1 // SPDX-License-Identifier: GPL-2.0
2 #include <fcntl.h>
3 #include <stdio.h>
4 #include <errno.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <unistd.h>
8 #include <inttypes.h>
9
10 #include "compress.h"
11 #include "dso.h"
12 #include "libbfd.h"
13 #include "map.h"
14 #include "maps.h"
15 #include "symbol.h"
16 #include "symsrc.h"
17 #include "machine.h"
18 #include "vdso.h"
19 #include "debug.h"
20 #include "util/copyfile.h"
21 #include <linux/ctype.h>
22 #include <linux/kernel.h>
23 #include <linux/zalloc.h>
24 #include <linux/string.h>
25 #include <symbol/kallsyms.h>
26 #include <internal/lib.h>
27
28 #ifndef EM_AARCH64
29 #define EM_AARCH64 183 /* ARM 64 bit */
30 #endif
31
32 #ifndef EM_LOONGARCH
33 #define EM_LOONGARCH 258
34 #endif
35
36 #ifndef ELF32_ST_VISIBILITY
37 #define ELF32_ST_VISIBILITY(o) ((o) & 0x03)
38 #endif
39
40 /* For ELF64 the definitions are the same. */
41 #ifndef ELF64_ST_VISIBILITY
42 #define ELF64_ST_VISIBILITY(o) ELF32_ST_VISIBILITY (o)
43 #endif
44
45 /* How to extract information held in the st_other field. */
46 #ifndef GELF_ST_VISIBILITY
47 #define GELF_ST_VISIBILITY(val) ELF64_ST_VISIBILITY (val)
48 #endif
49
50 typedef Elf64_Nhdr GElf_Nhdr;
51
52
53 #ifndef HAVE_ELF_GETPHDRNUM_SUPPORT
elf_getphdrnum(Elf * elf,size_t * dst)54 static int elf_getphdrnum(Elf *elf, size_t *dst)
55 {
56 GElf_Ehdr gehdr;
57 GElf_Ehdr *ehdr;
58
59 ehdr = gelf_getehdr(elf, &gehdr);
60 if (!ehdr)
61 return -1;
62
63 *dst = ehdr->e_phnum;
64
65 return 0;
66 }
67 #endif
68
69 #ifndef HAVE_ELF_GETSHDRSTRNDX_SUPPORT
elf_getshdrstrndx(Elf * elf __maybe_unused,size_t * dst __maybe_unused)70 static int elf_getshdrstrndx(Elf *elf __maybe_unused, size_t *dst __maybe_unused)
71 {
72 pr_err("%s: update your libelf to > 0.140, this one lacks elf_getshdrstrndx().\n", __func__);
73 return -1;
74 }
75 #endif
76
77 #ifndef NT_GNU_BUILD_ID
78 #define NT_GNU_BUILD_ID 3
79 #endif
80
81 /**
82 * elf_symtab__for_each_symbol - iterate thru all the symbols
83 *
84 * @syms: struct elf_symtab instance to iterate
85 * @idx: uint32_t idx
86 * @sym: GElf_Sym iterator
87 */
88 #define elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) \
89 for (idx = 0, gelf_getsym(syms, idx, &sym);\
90 idx < nr_syms; \
91 idx++, gelf_getsym(syms, idx, &sym))
92
elf_sym__type(const GElf_Sym * sym)93 static inline uint8_t elf_sym__type(const GElf_Sym *sym)
94 {
95 return GELF_ST_TYPE(sym->st_info);
96 }
97
elf_sym__visibility(const GElf_Sym * sym)98 static inline uint8_t elf_sym__visibility(const GElf_Sym *sym)
99 {
100 return GELF_ST_VISIBILITY(sym->st_other);
101 }
102
103 #ifndef STT_GNU_IFUNC
104 #define STT_GNU_IFUNC 10
105 #endif
106
elf_sym__is_function(const GElf_Sym * sym)107 static inline int elf_sym__is_function(const GElf_Sym *sym)
108 {
109 return (elf_sym__type(sym) == STT_FUNC ||
110 elf_sym__type(sym) == STT_GNU_IFUNC) &&
111 sym->st_name != 0 &&
112 sym->st_shndx != SHN_UNDEF;
113 }
114
elf_sym__is_object(const GElf_Sym * sym)115 static inline bool elf_sym__is_object(const GElf_Sym *sym)
116 {
117 return elf_sym__type(sym) == STT_OBJECT &&
118 sym->st_name != 0 &&
119 sym->st_shndx != SHN_UNDEF;
120 }
121
elf_sym__is_label(const GElf_Sym * sym)122 static inline int elf_sym__is_label(const GElf_Sym *sym)
123 {
124 return elf_sym__type(sym) == STT_NOTYPE &&
125 sym->st_name != 0 &&
126 sym->st_shndx != SHN_UNDEF &&
127 sym->st_shndx != SHN_ABS &&
128 elf_sym__visibility(sym) != STV_HIDDEN &&
129 elf_sym__visibility(sym) != STV_INTERNAL;
130 }
131
elf_sym__filter(GElf_Sym * sym)132 static bool elf_sym__filter(GElf_Sym *sym)
133 {
134 return elf_sym__is_function(sym) || elf_sym__is_object(sym);
135 }
136
elf_sym__name(const GElf_Sym * sym,const Elf_Data * symstrs)137 static inline const char *elf_sym__name(const GElf_Sym *sym,
138 const Elf_Data *symstrs)
139 {
140 return symstrs->d_buf + sym->st_name;
141 }
142
elf_sec__name(const GElf_Shdr * shdr,const Elf_Data * secstrs)143 static inline const char *elf_sec__name(const GElf_Shdr *shdr,
144 const Elf_Data *secstrs)
145 {
146 return secstrs->d_buf + shdr->sh_name;
147 }
148
elf_sec__is_text(const GElf_Shdr * shdr,const Elf_Data * secstrs)149 static inline int elf_sec__is_text(const GElf_Shdr *shdr,
150 const Elf_Data *secstrs)
151 {
152 return strstr(elf_sec__name(shdr, secstrs), "text") != NULL;
153 }
154
elf_sec__is_data(const GElf_Shdr * shdr,const Elf_Data * secstrs)155 static inline bool elf_sec__is_data(const GElf_Shdr *shdr,
156 const Elf_Data *secstrs)
157 {
158 return strstr(elf_sec__name(shdr, secstrs), "data") != NULL;
159 }
160
elf_sec__filter(GElf_Shdr * shdr,Elf_Data * secstrs)161 static bool elf_sec__filter(GElf_Shdr *shdr, Elf_Data *secstrs)
162 {
163 return elf_sec__is_text(shdr, secstrs) ||
164 elf_sec__is_data(shdr, secstrs);
165 }
166
elf_addr_to_index(Elf * elf,GElf_Addr addr)167 static size_t elf_addr_to_index(Elf *elf, GElf_Addr addr)
168 {
169 Elf_Scn *sec = NULL;
170 GElf_Shdr shdr;
171 size_t cnt = 1;
172
173 while ((sec = elf_nextscn(elf, sec)) != NULL) {
174 gelf_getshdr(sec, &shdr);
175
176 if ((addr >= shdr.sh_addr) &&
177 (addr < (shdr.sh_addr + shdr.sh_size)))
178 return cnt;
179
180 ++cnt;
181 }
182
183 return -1;
184 }
185
elf_section_by_name(Elf * elf,GElf_Ehdr * ep,GElf_Shdr * shp,const char * name,size_t * idx)186 Elf_Scn *elf_section_by_name(Elf *elf, GElf_Ehdr *ep,
187 GElf_Shdr *shp, const char *name, size_t *idx)
188 {
189 Elf_Scn *sec = NULL;
190 size_t cnt = 1;
191
192 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
193 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL))
194 return NULL;
195
196 while ((sec = elf_nextscn(elf, sec)) != NULL) {
197 char *str;
198
199 gelf_getshdr(sec, shp);
200 str = elf_strptr(elf, ep->e_shstrndx, shp->sh_name);
201 if (str && !strcmp(name, str)) {
202 if (idx)
203 *idx = cnt;
204 return sec;
205 }
206 ++cnt;
207 }
208
209 return NULL;
210 }
211
filename__has_section(const char * filename,const char * sec)212 bool filename__has_section(const char *filename, const char *sec)
213 {
214 int fd;
215 Elf *elf;
216 GElf_Ehdr ehdr;
217 GElf_Shdr shdr;
218 bool found = false;
219
220 fd = open(filename, O_RDONLY);
221 if (fd < 0)
222 return false;
223
224 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
225 if (elf == NULL)
226 goto out;
227
228 if (gelf_getehdr(elf, &ehdr) == NULL)
229 goto elf_out;
230
231 found = !!elf_section_by_name(elf, &ehdr, &shdr, sec, NULL);
232
233 elf_out:
234 elf_end(elf);
235 out:
236 close(fd);
237 return found;
238 }
239
elf_read_program_header(Elf * elf,u64 vaddr,GElf_Phdr * phdr)240 static int elf_read_program_header(Elf *elf, u64 vaddr, GElf_Phdr *phdr)
241 {
242 size_t i, phdrnum;
243 u64 sz;
244
245 if (elf_getphdrnum(elf, &phdrnum))
246 return -1;
247
248 for (i = 0; i < phdrnum; i++) {
249 if (gelf_getphdr(elf, i, phdr) == NULL)
250 return -1;
251
252 if (phdr->p_type != PT_LOAD)
253 continue;
254
255 sz = max(phdr->p_memsz, phdr->p_filesz);
256 if (!sz)
257 continue;
258
259 if (vaddr >= phdr->p_vaddr && (vaddr < phdr->p_vaddr + sz))
260 return 0;
261 }
262
263 /* Not found any valid program header */
264 return -1;
265 }
266
267 struct rel_info {
268 u32 nr_entries;
269 u32 *sorted;
270 bool is_rela;
271 Elf_Data *reldata;
272 GElf_Rela rela;
273 GElf_Rel rel;
274 };
275
get_rel_symidx(struct rel_info * ri,u32 idx)276 static u32 get_rel_symidx(struct rel_info *ri, u32 idx)
277 {
278 idx = ri->sorted ? ri->sorted[idx] : idx;
279 if (ri->is_rela) {
280 gelf_getrela(ri->reldata, idx, &ri->rela);
281 return GELF_R_SYM(ri->rela.r_info);
282 }
283 gelf_getrel(ri->reldata, idx, &ri->rel);
284 return GELF_R_SYM(ri->rel.r_info);
285 }
286
get_rel_offset(struct rel_info * ri,u32 x)287 static u64 get_rel_offset(struct rel_info *ri, u32 x)
288 {
289 if (ri->is_rela) {
290 GElf_Rela rela;
291
292 gelf_getrela(ri->reldata, x, &rela);
293 return rela.r_offset;
294 } else {
295 GElf_Rel rel;
296
297 gelf_getrel(ri->reldata, x, &rel);
298 return rel.r_offset;
299 }
300 }
301
rel_cmp(const void * a,const void * b,void * r)302 static int rel_cmp(const void *a, const void *b, void *r)
303 {
304 struct rel_info *ri = r;
305 u64 a_offset = get_rel_offset(ri, *(const u32 *)a);
306 u64 b_offset = get_rel_offset(ri, *(const u32 *)b);
307
308 return a_offset < b_offset ? -1 : (a_offset > b_offset ? 1 : 0);
309 }
310
sort_rel(struct rel_info * ri)311 static int sort_rel(struct rel_info *ri)
312 {
313 size_t sz = sizeof(ri->sorted[0]);
314 u32 i;
315
316 ri->sorted = calloc(ri->nr_entries, sz);
317 if (!ri->sorted)
318 return -1;
319 for (i = 0; i < ri->nr_entries; i++)
320 ri->sorted[i] = i;
321 qsort_r(ri->sorted, ri->nr_entries, sz, rel_cmp, ri);
322 return 0;
323 }
324
325 /*
326 * For x86_64, the GNU linker is putting IFUNC information in the relocation
327 * addend.
328 */
addend_may_be_ifunc(GElf_Ehdr * ehdr,struct rel_info * ri)329 static bool addend_may_be_ifunc(GElf_Ehdr *ehdr, struct rel_info *ri)
330 {
331 return ehdr->e_machine == EM_X86_64 && ri->is_rela &&
332 GELF_R_TYPE(ri->rela.r_info) == R_X86_64_IRELATIVE;
333 }
334
get_ifunc_name(Elf * elf,struct dso * dso,GElf_Ehdr * ehdr,struct rel_info * ri,char * buf,size_t buf_sz)335 static bool get_ifunc_name(Elf *elf, struct dso *dso, GElf_Ehdr *ehdr,
336 struct rel_info *ri, char *buf, size_t buf_sz)
337 {
338 u64 addr = ri->rela.r_addend;
339 struct symbol *sym;
340 GElf_Phdr phdr;
341
342 if (!addend_may_be_ifunc(ehdr, ri))
343 return false;
344
345 if (elf_read_program_header(elf, addr, &phdr))
346 return false;
347
348 addr -= phdr.p_vaddr - phdr.p_offset;
349
350 sym = dso__find_symbol_nocache(dso, addr);
351
352 /* Expecting the address to be an IFUNC or IFUNC alias */
353 if (!sym || sym->start != addr || (sym->type != STT_GNU_IFUNC && !sym->ifunc_alias))
354 return false;
355
356 snprintf(buf, buf_sz, "%s@plt", sym->name);
357
358 return true;
359 }
360
exit_rel(struct rel_info * ri)361 static void exit_rel(struct rel_info *ri)
362 {
363 zfree(&ri->sorted);
364 }
365
get_plt_sizes(struct dso * dso,GElf_Ehdr * ehdr,GElf_Shdr * shdr_plt,u64 * plt_header_size,u64 * plt_entry_size)366 static bool get_plt_sizes(struct dso *dso, GElf_Ehdr *ehdr, GElf_Shdr *shdr_plt,
367 u64 *plt_header_size, u64 *plt_entry_size)
368 {
369 switch (ehdr->e_machine) {
370 case EM_ARM:
371 *plt_header_size = 20;
372 *plt_entry_size = 12;
373 return true;
374 case EM_AARCH64:
375 *plt_header_size = 32;
376 *plt_entry_size = 16;
377 return true;
378 case EM_LOONGARCH:
379 *plt_header_size = 32;
380 *plt_entry_size = 16;
381 return true;
382 case EM_SPARC:
383 *plt_header_size = 48;
384 *plt_entry_size = 12;
385 return true;
386 case EM_SPARCV9:
387 *plt_header_size = 128;
388 *plt_entry_size = 32;
389 return true;
390 case EM_386:
391 case EM_X86_64:
392 *plt_entry_size = shdr_plt->sh_entsize;
393 /* Size is 8 or 16, if not, assume alignment indicates size */
394 if (*plt_entry_size != 8 && *plt_entry_size != 16)
395 *plt_entry_size = shdr_plt->sh_addralign == 8 ? 8 : 16;
396 *plt_header_size = *plt_entry_size;
397 break;
398 default: /* FIXME: s390/alpha/mips/parisc/poperpc/sh/xtensa need to be checked */
399 *plt_header_size = shdr_plt->sh_entsize;
400 *plt_entry_size = shdr_plt->sh_entsize;
401 break;
402 }
403 if (*plt_entry_size)
404 return true;
405 pr_debug("Missing PLT entry size for %s\n", dso__long_name(dso));
406 return false;
407 }
408
machine_is_x86(GElf_Half e_machine)409 static bool machine_is_x86(GElf_Half e_machine)
410 {
411 return e_machine == EM_386 || e_machine == EM_X86_64;
412 }
413
414 struct rela_dyn {
415 GElf_Addr offset;
416 u32 sym_idx;
417 };
418
419 struct rela_dyn_info {
420 struct dso *dso;
421 Elf_Data *plt_got_data;
422 u32 nr_entries;
423 struct rela_dyn *sorted;
424 Elf_Data *dynsym_data;
425 Elf_Data *dynstr_data;
426 Elf_Data *rela_dyn_data;
427 };
428
exit_rela_dyn(struct rela_dyn_info * di)429 static void exit_rela_dyn(struct rela_dyn_info *di)
430 {
431 zfree(&di->sorted);
432 }
433
cmp_offset(const void * a,const void * b)434 static int cmp_offset(const void *a, const void *b)
435 {
436 const struct rela_dyn *va = a;
437 const struct rela_dyn *vb = b;
438
439 return va->offset < vb->offset ? -1 : (va->offset > vb->offset ? 1 : 0);
440 }
441
sort_rela_dyn(struct rela_dyn_info * di)442 static int sort_rela_dyn(struct rela_dyn_info *di)
443 {
444 u32 i, n;
445
446 di->sorted = calloc(di->nr_entries, sizeof(di->sorted[0]));
447 if (!di->sorted)
448 return -1;
449
450 /* Get data for sorting: the offset and symbol index */
451 for (i = 0, n = 0; i < di->nr_entries; i++) {
452 GElf_Rela rela;
453 u32 sym_idx;
454
455 gelf_getrela(di->rela_dyn_data, i, &rela);
456 sym_idx = GELF_R_SYM(rela.r_info);
457 if (sym_idx) {
458 di->sorted[n].sym_idx = sym_idx;
459 di->sorted[n].offset = rela.r_offset;
460 n += 1;
461 }
462 }
463
464 /* Sort by offset */
465 di->nr_entries = n;
466 qsort(di->sorted, n, sizeof(di->sorted[0]), cmp_offset);
467
468 return 0;
469 }
470
get_rela_dyn_info(Elf * elf,GElf_Ehdr * ehdr,struct rela_dyn_info * di,Elf_Scn * scn)471 static void get_rela_dyn_info(Elf *elf, GElf_Ehdr *ehdr, struct rela_dyn_info *di, Elf_Scn *scn)
472 {
473 GElf_Shdr rela_dyn_shdr;
474 GElf_Shdr shdr;
475
476 di->plt_got_data = elf_getdata(scn, NULL);
477
478 scn = elf_section_by_name(elf, ehdr, &rela_dyn_shdr, ".rela.dyn", NULL);
479 if (!scn || !rela_dyn_shdr.sh_link || !rela_dyn_shdr.sh_entsize)
480 return;
481
482 di->nr_entries = rela_dyn_shdr.sh_size / rela_dyn_shdr.sh_entsize;
483 di->rela_dyn_data = elf_getdata(scn, NULL);
484
485 scn = elf_getscn(elf, rela_dyn_shdr.sh_link);
486 if (!scn || !gelf_getshdr(scn, &shdr) || !shdr.sh_link)
487 return;
488
489 di->dynsym_data = elf_getdata(scn, NULL);
490 di->dynstr_data = elf_getdata(elf_getscn(elf, shdr.sh_link), NULL);
491
492 if (!di->plt_got_data || !di->dynstr_data || !di->dynsym_data || !di->rela_dyn_data)
493 return;
494
495 /* Sort into offset order */
496 sort_rela_dyn(di);
497 }
498
499 /* Get instruction displacement from a plt entry for x86_64 */
get_x86_64_plt_disp(const u8 * p)500 static u32 get_x86_64_plt_disp(const u8 *p)
501 {
502 u8 endbr64[] = {0xf3, 0x0f, 0x1e, 0xfa};
503 int n = 0;
504
505 /* Skip endbr64 */
506 if (!memcmp(p, endbr64, sizeof(endbr64)))
507 n += sizeof(endbr64);
508 /* Skip bnd prefix */
509 if (p[n] == 0xf2)
510 n += 1;
511 /* jmp with 4-byte displacement */
512 if (p[n] == 0xff && p[n + 1] == 0x25) {
513 u32 disp;
514
515 n += 2;
516 /* Also add offset from start of entry to end of instruction */
517 memcpy(&disp, p + n, sizeof(disp));
518 return n + 4 + le32toh(disp);
519 }
520 return 0;
521 }
522
get_plt_got_name(GElf_Shdr * shdr,size_t i,struct rela_dyn_info * di,char * buf,size_t buf_sz)523 static bool get_plt_got_name(GElf_Shdr *shdr, size_t i,
524 struct rela_dyn_info *di,
525 char *buf, size_t buf_sz)
526 {
527 struct rela_dyn vi, *vr;
528 const char *sym_name;
529 char *demangled;
530 GElf_Sym sym;
531 bool result;
532 u32 disp;
533
534 if (!di->sorted)
535 return false;
536
537 disp = get_x86_64_plt_disp(di->plt_got_data->d_buf + i);
538 if (!disp)
539 return false;
540
541 /* Compute target offset of the .plt.got entry */
542 vi.offset = shdr->sh_offset + di->plt_got_data->d_off + i + disp;
543
544 /* Find that offset in .rela.dyn (sorted by offset) */
545 vr = bsearch(&vi, di->sorted, di->nr_entries, sizeof(di->sorted[0]), cmp_offset);
546 if (!vr)
547 return false;
548
549 /* Get the associated symbol */
550 gelf_getsym(di->dynsym_data, vr->sym_idx, &sym);
551 sym_name = elf_sym__name(&sym, di->dynstr_data);
552 demangled = dso__demangle_sym(di->dso, /*kmodule=*/0, sym_name);
553 if (demangled != NULL)
554 sym_name = demangled;
555
556 snprintf(buf, buf_sz, "%s@plt", sym_name);
557
558 result = *sym_name;
559
560 free(demangled);
561
562 return result;
563 }
564
dso__synthesize_plt_got_symbols(struct dso * dso,Elf * elf,GElf_Ehdr * ehdr,char * buf,size_t buf_sz)565 static int dso__synthesize_plt_got_symbols(struct dso *dso, Elf *elf,
566 GElf_Ehdr *ehdr,
567 char *buf, size_t buf_sz)
568 {
569 struct rela_dyn_info di = { .dso = dso };
570 struct symbol *sym;
571 GElf_Shdr shdr;
572 Elf_Scn *scn;
573 int err = -1;
574 size_t i;
575
576 scn = elf_section_by_name(elf, ehdr, &shdr, ".plt.got", NULL);
577 if (!scn || !shdr.sh_entsize)
578 return 0;
579
580 if (ehdr->e_machine == EM_X86_64)
581 get_rela_dyn_info(elf, ehdr, &di, scn);
582
583 for (i = 0; i < shdr.sh_size; i += shdr.sh_entsize) {
584 if (!get_plt_got_name(&shdr, i, &di, buf, buf_sz))
585 snprintf(buf, buf_sz, "offset_%#" PRIx64 "@plt", (u64)shdr.sh_offset + i);
586 sym = symbol__new(shdr.sh_offset + i, shdr.sh_entsize, STB_GLOBAL, STT_FUNC, buf);
587 if (!sym)
588 goto out;
589 symbols__insert(dso__symbols(dso), sym);
590 }
591 err = 0;
592 out:
593 exit_rela_dyn(&di);
594 return err;
595 }
596
597 /*
598 * We need to check if we have a .dynsym, so that we can handle the
599 * .plt, synthesizing its symbols, that aren't on the symtabs (be it
600 * .dynsym or .symtab).
601 * And always look at the original dso, not at debuginfo packages, that
602 * have the PLT data stripped out (shdr_rel_plt.sh_type == SHT_NOBITS).
603 */
dso__synthesize_plt_symbols(struct dso * dso,struct symsrc * ss)604 int dso__synthesize_plt_symbols(struct dso *dso, struct symsrc *ss)
605 {
606 uint32_t idx;
607 GElf_Sym sym;
608 u64 plt_offset, plt_header_size, plt_entry_size;
609 GElf_Shdr shdr_plt, plt_sec_shdr;
610 struct symbol *f, *plt_sym;
611 GElf_Shdr shdr_rel_plt, shdr_dynsym;
612 Elf_Data *syms, *symstrs;
613 Elf_Scn *scn_plt_rel, *scn_symstrs, *scn_dynsym;
614 GElf_Ehdr ehdr;
615 char sympltname[1024];
616 Elf *elf;
617 int nr = 0, err = -1;
618 struct rel_info ri = { .is_rela = false };
619 bool lazy_plt;
620
621 elf = ss->elf;
622 ehdr = ss->ehdr;
623
624 if (!elf_section_by_name(elf, &ehdr, &shdr_plt, ".plt", NULL))
625 return 0;
626
627 /*
628 * A symbol from a previous section (e.g. .init) can have been expanded
629 * by symbols__fixup_end() to overlap .plt. Truncate it before adding
630 * a symbol for .plt header.
631 */
632 f = dso__find_symbol_nocache(dso, shdr_plt.sh_offset);
633 if (f && f->start < shdr_plt.sh_offset && f->end > shdr_plt.sh_offset)
634 f->end = shdr_plt.sh_offset;
635
636 if (!get_plt_sizes(dso, &ehdr, &shdr_plt, &plt_header_size, &plt_entry_size))
637 return 0;
638
639 /* Add a symbol for .plt header */
640 plt_sym = symbol__new(shdr_plt.sh_offset, plt_header_size, STB_GLOBAL, STT_FUNC, ".plt");
641 if (!plt_sym)
642 goto out_elf_end;
643 symbols__insert(dso__symbols(dso), plt_sym);
644
645 /* Only x86 has .plt.got */
646 if (machine_is_x86(ehdr.e_machine) &&
647 dso__synthesize_plt_got_symbols(dso, elf, &ehdr, sympltname, sizeof(sympltname)))
648 goto out_elf_end;
649
650 /* Only x86 has .plt.sec */
651 if (machine_is_x86(ehdr.e_machine) &&
652 elf_section_by_name(elf, &ehdr, &plt_sec_shdr, ".plt.sec", NULL)) {
653 if (!get_plt_sizes(dso, &ehdr, &plt_sec_shdr, &plt_header_size, &plt_entry_size))
654 return 0;
655 /* Extend .plt symbol to entire .plt */
656 plt_sym->end = plt_sym->start + shdr_plt.sh_size;
657 /* Use .plt.sec offset */
658 plt_offset = plt_sec_shdr.sh_offset;
659 lazy_plt = false;
660 } else {
661 plt_offset = shdr_plt.sh_offset;
662 lazy_plt = true;
663 }
664
665 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
666 ".rela.plt", NULL);
667 if (scn_plt_rel == NULL) {
668 scn_plt_rel = elf_section_by_name(elf, &ehdr, &shdr_rel_plt,
669 ".rel.plt", NULL);
670 if (scn_plt_rel == NULL)
671 return 0;
672 }
673
674 if (shdr_rel_plt.sh_type != SHT_RELA &&
675 shdr_rel_plt.sh_type != SHT_REL)
676 return 0;
677
678 if (!shdr_rel_plt.sh_link)
679 return 0;
680
681 if (shdr_rel_plt.sh_link == ss->dynsym_idx) {
682 scn_dynsym = ss->dynsym;
683 shdr_dynsym = ss->dynshdr;
684 } else if (shdr_rel_plt.sh_link == ss->symtab_idx) {
685 /*
686 * A static executable can have a .plt due to IFUNCs, in which
687 * case .symtab is used not .dynsym.
688 */
689 scn_dynsym = ss->symtab;
690 shdr_dynsym = ss->symshdr;
691 } else {
692 goto out_elf_end;
693 }
694
695 if (!scn_dynsym)
696 return 0;
697
698 /*
699 * Fetch the relocation section to find the idxes to the GOT
700 * and the symbols in the .dynsym they refer to.
701 */
702 ri.reldata = elf_getdata(scn_plt_rel, NULL);
703 if (!ri.reldata)
704 goto out_elf_end;
705
706 syms = elf_getdata(scn_dynsym, NULL);
707 if (syms == NULL)
708 goto out_elf_end;
709
710 scn_symstrs = elf_getscn(elf, shdr_dynsym.sh_link);
711 if (scn_symstrs == NULL)
712 goto out_elf_end;
713
714 symstrs = elf_getdata(scn_symstrs, NULL);
715 if (symstrs == NULL)
716 goto out_elf_end;
717
718 if (symstrs->d_size == 0)
719 goto out_elf_end;
720
721 ri.nr_entries = shdr_rel_plt.sh_size / shdr_rel_plt.sh_entsize;
722
723 ri.is_rela = shdr_rel_plt.sh_type == SHT_RELA;
724
725 if (lazy_plt) {
726 /*
727 * Assume a .plt with the same number of entries as the number
728 * of relocation entries is not lazy and does not have a header.
729 */
730 if (ri.nr_entries * plt_entry_size == shdr_plt.sh_size)
731 dso__delete_symbol(dso, plt_sym);
732 else
733 plt_offset += plt_header_size;
734 }
735
736 /*
737 * x86 doesn't insert IFUNC relocations in .plt order, so sort to get
738 * back in order.
739 */
740 if (machine_is_x86(ehdr.e_machine) && sort_rel(&ri))
741 goto out_elf_end;
742
743 for (idx = 0; idx < ri.nr_entries; idx++) {
744 const char *elf_name = NULL;
745 char *demangled = NULL;
746
747 gelf_getsym(syms, get_rel_symidx(&ri, idx), &sym);
748
749 elf_name = elf_sym__name(&sym, symstrs);
750 demangled = dso__demangle_sym(dso, /*kmodule=*/0, elf_name);
751 if (demangled)
752 elf_name = demangled;
753 if (*elf_name)
754 snprintf(sympltname, sizeof(sympltname), "%s@plt", elf_name);
755 else if (!get_ifunc_name(elf, dso, &ehdr, &ri, sympltname, sizeof(sympltname)))
756 snprintf(sympltname, sizeof(sympltname),
757 "offset_%#" PRIx64 "@plt", plt_offset);
758 free(demangled);
759
760 f = symbol__new(plt_offset, plt_entry_size, STB_GLOBAL, STT_FUNC, sympltname);
761 if (!f)
762 goto out_elf_end;
763
764 plt_offset += plt_entry_size;
765 symbols__insert(dso__symbols(dso), f);
766 ++nr;
767 }
768
769 err = 0;
770 out_elf_end:
771 exit_rel(&ri);
772 if (err == 0)
773 return nr;
774 pr_debug("%s: problems reading %s PLT info.\n",
775 __func__, dso__long_name(dso));
776 return 0;
777 }
778
779 /*
780 * Align offset to 4 bytes as needed for note name and descriptor data.
781 */
782 #define NOTE_ALIGN(n) (((n) + 3) & -4U)
783
elf_read_build_id(Elf * elf,void * bf,size_t size)784 static int elf_read_build_id(Elf *elf, void *bf, size_t size)
785 {
786 int err = -1;
787 GElf_Ehdr ehdr;
788 GElf_Shdr shdr;
789 Elf_Data *data;
790 Elf_Scn *sec;
791 Elf_Kind ek;
792 void *ptr;
793
794 if (size < BUILD_ID_SIZE)
795 goto out;
796
797 ek = elf_kind(elf);
798 if (ek != ELF_K_ELF)
799 goto out;
800
801 if (gelf_getehdr(elf, &ehdr) == NULL) {
802 pr_err("%s: cannot get elf header.\n", __func__);
803 goto out;
804 }
805
806 /*
807 * Check following sections for notes:
808 * '.note.gnu.build-id'
809 * '.notes'
810 * '.note' (VDSO specific)
811 */
812 do {
813 sec = elf_section_by_name(elf, &ehdr, &shdr,
814 ".note.gnu.build-id", NULL);
815 if (sec)
816 break;
817
818 sec = elf_section_by_name(elf, &ehdr, &shdr,
819 ".notes", NULL);
820 if (sec)
821 break;
822
823 sec = elf_section_by_name(elf, &ehdr, &shdr,
824 ".note", NULL);
825 if (sec)
826 break;
827
828 return err;
829
830 } while (0);
831
832 data = elf_getdata(sec, NULL);
833 if (data == NULL)
834 goto out;
835
836 ptr = data->d_buf;
837 while (ptr < (data->d_buf + data->d_size)) {
838 GElf_Nhdr *nhdr = ptr;
839 size_t namesz = NOTE_ALIGN(nhdr->n_namesz),
840 descsz = NOTE_ALIGN(nhdr->n_descsz);
841 const char *name;
842
843 ptr += sizeof(*nhdr);
844 name = ptr;
845 ptr += namesz;
846 if (nhdr->n_type == NT_GNU_BUILD_ID &&
847 nhdr->n_namesz == sizeof("GNU")) {
848 if (memcmp(name, "GNU", sizeof("GNU")) == 0) {
849 size_t sz = min(size, descsz);
850 memcpy(bf, ptr, sz);
851 memset(bf + sz, 0, size - sz);
852 err = sz;
853 break;
854 }
855 }
856 ptr += descsz;
857 }
858
859 out:
860 return err;
861 }
862
read_build_id(const char * filename,struct build_id * bid)863 static int read_build_id(const char *filename, struct build_id *bid)
864 {
865 size_t size = sizeof(bid->data);
866 int fd, err;
867 Elf *elf;
868
869 err = libbfd__read_build_id(filename, bid);
870 if (err >= 0)
871 goto out;
872
873 if (size < BUILD_ID_SIZE)
874 goto out;
875
876 fd = open(filename, O_RDONLY);
877 if (fd < 0)
878 goto out;
879
880 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
881 if (elf == NULL) {
882 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
883 goto out_close;
884 }
885
886 err = elf_read_build_id(elf, bid->data, size);
887 if (err > 0)
888 bid->size = err;
889
890 elf_end(elf);
891 out_close:
892 close(fd);
893 out:
894 return err;
895 }
896
filename__read_build_id(const char * filename,struct build_id * bid)897 int filename__read_build_id(const char *filename, struct build_id *bid)
898 {
899 struct kmod_path m = { .name = NULL, };
900 char path[PATH_MAX];
901 int err;
902
903 if (!filename)
904 return -EFAULT;
905
906 errno = 0;
907 if (!is_regular_file(filename))
908 return errno == 0 ? -EWOULDBLOCK : -errno;
909
910 err = kmod_path__parse(&m, filename);
911 if (err)
912 return -1;
913
914 if (m.comp) {
915 int error = 0, fd;
916
917 fd = filename__decompress(filename, path, sizeof(path), m.comp, &error);
918 if (fd < 0) {
919 pr_debug("Failed to decompress (error %d) %s\n",
920 error, filename);
921 return -1;
922 }
923 close(fd);
924 filename = path;
925 }
926
927 err = read_build_id(filename, bid);
928
929 if (m.comp)
930 unlink(filename);
931 return err;
932 }
933
sysfs__read_build_id(const char * filename,struct build_id * bid)934 int sysfs__read_build_id(const char *filename, struct build_id *bid)
935 {
936 size_t size = sizeof(bid->data);
937 int fd, err = -1;
938
939 fd = open(filename, O_RDONLY);
940 if (fd < 0)
941 goto out;
942
943 while (1) {
944 char bf[BUFSIZ];
945 GElf_Nhdr nhdr;
946 size_t namesz, descsz;
947
948 if (read(fd, &nhdr, sizeof(nhdr)) != sizeof(nhdr))
949 break;
950
951 namesz = NOTE_ALIGN(nhdr.n_namesz);
952 descsz = NOTE_ALIGN(nhdr.n_descsz);
953 if (nhdr.n_type == NT_GNU_BUILD_ID &&
954 nhdr.n_namesz == sizeof("GNU")) {
955 if (read(fd, bf, namesz) != (ssize_t)namesz)
956 break;
957 if (memcmp(bf, "GNU", sizeof("GNU")) == 0) {
958 size_t sz = min(descsz, size);
959 if (read(fd, bid->data, sz) == (ssize_t)sz) {
960 memset(bid->data + sz, 0, size - sz);
961 bid->size = sz;
962 err = 0;
963 break;
964 }
965 } else if (read(fd, bf, descsz) != (ssize_t)descsz)
966 break;
967 } else {
968 int n = namesz + descsz;
969
970 if (n > (int)sizeof(bf)) {
971 n = sizeof(bf);
972 pr_debug("%s: truncating reading of build id in sysfs file %s: n_namesz=%u, n_descsz=%u.\n",
973 __func__, filename, nhdr.n_namesz, nhdr.n_descsz);
974 }
975 if (read(fd, bf, n) != n)
976 break;
977 }
978 }
979 close(fd);
980 out:
981 return err;
982 }
983
filename__read_debuglink(const char * filename,char * debuglink,size_t size)984 int filename__read_debuglink(const char *filename, char *debuglink,
985 size_t size)
986 {
987 int fd, err = -1;
988 Elf *elf;
989 GElf_Ehdr ehdr;
990 GElf_Shdr shdr;
991 Elf_Data *data;
992 Elf_Scn *sec;
993 Elf_Kind ek;
994
995 err = libbfd_filename__read_debuglink(filename, debuglink, size);
996 if (err >= 0)
997 goto out;
998
999 fd = open(filename, O_RDONLY);
1000 if (fd < 0)
1001 goto out;
1002
1003 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1004 if (elf == NULL) {
1005 pr_debug2("%s: cannot read %s ELF file.\n", __func__, filename);
1006 goto out_close;
1007 }
1008
1009 ek = elf_kind(elf);
1010 if (ek != ELF_K_ELF)
1011 goto out_elf_end;
1012
1013 if (gelf_getehdr(elf, &ehdr) == NULL) {
1014 pr_err("%s: cannot get elf header.\n", __func__);
1015 goto out_elf_end;
1016 }
1017
1018 sec = elf_section_by_name(elf, &ehdr, &shdr,
1019 ".gnu_debuglink", NULL);
1020 if (sec == NULL)
1021 goto out_elf_end;
1022
1023 data = elf_getdata(sec, NULL);
1024 if (data == NULL)
1025 goto out_elf_end;
1026
1027 /* the start of this section is a zero-terminated string */
1028 strncpy(debuglink, data->d_buf, size);
1029
1030 err = 0;
1031
1032 out_elf_end:
1033 elf_end(elf);
1034 out_close:
1035 close(fd);
1036 out:
1037 return err;
1038 }
1039
symsrc__possibly_runtime(struct symsrc * ss)1040 bool symsrc__possibly_runtime(struct symsrc *ss)
1041 {
1042 return ss->dynsym || ss->opdsec;
1043 }
1044
symsrc__has_symtab(struct symsrc * ss)1045 bool symsrc__has_symtab(struct symsrc *ss)
1046 {
1047 return ss->symtab != NULL;
1048 }
1049
symsrc__destroy(struct symsrc * ss)1050 void symsrc__destroy(struct symsrc *ss)
1051 {
1052 zfree(&ss->name);
1053 elf_end(ss->elf);
1054 close(ss->fd);
1055 }
1056
elf__needs_adjust_symbols(GElf_Ehdr ehdr)1057 bool elf__needs_adjust_symbols(GElf_Ehdr ehdr)
1058 {
1059 /*
1060 * Usually vmlinux is an ELF file with type ET_EXEC for most
1061 * architectures; except Arm64 kernel is linked with option
1062 * '-share', so need to check type ET_DYN.
1063 */
1064 return ehdr.e_type == ET_EXEC || ehdr.e_type == ET_REL ||
1065 ehdr.e_type == ET_DYN;
1066 }
1067
read_gnu_debugdata(struct dso * dso,Elf * elf,const char * name,int * fd_ret)1068 static Elf *read_gnu_debugdata(struct dso *dso, Elf *elf, const char *name, int *fd_ret)
1069 {
1070 Elf *elf_embedded;
1071 GElf_Ehdr ehdr;
1072 GElf_Shdr shdr;
1073 Elf_Scn *scn;
1074 Elf_Data *scn_data;
1075 FILE *wrapped;
1076 size_t shndx;
1077 char temp_filename[] = "/tmp/perf.gnu_debugdata.elf.XXXXXX";
1078 int ret, temp_fd;
1079
1080 if (gelf_getehdr(elf, &ehdr) == NULL) {
1081 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1082 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1083 return NULL;
1084 }
1085
1086 scn = elf_section_by_name(elf, &ehdr, &shdr, ".gnu_debugdata", &shndx);
1087 if (!scn) {
1088 *dso__load_errno(dso) = -ENOENT;
1089 return NULL;
1090 }
1091
1092 if (shdr.sh_type == SHT_NOBITS) {
1093 pr_debug("%s: .gnu_debugdata of ELF file %s has no data.\n", __func__, name);
1094 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1095 return NULL;
1096 }
1097
1098 scn_data = elf_rawdata(scn, NULL);
1099 if (!scn_data) {
1100 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__,
1101 name, elf_errmsg(-1));
1102 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1103 return NULL;
1104 }
1105
1106 wrapped = fmemopen(scn_data->d_buf, scn_data->d_size, "r");
1107 if (!wrapped) {
1108 pr_debug("%s: fmemopen: %s\n", __func__, strerror(errno));
1109 *dso__load_errno(dso) = -errno;
1110 return NULL;
1111 }
1112
1113 temp_fd = mkstemp(temp_filename);
1114 if (temp_fd < 0) {
1115 pr_debug("%s: mkstemp: %s\n", __func__, strerror(errno));
1116 *dso__load_errno(dso) = -errno;
1117 fclose(wrapped);
1118 return NULL;
1119 }
1120 unlink(temp_filename);
1121
1122 ret = lzma_decompress_stream_to_file(wrapped, temp_fd);
1123 fclose(wrapped);
1124 if (ret < 0) {
1125 *dso__load_errno(dso) = -errno;
1126 close(temp_fd);
1127 return NULL;
1128 }
1129
1130 elf_embedded = elf_begin(temp_fd, PERF_ELF_C_READ_MMAP, NULL);
1131 if (!elf_embedded) {
1132 pr_debug("%s: error reading .gnu_debugdata of %s: %s\n", __func__,
1133 name, elf_errmsg(-1));
1134 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1135 close(temp_fd);
1136 return NULL;
1137 }
1138 pr_debug("%s: using .gnu_debugdata of %s\n", __func__, name);
1139 *fd_ret = temp_fd;
1140 return elf_embedded;
1141 }
1142
symsrc__init(struct symsrc * ss,struct dso * dso,const char * name,enum dso_binary_type type)1143 int symsrc__init(struct symsrc *ss, struct dso *dso, const char *name,
1144 enum dso_binary_type type)
1145 {
1146 GElf_Ehdr ehdr;
1147 Elf *elf;
1148 int fd;
1149
1150 if (dso__needs_decompress(dso)) {
1151 fd = dso__decompress_kmodule_fd(dso, name);
1152 if (fd < 0)
1153 return -1;
1154
1155 type = dso__symtab_type(dso);
1156 } else {
1157 fd = open(name, O_RDONLY);
1158 if (fd < 0) {
1159 *dso__load_errno(dso) = errno;
1160 return -1;
1161 }
1162 }
1163
1164 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1165 if (elf == NULL) {
1166 pr_debug("%s: cannot read %s ELF file.\n", __func__, name);
1167 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1168 goto out_close;
1169 }
1170
1171 if (type == DSO_BINARY_TYPE__GNU_DEBUGDATA) {
1172 int new_fd;
1173 Elf *embedded = read_gnu_debugdata(dso, elf, name, &new_fd);
1174
1175 if (!embedded)
1176 goto out_close;
1177
1178 elf_end(elf);
1179 close(fd);
1180 fd = new_fd;
1181 elf = embedded;
1182 }
1183
1184 if (gelf_getehdr(elf, &ehdr) == NULL) {
1185 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INVALID_ELF;
1186 pr_debug("%s: cannot get elf header.\n", __func__);
1187 goto out_elf_end;
1188 }
1189
1190 if (dso__swap_init(dso, ehdr.e_ident[EI_DATA])) {
1191 *dso__load_errno(dso) = DSO_LOAD_ERRNO__INTERNAL_ERROR;
1192 goto out_elf_end;
1193 }
1194
1195 /* Always reject images with a mismatched build-id: */
1196 if (dso__has_build_id(dso) && !symbol_conf.ignore_vmlinux_buildid) {
1197 u8 build_id[BUILD_ID_SIZE];
1198 struct build_id bid;
1199 int size;
1200
1201 size = elf_read_build_id(elf, build_id, BUILD_ID_SIZE);
1202 if (size <= 0) {
1203 *dso__load_errno(dso) = DSO_LOAD_ERRNO__CANNOT_READ_BUILDID;
1204 goto out_elf_end;
1205 }
1206
1207 build_id__init(&bid, build_id, size);
1208 if (!dso__build_id_equal(dso, &bid)) {
1209 pr_debug("%s: build id mismatch for %s.\n", __func__, name);
1210 *dso__load_errno(dso) = DSO_LOAD_ERRNO__MISMATCHING_BUILDID;
1211 goto out_elf_end;
1212 }
1213 }
1214
1215 ss->is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1216
1217 ss->symtab_idx = 0;
1218 ss->symtab = elf_section_by_name(elf, &ehdr, &ss->symshdr, ".symtab",
1219 &ss->symtab_idx);
1220 if (ss->symshdr.sh_type != SHT_SYMTAB)
1221 ss->symtab = NULL;
1222
1223 ss->dynsym_idx = 0;
1224 ss->dynsym = elf_section_by_name(elf, &ehdr, &ss->dynshdr, ".dynsym",
1225 &ss->dynsym_idx);
1226 if (ss->dynshdr.sh_type != SHT_DYNSYM)
1227 ss->dynsym = NULL;
1228
1229 ss->opdidx = 0;
1230 ss->opdsec = elf_section_by_name(elf, &ehdr, &ss->opdshdr, ".opd",
1231 &ss->opdidx);
1232 if (ss->opdshdr.sh_type != SHT_PROGBITS)
1233 ss->opdsec = NULL;
1234
1235 if (dso__kernel(dso) == DSO_SPACE__USER)
1236 ss->adjust_symbols = true;
1237 else
1238 ss->adjust_symbols = elf__needs_adjust_symbols(ehdr);
1239
1240 ss->name = strdup(name);
1241 if (!ss->name) {
1242 *dso__load_errno(dso) = errno;
1243 goto out_elf_end;
1244 }
1245
1246 ss->elf = elf;
1247 ss->fd = fd;
1248 ss->ehdr = ehdr;
1249 ss->type = type;
1250
1251 return 0;
1252
1253 out_elf_end:
1254 elf_end(elf);
1255 out_close:
1256 close(fd);
1257 return -1;
1258 }
1259
is_exe_text(int flags)1260 static bool is_exe_text(int flags)
1261 {
1262 return (flags & (SHF_ALLOC | SHF_EXECINSTR)) == (SHF_ALLOC | SHF_EXECINSTR);
1263 }
1264
1265 /*
1266 * Some executable module sections like .noinstr.text might be laid out with
1267 * .text so they can use the same mapping (memory address to file offset).
1268 * Check if that is the case. Refer to kernel layout_sections(). Return the
1269 * maximum offset.
1270 */
max_text_section(Elf * elf,GElf_Ehdr * ehdr)1271 static u64 max_text_section(Elf *elf, GElf_Ehdr *ehdr)
1272 {
1273 Elf_Scn *sec = NULL;
1274 GElf_Shdr shdr;
1275 u64 offs = 0;
1276
1277 /* Doesn't work for some arch */
1278 if (ehdr->e_machine == EM_PARISC ||
1279 ehdr->e_machine == EM_ALPHA)
1280 return 0;
1281
1282 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1283 if (!elf_rawdata(elf_getscn(elf, ehdr->e_shstrndx), NULL))
1284 return 0;
1285
1286 while ((sec = elf_nextscn(elf, sec)) != NULL) {
1287 char *sec_name;
1288
1289 if (!gelf_getshdr(sec, &shdr))
1290 break;
1291
1292 if (!is_exe_text(shdr.sh_flags))
1293 continue;
1294
1295 /* .init and .exit sections are not placed with .text */
1296 sec_name = elf_strptr(elf, ehdr->e_shstrndx, shdr.sh_name);
1297 if (!sec_name ||
1298 strstarts(sec_name, ".init") ||
1299 strstarts(sec_name, ".exit"))
1300 break;
1301
1302 /* Must be next to previous, assumes .text is first */
1303 if (offs && PERF_ALIGN(offs, shdr.sh_addralign ?: 1) != shdr.sh_offset)
1304 break;
1305
1306 offs = shdr.sh_offset + shdr.sh_size;
1307 }
1308
1309 return offs;
1310 }
1311
1312 /**
1313 * ref_reloc_sym_not_found - has kernel relocation symbol been found.
1314 * @kmap: kernel maps and relocation reference symbol
1315 *
1316 * This function returns %true if we are dealing with the kernel maps and the
1317 * relocation reference symbol has not yet been found. Otherwise %false is
1318 * returned.
1319 */
ref_reloc_sym_not_found(struct kmap * kmap)1320 static bool ref_reloc_sym_not_found(struct kmap *kmap)
1321 {
1322 return kmap && kmap->ref_reloc_sym && kmap->ref_reloc_sym->name &&
1323 !kmap->ref_reloc_sym->unrelocated_addr;
1324 }
1325
1326 /**
1327 * ref_reloc - kernel relocation offset.
1328 * @kmap: kernel maps and relocation reference symbol
1329 *
1330 * This function returns the offset of kernel addresses as determined by using
1331 * the relocation reference symbol i.e. if the kernel has not been relocated
1332 * then the return value is zero.
1333 */
ref_reloc(struct kmap * kmap)1334 static u64 ref_reloc(struct kmap *kmap)
1335 {
1336 if (kmap && kmap->ref_reloc_sym &&
1337 kmap->ref_reloc_sym->unrelocated_addr)
1338 return kmap->ref_reloc_sym->addr -
1339 kmap->ref_reloc_sym->unrelocated_addr;
1340 return 0;
1341 }
1342
arch__sym_update(struct symbol * s __maybe_unused,GElf_Sym * sym __maybe_unused)1343 void __weak arch__sym_update(struct symbol *s __maybe_unused,
1344 GElf_Sym *sym __maybe_unused) { }
1345
dso__process_kernel_symbol(struct dso * dso,struct map * map,GElf_Sym * sym,GElf_Shdr * shdr,struct maps * kmaps,struct kmap * kmap,struct dso ** curr_dsop,const char * section_name,bool adjust_kernel_syms,bool kmodule,bool * remap_kernel,u64 max_text_sh_offset)1346 static int dso__process_kernel_symbol(struct dso *dso, struct map *map,
1347 GElf_Sym *sym, GElf_Shdr *shdr,
1348 struct maps *kmaps, struct kmap *kmap,
1349 struct dso **curr_dsop,
1350 const char *section_name,
1351 bool adjust_kernel_syms, bool kmodule, bool *remap_kernel,
1352 u64 max_text_sh_offset)
1353 {
1354 struct dso *curr_dso = *curr_dsop;
1355 struct map *curr_map;
1356 char dso_name[PATH_MAX];
1357
1358 /* Adjust symbol to map to file offset */
1359 if (adjust_kernel_syms)
1360 sym->st_value -= shdr->sh_addr - shdr->sh_offset;
1361
1362 if (strcmp(section_name, (dso__short_name(curr_dso) + dso__short_name_len(dso))) == 0)
1363 return 0;
1364
1365 if (strcmp(section_name, ".text") == 0) {
1366 /*
1367 * The initial kernel mapping is based on
1368 * kallsyms and identity maps. Overwrite it to
1369 * map to the kernel dso.
1370 */
1371 if (*remap_kernel && dso__kernel(dso) && !kmodule) {
1372 *remap_kernel = false;
1373 map__set_start(map, shdr->sh_addr + ref_reloc(kmap));
1374 map__set_end(map, map__start(map) + shdr->sh_size);
1375 map__set_pgoff(map, shdr->sh_offset);
1376 map__set_mapping_type(map, MAPPING_TYPE__DSO);
1377 /* Ensure maps are correctly ordered */
1378 if (kmaps) {
1379 int err;
1380 struct map *tmp = map__get(map);
1381
1382 maps__remove(kmaps, map);
1383 err = maps__insert(kmaps, map);
1384 map__put(tmp);
1385 if (err)
1386 return err;
1387 }
1388 }
1389
1390 /*
1391 * The initial module mapping is based on
1392 * /proc/modules mapped to offset zero.
1393 * Overwrite it to map to the module dso.
1394 */
1395 if (*remap_kernel && kmodule) {
1396 *remap_kernel = false;
1397 map__set_pgoff(map, shdr->sh_offset);
1398 }
1399
1400 dso__put(*curr_dsop);
1401 *curr_dsop = dso__get(dso);
1402 return 0;
1403 }
1404
1405 if (!kmap)
1406 return 0;
1407
1408 /*
1409 * perf does not record module section addresses except for .text, but
1410 * some sections can use the same mapping as .text.
1411 */
1412 if (kmodule && adjust_kernel_syms && is_exe_text(shdr->sh_flags) &&
1413 shdr->sh_offset <= max_text_sh_offset) {
1414 dso__put(*curr_dsop);
1415 *curr_dsop = dso__get(dso);
1416 return 0;
1417 }
1418
1419 snprintf(dso_name, sizeof(dso_name), "%s%s", dso__short_name(dso), section_name);
1420
1421 curr_map = maps__find_by_name(kmaps, dso_name);
1422 if (curr_map == NULL) {
1423 u64 start = sym->st_value;
1424
1425 if (kmodule)
1426 start += map__start(map) + shdr->sh_offset;
1427
1428 curr_dso = dso__new(dso_name);
1429 if (curr_dso == NULL)
1430 return -1;
1431 dso__set_kernel(curr_dso, dso__kernel(dso));
1432 RC_CHK_ACCESS(curr_dso)->long_name = dso__long_name(dso);
1433 RC_CHK_ACCESS(curr_dso)->long_name_len = dso__long_name_len(dso);
1434 dso__set_binary_type(curr_dso, dso__binary_type(dso));
1435 dso__set_adjust_symbols(curr_dso, dso__adjust_symbols(dso));
1436 curr_map = map__new2(start, curr_dso);
1437 if (curr_map == NULL) {
1438 dso__put(curr_dso);
1439 return -1;
1440 }
1441 if (dso__kernel(curr_dso))
1442 map__kmap(curr_map)->kmaps = kmaps;
1443
1444 if (adjust_kernel_syms) {
1445 map__set_start(curr_map, shdr->sh_addr + ref_reloc(kmap));
1446 map__set_end(curr_map, map__start(curr_map) + shdr->sh_size);
1447 map__set_pgoff(curr_map, shdr->sh_offset);
1448 } else {
1449 map__set_mapping_type(curr_map, MAPPING_TYPE__IDENTITY);
1450 }
1451 dso__set_symtab_type(curr_dso, dso__symtab_type(dso));
1452 if (maps__insert(kmaps, curr_map)) {
1453 dso__put(curr_dso);
1454 map__put(curr_map);
1455 return -1;
1456 }
1457 dsos__add(&maps__machine(kmaps)->dsos, curr_dso);
1458 dso__set_loaded(curr_dso);
1459 dso__put(*curr_dsop);
1460 *curr_dsop = curr_dso;
1461 } else {
1462 dso__put(*curr_dsop);
1463 *curr_dsop = dso__get(map__dso(curr_map));
1464 }
1465 map__put(curr_map);
1466
1467 return 0;
1468 }
1469
1470 static int
dso__load_sym_internal(struct dso * dso,struct map * map,struct symsrc * syms_ss,struct symsrc * runtime_ss,int kmodule,int dynsym)1471 dso__load_sym_internal(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1472 struct symsrc *runtime_ss, int kmodule, int dynsym)
1473 {
1474 struct kmap *kmap = dso__kernel(dso) ? map__kmap(map) : NULL;
1475 struct maps *kmaps = kmap ? map__kmaps(map) : NULL;
1476 struct dso *curr_dso = NULL;
1477 Elf_Data *symstrs, *secstrs, *secstrs_run, *secstrs_sym;
1478 uint32_t nr_syms;
1479 uint32_t idx;
1480 GElf_Ehdr ehdr;
1481 GElf_Shdr shdr;
1482 GElf_Shdr tshdr;
1483 Elf_Data *syms, *opddata = NULL;
1484 GElf_Sym sym;
1485 Elf_Scn *sec, *sec_strndx;
1486 Elf *elf;
1487 int nr = 0;
1488 bool remap_kernel = false, adjust_kernel_syms = false;
1489 u64 max_text_sh_offset = 0;
1490
1491 if (kmap && !kmaps)
1492 return -1;
1493
1494 elf = syms_ss->elf;
1495 ehdr = syms_ss->ehdr;
1496 if (dynsym) {
1497 sec = syms_ss->dynsym;
1498 shdr = syms_ss->dynshdr;
1499 } else {
1500 sec = syms_ss->symtab;
1501 shdr = syms_ss->symshdr;
1502 }
1503
1504 if (elf_section_by_name(runtime_ss->elf, &runtime_ss->ehdr, &tshdr,
1505 ".text", NULL)) {
1506 dso__set_text_offset(dso, tshdr.sh_addr - tshdr.sh_offset);
1507 dso__set_text_end(dso, tshdr.sh_offset + tshdr.sh_size);
1508 }
1509
1510 if (runtime_ss->opdsec)
1511 opddata = elf_rawdata(runtime_ss->opdsec, NULL);
1512
1513 syms = elf_getdata(sec, NULL);
1514 if (syms == NULL)
1515 goto out_elf_end;
1516
1517 sec = elf_getscn(elf, shdr.sh_link);
1518 if (sec == NULL)
1519 goto out_elf_end;
1520
1521 symstrs = elf_getdata(sec, NULL);
1522 if (symstrs == NULL)
1523 goto out_elf_end;
1524
1525 sec_strndx = elf_getscn(runtime_ss->elf, runtime_ss->ehdr.e_shstrndx);
1526 if (sec_strndx == NULL)
1527 goto out_elf_end;
1528
1529 secstrs_run = elf_getdata(sec_strndx, NULL);
1530 if (secstrs_run == NULL)
1531 goto out_elf_end;
1532
1533 sec_strndx = elf_getscn(elf, ehdr.e_shstrndx);
1534 if (sec_strndx == NULL)
1535 goto out_elf_end;
1536
1537 secstrs_sym = elf_getdata(sec_strndx, NULL);
1538 if (secstrs_sym == NULL)
1539 goto out_elf_end;
1540
1541 nr_syms = shdr.sh_size / shdr.sh_entsize;
1542
1543 memset(&sym, 0, sizeof(sym));
1544
1545 /*
1546 * The kernel relocation symbol is needed in advance in order to adjust
1547 * kernel maps correctly.
1548 */
1549 if (ref_reloc_sym_not_found(kmap)) {
1550 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1551 const char *elf_name = elf_sym__name(&sym, symstrs);
1552
1553 if (strcmp(elf_name, kmap->ref_reloc_sym->name))
1554 continue;
1555 kmap->ref_reloc_sym->unrelocated_addr = sym.st_value;
1556 map__set_reloc(map, kmap->ref_reloc_sym->addr - kmap->ref_reloc_sym->unrelocated_addr);
1557 break;
1558 }
1559 }
1560
1561 /*
1562 * Handle any relocation of vdso necessary because older kernels
1563 * attempted to prelink vdso to its virtual address.
1564 */
1565 if (dso__is_vdso(dso))
1566 map__set_reloc(map, map__start(map) - dso__text_offset(dso));
1567
1568 dso__set_adjust_symbols(dso, runtime_ss->adjust_symbols || ref_reloc(kmap));
1569 /*
1570 * Initial kernel and module mappings do not map to the dso.
1571 * Flag the fixups.
1572 */
1573 if (dso__kernel(dso)) {
1574 remap_kernel = true;
1575 adjust_kernel_syms = dso__adjust_symbols(dso);
1576 }
1577
1578 if (kmodule && adjust_kernel_syms)
1579 max_text_sh_offset = max_text_section(runtime_ss->elf, &runtime_ss->ehdr);
1580
1581 curr_dso = dso__get(dso);
1582 elf_symtab__for_each_symbol(syms, nr_syms, idx, sym) {
1583 struct symbol *f;
1584 const char *elf_name = elf_sym__name(&sym, symstrs);
1585 char *demangled = NULL;
1586 int is_label = elf_sym__is_label(&sym);
1587 const char *section_name;
1588 bool used_opd = false;
1589
1590 if (!is_label && !elf_sym__filter(&sym))
1591 continue;
1592
1593 /* Reject ARM ELF "mapping symbols": these aren't unique and
1594 * don't identify functions, so will confuse the profile
1595 * output: */
1596 if (ehdr.e_machine == EM_ARM || ehdr.e_machine == EM_AARCH64) {
1597 if (elf_name[0] == '$' && strchr("adtx", elf_name[1])
1598 && (elf_name[2] == '\0' || elf_name[2] == '.'))
1599 continue;
1600 }
1601
1602 /* Reject RISCV ELF "mapping symbols" */
1603 if (ehdr.e_machine == EM_RISCV) {
1604 if (elf_name[0] == '$' && strchr("dx", elf_name[1]))
1605 continue;
1606 }
1607
1608 if (runtime_ss->opdsec && sym.st_shndx == runtime_ss->opdidx) {
1609 u32 offset = sym.st_value - syms_ss->opdshdr.sh_addr;
1610 u64 *opd = opddata->d_buf + offset;
1611 sym.st_value = DSO__SWAP(dso, u64, *opd);
1612 sym.st_shndx = elf_addr_to_index(runtime_ss->elf,
1613 sym.st_value);
1614 used_opd = true;
1615 }
1616
1617 /*
1618 * When loading symbols in a data mapping, ABS symbols (which
1619 * has a value of SHN_ABS in its st_shndx) failed at
1620 * elf_getscn(). And it marks the loading as a failure so
1621 * already loaded symbols cannot be fixed up.
1622 *
1623 * I'm not sure what should be done. Just ignore them for now.
1624 * - Namhyung Kim
1625 */
1626 if (sym.st_shndx == SHN_ABS)
1627 continue;
1628
1629 sec = elf_getscn(syms_ss->elf, sym.st_shndx);
1630 if (!sec)
1631 goto out_elf_end;
1632
1633 gelf_getshdr(sec, &shdr);
1634
1635 /*
1636 * If the attribute bit SHF_ALLOC is not set, the section
1637 * doesn't occupy memory during process execution.
1638 * E.g. ".gnu.warning.*" section is used by linker to generate
1639 * warnings when calling deprecated functions, the symbols in
1640 * the section aren't loaded to memory during process execution,
1641 * so skip them.
1642 */
1643 if (!(shdr.sh_flags & SHF_ALLOC))
1644 continue;
1645
1646 secstrs = secstrs_sym;
1647
1648 /*
1649 * We have to fallback to runtime when syms' section header has
1650 * NOBITS set. NOBITS results in file offset (sh_offset) not
1651 * being incremented. So sh_offset used below has different
1652 * values for syms (invalid) and runtime (valid).
1653 */
1654 if (shdr.sh_type == SHT_NOBITS) {
1655 sec = elf_getscn(runtime_ss->elf, sym.st_shndx);
1656 if (!sec)
1657 goto out_elf_end;
1658
1659 gelf_getshdr(sec, &shdr);
1660 secstrs = secstrs_run;
1661 }
1662
1663 if (is_label && !elf_sec__filter(&shdr, secstrs))
1664 continue;
1665
1666 section_name = elf_sec__name(&shdr, secstrs);
1667
1668 /* On ARM, symbols for thumb functions have 1 added to
1669 * the symbol address as a flag - remove it */
1670 if ((ehdr.e_machine == EM_ARM) &&
1671 (GELF_ST_TYPE(sym.st_info) == STT_FUNC) &&
1672 (sym.st_value & 1))
1673 --sym.st_value;
1674
1675 if (dso__kernel(dso)) {
1676 if (dso__process_kernel_symbol(dso, map, &sym, &shdr,
1677 kmaps, kmap, &curr_dso,
1678 section_name,
1679 adjust_kernel_syms,
1680 kmodule,
1681 &remap_kernel,
1682 max_text_sh_offset))
1683 goto out_elf_end;
1684 } else if ((used_opd && runtime_ss->adjust_symbols) ||
1685 (!used_opd && syms_ss->adjust_symbols)) {
1686 GElf_Phdr phdr;
1687
1688 if (elf_read_program_header(runtime_ss->elf,
1689 (u64)sym.st_value, &phdr)) {
1690 pr_debug4("%s: failed to find program header for "
1691 "symbol: %s st_value: %#" PRIx64 "\n",
1692 __func__, elf_name, (u64)sym.st_value);
1693 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1694 "sh_addr: %#" PRIx64 " sh_offset: %#" PRIx64 "\n",
1695 __func__, (u64)sym.st_value, (u64)shdr.sh_addr,
1696 (u64)shdr.sh_offset);
1697 /*
1698 * Fail to find program header, let's rollback
1699 * to use shdr.sh_addr and shdr.sh_offset to
1700 * calibrate symbol's file address, though this
1701 * is not necessary for normal C ELF file, we
1702 * still need to handle java JIT symbols in this
1703 * case.
1704 */
1705 sym.st_value -= shdr.sh_addr - shdr.sh_offset;
1706 } else {
1707 pr_debug4("%s: adjusting symbol: st_value: %#" PRIx64 " "
1708 "p_vaddr: %#" PRIx64 " p_offset: %#" PRIx64 "\n",
1709 __func__, (u64)sym.st_value, (u64)phdr.p_vaddr,
1710 (u64)phdr.p_offset);
1711 sym.st_value -= phdr.p_vaddr - phdr.p_offset;
1712 }
1713 }
1714
1715 demangled = dso__demangle_sym(dso, kmodule, elf_name);
1716 if (demangled != NULL)
1717 elf_name = demangled;
1718
1719 f = symbol__new(sym.st_value, sym.st_size,
1720 GELF_ST_BIND(sym.st_info),
1721 GELF_ST_TYPE(sym.st_info), elf_name);
1722 free(demangled);
1723 if (!f)
1724 goto out_elf_end;
1725
1726 arch__sym_update(f, &sym);
1727
1728 __symbols__insert(dso__symbols(curr_dso), f, dso__kernel(dso));
1729 nr++;
1730 }
1731 dso__put(curr_dso);
1732
1733 /*
1734 * For misannotated, zeroed, ASM function sizes.
1735 */
1736 if (nr > 0) {
1737 symbols__fixup_end(dso__symbols(dso), false);
1738 symbols__fixup_duplicate(dso__symbols(dso));
1739 if (kmap) {
1740 /*
1741 * We need to fixup this here too because we create new
1742 * maps here, for things like vsyscall sections.
1743 */
1744 maps__fixup_end(kmaps);
1745 }
1746 }
1747 return nr;
1748 out_elf_end:
1749 dso__put(curr_dso);
1750 return -1;
1751 }
1752
dso__load_sym(struct dso * dso,struct map * map,struct symsrc * syms_ss,struct symsrc * runtime_ss,int kmodule)1753 int dso__load_sym(struct dso *dso, struct map *map, struct symsrc *syms_ss,
1754 struct symsrc *runtime_ss, int kmodule)
1755 {
1756 int nr = 0;
1757 int err = -1;
1758
1759 dso__set_symtab_type(dso, syms_ss->type);
1760 dso__set_is_64_bit(dso, syms_ss->is_64_bit);
1761 dso__set_rel(dso, syms_ss->ehdr.e_type == ET_REL);
1762
1763 /*
1764 * Modules may already have symbols from kallsyms, but those symbols
1765 * have the wrong values for the dso maps, so remove them.
1766 */
1767 if (kmodule && syms_ss->symtab)
1768 symbols__delete(dso__symbols(dso));
1769
1770 if (!syms_ss->symtab) {
1771 /*
1772 * If the vmlinux is stripped, fail so we will fall back
1773 * to using kallsyms. The vmlinux runtime symbols aren't
1774 * of much use.
1775 */
1776 if (dso__kernel(dso))
1777 return err;
1778 } else {
1779 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1780 kmodule, 0);
1781 if (err < 0)
1782 return err;
1783 nr = err;
1784 }
1785
1786 if (syms_ss->dynsym) {
1787 err = dso__load_sym_internal(dso, map, syms_ss, runtime_ss,
1788 kmodule, 1);
1789 if (err < 0)
1790 return err;
1791 nr += err;
1792 }
1793
1794 /*
1795 * The .gnu_debugdata is a special situation: it contains a symbol
1796 * table, but the runtime file may also contain dynsym entries which are
1797 * not present there. We need to load both.
1798 */
1799 if (syms_ss->type == DSO_BINARY_TYPE__GNU_DEBUGDATA && runtime_ss->dynsym) {
1800 err = dso__load_sym_internal(dso, map, runtime_ss, runtime_ss,
1801 kmodule, 1);
1802 if (err < 0)
1803 return err;
1804 nr += err;
1805 }
1806
1807 return nr;
1808 }
1809
elf_read_maps(Elf * elf,bool exe,mapfn_t mapfn,void * data)1810 static int elf_read_maps(Elf *elf, bool exe, mapfn_t mapfn, void *data)
1811 {
1812 GElf_Phdr phdr;
1813 size_t i, phdrnum;
1814 int err;
1815 u64 sz;
1816
1817 if (elf_getphdrnum(elf, &phdrnum))
1818 return -1;
1819
1820 for (i = 0; i < phdrnum; i++) {
1821 if (gelf_getphdr(elf, i, &phdr) == NULL)
1822 return -1;
1823 if (phdr.p_type != PT_LOAD)
1824 continue;
1825 if (exe) {
1826 if (!(phdr.p_flags & PF_X))
1827 continue;
1828 } else {
1829 if (!(phdr.p_flags & PF_R))
1830 continue;
1831 }
1832 sz = min(phdr.p_memsz, phdr.p_filesz);
1833 if (!sz)
1834 continue;
1835 err = mapfn(phdr.p_vaddr, sz, phdr.p_offset, data);
1836 if (err)
1837 return err;
1838 }
1839 return 0;
1840 }
1841
file__read_maps(int fd,bool exe,mapfn_t mapfn,void * data,bool * is_64_bit)1842 int file__read_maps(int fd, bool exe, mapfn_t mapfn, void *data,
1843 bool *is_64_bit)
1844 {
1845 int err;
1846 Elf *elf;
1847
1848 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1849 if (elf == NULL)
1850 return -1;
1851
1852 if (is_64_bit)
1853 *is_64_bit = (gelf_getclass(elf) == ELFCLASS64);
1854
1855 err = elf_read_maps(elf, exe, mapfn, data);
1856
1857 elf_end(elf);
1858 return err;
1859 }
1860
dso__type_fd(int fd)1861 enum dso_type dso__type_fd(int fd)
1862 {
1863 enum dso_type dso_type = DSO__TYPE_UNKNOWN;
1864 GElf_Ehdr ehdr;
1865 Elf_Kind ek;
1866 Elf *elf;
1867
1868 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
1869 if (elf == NULL)
1870 goto out;
1871
1872 ek = elf_kind(elf);
1873 if (ek != ELF_K_ELF)
1874 goto out_end;
1875
1876 if (gelf_getclass(elf) == ELFCLASS64) {
1877 dso_type = DSO__TYPE_64BIT;
1878 goto out_end;
1879 }
1880
1881 if (gelf_getehdr(elf, &ehdr) == NULL)
1882 goto out_end;
1883
1884 if (ehdr.e_machine == EM_X86_64)
1885 dso_type = DSO__TYPE_X32BIT;
1886 else
1887 dso_type = DSO__TYPE_32BIT;
1888 out_end:
1889 elf_end(elf);
1890 out:
1891 return dso_type;
1892 }
1893
copy_bytes(int from,off_t from_offs,int to,off_t to_offs,u64 len)1894 static int copy_bytes(int from, off_t from_offs, int to, off_t to_offs, u64 len)
1895 {
1896 ssize_t r;
1897 size_t n;
1898 int err = -1;
1899 char *buf = malloc(page_size);
1900
1901 if (buf == NULL)
1902 return -1;
1903
1904 if (lseek(to, to_offs, SEEK_SET) != to_offs)
1905 goto out;
1906
1907 if (lseek(from, from_offs, SEEK_SET) != from_offs)
1908 goto out;
1909
1910 while (len) {
1911 n = page_size;
1912 if (len < n)
1913 n = len;
1914 /* Use read because mmap won't work on proc files */
1915 r = read(from, buf, n);
1916 if (r < 0)
1917 goto out;
1918 if (!r)
1919 break;
1920 n = r;
1921 r = write(to, buf, n);
1922 if (r < 0)
1923 goto out;
1924 if ((size_t)r != n)
1925 goto out;
1926 len -= n;
1927 }
1928
1929 err = 0;
1930 out:
1931 free(buf);
1932 return err;
1933 }
1934
1935 struct kcore {
1936 int fd;
1937 int elfclass;
1938 Elf *elf;
1939 GElf_Ehdr ehdr;
1940 };
1941
kcore__open(struct kcore * kcore,const char * filename)1942 static int kcore__open(struct kcore *kcore, const char *filename)
1943 {
1944 GElf_Ehdr *ehdr;
1945
1946 kcore->fd = open(filename, O_RDONLY);
1947 if (kcore->fd == -1)
1948 return -1;
1949
1950 kcore->elf = elf_begin(kcore->fd, ELF_C_READ, NULL);
1951 if (!kcore->elf)
1952 goto out_close;
1953
1954 kcore->elfclass = gelf_getclass(kcore->elf);
1955 if (kcore->elfclass == ELFCLASSNONE)
1956 goto out_end;
1957
1958 ehdr = gelf_getehdr(kcore->elf, &kcore->ehdr);
1959 if (!ehdr)
1960 goto out_end;
1961
1962 return 0;
1963
1964 out_end:
1965 elf_end(kcore->elf);
1966 out_close:
1967 close(kcore->fd);
1968 return -1;
1969 }
1970
kcore__init(struct kcore * kcore,char * filename,int elfclass,bool temp)1971 static int kcore__init(struct kcore *kcore, char *filename, int elfclass,
1972 bool temp)
1973 {
1974 kcore->elfclass = elfclass;
1975
1976 if (temp)
1977 kcore->fd = mkstemp(filename);
1978 else
1979 kcore->fd = open(filename, O_WRONLY | O_CREAT | O_EXCL, 0400);
1980 if (kcore->fd == -1)
1981 return -1;
1982
1983 kcore->elf = elf_begin(kcore->fd, ELF_C_WRITE, NULL);
1984 if (!kcore->elf)
1985 goto out_close;
1986
1987 if (!gelf_newehdr(kcore->elf, elfclass))
1988 goto out_end;
1989
1990 memset(&kcore->ehdr, 0, sizeof(GElf_Ehdr));
1991
1992 return 0;
1993
1994 out_end:
1995 elf_end(kcore->elf);
1996 out_close:
1997 close(kcore->fd);
1998 unlink(filename);
1999 return -1;
2000 }
2001
kcore__close(struct kcore * kcore)2002 static void kcore__close(struct kcore *kcore)
2003 {
2004 elf_end(kcore->elf);
2005 close(kcore->fd);
2006 }
2007
kcore__copy_hdr(struct kcore * from,struct kcore * to,size_t count)2008 static int kcore__copy_hdr(struct kcore *from, struct kcore *to, size_t count)
2009 {
2010 GElf_Ehdr *ehdr = &to->ehdr;
2011 GElf_Ehdr *kehdr = &from->ehdr;
2012
2013 memcpy(ehdr->e_ident, kehdr->e_ident, EI_NIDENT);
2014 ehdr->e_type = kehdr->e_type;
2015 ehdr->e_machine = kehdr->e_machine;
2016 ehdr->e_version = kehdr->e_version;
2017 ehdr->e_entry = 0;
2018 ehdr->e_shoff = 0;
2019 ehdr->e_flags = kehdr->e_flags;
2020 ehdr->e_phnum = count;
2021 ehdr->e_shentsize = 0;
2022 ehdr->e_shnum = 0;
2023 ehdr->e_shstrndx = 0;
2024
2025 if (from->elfclass == ELFCLASS32) {
2026 ehdr->e_phoff = sizeof(Elf32_Ehdr);
2027 ehdr->e_ehsize = sizeof(Elf32_Ehdr);
2028 ehdr->e_phentsize = sizeof(Elf32_Phdr);
2029 } else {
2030 ehdr->e_phoff = sizeof(Elf64_Ehdr);
2031 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
2032 ehdr->e_phentsize = sizeof(Elf64_Phdr);
2033 }
2034
2035 if (!gelf_update_ehdr(to->elf, ehdr))
2036 return -1;
2037
2038 if (!gelf_newphdr(to->elf, count))
2039 return -1;
2040
2041 return 0;
2042 }
2043
kcore__add_phdr(struct kcore * kcore,int idx,off_t offset,u64 addr,u64 len)2044 static int kcore__add_phdr(struct kcore *kcore, int idx, off_t offset,
2045 u64 addr, u64 len)
2046 {
2047 GElf_Phdr phdr = {
2048 .p_type = PT_LOAD,
2049 .p_flags = PF_R | PF_W | PF_X,
2050 .p_offset = offset,
2051 .p_vaddr = addr,
2052 .p_paddr = 0,
2053 .p_filesz = len,
2054 .p_memsz = len,
2055 .p_align = page_size,
2056 };
2057
2058 if (!gelf_update_phdr(kcore->elf, idx, &phdr))
2059 return -1;
2060
2061 return 0;
2062 }
2063
kcore__write(struct kcore * kcore)2064 static off_t kcore__write(struct kcore *kcore)
2065 {
2066 return elf_update(kcore->elf, ELF_C_WRITE);
2067 }
2068
2069 struct phdr_data {
2070 off_t offset;
2071 off_t rel;
2072 u64 addr;
2073 u64 len;
2074 struct list_head node;
2075 struct phdr_data *remaps;
2076 };
2077
2078 struct sym_data {
2079 u64 addr;
2080 struct list_head node;
2081 };
2082
2083 struct kcore_copy_info {
2084 u64 stext;
2085 u64 etext;
2086 u64 first_symbol;
2087 u64 last_symbol;
2088 u64 first_module;
2089 u64 first_module_symbol;
2090 u64 last_module_symbol;
2091 size_t phnum;
2092 struct list_head phdrs;
2093 struct list_head syms;
2094 };
2095
2096 #define kcore_copy__for_each_phdr(k, p) \
2097 list_for_each_entry((p), &(k)->phdrs, node)
2098
phdr_data__new(u64 addr,u64 len,off_t offset)2099 static struct phdr_data *phdr_data__new(u64 addr, u64 len, off_t offset)
2100 {
2101 struct phdr_data *p = zalloc(sizeof(*p));
2102
2103 if (p) {
2104 p->addr = addr;
2105 p->len = len;
2106 p->offset = offset;
2107 }
2108
2109 return p;
2110 }
2111
kcore_copy_info__addnew(struct kcore_copy_info * kci,u64 addr,u64 len,off_t offset)2112 static struct phdr_data *kcore_copy_info__addnew(struct kcore_copy_info *kci,
2113 u64 addr, u64 len,
2114 off_t offset)
2115 {
2116 struct phdr_data *p = phdr_data__new(addr, len, offset);
2117
2118 if (p)
2119 list_add_tail(&p->node, &kci->phdrs);
2120
2121 return p;
2122 }
2123
kcore_copy__free_phdrs(struct kcore_copy_info * kci)2124 static void kcore_copy__free_phdrs(struct kcore_copy_info *kci)
2125 {
2126 struct phdr_data *p, *tmp;
2127
2128 list_for_each_entry_safe(p, tmp, &kci->phdrs, node) {
2129 list_del_init(&p->node);
2130 free(p);
2131 }
2132 }
2133
kcore_copy__new_sym(struct kcore_copy_info * kci,u64 addr)2134 static struct sym_data *kcore_copy__new_sym(struct kcore_copy_info *kci,
2135 u64 addr)
2136 {
2137 struct sym_data *s = zalloc(sizeof(*s));
2138
2139 if (s) {
2140 s->addr = addr;
2141 list_add_tail(&s->node, &kci->syms);
2142 }
2143
2144 return s;
2145 }
2146
kcore_copy__free_syms(struct kcore_copy_info * kci)2147 static void kcore_copy__free_syms(struct kcore_copy_info *kci)
2148 {
2149 struct sym_data *s, *tmp;
2150
2151 list_for_each_entry_safe(s, tmp, &kci->syms, node) {
2152 list_del_init(&s->node);
2153 free(s);
2154 }
2155 }
2156
kcore_copy__process_kallsyms(void * arg,const char * name,char type,u64 start)2157 static int kcore_copy__process_kallsyms(void *arg, const char *name, char type,
2158 u64 start)
2159 {
2160 struct kcore_copy_info *kci = arg;
2161
2162 if (!kallsyms__is_function(type))
2163 return 0;
2164
2165 if (strchr(name, '[')) {
2166 if (!kci->first_module_symbol || start < kci->first_module_symbol)
2167 kci->first_module_symbol = start;
2168 if (start > kci->last_module_symbol)
2169 kci->last_module_symbol = start;
2170 return 0;
2171 }
2172
2173 if (!kci->first_symbol || start < kci->first_symbol)
2174 kci->first_symbol = start;
2175
2176 if (!kci->last_symbol || start > kci->last_symbol)
2177 kci->last_symbol = start;
2178
2179 if (!strcmp(name, "_stext")) {
2180 kci->stext = start;
2181 return 0;
2182 }
2183
2184 if (!strcmp(name, "_etext")) {
2185 kci->etext = start;
2186 return 0;
2187 }
2188
2189 if (is_entry_trampoline(name) && !kcore_copy__new_sym(kci, start))
2190 return -1;
2191
2192 return 0;
2193 }
2194
kcore_copy__parse_kallsyms(struct kcore_copy_info * kci,const char * dir)2195 static int kcore_copy__parse_kallsyms(struct kcore_copy_info *kci,
2196 const char *dir)
2197 {
2198 char kallsyms_filename[PATH_MAX];
2199
2200 scnprintf(kallsyms_filename, PATH_MAX, "%s/kallsyms", dir);
2201
2202 if (symbol__restricted_filename(kallsyms_filename, "/proc/kallsyms"))
2203 return -1;
2204
2205 if (kallsyms__parse(kallsyms_filename, kci,
2206 kcore_copy__process_kallsyms) < 0)
2207 return -1;
2208
2209 return 0;
2210 }
2211
kcore_copy__process_modules(void * arg,const char * name __maybe_unused,u64 start,u64 size __maybe_unused)2212 static int kcore_copy__process_modules(void *arg,
2213 const char *name __maybe_unused,
2214 u64 start, u64 size __maybe_unused)
2215 {
2216 struct kcore_copy_info *kci = arg;
2217
2218 if (!kci->first_module || start < kci->first_module)
2219 kci->first_module = start;
2220
2221 return 0;
2222 }
2223
kcore_copy__parse_modules(struct kcore_copy_info * kci,const char * dir)2224 static int kcore_copy__parse_modules(struct kcore_copy_info *kci,
2225 const char *dir)
2226 {
2227 char modules_filename[PATH_MAX];
2228
2229 scnprintf(modules_filename, PATH_MAX, "%s/modules", dir);
2230
2231 if (symbol__restricted_filename(modules_filename, "/proc/modules"))
2232 return -1;
2233
2234 if (modules__parse(modules_filename, kci,
2235 kcore_copy__process_modules) < 0)
2236 return -1;
2237
2238 return 0;
2239 }
2240
kcore_copy__map(struct kcore_copy_info * kci,u64 start,u64 end,u64 pgoff,u64 s,u64 e)2241 static int kcore_copy__map(struct kcore_copy_info *kci, u64 start, u64 end,
2242 u64 pgoff, u64 s, u64 e)
2243 {
2244 u64 len, offset;
2245
2246 if (s < start || s >= end)
2247 return 0;
2248
2249 offset = (s - start) + pgoff;
2250 len = e < end ? e - s : end - s;
2251
2252 return kcore_copy_info__addnew(kci, s, len, offset) ? 0 : -1;
2253 }
2254
kcore_copy__read_map(u64 start,u64 len,u64 pgoff,void * data)2255 static int kcore_copy__read_map(u64 start, u64 len, u64 pgoff, void *data)
2256 {
2257 struct kcore_copy_info *kci = data;
2258 u64 end = start + len;
2259 struct sym_data *sdat;
2260
2261 if (kcore_copy__map(kci, start, end, pgoff, kci->stext, kci->etext))
2262 return -1;
2263
2264 if (kcore_copy__map(kci, start, end, pgoff, kci->first_module,
2265 kci->last_module_symbol))
2266 return -1;
2267
2268 list_for_each_entry(sdat, &kci->syms, node) {
2269 u64 s = round_down(sdat->addr, page_size);
2270
2271 if (kcore_copy__map(kci, start, end, pgoff, s, s + len))
2272 return -1;
2273 }
2274
2275 return 0;
2276 }
2277
kcore_copy__read_maps(struct kcore_copy_info * kci,Elf * elf)2278 static int kcore_copy__read_maps(struct kcore_copy_info *kci, Elf *elf)
2279 {
2280 if (elf_read_maps(elf, true, kcore_copy__read_map, kci) < 0)
2281 return -1;
2282
2283 return 0;
2284 }
2285
kcore_copy__find_remaps(struct kcore_copy_info * kci)2286 static void kcore_copy__find_remaps(struct kcore_copy_info *kci)
2287 {
2288 struct phdr_data *p, *k = NULL;
2289 u64 kend;
2290
2291 if (!kci->stext)
2292 return;
2293
2294 /* Find phdr that corresponds to the kernel map (contains stext) */
2295 kcore_copy__for_each_phdr(kci, p) {
2296 u64 pend = p->addr + p->len - 1;
2297
2298 if (p->addr <= kci->stext && pend >= kci->stext) {
2299 k = p;
2300 break;
2301 }
2302 }
2303
2304 if (!k)
2305 return;
2306
2307 kend = k->offset + k->len;
2308
2309 /* Find phdrs that remap the kernel */
2310 kcore_copy__for_each_phdr(kci, p) {
2311 u64 pend = p->offset + p->len;
2312
2313 if (p == k)
2314 continue;
2315
2316 if (p->offset >= k->offset && pend <= kend)
2317 p->remaps = k;
2318 }
2319 }
2320
kcore_copy__layout(struct kcore_copy_info * kci)2321 static void kcore_copy__layout(struct kcore_copy_info *kci)
2322 {
2323 struct phdr_data *p;
2324 off_t rel = 0;
2325
2326 kcore_copy__find_remaps(kci);
2327
2328 kcore_copy__for_each_phdr(kci, p) {
2329 if (!p->remaps) {
2330 p->rel = rel;
2331 rel += p->len;
2332 }
2333 kci->phnum += 1;
2334 }
2335
2336 kcore_copy__for_each_phdr(kci, p) {
2337 struct phdr_data *k = p->remaps;
2338
2339 if (k)
2340 p->rel = p->offset - k->offset + k->rel;
2341 }
2342 }
2343
kcore_copy__calc_maps(struct kcore_copy_info * kci,const char * dir,Elf * elf)2344 static int kcore_copy__calc_maps(struct kcore_copy_info *kci, const char *dir,
2345 Elf *elf)
2346 {
2347 if (kcore_copy__parse_kallsyms(kci, dir))
2348 return -1;
2349
2350 if (kcore_copy__parse_modules(kci, dir))
2351 return -1;
2352
2353 if (kci->stext)
2354 kci->stext = round_down(kci->stext, page_size);
2355 else
2356 kci->stext = round_down(kci->first_symbol, page_size);
2357
2358 if (kci->etext) {
2359 kci->etext = round_up(kci->etext, page_size);
2360 } else if (kci->last_symbol) {
2361 kci->etext = round_up(kci->last_symbol, page_size);
2362 kci->etext += page_size;
2363 }
2364
2365 if (kci->first_module_symbol &&
2366 (!kci->first_module || kci->first_module_symbol < kci->first_module))
2367 kci->first_module = kci->first_module_symbol;
2368
2369 kci->first_module = round_down(kci->first_module, page_size);
2370
2371 if (kci->last_module_symbol) {
2372 kci->last_module_symbol = round_up(kci->last_module_symbol,
2373 page_size);
2374 kci->last_module_symbol += page_size;
2375 }
2376
2377 if (!kci->stext || !kci->etext)
2378 return -1;
2379
2380 if (kci->first_module && !kci->last_module_symbol)
2381 return -1;
2382
2383 if (kcore_copy__read_maps(kci, elf))
2384 return -1;
2385
2386 kcore_copy__layout(kci);
2387
2388 return 0;
2389 }
2390
kcore_copy__copy_file(const char * from_dir,const char * to_dir,const char * name)2391 static int kcore_copy__copy_file(const char *from_dir, const char *to_dir,
2392 const char *name)
2393 {
2394 char from_filename[PATH_MAX];
2395 char to_filename[PATH_MAX];
2396
2397 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2398 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2399
2400 return copyfile_mode(from_filename, to_filename, 0400);
2401 }
2402
kcore_copy__unlink(const char * dir,const char * name)2403 static int kcore_copy__unlink(const char *dir, const char *name)
2404 {
2405 char filename[PATH_MAX];
2406
2407 scnprintf(filename, PATH_MAX, "%s/%s", dir, name);
2408
2409 return unlink(filename);
2410 }
2411
kcore_copy__compare_fds(int from,int to)2412 static int kcore_copy__compare_fds(int from, int to)
2413 {
2414 char *buf_from;
2415 char *buf_to;
2416 ssize_t ret;
2417 size_t len;
2418 int err = -1;
2419
2420 buf_from = malloc(page_size);
2421 buf_to = malloc(page_size);
2422 if (!buf_from || !buf_to)
2423 goto out;
2424
2425 while (1) {
2426 /* Use read because mmap won't work on proc files */
2427 ret = read(from, buf_from, page_size);
2428 if (ret < 0)
2429 goto out;
2430
2431 if (!ret)
2432 break;
2433
2434 len = ret;
2435
2436 if (readn(to, buf_to, len) != (int)len)
2437 goto out;
2438
2439 if (memcmp(buf_from, buf_to, len))
2440 goto out;
2441 }
2442
2443 err = 0;
2444 out:
2445 free(buf_to);
2446 free(buf_from);
2447 return err;
2448 }
2449
kcore_copy__compare_files(const char * from_filename,const char * to_filename)2450 static int kcore_copy__compare_files(const char *from_filename,
2451 const char *to_filename)
2452 {
2453 int from, to, err = -1;
2454
2455 from = open(from_filename, O_RDONLY);
2456 if (from < 0)
2457 return -1;
2458
2459 to = open(to_filename, O_RDONLY);
2460 if (to < 0)
2461 goto out_close_from;
2462
2463 err = kcore_copy__compare_fds(from, to);
2464
2465 close(to);
2466 out_close_from:
2467 close(from);
2468 return err;
2469 }
2470
kcore_copy__compare_file(const char * from_dir,const char * to_dir,const char * name)2471 static int kcore_copy__compare_file(const char *from_dir, const char *to_dir,
2472 const char *name)
2473 {
2474 char from_filename[PATH_MAX];
2475 char to_filename[PATH_MAX];
2476
2477 scnprintf(from_filename, PATH_MAX, "%s/%s", from_dir, name);
2478 scnprintf(to_filename, PATH_MAX, "%s/%s", to_dir, name);
2479
2480 return kcore_copy__compare_files(from_filename, to_filename);
2481 }
2482
2483 /**
2484 * kcore_copy - copy kallsyms, modules and kcore from one directory to another.
2485 * @from_dir: from directory
2486 * @to_dir: to directory
2487 *
2488 * This function copies kallsyms, modules and kcore files from one directory to
2489 * another. kallsyms and modules are copied entirely. Only code segments are
2490 * copied from kcore. It is assumed that two segments suffice: one for the
2491 * kernel proper and one for all the modules. The code segments are determined
2492 * from kallsyms and modules files. The kernel map starts at _stext or the
2493 * lowest function symbol, and ends at _etext or the highest function symbol.
2494 * The module map starts at the lowest module address and ends at the highest
2495 * module symbol. Start addresses are rounded down to the nearest page. End
2496 * addresses are rounded up to the nearest page. An extra page is added to the
2497 * highest kernel symbol and highest module symbol to, hopefully, encompass that
2498 * symbol too. Because it contains only code sections, the resulting kcore is
2499 * unusual. One significant peculiarity is that the mapping (start -> pgoff)
2500 * is not the same for the kernel map and the modules map. That happens because
2501 * the data is copied adjacently whereas the original kcore has gaps. Finally,
2502 * kallsyms file is compared with its copy to check that modules have not been
2503 * loaded or unloaded while the copies were taking place.
2504 *
2505 * Return: %0 on success, %-1 on failure.
2506 */
kcore_copy(const char * from_dir,const char * to_dir)2507 int kcore_copy(const char *from_dir, const char *to_dir)
2508 {
2509 struct kcore kcore;
2510 struct kcore extract;
2511 int idx = 0, err = -1;
2512 off_t offset, sz;
2513 struct kcore_copy_info kci = { .stext = 0, };
2514 char kcore_filename[PATH_MAX];
2515 char extract_filename[PATH_MAX];
2516 struct phdr_data *p;
2517
2518 INIT_LIST_HEAD(&kci.phdrs);
2519 INIT_LIST_HEAD(&kci.syms);
2520
2521 if (kcore_copy__copy_file(from_dir, to_dir, "kallsyms"))
2522 return -1;
2523
2524 if (kcore_copy__copy_file(from_dir, to_dir, "modules"))
2525 goto out_unlink_kallsyms;
2526
2527 scnprintf(kcore_filename, PATH_MAX, "%s/kcore", from_dir);
2528 scnprintf(extract_filename, PATH_MAX, "%s/kcore", to_dir);
2529
2530 if (kcore__open(&kcore, kcore_filename))
2531 goto out_unlink_modules;
2532
2533 if (kcore_copy__calc_maps(&kci, from_dir, kcore.elf))
2534 goto out_kcore_close;
2535
2536 if (kcore__init(&extract, extract_filename, kcore.elfclass, false))
2537 goto out_kcore_close;
2538
2539 if (kcore__copy_hdr(&kcore, &extract, kci.phnum))
2540 goto out_extract_close;
2541
2542 offset = gelf_fsize(extract.elf, ELF_T_EHDR, 1, EV_CURRENT) +
2543 gelf_fsize(extract.elf, ELF_T_PHDR, kci.phnum, EV_CURRENT);
2544 offset = round_up(offset, page_size);
2545
2546 kcore_copy__for_each_phdr(&kci, p) {
2547 off_t offs = p->rel + offset;
2548
2549 if (kcore__add_phdr(&extract, idx++, offs, p->addr, p->len))
2550 goto out_extract_close;
2551 }
2552
2553 sz = kcore__write(&extract);
2554 if (sz < 0 || sz > offset)
2555 goto out_extract_close;
2556
2557 kcore_copy__for_each_phdr(&kci, p) {
2558 off_t offs = p->rel + offset;
2559
2560 if (p->remaps)
2561 continue;
2562 if (copy_bytes(kcore.fd, p->offset, extract.fd, offs, p->len))
2563 goto out_extract_close;
2564 }
2565
2566 if (kcore_copy__compare_file(from_dir, to_dir, "kallsyms"))
2567 goto out_extract_close;
2568
2569 err = 0;
2570
2571 out_extract_close:
2572 kcore__close(&extract);
2573 if (err)
2574 unlink(extract_filename);
2575 out_kcore_close:
2576 kcore__close(&kcore);
2577 out_unlink_modules:
2578 if (err)
2579 kcore_copy__unlink(to_dir, "modules");
2580 out_unlink_kallsyms:
2581 if (err)
2582 kcore_copy__unlink(to_dir, "kallsyms");
2583
2584 kcore_copy__free_phdrs(&kci);
2585 kcore_copy__free_syms(&kci);
2586
2587 return err;
2588 }
2589
kcore_extract__create(struct kcore_extract * kce)2590 int kcore_extract__create(struct kcore_extract *kce)
2591 {
2592 struct kcore kcore;
2593 struct kcore extract;
2594 size_t count = 1;
2595 int idx = 0, err = -1;
2596 off_t offset = page_size, sz;
2597
2598 if (kcore__open(&kcore, kce->kcore_filename))
2599 return -1;
2600
2601 strcpy(kce->extract_filename, PERF_KCORE_EXTRACT);
2602 if (kcore__init(&extract, kce->extract_filename, kcore.elfclass, true))
2603 goto out_kcore_close;
2604
2605 if (kcore__copy_hdr(&kcore, &extract, count))
2606 goto out_extract_close;
2607
2608 if (kcore__add_phdr(&extract, idx, offset, kce->addr, kce->len))
2609 goto out_extract_close;
2610
2611 sz = kcore__write(&extract);
2612 if (sz < 0 || sz > offset)
2613 goto out_extract_close;
2614
2615 if (copy_bytes(kcore.fd, kce->offs, extract.fd, offset, kce->len))
2616 goto out_extract_close;
2617
2618 err = 0;
2619
2620 out_extract_close:
2621 kcore__close(&extract);
2622 if (err)
2623 unlink(kce->extract_filename);
2624 out_kcore_close:
2625 kcore__close(&kcore);
2626
2627 return err;
2628 }
2629
kcore_extract__delete(struct kcore_extract * kce)2630 void kcore_extract__delete(struct kcore_extract *kce)
2631 {
2632 unlink(kce->extract_filename);
2633 }
2634
2635 #ifdef HAVE_GELF_GETNOTE_SUPPORT
2636
sdt_adjust_loc(struct sdt_note * tmp,GElf_Addr base_off)2637 static void sdt_adjust_loc(struct sdt_note *tmp, GElf_Addr base_off)
2638 {
2639 if (!base_off)
2640 return;
2641
2642 if (tmp->bit32)
2643 tmp->addr.a32[SDT_NOTE_IDX_LOC] =
2644 tmp->addr.a32[SDT_NOTE_IDX_LOC] + base_off -
2645 tmp->addr.a32[SDT_NOTE_IDX_BASE];
2646 else
2647 tmp->addr.a64[SDT_NOTE_IDX_LOC] =
2648 tmp->addr.a64[SDT_NOTE_IDX_LOC] + base_off -
2649 tmp->addr.a64[SDT_NOTE_IDX_BASE];
2650 }
2651
sdt_adjust_refctr(struct sdt_note * tmp,GElf_Addr base_addr,GElf_Addr base_off)2652 static void sdt_adjust_refctr(struct sdt_note *tmp, GElf_Addr base_addr,
2653 GElf_Addr base_off)
2654 {
2655 if (!base_off)
2656 return;
2657
2658 if (tmp->bit32 && tmp->addr.a32[SDT_NOTE_IDX_REFCTR])
2659 tmp->addr.a32[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2660 else if (tmp->addr.a64[SDT_NOTE_IDX_REFCTR])
2661 tmp->addr.a64[SDT_NOTE_IDX_REFCTR] -= (base_addr - base_off);
2662 }
2663
2664 /**
2665 * populate_sdt_note : Parse raw data and identify SDT note
2666 * @elf: elf of the opened file
2667 * @data: raw data of a section with description offset applied
2668 * @len: note description size
2669 * @type: type of the note
2670 * @sdt_notes: List to add the SDT note
2671 *
2672 * Responsible for parsing the @data in section .note.stapsdt in @elf and
2673 * if its an SDT note, it appends to @sdt_notes list.
2674 */
populate_sdt_note(Elf ** elf,const char * data,size_t len,struct list_head * sdt_notes)2675 static int populate_sdt_note(Elf **elf, const char *data, size_t len,
2676 struct list_head *sdt_notes)
2677 {
2678 const char *provider, *name, *args;
2679 struct sdt_note *tmp = NULL;
2680 GElf_Ehdr ehdr;
2681 GElf_Shdr shdr;
2682 int ret = -EINVAL;
2683
2684 union {
2685 Elf64_Addr a64[NR_ADDR];
2686 Elf32_Addr a32[NR_ADDR];
2687 } buf;
2688
2689 Elf_Data dst = {
2690 .d_buf = &buf, .d_type = ELF_T_ADDR, .d_version = EV_CURRENT,
2691 .d_size = gelf_fsize((*elf), ELF_T_ADDR, NR_ADDR, EV_CURRENT),
2692 .d_off = 0, .d_align = 0
2693 };
2694 Elf_Data src = {
2695 .d_buf = (void *) data, .d_type = ELF_T_ADDR,
2696 .d_version = EV_CURRENT, .d_size = dst.d_size, .d_off = 0,
2697 .d_align = 0
2698 };
2699
2700 tmp = (struct sdt_note *)calloc(1, sizeof(struct sdt_note));
2701 if (!tmp) {
2702 ret = -ENOMEM;
2703 goto out_err;
2704 }
2705
2706 INIT_LIST_HEAD(&tmp->note_list);
2707
2708 if (len < dst.d_size + 3)
2709 goto out_free_note;
2710
2711 /* Translation from file representation to memory representation */
2712 if (gelf_xlatetom(*elf, &dst, &src,
2713 elf_getident(*elf, NULL)[EI_DATA]) == NULL) {
2714 pr_err("gelf_xlatetom : %s\n", elf_errmsg(-1));
2715 goto out_free_note;
2716 }
2717
2718 /* Populate the fields of sdt_note */
2719 provider = data + dst.d_size;
2720
2721 name = (const char *)memchr(provider, '\0', data + len - provider);
2722 if (name++ == NULL)
2723 goto out_free_note;
2724
2725 tmp->provider = strdup(provider);
2726 if (!tmp->provider) {
2727 ret = -ENOMEM;
2728 goto out_free_note;
2729 }
2730 tmp->name = strdup(name);
2731 if (!tmp->name) {
2732 ret = -ENOMEM;
2733 goto out_free_prov;
2734 }
2735
2736 args = memchr(name, '\0', data + len - name);
2737
2738 /*
2739 * There is no argument if:
2740 * - We reached the end of the note;
2741 * - There is not enough room to hold a potential string;
2742 * - The argument string is empty or just contains ':'.
2743 */
2744 if (args == NULL || data + len - args < 2 ||
2745 args[1] == ':' || args[1] == '\0')
2746 tmp->args = NULL;
2747 else {
2748 tmp->args = strdup(++args);
2749 if (!tmp->args) {
2750 ret = -ENOMEM;
2751 goto out_free_name;
2752 }
2753 }
2754
2755 if (gelf_getclass(*elf) == ELFCLASS32) {
2756 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf32_Addr));
2757 tmp->bit32 = true;
2758 } else {
2759 memcpy(&tmp->addr, &buf, 3 * sizeof(Elf64_Addr));
2760 tmp->bit32 = false;
2761 }
2762
2763 if (!gelf_getehdr(*elf, &ehdr)) {
2764 pr_debug("%s : cannot get elf header.\n", __func__);
2765 ret = -EBADF;
2766 goto out_free_args;
2767 }
2768
2769 /* Adjust the prelink effect :
2770 * Find out the .stapsdt.base section.
2771 * This scn will help us to handle prelinking (if present).
2772 * Compare the retrieved file offset of the base section with the
2773 * base address in the description of the SDT note. If its different,
2774 * then accordingly, adjust the note location.
2775 */
2776 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_BASE_SCN, NULL))
2777 sdt_adjust_loc(tmp, shdr.sh_offset);
2778
2779 /* Adjust reference counter offset */
2780 if (elf_section_by_name(*elf, &ehdr, &shdr, SDT_PROBES_SCN, NULL))
2781 sdt_adjust_refctr(tmp, shdr.sh_addr, shdr.sh_offset);
2782
2783 list_add_tail(&tmp->note_list, sdt_notes);
2784 return 0;
2785
2786 out_free_args:
2787 zfree(&tmp->args);
2788 out_free_name:
2789 zfree(&tmp->name);
2790 out_free_prov:
2791 zfree(&tmp->provider);
2792 out_free_note:
2793 free(tmp);
2794 out_err:
2795 return ret;
2796 }
2797
2798 /**
2799 * construct_sdt_notes_list : constructs a list of SDT notes
2800 * @elf : elf to look into
2801 * @sdt_notes : empty list_head
2802 *
2803 * Scans the sections in 'elf' for the section
2804 * .note.stapsdt. It, then calls populate_sdt_note to find
2805 * out the SDT events and populates the 'sdt_notes'.
2806 */
construct_sdt_notes_list(Elf * elf,struct list_head * sdt_notes)2807 static int construct_sdt_notes_list(Elf *elf, struct list_head *sdt_notes)
2808 {
2809 GElf_Ehdr ehdr;
2810 Elf_Scn *scn = NULL;
2811 Elf_Data *data;
2812 GElf_Shdr shdr;
2813 size_t shstrndx, next;
2814 GElf_Nhdr nhdr;
2815 size_t name_off, desc_off, offset;
2816 int ret = 0;
2817
2818 if (gelf_getehdr(elf, &ehdr) == NULL) {
2819 ret = -EBADF;
2820 goto out_ret;
2821 }
2822 if (elf_getshdrstrndx(elf, &shstrndx) != 0) {
2823 ret = -EBADF;
2824 goto out_ret;
2825 }
2826
2827 /* Look for the required section */
2828 scn = elf_section_by_name(elf, &ehdr, &shdr, SDT_NOTE_SCN, NULL);
2829 if (!scn) {
2830 ret = -ENOENT;
2831 goto out_ret;
2832 }
2833
2834 if ((shdr.sh_type != SHT_NOTE) || (shdr.sh_flags & SHF_ALLOC)) {
2835 ret = -ENOENT;
2836 goto out_ret;
2837 }
2838
2839 data = elf_getdata(scn, NULL);
2840
2841 /* Get the SDT notes */
2842 for (offset = 0; (next = gelf_getnote(data, offset, &nhdr, &name_off,
2843 &desc_off)) > 0; offset = next) {
2844 if (nhdr.n_namesz == sizeof(SDT_NOTE_NAME) &&
2845 !memcmp(data->d_buf + name_off, SDT_NOTE_NAME,
2846 sizeof(SDT_NOTE_NAME))) {
2847 /* Check the type of the note */
2848 if (nhdr.n_type != SDT_NOTE_TYPE)
2849 goto out_ret;
2850
2851 ret = populate_sdt_note(&elf, ((data->d_buf) + desc_off),
2852 nhdr.n_descsz, sdt_notes);
2853 if (ret < 0)
2854 goto out_ret;
2855 }
2856 }
2857 if (list_empty(sdt_notes))
2858 ret = -ENOENT;
2859
2860 out_ret:
2861 return ret;
2862 }
2863
2864 /**
2865 * get_sdt_note_list : Wrapper to construct a list of sdt notes
2866 * @head : empty list_head
2867 * @target : file to find SDT notes from
2868 *
2869 * This opens the file, initializes
2870 * the ELF and then calls construct_sdt_notes_list.
2871 */
get_sdt_note_list(struct list_head * head,const char * target)2872 int get_sdt_note_list(struct list_head *head, const char *target)
2873 {
2874 Elf *elf;
2875 int fd, ret;
2876
2877 fd = open(target, O_RDONLY);
2878 if (fd < 0)
2879 return -EBADF;
2880
2881 elf = elf_begin(fd, PERF_ELF_C_READ_MMAP, NULL);
2882 if (!elf) {
2883 ret = -EBADF;
2884 goto out_close;
2885 }
2886 ret = construct_sdt_notes_list(elf, head);
2887 elf_end(elf);
2888 out_close:
2889 close(fd);
2890 return ret;
2891 }
2892
2893 /**
2894 * cleanup_sdt_note_list : free the sdt notes' list
2895 * @sdt_notes: sdt notes' list
2896 *
2897 * Free up the SDT notes in @sdt_notes.
2898 * Returns the number of SDT notes free'd.
2899 */
cleanup_sdt_note_list(struct list_head * sdt_notes)2900 int cleanup_sdt_note_list(struct list_head *sdt_notes)
2901 {
2902 struct sdt_note *tmp, *pos;
2903 int nr_free = 0;
2904
2905 list_for_each_entry_safe(pos, tmp, sdt_notes, note_list) {
2906 list_del_init(&pos->note_list);
2907 zfree(&pos->args);
2908 zfree(&pos->name);
2909 zfree(&pos->provider);
2910 free(pos);
2911 nr_free++;
2912 }
2913 return nr_free;
2914 }
2915
2916 /**
2917 * sdt_notes__get_count: Counts the number of sdt events
2918 * @start: list_head to sdt_notes list
2919 *
2920 * Returns the number of SDT notes in a list
2921 */
sdt_notes__get_count(struct list_head * start)2922 int sdt_notes__get_count(struct list_head *start)
2923 {
2924 struct sdt_note *sdt_ptr;
2925 int count = 0;
2926
2927 list_for_each_entry(sdt_ptr, start, note_list)
2928 count++;
2929 return count;
2930 }
2931 #endif
2932
symbol__elf_init(void)2933 void symbol__elf_init(void)
2934 {
2935 elf_version(EV_CURRENT);
2936 }
2937