 *
865 * Which is a problem, because after this anyone trying
866 * to lookup up for the checksum of any block of our
867 * extent starting at an offset of 40K or higher, will
868 * end up looking at the second csum item only, which
869 * does not contain the checksum for any block starting
870 * at offset 40K or higher of our extent.
871 */
872 while (!list_empty(&ordered_sums)) {
873 struct btrfs_ordered_sum *sums;
874 struct btrfs_root *csum_root;
875
876 sums = list_entry(ordered_sums.next,
877 struct btrfs_ordered_sum,
878 list);
879 csum_root = btrfs_csum_root(fs_info,
880 sums->logical);
881 if (!ret)
882 ret = btrfs_del_csums(trans, csum_root,
883 sums->logical,
884 sums->len);
885 if (!ret)
886 ret = btrfs_csum_file_blocks(trans,
887 csum_root,
888 sums);
889 list_del(&sums->list);
890 kfree(sums);
891 }
892 if (ret)
893 goto out;
894 } else {
895 btrfs_release_path(path);
896 }
897 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
898 /* inline extents are easy, we just overwrite them */
899 ret = overwrite_item(trans, root, path, eb, slot, key);
900 if (ret)
901 goto out;
902 }
903
904 ret = btrfs_inode_set_file_extent_range(BTRFS_I(inode), start,
905 extent_end - start);
906 if (ret)
907 goto out;
908
909 update_inode:
910 btrfs_update_inode_bytes(BTRFS_I(inode), nbytes, drop_args.bytes_found);
911 ret = btrfs_update_inode(trans, BTRFS_I(inode));
912 out:
913 iput(inode);
914 return ret;
915 }
916
unlink_inode_for_log_replay(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,const struct fscrypt_str * name)917 static int unlink_inode_for_log_replay(struct btrfs_trans_handle *trans,
918 struct btrfs_inode *dir,
919 struct btrfs_inode *inode,
920 const struct fscrypt_str *name)
921 {
922 int ret;
923
924 ret = btrfs_unlink_inode(trans, dir, inode, name);
925 if (ret)
926 return ret;
927 /*
928 * Whenever we need to check if a name exists or not, we check the
929 * fs/subvolume tree. So after an unlink we must run delayed items, so
930 * that future checks for a name during log replay see that the name
931 * does not exists anymore.
932 */
933 return btrfs_run_delayed_items(trans);
934 }
935
936 /*
937 * when cleaning up conflicts between the directory names in the
938 * subvolume, directory names in the log and directory names in the
939 * inode back references, we may have to unlink inodes from directories.
940 *
941 * This is a helper function to do the unlink of a specific directory
942 * item
943 */
drop_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_inode * dir,struct btrfs_dir_item * di)944 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
945 struct btrfs_path *path,
946 struct btrfs_inode *dir,
947 struct btrfs_dir_item *di)
948 {
949 struct btrfs_root *root = dir->root;
950 struct inode *inode;
951 struct fscrypt_str name;
952 struct extent_buffer *leaf;
953 struct btrfs_key location;
954 int ret;
955
956 leaf = path->nodes[0];
957
958 btrfs_dir_item_key_to_cpu(leaf, di, &location);
959 ret = read_alloc_one_name(leaf, di + 1, btrfs_dir_name_len(leaf, di), &name);
960 if (ret)
961 return -ENOMEM;
962
963 btrfs_release_path(path);
964
965 inode = read_one_inode(root, location.objectid);
966 if (!inode) {
967 ret = -EIO;
968 goto out;
969 }
970
971 ret = link_to_fixup_dir(trans, root, path, location.objectid);
972 if (ret)
973 goto out;
974
975 ret = unlink_inode_for_log_replay(trans, dir, BTRFS_I(inode), &name);
976 out:
977 kfree(name.name);
978 iput(inode);
979 return ret;
980 }
981
982 /*
983 * See if a given name and sequence number found in an inode back reference are
984 * already in a directory and correctly point to this inode.
985 *
986 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
987 * exists.
988 */
inode_in_dir(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 objectid,u64 index,struct fscrypt_str * name)989 static noinline int inode_in_dir(struct btrfs_root *root,
990 struct btrfs_path *path,
991 u64 dirid, u64 objectid, u64 index,
992 struct fscrypt_str *name)
993 {
994 struct btrfs_dir_item *di;
995 struct btrfs_key location;
996 int ret = 0;
997
998 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
999 index, name, 0);
1000 if (IS_ERR(di)) {
1001 ret = PTR_ERR(di);
1002 goto out;
1003 } else if (di) {
1004 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1005 if (location.objectid != objectid)
1006 goto out;
1007 } else {
1008 goto out;
1009 }
1010
1011 btrfs_release_path(path);
1012 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, 0);
1013 if (IS_ERR(di)) {
1014 ret = PTR_ERR(di);
1015 goto out;
1016 } else if (di) {
1017 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1018 if (location.objectid == objectid)
1019 ret = 1;
1020 }
1021 out:
1022 btrfs_release_path(path);
1023 return ret;
1024 }
1025
1026 /*
1027 * helper function to check a log tree for a named back reference in
1028 * an inode. This is used to decide if a back reference that is
1029 * found in the subvolume conflicts with what we find in the log.
1030 *
1031 * inode backreferences may have multiple refs in a single item,
1032 * during replay we process one reference at a time, and we don't
1033 * want to delete valid links to a file from the subvolume if that
1034 * link is also in the log.
1035 */
backref_in_log(struct btrfs_root * log,struct btrfs_key * key,u64 ref_objectid,const struct fscrypt_str * name)1036 static noinline int backref_in_log(struct btrfs_root *log,
1037 struct btrfs_key *key,
1038 u64 ref_objectid,
1039 const struct fscrypt_str *name)
1040 {
1041 struct btrfs_path *path;
1042 int ret;
1043
1044 path = btrfs_alloc_path();
1045 if (!path)
1046 return -ENOMEM;
1047
1048 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
1049 if (ret < 0) {
1050 goto out;
1051 } else if (ret == 1) {
1052 ret = 0;
1053 goto out;
1054 }
1055
1056 if (key->type == BTRFS_INODE_EXTREF_KEY)
1057 ret = !!btrfs_find_name_in_ext_backref(path->nodes[0],
1058 path->slots[0],
1059 ref_objectid, name);
1060 else
1061 ret = !!btrfs_find_name_in_backref(path->nodes[0],
1062 path->slots[0], name);
1063 out:
1064 btrfs_free_path(path);
1065 return ret;
1066 }
1067
__add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_root * log_root,struct btrfs_inode * dir,struct btrfs_inode * inode,u64 inode_objectid,u64 parent_objectid,u64 ref_index,struct fscrypt_str * name)1068 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
1069 struct btrfs_root *root,
1070 struct btrfs_path *path,
1071 struct btrfs_root *log_root,
1072 struct btrfs_inode *dir,
1073 struct btrfs_inode *inode,
1074 u64 inode_objectid, u64 parent_objectid,
1075 u64 ref_index, struct fscrypt_str *name)
1076 {
1077 int ret;
1078 struct extent_buffer *leaf;
1079 struct btrfs_dir_item *di;
1080 struct btrfs_key search_key;
1081 struct btrfs_inode_extref *extref;
1082
1083 again:
1084 /* Search old style refs */
1085 search_key.objectid = inode_objectid;
1086 search_key.type = BTRFS_INODE_REF_KEY;
1087 search_key.offset = parent_objectid;
1088 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1089 if (ret == 0) {
1090 struct btrfs_inode_ref *victim_ref;
1091 unsigned long ptr;
1092 unsigned long ptr_end;
1093
1094 leaf = path->nodes[0];
1095
1096 /* are we trying to overwrite a back ref for the root directory
1097 * if so, just jump out, we're done
1098 */
1099 if (search_key.objectid == search_key.offset)
1100 return 1;
1101
1102 /* check all the names in this back reference to see
1103 * if they are in the log. if so, we allow them to stay
1104 * otherwise they must be unlinked as a conflict
1105 */
1106 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1107 ptr_end = ptr + btrfs_item_size(leaf, path->slots[0]);
1108 while (ptr < ptr_end) {
1109 struct fscrypt_str victim_name;
1110
1111 victim_ref = (struct btrfs_inode_ref *)ptr;
1112 ret = read_alloc_one_name(leaf, (victim_ref + 1),
1113 btrfs_inode_ref_name_len(leaf, victim_ref),
1114 &victim_name);
1115 if (ret)
1116 return ret;
1117
1118 ret = backref_in_log(log_root, &search_key,
1119 parent_objectid, &victim_name);
1120 if (ret < 0) {
1121 kfree(victim_name.name);
1122 return ret;
1123 } else if (!ret) {
1124 inc_nlink(&inode->vfs_inode);
1125 btrfs_release_path(path);
1126
1127 ret = unlink_inode_for_log_replay(trans, dir, inode,
1128 &victim_name);
1129 kfree(victim_name.name);
1130 if (ret)
1131 return ret;
1132 goto again;
1133 }
1134 kfree(victim_name.name);
1135
1136 ptr = (unsigned long)(victim_ref + 1) + victim_name.len;
1137 }
1138 }
1139 btrfs_release_path(path);
1140
1141 /* Same search but for extended refs */
1142 extref = btrfs_lookup_inode_extref(NULL, root, path, name,
1143 inode_objectid, parent_objectid, 0,
1144 0);
1145 if (IS_ERR(extref)) {
1146 return PTR_ERR(extref);
1147 } else if (extref) {
1148 u32 item_size;
1149 u32 cur_offset = 0;
1150 unsigned long base;
1151 struct inode *victim_parent;
1152
1153 leaf = path->nodes[0];
1154
1155 item_size = btrfs_item_size(leaf, path->slots[0]);
1156 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1157
1158 while (cur_offset < item_size) {
1159 struct fscrypt_str victim_name;
1160
1161 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1162
1163 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1164 goto next;
1165
1166 ret = read_alloc_one_name(leaf, &extref->name,
1167 btrfs_inode_extref_name_len(leaf, extref),
1168 &victim_name);
1169 if (ret)
1170 return ret;
1171
1172 search_key.objectid = inode_objectid;
1173 search_key.type = BTRFS_INODE_EXTREF_KEY;
1174 search_key.offset = btrfs_extref_hash(parent_objectid,
1175 victim_name.name,
1176 victim_name.len);
1177 ret = backref_in_log(log_root, &search_key,
1178 parent_objectid, &victim_name);
1179 if (ret < 0) {
1180 kfree(victim_name.name);
1181 return ret;
1182 } else if (!ret) {
1183 ret = -ENOENT;
1184 victim_parent = read_one_inode(root,
1185 parent_objectid);
1186 if (victim_parent) {
1187 inc_nlink(&inode->vfs_inode);
1188 btrfs_release_path(path);
1189
1190 ret = unlink_inode_for_log_replay(trans,
1191 BTRFS_I(victim_parent),
1192 inode, &victim_name);
1193 }
1194 iput(victim_parent);
1195 kfree(victim_name.name);
1196 if (ret)
1197 return ret;
1198 goto again;
1199 }
1200 kfree(victim_name.name);
1201 next:
1202 cur_offset += victim_name.len + sizeof(*extref);
1203 }
1204 }
1205 btrfs_release_path(path);
1206
1207 /* look for a conflicting sequence number */
1208 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1209 ref_index, name, 0);
1210 if (IS_ERR(di)) {
1211 return PTR_ERR(di);
1212 } else if (di) {
1213 ret = drop_one_dir_item(trans, path, dir, di);
1214 if (ret)
1215 return ret;
1216 }
1217 btrfs_release_path(path);
1218
1219 /* look for a conflicting name */
1220 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir), name, 0);
1221 if (IS_ERR(di)) {
1222 return PTR_ERR(di);
1223 } else if (di) {
1224 ret = drop_one_dir_item(trans, path, dir, di);
1225 if (ret)
1226 return ret;
1227 }
1228 btrfs_release_path(path);
1229
1230 return 0;
1231 }
1232
extref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index,u64 * parent_objectid)1233 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1234 struct fscrypt_str *name, u64 *index,
1235 u64 *parent_objectid)
1236 {
1237 struct btrfs_inode_extref *extref;
1238 int ret;
1239
1240 extref = (struct btrfs_inode_extref *)ref_ptr;
1241
1242 ret = read_alloc_one_name(eb, &extref->name,
1243 btrfs_inode_extref_name_len(eb, extref), name);
1244 if (ret)
1245 return ret;
1246
1247 if (index)
1248 *index = btrfs_inode_extref_index(eb, extref);
1249 if (parent_objectid)
1250 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1251
1252 return 0;
1253 }
1254
ref_get_fields(struct extent_buffer * eb,unsigned long ref_ptr,struct fscrypt_str * name,u64 * index)1255 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1256 struct fscrypt_str *name, u64 *index)
1257 {
1258 struct btrfs_inode_ref *ref;
1259 int ret;
1260
1261 ref = (struct btrfs_inode_ref *)ref_ptr;
1262
1263 ret = read_alloc_one_name(eb, ref + 1, btrfs_inode_ref_name_len(eb, ref),
1264 name);
1265 if (ret)
1266 return ret;
1267
1268 if (index)
1269 *index = btrfs_inode_ref_index(eb, ref);
1270
1271 return 0;
1272 }
1273
1274 /*
1275 * Take an inode reference item from the log tree and iterate all names from the
1276 * inode reference item in the subvolume tree with the same key (if it exists).
1277 * For any name that is not in the inode reference item from the log tree, do a
1278 * proper unlink of that name (that is, remove its entry from the inode
1279 * reference item and both dir index keys).
1280 */
unlink_old_inode_refs(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_inode * inode,struct extent_buffer * log_eb,int log_slot,struct btrfs_key * key)1281 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1282 struct btrfs_root *root,
1283 struct btrfs_path *path,
1284 struct btrfs_inode *inode,
1285 struct extent_buffer *log_eb,
1286 int log_slot,
1287 struct btrfs_key *key)
1288 {
1289 int ret;
1290 unsigned long ref_ptr;
1291 unsigned long ref_end;
1292 struct extent_buffer *eb;
1293
1294 again:
1295 btrfs_release_path(path);
1296 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1297 if (ret > 0) {
1298 ret = 0;
1299 goto out;
1300 }
1301 if (ret < 0)
1302 goto out;
1303
1304 eb = path->nodes[0];
1305 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1306 ref_end = ref_ptr + btrfs_item_size(eb, path->slots[0]);
1307 while (ref_ptr < ref_end) {
1308 struct fscrypt_str name;
1309 u64 parent_id;
1310
1311 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1312 ret = extref_get_fields(eb, ref_ptr, &name,
1313 NULL, &parent_id);
1314 } else {
1315 parent_id = key->offset;
1316 ret = ref_get_fields(eb, ref_ptr, &name, NULL);
1317 }
1318 if (ret)
1319 goto out;
1320
1321 if (key->type == BTRFS_INODE_EXTREF_KEY)
1322 ret = !!btrfs_find_name_in_ext_backref(log_eb, log_slot,
1323 parent_id, &name);
1324 else
1325 ret = !!btrfs_find_name_in_backref(log_eb, log_slot, &name);
1326
1327 if (!ret) {
1328 struct inode *dir;
1329
1330 btrfs_release_path(path);
1331 dir = read_one_inode(root, parent_id);
1332 if (!dir) {
1333 ret = -ENOENT;
1334 kfree(name.name);
1335 goto out;
1336 }
1337 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir),
1338 inode, &name);
1339 kfree(name.name);
1340 iput(dir);
1341 if (ret)
1342 goto out;
1343 goto again;
1344 }
1345
1346 kfree(name.name);
1347 ref_ptr += name.len;
1348 if (key->type == BTRFS_INODE_EXTREF_KEY)
1349 ref_ptr += sizeof(struct btrfs_inode_extref);
1350 else
1351 ref_ptr += sizeof(struct btrfs_inode_ref);
1352 }
1353 ret = 0;
1354 out:
1355 btrfs_release_path(path);
1356 return ret;
1357 }
1358
1359 /*
1360 * replay one inode back reference item found in the log tree.
1361 * eb, slot and key refer to the buffer and key found in the log tree.
1362 * root is the destination we are replaying into, and path is for temp
1363 * use by this function. (it should be released on return).
1364 */
add_inode_ref(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1365 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1366 struct btrfs_root *root,
1367 struct btrfs_root *log,
1368 struct btrfs_path *path,
1369 struct extent_buffer *eb, int slot,
1370 struct btrfs_key *key)
1371 {
1372 struct inode *dir = NULL;
1373 struct inode *inode = NULL;
1374 unsigned long ref_ptr;
1375 unsigned long ref_end;
1376 struct fscrypt_str name = { 0 };
1377 int ret;
1378 int log_ref_ver = 0;
1379 u64 parent_objectid;
1380 u64 inode_objectid;
1381 u64 ref_index = 0;
1382 int ref_struct_size;
1383
1384 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1385 ref_end = ref_ptr + btrfs_item_size(eb, slot);
1386
1387 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1388 struct btrfs_inode_extref *r;
1389
1390 ref_struct_size = sizeof(struct btrfs_inode_extref);
1391 log_ref_ver = 1;
1392 r = (struct btrfs_inode_extref *)ref_ptr;
1393 parent_objectid = btrfs_inode_extref_parent(eb, r);
1394 } else {
1395 ref_struct_size = sizeof(struct btrfs_inode_ref);
1396 parent_objectid = key->offset;
1397 }
1398 inode_objectid = key->objectid;
1399
1400 /*
1401 * it is possible that we didn't log all the parent directories
1402 * for a given inode. If we don't find the dir, just don't
1403 * copy the back ref in. The link count fixup code will take
1404 * care of the rest
1405 */
1406 dir = read_one_inode(root, parent_objectid);
1407 if (!dir) {
1408 ret = -ENOENT;
1409 goto out;
1410 }
1411
1412 inode = read_one_inode(root, inode_objectid);
1413 if (!inode) {
1414 ret = -EIO;
1415 goto out;
1416 }
1417
1418 while (ref_ptr < ref_end) {
1419 if (log_ref_ver) {
1420 ret = extref_get_fields(eb, ref_ptr, &name,
1421 &ref_index, &parent_objectid);
1422 /*
1423 * parent object can change from one array
1424 * item to another.
1425 */
1426 if (!dir)
1427 dir = read_one_inode(root, parent_objectid);
1428 if (!dir) {
1429 ret = -ENOENT;
1430 goto out;
1431 }
1432 } else {
1433 ret = ref_get_fields(eb, ref_ptr, &name, &ref_index);
1434 }
1435 if (ret)
1436 goto out;
1437
1438 ret = inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1439 btrfs_ino(BTRFS_I(inode)), ref_index, &name);
1440 if (ret < 0) {
1441 goto out;
1442 } else if (ret == 0) {
1443 /*
1444 * look for a conflicting back reference in the
1445 * metadata. if we find one we have to unlink that name
1446 * of the file before we add our new link. Later on, we
1447 * overwrite any existing back reference, and we don't
1448 * want to create dangling pointers in the directory.
1449 */
1450 ret = __add_inode_ref(trans, root, path, log,
1451 BTRFS_I(dir), BTRFS_I(inode),
1452 inode_objectid, parent_objectid,
1453 ref_index, &name);
1454 if (ret) {
1455 if (ret == 1)
1456 ret = 0;
1457 goto out;
1458 }
1459
1460 /* insert our name */
1461 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
1462 &name, 0, ref_index);
1463 if (ret)
1464 goto out;
1465
1466 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1467 if (ret)
1468 goto out;
1469 }
1470 /* Else, ret == 1, we already have a perfect match, we're done. */
1471
1472 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + name.len;
1473 kfree(name.name);
1474 name.name = NULL;
1475 if (log_ref_ver) {
1476 iput(dir);
1477 dir = NULL;
1478 }
1479 }
1480
1481 /*
1482 * Before we overwrite the inode reference item in the subvolume tree
1483 * with the item from the log tree, we must unlink all names from the
1484 * parent directory that are in the subvolume's tree inode reference
1485 * item, otherwise we end up with an inconsistent subvolume tree where
1486 * dir index entries exist for a name but there is no inode reference
1487 * item with the same name.
1488 */
1489 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1490 key);
1491 if (ret)
1492 goto out;
1493
1494 /* finally write the back reference in the inode */
1495 ret = overwrite_item(trans, root, path, eb, slot, key);
1496 out:
1497 btrfs_release_path(path);
1498 kfree(name.name);
1499 iput(dir);
1500 iput(inode);
1501 return ret;
1502 }
1503
count_inode_extrefs(struct btrfs_inode * inode,struct btrfs_path * path)1504 static int count_inode_extrefs(struct btrfs_inode *inode, struct btrfs_path *path)
1505 {
1506 int ret = 0;
1507 int name_len;
1508 unsigned int nlink = 0;
1509 u32 item_size;
1510 u32 cur_offset = 0;
1511 u64 inode_objectid = btrfs_ino(inode);
1512 u64 offset = 0;
1513 unsigned long ptr;
1514 struct btrfs_inode_extref *extref;
1515 struct extent_buffer *leaf;
1516
1517 while (1) {
1518 ret = btrfs_find_one_extref(inode->root, inode_objectid, offset,
1519 path, &extref, &offset);
1520 if (ret)
1521 break;
1522
1523 leaf = path->nodes[0];
1524 item_size = btrfs_item_size(leaf, path->slots[0]);
1525 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1526 cur_offset = 0;
1527
1528 while (cur_offset < item_size) {
1529 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1530 name_len = btrfs_inode_extref_name_len(leaf, extref);
1531
1532 nlink++;
1533
1534 cur_offset += name_len + sizeof(*extref);
1535 }
1536
1537 offset++;
1538 btrfs_release_path(path);
1539 }
1540 btrfs_release_path(path);
1541
1542 if (ret < 0 && ret != -ENOENT)
1543 return ret;
1544 return nlink;
1545 }
1546
count_inode_refs(struct btrfs_inode * inode,struct btrfs_path * path)1547 static int count_inode_refs(struct btrfs_inode *inode, struct btrfs_path *path)
1548 {
1549 int ret;
1550 struct btrfs_key key;
1551 unsigned int nlink = 0;
1552 unsigned long ptr;
1553 unsigned long ptr_end;
1554 int name_len;
1555 u64 ino = btrfs_ino(inode);
1556
1557 key.objectid = ino;
1558 key.type = BTRFS_INODE_REF_KEY;
1559 key.offset = (u64)-1;
1560
1561 while (1) {
1562 ret = btrfs_search_slot(NULL, inode->root, &key, path, 0, 0);
1563 if (ret < 0)
1564 break;
1565 if (ret > 0) {
1566 if (path->slots[0] == 0)
1567 break;
1568 path->slots[0]--;
1569 }
1570 process_slot:
1571 btrfs_item_key_to_cpu(path->nodes[0], &key,
1572 path->slots[0]);
1573 if (key.objectid != ino ||
1574 key.type != BTRFS_INODE_REF_KEY)
1575 break;
1576 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1577 ptr_end = ptr + btrfs_item_size(path->nodes[0],
1578 path->slots[0]);
1579 while (ptr < ptr_end) {
1580 struct btrfs_inode_ref *ref;
1581
1582 ref = (struct btrfs_inode_ref *)ptr;
1583 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1584 ref);
1585 ptr = (unsigned long)(ref + 1) + name_len;
1586 nlink++;
1587 }
1588
1589 if (key.offset == 0)
1590 break;
1591 if (path->slots[0] > 0) {
1592 path->slots[0]--;
1593 goto process_slot;
1594 }
1595 key.offset--;
1596 btrfs_release_path(path);
1597 }
1598 btrfs_release_path(path);
1599
1600 return nlink;
1601 }
1602
1603 /*
1604 * There are a few corners where the link count of the file can't
1605 * be properly maintained during replay. So, instead of adding
1606 * lots of complexity to the log code, we just scan the backrefs
1607 * for any file that has been through replay.
1608 *
1609 * The scan will update the link count on the inode to reflect the
1610 * number of back refs found. If it goes down to zero, the iput
1611 * will free the inode.
1612 */
fixup_inode_link_count(struct btrfs_trans_handle * trans,struct inode * inode)1613 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1614 struct inode *inode)
1615 {
1616 struct btrfs_root *root = BTRFS_I(inode)->root;
1617 struct btrfs_path *path;
1618 int ret;
1619 u64 nlink = 0;
1620 u64 ino = btrfs_ino(BTRFS_I(inode));
1621
1622 path = btrfs_alloc_path();
1623 if (!path)
1624 return -ENOMEM;
1625
1626 ret = count_inode_refs(BTRFS_I(inode), path);
1627 if (ret < 0)
1628 goto out;
1629
1630 nlink = ret;
1631
1632 ret = count_inode_extrefs(BTRFS_I(inode), path);
1633 if (ret < 0)
1634 goto out;
1635
1636 nlink += ret;
1637
1638 ret = 0;
1639
1640 if (nlink != inode->i_nlink) {
1641 set_nlink(inode, nlink);
1642 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1643 if (ret)
1644 goto out;
1645 }
1646 if (S_ISDIR(inode->i_mode))
1647 BTRFS_I(inode)->index_cnt = (u64)-1;
1648
1649 if (inode->i_nlink == 0) {
1650 if (S_ISDIR(inode->i_mode)) {
1651 ret = replay_dir_deletes(trans, root, NULL, path,
1652 ino, 1);
1653 if (ret)
1654 goto out;
1655 }
1656 ret = btrfs_insert_orphan_item(trans, root, ino);
1657 if (ret == -EEXIST)
1658 ret = 0;
1659 }
1660
1661 out:
1662 btrfs_free_path(path);
1663 return ret;
1664 }
1665
fixup_inode_link_counts(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path)1666 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1667 struct btrfs_root *root,
1668 struct btrfs_path *path)
1669 {
1670 int ret;
1671 struct btrfs_key key;
1672 struct inode *inode;
1673
1674 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1675 key.type = BTRFS_ORPHAN_ITEM_KEY;
1676 key.offset = (u64)-1;
1677 while (1) {
1678 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1679 if (ret < 0)
1680 break;
1681
1682 if (ret == 1) {
1683 ret = 0;
1684 if (path->slots[0] == 0)
1685 break;
1686 path->slots[0]--;
1687 }
1688
1689 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1690 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1691 key.type != BTRFS_ORPHAN_ITEM_KEY)
1692 break;
1693
1694 ret = btrfs_del_item(trans, root, path);
1695 if (ret)
1696 break;
1697
1698 btrfs_release_path(path);
1699 inode = read_one_inode(root, key.offset);
1700 if (!inode) {
1701 ret = -EIO;
1702 break;
1703 }
1704
1705 ret = fixup_inode_link_count(trans, inode);
1706 iput(inode);
1707 if (ret)
1708 break;
1709
1710 /*
1711 * fixup on a directory may create new entries,
1712 * make sure we always look for the highset possible
1713 * offset
1714 */
1715 key.offset = (u64)-1;
1716 }
1717 btrfs_release_path(path);
1718 return ret;
1719 }
1720
1721
1722 /*
1723 * record a given inode in the fixup dir so we can check its link
1724 * count when replay is done. The link count is incremented here
1725 * so the inode won't go away until we check it
1726 */
link_to_fixup_dir(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 objectid)1727 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1728 struct btrfs_root *root,
1729 struct btrfs_path *path,
1730 u64 objectid)
1731 {
1732 struct btrfs_key key;
1733 int ret = 0;
1734 struct inode *inode;
1735
1736 inode = read_one_inode(root, objectid);
1737 if (!inode)
1738 return -EIO;
1739
1740 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1741 key.type = BTRFS_ORPHAN_ITEM_KEY;
1742 key.offset = objectid;
1743
1744 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1745
1746 btrfs_release_path(path);
1747 if (ret == 0) {
1748 if (!inode->i_nlink)
1749 set_nlink(inode, 1);
1750 else
1751 inc_nlink(inode);
1752 ret = btrfs_update_inode(trans, BTRFS_I(inode));
1753 } else if (ret == -EEXIST) {
1754 ret = 0;
1755 }
1756 iput(inode);
1757
1758 return ret;
1759 }
1760
1761 /*
1762 * when replaying the log for a directory, we only insert names
1763 * for inodes that actually exist. This means an fsync on a directory
1764 * does not implicitly fsync all the new files in it
1765 */
insert_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,u64 dirid,u64 index,const struct fscrypt_str * name,struct btrfs_key * location)1766 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1767 struct btrfs_root *root,
1768 u64 dirid, u64 index,
1769 const struct fscrypt_str *name,
1770 struct btrfs_key *location)
1771 {
1772 struct inode *inode;
1773 struct inode *dir;
1774 int ret;
1775
1776 inode = read_one_inode(root, location->objectid);
1777 if (!inode)
1778 return -ENOENT;
1779
1780 dir = read_one_inode(root, dirid);
1781 if (!dir) {
1782 iput(inode);
1783 return -EIO;
1784 }
1785
1786 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1787 1, index);
1788
1789 /* FIXME, put inode into FIXUP list */
1790
1791 iput(inode);
1792 iput(dir);
1793 return ret;
1794 }
1795
delete_conflicting_dir_entry(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_path * path,struct btrfs_dir_item * dst_di,const struct btrfs_key * log_key,u8 log_flags,bool exists)1796 static int delete_conflicting_dir_entry(struct btrfs_trans_handle *trans,
1797 struct btrfs_inode *dir,
1798 struct btrfs_path *path,
1799 struct btrfs_dir_item *dst_di,
1800 const struct btrfs_key *log_key,
1801 u8 log_flags,
1802 bool exists)
1803 {
1804 struct btrfs_key found_key;
1805
1806 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1807 /* The existing dentry points to the same inode, don't delete it. */
1808 if (found_key.objectid == log_key->objectid &&
1809 found_key.type == log_key->type &&
1810 found_key.offset == log_key->offset &&
1811 btrfs_dir_flags(path->nodes[0], dst_di) == log_flags)
1812 return 1;
1813
1814 /*
1815 * Don't drop the conflicting directory entry if the inode for the new
1816 * entry doesn't exist.
1817 */
1818 if (!exists)
1819 return 0;
1820
1821 return drop_one_dir_item(trans, path, dir, dst_di);
1822 }
1823
1824 /*
1825 * take a single entry in a log directory item and replay it into
1826 * the subvolume.
1827 *
1828 * if a conflicting item exists in the subdirectory already,
1829 * the inode it points to is unlinked and put into the link count
1830 * fix up tree.
1831 *
1832 * If a name from the log points to a file or directory that does
1833 * not exist in the FS, it is skipped. fsyncs on directories
1834 * do not force down inodes inside that directory, just changes to the
1835 * names or unlinks in a directory.
1836 *
1837 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1838 * non-existing inode) and 1 if the name was replayed.
1839 */
replay_one_name(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,struct btrfs_dir_item * di,struct btrfs_key * key)1840 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1841 struct btrfs_root *root,
1842 struct btrfs_path *path,
1843 struct extent_buffer *eb,
1844 struct btrfs_dir_item *di,
1845 struct btrfs_key *key)
1846 {
1847 struct fscrypt_str name = { 0 };
1848 struct btrfs_dir_item *dir_dst_di;
1849 struct btrfs_dir_item *index_dst_di;
1850 bool dir_dst_matches = false;
1851 bool index_dst_matches = false;
1852 struct btrfs_key log_key;
1853 struct btrfs_key search_key;
1854 struct inode *dir;
1855 u8 log_flags;
1856 bool exists;
1857 int ret;
1858 bool update_size = true;
1859 bool name_added = false;
1860
1861 dir = read_one_inode(root, key->objectid);
1862 if (!dir)
1863 return -EIO;
1864
1865 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
1866 if (ret)
1867 goto out;
1868
1869 log_flags = btrfs_dir_flags(eb, di);
1870 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1871 ret = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1872 btrfs_release_path(path);
1873 if (ret < 0)
1874 goto out;
1875 exists = (ret == 0);
1876 ret = 0;
1877
1878 dir_dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1879 &name, 1);
1880 if (IS_ERR(dir_dst_di)) {
1881 ret = PTR_ERR(dir_dst_di);
1882 goto out;
1883 } else if (dir_dst_di) {
1884 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1885 dir_dst_di, &log_key,
1886 log_flags, exists);
1887 if (ret < 0)
1888 goto out;
1889 dir_dst_matches = (ret == 1);
1890 }
1891
1892 btrfs_release_path(path);
1893
1894 index_dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1895 key->objectid, key->offset,
1896 &name, 1);
1897 if (IS_ERR(index_dst_di)) {
1898 ret = PTR_ERR(index_dst_di);
1899 goto out;
1900 } else if (index_dst_di) {
1901 ret = delete_conflicting_dir_entry(trans, BTRFS_I(dir), path,
1902 index_dst_di, &log_key,
1903 log_flags, exists);
1904 if (ret < 0)
1905 goto out;
1906 index_dst_matches = (ret == 1);
1907 }
1908
1909 btrfs_release_path(path);
1910
1911 if (dir_dst_matches && index_dst_matches) {
1912 ret = 0;
1913 update_size = false;
1914 goto out;
1915 }
1916
1917 /*
1918 * Check if the inode reference exists in the log for the given name,
1919 * inode and parent inode
1920 */
1921 search_key.objectid = log_key.objectid;
1922 search_key.type = BTRFS_INODE_REF_KEY;
1923 search_key.offset = key->objectid;
1924 ret = backref_in_log(root->log_root, &search_key, 0, &name);
1925 if (ret < 0) {
1926 goto out;
1927 } else if (ret) {
1928 /* The dentry will be added later. */
1929 ret = 0;
1930 update_size = false;
1931 goto out;
1932 }
1933
1934 search_key.objectid = log_key.objectid;
1935 search_key.type = BTRFS_INODE_EXTREF_KEY;
1936 search_key.offset = key->objectid;
1937 ret = backref_in_log(root->log_root, &search_key, key->objectid, &name);
1938 if (ret < 0) {
1939 goto out;
1940 } else if (ret) {
1941 /* The dentry will be added later. */
1942 ret = 0;
1943 update_size = false;
1944 goto out;
1945 }
1946 btrfs_release_path(path);
1947 ret = insert_one_name(trans, root, key->objectid, key->offset,
1948 &name, &log_key);
1949 if (ret && ret != -ENOENT && ret != -EEXIST)
1950 goto out;
1951 if (!ret)
1952 name_added = true;
1953 update_size = false;
1954 ret = 0;
1955
1956 out:
1957 if (!ret && update_size) {
1958 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name.len * 2);
1959 ret = btrfs_update_inode(trans, BTRFS_I(dir));
1960 }
1961 kfree(name.name);
1962 iput(dir);
1963 if (!ret && name_added)
1964 ret = 1;
1965 return ret;
1966 }
1967
1968 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
replay_one_dir_item(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct extent_buffer * eb,int slot,struct btrfs_key * key)1969 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1970 struct btrfs_root *root,
1971 struct btrfs_path *path,
1972 struct extent_buffer *eb, int slot,
1973 struct btrfs_key *key)
1974 {
1975 int ret;
1976 struct btrfs_dir_item *di;
1977
1978 /* We only log dir index keys, which only contain a single dir item. */
1979 ASSERT(key->type == BTRFS_DIR_INDEX_KEY);
1980
1981 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1982 ret = replay_one_name(trans, root, path, eb, di, key);
1983 if (ret < 0)
1984 return ret;
1985
1986 /*
1987 * If this entry refers to a non-directory (directories can not have a
1988 * link count > 1) and it was added in the transaction that was not
1989 * committed, make sure we fixup the link count of the inode the entry
1990 * points to. Otherwise something like the following would result in a
1991 * directory pointing to an inode with a wrong link that does not account
1992 * for this dir entry:
1993 *
1994 * mkdir testdir
1995 * touch testdir/foo
1996 * touch testdir/bar
1997 * sync
1998 *
1999 * ln testdir/bar testdir/bar_link
2000 * ln testdir/foo testdir/foo_link
2001 * xfs_io -c "fsync" testdir/bar
2002 *
2003 * <power failure>
2004 *
2005 * mount fs, log replay happens
2006 *
2007 * File foo would remain with a link count of 1 when it has two entries
2008 * pointing to it in the directory testdir. This would make it impossible
2009 * to ever delete the parent directory has it would result in stale
2010 * dentries that can never be deleted.
2011 */
2012 if (ret == 1 && btrfs_dir_ftype(eb, di) != BTRFS_FT_DIR) {
2013 struct btrfs_path *fixup_path;
2014 struct btrfs_key di_key;
2015
2016 fixup_path = btrfs_alloc_path();
2017 if (!fixup_path)
2018 return -ENOMEM;
2019
2020 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2021 ret = link_to_fixup_dir(trans, root, fixup_path, di_key.objectid);
2022 btrfs_free_path(fixup_path);
2023 }
2024
2025 return ret;
2026 }
2027
2028 /*
2029 * directory replay has two parts. There are the standard directory
2030 * items in the log copied from the subvolume, and range items
2031 * created in the log while the subvolume was logged.
2032 *
2033 * The range items tell us which parts of the key space the log
2034 * is authoritative for. During replay, if a key in the subvolume
2035 * directory is in a logged range item, but not actually in the log
2036 * that means it was deleted from the directory before the fsync
2037 * and should be removed.
2038 */
find_dir_range(struct btrfs_root * root,struct btrfs_path * path,u64 dirid,u64 * start_ret,u64 * end_ret)2039 static noinline int find_dir_range(struct btrfs_root *root,
2040 struct btrfs_path *path,
2041 u64 dirid,
2042 u64 *start_ret, u64 *end_ret)
2043 {
2044 struct btrfs_key key;
2045 u64 found_end;
2046 struct btrfs_dir_log_item *item;
2047 int ret;
2048 int nritems;
2049
2050 if (*start_ret == (u64)-1)
2051 return 1;
2052
2053 key.objectid = dirid;
2054 key.type = BTRFS_DIR_LOG_INDEX_KEY;
2055 key.offset = *start_ret;
2056
2057 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2058 if (ret < 0)
2059 goto out;
2060 if (ret > 0) {
2061 if (path->slots[0] == 0)
2062 goto out;
2063 path->slots[0]--;
2064 }
2065 if (ret != 0)
2066 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2067
2068 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2069 ret = 1;
2070 goto next;
2071 }
2072 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2073 struct btrfs_dir_log_item);
2074 found_end = btrfs_dir_log_end(path->nodes[0], item);
2075
2076 if (*start_ret >= key.offset && *start_ret <= found_end) {
2077 ret = 0;
2078 *start_ret = key.offset;
2079 *end_ret = found_end;
2080 goto out;
2081 }
2082 ret = 1;
2083 next:
2084 /* check the next slot in the tree to see if it is a valid item */
2085 nritems = btrfs_header_nritems(path->nodes[0]);
2086 path->slots[0]++;
2087 if (path->slots[0] >= nritems) {
2088 ret = btrfs_next_leaf(root, path);
2089 if (ret)
2090 goto out;
2091 }
2092
2093 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2094
2095 if (key.type != BTRFS_DIR_LOG_INDEX_KEY || key.objectid != dirid) {
2096 ret = 1;
2097 goto out;
2098 }
2099 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2100 struct btrfs_dir_log_item);
2101 found_end = btrfs_dir_log_end(path->nodes[0], item);
2102 *start_ret = key.offset;
2103 *end_ret = found_end;
2104 ret = 0;
2105 out:
2106 btrfs_release_path(path);
2107 return ret;
2108 }
2109
2110 /*
2111 * this looks for a given directory item in the log. If the directory
2112 * item is not in the log, the item is removed and the inode it points
2113 * to is unlinked
2114 */
check_item_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_path * log_path,struct inode * dir,struct btrfs_key * dir_key)2115 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2116 struct btrfs_root *log,
2117 struct btrfs_path *path,
2118 struct btrfs_path *log_path,
2119 struct inode *dir,
2120 struct btrfs_key *dir_key)
2121 {
2122 struct btrfs_root *root = BTRFS_I(dir)->root;
2123 int ret;
2124 struct extent_buffer *eb;
2125 int slot;
2126 struct btrfs_dir_item *di;
2127 struct fscrypt_str name = { 0 };
2128 struct inode *inode = NULL;
2129 struct btrfs_key location;
2130
2131 /*
2132 * Currently we only log dir index keys. Even if we replay a log created
2133 * by an older kernel that logged both dir index and dir item keys, all
2134 * we need to do is process the dir index keys, we (and our caller) can
2135 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2136 */
2137 ASSERT(dir_key->type == BTRFS_DIR_INDEX_KEY);
2138
2139 eb = path->nodes[0];
2140 slot = path->slots[0];
2141 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2142 ret = read_alloc_one_name(eb, di + 1, btrfs_dir_name_len(eb, di), &name);
2143 if (ret)
2144 goto out;
2145
2146 if (log) {
2147 struct btrfs_dir_item *log_di;
2148
2149 log_di = btrfs_lookup_dir_index_item(trans, log, log_path,
2150 dir_key->objectid,
2151 dir_key->offset, &name, 0);
2152 if (IS_ERR(log_di)) {
2153 ret = PTR_ERR(log_di);
2154 goto out;
2155 } else if (log_di) {
2156 /* The dentry exists in the log, we have nothing to do. */
2157 ret = 0;
2158 goto out;
2159 }
2160 }
2161
2162 btrfs_dir_item_key_to_cpu(eb, di, &location);
2163 btrfs_release_path(path);
2164 btrfs_release_path(log_path);
2165 inode = read_one_inode(root, location.objectid);
2166 if (!inode) {
2167 ret = -EIO;
2168 goto out;
2169 }
2170
2171 ret = link_to_fixup_dir(trans, root, path, location.objectid);
2172 if (ret)
2173 goto out;
2174
2175 inc_nlink(inode);
2176 ret = unlink_inode_for_log_replay(trans, BTRFS_I(dir), BTRFS_I(inode),
2177 &name);
2178 /*
2179 * Unlike dir item keys, dir index keys can only have one name (entry) in
2180 * them, as there are no key collisions since each key has a unique offset
2181 * (an index number), so we're done.
2182 */
2183 out:
2184 btrfs_release_path(path);
2185 btrfs_release_path(log_path);
2186 kfree(name.name);
2187 iput(inode);
2188 return ret;
2189 }
2190
replay_xattr_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,const u64 ino)2191 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2192 struct btrfs_root *root,
2193 struct btrfs_root *log,
2194 struct btrfs_path *path,
2195 const u64 ino)
2196 {
2197 struct btrfs_key search_key;
2198 struct btrfs_path *log_path;
2199 int i;
2200 int nritems;
2201 int ret;
2202
2203 log_path = btrfs_alloc_path();
2204 if (!log_path)
2205 return -ENOMEM;
2206
2207 search_key.objectid = ino;
2208 search_key.type = BTRFS_XATTR_ITEM_KEY;
2209 search_key.offset = 0;
2210 again:
2211 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2212 if (ret < 0)
2213 goto out;
2214 process_leaf:
2215 nritems = btrfs_header_nritems(path->nodes[0]);
2216 for (i = path->slots[0]; i < nritems; i++) {
2217 struct btrfs_key key;
2218 struct btrfs_dir_item *di;
2219 struct btrfs_dir_item *log_di;
2220 u32 total_size;
2221 u32 cur;
2222
2223 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2224 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2225 ret = 0;
2226 goto out;
2227 }
2228
2229 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2230 total_size = btrfs_item_size(path->nodes[0], i);
2231 cur = 0;
2232 while (cur < total_size) {
2233 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2234 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2235 u32 this_len = sizeof(*di) + name_len + data_len;
2236 char *name;
2237
2238 name = kmalloc(name_len, GFP_NOFS);
2239 if (!name) {
2240 ret = -ENOMEM;
2241 goto out;
2242 }
2243 read_extent_buffer(path->nodes[0], name,
2244 (unsigned long)(di + 1), name_len);
2245
2246 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2247 name, name_len, 0);
2248 btrfs_release_path(log_path);
2249 if (!log_di) {
2250 /* Doesn't exist in log tree, so delete it. */
2251 btrfs_release_path(path);
2252 di = btrfs_lookup_xattr(trans, root, path, ino,
2253 name, name_len, -1);
2254 kfree(name);
2255 if (IS_ERR(di)) {
2256 ret = PTR_ERR(di);
2257 goto out;
2258 }
2259 ASSERT(di);
2260 ret = btrfs_delete_one_dir_name(trans, root,
2261 path, di);
2262 if (ret)
2263 goto out;
2264 btrfs_release_path(path);
2265 search_key = key;
2266 goto again;
2267 }
2268 kfree(name);
2269 if (IS_ERR(log_di)) {
2270 ret = PTR_ERR(log_di);
2271 goto out;
2272 }
2273 cur += this_len;
2274 di = (struct btrfs_dir_item *)((char *)di + this_len);
2275 }
2276 }
2277 ret = btrfs_next_leaf(root, path);
2278 if (ret > 0)
2279 ret = 0;
2280 else if (ret == 0)
2281 goto process_leaf;
2282 out:
2283 btrfs_free_path(log_path);
2284 btrfs_release_path(path);
2285 return ret;
2286 }
2287
2288
2289 /*
2290 * deletion replay happens before we copy any new directory items
2291 * out of the log or out of backreferences from inodes. It
2292 * scans the log to find ranges of keys that log is authoritative for,
2293 * and then scans the directory to find items in those ranges that are
2294 * not present in the log.
2295 *
2296 * Anything we don't find in the log is unlinked and removed from the
2297 * directory.
2298 */
replay_dir_deletes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,int del_all)2299 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2300 struct btrfs_root *root,
2301 struct btrfs_root *log,
2302 struct btrfs_path *path,
2303 u64 dirid, int del_all)
2304 {
2305 u64 range_start;
2306 u64 range_end;
2307 int ret = 0;
2308 struct btrfs_key dir_key;
2309 struct btrfs_key found_key;
2310 struct btrfs_path *log_path;
2311 struct inode *dir;
2312
2313 dir_key.objectid = dirid;
2314 dir_key.type = BTRFS_DIR_INDEX_KEY;
2315 log_path = btrfs_alloc_path();
2316 if (!log_path)
2317 return -ENOMEM;
2318
2319 dir = read_one_inode(root, dirid);
2320 /* it isn't an error if the inode isn't there, that can happen
2321 * because we replay the deletes before we copy in the inode item
2322 * from the log
2323 */
2324 if (!dir) {
2325 btrfs_free_path(log_path);
2326 return 0;
2327 }
2328
2329 range_start = 0;
2330 range_end = 0;
2331 while (1) {
2332 if (del_all)
2333 range_end = (u64)-1;
2334 else {
2335 ret = find_dir_range(log, path, dirid,
2336 &range_start, &range_end);
2337 if (ret < 0)
2338 goto out;
2339 else if (ret > 0)
2340 break;
2341 }
2342
2343 dir_key.offset = range_start;
2344 while (1) {
2345 int nritems;
2346 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2347 0, 0);
2348 if (ret < 0)
2349 goto out;
2350
2351 nritems = btrfs_header_nritems(path->nodes[0]);
2352 if (path->slots[0] >= nritems) {
2353 ret = btrfs_next_leaf(root, path);
2354 if (ret == 1)
2355 break;
2356 else if (ret < 0)
2357 goto out;
2358 }
2359 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2360 path->slots[0]);
2361 if (found_key.objectid != dirid ||
2362 found_key.type != dir_key.type) {
2363 ret = 0;
2364 goto out;
2365 }
2366
2367 if (found_key.offset > range_end)
2368 break;
2369
2370 ret = check_item_in_log(trans, log, path,
2371 log_path, dir,
2372 &found_key);
2373 if (ret)
2374 goto out;
2375 if (found_key.offset == (u64)-1)
2376 break;
2377 dir_key.offset = found_key.offset + 1;
2378 }
2379 btrfs_release_path(path);
2380 if (range_end == (u64)-1)
2381 break;
2382 range_start = range_end + 1;
2383 }
2384 ret = 0;
2385 out:
2386 btrfs_release_path(path);
2387 btrfs_free_path(log_path);
2388 iput(dir);
2389 return ret;
2390 }
2391
2392 /*
2393 * the process_func used to replay items from the log tree. This
2394 * gets called in two different stages. The first stage just looks
2395 * for inodes and makes sure they are all copied into the subvolume.
2396 *
2397 * The second stage copies all the other item types from the log into
2398 * the subvolume. The two stage approach is slower, but gets rid of
2399 * lots of complexity around inodes referencing other inodes that exist
2400 * only in the log (references come from either directory items or inode
2401 * back refs).
2402 */
replay_one_buffer(struct btrfs_root * log,struct extent_buffer * eb,struct walk_control * wc,u64 gen,int level)2403 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2404 struct walk_control *wc, u64 gen, int level)
2405 {
2406 int nritems;
2407 struct btrfs_tree_parent_check check = {
2408 .transid = gen,
2409 .level = level
2410 };
2411 struct btrfs_path *path;
2412 struct btrfs_root *root = wc->replay_dest;
2413 struct btrfs_key key;
2414 int i;
2415 int ret;
2416
2417 ret = btrfs_read_extent_buffer(eb, &check);
2418 if (ret)
2419 return ret;
2420
2421 level = btrfs_header_level(eb);
2422
2423 if (level != 0)
2424 return 0;
2425
2426 path = btrfs_alloc_path();
2427 if (!path)
2428 return -ENOMEM;
2429
2430 nritems = btrfs_header_nritems(eb);
2431 for (i = 0; i < nritems; i++) {
2432 btrfs_item_key_to_cpu(eb, &key, i);
2433
2434 /* inode keys are done during the first stage */
2435 if (key.type == BTRFS_INODE_ITEM_KEY &&
2436 wc->stage == LOG_WALK_REPLAY_INODES) {
2437 struct btrfs_inode_item *inode_item;
2438 u32 mode;
2439
2440 inode_item = btrfs_item_ptr(eb, i,
2441 struct btrfs_inode_item);
2442 /*
2443 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2444 * and never got linked before the fsync, skip it, as
2445 * replaying it is pointless since it would be deleted
2446 * later. We skip logging tmpfiles, but it's always
2447 * possible we are replaying a log created with a kernel
2448 * that used to log tmpfiles.
2449 */
2450 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2451 wc->ignore_cur_inode = true;
2452 continue;
2453 } else {
2454 wc->ignore_cur_inode = false;
2455 }
2456 ret = replay_xattr_deletes(wc->trans, root, log,
2457 path, key.objectid);
2458 if (ret)
2459 break;
2460 mode = btrfs_inode_mode(eb, inode_item);
2461 if (S_ISDIR(mode)) {
2462 ret = replay_dir_deletes(wc->trans,
2463 root, log, path, key.objectid, 0);
2464 if (ret)
2465 break;
2466 }
2467 ret = overwrite_item(wc->trans, root, path,
2468 eb, i, &key);
2469 if (ret)
2470 break;
2471
2472 /*
2473 * Before replaying extents, truncate the inode to its
2474 * size. We need to do it now and not after log replay
2475 * because before an fsync we can have prealloc extents
2476 * added beyond the inode's i_size. If we did it after,
2477 * through orphan cleanup for example, we would drop
2478 * those prealloc extents just after replaying them.
2479 */
2480 if (S_ISREG(mode)) {
2481 struct btrfs_drop_extents_args drop_args = { 0 };
2482 struct inode *inode;
2483 u64 from;
2484
2485 inode = read_one_inode(root, key.objectid);
2486 if (!inode) {
2487 ret = -EIO;
2488 break;
2489 }
2490 from = ALIGN(i_size_read(inode),
2491 root->fs_info->sectorsize);
2492 drop_args.start = from;
2493 drop_args.end = (u64)-1;
2494 drop_args.drop_cache = true;
2495 ret = btrfs_drop_extents(wc->trans, root,
2496 BTRFS_I(inode),
2497 &drop_args);
2498 if (!ret) {
2499 inode_sub_bytes(inode,
2500 drop_args.bytes_found);
2501 /* Update the inode's nbytes. */
2502 ret = btrfs_update_inode(wc->trans,
2503 BTRFS_I(inode));
2504 }
2505 iput(inode);
2506 if (ret)
2507 break;
2508 }
2509
2510 ret = link_to_fixup_dir(wc->trans, root,
2511 path, key.objectid);
2512 if (ret)
2513 break;
2514 }
2515
2516 if (wc->ignore_cur_inode)
2517 continue;
2518
2519 if (key.type == BTRFS_DIR_INDEX_KEY &&
2520 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2521 ret = replay_one_dir_item(wc->trans, root, path,
2522 eb, i, &key);
2523 if (ret)
2524 break;
2525 }
2526
2527 if (wc->stage < LOG_WALK_REPLAY_ALL)
2528 continue;
2529
2530 /* these keys are simply copied */
2531 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2532 ret = overwrite_item(wc->trans, root, path,
2533 eb, i, &key);
2534 if (ret)
2535 break;
2536 } else if (key.type == BTRFS_INODE_REF_KEY ||
2537 key.type == BTRFS_INODE_EXTREF_KEY) {
2538 ret = add_inode_ref(wc->trans, root, log, path,
2539 eb, i, &key);
2540 if (ret && ret != -ENOENT)
2541 break;
2542 ret = 0;
2543 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2544 ret = replay_one_extent(wc->trans, root, path,
2545 eb, i, &key);
2546 if (ret)
2547 break;
2548 }
2549 /*
2550 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2551 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2552 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2553 * older kernel with such keys, ignore them.
2554 */
2555 }
2556 btrfs_free_path(path);
2557 return ret;
2558 }
2559
2560 /*
2561 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2562 */
unaccount_log_buffer(struct btrfs_fs_info * fs_info,u64 start)2563 static void unaccount_log_buffer(struct btrfs_fs_info *fs_info, u64 start)
2564 {
2565 struct btrfs_block_group *cache;
2566
2567 cache = btrfs_lookup_block_group(fs_info, start);
2568 if (!cache) {
2569 btrfs_err(fs_info, "unable to find block group for %llu", start);
2570 return;
2571 }
2572
2573 spin_lock(&cache->space_info->lock);
2574 spin_lock(&cache->lock);
2575 cache->reserved -= fs_info->nodesize;
2576 cache->space_info->bytes_reserved -= fs_info->nodesize;
2577 spin_unlock(&cache->lock);
2578 spin_unlock(&cache->space_info->lock);
2579
2580 btrfs_put_block_group(cache);
2581 }
2582
clean_log_buffer(struct btrfs_trans_handle * trans,struct extent_buffer * eb)2583 static int clean_log_buffer(struct btrfs_trans_handle *trans,
2584 struct extent_buffer *eb)
2585 {
2586 int ret;
2587
2588 btrfs_tree_lock(eb);
2589 btrfs_clear_buffer_dirty(trans, eb);
2590 wait_on_extent_buffer_writeback(eb);
2591 btrfs_tree_unlock(eb);
2592
2593 if (trans) {
2594 ret = btrfs_pin_reserved_extent(trans, eb);
2595 if (ret)
2596 return ret;
2597 } else {
2598 unaccount_log_buffer(eb->fs_info, eb->start);
2599 }
2600
2601 return 0;
2602 }
2603
walk_down_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2604 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2605 struct btrfs_root *root,
2606 struct btrfs_path *path, int *level,
2607 struct walk_control *wc)
2608 {
2609 struct btrfs_fs_info *fs_info = root->fs_info;
2610 u64 bytenr;
2611 u64 ptr_gen;
2612 struct extent_buffer *next;
2613 struct extent_buffer *cur;
2614 int ret = 0;
2615
2616 while (*level > 0) {
2617 struct btrfs_tree_parent_check check = { 0 };
2618
2619 cur = path->nodes[*level];
2620
2621 WARN_ON(btrfs_header_level(cur) != *level);
2622
2623 if (path->slots[*level] >=
2624 btrfs_header_nritems(cur))
2625 break;
2626
2627 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2628 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2629 check.transid = ptr_gen;
2630 check.level = *level - 1;
2631 check.has_first_key = true;
2632 btrfs_node_key_to_cpu(cur, &check.first_key, path->slots[*level]);
2633
2634 next = btrfs_find_create_tree_block(fs_info, bytenr,
2635 btrfs_header_owner(cur),
2636 *level - 1);
2637 if (IS_ERR(next))
2638 return PTR_ERR(next);
2639
2640 if (*level == 1) {
2641 ret = wc->process_func(root, next, wc, ptr_gen,
2642 *level - 1);
2643 if (ret) {
2644 free_extent_buffer(next);
2645 return ret;
2646 }
2647
2648 path->slots[*level]++;
2649 if (wc->free) {
2650 ret = btrfs_read_extent_buffer(next, &check);
2651 if (ret) {
2652 free_extent_buffer(next);
2653 return ret;
2654 }
2655
2656 ret = clean_log_buffer(trans, next);
2657 if (ret) {
2658 free_extent_buffer(next);
2659 return ret;
2660 }
2661 }
2662 free_extent_buffer(next);
2663 continue;
2664 }
2665 ret = btrfs_read_extent_buffer(next, &check);
2666 if (ret) {
2667 free_extent_buffer(next);
2668 return ret;
2669 }
2670
2671 if (path->nodes[*level-1])
2672 free_extent_buffer(path->nodes[*level-1]);
2673 path->nodes[*level-1] = next;
2674 *level = btrfs_header_level(next);
2675 path->slots[*level] = 0;
2676 cond_resched();
2677 }
2678 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2679
2680 cond_resched();
2681 return 0;
2682 }
2683
walk_up_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,int * level,struct walk_control * wc)2684 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2685 struct btrfs_root *root,
2686 struct btrfs_path *path, int *level,
2687 struct walk_control *wc)
2688 {
2689 int i;
2690 int slot;
2691 int ret;
2692
2693 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2694 slot = path->slots[i];
2695 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2696 path->slots[i]++;
2697 *level = i;
2698 WARN_ON(*level == 0);
2699 return 0;
2700 } else {
2701 ret = wc->process_func(root, path->nodes[*level], wc,
2702 btrfs_header_generation(path->nodes[*level]),
2703 *level);
2704 if (ret)
2705 return ret;
2706
2707 if (wc->free) {
2708 ret = clean_log_buffer(trans, path->nodes[*level]);
2709 if (ret)
2710 return ret;
2711 }
2712 free_extent_buffer(path->nodes[*level]);
2713 path->nodes[*level] = NULL;
2714 *level = i + 1;
2715 }
2716 }
2717 return 1;
2718 }
2719
2720 /*
2721 * drop the reference count on the tree rooted at 'snap'. This traverses
2722 * the tree freeing any blocks that have a ref count of zero after being
2723 * decremented.
2724 */
walk_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct walk_control * wc)2725 static int walk_log_tree(struct btrfs_trans_handle *trans,
2726 struct btrfs_root *log, struct walk_control *wc)
2727 {
2728 int ret = 0;
2729 int wret;
2730 int level;
2731 struct btrfs_path *path;
2732 int orig_level;
2733
2734 path = btrfs_alloc_path();
2735 if (!path)
2736 return -ENOMEM;
2737
2738 level = btrfs_header_level(log->node);
2739 orig_level = level;
2740 path->nodes[level] = log->node;
2741 atomic_inc(&log->node->refs);
2742 path->slots[level] = 0;
2743
2744 while (1) {
2745 wret = walk_down_log_tree(trans, log, path, &level, wc);
2746 if (wret > 0)
2747 break;
2748 if (wret < 0) {
2749 ret = wret;
2750 goto out;
2751 }
2752
2753 wret = walk_up_log_tree(trans, log, path, &level, wc);
2754 if (wret > 0)
2755 break;
2756 if (wret < 0) {
2757 ret = wret;
2758 goto out;
2759 }
2760 }
2761
2762 /* was the root node processed? if not, catch it here */
2763 if (path->nodes[orig_level]) {
2764 ret = wc->process_func(log, path->nodes[orig_level], wc,
2765 btrfs_header_generation(path->nodes[orig_level]),
2766 orig_level);
2767 if (ret)
2768 goto out;
2769 if (wc->free)
2770 ret = clean_log_buffer(trans, path->nodes[orig_level]);
2771 }
2772
2773 out:
2774 btrfs_free_path(path);
2775 return ret;
2776 }
2777
2778 /*
2779 * helper function to update the item for a given subvolumes log root
2780 * in the tree of log roots
2781 */
update_log_root(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_root_item * root_item)2782 static int update_log_root(struct btrfs_trans_handle *trans,
2783 struct btrfs_root *log,
2784 struct btrfs_root_item *root_item)
2785 {
2786 struct btrfs_fs_info *fs_info = log->fs_info;
2787 int ret;
2788
2789 if (log->log_transid == 1) {
2790 /* insert root item on the first sync */
2791 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2792 &log->root_key, root_item);
2793 } else {
2794 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2795 &log->root_key, root_item);
2796 }
2797 return ret;
2798 }
2799
wait_log_commit(struct btrfs_root * root,int transid)2800 static void wait_log_commit(struct btrfs_root *root, int transid)
2801 {
2802 DEFINE_WAIT(wait);
2803 int index = transid % 2;
2804
2805 /*
2806 * we only allow two pending log transactions at a time,
2807 * so we know that if ours is more than 2 older than the
2808 * current transaction, we're done
2809 */
2810 for (;;) {
2811 prepare_to_wait(&root->log_commit_wait[index],
2812 &wait, TASK_UNINTERRUPTIBLE);
2813
2814 if (!(root->log_transid_committed < transid &&
2815 atomic_read(&root->log_commit[index])))
2816 break;
2817
2818 mutex_unlock(&root->log_mutex);
2819 schedule();
2820 mutex_lock(&root->log_mutex);
2821 }
2822 finish_wait(&root->log_commit_wait[index], &wait);
2823 }
2824
wait_for_writer(struct btrfs_root * root)2825 static void wait_for_writer(struct btrfs_root *root)
2826 {
2827 DEFINE_WAIT(wait);
2828
2829 for (;;) {
2830 prepare_to_wait(&root->log_writer_wait, &wait,
2831 TASK_UNINTERRUPTIBLE);
2832 if (!atomic_read(&root->log_writers))
2833 break;
2834
2835 mutex_unlock(&root->log_mutex);
2836 schedule();
2837 mutex_lock(&root->log_mutex);
2838 }
2839 finish_wait(&root->log_writer_wait, &wait);
2840 }
2841
btrfs_init_log_ctx(struct btrfs_log_ctx * ctx,struct btrfs_inode * inode)2842 void btrfs_init_log_ctx(struct btrfs_log_ctx *ctx, struct btrfs_inode *inode)
2843 {
2844 ctx->log_ret = 0;
2845 ctx->log_transid = 0;
2846 ctx->log_new_dentries = false;
2847 ctx->logging_new_name = false;
2848 ctx->logging_new_delayed_dentries = false;
2849 ctx->logged_before = false;
2850 ctx->inode = inode;
2851 INIT_LIST_HEAD(&ctx->list);
2852 INIT_LIST_HEAD(&ctx->ordered_extents);
2853 INIT_LIST_HEAD(&ctx->conflict_inodes);
2854 ctx->num_conflict_inodes = 0;
2855 ctx->logging_conflict_inodes = false;
2856 ctx->scratch_eb = NULL;
2857 }
2858
btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx * ctx)2859 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx *ctx)
2860 {
2861 struct btrfs_inode *inode = ctx->inode;
2862
2863 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) &&
2864 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
2865 return;
2866
2867 /*
2868 * Don't care about allocation failure. This is just for optimization,
2869 * if we fail to allocate here, we will try again later if needed.
2870 */
2871 ctx->scratch_eb = alloc_dummy_extent_buffer(inode->root->fs_info, 0);
2872 }
2873
btrfs_release_log_ctx_extents(struct btrfs_log_ctx * ctx)2874 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx *ctx)
2875 {
2876 struct btrfs_ordered_extent *ordered;
2877 struct btrfs_ordered_extent *tmp;
2878
2879 btrfs_assert_inode_locked(ctx->inode);
2880
2881 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
2882 list_del_init(&ordered->log_list);
2883 btrfs_put_ordered_extent(ordered);
2884 }
2885 }
2886
2887
btrfs_remove_log_ctx(struct btrfs_root * root,struct btrfs_log_ctx * ctx)2888 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2889 struct btrfs_log_ctx *ctx)
2890 {
2891 mutex_lock(&root->log_mutex);
2892 list_del_init(&ctx->list);
2893 mutex_unlock(&root->log_mutex);
2894 }
2895
2896 /*
2897 * Invoked in log mutex context, or be sure there is no other task which
2898 * can access the list.
2899 */
btrfs_remove_all_log_ctxs(struct btrfs_root * root,int index,int error)2900 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2901 int index, int error)
2902 {
2903 struct btrfs_log_ctx *ctx;
2904 struct btrfs_log_ctx *safe;
2905
2906 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2907 list_del_init(&ctx->list);
2908 ctx->log_ret = error;
2909 }
2910 }
2911
2912 /*
2913 * Sends a given tree log down to the disk and updates the super blocks to
2914 * record it. When this call is done, you know that any inodes previously
2915 * logged are safely on disk only if it returns 0.
2916 *
2917 * Any other return value means you need to call btrfs_commit_transaction.
2918 * Some of the edge cases for fsyncing directories that have had unlinks
2919 * or renames done in the past mean that sometimes the only safe
2920 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2921 * that has happened.
2922 */
btrfs_sync_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)2923 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2924 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2925 {
2926 int index1;
2927 int index2;
2928 int mark;
2929 int ret;
2930 struct btrfs_fs_info *fs_info = root->fs_info;
2931 struct btrfs_root *log = root->log_root;
2932 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2933 struct btrfs_root_item new_root_item;
2934 int log_transid = 0;
2935 struct btrfs_log_ctx root_log_ctx;
2936 struct blk_plug plug;
2937 u64 log_root_start;
2938 u64 log_root_level;
2939
2940 mutex_lock(&root->log_mutex);
2941 log_transid = ctx->log_transid;
2942 if (root->log_transid_committed >= log_transid) {
2943 mutex_unlock(&root->log_mutex);
2944 return ctx->log_ret;
2945 }
2946
2947 index1 = log_transid % 2;
2948 if (atomic_read(&root->log_commit[index1])) {
2949 wait_log_commit(root, log_transid);
2950 mutex_unlock(&root->log_mutex);
2951 return ctx->log_ret;
2952 }
2953 ASSERT(log_transid == root->log_transid);
2954 atomic_set(&root->log_commit[index1], 1);
2955
2956 /* wait for previous tree log sync to complete */
2957 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2958 wait_log_commit(root, log_transid - 1);
2959
2960 while (1) {
2961 int batch = atomic_read(&root->log_batch);
2962 /* when we're on an ssd, just kick the log commit out */
2963 if (!btrfs_test_opt(fs_info, SSD) &&
2964 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2965 mutex_unlock(&root->log_mutex);
2966 schedule_timeout_uninterruptible(1);
2967 mutex_lock(&root->log_mutex);
2968 }
2969 wait_for_writer(root);
2970 if (batch == atomic_read(&root->log_batch))
2971 break;
2972 }
2973
2974 /* bail out if we need to do a full commit */
2975 if (btrfs_need_log_full_commit(trans)) {
2976 ret = BTRFS_LOG_FORCE_COMMIT;
2977 mutex_unlock(&root->log_mutex);
2978 goto out;
2979 }
2980
2981 if (log_transid % 2 == 0)
2982 mark = EXTENT_DIRTY;
2983 else
2984 mark = EXTENT_NEW;
2985
2986 /* we start IO on all the marked extents here, but we don't actually
2987 * wait for them until later.
2988 */
2989 blk_start_plug(&plug);
2990 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
2991 /*
2992 * -EAGAIN happens when someone, e.g., a concurrent transaction
2993 * commit, writes a dirty extent in this tree-log commit. This
2994 * concurrent write will create a hole writing out the extents,
2995 * and we cannot proceed on a zoned filesystem, requiring
2996 * sequential writing. While we can bail out to a full commit
2997 * here, but we can continue hoping the concurrent writing fills
2998 * the hole.
2999 */
3000 if (ret == -EAGAIN && btrfs_is_zoned(fs_info))
3001 ret = 0;
3002 if (ret) {
3003 blk_finish_plug(&plug);
3004 btrfs_set_log_full_commit(trans);
3005 mutex_unlock(&root->log_mutex);
3006 goto out;
3007 }
3008
3009 /*
3010 * We _must_ update under the root->log_mutex in order to make sure we
3011 * have a consistent view of the log root we are trying to commit at
3012 * this moment.
3013 *
3014 * We _must_ copy this into a local copy, because we are not holding the
3015 * log_root_tree->log_mutex yet. This is important because when we
3016 * commit the log_root_tree we must have a consistent view of the
3017 * log_root_tree when we update the super block to point at the
3018 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3019 * with the commit and possibly point at the new block which we may not
3020 * have written out.
3021 */
3022 btrfs_set_root_node(&log->root_item, log->node);
3023 memcpy(&new_root_item, &log->root_item, sizeof(new_root_item));
3024
3025 btrfs_set_root_log_transid(root, root->log_transid + 1);
3026 log->log_transid = root->log_transid;
3027 root->log_start_pid = 0;
3028 /*
3029 * IO has been started, blocks of the log tree have WRITTEN flag set
3030 * in their headers. new modifications of the log will be written to
3031 * new positions. so it's safe to allow log writers to go in.
3032 */
3033 mutex_unlock(&root->log_mutex);
3034
3035 if (btrfs_is_zoned(fs_info)) {
3036 mutex_lock(&fs_info->tree_root->log_mutex);
3037 if (!log_root_tree->node) {
3038 ret = btrfs_alloc_log_tree_node(trans, log_root_tree);
3039 if (ret) {
3040 mutex_unlock(&fs_info->tree_root->log_mutex);
3041 blk_finish_plug(&plug);
3042 goto out;
3043 }
3044 }
3045 mutex_unlock(&fs_info->tree_root->log_mutex);
3046 }
3047
3048 btrfs_init_log_ctx(&root_log_ctx, NULL);
3049
3050 mutex_lock(&log_root_tree->log_mutex);
3051
3052 index2 = log_root_tree->log_transid % 2;
3053 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3054 root_log_ctx.log_transid = log_root_tree->log_transid;
3055
3056 /*
3057 * Now we are safe to update the log_root_tree because we're under the
3058 * log_mutex, and we're a current writer so we're holding the commit
3059 * open until we drop the log_mutex.
3060 */
3061 ret = update_log_root(trans, log, &new_root_item);
3062 if (ret) {
3063 list_del_init(&root_log_ctx.list);
3064 blk_finish_plug(&plug);
3065 btrfs_set_log_full_commit(trans);
3066 if (ret != -ENOSPC)
3067 btrfs_err(fs_info,
3068 "failed to update log for root %llu ret %d",
3069 btrfs_root_id(root), ret);
3070 btrfs_wait_tree_log_extents(log, mark);
3071 mutex_unlock(&log_root_tree->log_mutex);
3072 goto out;
3073 }
3074
3075 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3076 blk_finish_plug(&plug);
3077 list_del_init(&root_log_ctx.list);
3078 mutex_unlock(&log_root_tree->log_mutex);
3079 ret = root_log_ctx.log_ret;
3080 goto out;
3081 }
3082
3083 if (atomic_read(&log_root_tree->log_commit[index2])) {
3084 blk_finish_plug(&plug);
3085 ret = btrfs_wait_tree_log_extents(log, mark);
3086 wait_log_commit(log_root_tree,
3087 root_log_ctx.log_transid);
3088 mutex_unlock(&log_root_tree->log_mutex);
3089 if (!ret)
3090 ret = root_log_ctx.log_ret;
3091 goto out;
3092 }
3093 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3094 atomic_set(&log_root_tree->log_commit[index2], 1);
3095
3096 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3097 wait_log_commit(log_root_tree,
3098 root_log_ctx.log_transid - 1);
3099 }
3100
3101 /*
3102 * now that we've moved on to the tree of log tree roots,
3103 * check the full commit flag again
3104 */
3105 if (btrfs_need_log_full_commit(trans)) {
3106 blk_finish_plug(&plug);
3107 btrfs_wait_tree_log_extents(log, mark);
3108 mutex_unlock(&log_root_tree->log_mutex);
3109 ret = BTRFS_LOG_FORCE_COMMIT;
3110 goto out_wake_log_root;
3111 }
3112
3113 ret = btrfs_write_marked_extents(fs_info,
3114 &log_root_tree->dirty_log_pages,
3115 EXTENT_DIRTY | EXTENT_NEW);
3116 blk_finish_plug(&plug);
3117 /*
3118 * As described above, -EAGAIN indicates a hole in the extents. We
3119 * cannot wait for these write outs since the waiting cause a
3120 * deadlock. Bail out to the full commit instead.
3121 */
3122 if (ret == -EAGAIN && btrfs_is_zoned(fs_info)) {
3123 btrfs_set_log_full_commit(trans);
3124 btrfs_wait_tree_log_extents(log, mark);
3125 mutex_unlock(&log_root_tree->log_mutex);
3126 goto out_wake_log_root;
3127 } else if (ret) {
3128 btrfs_set_log_full_commit(trans);
3129 mutex_unlock(&log_root_tree->log_mutex);
3130 goto out_wake_log_root;
3131 }
3132 ret = btrfs_wait_tree_log_extents(log, mark);
3133 if (!ret)
3134 ret = btrfs_wait_tree_log_extents(log_root_tree,
3135 EXTENT_NEW | EXTENT_DIRTY);
3136 if (ret) {
3137 btrfs_set_log_full_commit(trans);
3138 mutex_unlock(&log_root_tree->log_mutex);
3139 goto out_wake_log_root;
3140 }
3141
3142 log_root_start = log_root_tree->node->start;
3143 log_root_level = btrfs_header_level(log_root_tree->node);
3144 log_root_tree->log_transid++;
3145 mutex_unlock(&log_root_tree->log_mutex);
3146
3147 /*
3148 * Here we are guaranteed that nobody is going to write the superblock
3149 * for the current transaction before us and that neither we do write
3150 * our superblock before the previous transaction finishes its commit
3151 * and writes its superblock, because:
3152 *
3153 * 1) We are holding a handle on the current transaction, so no body
3154 * can commit it until we release the handle;
3155 *
3156 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3157 * if the previous transaction is still committing, and hasn't yet
3158 * written its superblock, we wait for it to do it, because a
3159 * transaction commit acquires the tree_log_mutex when the commit
3160 * begins and releases it only after writing its superblock.
3161 */
3162 mutex_lock(&fs_info->tree_log_mutex);
3163
3164 /*
3165 * The previous transaction writeout phase could have failed, and thus
3166 * marked the fs in an error state. We must not commit here, as we
3167 * could have updated our generation in the super_for_commit and
3168 * writing the super here would result in transid mismatches. If there
3169 * is an error here just bail.
3170 */
3171 if (BTRFS_FS_ERROR(fs_info)) {
3172 ret = -EIO;
3173 btrfs_set_log_full_commit(trans);
3174 btrfs_abort_transaction(trans, ret);
3175 mutex_unlock(&fs_info->tree_log_mutex);
3176 goto out_wake_log_root;
3177 }
3178
3179 btrfs_set_super_log_root(fs_info->super_for_commit, log_root_start);
3180 btrfs_set_super_log_root_level(fs_info->super_for_commit, log_root_level);
3181 ret = write_all_supers(fs_info, 1);
3182 mutex_unlock(&fs_info->tree_log_mutex);
3183 if (ret) {
3184 btrfs_set_log_full_commit(trans);
3185 btrfs_abort_transaction(trans, ret);
3186 goto out_wake_log_root;
3187 }
3188
3189 /*
3190 * We know there can only be one task here, since we have not yet set
3191 * root->log_commit[index1] to 0 and any task attempting to sync the
3192 * log must wait for the previous log transaction to commit if it's
3193 * still in progress or wait for the current log transaction commit if
3194 * someone else already started it. We use <= and not < because the
3195 * first log transaction has an ID of 0.
3196 */
3197 ASSERT(btrfs_get_root_last_log_commit(root) <= log_transid);
3198 btrfs_set_root_last_log_commit(root, log_transid);
3199
3200 out_wake_log_root:
3201 mutex_lock(&log_root_tree->log_mutex);
3202 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3203
3204 log_root_tree->log_transid_committed++;
3205 atomic_set(&log_root_tree->log_commit[index2], 0);
3206 mutex_unlock(&log_root_tree->log_mutex);
3207
3208 /*
3209 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3210 * all the updates above are seen by the woken threads. It might not be
3211 * necessary, but proving that seems to be hard.
3212 */
3213 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3214 out:
3215 mutex_lock(&root->log_mutex);
3216 btrfs_remove_all_log_ctxs(root, index1, ret);
3217 root->log_transid_committed++;
3218 atomic_set(&root->log_commit[index1], 0);
3219 mutex_unlock(&root->log_mutex);
3220
3221 /*
3222 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3223 * all the updates above are seen by the woken threads. It might not be
3224 * necessary, but proving that seems to be hard.
3225 */
3226 cond_wake_up(&root->log_commit_wait[index1]);
3227 return ret;
3228 }
3229
free_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * log)3230 static void free_log_tree(struct btrfs_trans_handle *trans,
3231 struct btrfs_root *log)
3232 {
3233 int ret;
3234 struct walk_control wc = {
3235 .free = 1,
3236 .process_func = process_one_buffer
3237 };
3238
3239 if (log->node) {
3240 ret = walk_log_tree(trans, log, &wc);
3241 if (ret) {
3242 /*
3243 * We weren't able to traverse the entire log tree, the
3244 * typical scenario is getting an -EIO when reading an
3245 * extent buffer of the tree, due to a previous writeback
3246 * failure of it.
3247 */
3248 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR,
3249 &log->fs_info->fs_state);
3250
3251 /*
3252 * Some extent buffers of the log tree may still be dirty
3253 * and not yet written back to storage, because we may
3254 * have updates to a log tree without syncing a log tree,
3255 * such as during rename and link operations. So flush
3256 * them out and wait for their writeback to complete, so
3257 * that we properly cleanup their state and pages.
3258 */
3259 btrfs_write_marked_extents(log->fs_info,
3260 &log->dirty_log_pages,
3261 EXTENT_DIRTY | EXTENT_NEW);
3262 btrfs_wait_tree_log_extents(log,
3263 EXTENT_DIRTY | EXTENT_NEW);
3264
3265 if (trans)
3266 btrfs_abort_transaction(trans, ret);
3267 else
3268 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3269 }
3270 }
3271
3272 extent_io_tree_release(&log->dirty_log_pages);
3273 extent_io_tree_release(&log->log_csum_range);
3274
3275 btrfs_put_root(log);
3276 }
3277
3278 /*
3279 * free all the extents used by the tree log. This should be called
3280 * at commit time of the full transaction
3281 */
btrfs_free_log(struct btrfs_trans_handle * trans,struct btrfs_root * root)3282 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3283 {
3284 if (root->log_root) {
3285 free_log_tree(trans, root->log_root);
3286 root->log_root = NULL;
3287 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &root->state);
3288 }
3289 return 0;
3290 }
3291
btrfs_free_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)3292 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3293 struct btrfs_fs_info *fs_info)
3294 {
3295 if (fs_info->log_root_tree) {
3296 free_log_tree(trans, fs_info->log_root_tree);
3297 fs_info->log_root_tree = NULL;
3298 clear_bit(BTRFS_ROOT_HAS_LOG_TREE, &fs_info->tree_root->state);
3299 }
3300 return 0;
3301 }
3302
3303 /*
3304 * Check if an inode was logged in the current transaction. This correctly deals
3305 * with the case where the inode was logged but has a logged_trans of 0, which
3306 * happens if the inode is evicted and loaded again, as logged_trans is an in
3307 * memory only field (not persisted).
3308 *
3309 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3310 * and < 0 on error.
3311 */
inode_logged(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path_in)3312 static int inode_logged(const struct btrfs_trans_handle *trans,
3313 struct btrfs_inode *inode,
3314 struct btrfs_path *path_in)
3315 {
3316 struct btrfs_path *path = path_in;
3317 struct btrfs_key key;
3318 int ret;
3319
3320 if (inode->logged_trans == trans->transid)
3321 return 1;
3322
3323 /*
3324 * If logged_trans is not 0, then we know the inode logged was not logged
3325 * in this transaction, so we can return false right away.
3326 */
3327 if (inode->logged_trans > 0)
3328 return 0;
3329
3330 /*
3331 * If no log tree was created for this root in this transaction, then
3332 * the inode can not have been logged in this transaction. In that case
3333 * set logged_trans to anything greater than 0 and less than the current
3334 * transaction's ID, to avoid the search below in a future call in case
3335 * a log tree gets created after this.
3336 */
3337 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE, &inode->root->state)) {
3338 inode->logged_trans = trans->transid - 1;
3339 return 0;
3340 }
3341
3342 /*
3343 * We have a log tree and the inode's logged_trans is 0. We can't tell
3344 * for sure if the inode was logged before in this transaction by looking
3345 * only at logged_trans. We could be pessimistic and assume it was, but
3346 * that can lead to unnecessarily logging an inode during rename and link
3347 * operations, and then further updating the log in followup rename and
3348 * link operations, specially if it's a directory, which adds latency
3349 * visible to applications doing a series of rename or link operations.
3350 *
3351 * A logged_trans of 0 here can mean several things:
3352 *
3353 * 1) The inode was never logged since the filesystem was mounted, and may
3354 * or may have not been evicted and loaded again;
3355 *
3356 * 2) The inode was logged in a previous transaction, then evicted and
3357 * then loaded again;
3358 *
3359 * 3) The inode was logged in the current transaction, then evicted and
3360 * then loaded again.
3361 *
3362 * For cases 1) and 2) we don't want to return true, but we need to detect
3363 * case 3) and return true. So we do a search in the log root for the inode
3364 * item.
3365 */
3366 key.objectid = btrfs_ino(inode);
3367 key.type = BTRFS_INODE_ITEM_KEY;
3368 key.offset = 0;
3369
3370 if (!path) {
3371 path = btrfs_alloc_path();
3372 if (!path)
3373 return -ENOMEM;
3374 }
3375
3376 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
3377
3378 if (path_in)
3379 btrfs_release_path(path);
3380 else
3381 btrfs_free_path(path);
3382
3383 /*
3384 * Logging an inode always results in logging its inode item. So if we
3385 * did not find the item we know the inode was not logged for sure.
3386 */
3387 if (ret < 0) {
3388 return ret;
3389 } else if (ret > 0) {
3390 /*
3391 * Set logged_trans to a value greater than 0 and less then the
3392 * current transaction to avoid doing the search in future calls.
3393 */
3394 inode->logged_trans = trans->transid - 1;
3395 return 0;
3396 }
3397
3398 /*
3399 * The inode was previously logged and then evicted, set logged_trans to
3400 * the current transacion's ID, to avoid future tree searches as long as
3401 * the inode is not evicted again.
3402 */
3403 inode->logged_trans = trans->transid;
3404
3405 /*
3406 * If it's a directory, then we must set last_dir_index_offset to the
3407 * maximum possible value, so that the next attempt to log the inode does
3408 * not skip checking if dir index keys found in modified subvolume tree
3409 * leaves have been logged before, otherwise it would result in attempts
3410 * to insert duplicate dir index keys in the log tree. This must be done
3411 * because last_dir_index_offset is an in-memory only field, not persisted
3412 * in the inode item or any other on-disk structure, so its value is lost
3413 * once the inode is evicted.
3414 */
3415 if (S_ISDIR(inode->vfs_inode.i_mode))
3416 inode->last_dir_index_offset = (u64)-1;
3417
3418 return 1;
3419 }
3420
3421 /*
3422 * Delete a directory entry from the log if it exists.
3423 *
3424 * Returns < 0 on error
3425 * 1 if the entry does not exists
3426 * 0 if the entry existed and was successfully deleted
3427 */
del_logged_dentry(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dir_ino,const struct fscrypt_str * name,u64 index)3428 static int del_logged_dentry(struct btrfs_trans_handle *trans,
3429 struct btrfs_root *log,
3430 struct btrfs_path *path,
3431 u64 dir_ino,
3432 const struct fscrypt_str *name,
3433 u64 index)
3434 {
3435 struct btrfs_dir_item *di;
3436
3437 /*
3438 * We only log dir index items of a directory, so we don't need to look
3439 * for dir item keys.
3440 */
3441 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3442 index, name, -1);
3443 if (IS_ERR(di))
3444 return PTR_ERR(di);
3445 else if (!di)
3446 return 1;
3447
3448 /*
3449 * We do not need to update the size field of the directory's
3450 * inode item because on log replay we update the field to reflect
3451 * all existing entries in the directory (see overwrite_item()).
3452 */
3453 return btrfs_delete_one_dir_name(trans, log, path, di);
3454 }
3455
3456 /*
3457 * If both a file and directory are logged, and unlinks or renames are
3458 * mixed in, we have a few interesting corners:
3459 *
3460 * create file X in dir Y
3461 * link file X to X.link in dir Y
3462 * fsync file X
3463 * unlink file X but leave X.link
3464 * fsync dir Y
3465 *
3466 * After a crash we would expect only X.link to exist. But file X
3467 * didn't get fsync'd again so the log has back refs for X and X.link.
3468 *
3469 * We solve this by removing directory entries and inode backrefs from the
3470 * log when a file that was logged in the current transaction is
3471 * unlinked. Any later fsync will include the updated log entries, and
3472 * we'll be able to reconstruct the proper directory items from backrefs.
3473 *
3474 * This optimizations allows us to avoid relogging the entire inode
3475 * or the entire directory.
3476 */
btrfs_del_dir_entries_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * dir,u64 index)3477 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3478 struct btrfs_root *root,
3479 const struct fscrypt_str *name,
3480 struct btrfs_inode *dir, u64 index)
3481 {
3482 struct btrfs_path *path;
3483 int ret;
3484
3485 ret = inode_logged(trans, dir, NULL);
3486 if (ret == 0)
3487 return;
3488 else if (ret < 0) {
3489 btrfs_set_log_full_commit(trans);
3490 return;
3491 }
3492
3493 ret = join_running_log_trans(root);
3494 if (ret)
3495 return;
3496
3497 mutex_lock(&dir->log_mutex);
3498
3499 path = btrfs_alloc_path();
3500 if (!path) {
3501 ret = -ENOMEM;
3502 goto out_unlock;
3503 }
3504
3505 ret = del_logged_dentry(trans, root->log_root, path, btrfs_ino(dir),
3506 name, index);
3507 btrfs_free_path(path);
3508 out_unlock:
3509 mutex_unlock(&dir->log_mutex);
3510 if (ret < 0)
3511 btrfs_set_log_full_commit(trans);
3512 btrfs_end_log_trans(root);
3513 }
3514
3515 /* see comments for btrfs_del_dir_entries_in_log */
btrfs_del_inode_ref_in_log(struct btrfs_trans_handle * trans,struct btrfs_root * root,const struct fscrypt_str * name,struct btrfs_inode * inode,u64 dirid)3516 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3517 struct btrfs_root *root,
3518 const struct fscrypt_str *name,
3519 struct btrfs_inode *inode, u64 dirid)
3520 {
3521 struct btrfs_root *log;
3522 u64 index;
3523 int ret;
3524
3525 ret = inode_logged(trans, inode, NULL);
3526 if (ret == 0)
3527 return;
3528 else if (ret < 0) {
3529 btrfs_set_log_full_commit(trans);
3530 return;
3531 }
3532
3533 ret = join_running_log_trans(root);
3534 if (ret)
3535 return;
3536 log = root->log_root;
3537 mutex_lock(&inode->log_mutex);
3538
3539 ret = btrfs_del_inode_ref(trans, log, name, btrfs_ino(inode),
3540 dirid, &index);
3541 mutex_unlock(&inode->log_mutex);
3542 if (ret < 0 && ret != -ENOENT)
3543 btrfs_set_log_full_commit(trans);
3544 btrfs_end_log_trans(root);
3545 }
3546
3547 /*
3548 * creates a range item in the log for 'dirid'. first_offset and
3549 * last_offset tell us which parts of the key space the log should
3550 * be considered authoritative for.
3551 */
insert_dir_log_key(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,u64 dirid,u64 first_offset,u64 last_offset)3552 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3553 struct btrfs_root *log,
3554 struct btrfs_path *path,
3555 u64 dirid,
3556 u64 first_offset, u64 last_offset)
3557 {
3558 int ret;
3559 struct btrfs_key key;
3560 struct btrfs_dir_log_item *item;
3561
3562 key.objectid = dirid;
3563 key.offset = first_offset;
3564 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3565 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3566 /*
3567 * -EEXIST is fine and can happen sporadically when we are logging a
3568 * directory and have concurrent insertions in the subvolume's tree for
3569 * items from other inodes and that result in pushing off some dir items
3570 * from one leaf to another in order to accommodate for the new items.
3571 * This results in logging the same dir index range key.
3572 */
3573 if (ret && ret != -EEXIST)
3574 return ret;
3575
3576 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3577 struct btrfs_dir_log_item);
3578 if (ret == -EEXIST) {
3579 const u64 curr_end = btrfs_dir_log_end(path->nodes[0], item);
3580
3581 /*
3582 * btrfs_del_dir_entries_in_log() might have been called during
3583 * an unlink between the initial insertion of this key and the
3584 * current update, or we might be logging a single entry deletion
3585 * during a rename, so set the new last_offset to the max value.
3586 */
3587 last_offset = max(last_offset, curr_end);
3588 }
3589 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3590 btrfs_release_path(path);
3591 return 0;
3592 }
3593
flush_dir_items_batch(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct extent_buffer * src,struct btrfs_path * dst_path,int start_slot,int count)3594 static int flush_dir_items_batch(struct btrfs_trans_handle *trans,
3595 struct btrfs_inode *inode,
3596 struct extent_buffer *src,
3597 struct btrfs_path *dst_path,
3598 int start_slot,
3599 int count)
3600 {
3601 struct btrfs_root *log = inode->root->log_root;
3602 char *ins_data = NULL;
3603 struct btrfs_item_batch batch;
3604 struct extent_buffer *dst;
3605 unsigned long src_offset;
3606 unsigned long dst_offset;
3607 u64 last_index;
3608 struct btrfs_key key;
3609 u32 item_size;
3610 int ret;
3611 int i;
3612
3613 ASSERT(count > 0);
3614 batch.nr = count;
3615
3616 if (count == 1) {
3617 btrfs_item_key_to_cpu(src, &key, start_slot);
3618 item_size = btrfs_item_size(src, start_slot);
3619 batch.keys = &key;
3620 batch.data_sizes = &item_size;
3621 batch.total_data_size = item_size;
3622 } else {
3623 struct btrfs_key *ins_keys;
3624 u32 *ins_sizes;
3625
3626 ins_data = kmalloc(count * sizeof(u32) +
3627 count * sizeof(struct btrfs_key), GFP_NOFS);
3628 if (!ins_data)
3629 return -ENOMEM;
3630
3631 ins_sizes = (u32 *)ins_data;
3632 ins_keys = (struct btrfs_key *)(ins_data + count * sizeof(u32));
3633 batch.keys = ins_keys;
3634 batch.data_sizes = ins_sizes;
3635 batch.total_data_size = 0;
3636
3637 for (i = 0; i < count; i++) {
3638 const int slot = start_slot + i;
3639
3640 btrfs_item_key_to_cpu(src, &ins_keys[i], slot);
3641 ins_sizes[i] = btrfs_item_size(src, slot);
3642 batch.total_data_size += ins_sizes[i];
3643 }
3644 }
3645
3646 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
3647 if (ret)
3648 goto out;
3649
3650 dst = dst_path->nodes[0];
3651 /*
3652 * Copy all the items in bulk, in a single copy operation. Item data is
3653 * organized such that it's placed at the end of a leaf and from right
3654 * to left. For example, the data for the second item ends at an offset
3655 * that matches the offset where the data for the first item starts, the
3656 * data for the third item ends at an offset that matches the offset
3657 * where the data of the second items starts, and so on.
3658 * Therefore our source and destination start offsets for copy match the
3659 * offsets of the last items (highest slots).
3660 */
3661 dst_offset = btrfs_item_ptr_offset(dst, dst_path->slots[0] + count - 1);
3662 src_offset = btrfs_item_ptr_offset(src, start_slot + count - 1);
3663 copy_extent_buffer(dst, src, dst_offset, src_offset, batch.total_data_size);
3664 btrfs_release_path(dst_path);
3665
3666 last_index = batch.keys[count - 1].offset;
3667 ASSERT(last_index > inode->last_dir_index_offset);
3668
3669 /*
3670 * If for some unexpected reason the last item's index is not greater
3671 * than the last index we logged, warn and force a transaction commit.
3672 */
3673 if (WARN_ON(last_index <= inode->last_dir_index_offset))
3674 ret = BTRFS_LOG_FORCE_COMMIT;
3675 else
3676 inode->last_dir_index_offset = last_index;
3677
3678 if (btrfs_get_first_dir_index_to_log(inode) == 0)
3679 btrfs_set_first_dir_index_to_log(inode, batch.keys[0].offset);
3680 out:
3681 kfree(ins_data);
3682
3683 return ret;
3684 }
3685
clone_leaf(struct btrfs_path * path,struct btrfs_log_ctx * ctx)3686 static int clone_leaf(struct btrfs_path *path, struct btrfs_log_ctx *ctx)
3687 {
3688 const int slot = path->slots[0];
3689
3690 if (ctx->scratch_eb) {
3691 copy_extent_buffer_full(ctx->scratch_eb, path->nodes[0]);
3692 } else {
3693 ctx->scratch_eb = btrfs_clone_extent_buffer(path->nodes[0]);
3694 if (!ctx->scratch_eb)
3695 return -ENOMEM;
3696 }
3697
3698 btrfs_release_path(path);
3699 path->nodes[0] = ctx->scratch_eb;
3700 path->slots[0] = slot;
3701 /*
3702 * Add extra ref to scratch eb so that it is not freed when callers
3703 * release the path, so we can reuse it later if needed.
3704 */
3705 atomic_inc(&ctx->scratch_eb->refs);
3706
3707 return 0;
3708 }
3709
process_dir_items_leaf(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 * last_old_dentry_offset)3710 static int process_dir_items_leaf(struct btrfs_trans_handle *trans,
3711 struct btrfs_inode *inode,
3712 struct btrfs_path *path,
3713 struct btrfs_path *dst_path,
3714 struct btrfs_log_ctx *ctx,
3715 u64 *last_old_dentry_offset)
3716 {
3717 struct btrfs_root *log = inode->root->log_root;
3718 struct extent_buffer *src;
3719 const int nritems = btrfs_header_nritems(path->nodes[0]);
3720 const u64 ino = btrfs_ino(inode);
3721 bool last_found = false;
3722 int batch_start = 0;
3723 int batch_size = 0;
3724 int ret;
3725
3726 /*
3727 * We need to clone the leaf, release the read lock on it, and use the
3728 * clone before modifying the log tree. See the comment at copy_items()
3729 * about why we need to do this.
3730 */
3731 ret = clone_leaf(path, ctx);
3732 if (ret < 0)
3733 return ret;
3734
3735 src = path->nodes[0];
3736
3737 for (int i = path->slots[0]; i < nritems; i++) {
3738 struct btrfs_dir_item *di;
3739 struct btrfs_key key;
3740 int ret;
3741
3742 btrfs_item_key_to_cpu(src, &key, i);
3743
3744 if (key.objectid != ino || key.type != BTRFS_DIR_INDEX_KEY) {
3745 last_found = true;
3746 break;
3747 }
3748
3749 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3750
3751 /*
3752 * Skip ranges of items that consist only of dir item keys created
3753 * in past transactions. However if we find a gap, we must log a
3754 * dir index range item for that gap, so that index keys in that
3755 * gap are deleted during log replay.
3756 */
3757 if (btrfs_dir_transid(src, di) < trans->transid) {
3758 if (key.offset > *last_old_dentry_offset + 1) {
3759 ret = insert_dir_log_key(trans, log, dst_path,
3760 ino, *last_old_dentry_offset + 1,
3761 key.offset - 1);
3762 if (ret < 0)
3763 return ret;
3764 }
3765
3766 *last_old_dentry_offset = key.offset;
3767 continue;
3768 }
3769
3770 /* If we logged this dir index item before, we can skip it. */
3771 if (key.offset <= inode->last_dir_index_offset)
3772 continue;
3773
3774 /*
3775 * We must make sure that when we log a directory entry, the
3776 * corresponding inode, after log replay, has a matching link
3777 * count. For example:
3778 *
3779 * touch foo
3780 * mkdir mydir
3781 * sync
3782 * ln foo mydir/bar
3783 * xfs_io -c "fsync" mydir
3784 * <crash>
3785 * <mount fs and log replay>
3786 *
3787 * Would result in a fsync log that when replayed, our file inode
3788 * would have a link count of 1, but we get two directory entries
3789 * pointing to the same inode. After removing one of the names,
3790 * it would not be possible to remove the other name, which
3791 * resulted always in stale file handle errors, and would not be
3792 * possible to rmdir the parent directory, since its i_size could
3793 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3794 * resulting in -ENOTEMPTY errors.
3795 */
3796 if (!ctx->log_new_dentries) {
3797 struct btrfs_key di_key;
3798
3799 btrfs_dir_item_key_to_cpu(src, di, &di_key);
3800 if (di_key.type != BTRFS_ROOT_ITEM_KEY)
3801 ctx->log_new_dentries = true;
3802 }
3803
3804 if (batch_size == 0)
3805 batch_start = i;
3806 batch_size++;
3807 }
3808
3809 if (batch_size > 0) {
3810 int ret;
3811
3812 ret = flush_dir_items_batch(trans, inode, src, dst_path,
3813 batch_start, batch_size);
3814 if (ret < 0)
3815 return ret;
3816 }
3817
3818 return last_found ? 1 : 0;
3819 }
3820
3821 /*
3822 * log all the items included in the current transaction for a given
3823 * directory. This also creates the range items in the log tree required
3824 * to replay anything deleted before the fsync
3825 */
log_dir_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx,u64 min_offset,u64 * last_offset_ret)3826 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3827 struct btrfs_inode *inode,
3828 struct btrfs_path *path,
3829 struct btrfs_path *dst_path,
3830 struct btrfs_log_ctx *ctx,
3831 u64 min_offset, u64 *last_offset_ret)
3832 {
3833 struct btrfs_key min_key;
3834 struct btrfs_root *root = inode->root;
3835 struct btrfs_root *log = root->log_root;
3836 int ret;
3837 u64 last_old_dentry_offset = min_offset - 1;
3838 u64 last_offset = (u64)-1;
3839 u64 ino = btrfs_ino(inode);
3840
3841 min_key.objectid = ino;
3842 min_key.type = BTRFS_DIR_INDEX_KEY;
3843 min_key.offset = min_offset;
3844
3845 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3846
3847 /*
3848 * we didn't find anything from this transaction, see if there
3849 * is anything at all
3850 */
3851 if (ret != 0 || min_key.objectid != ino ||
3852 min_key.type != BTRFS_DIR_INDEX_KEY) {
3853 min_key.objectid = ino;
3854 min_key.type = BTRFS_DIR_INDEX_KEY;
3855 min_key.offset = (u64)-1;
3856 btrfs_release_path(path);
3857 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3858 if (ret < 0) {
3859 btrfs_release_path(path);
3860 return ret;
3861 }
3862 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3863
3864 /* if ret == 0 there are items for this type,
3865 * create a range to tell us the last key of this type.
3866 * otherwise, there are no items in this directory after
3867 * *min_offset, and we create a range to indicate that.
3868 */
3869 if (ret == 0) {
3870 struct btrfs_key tmp;
3871
3872 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3873 path->slots[0]);
3874 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3875 last_old_dentry_offset = tmp.offset;
3876 } else if (ret > 0) {
3877 ret = 0;
3878 }
3879
3880 goto done;
3881 }
3882
3883 /* go backward to find any previous key */
3884 ret = btrfs_previous_item(root, path, ino, BTRFS_DIR_INDEX_KEY);
3885 if (ret == 0) {
3886 struct btrfs_key tmp;
3887
3888 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3889 /*
3890 * The dir index key before the first one we found that needs to
3891 * be logged might be in a previous leaf, and there might be a
3892 * gap between these keys, meaning that we had deletions that
3893 * happened. So the key range item we log (key type
3894 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3895 * previous key's offset plus 1, so that those deletes are replayed.
3896 */
3897 if (tmp.type == BTRFS_DIR_INDEX_KEY)
3898 last_old_dentry_offset = tmp.offset;
3899 } else if (ret < 0) {
3900 goto done;
3901 }
3902
3903 btrfs_release_path(path);
3904
3905 /*
3906 * Find the first key from this transaction again or the one we were at
3907 * in the loop below in case we had to reschedule. We may be logging the
3908 * directory without holding its VFS lock, which happen when logging new
3909 * dentries (through log_new_dir_dentries()) or in some cases when we
3910 * need to log the parent directory of an inode. This means a dir index
3911 * key might be deleted from the inode's root, and therefore we may not
3912 * find it anymore. If we can't find it, just move to the next key. We
3913 * can not bail out and ignore, because if we do that we will simply
3914 * not log dir index keys that come after the one that was just deleted
3915 * and we can end up logging a dir index range that ends at (u64)-1
3916 * (@last_offset is initialized to that), resulting in removing dir
3917 * entries we should not remove at log replay time.
3918 */
3919 search:
3920 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3921 if (ret > 0) {
3922 ret = btrfs_next_item(root, path);
3923 if (ret > 0) {
3924 /* There are no more keys in the inode's root. */
3925 ret = 0;
3926 goto done;
3927 }
3928 }
3929 if (ret < 0)
3930 goto done;
3931
3932 /*
3933 * we have a block from this transaction, log every item in it
3934 * from our directory
3935 */
3936 while (1) {
3937 ret = process_dir_items_leaf(trans, inode, path, dst_path, ctx,
3938 &last_old_dentry_offset);
3939 if (ret != 0) {
3940 if (ret > 0)
3941 ret = 0;
3942 goto done;
3943 }
3944 path->slots[0] = btrfs_header_nritems(path->nodes[0]);
3945
3946 /*
3947 * look ahead to the next item and see if it is also
3948 * from this directory and from this transaction
3949 */
3950 ret = btrfs_next_leaf(root, path);
3951 if (ret) {
3952 if (ret == 1) {
3953 last_offset = (u64)-1;
3954 ret = 0;
3955 }
3956 goto done;
3957 }
3958 btrfs_item_key_to_cpu(path->nodes[0], &min_key, path->slots[0]);
3959 if (min_key.objectid != ino || min_key.type != BTRFS_DIR_INDEX_KEY) {
3960 last_offset = (u64)-1;
3961 goto done;
3962 }
3963 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3964 /*
3965 * The next leaf was not changed in the current transaction
3966 * and has at least one dir index key.
3967 * We check for the next key because there might have been
3968 * one or more deletions between the last key we logged and
3969 * that next key. So the key range item we log (key type
3970 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3971 * offset minus 1, so that those deletes are replayed.
3972 */
3973 last_offset = min_key.offset - 1;
3974 goto done;
3975 }
3976 if (need_resched()) {
3977 btrfs_release_path(path);
3978 cond_resched();
3979 goto search;
3980 }
3981 }
3982 done:
3983 btrfs_release_path(path);
3984 btrfs_release_path(dst_path);
3985
3986 if (ret == 0) {
3987 *last_offset_ret = last_offset;
3988 /*
3989 * In case the leaf was changed in the current transaction but
3990 * all its dir items are from a past transaction, the last item
3991 * in the leaf is a dir item and there's no gap between that last
3992 * dir item and the first one on the next leaf (which did not
3993 * change in the current transaction), then we don't need to log
3994 * a range, last_old_dentry_offset is == to last_offset.
3995 */
3996 ASSERT(last_old_dentry_offset <= last_offset);
3997 if (last_old_dentry_offset < last_offset)
3998 ret = insert_dir_log_key(trans, log, path, ino,
3999 last_old_dentry_offset + 1,
4000 last_offset);
4001 }
4002
4003 return ret;
4004 }
4005
4006 /*
4007 * If the inode was logged before and it was evicted, then its
4008 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
4009 * key offset. If that's the case, search for it and update the inode. This
4010 * is to avoid lookups in the log tree every time we try to insert a dir index
4011 * key from a leaf changed in the current transaction, and to allow us to always
4012 * do batch insertions of dir index keys.
4013 */
update_last_dir_index_offset(struct btrfs_inode * inode,struct btrfs_path * path,const struct btrfs_log_ctx * ctx)4014 static int update_last_dir_index_offset(struct btrfs_inode *inode,
4015 struct btrfs_path *path,
4016 const struct btrfs_log_ctx *ctx)
4017 {
4018 const u64 ino = btrfs_ino(inode);
4019 struct btrfs_key key;
4020 int ret;
4021
4022 lockdep_assert_held(&inode->log_mutex);
4023
4024 if (inode->last_dir_index_offset != (u64)-1)
4025 return 0;
4026
4027 if (!ctx->logged_before) {
4028 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4029 return 0;
4030 }
4031
4032 key.objectid = ino;
4033 key.type = BTRFS_DIR_INDEX_KEY;
4034 key.offset = (u64)-1;
4035
4036 ret = btrfs_search_slot(NULL, inode->root->log_root, &key, path, 0, 0);
4037 /*
4038 * An error happened or we actually have an index key with an offset
4039 * value of (u64)-1. Bail out, we're done.
4040 */
4041 if (ret <= 0)
4042 goto out;
4043
4044 ret = 0;
4045 inode->last_dir_index_offset = BTRFS_DIR_START_INDEX - 1;
4046
4047 /*
4048 * No dir index items, bail out and leave last_dir_index_offset with
4049 * the value right before the first valid index value.
4050 */
4051 if (path->slots[0] == 0)
4052 goto out;
4053
4054 /*
4055 * btrfs_search_slot() left us at one slot beyond the slot with the last
4056 * index key, or beyond the last key of the directory that is not an
4057 * index key. If we have an index key before, set last_dir_index_offset
4058 * to its offset value, otherwise leave it with a value right before the
4059 * first valid index value, as it means we have an empty directory.
4060 */
4061 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4062 if (key.objectid == ino && key.type == BTRFS_DIR_INDEX_KEY)
4063 inode->last_dir_index_offset = key.offset;
4064
4065 out:
4066 btrfs_release_path(path);
4067
4068 return ret;
4069 }
4070
4071 /*
4072 * logging directories is very similar to logging inodes, We find all the items
4073 * from the current transaction and write them to the log.
4074 *
4075 * The recovery code scans the directory in the subvolume, and if it finds a
4076 * key in the range logged that is not present in the log tree, then it means
4077 * that dir entry was unlinked during the transaction.
4078 *
4079 * In order for that scan to work, we must include one key smaller than
4080 * the smallest logged by this transaction and one key larger than the largest
4081 * key logged by this transaction.
4082 */
log_directory_changes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)4083 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
4084 struct btrfs_inode *inode,
4085 struct btrfs_path *path,
4086 struct btrfs_path *dst_path,
4087 struct btrfs_log_ctx *ctx)
4088 {
4089 u64 min_key;
4090 u64 max_key;
4091 int ret;
4092
4093 ret = update_last_dir_index_offset(inode, path, ctx);
4094 if (ret)
4095 return ret;
4096
4097 min_key = BTRFS_DIR_START_INDEX;
4098 max_key = 0;
4099
4100 while (1) {
4101 ret = log_dir_items(trans, inode, path, dst_path,
4102 ctx, min_key, &max_key);
4103 if (ret)
4104 return ret;
4105 if (max_key == (u64)-1)
4106 break;
4107 min_key = max_key + 1;
4108 }
4109
4110 return 0;
4111 }
4112
4113 /*
4114 * a helper function to drop items from the log before we relog an
4115 * inode. max_key_type indicates the highest item type to remove.
4116 * This cannot be run for file data extents because it does not
4117 * free the extents they point to.
4118 */
drop_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,int max_key_type)4119 static int drop_inode_items(struct btrfs_trans_handle *trans,
4120 struct btrfs_root *log,
4121 struct btrfs_path *path,
4122 struct btrfs_inode *inode,
4123 int max_key_type)
4124 {
4125 int ret;
4126 struct btrfs_key key;
4127 struct btrfs_key found_key;
4128 int start_slot;
4129
4130 key.objectid = btrfs_ino(inode);
4131 key.type = max_key_type;
4132 key.offset = (u64)-1;
4133
4134 while (1) {
4135 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
4136 if (ret < 0) {
4137 break;
4138 } else if (ret > 0) {
4139 if (path->slots[0] == 0)
4140 break;
4141 path->slots[0]--;
4142 }
4143
4144 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
4145 path->slots[0]);
4146
4147 if (found_key.objectid != key.objectid)
4148 break;
4149
4150 found_key.offset = 0;
4151 found_key.type = 0;
4152 ret = btrfs_bin_search(path->nodes[0], 0, &found_key, &start_slot);
4153 if (ret < 0)
4154 break;
4155
4156 ret = btrfs_del_items(trans, log, path, start_slot,
4157 path->slots[0] - start_slot + 1);
4158 /*
4159 * If start slot isn't 0 then we don't need to re-search, we've
4160 * found the last guy with the objectid in this tree.
4161 */
4162 if (ret || start_slot != 0)
4163 break;
4164 btrfs_release_path(path);
4165 }
4166 btrfs_release_path(path);
4167 if (ret > 0)
4168 ret = 0;
4169 return ret;
4170 }
4171
truncate_inode_items(struct btrfs_trans_handle * trans,struct btrfs_root * log_root,struct btrfs_inode * inode,u64 new_size,u32 min_type)4172 static int truncate_inode_items(struct btrfs_trans_handle *trans,
4173 struct btrfs_root *log_root,
4174 struct btrfs_inode *inode,
4175 u64 new_size, u32 min_type)
4176 {
4177 struct btrfs_truncate_control control = {
4178 .new_size = new_size,
4179 .ino = btrfs_ino(inode),
4180 .min_type = min_type,
4181 .skip_ref_updates = true,
4182 };
4183
4184 return btrfs_truncate_inode_items(trans, log_root, &control);
4185 }
4186
fill_inode_item(struct btrfs_trans_handle * trans,struct extent_buffer * leaf,struct btrfs_inode_item * item,struct inode * inode,int log_inode_only,u64 logged_isize)4187 static void fill_inode_item(struct btrfs_trans_handle *trans,
4188 struct extent_buffer *leaf,
4189 struct btrfs_inode_item *item,
4190 struct inode *inode, int log_inode_only,
4191 u64 logged_isize)
4192 {
4193 struct btrfs_map_token token;
4194 u64 flags;
4195
4196 btrfs_init_map_token(&token, leaf);
4197
4198 if (log_inode_only) {
4199 /* set the generation to zero so the recover code
4200 * can tell the difference between an logging
4201 * just to say 'this inode exists' and a logging
4202 * to say 'update this inode with these values'
4203 */
4204 btrfs_set_token_inode_generation(&token, item, 0);
4205 btrfs_set_token_inode_size(&token, item, logged_isize);
4206 } else {
4207 btrfs_set_token_inode_generation(&token, item,
4208 BTRFS_I(inode)->generation);
4209 btrfs_set_token_inode_size(&token, item, inode->i_size);
4210 }
4211
4212 btrfs_set_token_inode_uid(&token, item, i_uid_read(inode));
4213 btrfs_set_token_inode_gid(&token, item, i_gid_read(inode));
4214 btrfs_set_token_inode_mode(&token, item, inode->i_mode);
4215 btrfs_set_token_inode_nlink(&token, item, inode->i_nlink);
4216
4217 btrfs_set_token_timespec_sec(&token, &item->atime,
4218 inode_get_atime_sec(inode));
4219 btrfs_set_token_timespec_nsec(&token, &item->atime,
4220 inode_get_atime_nsec(inode));
4221
4222 btrfs_set_token_timespec_sec(&token, &item->mtime,
4223 inode_get_mtime_sec(inode));
4224 btrfs_set_token_timespec_nsec(&token, &item->mtime,
4225 inode_get_mtime_nsec(inode));
4226
4227 btrfs_set_token_timespec_sec(&token, &item->ctime,
4228 inode_get_ctime_sec(inode));
4229 btrfs_set_token_timespec_nsec(&token, &item->ctime,
4230 inode_get_ctime_nsec(inode));
4231
4232 /*
4233 * We do not need to set the nbytes field, in fact during a fast fsync
4234 * its value may not even be correct, since a fast fsync does not wait
4235 * for ordered extent completion, which is where we update nbytes, it
4236 * only waits for writeback to complete. During log replay as we find
4237 * file extent items and replay them, we adjust the nbytes field of the
4238 * inode item in subvolume tree as needed (see overwrite_item()).
4239 */
4240
4241 btrfs_set_token_inode_sequence(&token, item, inode_peek_iversion(inode));
4242 btrfs_set_token_inode_transid(&token, item, trans->transid);
4243 btrfs_set_token_inode_rdev(&token, item, inode->i_rdev);
4244 flags = btrfs_inode_combine_flags(BTRFS_I(inode)->flags,
4245 BTRFS_I(inode)->ro_flags);
4246 btrfs_set_token_inode_flags(&token, item, flags);
4247 btrfs_set_token_inode_block_group(&token, item, 0);
4248 }
4249
log_inode_item(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,struct btrfs_inode * inode,bool inode_item_dropped)4250 static int log_inode_item(struct btrfs_trans_handle *trans,
4251 struct btrfs_root *log, struct btrfs_path *path,
4252 struct btrfs_inode *inode, bool inode_item_dropped)
4253 {
4254 struct btrfs_inode_item *inode_item;
4255 struct btrfs_key key;
4256 int ret;
4257
4258 btrfs_get_inode_key(inode, &key);
4259 /*
4260 * If we are doing a fast fsync and the inode was logged before in the
4261 * current transaction, then we know the inode was previously logged and
4262 * it exists in the log tree. For performance reasons, in this case use
4263 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4264 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4265 * contention in case there are concurrent fsyncs for other inodes of the
4266 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4267 * already exists can also result in unnecessarily splitting a leaf.
4268 */
4269 if (!inode_item_dropped && inode->logged_trans == trans->transid) {
4270 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
4271 ASSERT(ret <= 0);
4272 if (ret > 0)
4273 ret = -ENOENT;
4274 } else {
4275 /*
4276 * This means it is the first fsync in the current transaction,
4277 * so the inode item is not in the log and we need to insert it.
4278 * We can never get -EEXIST because we are only called for a fast
4279 * fsync and in case an inode eviction happens after the inode was
4280 * logged before in the current transaction, when we load again
4281 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4282 * flags and set ->logged_trans to 0.
4283 */
4284 ret = btrfs_insert_empty_item(trans, log, path, &key,
4285 sizeof(*inode_item));
4286 ASSERT(ret != -EEXIST);
4287 }
4288 if (ret)
4289 return ret;
4290 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4291 struct btrfs_inode_item);
4292 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
4293 0, 0);
4294 btrfs_release_path(path);
4295 return 0;
4296 }
4297
log_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,struct btrfs_ordered_sum * sums)4298 static int log_csums(struct btrfs_trans_handle *trans,
4299 struct btrfs_inode *inode,
4300 struct btrfs_root *log_root,
4301 struct btrfs_ordered_sum *sums)
4302 {
4303 const u64 lock_end = sums->logical + sums->len - 1;
4304 struct extent_state *cached_state = NULL;
4305 int ret;
4306
4307 /*
4308 * If this inode was not used for reflink operations in the current
4309 * transaction with new extents, then do the fast path, no need to
4310 * worry about logging checksum items with overlapping ranges.
4311 */
4312 if (inode->last_reflink_trans < trans->transid)
4313 return btrfs_csum_file_blocks(trans, log_root, sums);
4314
4315 /*
4316 * Serialize logging for checksums. This is to avoid racing with the
4317 * same checksum being logged by another task that is logging another
4318 * file which happens to refer to the same extent as well. Such races
4319 * can leave checksum items in the log with overlapping ranges.
4320 */
4321 ret = lock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4322 &cached_state);
4323 if (ret)
4324 return ret;
4325 /*
4326 * Due to extent cloning, we might have logged a csum item that covers a
4327 * subrange of a cloned extent, and later we can end up logging a csum
4328 * item for a larger subrange of the same extent or the entire range.
4329 * This would leave csum items in the log tree that cover the same range
4330 * and break the searches for checksums in the log tree, resulting in
4331 * some checksums missing in the fs/subvolume tree. So just delete (or
4332 * trim and adjust) any existing csum items in the log for this range.
4333 */
4334 ret = btrfs_del_csums(trans, log_root, sums->logical, sums->len);
4335 if (!ret)
4336 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4337
4338 unlock_extent(&log_root->log_csum_range, sums->logical, lock_end,
4339 &cached_state);
4340
4341 return ret;
4342 }
4343
copy_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * dst_path,struct btrfs_path * src_path,int start_slot,int nr,int inode_only,u64 logged_isize,struct btrfs_log_ctx * ctx)4344 static noinline int copy_items(struct btrfs_trans_handle *trans,
4345 struct btrfs_inode *inode,
4346 struct btrfs_path *dst_path,
4347 struct btrfs_path *src_path,
4348 int start_slot, int nr, int inode_only,
4349 u64 logged_isize, struct btrfs_log_ctx *ctx)
4350 {
4351 struct btrfs_root *log = inode->root->log_root;
4352 struct btrfs_file_extent_item *extent;
4353 struct extent_buffer *src;
4354 int ret;
4355 struct btrfs_key *ins_keys;
4356 u32 *ins_sizes;
4357 struct btrfs_item_batch batch;
4358 char *ins_data;
4359 int dst_index;
4360 const bool skip_csum = (inode->flags & BTRFS_INODE_NODATASUM);
4361 const u64 i_size = i_size_read(&inode->vfs_inode);
4362
4363 /*
4364 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4365 * use the clone. This is because otherwise we would be changing the log
4366 * tree, to insert items from the subvolume tree or insert csum items,
4367 * while holding a read lock on a leaf from the subvolume tree, which
4368 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4369 *
4370 * 1) Modifying the log tree triggers an extent buffer allocation while
4371 * holding a write lock on a parent extent buffer from the log tree.
4372 * Allocating the pages for an extent buffer, or the extent buffer
4373 * struct, can trigger inode eviction and finally the inode eviction
4374 * will trigger a release/remove of a delayed node, which requires
4375 * taking the delayed node's mutex;
4376 *
4377 * 2) Allocating a metadata extent for a log tree can trigger the async
4378 * reclaim thread and make us wait for it to release enough space and
4379 * unblock our reservation ticket. The reclaim thread can start
4380 * flushing delayed items, and that in turn results in the need to
4381 * lock delayed node mutexes and in the need to write lock extent
4382 * buffers of a subvolume tree - all this while holding a write lock
4383 * on the parent extent buffer in the log tree.
4384 *
4385 * So one task in scenario 1) running in parallel with another task in
4386 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4387 * node mutex while having a read lock on a leaf from the subvolume,
4388 * while the other is holding the delayed node's mutex and wants to
4389 * write lock the same subvolume leaf for flushing delayed items.
4390 */
4391 ret = clone_leaf(src_path, ctx);
4392 if (ret < 0)
4393 return ret;
4394
4395 src = src_path->nodes[0];
4396
4397 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
4398 nr * sizeof(u32), GFP_NOFS);
4399 if (!ins_data)
4400 return -ENOMEM;
4401
4402 ins_sizes = (u32 *)ins_data;
4403 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
4404 batch.keys = ins_keys;
4405 batch.data_sizes = ins_sizes;
4406 batch.total_data_size = 0;
4407 batch.nr = 0;
4408
4409 dst_index = 0;
4410 for (int i = 0; i < nr; i++) {
4411 const int src_slot = start_slot + i;
4412 struct btrfs_root *csum_root;
4413 struct btrfs_ordered_sum *sums;
4414 struct btrfs_ordered_sum *sums_next;
4415 LIST_HEAD(ordered_sums);
4416 u64 disk_bytenr;
4417 u64 disk_num_bytes;
4418 u64 extent_offset;
4419 u64 extent_num_bytes;
4420 bool is_old_extent;
4421
4422 btrfs_item_key_to_cpu(src, &ins_keys[dst_index], src_slot);
4423
4424 if (ins_keys[dst_index].type != BTRFS_EXTENT_DATA_KEY)
4425 goto add_to_batch;
4426
4427 extent = btrfs_item_ptr(src, src_slot,
4428 struct btrfs_file_extent_item);
4429
4430 is_old_extent = (btrfs_file_extent_generation(src, extent) <
4431 trans->transid);
4432
4433 /*
4434 * Don't copy extents from past generations. That would make us
4435 * log a lot more metadata for common cases like doing only a
4436 * few random writes into a file and then fsync it for the first
4437 * time or after the full sync flag is set on the inode. We can
4438 * get leaves full of extent items, most of which are from past
4439 * generations, so we can skip them - as long as the inode has
4440 * not been the target of a reflink operation in this transaction,
4441 * as in that case it might have had file extent items with old
4442 * generations copied into it. We also must always log prealloc
4443 * extents that start at or beyond eof, otherwise we would lose
4444 * them on log replay.
4445 */
4446 if (is_old_extent &&
4447 ins_keys[dst_index].offset < i_size &&
4448 inode->last_reflink_trans < trans->transid)
4449 continue;
4450
4451 if (skip_csum)
4452 goto add_to_batch;
4453
4454 /* Only regular extents have checksums. */
4455 if (btrfs_file_extent_type(src, extent) != BTRFS_FILE_EXTENT_REG)
4456 goto add_to_batch;
4457
4458 /*
4459 * If it's an extent created in a past transaction, then its
4460 * checksums are already accessible from the committed csum tree,
4461 * no need to log them.
4462 */
4463 if (is_old_extent)
4464 goto add_to_batch;
4465
4466 disk_bytenr = btrfs_file_extent_disk_bytenr(src, extent);
4467 /* If it's an explicit hole, there are no checksums. */
4468 if (disk_bytenr == 0)
4469 goto add_to_batch;
4470
4471 disk_num_bytes = btrfs_file_extent_disk_num_bytes(src, extent);
4472
4473 if (btrfs_file_extent_compression(src, extent)) {
4474 extent_offset = 0;
4475 extent_num_bytes = disk_num_bytes;
4476 } else {
4477 extent_offset = btrfs_file_extent_offset(src, extent);
4478 extent_num_bytes = btrfs_file_extent_num_bytes(src, extent);
4479 }
4480
4481 csum_root = btrfs_csum_root(trans->fs_info, disk_bytenr);
4482 disk_bytenr += extent_offset;
4483 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4484 disk_bytenr + extent_num_bytes - 1,
4485 &ordered_sums, false);
4486 if (ret < 0)
4487 goto out;
4488 ret = 0;
4489
4490 list_for_each_entry_safe(sums, sums_next, &ordered_sums, list) {
4491 if (!ret)
4492 ret = log_csums(trans, inode, log, sums);
4493 list_del(&sums->list);
4494 kfree(sums);
4495 }
4496 if (ret)
4497 goto out;
4498
4499 add_to_batch:
4500 ins_sizes[dst_index] = btrfs_item_size(src, src_slot);
4501 batch.total_data_size += ins_sizes[dst_index];
4502 batch.nr++;
4503 dst_index++;
4504 }
4505
4506 /*
4507 * We have a leaf full of old extent items that don't need to be logged,
4508 * so we don't need to do anything.
4509 */
4510 if (batch.nr == 0)
4511 goto out;
4512
4513 ret = btrfs_insert_empty_items(trans, log, dst_path, &batch);
4514 if (ret)
4515 goto out;
4516
4517 dst_index = 0;
4518 for (int i = 0; i < nr; i++) {
4519 const int src_slot = start_slot + i;
4520 const int dst_slot = dst_path->slots[0] + dst_index;
4521 struct btrfs_key key;
4522 unsigned long src_offset;
4523 unsigned long dst_offset;
4524
4525 /*
4526 * We're done, all the remaining items in the source leaf
4527 * correspond to old file extent items.
4528 */
4529 if (dst_index >= batch.nr)
4530 break;
4531
4532 btrfs_item_key_to_cpu(src, &key, src_slot);
4533
4534 if (key.type != BTRFS_EXTENT_DATA_KEY)
4535 goto copy_item;
4536
4537 extent = btrfs_item_ptr(src, src_slot,
4538 struct btrfs_file_extent_item);
4539
4540 /* See the comment in the previous loop, same logic. */
4541 if (btrfs_file_extent_generation(src, extent) < trans->transid &&
4542 key.offset < i_size &&
4543 inode->last_reflink_trans < trans->transid)
4544 continue;
4545
4546 copy_item:
4547 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0], dst_slot);
4548 src_offset = btrfs_item_ptr_offset(src, src_slot);
4549
4550 if (key.type == BTRFS_INODE_ITEM_KEY) {
4551 struct btrfs_inode_item *inode_item;
4552
4553 inode_item = btrfs_item_ptr(dst_path->nodes[0], dst_slot,
4554 struct btrfs_inode_item);
4555 fill_inode_item(trans, dst_path->nodes[0], inode_item,
4556 &inode->vfs_inode,
4557 inode_only == LOG_INODE_EXISTS,
4558 logged_isize);
4559 } else {
4560 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
4561 src_offset, ins_sizes[dst_index]);
4562 }
4563
4564 dst_index++;
4565 }
4566
4567 btrfs_release_path(dst_path);
4568 out:
4569 kfree(ins_data);
4570
4571 return ret;
4572 }
4573
extent_cmp(void * priv,const struct list_head * a,const struct list_head * b)4574 static int extent_cmp(void *priv, const struct list_head *a,
4575 const struct list_head *b)
4576 {
4577 const struct extent_map *em1, *em2;
4578
4579 em1 = list_entry(a, struct extent_map, list);
4580 em2 = list_entry(b, struct extent_map, list);
4581
4582 if (em1->start < em2->start)
4583 return -1;
4584 else if (em1->start > em2->start)
4585 return 1;
4586 return 0;
4587 }
4588
log_extent_csums(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_root * log_root,const struct extent_map * em,struct btrfs_log_ctx * ctx)4589 static int log_extent_csums(struct btrfs_trans_handle *trans,
4590 struct btrfs_inode *inode,
4591 struct btrfs_root *log_root,
4592 const struct extent_map *em,
4593 struct btrfs_log_ctx *ctx)
4594 {
4595 struct btrfs_ordered_extent *ordered;
4596 struct btrfs_root *csum_root;
4597 u64 block_start;
4598 u64 csum_offset;
4599 u64 csum_len;
4600 u64 mod_start = em->start;
4601 u64 mod_len = em->len;
4602 LIST_HEAD(ordered_sums);
4603 int ret = 0;
4604
4605 if (inode->flags & BTRFS_INODE_NODATASUM ||
4606 (em->flags & EXTENT_FLAG_PREALLOC) ||
4607 em->disk_bytenr == EXTENT_MAP_HOLE)
4608 return 0;
4609
4610 list_for_each_entry(ordered, &ctx->ordered_extents, log_list) {
4611 const u64 ordered_end = ordered->file_offset + ordered->num_bytes;
4612 const u64 mod_end = mod_start + mod_len;
4613 struct btrfs_ordered_sum *sums;
4614
4615 if (mod_len == 0)
4616 break;
4617
4618 if (ordered_end <= mod_start)
4619 continue;
4620 if (mod_end <= ordered->file_offset)
4621 break;
4622
4623 /*
4624 * We are going to copy all the csums on this ordered extent, so
4625 * go ahead and adjust mod_start and mod_len in case this ordered
4626 * extent has already been logged.
4627 */
4628 if (ordered->file_offset > mod_start) {
4629 if (ordered_end >= mod_end)
4630 mod_len = ordered->file_offset - mod_start;
4631 /*
4632 * If we have this case
4633 *
4634 * |--------- logged extent ---------|
4635 * |----- ordered extent ----|
4636 *
4637 * Just don't mess with mod_start and mod_len, we'll
4638 * just end up logging more csums than we need and it
4639 * will be ok.
4640 */
4641 } else {
4642 if (ordered_end < mod_end) {
4643 mod_len = mod_end - ordered_end;
4644 mod_start = ordered_end;
4645 } else {
4646 mod_len = 0;
4647 }
4648 }
4649
4650 /*
4651 * To keep us from looping for the above case of an ordered
4652 * extent that falls inside of the logged extent.
4653 */
4654 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM, &ordered->flags))
4655 continue;
4656
4657 list_for_each_entry(sums, &ordered->list, list) {
4658 ret = log_csums(trans, inode, log_root, sums);
4659 if (ret)
4660 return ret;
4661 }
4662 }
4663
4664 /* We're done, found all csums in the ordered extents. */
4665 if (mod_len == 0)
4666 return 0;
4667
4668 /* If we're compressed we have to save the entire range of csums. */
4669 if (extent_map_is_compressed(em)) {
4670 csum_offset = 0;
4671 csum_len = em->disk_num_bytes;
4672 } else {
4673 csum_offset = mod_start - em->start;
4674 csum_len = mod_len;
4675 }
4676
4677 /* block start is already adjusted for the file extent offset. */
4678 block_start = extent_map_block_start(em);
4679 csum_root = btrfs_csum_root(trans->fs_info, block_start);
4680 ret = btrfs_lookup_csums_list(csum_root, block_start + csum_offset,
4681 block_start + csum_offset + csum_len - 1,
4682 &ordered_sums, false);
4683 if (ret < 0)
4684 return ret;
4685 ret = 0;
4686
4687 while (!list_empty(&ordered_sums)) {
4688 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4689 struct btrfs_ordered_sum,
4690 list);
4691 if (!ret)
4692 ret = log_csums(trans, inode, log_root, sums);
4693 list_del(&sums->list);
4694 kfree(sums);
4695 }
4696
4697 return ret;
4698 }
4699
log_one_extent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct extent_map * em,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4700 static int log_one_extent(struct btrfs_trans_handle *trans,
4701 struct btrfs_inode *inode,
4702 const struct extent_map *em,
4703 struct btrfs_path *path,
4704 struct btrfs_log_ctx *ctx)
4705 {
4706 struct btrfs_drop_extents_args drop_args = { 0 };
4707 struct btrfs_root *log = inode->root->log_root;
4708 struct btrfs_file_extent_item fi = { 0 };
4709 struct extent_buffer *leaf;
4710 struct btrfs_key key;
4711 enum btrfs_compression_type compress_type;
4712 u64 extent_offset = em->offset;
4713 u64 block_start = extent_map_block_start(em);
4714 u64 block_len;
4715 int ret;
4716
4717 btrfs_set_stack_file_extent_generation(&fi, trans->transid);
4718 if (em->flags & EXTENT_FLAG_PREALLOC)
4719 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_PREALLOC);
4720 else
4721 btrfs_set_stack_file_extent_type(&fi, BTRFS_FILE_EXTENT_REG);
4722
4723 block_len = em->disk_num_bytes;
4724 compress_type = extent_map_compression(em);
4725 if (compress_type != BTRFS_COMPRESS_NONE) {
4726 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start);
4727 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4728 } else if (em->disk_bytenr < EXTENT_MAP_LAST_BYTE) {
4729 btrfs_set_stack_file_extent_disk_bytenr(&fi, block_start - extent_offset);
4730 btrfs_set_stack_file_extent_disk_num_bytes(&fi, block_len);
4731 }
4732
4733 btrfs_set_stack_file_extent_offset(&fi, extent_offset);
4734 btrfs_set_stack_file_extent_num_bytes(&fi, em->len);
4735 btrfs_set_stack_file_extent_ram_bytes(&fi, em->ram_bytes);
4736 btrfs_set_stack_file_extent_compression(&fi, compress_type);
4737
4738 ret = log_extent_csums(trans, inode, log, em, ctx);
4739 if (ret)
4740 return ret;
4741
4742 /*
4743 * If this is the first time we are logging the inode in the current
4744 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4745 * because it does a deletion search, which always acquires write locks
4746 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4747 * but also adds significant contention in a log tree, since log trees
4748 * are small, with a root at level 2 or 3 at most, due to their short
4749 * life span.
4750 */
4751 if (ctx->logged_before) {
4752 drop_args.path = path;
4753 drop_args.start = em->start;
4754 drop_args.end = em->start + em->len;
4755 drop_args.replace_extent = true;
4756 drop_args.extent_item_size = sizeof(fi);
4757 ret = btrfs_drop_extents(trans, log, inode, &drop_args);
4758 if (ret)
4759 return ret;
4760 }
4761
4762 if (!drop_args.extent_inserted) {
4763 key.objectid = btrfs_ino(inode);
4764 key.type = BTRFS_EXTENT_DATA_KEY;
4765 key.offset = em->start;
4766
4767 ret = btrfs_insert_empty_item(trans, log, path, &key,
4768 sizeof(fi));
4769 if (ret)
4770 return ret;
4771 }
4772 leaf = path->nodes[0];
4773 write_extent_buffer(leaf, &fi,
4774 btrfs_item_ptr_offset(leaf, path->slots[0]),
4775 sizeof(fi));
4776
4777 btrfs_release_path(path);
4778
4779 return ret;
4780 }
4781
4782 /*
4783 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4784 * lose them after doing a full/fast fsync and replaying the log. We scan the
4785 * subvolume's root instead of iterating the inode's extent map tree because
4786 * otherwise we can log incorrect extent items based on extent map conversion.
4787 * That can happen due to the fact that extent maps are merged when they
4788 * are not in the extent map tree's list of modified extents.
4789 */
btrfs_log_prealloc_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4790 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4791 struct btrfs_inode *inode,
4792 struct btrfs_path *path,
4793 struct btrfs_log_ctx *ctx)
4794 {
4795 struct btrfs_root *root = inode->root;
4796 struct btrfs_key key;
4797 const u64 i_size = i_size_read(&inode->vfs_inode);
4798 const u64 ino = btrfs_ino(inode);
4799 struct btrfs_path *dst_path = NULL;
4800 bool dropped_extents = false;
4801 u64 truncate_offset = i_size;
4802 struct extent_buffer *leaf;
4803 int slot;
4804 int ins_nr = 0;
4805 int start_slot = 0;
4806 int ret;
4807
4808 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4809 return 0;
4810
4811 key.objectid = ino;
4812 key.type = BTRFS_EXTENT_DATA_KEY;
4813 key.offset = i_size;
4814 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4815 if (ret < 0)
4816 goto out;
4817
4818 /*
4819 * We must check if there is a prealloc extent that starts before the
4820 * i_size and crosses the i_size boundary. This is to ensure later we
4821 * truncate down to the end of that extent and not to the i_size, as
4822 * otherwise we end up losing part of the prealloc extent after a log
4823 * replay and with an implicit hole if there is another prealloc extent
4824 * that starts at an offset beyond i_size.
4825 */
4826 ret = btrfs_previous_item(root, path, ino, BTRFS_EXTENT_DATA_KEY);
4827 if (ret < 0)
4828 goto out;
4829
4830 if (ret == 0) {
4831 struct btrfs_file_extent_item *ei;
4832
4833 leaf = path->nodes[0];
4834 slot = path->slots[0];
4835 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4836
4837 if (btrfs_file_extent_type(leaf, ei) ==
4838 BTRFS_FILE_EXTENT_PREALLOC) {
4839 u64 extent_end;
4840
4841 btrfs_item_key_to_cpu(leaf, &key, slot);
4842 extent_end = key.offset +
4843 btrfs_file_extent_num_bytes(leaf, ei);
4844
4845 if (extent_end > i_size)
4846 truncate_offset = extent_end;
4847 }
4848 } else {
4849 ret = 0;
4850 }
4851
4852 while (true) {
4853 leaf = path->nodes[0];
4854 slot = path->slots[0];
4855
4856 if (slot >= btrfs_header_nritems(leaf)) {
4857 if (ins_nr > 0) {
4858 ret = copy_items(trans, inode, dst_path, path,
4859 start_slot, ins_nr, 1, 0, ctx);
4860 if (ret < 0)
4861 goto out;
4862 ins_nr = 0;
4863 }
4864 ret = btrfs_next_leaf(root, path);
4865 if (ret < 0)
4866 goto out;
4867 if (ret > 0) {
4868 ret = 0;
4869 break;
4870 }
4871 continue;
4872 }
4873
4874 btrfs_item_key_to_cpu(leaf, &key, slot);
4875 if (key.objectid > ino)
4876 break;
4877 if (WARN_ON_ONCE(key.objectid < ino) ||
4878 key.type < BTRFS_EXTENT_DATA_KEY ||
4879 key.offset < i_size) {
4880 path->slots[0]++;
4881 continue;
4882 }
4883 /*
4884 * Avoid overlapping items in the log tree. The first time we
4885 * get here, get rid of everything from a past fsync. After
4886 * that, if the current extent starts before the end of the last
4887 * extent we copied, truncate the last one. This can happen if
4888 * an ordered extent completion modifies the subvolume tree
4889 * while btrfs_next_leaf() has the tree unlocked.
4890 */
4891 if (!dropped_extents || key.offset < truncate_offset) {
4892 ret = truncate_inode_items(trans, root->log_root, inode,
4893 min(key.offset, truncate_offset),
4894 BTRFS_EXTENT_DATA_KEY);
4895 if (ret)
4896 goto out;
4897 dropped_extents = true;
4898 }
4899 truncate_offset = btrfs_file_extent_end(path);
4900 if (ins_nr == 0)
4901 start_slot = slot;
4902 ins_nr++;
4903 path->slots[0]++;
4904 if (!dst_path) {
4905 dst_path = btrfs_alloc_path();
4906 if (!dst_path) {
4907 ret = -ENOMEM;
4908 goto out;
4909 }
4910 }
4911 }
4912 if (ins_nr > 0)
4913 ret = copy_items(trans, inode, dst_path, path,
4914 start_slot, ins_nr, 1, 0, ctx);
4915 out:
4916 btrfs_release_path(path);
4917 btrfs_free_path(dst_path);
4918 return ret;
4919 }
4920
btrfs_log_changed_extents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_log_ctx * ctx)4921 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4922 struct btrfs_inode *inode,
4923 struct btrfs_path *path,
4924 struct btrfs_log_ctx *ctx)
4925 {
4926 struct btrfs_ordered_extent *ordered;
4927 struct btrfs_ordered_extent *tmp;
4928 struct extent_map *em, *n;
4929 LIST_HEAD(extents);
4930 struct extent_map_tree *tree = &inode->extent_tree;
4931 int ret = 0;
4932 int num = 0;
4933
4934 write_lock(&tree->lock);
4935
4936 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4937 list_del_init(&em->list);
4938 /*
4939 * Just an arbitrary number, this can be really CPU intensive
4940 * once we start getting a lot of extents, and really once we
4941 * have a bunch of extents we just want to commit since it will
4942 * be faster.
4943 */
4944 if (++num > 32768) {
4945 list_del_init(&tree->modified_extents);
4946 ret = -EFBIG;
4947 goto process;
4948 }
4949
4950 if (em->generation < trans->transid)
4951 continue;
4952
4953 /* We log prealloc extents beyond eof later. */
4954 if ((em->flags & EXTENT_FLAG_PREALLOC) &&
4955 em->start >= i_size_read(&inode->vfs_inode))
4956 continue;
4957
4958 /* Need a ref to keep it from getting evicted from cache */
4959 refcount_inc(&em->refs);
4960 em->flags |= EXTENT_FLAG_LOGGING;
4961 list_add_tail(&em->list, &extents);
4962 num++;
4963 }
4964
4965 list_sort(NULL, &extents, extent_cmp);
4966 process:
4967 while (!list_empty(&extents)) {
4968 em = list_entry(extents.next, struct extent_map, list);
4969
4970 list_del_init(&em->list);
4971
4972 /*
4973 * If we had an error we just need to delete everybody from our
4974 * private list.
4975 */
4976 if (ret) {
4977 clear_em_logging(inode, em);
4978 free_extent_map(em);
4979 continue;
4980 }
4981
4982 write_unlock(&tree->lock);
4983
4984 ret = log_one_extent(trans, inode, em, path, ctx);
4985 write_lock(&tree->lock);
4986 clear_em_logging(inode, em);
4987 free_extent_map(em);
4988 }
4989 WARN_ON(!list_empty(&extents));
4990 write_unlock(&tree->lock);
4991
4992 if (!ret)
4993 ret = btrfs_log_prealloc_extents(trans, inode, path, ctx);
4994 if (ret)
4995 return ret;
4996
4997 /*
4998 * We have logged all extents successfully, now make sure the commit of
4999 * the current transaction waits for the ordered extents to complete
5000 * before it commits and wipes out the log trees, otherwise we would
5001 * lose data if an ordered extents completes after the transaction
5002 * commits and a power failure happens after the transaction commit.
5003 */
5004 list_for_each_entry_safe(ordered, tmp, &ctx->ordered_extents, log_list) {
5005 list_del_init(&ordered->log_list);
5006 set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags);
5007
5008 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5009 spin_lock_irq(&inode->ordered_tree_lock);
5010 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
5011 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
5012 atomic_inc(&trans->transaction->pending_ordered);
5013 }
5014 spin_unlock_irq(&inode->ordered_tree_lock);
5015 }
5016 btrfs_put_ordered_extent(ordered);
5017 }
5018
5019 return 0;
5020 }
5021
logged_inode_size(struct btrfs_root * log,struct btrfs_inode * inode,struct btrfs_path * path,u64 * size_ret)5022 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
5023 struct btrfs_path *path, u64 *size_ret)
5024 {
5025 struct btrfs_key key;
5026 int ret;
5027
5028 key.objectid = btrfs_ino(inode);
5029 key.type = BTRFS_INODE_ITEM_KEY;
5030 key.offset = 0;
5031
5032 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
5033 if (ret < 0) {
5034 return ret;
5035 } else if (ret > 0) {
5036 *size_ret = 0;
5037 } else {
5038 struct btrfs_inode_item *item;
5039
5040 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5041 struct btrfs_inode_item);
5042 *size_ret = btrfs_inode_size(path->nodes[0], item);
5043 /*
5044 * If the in-memory inode's i_size is smaller then the inode
5045 * size stored in the btree, return the inode's i_size, so
5046 * that we get a correct inode size after replaying the log
5047 * when before a power failure we had a shrinking truncate
5048 * followed by addition of a new name (rename / new hard link).
5049 * Otherwise return the inode size from the btree, to avoid
5050 * data loss when replaying a log due to previously doing a
5051 * write that expands the inode's size and logging a new name
5052 * immediately after.
5053 */
5054 if (*size_ret > inode->vfs_inode.i_size)
5055 *size_ret = inode->vfs_inode.i_size;
5056 }
5057
5058 btrfs_release_path(path);
5059 return 0;
5060 }
5061
5062 /*
5063 * At the moment we always log all xattrs. This is to figure out at log replay
5064 * time which xattrs must have their deletion replayed. If a xattr is missing
5065 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5066 * because if a xattr is deleted, the inode is fsynced and a power failure
5067 * happens, causing the log to be replayed the next time the fs is mounted,
5068 * we want the xattr to not exist anymore (same behaviour as other filesystems
5069 * with a journal, ext3/4, xfs, f2fs, etc).
5070 */
btrfs_log_all_xattrs(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,struct btrfs_path * dst_path,struct btrfs_log_ctx * ctx)5071 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
5072 struct btrfs_inode *inode,
5073 struct btrfs_path *path,
5074 struct btrfs_path *dst_path,
5075 struct btrfs_log_ctx *ctx)
5076 {
5077 struct btrfs_root *root = inode->root;
5078 int ret;
5079 struct btrfs_key key;
5080 const u64 ino = btrfs_ino(inode);
5081 int ins_nr = 0;
5082 int start_slot = 0;
5083 bool found_xattrs = false;
5084
5085 if (test_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags))
5086 return 0;
5087
5088 key.objectid = ino;
5089 key.type = BTRFS_XATTR_ITEM_KEY;
5090 key.offset = 0;
5091
5092 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5093 if (ret < 0)
5094 return ret;
5095
5096 while (true) {
5097 int slot = path->slots[0];
5098 struct extent_buffer *leaf = path->nodes[0];
5099 int nritems = btrfs_header_nritems(leaf);
5100
5101 if (slot >= nritems) {
5102 if (ins_nr > 0) {
5103 ret = copy_items(trans, inode, dst_path, path,
5104 start_slot, ins_nr, 1, 0, ctx);
5105 if (ret < 0)
5106 return ret;
5107 ins_nr = 0;
5108 }
5109 ret = btrfs_next_leaf(root, path);
5110 if (ret < 0)
5111 return ret;
5112 else if (ret > 0)
5113 break;
5114 continue;
5115 }
5116
5117 btrfs_item_key_to_cpu(leaf, &key, slot);
5118 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
5119 break;
5120
5121 if (ins_nr == 0)
5122 start_slot = slot;
5123 ins_nr++;
5124 path->slots[0]++;
5125 found_xattrs = true;
5126 cond_resched();
5127 }
5128 if (ins_nr > 0) {
5129 ret = copy_items(trans, inode, dst_path, path,
5130 start_slot, ins_nr, 1, 0, ctx);
5131 if (ret < 0)
5132 return ret;
5133 }
5134
5135 if (!found_xattrs)
5136 set_bit(BTRFS_INODE_NO_XATTRS, &inode->runtime_flags);
5137
5138 return 0;
5139 }
5140
5141 /*
5142 * When using the NO_HOLES feature if we punched a hole that causes the
5143 * deletion of entire leafs or all the extent items of the first leaf (the one
5144 * that contains the inode item and references) we may end up not processing
5145 * any extents, because there are no leafs with a generation matching the
5146 * current transaction that have extent items for our inode. So we need to find
5147 * if any holes exist and then log them. We also need to log holes after any
5148 * truncate operation that changes the inode's size.
5149 */
btrfs_log_holes(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path)5150 static int btrfs_log_holes(struct btrfs_trans_handle *trans,
5151 struct btrfs_inode *inode,
5152 struct btrfs_path *path)
5153 {
5154 struct btrfs_root *root = inode->root;
5155 struct btrfs_fs_info *fs_info = root->fs_info;
5156 struct btrfs_key key;
5157 const u64 ino = btrfs_ino(inode);
5158 const u64 i_size = i_size_read(&inode->vfs_inode);
5159 u64 prev_extent_end = 0;
5160 int ret;
5161
5162 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || i_size == 0)
5163 return 0;
5164
5165 key.objectid = ino;
5166 key.type = BTRFS_EXTENT_DATA_KEY;
5167 key.offset = 0;
5168
5169 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5170 if (ret < 0)
5171 return ret;
5172
5173 while (true) {
5174 struct extent_buffer *leaf = path->nodes[0];
5175
5176 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
5177 ret = btrfs_next_leaf(root, path);
5178 if (ret < 0)
5179 return ret;
5180 if (ret > 0) {
5181 ret = 0;
5182 break;
5183 }
5184 leaf = path->nodes[0];
5185 }
5186
5187 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5188 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
5189 break;
5190
5191 /* We have a hole, log it. */
5192 if (prev_extent_end < key.offset) {
5193 const u64 hole_len = key.offset - prev_extent_end;
5194
5195 /*
5196 * Release the path to avoid deadlocks with other code
5197 * paths that search the root while holding locks on
5198 * leafs from the log root.
5199 */
5200 btrfs_release_path(path);
5201 ret = btrfs_insert_hole_extent(trans, root->log_root,
5202 ino, prev_extent_end,
5203 hole_len);
5204 if (ret < 0)
5205 return ret;
5206
5207 /*
5208 * Search for the same key again in the root. Since it's
5209 * an extent item and we are holding the inode lock, the
5210 * key must still exist. If it doesn't just emit warning
5211 * and return an error to fall back to a transaction
5212 * commit.
5213 */
5214 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5215 if (ret < 0)
5216 return ret;
5217 if (WARN_ON(ret > 0))
5218 return -ENOENT;
5219 leaf = path->nodes[0];
5220 }
5221
5222 prev_extent_end = btrfs_file_extent_end(path);
5223 path->slots[0]++;
5224 cond_resched();
5225 }
5226
5227 if (prev_extent_end < i_size) {
5228 u64 hole_len;
5229
5230 btrfs_release_path(path);
5231 hole_len = ALIGN(i_size - prev_extent_end, fs_info->sectorsize);
5232 ret = btrfs_insert_hole_extent(trans, root->log_root, ino,
5233 prev_extent_end, hole_len);
5234 if (ret < 0)
5235 return ret;
5236 }
5237
5238 return 0;
5239 }
5240
5241 /*
5242 * When we are logging a new inode X, check if it doesn't have a reference that
5243 * matches the reference from some other inode Y created in a past transaction
5244 * and that was renamed in the current transaction. If we don't do this, then at
5245 * log replay time we can lose inode Y (and all its files if it's a directory):
5246 *
5247 * mkdir /mnt/x
5248 * echo "hello world" > /mnt/x/foobar
5249 * sync
5250 * mv /mnt/x /mnt/y
5251 * mkdir /mnt/x # or touch /mnt/x
5252 * xfs_io -c fsync /mnt/x
5253 * <power fail>
5254 * mount fs, trigger log replay
5255 *
5256 * After the log replay procedure, we would lose the first directory and all its
5257 * files (file foobar).
5258 * For the case where inode Y is not a directory we simply end up losing it:
5259 *
5260 * echo "123" > /mnt/foo
5261 * sync
5262 * mv /mnt/foo /mnt/bar
5263 * echo "abc" > /mnt/foo
5264 * xfs_io -c fsync /mnt/foo
5265 * <power fail>
5266 *
5267 * We also need this for cases where a snapshot entry is replaced by some other
5268 * entry (file or directory) otherwise we end up with an unreplayable log due to
5269 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5270 * if it were a regular entry:
5271 *
5272 * mkdir /mnt/x
5273 * btrfs subvolume snapshot /mnt /mnt/x/snap
5274 * btrfs subvolume delete /mnt/x/snap
5275 * rmdir /mnt/x
5276 * mkdir /mnt/x
5277 * fsync /mnt/x or fsync some new file inside it
5278 * <power fail>
5279 *
5280 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5281 * the same transaction.
5282 */
btrfs_check_ref_name_override(struct extent_buffer * eb,const int slot,const struct btrfs_key * key,struct btrfs_inode * inode,u64 * other_ino,u64 * other_parent)5283 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
5284 const int slot,
5285 const struct btrfs_key *key,
5286 struct btrfs_inode *inode,
5287 u64 *other_ino, u64 *other_parent)
5288 {
5289 int ret;
5290 struct btrfs_path *search_path;
5291 char *name = NULL;
5292 u32 name_len = 0;
5293 u32 item_size = btrfs_item_size(eb, slot);
5294 u32 cur_offset = 0;
5295 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
5296
5297 search_path = btrfs_alloc_path();
5298 if (!search_path)
5299 return -ENOMEM;
5300 search_path->search_commit_root = 1;
5301 search_path->skip_locking = 1;
5302
5303 while (cur_offset < item_size) {
5304 u64 parent;
5305 u32 this_name_len;
5306 u32 this_len;
5307 unsigned long name_ptr;
5308 struct btrfs_dir_item *di;
5309 struct fscrypt_str name_str;
5310
5311 if (key->type == BTRFS_INODE_REF_KEY) {
5312 struct btrfs_inode_ref *iref;
5313
5314 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
5315 parent = key->offset;
5316 this_name_len = btrfs_inode_ref_name_len(eb, iref);
5317 name_ptr = (unsigned long)(iref + 1);
5318 this_len = sizeof(*iref) + this_name_len;
5319 } else {
5320 struct btrfs_inode_extref *extref;
5321
5322 extref = (struct btrfs_inode_extref *)(ptr +
5323 cur_offset);
5324 parent = btrfs_inode_extref_parent(eb, extref);
5325 this_name_len = btrfs_inode_extref_name_len(eb, extref);
5326 name_ptr = (unsigned long)&extref->name;
5327 this_len = sizeof(*extref) + this_name_len;
5328 }
5329
5330 if (this_name_len > name_len) {
5331 char *new_name;
5332
5333 new_name = krealloc(name, this_name_len, GFP_NOFS);
5334 if (!new_name) {
5335 ret = -ENOMEM;
5336 goto out;
5337 }
5338 name_len = this_name_len;
5339 name = new_name;
5340 }
5341
5342 read_extent_buffer(eb, name, name_ptr, this_name_len);
5343
5344 name_str.name = name;
5345 name_str.len = this_name_len;
5346 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
5347 parent, &name_str, 0);
5348 if (di && !IS_ERR(di)) {
5349 struct btrfs_key di_key;
5350
5351 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
5352 di, &di_key);
5353 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
5354 if (di_key.objectid != key->objectid) {
5355 ret = 1;
5356 *other_ino = di_key.objectid;
5357 *other_parent = parent;
5358 } else {
5359 ret = 0;
5360 }
5361 } else {
5362 ret = -EAGAIN;
5363 }
5364 goto out;
5365 } else if (IS_ERR(di)) {
5366 ret = PTR_ERR(di);
5367 goto out;
5368 }
5369 btrfs_release_path(search_path);
5370
5371 cur_offset += this_len;
5372 }
5373 ret = 0;
5374 out:
5375 btrfs_free_path(search_path);
5376 kfree(name);
5377 return ret;
5378 }
5379
5380 /*
5381 * Check if we need to log an inode. This is used in contexts where while
5382 * logging an inode we need to log another inode (either that it exists or in
5383 * full mode). This is used instead of btrfs_inode_in_log() because the later
5384 * requires the inode to be in the log and have the log transaction committed,
5385 * while here we do not care if the log transaction was already committed - our
5386 * caller will commit the log later - and we want to avoid logging an inode
5387 * multiple times when multiple tasks have joined the same log transaction.
5388 */
need_log_inode(const struct btrfs_trans_handle * trans,struct btrfs_inode * inode)5389 static bool need_log_inode(const struct btrfs_trans_handle *trans,
5390 struct btrfs_inode *inode)
5391 {
5392 /*
5393 * If a directory was not modified, no dentries added or removed, we can
5394 * and should avoid logging it.
5395 */
5396 if (S_ISDIR(inode->vfs_inode.i_mode) && inode->last_trans < trans->transid)
5397 return false;
5398
5399 /*
5400 * If this inode does not have new/updated/deleted xattrs since the last
5401 * time it was logged and is flagged as logged in the current transaction,
5402 * we can skip logging it. As for new/deleted names, those are updated in
5403 * the log by link/unlink/rename operations.
5404 * In case the inode was logged and then evicted and reloaded, its
5405 * logged_trans will be 0, in which case we have to fully log it since
5406 * logged_trans is a transient field, not persisted.
5407 */
5408 if (inode_logged(trans, inode, NULL) == 1 &&
5409 !test_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags))
5410 return false;
5411
5412 return true;
5413 }
5414
5415 struct btrfs_dir_list {
5416 u64 ino;
5417 struct list_head list;
5418 };
5419
5420 /*
5421 * Log the inodes of the new dentries of a directory.
5422 * See process_dir_items_leaf() for details about why it is needed.
5423 * This is a recursive operation - if an existing dentry corresponds to a
5424 * directory, that directory's new entries are logged too (same behaviour as
5425 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5426 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5427 * complains about the following circular lock dependency / possible deadlock:
5428 *
5429 * CPU0 CPU1
5430 * ---- ----
5431 * lock(&type->i_mutex_dir_key#3/2);
5432 * lock(sb_internal#2);
5433 * lock(&type->i_mutex_dir_key#3/2);
5434 * lock(&sb->s_type->i_mutex_key#14);
5435 *
5436 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5437 * sb_start_intwrite() in btrfs_start_transaction().
5438 * Not acquiring the VFS lock of the inodes is still safe because:
5439 *
5440 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5441 * that while logging the inode new references (names) are added or removed
5442 * from the inode, leaving the logged inode item with a link count that does
5443 * not match the number of logged inode reference items. This is fine because
5444 * at log replay time we compute the real number of links and correct the
5445 * link count in the inode item (see replay_one_buffer() and
5446 * link_to_fixup_dir());
5447 *
5448 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5449 * while logging the inode's items new index items (key type
5450 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5451 * has a size that doesn't match the sum of the lengths of all the logged
5452 * names - this is ok, not a problem, because at log replay time we set the
5453 * directory's i_size to the correct value (see replay_one_name() and
5454 * overwrite_item()).
5455 */
log_new_dir_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * start_inode,struct btrfs_log_ctx * ctx)5456 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5457 struct btrfs_inode *start_inode,
5458 struct btrfs_log_ctx *ctx)
5459 {
5460 struct btrfs_root *root = start_inode->root;
5461 struct btrfs_path *path;
5462 LIST_HEAD(dir_list);
5463 struct btrfs_dir_list *dir_elem;
5464 u64 ino = btrfs_ino(start_inode);
5465 struct btrfs_inode *curr_inode = start_inode;
5466 int ret = 0;
5467
5468 /*
5469 * If we are logging a new name, as part of a link or rename operation,
5470 * don't bother logging new dentries, as we just want to log the names
5471 * of an inode and that any new parents exist.
5472 */
5473 if (ctx->logging_new_name)
5474 return 0;
5475
5476 path = btrfs_alloc_path();
5477 if (!path)
5478 return -ENOMEM;
5479
5480 /* Pairs with btrfs_add_delayed_iput below. */
5481 ihold(&curr_inode->vfs_inode);
5482
5483 while (true) {
5484 struct inode *vfs_inode;
5485 struct btrfs_key key;
5486 struct btrfs_key found_key;
5487 u64 next_index;
5488 bool continue_curr_inode = true;
5489 int iter_ret;
5490
5491 key.objectid = ino;
5492 key.type = BTRFS_DIR_INDEX_KEY;
5493 key.offset = btrfs_get_first_dir_index_to_log(curr_inode);
5494 next_index = key.offset;
5495 again:
5496 btrfs_for_each_slot(root->log_root, &key, &found_key, path, iter_ret) {
5497 struct extent_buffer *leaf = path->nodes[0];
5498 struct btrfs_dir_item *di;
5499 struct btrfs_key di_key;
5500 struct inode *di_inode;
5501 int log_mode = LOG_INODE_EXISTS;
5502 int type;
5503
5504 if (found_key.objectid != ino ||
5505 found_key.type != BTRFS_DIR_INDEX_KEY) {
5506 continue_curr_inode = false;
5507 break;
5508 }
5509
5510 next_index = found_key.offset + 1;
5511
5512 di = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dir_item);
5513 type = btrfs_dir_ftype(leaf, di);
5514 if (btrfs_dir_transid(leaf, di) < trans->transid)
5515 continue;
5516 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5517 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5518 continue;
5519
5520 btrfs_release_path(path);
5521 di_inode = btrfs_iget_logging(di_key.objectid, root);
5522 if (IS_ERR(di_inode)) {
5523 ret = PTR_ERR(di_inode);
5524 goto out;
5525 }
5526
5527 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
5528 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5529 break;
5530 }
5531
5532 ctx->log_new_dentries = false;
5533 if (type == BTRFS_FT_DIR)
5534 log_mode = LOG_INODE_ALL;
5535 ret = btrfs_log_inode(trans, BTRFS_I(di_inode),
5536 log_mode, ctx);
5537 btrfs_add_delayed_iput(BTRFS_I(di_inode));
5538 if (ret)
5539 goto out;
5540 if (ctx->log_new_dentries) {
5541 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5542 if (!dir_elem) {
5543 ret = -ENOMEM;
5544 goto out;
5545 }
5546 dir_elem->ino = di_key.objectid;
5547 list_add_tail(&dir_elem->list, &dir_list);
5548 }
5549 break;
5550 }
5551
5552 btrfs_release_path(path);
5553
5554 if (iter_ret < 0) {
5555 ret = iter_ret;
5556 goto out;
5557 } else if (iter_ret > 0) {
5558 continue_curr_inode = false;
5559 } else {
5560 key = found_key;
5561 }
5562
5563 if (continue_curr_inode && key.offset < (u64)-1) {
5564 key.offset++;
5565 goto again;
5566 }
5567
5568 btrfs_set_first_dir_index_to_log(curr_inode, next_index);
5569
5570 if (list_empty(&dir_list))
5571 break;
5572
5573 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list, list);
5574 ino = dir_elem->ino;
5575 list_del(&dir_elem->list);
5576 kfree(dir_elem);
5577
5578 btrfs_add_delayed_iput(curr_inode);
5579 curr_inode = NULL;
5580
5581 vfs_inode = btrfs_iget_logging(ino, root);
5582 if (IS_ERR(vfs_inode)) {
5583 ret = PTR_ERR(vfs_inode);
5584 break;
5585 }
5586 curr_inode = BTRFS_I(vfs_inode);
5587 }
5588 out:
5589 btrfs_free_path(path);
5590 if (curr_inode)
5591 btrfs_add_delayed_iput(curr_inode);
5592
5593 if (ret) {
5594 struct btrfs_dir_list *next;
5595
5596 list_for_each_entry_safe(dir_elem, next, &dir_list, list)
5597 kfree(dir_elem);
5598 }
5599
5600 return ret;
5601 }
5602
5603 struct btrfs_ino_list {
5604 u64 ino;
5605 u64 parent;
5606 struct list_head list;
5607 };
5608
free_conflicting_inodes(struct btrfs_log_ctx * ctx)5609 static void free_conflicting_inodes(struct btrfs_log_ctx *ctx)
5610 {
5611 struct btrfs_ino_list *curr;
5612 struct btrfs_ino_list *next;
5613
5614 list_for_each_entry_safe(curr, next, &ctx->conflict_inodes, list) {
5615 list_del(&curr->list);
5616 kfree(curr);
5617 }
5618 }
5619
conflicting_inode_is_dir(struct btrfs_root * root,u64 ino,struct btrfs_path * path)5620 static int conflicting_inode_is_dir(struct btrfs_root *root, u64 ino,
5621 struct btrfs_path *path)
5622 {
5623 struct btrfs_key key;
5624 int ret;
5625
5626 key.objectid = ino;
5627 key.type = BTRFS_INODE_ITEM_KEY;
5628 key.offset = 0;
5629
5630 path->search_commit_root = 1;
5631 path->skip_locking = 1;
5632
5633 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5634 if (WARN_ON_ONCE(ret > 0)) {
5635 /*
5636 * We have previously found the inode through the commit root
5637 * so this should not happen. If it does, just error out and
5638 * fallback to a transaction commit.
5639 */
5640 ret = -ENOENT;
5641 } else if (ret == 0) {
5642 struct btrfs_inode_item *item;
5643
5644 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5645 struct btrfs_inode_item);
5646 if (S_ISDIR(btrfs_inode_mode(path->nodes[0], item)))
5647 ret = 1;
5648 }
5649
5650 btrfs_release_path(path);
5651 path->search_commit_root = 0;
5652 path->skip_locking = 0;
5653
5654 return ret;
5655 }
5656
add_conflicting_inode(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,u64 ino,u64 parent,struct btrfs_log_ctx * ctx)5657 static int add_conflicting_inode(struct btrfs_trans_handle *trans,
5658 struct btrfs_root *root,
5659 struct btrfs_path *path,
5660 u64 ino, u64 parent,
5661 struct btrfs_log_ctx *ctx)
5662 {
5663 struct btrfs_ino_list *ino_elem;
5664 struct inode *inode;
5665
5666 /*
5667 * It's rare to have a lot of conflicting inodes, in practice it is not
5668 * common to have more than 1 or 2. We don't want to collect too many,
5669 * as we could end up logging too many inodes (even if only in
5670 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5671 * commits.
5672 */
5673 if (ctx->num_conflict_inodes >= MAX_CONFLICT_INODES)
5674 return BTRFS_LOG_FORCE_COMMIT;
5675
5676 inode = btrfs_iget_logging(ino, root);
5677 /*
5678 * If the other inode that had a conflicting dir entry was deleted in
5679 * the current transaction then we either:
5680 *
5681 * 1) Log the parent directory (later after adding it to the list) if
5682 * the inode is a directory. This is because it may be a deleted
5683 * subvolume/snapshot or it may be a regular directory that had
5684 * deleted subvolumes/snapshots (or subdirectories that had them),
5685 * and at the moment we can't deal with dropping subvolumes/snapshots
5686 * during log replay. So we just log the parent, which will result in
5687 * a fallback to a transaction commit if we are dealing with those
5688 * cases (last_unlink_trans will match the current transaction);
5689 *
5690 * 2) Do nothing if it's not a directory. During log replay we simply
5691 * unlink the conflicting dentry from the parent directory and then
5692 * add the dentry for our inode. Like this we can avoid logging the
5693 * parent directory (and maybe fallback to a transaction commit in
5694 * case it has a last_unlink_trans == trans->transid, due to moving
5695 * some inode from it to some other directory).
5696 */
5697 if (IS_ERR(inode)) {
5698 int ret = PTR_ERR(inode);
5699
5700 if (ret != -ENOENT)
5701 return ret;
5702
5703 ret = conflicting_inode_is_dir(root, ino, path);
5704 /* Not a directory or we got an error. */
5705 if (ret <= 0)
5706 return ret;
5707
5708 /* Conflicting inode is a directory, so we'll log its parent. */
5709 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5710 if (!ino_elem)
5711 return -ENOMEM;
5712 ino_elem->ino = ino;
5713 ino_elem->parent = parent;
5714 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5715 ctx->num_conflict_inodes++;
5716
5717 return 0;
5718 }
5719
5720 /*
5721 * If the inode was already logged skip it - otherwise we can hit an
5722 * infinite loop. Example:
5723 *
5724 * From the commit root (previous transaction) we have the following
5725 * inodes:
5726 *
5727 * inode 257 a directory
5728 * inode 258 with references "zz" and "zz_link" on inode 257
5729 * inode 259 with reference "a" on inode 257
5730 *
5731 * And in the current (uncommitted) transaction we have:
5732 *
5733 * inode 257 a directory, unchanged
5734 * inode 258 with references "a" and "a2" on inode 257
5735 * inode 259 with reference "zz_link" on inode 257
5736 * inode 261 with reference "zz" on inode 257
5737 *
5738 * When logging inode 261 the following infinite loop could
5739 * happen if we don't skip already logged inodes:
5740 *
5741 * - we detect inode 258 as a conflicting inode, with inode 261
5742 * on reference "zz", and log it;
5743 *
5744 * - we detect inode 259 as a conflicting inode, with inode 258
5745 * on reference "a", and log it;
5746 *
5747 * - we detect inode 258 as a conflicting inode, with inode 259
5748 * on reference "zz_link", and log it - again! After this we
5749 * repeat the above steps forever.
5750 *
5751 * Here we can use need_log_inode() because we only need to log the
5752 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5753 * so that the log ends up with the new name and without the old name.
5754 */
5755 if (!need_log_inode(trans, BTRFS_I(inode))) {
5756 btrfs_add_delayed_iput(BTRFS_I(inode));
5757 return 0;
5758 }
5759
5760 btrfs_add_delayed_iput(BTRFS_I(inode));
5761
5762 ino_elem = kmalloc(sizeof(*ino_elem), GFP_NOFS);
5763 if (!ino_elem)
5764 return -ENOMEM;
5765 ino_elem->ino = ino;
5766 ino_elem->parent = parent;
5767 list_add_tail(&ino_elem->list, &ctx->conflict_inodes);
5768 ctx->num_conflict_inodes++;
5769
5770 return 0;
5771 }
5772
log_conflicting_inodes(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_log_ctx * ctx)5773 static int log_conflicting_inodes(struct btrfs_trans_handle *trans,
5774 struct btrfs_root *root,
5775 struct btrfs_log_ctx *ctx)
5776 {
5777 int ret = 0;
5778
5779 /*
5780 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5781 * otherwise we could have unbounded recursion of btrfs_log_inode()
5782 * calls. This check guarantees we can have only 1 level of recursion.
5783 */
5784 if (ctx->logging_conflict_inodes)
5785 return 0;
5786
5787 ctx->logging_conflict_inodes = true;
5788
5789 /*
5790 * New conflicting inodes may be found and added to the list while we
5791 * are logging a conflicting inode, so keep iterating while the list is
5792 * not empty.
5793 */
5794 while (!list_empty(&ctx->conflict_inodes)) {
5795 struct btrfs_ino_list *curr;
5796 struct inode *inode;
5797 u64 ino;
5798 u64 parent;
5799
5800 curr = list_first_entry(&ctx->conflict_inodes,
5801 struct btrfs_ino_list, list);
5802 ino = curr->ino;
5803 parent = curr->parent;
5804 list_del(&curr->list);
5805 kfree(curr);
5806
5807 inode = btrfs_iget_logging(ino, root);
5808 /*
5809 * If the other inode that had a conflicting dir entry was
5810 * deleted in the current transaction, we need to log its parent
5811 * directory. See the comment at add_conflicting_inode().
5812 */
5813 if (IS_ERR(inode)) {
5814 ret = PTR_ERR(inode);
5815 if (ret != -ENOENT)
5816 break;
5817
5818 inode = btrfs_iget_logging(parent, root);
5819 if (IS_ERR(inode)) {
5820 ret = PTR_ERR(inode);
5821 break;
5822 }
5823
5824 /*
5825 * Always log the directory, we cannot make this
5826 * conditional on need_log_inode() because the directory
5827 * might have been logged in LOG_INODE_EXISTS mode or
5828 * the dir index of the conflicting inode is not in a
5829 * dir index key range logged for the directory. So we
5830 * must make sure the deletion is recorded.
5831 */
5832 ret = btrfs_log_inode(trans, BTRFS_I(inode),
5833 LOG_INODE_ALL, ctx);
5834 btrfs_add_delayed_iput(BTRFS_I(inode));
5835 if (ret)
5836 break;
5837 continue;
5838 }
5839
5840 /*
5841 * Here we can use need_log_inode() because we only need to log
5842 * the inode in LOG_INODE_EXISTS mode and rename operations
5843 * update the log, so that the log ends up with the new name and
5844 * without the old name.
5845 *
5846 * We did this check at add_conflicting_inode(), but here we do
5847 * it again because if some other task logged the inode after
5848 * that, we can avoid doing it again.
5849 */
5850 if (!need_log_inode(trans, BTRFS_I(inode))) {
5851 btrfs_add_delayed_iput(BTRFS_I(inode));
5852 continue;
5853 }
5854
5855 /*
5856 * We are safe logging the other inode without acquiring its
5857 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5858 * are safe against concurrent renames of the other inode as
5859 * well because during a rename we pin the log and update the
5860 * log with the new name before we unpin it.
5861 */
5862 ret = btrfs_log_inode(trans, BTRFS_I(inode), LOG_INODE_EXISTS, ctx);
5863 btrfs_add_delayed_iput(BTRFS_I(inode));
5864 if (ret)
5865 break;
5866 }
5867
5868 ctx->logging_conflict_inodes = false;
5869 if (ret)
5870 free_conflicting_inodes(ctx);
5871
5872 return ret;
5873 }
5874
copy_inode_items_to_log(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_key * min_key,const struct btrfs_key * max_key,struct btrfs_path * path,struct btrfs_path * dst_path,const u64 logged_isize,const int inode_only,struct btrfs_log_ctx * ctx,bool * need_log_inode_item)5875 static int copy_inode_items_to_log(struct btrfs_trans_handle *trans,
5876 struct btrfs_inode *inode,
5877 struct btrfs_key *min_key,
5878 const struct btrfs_key *max_key,
5879 struct btrfs_path *path,
5880 struct btrfs_path *dst_path,
5881 const u64 logged_isize,
5882 const int inode_only,
5883 struct btrfs_log_ctx *ctx,
5884 bool *need_log_inode_item)
5885 {
5886 const u64 i_size = i_size_read(&inode->vfs_inode);
5887 struct btrfs_root *root = inode->root;
5888 int ins_start_slot = 0;
5889 int ins_nr = 0;
5890 int ret;
5891
5892 while (1) {
5893 ret = btrfs_search_forward(root, min_key, path, trans->transid);
5894 if (ret < 0)
5895 return ret;
5896 if (ret > 0) {
5897 ret = 0;
5898 break;
5899 }
5900 again:
5901 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5902 if (min_key->objectid != max_key->objectid)
5903 break;
5904 if (min_key->type > max_key->type)
5905 break;
5906
5907 if (min_key->type == BTRFS_INODE_ITEM_KEY) {
5908 *need_log_inode_item = false;
5909 } else if (min_key->type == BTRFS_EXTENT_DATA_KEY &&
5910 min_key->offset >= i_size) {
5911 /*
5912 * Extents at and beyond eof are logged with
5913 * btrfs_log_prealloc_extents().
5914 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5915 * and no keys greater than that, so bail out.
5916 */
5917 break;
5918 } else if ((min_key->type == BTRFS_INODE_REF_KEY ||
5919 min_key->type == BTRFS_INODE_EXTREF_KEY) &&
5920 (inode->generation == trans->transid ||
5921 ctx->logging_conflict_inodes)) {
5922 u64 other_ino = 0;
5923 u64 other_parent = 0;
5924
5925 ret = btrfs_check_ref_name_override(path->nodes[0],
5926 path->slots[0], min_key, inode,
5927 &other_ino, &other_parent);
5928 if (ret < 0) {
5929 return ret;
5930 } else if (ret > 0 &&
5931 other_ino != btrfs_ino(ctx->inode)) {
5932 if (ins_nr > 0) {
5933 ins_nr++;
5934 } else {
5935 ins_nr = 1;
5936 ins_start_slot = path->slots[0];
5937 }
5938 ret = copy_items(trans, inode, dst_path, path,
5939 ins_start_slot, ins_nr,
5940 inode_only, logged_isize, ctx);
5941 if (ret < 0)
5942 return ret;
5943 ins_nr = 0;
5944
5945 btrfs_release_path(path);
5946 ret = add_conflicting_inode(trans, root, path,
5947 other_ino,
5948 other_parent, ctx);
5949 if (ret)
5950 return ret;
5951 goto next_key;
5952 }
5953 } else if (min_key->type == BTRFS_XATTR_ITEM_KEY) {
5954 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5955 if (ins_nr == 0)
5956 goto next_slot;
5957 ret = copy_items(trans, inode, dst_path, path,
5958 ins_start_slot,
5959 ins_nr, inode_only, logged_isize, ctx);
5960 if (ret < 0)
5961 return ret;
5962 ins_nr = 0;
5963 goto next_slot;
5964 }
5965
5966 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5967 ins_nr++;
5968 goto next_slot;
5969 } else if (!ins_nr) {
5970 ins_start_slot = path->slots[0];
5971 ins_nr = 1;
5972 goto next_slot;
5973 }
5974
5975 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
5976 ins_nr, inode_only, logged_isize, ctx);
5977 if (ret < 0)
5978 return ret;
5979 ins_nr = 1;
5980 ins_start_slot = path->slots[0];
5981 next_slot:
5982 path->slots[0]++;
5983 if (path->slots[0] < btrfs_header_nritems(path->nodes[0])) {
5984 btrfs_item_key_to_cpu(path->nodes[0], min_key,
5985 path->slots[0]);
5986 goto again;
5987 }
5988 if (ins_nr) {
5989 ret = copy_items(trans, inode, dst_path, path,
5990 ins_start_slot, ins_nr, inode_only,
5991 logged_isize, ctx);
5992 if (ret < 0)
5993 return ret;
5994 ins_nr = 0;
5995 }
5996 btrfs_release_path(path);
5997 next_key:
5998 if (min_key->offset < (u64)-1) {
5999 min_key->offset++;
6000 } else if (min_key->type < max_key->type) {
6001 min_key->type++;
6002 min_key->offset = 0;
6003 } else {
6004 break;
6005 }
6006
6007 /*
6008 * We may process many leaves full of items for our inode, so
6009 * avoid monopolizing a cpu for too long by rescheduling while
6010 * not holding locks on any tree.
6011 */
6012 cond_resched();
6013 }
6014 if (ins_nr) {
6015 ret = copy_items(trans, inode, dst_path, path, ins_start_slot,
6016 ins_nr, inode_only, logged_isize, ctx);
6017 if (ret)
6018 return ret;
6019 }
6020
6021 if (inode_only == LOG_INODE_ALL && S_ISREG(inode->vfs_inode.i_mode)) {
6022 /*
6023 * Release the path because otherwise we might attempt to double
6024 * lock the same leaf with btrfs_log_prealloc_extents() below.
6025 */
6026 btrfs_release_path(path);
6027 ret = btrfs_log_prealloc_extents(trans, inode, dst_path, ctx);
6028 }
6029
6030 return ret;
6031 }
6032
insert_delayed_items_batch(struct btrfs_trans_handle * trans,struct btrfs_root * log,struct btrfs_path * path,const struct btrfs_item_batch * batch,const struct btrfs_delayed_item * first_item)6033 static int insert_delayed_items_batch(struct btrfs_trans_handle *trans,
6034 struct btrfs_root *log,
6035 struct btrfs_path *path,
6036 const struct btrfs_item_batch *batch,
6037 const struct btrfs_delayed_item *first_item)
6038 {
6039 const struct btrfs_delayed_item *curr = first_item;
6040 int ret;
6041
6042 ret = btrfs_insert_empty_items(trans, log, path, batch);
6043 if (ret)
6044 return ret;
6045
6046 for (int i = 0; i < batch->nr; i++) {
6047 char *data_ptr;
6048
6049 data_ptr = btrfs_item_ptr(path->nodes[0], path->slots[0], char);
6050 write_extent_buffer(path->nodes[0], &curr->data,
6051 (unsigned long)data_ptr, curr->data_len);
6052 curr = list_next_entry(curr, log_list);
6053 path->slots[0]++;
6054 }
6055
6056 btrfs_release_path(path);
6057
6058 return 0;
6059 }
6060
log_delayed_insertion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6061 static int log_delayed_insertion_items(struct btrfs_trans_handle *trans,
6062 struct btrfs_inode *inode,
6063 struct btrfs_path *path,
6064 const struct list_head *delayed_ins_list,
6065 struct btrfs_log_ctx *ctx)
6066 {
6067 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6068 const int max_batch_size = 195;
6069 const int leaf_data_size = BTRFS_LEAF_DATA_SIZE(trans->fs_info);
6070 const u64 ino = btrfs_ino(inode);
6071 struct btrfs_root *log = inode->root->log_root;
6072 struct btrfs_item_batch batch = {
6073 .nr = 0,
6074 .total_data_size = 0,
6075 };
6076 const struct btrfs_delayed_item *first = NULL;
6077 const struct btrfs_delayed_item *curr;
6078 char *ins_data;
6079 struct btrfs_key *ins_keys;
6080 u32 *ins_sizes;
6081 u64 curr_batch_size = 0;
6082 int batch_idx = 0;
6083 int ret;
6084
6085 /* We are adding dir index items to the log tree. */
6086 lockdep_assert_held(&inode->log_mutex);
6087
6088 /*
6089 * We collect delayed items before copying index keys from the subvolume
6090 * to the log tree. However just after we collected them, they may have
6091 * been flushed (all of them or just some of them), and therefore we
6092 * could have copied them from the subvolume tree to the log tree.
6093 * So find the first delayed item that was not yet logged (they are
6094 * sorted by index number).
6095 */
6096 list_for_each_entry(curr, delayed_ins_list, log_list) {
6097 if (curr->index > inode->last_dir_index_offset) {
6098 first = curr;
6099 break;
6100 }
6101 }
6102
6103 /* Empty list or all delayed items were already logged. */
6104 if (!first)
6105 return 0;
6106
6107 ins_data = kmalloc(max_batch_size * sizeof(u32) +
6108 max_batch_size * sizeof(struct btrfs_key), GFP_NOFS);
6109 if (!ins_data)
6110 return -ENOMEM;
6111 ins_sizes = (u32 *)ins_data;
6112 batch.data_sizes = ins_sizes;
6113 ins_keys = (struct btrfs_key *)(ins_data + max_batch_size * sizeof(u32));
6114 batch.keys = ins_keys;
6115
6116 curr = first;
6117 while (!list_entry_is_head(curr, delayed_ins_list, log_list)) {
6118 const u32 curr_size = curr->data_len + sizeof(struct btrfs_item);
6119
6120 if (curr_batch_size + curr_size > leaf_data_size ||
6121 batch.nr == max_batch_size) {
6122 ret = insert_delayed_items_batch(trans, log, path,
6123 &batch, first);
6124 if (ret)
6125 goto out;
6126 batch_idx = 0;
6127 batch.nr = 0;
6128 batch.total_data_size = 0;
6129 curr_batch_size = 0;
6130 first = curr;
6131 }
6132
6133 ins_sizes[batch_idx] = curr->data_len;
6134 ins_keys[batch_idx].objectid = ino;
6135 ins_keys[batch_idx].type = BTRFS_DIR_INDEX_KEY;
6136 ins_keys[batch_idx].offset = curr->index;
6137 curr_batch_size += curr_size;
6138 batch.total_data_size += curr->data_len;
6139 batch.nr++;
6140 batch_idx++;
6141 curr = list_next_entry(curr, log_list);
6142 }
6143
6144 ASSERT(batch.nr >= 1);
6145 ret = insert_delayed_items_batch(trans, log, path, &batch, first);
6146
6147 curr = list_last_entry(delayed_ins_list, struct btrfs_delayed_item,
6148 log_list);
6149 inode->last_dir_index_offset = curr->index;
6150 out:
6151 kfree(ins_data);
6152
6153 return ret;
6154 }
6155
log_delayed_deletions_full(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6156 static int log_delayed_deletions_full(struct btrfs_trans_handle *trans,
6157 struct btrfs_inode *inode,
6158 struct btrfs_path *path,
6159 const struct list_head *delayed_del_list,
6160 struct btrfs_log_ctx *ctx)
6161 {
6162 const u64 ino = btrfs_ino(inode);
6163 const struct btrfs_delayed_item *curr;
6164
6165 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6166 log_list);
6167
6168 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6169 u64 first_dir_index = curr->index;
6170 u64 last_dir_index;
6171 const struct btrfs_delayed_item *next;
6172 int ret;
6173
6174 /*
6175 * Find a range of consecutive dir index items to delete. Like
6176 * this we log a single dir range item spanning several contiguous
6177 * dir items instead of logging one range item per dir index item.
6178 */
6179 next = list_next_entry(curr, log_list);
6180 while (!list_entry_is_head(next, delayed_del_list, log_list)) {
6181 if (next->index != curr->index + 1)
6182 break;
6183 curr = next;
6184 next = list_next_entry(next, log_list);
6185 }
6186
6187 last_dir_index = curr->index;
6188 ASSERT(last_dir_index >= first_dir_index);
6189
6190 ret = insert_dir_log_key(trans, inode->root->log_root, path,
6191 ino, first_dir_index, last_dir_index);
6192 if (ret)
6193 return ret;
6194 curr = list_next_entry(curr, log_list);
6195 }
6196
6197 return 0;
6198 }
6199
batch_delete_dir_index_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,const struct btrfs_delayed_item * first,const struct btrfs_delayed_item ** last_ret)6200 static int batch_delete_dir_index_items(struct btrfs_trans_handle *trans,
6201 struct btrfs_inode *inode,
6202 struct btrfs_path *path,
6203 const struct list_head *delayed_del_list,
6204 const struct btrfs_delayed_item *first,
6205 const struct btrfs_delayed_item **last_ret)
6206 {
6207 const struct btrfs_delayed_item *next;
6208 struct extent_buffer *leaf = path->nodes[0];
6209 const int last_slot = btrfs_header_nritems(leaf) - 1;
6210 int slot = path->slots[0] + 1;
6211 const u64 ino = btrfs_ino(inode);
6212
6213 next = list_next_entry(first, log_list);
6214
6215 while (slot < last_slot &&
6216 !list_entry_is_head(next, delayed_del_list, log_list)) {
6217 struct btrfs_key key;
6218
6219 btrfs_item_key_to_cpu(leaf, &key, slot);
6220 if (key.objectid != ino ||
6221 key.type != BTRFS_DIR_INDEX_KEY ||
6222 key.offset != next->index)
6223 break;
6224
6225 slot++;
6226 *last_ret = next;
6227 next = list_next_entry(next, log_list);
6228 }
6229
6230 return btrfs_del_items(trans, inode->root->log_root, path,
6231 path->slots[0], slot - path->slots[0]);
6232 }
6233
log_delayed_deletions_incremental(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6234 static int log_delayed_deletions_incremental(struct btrfs_trans_handle *trans,
6235 struct btrfs_inode *inode,
6236 struct btrfs_path *path,
6237 const struct list_head *delayed_del_list,
6238 struct btrfs_log_ctx *ctx)
6239 {
6240 struct btrfs_root *log = inode->root->log_root;
6241 const struct btrfs_delayed_item *curr;
6242 u64 last_range_start = 0;
6243 u64 last_range_end = 0;
6244 struct btrfs_key key;
6245
6246 key.objectid = btrfs_ino(inode);
6247 key.type = BTRFS_DIR_INDEX_KEY;
6248 curr = list_first_entry(delayed_del_list, struct btrfs_delayed_item,
6249 log_list);
6250
6251 while (!list_entry_is_head(curr, delayed_del_list, log_list)) {
6252 const struct btrfs_delayed_item *last = curr;
6253 u64 first_dir_index = curr->index;
6254 u64 last_dir_index;
6255 bool deleted_items = false;
6256 int ret;
6257
6258 key.offset = curr->index;
6259 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
6260 if (ret < 0) {
6261 return ret;
6262 } else if (ret == 0) {
6263 ret = batch_delete_dir_index_items(trans, inode, path,
6264 delayed_del_list, curr,
6265 &last);
6266 if (ret)
6267 return ret;
6268 deleted_items = true;
6269 }
6270
6271 btrfs_release_path(path);
6272
6273 /*
6274 * If we deleted items from the leaf, it means we have a range
6275 * item logging their range, so no need to add one or update an
6276 * existing one. Otherwise we have to log a dir range item.
6277 */
6278 if (deleted_items)
6279 goto next_batch;
6280
6281 last_dir_index = last->index;
6282 ASSERT(last_dir_index >= first_dir_index);
6283 /*
6284 * If this range starts right after where the previous one ends,
6285 * then we want to reuse the previous range item and change its
6286 * end offset to the end of this range. This is just to minimize
6287 * leaf space usage, by avoiding adding a new range item.
6288 */
6289 if (last_range_end != 0 && first_dir_index == last_range_end + 1)
6290 first_dir_index = last_range_start;
6291
6292 ret = insert_dir_log_key(trans, log, path, key.objectid,
6293 first_dir_index, last_dir_index);
6294 if (ret)
6295 return ret;
6296
6297 last_range_start = first_dir_index;
6298 last_range_end = last_dir_index;
6299 next_batch:
6300 curr = list_next_entry(last, log_list);
6301 }
6302
6303 return 0;
6304 }
6305
log_delayed_deletion_items(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_path * path,const struct list_head * delayed_del_list,struct btrfs_log_ctx * ctx)6306 static int log_delayed_deletion_items(struct btrfs_trans_handle *trans,
6307 struct btrfs_inode *inode,
6308 struct btrfs_path *path,
6309 const struct list_head *delayed_del_list,
6310 struct btrfs_log_ctx *ctx)
6311 {
6312 /*
6313 * We are deleting dir index items from the log tree or adding range
6314 * items to it.
6315 */
6316 lockdep_assert_held(&inode->log_mutex);
6317
6318 if (list_empty(delayed_del_list))
6319 return 0;
6320
6321 if (ctx->logged_before)
6322 return log_delayed_deletions_incremental(trans, inode, path,
6323 delayed_del_list, ctx);
6324
6325 return log_delayed_deletions_full(trans, inode, path, delayed_del_list,
6326 ctx);
6327 }
6328
6329 /*
6330 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6331 * items instead of the subvolume tree.
6332 */
log_new_delayed_dentries(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,const struct list_head * delayed_ins_list,struct btrfs_log_ctx * ctx)6333 static int log_new_delayed_dentries(struct btrfs_trans_handle *trans,
6334 struct btrfs_inode *inode,
6335 const struct list_head *delayed_ins_list,
6336 struct btrfs_log_ctx *ctx)
6337 {
6338 const bool orig_log_new_dentries = ctx->log_new_dentries;
6339 struct btrfs_delayed_item *item;
6340 int ret = 0;
6341
6342 /*
6343 * No need for the log mutex, plus to avoid potential deadlocks or
6344 * lockdep annotations due to nesting of delayed inode mutexes and log
6345 * mutexes.
6346 */
6347 lockdep_assert_not_held(&inode->log_mutex);
6348
6349 ASSERT(!ctx->logging_new_delayed_dentries);
6350 ctx->logging_new_delayed_dentries = true;
6351
6352 list_for_each_entry(item, delayed_ins_list, log_list) {
6353 struct btrfs_dir_item *dir_item;
6354 struct inode *di_inode;
6355 struct btrfs_key key;
6356 int log_mode = LOG_INODE_EXISTS;
6357
6358 dir_item = (struct btrfs_dir_item *)item->data;
6359 btrfs_disk_key_to_cpu(&key, &dir_item->location);
6360
6361 if (key.type == BTRFS_ROOT_ITEM_KEY)
6362 continue;
6363
6364 di_inode = btrfs_iget_logging(key.objectid, inode->root);
6365 if (IS_ERR(di_inode)) {
6366 ret = PTR_ERR(di_inode);
6367 break;
6368 }
6369
6370 if (!need_log_inode(trans, BTRFS_I(di_inode))) {
6371 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6372 continue;
6373 }
6374
6375 if (btrfs_stack_dir_ftype(dir_item) == BTRFS_FT_DIR)
6376 log_mode = LOG_INODE_ALL;
6377
6378 ctx->log_new_dentries = false;
6379 ret = btrfs_log_inode(trans, BTRFS_I(di_inode), log_mode, ctx);
6380
6381 if (!ret && ctx->log_new_dentries)
6382 ret = log_new_dir_dentries(trans, BTRFS_I(di_inode), ctx);
6383
6384 btrfs_add_delayed_iput(BTRFS_I(di_inode));
6385
6386 if (ret)
6387 break;
6388 }
6389
6390 ctx->log_new_dentries = orig_log_new_dentries;
6391 ctx->logging_new_delayed_dentries = false;
6392
6393 return ret;
6394 }
6395
6396 /* log a single inode in the tree log.
6397 * At least one parent directory for this inode must exist in the tree
6398 * or be logged already.
6399 *
6400 * Any items from this inode changed by the current transaction are copied
6401 * to the log tree. An extra reference is taken on any extents in this
6402 * file, allowing us to avoid a whole pile of corner cases around logging
6403 * blocks that have been removed from the tree.
6404 *
6405 * See LOG_INODE_ALL and related defines for a description of what inode_only
6406 * does.
6407 *
6408 * This handles both files and directories.
6409 */
btrfs_log_inode(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,int inode_only,struct btrfs_log_ctx * ctx)6410 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
6411 struct btrfs_inode *inode,
6412 int inode_only,
6413 struct btrfs_log_ctx *ctx)
6414 {
6415 struct btrfs_path *path;
6416 struct btrfs_path *dst_path;
6417 struct btrfs_key min_key;
6418 struct btrfs_key max_key;
6419 struct btrfs_root *log = inode->root->log_root;
6420 int ret;
6421 bool fast_search = false;
6422 u64 ino = btrfs_ino(inode);
6423 struct extent_map_tree *em_tree = &inode->extent_tree;
6424 u64 logged_isize = 0;
6425 bool need_log_inode_item = true;
6426 bool xattrs_logged = false;
6427 bool inode_item_dropped = true;
6428 bool full_dir_logging = false;
6429 LIST_HEAD(delayed_ins_list);
6430 LIST_HEAD(delayed_del_list);
6431
6432 path = btrfs_alloc_path();
6433 if (!path)
6434 return -ENOMEM;
6435 dst_path = btrfs_alloc_path();
6436 if (!dst_path) {
6437 btrfs_free_path(path);
6438 return -ENOMEM;
6439 }
6440
6441 min_key.objectid = ino;
6442 min_key.type = BTRFS_INODE_ITEM_KEY;
6443 min_key.offset = 0;
6444
6445 max_key.objectid = ino;
6446
6447
6448 /* today the code can only do partial logging of directories */
6449 if (S_ISDIR(inode->vfs_inode.i_mode) ||
6450 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6451 &inode->runtime_flags) &&
6452 inode_only >= LOG_INODE_EXISTS))
6453 max_key.type = BTRFS_XATTR_ITEM_KEY;
6454 else
6455 max_key.type = (u8)-1;
6456 max_key.offset = (u64)-1;
6457
6458 if (S_ISDIR(inode->vfs_inode.i_mode) && inode_only == LOG_INODE_ALL)
6459 full_dir_logging = true;
6460
6461 /*
6462 * If we are logging a directory while we are logging dentries of the
6463 * delayed items of some other inode, then we need to flush the delayed
6464 * items of this directory and not log the delayed items directly. This
6465 * is to prevent more than one level of recursion into btrfs_log_inode()
6466 * by having something like this:
6467 *
6468 * $ mkdir -p a/b/c/d/e/f/g/h/...
6469 * $ xfs_io -c "fsync" a
6470 *
6471 * Where all directories in the path did not exist before and are
6472 * created in the current transaction.
6473 * So in such a case we directly log the delayed items of the main
6474 * directory ("a") without flushing them first, while for each of its
6475 * subdirectories we flush their delayed items before logging them.
6476 * This prevents a potential unbounded recursion like this:
6477 *
6478 * btrfs_log_inode()
6479 * log_new_delayed_dentries()
6480 * btrfs_log_inode()
6481 * log_new_delayed_dentries()
6482 * btrfs_log_inode()
6483 * log_new_delayed_dentries()
6484 * (...)
6485 *
6486 * We have thresholds for the maximum number of delayed items to have in
6487 * memory, and once they are hit, the items are flushed asynchronously.
6488 * However the limit is quite high, so lets prevent deep levels of
6489 * recursion to happen by limiting the maximum depth to be 1.
6490 */
6491 if (full_dir_logging && ctx->logging_new_delayed_dentries) {
6492 ret = btrfs_commit_inode_delayed_items(trans, inode);
6493 if (ret)
6494 goto out;
6495 }
6496
6497 mutex_lock(&inode->log_mutex);
6498
6499 /*
6500 * For symlinks, we must always log their content, which is stored in an
6501 * inline extent, otherwise we could end up with an empty symlink after
6502 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6503 * one attempts to create an empty symlink).
6504 * We don't need to worry about flushing delalloc, because when we create
6505 * the inline extent when the symlink is created (we never have delalloc
6506 * for symlinks).
6507 */
6508 if (S_ISLNK(inode->vfs_inode.i_mode))
6509 inode_only = LOG_INODE_ALL;
6510
6511 /*
6512 * Before logging the inode item, cache the value returned by
6513 * inode_logged(), because after that we have the need to figure out if
6514 * the inode was previously logged in this transaction.
6515 */
6516 ret = inode_logged(trans, inode, path);
6517 if (ret < 0)
6518 goto out_unlock;
6519 ctx->logged_before = (ret == 1);
6520 ret = 0;
6521
6522 /*
6523 * This is for cases where logging a directory could result in losing a
6524 * a file after replaying the log. For example, if we move a file from a
6525 * directory A to a directory B, then fsync directory A, we have no way
6526 * to known the file was moved from A to B, so logging just A would
6527 * result in losing the file after a log replay.
6528 */
6529 if (full_dir_logging && inode->last_unlink_trans >= trans->transid) {
6530 ret = BTRFS_LOG_FORCE_COMMIT;
6531 goto out_unlock;
6532 }
6533
6534 /*
6535 * a brute force approach to making sure we get the most uptodate
6536 * copies of everything.
6537 */
6538 if (S_ISDIR(inode->vfs_inode.i_mode)) {
6539 clear_bit(BTRFS_INODE_COPY_EVERYTHING, &inode->runtime_flags);
6540 if (ctx->logged_before)
6541 ret = drop_inode_items(trans, log, path, inode,
6542 BTRFS_XATTR_ITEM_KEY);
6543 } else {
6544 if (inode_only == LOG_INODE_EXISTS && ctx->logged_before) {
6545 /*
6546 * Make sure the new inode item we write to the log has
6547 * the same isize as the current one (if it exists).
6548 * This is necessary to prevent data loss after log
6549 * replay, and also to prevent doing a wrong expanding
6550 * truncate - for e.g. create file, write 4K into offset
6551 * 0, fsync, write 4K into offset 4096, add hard link,
6552 * fsync some other file (to sync log), power fail - if
6553 * we use the inode's current i_size, after log replay
6554 * we get a 8Kb file, with the last 4Kb extent as a hole
6555 * (zeroes), as if an expanding truncate happened,
6556 * instead of getting a file of 4Kb only.
6557 */
6558 ret = logged_inode_size(log, inode, path, &logged_isize);
6559 if (ret)
6560 goto out_unlock;
6561 }
6562 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6563 &inode->runtime_flags)) {
6564 if (inode_only == LOG_INODE_EXISTS) {
6565 max_key.type = BTRFS_XATTR_ITEM_KEY;
6566 if (ctx->logged_before)
6567 ret = drop_inode_items(trans, log, path,
6568 inode, max_key.type);
6569 } else {
6570 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
6571 &inode->runtime_flags);
6572 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6573 &inode->runtime_flags);
6574 if (ctx->logged_before)
6575 ret = truncate_inode_items(trans, log,
6576 inode, 0, 0);
6577 }
6578 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
6579 &inode->runtime_flags) ||
6580 inode_only == LOG_INODE_EXISTS) {
6581 if (inode_only == LOG_INODE_ALL)
6582 fast_search = true;
6583 max_key.type = BTRFS_XATTR_ITEM_KEY;
6584 if (ctx->logged_before)
6585 ret = drop_inode_items(trans, log, path, inode,
6586 max_key.type);
6587 } else {
6588 if (inode_only == LOG_INODE_ALL)
6589 fast_search = true;
6590 inode_item_dropped = false;
6591 goto log_extents;
6592 }
6593
6594 }
6595 if (ret)
6596 goto out_unlock;
6597
6598 /*
6599 * If we are logging a directory in full mode, collect the delayed items
6600 * before iterating the subvolume tree, so that we don't miss any new
6601 * dir index items in case they get flushed while or right after we are
6602 * iterating the subvolume tree.
6603 */
6604 if (full_dir_logging && !ctx->logging_new_delayed_dentries)
6605 btrfs_log_get_delayed_items(inode, &delayed_ins_list,
6606 &delayed_del_list);
6607
6608 ret = copy_inode_items_to_log(trans, inode, &min_key, &max_key,
6609 path, dst_path, logged_isize,
6610 inode_only, ctx,
6611 &need_log_inode_item);
6612 if (ret)
6613 goto out_unlock;
6614
6615 btrfs_release_path(path);
6616 btrfs_release_path(dst_path);
6617 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6618 if (ret)
6619 goto out_unlock;
6620 xattrs_logged = true;
6621 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
6622 btrfs_release_path(path);
6623 btrfs_release_path(dst_path);
6624 ret = btrfs_log_holes(trans, inode, path);
6625 if (ret)
6626 goto out_unlock;
6627 }
6628 log_extents:
6629 btrfs_release_path(path);
6630 btrfs_release_path(dst_path);
6631 if (need_log_inode_item) {
6632 ret = log_inode_item(trans, log, dst_path, inode, inode_item_dropped);
6633 if (ret)
6634 goto out_unlock;
6635 /*
6636 * If we are doing a fast fsync and the inode was logged before
6637 * in this transaction, we don't need to log the xattrs because
6638 * they were logged before. If xattrs were added, changed or
6639 * deleted since the last time we logged the inode, then we have
6640 * already logged them because the inode had the runtime flag
6641 * BTRFS_INODE_COPY_EVERYTHING set.
6642 */
6643 if (!xattrs_logged && inode->logged_trans < trans->transid) {
6644 ret = btrfs_log_all_xattrs(trans, inode, path, dst_path, ctx);
6645 if (ret)
6646 goto out_unlock;
6647 btrfs_release_path(path);
6648 }
6649 }
6650 if (fast_search) {
6651 ret = btrfs_log_changed_extents(trans, inode, dst_path, ctx);
6652 if (ret)
6653 goto out_unlock;
6654 } else if (inode_only == LOG_INODE_ALL) {
6655 struct extent_map *em, *n;
6656
6657 write_lock(&em_tree->lock);
6658 list_for_each_entry_safe(em, n, &em_tree->modified_extents, list)
6659 list_del_init(&em->list);
6660 write_unlock(&em_tree->lock);
6661 }
6662
6663 if (full_dir_logging) {
6664 ret = log_directory_changes(trans, inode, path, dst_path, ctx);
6665 if (ret)
6666 goto out_unlock;
6667 ret = log_delayed_insertion_items(trans, inode, path,
6668 &delayed_ins_list, ctx);
6669 if (ret)
6670 goto out_unlock;
6671 ret = log_delayed_deletion_items(trans, inode, path,
6672 &delayed_del_list, ctx);
6673 if (ret)
6674 goto out_unlock;
6675 }
6676
6677 spin_lock(&inode->lock);
6678 inode->logged_trans = trans->transid;
6679 /*
6680 * Don't update last_log_commit if we logged that an inode exists.
6681 * We do this for three reasons:
6682 *
6683 * 1) We might have had buffered writes to this inode that were
6684 * flushed and had their ordered extents completed in this
6685 * transaction, but we did not previously log the inode with
6686 * LOG_INODE_ALL. Later the inode was evicted and after that
6687 * it was loaded again and this LOG_INODE_EXISTS log operation
6688 * happened. We must make sure that if an explicit fsync against
6689 * the inode is performed later, it logs the new extents, an
6690 * updated inode item, etc, and syncs the log. The same logic
6691 * applies to direct IO writes instead of buffered writes.
6692 *
6693 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6694 * is logged with an i_size of 0 or whatever value was logged
6695 * before. If later the i_size of the inode is increased by a
6696 * truncate operation, the log is synced through an fsync of
6697 * some other inode and then finally an explicit fsync against
6698 * this inode is made, we must make sure this fsync logs the
6699 * inode with the new i_size, the hole between old i_size and
6700 * the new i_size, and syncs the log.
6701 *
6702 * 3) If we are logging that an ancestor inode exists as part of
6703 * logging a new name from a link or rename operation, don't update
6704 * its last_log_commit - otherwise if an explicit fsync is made
6705 * against an ancestor, the fsync considers the inode in the log
6706 * and doesn't sync the log, resulting in the ancestor missing after
6707 * a power failure unless the log was synced as part of an fsync
6708 * against any other unrelated inode.
6709 */
6710 if (inode_only != LOG_INODE_EXISTS)
6711 inode->last_log_commit = inode->last_sub_trans;
6712 spin_unlock(&inode->lock);
6713
6714 /*
6715 * Reset the last_reflink_trans so that the next fsync does not need to
6716 * go through the slower path when logging extents and their checksums.
6717 */
6718 if (inode_only == LOG_INODE_ALL)
6719 inode->last_reflink_trans = 0;
6720
6721 out_unlock:
6722 mutex_unlock(&inode->log_mutex);
6723 out:
6724 btrfs_free_path(path);
6725 btrfs_free_path(dst_path);
6726
6727 if (ret)
6728 free_conflicting_inodes(ctx);
6729 else
6730 ret = log_conflicting_inodes(trans, inode->root, ctx);
6731
6732 if (full_dir_logging && !ctx->logging_new_delayed_dentries) {
6733 if (!ret)
6734 ret = log_new_delayed_dentries(trans, inode,
6735 &delayed_ins_list, ctx);
6736
6737 btrfs_log_put_delayed_items(inode, &delayed_ins_list,
6738 &delayed_del_list);
6739 }
6740
6741 return ret;
6742 }
6743
btrfs_log_all_parents(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct btrfs_log_ctx * ctx)6744 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
6745 struct btrfs_inode *inode,
6746 struct btrfs_log_ctx *ctx)
6747 {
6748 int ret;
6749 struct btrfs_path *path;
6750 struct btrfs_key key;
6751 struct btrfs_root *root = inode->root;
6752 const u64 ino = btrfs_ino(inode);
6753
6754 path = btrfs_alloc_path();
6755 if (!path)
6756 return -ENOMEM;
6757 path->skip_locking = 1;
6758 path->search_commit_root = 1;
6759
6760 key.objectid = ino;
6761 key.type = BTRFS_INODE_REF_KEY;
6762 key.offset = 0;
6763 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6764 if (ret < 0)
6765 goto out;
6766
6767 while (true) {
6768 struct extent_buffer *leaf = path->nodes[0];
6769 int slot = path->slots[0];
6770 u32 cur_offset = 0;
6771 u32 item_size;
6772 unsigned long ptr;
6773
6774 if (slot >= btrfs_header_nritems(leaf)) {
6775 ret = btrfs_next_leaf(root, path);
6776 if (ret < 0)
6777 goto out;
6778 else if (ret > 0)
6779 break;
6780 continue;
6781 }
6782
6783 btrfs_item_key_to_cpu(leaf, &key, slot);
6784 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6785 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
6786 break;
6787
6788 item_size = btrfs_item_size(leaf, slot);
6789 ptr = btrfs_item_ptr_offset(leaf, slot);
6790 while (cur_offset < item_size) {
6791 struct btrfs_key inode_key;
6792 struct inode *dir_inode;
6793
6794 inode_key.type = BTRFS_INODE_ITEM_KEY;
6795 inode_key.offset = 0;
6796
6797 if (key.type == BTRFS_INODE_EXTREF_KEY) {
6798 struct btrfs_inode_extref *extref;
6799
6800 extref = (struct btrfs_inode_extref *)
6801 (ptr + cur_offset);
6802 inode_key.objectid = btrfs_inode_extref_parent(
6803 leaf, extref);
6804 cur_offset += sizeof(*extref);
6805 cur_offset += btrfs_inode_extref_name_len(leaf,
6806 extref);
6807 } else {
6808 inode_key.objectid = key.offset;
6809 cur_offset = item_size;
6810 }
6811
6812 dir_inode = btrfs_iget_logging(inode_key.objectid, root);
6813 /*
6814 * If the parent inode was deleted, return an error to
6815 * fallback to a transaction commit. This is to prevent
6816 * getting an inode that was moved from one parent A to
6817 * a parent B, got its former parent A deleted and then
6818 * it got fsync'ed, from existing at both parents after
6819 * a log replay (and the old parent still existing).
6820 * Example:
6821 *
6822 * mkdir /mnt/A
6823 * mkdir /mnt/B
6824 * touch /mnt/B/bar
6825 * sync
6826 * mv /mnt/B/bar /mnt/A/bar
6827 * mv -T /mnt/A /mnt/B
6828 * fsync /mnt/B/bar
6829 * <power fail>
6830 *
6831 * If we ignore the old parent B which got deleted,
6832 * after a log replay we would have file bar linked
6833 * at both parents and the old parent B would still
6834 * exist.
6835 */
6836 if (IS_ERR(dir_inode)) {
6837 ret = PTR_ERR(dir_inode);
6838 goto out;
6839 }
6840
6841 if (!need_log_inode(trans, BTRFS_I(dir_inode))) {
6842 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6843 continue;
6844 }
6845
6846 ctx->log_new_dentries = false;
6847 ret = btrfs_log_inode(trans, BTRFS_I(dir_inode),
6848 LOG_INODE_ALL, ctx);
6849 if (!ret && ctx->log_new_dentries)
6850 ret = log_new_dir_dentries(trans,
6851 BTRFS_I(dir_inode), ctx);
6852 btrfs_add_delayed_iput(BTRFS_I(dir_inode));
6853 if (ret)
6854 goto out;
6855 }
6856 path->slots[0]++;
6857 }
6858 ret = 0;
6859 out:
6860 btrfs_free_path(path);
6861 return ret;
6862 }
6863
log_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct btrfs_path * path,struct btrfs_log_ctx * ctx)6864 static int log_new_ancestors(struct btrfs_trans_handle *trans,
6865 struct btrfs_root *root,
6866 struct btrfs_path *path,
6867 struct btrfs_log_ctx *ctx)
6868 {
6869 struct btrfs_key found_key;
6870
6871 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
6872
6873 while (true) {
6874 struct extent_buffer *leaf;
6875 int slot;
6876 struct btrfs_key search_key;
6877 struct inode *inode;
6878 u64 ino;
6879 int ret = 0;
6880
6881 btrfs_release_path(path);
6882
6883 ino = found_key.offset;
6884
6885 search_key.objectid = found_key.offset;
6886 search_key.type = BTRFS_INODE_ITEM_KEY;
6887 search_key.offset = 0;
6888 inode = btrfs_iget_logging(ino, root);
6889 if (IS_ERR(inode))
6890 return PTR_ERR(inode);
6891
6892 if (BTRFS_I(inode)->generation >= trans->transid &&
6893 need_log_inode(trans, BTRFS_I(inode)))
6894 ret = btrfs_log_inode(trans, BTRFS_I(inode),
6895 LOG_INODE_EXISTS, ctx);
6896 btrfs_add_delayed_iput(BTRFS_I(inode));
6897 if (ret)
6898 return ret;
6899
6900 if (search_key.objectid == BTRFS_FIRST_FREE_OBJECTID)
6901 break;
6902
6903 search_key.type = BTRFS_INODE_REF_KEY;
6904 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6905 if (ret < 0)
6906 return ret;
6907
6908 leaf = path->nodes[0];
6909 slot = path->slots[0];
6910 if (slot >= btrfs_header_nritems(leaf)) {
6911 ret = btrfs_next_leaf(root, path);
6912 if (ret < 0)
6913 return ret;
6914 else if (ret > 0)
6915 return -ENOENT;
6916 leaf = path->nodes[0];
6917 slot = path->slots[0];
6918 }
6919
6920 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6921 if (found_key.objectid != search_key.objectid ||
6922 found_key.type != BTRFS_INODE_REF_KEY)
6923 return -ENOENT;
6924 }
6925 return 0;
6926 }
6927
log_new_ancestors_fast(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6928 static int log_new_ancestors_fast(struct btrfs_trans_handle *trans,
6929 struct btrfs_inode *inode,
6930 struct dentry *parent,
6931 struct btrfs_log_ctx *ctx)
6932 {
6933 struct btrfs_root *root = inode->root;
6934 struct dentry *old_parent = NULL;
6935 struct super_block *sb = inode->vfs_inode.i_sb;
6936 int ret = 0;
6937
6938 while (true) {
6939 if (!parent || d_really_is_negative(parent) ||
6940 sb != parent->d_sb)
6941 break;
6942
6943 inode = BTRFS_I(d_inode(parent));
6944 if (root != inode->root)
6945 break;
6946
6947 if (inode->generation >= trans->transid &&
6948 need_log_inode(trans, inode)) {
6949 ret = btrfs_log_inode(trans, inode,
6950 LOG_INODE_EXISTS, ctx);
6951 if (ret)
6952 break;
6953 }
6954 if (IS_ROOT(parent))
6955 break;
6956
6957 parent = dget_parent(parent);
6958 dput(old_parent);
6959 old_parent = parent;
6960 }
6961 dput(old_parent);
6962
6963 return ret;
6964 }
6965
log_all_new_ancestors(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,struct btrfs_log_ctx * ctx)6966 static int log_all_new_ancestors(struct btrfs_trans_handle *trans,
6967 struct btrfs_inode *inode,
6968 struct dentry *parent,
6969 struct btrfs_log_ctx *ctx)
6970 {
6971 struct btrfs_root *root = inode->root;
6972 const u64 ino = btrfs_ino(inode);
6973 struct btrfs_path *path;
6974 struct btrfs_key search_key;
6975 int ret;
6976
6977 /*
6978 * For a single hard link case, go through a fast path that does not
6979 * need to iterate the fs/subvolume tree.
6980 */
6981 if (inode->vfs_inode.i_nlink < 2)
6982 return log_new_ancestors_fast(trans, inode, parent, ctx);
6983
6984 path = btrfs_alloc_path();
6985 if (!path)
6986 return -ENOMEM;
6987
6988 search_key.objectid = ino;
6989 search_key.type = BTRFS_INODE_REF_KEY;
6990 search_key.offset = 0;
6991 again:
6992 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
6993 if (ret < 0)
6994 goto out;
6995 if (ret == 0)
6996 path->slots[0]++;
6997
6998 while (true) {
6999 struct extent_buffer *leaf = path->nodes[0];
7000 int slot = path->slots[0];
7001 struct btrfs_key found_key;
7002
7003 if (slot >= btrfs_header_nritems(leaf)) {
7004 ret = btrfs_next_leaf(root, path);
7005 if (ret < 0)
7006 goto out;
7007 else if (ret > 0)
7008 break;
7009 continue;
7010 }
7011
7012 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7013 if (found_key.objectid != ino ||
7014 found_key.type > BTRFS_INODE_EXTREF_KEY)
7015 break;
7016
7017 /*
7018 * Don't deal with extended references because they are rare
7019 * cases and too complex to deal with (we would need to keep
7020 * track of which subitem we are processing for each item in
7021 * this loop, etc). So just return some error to fallback to
7022 * a transaction commit.
7023 */
7024 if (found_key.type == BTRFS_INODE_EXTREF_KEY) {
7025 ret = -EMLINK;
7026 goto out;
7027 }
7028
7029 /*
7030 * Logging ancestors needs to do more searches on the fs/subvol
7031 * tree, so it releases the path as needed to avoid deadlocks.
7032 * Keep track of the last inode ref key and resume from that key
7033 * after logging all new ancestors for the current hard link.
7034 */
7035 memcpy(&search_key, &found_key, sizeof(search_key));
7036
7037 ret = log_new_ancestors(trans, root, path, ctx);
7038 if (ret)
7039 goto out;
7040 btrfs_release_path(path);
7041 goto again;
7042 }
7043 ret = 0;
7044 out:
7045 btrfs_free_path(path);
7046 return ret;
7047 }
7048
7049 /*
7050 * helper function around btrfs_log_inode to make sure newly created
7051 * parent directories also end up in the log. A minimal inode and backref
7052 * only logging is done of any parent directories that are older than
7053 * the last committed transaction
7054 */
btrfs_log_inode_parent(struct btrfs_trans_handle * trans,struct btrfs_inode * inode,struct dentry * parent,int inode_only,struct btrfs_log_ctx * ctx)7055 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
7056 struct btrfs_inode *inode,
7057 struct dentry *parent,
7058 int inode_only,
7059 struct btrfs_log_ctx *ctx)
7060 {
7061 struct btrfs_root *root = inode->root;
7062 struct btrfs_fs_info *fs_info = root->fs_info;
7063 int ret = 0;
7064 bool log_dentries = false;
7065
7066 if (btrfs_test_opt(fs_info, NOTREELOG)) {
7067 ret = BTRFS_LOG_FORCE_COMMIT;
7068 goto end_no_trans;
7069 }
7070
7071 if (btrfs_root_refs(&root->root_item) == 0) {
7072 ret = BTRFS_LOG_FORCE_COMMIT;
7073 goto end_no_trans;
7074 }
7075
7076 /*
7077 * If we're logging an inode from a subvolume created in the current
7078 * transaction we must force a commit since the root is not persisted.
7079 */
7080 if (btrfs_root_generation(&root->root_item) == trans->transid) {
7081 ret = BTRFS_LOG_FORCE_COMMIT;
7082 goto end_no_trans;
7083 }
7084
7085 /*
7086 * Skip already logged inodes or inodes corresponding to tmpfiles
7087 * (since logging them is pointless, a link count of 0 means they
7088 * will never be accessible).
7089 */
7090 if ((btrfs_inode_in_log(inode, trans->transid) &&
7091 list_empty(&ctx->ordered_extents)) ||
7092 inode->vfs_inode.i_nlink == 0) {
7093 ret = BTRFS_NO_LOG_SYNC;
7094 goto end_no_trans;
7095 }
7096
7097 ret = start_log_trans(trans, root, ctx);
7098 if (ret)
7099 goto end_no_trans;
7100
7101 ret = btrfs_log_inode(trans, inode, inode_only, ctx);
7102 if (ret)
7103 goto end_trans;
7104
7105 /*
7106 * for regular files, if its inode is already on disk, we don't
7107 * have to worry about the parents at all. This is because
7108 * we can use the last_unlink_trans field to record renames
7109 * and other fun in this file.
7110 */
7111 if (S_ISREG(inode->vfs_inode.i_mode) &&
7112 inode->generation < trans->transid &&
7113 inode->last_unlink_trans < trans->transid) {
7114 ret = 0;
7115 goto end_trans;
7116 }
7117
7118 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx->log_new_dentries)
7119 log_dentries = true;
7120
7121 /*
7122 * On unlink we must make sure all our current and old parent directory
7123 * inodes are fully logged. This is to prevent leaving dangling
7124 * directory index entries in directories that were our parents but are
7125 * not anymore. Not doing this results in old parent directory being
7126 * impossible to delete after log replay (rmdir will always fail with
7127 * error -ENOTEMPTY).
7128 *
7129 * Example 1:
7130 *
7131 * mkdir testdir
7132 * touch testdir/foo
7133 * ln testdir/foo testdir/bar
7134 * sync
7135 * unlink testdir/bar
7136 * xfs_io -c fsync testdir/foo
7137 * <power failure>
7138 * mount fs, triggers log replay
7139 *
7140 * If we don't log the parent directory (testdir), after log replay the
7141 * directory still has an entry pointing to the file inode using the bar
7142 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7143 * the file inode has a link count of 1.
7144 *
7145 * Example 2:
7146 *
7147 * mkdir testdir
7148 * touch foo
7149 * ln foo testdir/foo2
7150 * ln foo testdir/foo3
7151 * sync
7152 * unlink testdir/foo3
7153 * xfs_io -c fsync foo
7154 * <power failure>
7155 * mount fs, triggers log replay
7156 *
7157 * Similar as the first example, after log replay the parent directory
7158 * testdir still has an entry pointing to the inode file with name foo3
7159 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7160 * and has a link count of 2.
7161 */
7162 if (inode->last_unlink_trans >= trans->transid) {
7163 ret = btrfs_log_all_parents(trans, inode, ctx);
7164 if (ret)
7165 goto end_trans;
7166 }
7167
7168 ret = log_all_new_ancestors(trans, inode, parent, ctx);
7169 if (ret)
7170 goto end_trans;
7171
7172 if (log_dentries)
7173 ret = log_new_dir_dentries(trans, inode, ctx);
7174 else
7175 ret = 0;
7176 end_trans:
7177 if (ret < 0) {
7178 btrfs_set_log_full_commit(trans);
7179 ret = BTRFS_LOG_FORCE_COMMIT;
7180 }
7181
7182 if (ret)
7183 btrfs_remove_log_ctx(root, ctx);
7184 btrfs_end_log_trans(root);
7185 end_no_trans:
7186 return ret;
7187 }
7188
7189 /*
7190 * it is not safe to log dentry if the chunk root has added new
7191 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7192 * If this returns 1, you must commit the transaction to safely get your
7193 * data on disk.
7194 */
btrfs_log_dentry_safe(struct btrfs_trans_handle * trans,struct dentry * dentry,struct btrfs_log_ctx * ctx)7195 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
7196 struct dentry *dentry,
7197 struct btrfs_log_ctx *ctx)
7198 {
7199 struct dentry *parent = dget_parent(dentry);
7200 int ret;
7201
7202 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
7203 LOG_INODE_ALL, ctx);
7204 dput(parent);
7205
7206 return ret;
7207 }
7208
7209 /*
7210 * should be called during mount to recover any replay any log trees
7211 * from the FS
7212 */
btrfs_recover_log_trees(struct btrfs_root * log_root_tree)7213 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
7214 {
7215 int ret;
7216 struct btrfs_path *path;
7217 struct btrfs_trans_handle *trans;
7218 struct btrfs_key key;
7219 struct btrfs_key found_key;
7220 struct btrfs_root *log;
7221 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
7222 struct walk_control wc = {
7223 .process_func = process_one_buffer,
7224 .stage = LOG_WALK_PIN_ONLY,
7225 };
7226
7227 path = btrfs_alloc_path();
7228 if (!path)
7229 return -ENOMEM;
7230
7231 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7232
7233 trans = btrfs_start_transaction(fs_info->tree_root, 0);
7234 if (IS_ERR(trans)) {
7235 ret = PTR_ERR(trans);
7236 goto error;
7237 }
7238
7239 wc.trans = trans;
7240 wc.pin = 1;
7241
7242 ret = walk_log_tree(trans, log_root_tree, &wc);
7243 if (ret) {
7244 btrfs_abort_transaction(trans, ret);
7245 goto error;
7246 }
7247
7248 again:
7249 key.objectid = BTRFS_TREE_LOG_OBJECTID;
7250 key.offset = (u64)-1;
7251 key.type = BTRFS_ROOT_ITEM_KEY;
7252
7253 while (1) {
7254 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
7255
7256 if (ret < 0) {
7257 btrfs_abort_transaction(trans, ret);
7258 goto error;
7259 }
7260 if (ret > 0) {
7261 if (path->slots[0] == 0)
7262 break;
7263 path->slots[0]--;
7264 }
7265 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
7266 path->slots[0]);
7267 btrfs_release_path(path);
7268 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7269 break;
7270
7271 log = btrfs_read_tree_root(log_root_tree, &found_key);
7272 if (IS_ERR(log)) {
7273 ret = PTR_ERR(log);
7274 btrfs_abort_transaction(trans, ret);
7275 goto error;
7276 }
7277
7278 wc.replay_dest = btrfs_get_fs_root(fs_info, found_key.offset,
7279 true);
7280 if (IS_ERR(wc.replay_dest)) {
7281 ret = PTR_ERR(wc.replay_dest);
7282
7283 /*
7284 * We didn't find the subvol, likely because it was
7285 * deleted. This is ok, simply skip this log and go to
7286 * the next one.
7287 *
7288 * We need to exclude the root because we can't have
7289 * other log replays overwriting this log as we'll read
7290 * it back in a few more times. This will keep our
7291 * block from being modified, and we'll just bail for
7292 * each subsequent pass.
7293 */
7294 if (ret == -ENOENT)
7295 ret = btrfs_pin_extent_for_log_replay(trans, log->node);
7296 btrfs_put_root(log);
7297
7298 if (!ret)
7299 goto next;
7300 btrfs_abort_transaction(trans, ret);
7301 goto error;
7302 }
7303
7304 wc.replay_dest->log_root = log;
7305 ret = btrfs_record_root_in_trans(trans, wc.replay_dest);
7306 if (ret)
7307 /* The loop needs to continue due to the root refs */
7308 btrfs_abort_transaction(trans, ret);
7309 else
7310 ret = walk_log_tree(trans, log, &wc);
7311
7312 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7313 ret = fixup_inode_link_counts(trans, wc.replay_dest,
7314 path);
7315 if (ret)
7316 btrfs_abort_transaction(trans, ret);
7317 }
7318
7319 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
7320 struct btrfs_root *root = wc.replay_dest;
7321
7322 btrfs_release_path(path);
7323
7324 /*
7325 * We have just replayed everything, and the highest
7326 * objectid of fs roots probably has changed in case
7327 * some inode_item's got replayed.
7328 *
7329 * root->objectid_mutex is not acquired as log replay
7330 * could only happen during mount.
7331 */
7332 ret = btrfs_init_root_free_objectid(root);
7333 if (ret)
7334 btrfs_abort_transaction(trans, ret);
7335 }
7336
7337 wc.replay_dest->log_root = NULL;
7338 btrfs_put_root(wc.replay_dest);
7339 btrfs_put_root(log);
7340
7341 if (ret)
7342 goto error;
7343 next:
7344 if (found_key.offset == 0)
7345 break;
7346 key.offset = found_key.offset - 1;
7347 }
7348 btrfs_release_path(path);
7349
7350 /* step one is to pin it all, step two is to replay just inodes */
7351 if (wc.pin) {
7352 wc.pin = 0;
7353 wc.process_func = replay_one_buffer;
7354 wc.stage = LOG_WALK_REPLAY_INODES;
7355 goto again;
7356 }
7357 /* step three is to replay everything */
7358 if (wc.stage < LOG_WALK_REPLAY_ALL) {
7359 wc.stage++;
7360 goto again;
7361 }
7362
7363 btrfs_free_path(path);
7364
7365 /* step 4: commit the transaction, which also unpins the blocks */
7366 ret = btrfs_commit_transaction(trans);
7367 if (ret)
7368 return ret;
7369
7370 log_root_tree->log_root = NULL;
7371 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7372 btrfs_put_root(log_root_tree);
7373
7374 return 0;
7375 error:
7376 if (wc.trans)
7377 btrfs_end_transaction(wc.trans);
7378 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
7379 btrfs_free_path(path);
7380 return ret;
7381 }
7382
7383 /*
7384 * there are some corner cases where we want to force a full
7385 * commit instead of allowing a directory to be logged.
7386 *
7387 * They revolve around files there were unlinked from the directory, and
7388 * this function updates the parent directory so that a full commit is
7389 * properly done if it is fsync'd later after the unlinks are done.
7390 *
7391 * Must be called before the unlink operations (updates to the subvolume tree,
7392 * inodes, etc) are done.
7393 */
btrfs_record_unlink_dir(struct btrfs_trans_handle * trans,struct btrfs_inode * dir,struct btrfs_inode * inode,bool for_rename)7394 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
7395 struct btrfs_inode *dir, struct btrfs_inode *inode,
7396 bool for_rename)
7397 {
7398 /*
7399 * when we're logging a file, if it hasn't been renamed
7400 * or unlinked, and its inode is fully committed on disk,
7401 * we don't have to worry about walking up the directory chain
7402 * to log its parents.
7403 *
7404 * So, we use the last_unlink_trans field to put this transid
7405 * into the file. When the file is logged we check it and
7406 * don't log the parents if the file is fully on disk.
7407 */
7408 mutex_lock(&inode->log_mutex);
7409 inode->last_unlink_trans = trans->transid;
7410 mutex_unlock(&inode->log_mutex);
7411
7412 if (!for_rename)
7413 return;
7414
7415 /*
7416 * If this directory was already logged, any new names will be logged
7417 * with btrfs_log_new_name() and old names will be deleted from the log
7418 * tree with btrfs_del_dir_entries_in_log() or with
7419 * btrfs_del_inode_ref_in_log().
7420 */
7421 if (inode_logged(trans, dir, NULL) == 1)
7422 return;
7423
7424 /*
7425 * If the inode we're about to unlink was logged before, the log will be
7426 * properly updated with the new name with btrfs_log_new_name() and the
7427 * old name removed with btrfs_del_dir_entries_in_log() or with
7428 * btrfs_del_inode_ref_in_log().
7429 */
7430 if (inode_logged(trans, inode, NULL) == 1)
7431 return;
7432
7433 /*
7434 * when renaming files across directories, if the directory
7435 * there we're unlinking from gets fsync'd later on, there's
7436 * no way to find the destination directory later and fsync it
7437 * properly. So, we have to be conservative and force commits
7438 * so the new name gets discovered.
7439 */
7440 mutex_lock(&dir->log_mutex);
7441 dir->last_unlink_trans = trans->transid;
7442 mutex_unlock(&dir->log_mutex);
7443 }
7444
7445 /*
7446 * Make sure that if someone attempts to fsync the parent directory of a deleted
7447 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7448 * that after replaying the log tree of the parent directory's root we will not
7449 * see the snapshot anymore and at log replay time we will not see any log tree
7450 * corresponding to the deleted snapshot's root, which could lead to replaying
7451 * it after replaying the log tree of the parent directory (which would replay
7452 * the snapshot delete operation).
7453 *
7454 * Must be called before the actual snapshot destroy operation (updates to the
7455 * parent root and tree of tree roots trees, etc) are done.
7456 */
btrfs_record_snapshot_destroy(struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7457 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
7458 struct btrfs_inode *dir)
7459 {
7460 mutex_lock(&dir->log_mutex);
7461 dir->last_unlink_trans = trans->transid;
7462 mutex_unlock(&dir->log_mutex);
7463 }
7464
7465 /*
7466 * Call this when creating a subvolume in a directory.
7467 * Because we don't commit a transaction when creating a subvolume, we can't
7468 * allow the directory pointing to the subvolume to be logged with an entry that
7469 * points to an unpersisted root if we are still in the transaction used to
7470 * create the subvolume, so make any attempt to log the directory to result in a
7471 * full log sync.
7472 * Also we don't need to worry with renames, since btrfs_rename() marks the log
7473 * for full commit when renaming a subvolume.
7474 */
btrfs_record_new_subvolume(const struct btrfs_trans_handle * trans,struct btrfs_inode * dir)7475 void btrfs_record_new_subvolume(const struct btrfs_trans_handle *trans,
7476 struct btrfs_inode *dir)
7477 {
7478 mutex_lock(&dir->log_mutex);
7479 dir->last_unlink_trans = trans->transid;
7480 mutex_unlock(&dir->log_mutex);
7481 }
7482
7483 /*
7484 * Update the log after adding a new name for an inode.
7485 *
7486 * @trans: Transaction handle.
7487 * @old_dentry: The dentry associated with the old name and the old
7488 * parent directory.
7489 * @old_dir: The inode of the previous parent directory for the case
7490 * of a rename. For a link operation, it must be NULL.
7491 * @old_dir_index: The index number associated with the old name, meaningful
7492 * only for rename operations (when @old_dir is not NULL).
7493 * Ignored for link operations.
7494 * @parent: The dentry associated with the directory under which the
7495 * new name is located.
7496 *
7497 * Call this after adding a new name for an inode, as a result of a link or
7498 * rename operation, and it will properly update the log to reflect the new name.
7499 */
btrfs_log_new_name(struct btrfs_trans_handle * trans,struct dentry * old_dentry,struct btrfs_inode * old_dir,u64 old_dir_index,struct dentry * parent)7500 void btrfs_log_new_name(struct btrfs_trans_handle *trans,
7501 struct dentry *old_dentry, struct btrfs_inode *old_dir,
7502 u64 old_dir_index, struct dentry *parent)
7503 {
7504 struct btrfs_inode *inode = BTRFS_I(d_inode(old_dentry));
7505 struct btrfs_root *root = inode->root;
7506 struct btrfs_log_ctx ctx;
7507 bool log_pinned = false;
7508 int ret;
7509
7510 /*
7511 * this will force the logging code to walk the dentry chain
7512 * up for the file
7513 */
7514 if (!S_ISDIR(inode->vfs_inode.i_mode))
7515 inode->last_unlink_trans = trans->transid;
7516
7517 /*
7518 * if this inode hasn't been logged and directory we're renaming it
7519 * from hasn't been logged, we don't need to log it
7520 */
7521 ret = inode_logged(trans, inode, NULL);
7522 if (ret < 0) {
7523 goto out;
7524 } else if (ret == 0) {
7525 if (!old_dir)
7526 return;
7527 /*
7528 * If the inode was not logged and we are doing a rename (old_dir is not
7529 * NULL), check if old_dir was logged - if it was not we can return and
7530 * do nothing.
7531 */
7532 ret = inode_logged(trans, old_dir, NULL);
7533 if (ret < 0)
7534 goto out;
7535 else if (ret == 0)
7536 return;
7537 }
7538 ret = 0;
7539
7540 /*
7541 * If we are doing a rename (old_dir is not NULL) from a directory that
7542 * was previously logged, make sure that on log replay we get the old
7543 * dir entry deleted. This is needed because we will also log the new
7544 * name of the renamed inode, so we need to make sure that after log
7545 * replay we don't end up with both the new and old dir entries existing.
7546 */
7547 if (old_dir && old_dir->logged_trans == trans->transid) {
7548 struct btrfs_root *log = old_dir->root->log_root;
7549 struct btrfs_path *path;
7550 struct fscrypt_name fname;
7551
7552 ASSERT(old_dir_index >= BTRFS_DIR_START_INDEX);
7553
7554 ret = fscrypt_setup_filename(&old_dir->vfs_inode,
7555 &old_dentry->d_name, 0, &fname);
7556 if (ret)
7557 goto out;
7558 /*
7559 * We have two inodes to update in the log, the old directory and
7560 * the inode that got renamed, so we must pin the log to prevent
7561 * anyone from syncing the log until we have updated both inodes
7562 * in the log.
7563 */
7564 ret = join_running_log_trans(root);
7565 /*
7566 * At least one of the inodes was logged before, so this should
7567 * not fail, but if it does, it's not serious, just bail out and
7568 * mark the log for a full commit.
7569 */
7570 if (WARN_ON_ONCE(ret < 0)) {
7571 fscrypt_free_filename(&fname);
7572 goto out;
7573 }
7574
7575 log_pinned = true;
7576
7577 path = btrfs_alloc_path();
7578 if (!path) {
7579 ret = -ENOMEM;
7580 fscrypt_free_filename(&fname);
7581 goto out;
7582 }
7583
7584 /*
7585 * Other concurrent task might be logging the old directory,
7586 * as it can be triggered when logging other inode that had or
7587 * still has a dentry in the old directory. We lock the old
7588 * directory's log_mutex to ensure the deletion of the old
7589 * name is persisted, because during directory logging we
7590 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7591 * the old name's dir index item is in the delayed items, so
7592 * it could be missed by an in progress directory logging.
7593 */
7594 mutex_lock(&old_dir->log_mutex);
7595 ret = del_logged_dentry(trans, log, path, btrfs_ino(old_dir),
7596 &fname.disk_name, old_dir_index);
7597 if (ret > 0) {
7598 /*
7599 * The dentry does not exist in the log, so record its
7600 * deletion.
7601 */
7602 btrfs_release_path(path);
7603 ret = insert_dir_log_key(trans, log, path,
7604 btrfs_ino(old_dir),
7605 old_dir_index, old_dir_index);
7606 }
7607 mutex_unlock(&old_dir->log_mutex);
7608
7609 btrfs_free_path(path);
7610 fscrypt_free_filename(&fname);
7611 if (ret < 0)
7612 goto out;
7613 }
7614
7615 btrfs_init_log_ctx(&ctx, inode);
7616 ctx.logging_new_name = true;
7617 btrfs_init_log_ctx_scratch_eb(&ctx);
7618 /*
7619 * We don't care about the return value. If we fail to log the new name
7620 * then we know the next attempt to sync the log will fallback to a full
7621 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7622 * we don't need to worry about getting a log committed that has an
7623 * inconsistent state after a rename operation.
7624 */
7625 btrfs_log_inode_parent(trans, inode, parent, LOG_INODE_EXISTS, &ctx);
7626 free_extent_buffer(ctx.scratch_eb);
7627 ASSERT(list_empty(&ctx.conflict_inodes));
7628 out:
7629 /*
7630 * If an error happened mark the log for a full commit because it's not
7631 * consistent and up to date or we couldn't find out if one of the
7632 * inodes was logged before in this transaction. Do it before unpinning
7633 * the log, to avoid any races with someone else trying to commit it.
7634 */
7635 if (ret < 0)
7636 btrfs_set_log_full_commit(trans);
7637 if (log_pinned)
7638 btrfs_end_log_trans(root);
7639 }
7640
7641