1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * DSA topology and switch handling 4 * 5 * Copyright (c) 2008-2009 Marvell Semiconductor 6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org> 7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch> 8 */ 9 10 #include <linux/device.h> 11 #include <linux/err.h> 12 #include <linux/if_hsr.h> 13 #include <linux/list.h> 14 #include <linux/module.h> 15 #include <linux/netdevice.h> 16 #include <linux/slab.h> 17 #include <linux/rtnetlink.h> 18 #include <linux/of.h> 19 #include <linux/of_net.h> 20 #include <net/dsa_stubs.h> 21 #include <net/sch_generic.h> 22 23 #include "conduit.h" 24 #include "devlink.h" 25 #include "dsa.h" 26 #include "netlink.h" 27 #include "port.h" 28 #include "switch.h" 29 #include "tag.h" 30 #include "user.h" 31 32 #define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG 33 34 static DEFINE_MUTEX(dsa2_mutex); 35 LIST_HEAD(dsa_tree_list); 36 37 static struct workqueue_struct *dsa_owq; 38 39 /* Track the bridges with forwarding offload enabled */ 40 static unsigned long dsa_fwd_offloading_bridges; 41 42 bool dsa_schedule_work(struct work_struct *work) 43 { 44 return queue_work(dsa_owq, work); 45 } 46 47 void dsa_flush_workqueue(void) 48 { 49 flush_workqueue(dsa_owq); 50 } 51 EXPORT_SYMBOL_GPL(dsa_flush_workqueue); 52 53 /** 54 * dsa_lag_map() - Map LAG structure to a linear LAG array 55 * @dst: Tree in which to record the mapping. 56 * @lag: LAG structure that is to be mapped to the tree's array. 57 * 58 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the 59 * two spaces. The size of the mapping space is determined by the 60 * driver by setting ds->num_lag_ids. It is perfectly legal to leave 61 * it unset if it is not needed, in which case these functions become 62 * no-ops. 63 */ 64 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag) 65 { 66 unsigned int id; 67 68 for (id = 1; id <= dst->lags_len; id++) { 69 if (!dsa_lag_by_id(dst, id)) { 70 dst->lags[id - 1] = lag; 71 lag->id = id; 72 return; 73 } 74 } 75 76 /* No IDs left, which is OK. Some drivers do not need it. The 77 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id 78 * returns an error for this device when joining the LAG. The 79 * driver can then return -EOPNOTSUPP back to DSA, which will 80 * fall back to a software LAG. 81 */ 82 } 83 84 /** 85 * dsa_lag_unmap() - Remove a LAG ID mapping 86 * @dst: Tree in which the mapping is recorded. 87 * @lag: LAG structure that was mapped. 88 * 89 * As there may be multiple users of the mapping, it is only removed 90 * if there are no other references to it. 91 */ 92 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag) 93 { 94 unsigned int id; 95 96 dsa_lags_foreach_id(id, dst) { 97 if (dsa_lag_by_id(dst, id) == lag) { 98 dst->lags[id - 1] = NULL; 99 lag->id = 0; 100 break; 101 } 102 } 103 } 104 105 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst, 106 const struct net_device *lag_dev) 107 { 108 struct dsa_port *dp; 109 110 list_for_each_entry(dp, &dst->ports, list) 111 if (dsa_port_lag_dev_get(dp) == lag_dev) 112 return dp->lag; 113 114 return NULL; 115 } 116 117 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst, 118 const struct net_device *br) 119 { 120 struct dsa_port *dp; 121 122 list_for_each_entry(dp, &dst->ports, list) 123 if (dsa_port_bridge_dev_get(dp) == br) 124 return dp->bridge; 125 126 return NULL; 127 } 128 129 static int dsa_bridge_num_find(const struct net_device *bridge_dev) 130 { 131 struct dsa_switch_tree *dst; 132 133 list_for_each_entry(dst, &dsa_tree_list, list) { 134 struct dsa_bridge *bridge; 135 136 bridge = dsa_tree_bridge_find(dst, bridge_dev); 137 if (bridge) 138 return bridge->num; 139 } 140 141 return 0; 142 } 143 144 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max) 145 { 146 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev); 147 148 /* Switches without FDB isolation support don't get unique 149 * bridge numbering 150 */ 151 if (!max) 152 return 0; 153 154 if (!bridge_num) { 155 /* First port that requests FDB isolation or TX forwarding 156 * offload for this bridge 157 */ 158 bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges, 159 DSA_MAX_NUM_OFFLOADING_BRIDGES, 160 1); 161 if (bridge_num >= max) 162 return 0; 163 164 set_bit(bridge_num, &dsa_fwd_offloading_bridges); 165 } 166 167 return bridge_num; 168 } 169 170 void dsa_bridge_num_put(const struct net_device *bridge_dev, 171 unsigned int bridge_num) 172 { 173 /* Since we refcount bridges, we know that when we call this function 174 * it is no longer in use, so we can just go ahead and remove it from 175 * the bit mask. 176 */ 177 clear_bit(bridge_num, &dsa_fwd_offloading_bridges); 178 } 179 180 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index) 181 { 182 struct dsa_switch_tree *dst; 183 struct dsa_port *dp; 184 185 list_for_each_entry(dst, &dsa_tree_list, list) { 186 if (dst->index != tree_index) 187 continue; 188 189 list_for_each_entry(dp, &dst->ports, list) { 190 if (dp->ds->index != sw_index) 191 continue; 192 193 return dp->ds; 194 } 195 } 196 197 return NULL; 198 } 199 EXPORT_SYMBOL_GPL(dsa_switch_find); 200 201 static struct dsa_switch_tree *dsa_tree_find(int index) 202 { 203 struct dsa_switch_tree *dst; 204 205 list_for_each_entry(dst, &dsa_tree_list, list) 206 if (dst->index == index) 207 return dst; 208 209 return NULL; 210 } 211 212 static struct dsa_switch_tree *dsa_tree_alloc(int index) 213 { 214 struct dsa_switch_tree *dst; 215 216 dst = kzalloc(sizeof(*dst), GFP_KERNEL); 217 if (!dst) 218 return NULL; 219 220 dst->index = index; 221 222 INIT_LIST_HEAD(&dst->rtable); 223 224 INIT_LIST_HEAD(&dst->ports); 225 226 INIT_LIST_HEAD(&dst->list); 227 list_add_tail(&dst->list, &dsa_tree_list); 228 229 kref_init(&dst->refcount); 230 231 return dst; 232 } 233 234 static void dsa_tree_free(struct dsa_switch_tree *dst) 235 { 236 if (dst->tag_ops) 237 dsa_tag_driver_put(dst->tag_ops); 238 list_del(&dst->list); 239 kfree(dst); 240 } 241 242 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst) 243 { 244 if (dst) 245 kref_get(&dst->refcount); 246 247 return dst; 248 } 249 250 static struct dsa_switch_tree *dsa_tree_touch(int index) 251 { 252 struct dsa_switch_tree *dst; 253 254 dst = dsa_tree_find(index); 255 if (dst) 256 return dsa_tree_get(dst); 257 else 258 return dsa_tree_alloc(index); 259 } 260 261 static void dsa_tree_release(struct kref *ref) 262 { 263 struct dsa_switch_tree *dst; 264 265 dst = container_of(ref, struct dsa_switch_tree, refcount); 266 267 dsa_tree_free(dst); 268 } 269 270 static void dsa_tree_put(struct dsa_switch_tree *dst) 271 { 272 if (dst) 273 kref_put(&dst->refcount, dsa_tree_release); 274 } 275 276 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst, 277 struct device_node *dn) 278 { 279 struct dsa_port *dp; 280 281 list_for_each_entry(dp, &dst->ports, list) 282 if (dp->dn == dn) 283 return dp; 284 285 return NULL; 286 } 287 288 static struct dsa_link *dsa_link_touch(struct dsa_port *dp, 289 struct dsa_port *link_dp) 290 { 291 struct dsa_switch *ds = dp->ds; 292 struct dsa_switch_tree *dst; 293 struct dsa_link *dl; 294 295 dst = ds->dst; 296 297 list_for_each_entry(dl, &dst->rtable, list) 298 if (dl->dp == dp && dl->link_dp == link_dp) 299 return dl; 300 301 dl = kzalloc(sizeof(*dl), GFP_KERNEL); 302 if (!dl) 303 return NULL; 304 305 dl->dp = dp; 306 dl->link_dp = link_dp; 307 308 INIT_LIST_HEAD(&dl->list); 309 list_add_tail(&dl->list, &dst->rtable); 310 311 return dl; 312 } 313 314 static bool dsa_port_setup_routing_table(struct dsa_port *dp) 315 { 316 struct dsa_switch *ds = dp->ds; 317 struct dsa_switch_tree *dst = ds->dst; 318 struct device_node *dn = dp->dn; 319 struct of_phandle_iterator it; 320 struct dsa_port *link_dp; 321 struct dsa_link *dl; 322 int err; 323 324 of_for_each_phandle(&it, err, dn, "link", NULL, 0) { 325 link_dp = dsa_tree_find_port_by_node(dst, it.node); 326 if (!link_dp) { 327 of_node_put(it.node); 328 return false; 329 } 330 331 dl = dsa_link_touch(dp, link_dp); 332 if (!dl) { 333 of_node_put(it.node); 334 return false; 335 } 336 } 337 338 return true; 339 } 340 341 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst) 342 { 343 bool complete = true; 344 struct dsa_port *dp; 345 346 list_for_each_entry(dp, &dst->ports, list) { 347 if (dsa_port_is_dsa(dp)) { 348 complete = dsa_port_setup_routing_table(dp); 349 if (!complete) 350 break; 351 } 352 } 353 354 return complete; 355 } 356 357 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst) 358 { 359 struct dsa_port *dp; 360 361 list_for_each_entry(dp, &dst->ports, list) 362 if (dsa_port_is_cpu(dp)) 363 return dp; 364 365 return NULL; 366 } 367 368 struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst) 369 { 370 struct device_node *ethernet; 371 struct net_device *conduit; 372 struct dsa_port *cpu_dp; 373 374 cpu_dp = dsa_tree_find_first_cpu(dst); 375 ethernet = of_parse_phandle(cpu_dp->dn, "ethernet", 0); 376 conduit = of_find_net_device_by_node(ethernet); 377 of_node_put(ethernet); 378 379 return conduit; 380 } 381 382 /* Assign the default CPU port (the first one in the tree) to all ports of the 383 * fabric which don't already have one as part of their own switch. 384 */ 385 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst) 386 { 387 struct dsa_port *cpu_dp, *dp; 388 389 cpu_dp = dsa_tree_find_first_cpu(dst); 390 if (!cpu_dp) { 391 pr_err("DSA: tree %d has no CPU port\n", dst->index); 392 return -EINVAL; 393 } 394 395 list_for_each_entry(dp, &dst->ports, list) { 396 if (dp->cpu_dp) 397 continue; 398 399 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 400 dp->cpu_dp = cpu_dp; 401 } 402 403 return 0; 404 } 405 406 static struct dsa_port * 407 dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds) 408 { 409 struct dsa_port *cpu_dp; 410 411 if (!ds->ops->preferred_default_local_cpu_port) 412 return NULL; 413 414 cpu_dp = ds->ops->preferred_default_local_cpu_port(ds); 415 if (!cpu_dp) 416 return NULL; 417 418 if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds)) 419 return NULL; 420 421 return cpu_dp; 422 } 423 424 /* Perform initial assignment of CPU ports to user ports and DSA links in the 425 * fabric, giving preference to CPU ports local to each switch. Default to 426 * using the first CPU port in the switch tree if the port does not have a CPU 427 * port local to this switch. 428 */ 429 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst) 430 { 431 struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp; 432 433 list_for_each_entry(cpu_dp, &dst->ports, list) { 434 if (!dsa_port_is_cpu(cpu_dp)) 435 continue; 436 437 preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds); 438 if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp) 439 continue; 440 441 /* Prefer a local CPU port */ 442 dsa_switch_for_each_port(dp, cpu_dp->ds) { 443 /* Prefer the first local CPU port found */ 444 if (dp->cpu_dp) 445 continue; 446 447 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 448 dp->cpu_dp = cpu_dp; 449 } 450 } 451 452 return dsa_tree_setup_default_cpu(dst); 453 } 454 455 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst) 456 { 457 struct dsa_port *dp; 458 459 list_for_each_entry(dp, &dst->ports, list) 460 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp)) 461 dp->cpu_dp = NULL; 462 } 463 464 static int dsa_port_setup(struct dsa_port *dp) 465 { 466 bool dsa_port_link_registered = false; 467 struct dsa_switch *ds = dp->ds; 468 bool dsa_port_enabled = false; 469 int err = 0; 470 471 if (dp->setup) 472 return 0; 473 474 err = dsa_port_devlink_setup(dp); 475 if (err) 476 return err; 477 478 switch (dp->type) { 479 case DSA_PORT_TYPE_UNUSED: 480 dsa_port_disable(dp); 481 break; 482 case DSA_PORT_TYPE_CPU: 483 if (dp->dn) { 484 err = dsa_shared_port_link_register_of(dp); 485 if (err) 486 break; 487 dsa_port_link_registered = true; 488 } else { 489 dev_warn(ds->dev, 490 "skipping link registration for CPU port %d\n", 491 dp->index); 492 } 493 494 err = dsa_port_enable(dp, NULL); 495 if (err) 496 break; 497 dsa_port_enabled = true; 498 499 break; 500 case DSA_PORT_TYPE_DSA: 501 if (dp->dn) { 502 err = dsa_shared_port_link_register_of(dp); 503 if (err) 504 break; 505 dsa_port_link_registered = true; 506 } else { 507 dev_warn(ds->dev, 508 "skipping link registration for DSA port %d\n", 509 dp->index); 510 } 511 512 err = dsa_port_enable(dp, NULL); 513 if (err) 514 break; 515 dsa_port_enabled = true; 516 517 break; 518 case DSA_PORT_TYPE_USER: 519 of_get_mac_address(dp->dn, dp->mac); 520 err = dsa_user_create(dp); 521 break; 522 } 523 524 if (err && dsa_port_enabled) 525 dsa_port_disable(dp); 526 if (err && dsa_port_link_registered) 527 dsa_shared_port_link_unregister_of(dp); 528 if (err) { 529 dsa_port_devlink_teardown(dp); 530 return err; 531 } 532 533 dp->setup = true; 534 535 return 0; 536 } 537 538 static void dsa_port_teardown(struct dsa_port *dp) 539 { 540 if (!dp->setup) 541 return; 542 543 switch (dp->type) { 544 case DSA_PORT_TYPE_UNUSED: 545 break; 546 case DSA_PORT_TYPE_CPU: 547 dsa_port_disable(dp); 548 if (dp->dn) 549 dsa_shared_port_link_unregister_of(dp); 550 break; 551 case DSA_PORT_TYPE_DSA: 552 dsa_port_disable(dp); 553 if (dp->dn) 554 dsa_shared_port_link_unregister_of(dp); 555 break; 556 case DSA_PORT_TYPE_USER: 557 if (dp->user) { 558 dsa_user_destroy(dp->user); 559 dp->user = NULL; 560 } 561 break; 562 } 563 564 dsa_port_devlink_teardown(dp); 565 566 dp->setup = false; 567 } 568 569 static int dsa_port_setup_as_unused(struct dsa_port *dp) 570 { 571 dp->type = DSA_PORT_TYPE_UNUSED; 572 return dsa_port_setup(dp); 573 } 574 575 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds) 576 { 577 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; 578 struct dsa_switch_tree *dst = ds->dst; 579 int err; 580 581 if (tag_ops->proto == dst->default_proto) 582 goto connect; 583 584 rtnl_lock(); 585 err = ds->ops->change_tag_protocol(ds, tag_ops->proto); 586 rtnl_unlock(); 587 if (err) { 588 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n", 589 tag_ops->name, ERR_PTR(err)); 590 return err; 591 } 592 593 connect: 594 if (tag_ops->connect) { 595 err = tag_ops->connect(ds); 596 if (err) 597 return err; 598 } 599 600 if (ds->ops->connect_tag_protocol) { 601 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto); 602 if (err) { 603 dev_err(ds->dev, 604 "Unable to connect to tag protocol \"%s\": %pe\n", 605 tag_ops->name, ERR_PTR(err)); 606 goto disconnect; 607 } 608 } 609 610 return 0; 611 612 disconnect: 613 if (tag_ops->disconnect) 614 tag_ops->disconnect(ds); 615 616 return err; 617 } 618 619 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds) 620 { 621 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops; 622 623 if (tag_ops->disconnect) 624 tag_ops->disconnect(ds); 625 } 626 627 static int dsa_switch_setup(struct dsa_switch *ds) 628 { 629 int err; 630 631 if (ds->setup) 632 return 0; 633 634 /* Initialize ds->phys_mii_mask before registering the user MDIO bus 635 * driver and before ops->setup() has run, since the switch drivers and 636 * the user MDIO bus driver rely on these values for probing PHY 637 * devices or not 638 */ 639 ds->phys_mii_mask |= dsa_user_ports(ds); 640 641 err = dsa_switch_devlink_alloc(ds); 642 if (err) 643 return err; 644 645 err = dsa_switch_register_notifier(ds); 646 if (err) 647 goto devlink_free; 648 649 ds->configure_vlan_while_not_filtering = true; 650 651 err = ds->ops->setup(ds); 652 if (err < 0) 653 goto unregister_notifier; 654 655 err = dsa_switch_setup_tag_protocol(ds); 656 if (err) 657 goto teardown; 658 659 if (!ds->user_mii_bus && ds->ops->phy_read) { 660 ds->user_mii_bus = mdiobus_alloc(); 661 if (!ds->user_mii_bus) { 662 err = -ENOMEM; 663 goto teardown; 664 } 665 666 dsa_user_mii_bus_init(ds); 667 668 err = mdiobus_register(ds->user_mii_bus); 669 if (err < 0) 670 goto free_user_mii_bus; 671 } 672 673 dsa_switch_devlink_register(ds); 674 675 ds->setup = true; 676 return 0; 677 678 free_user_mii_bus: 679 if (ds->user_mii_bus && ds->ops->phy_read) 680 mdiobus_free(ds->user_mii_bus); 681 teardown: 682 if (ds->ops->teardown) 683 ds->ops->teardown(ds); 684 unregister_notifier: 685 dsa_switch_unregister_notifier(ds); 686 devlink_free: 687 dsa_switch_devlink_free(ds); 688 return err; 689 } 690 691 static void dsa_switch_teardown(struct dsa_switch *ds) 692 { 693 if (!ds->setup) 694 return; 695 696 dsa_switch_devlink_unregister(ds); 697 698 if (ds->user_mii_bus && ds->ops->phy_read) { 699 mdiobus_unregister(ds->user_mii_bus); 700 mdiobus_free(ds->user_mii_bus); 701 ds->user_mii_bus = NULL; 702 } 703 704 dsa_switch_teardown_tag_protocol(ds); 705 706 if (ds->ops->teardown) 707 ds->ops->teardown(ds); 708 709 dsa_switch_unregister_notifier(ds); 710 711 dsa_switch_devlink_free(ds); 712 713 ds->setup = false; 714 } 715 716 /* First tear down the non-shared, then the shared ports. This ensures that 717 * all work items scheduled by our switchdev handlers for user ports have 718 * completed before we destroy the refcounting kept on the shared ports. 719 */ 720 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst) 721 { 722 struct dsa_port *dp; 723 724 list_for_each_entry(dp, &dst->ports, list) 725 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) 726 dsa_port_teardown(dp); 727 728 dsa_flush_workqueue(); 729 730 list_for_each_entry(dp, &dst->ports, list) 731 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) 732 dsa_port_teardown(dp); 733 } 734 735 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst) 736 { 737 struct dsa_port *dp; 738 739 list_for_each_entry(dp, &dst->ports, list) 740 dsa_switch_teardown(dp->ds); 741 } 742 743 /* Bring shared ports up first, then non-shared ports */ 744 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst) 745 { 746 struct dsa_port *dp; 747 int err = 0; 748 749 list_for_each_entry(dp, &dst->ports, list) { 750 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) { 751 err = dsa_port_setup(dp); 752 if (err) 753 goto teardown; 754 } 755 } 756 757 list_for_each_entry(dp, &dst->ports, list) { 758 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) { 759 err = dsa_port_setup(dp); 760 if (err) { 761 err = dsa_port_setup_as_unused(dp); 762 if (err) 763 goto teardown; 764 } 765 } 766 } 767 768 return 0; 769 770 teardown: 771 dsa_tree_teardown_ports(dst); 772 773 return err; 774 } 775 776 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst) 777 { 778 struct dsa_port *dp; 779 int err = 0; 780 781 list_for_each_entry(dp, &dst->ports, list) { 782 err = dsa_switch_setup(dp->ds); 783 if (err) { 784 dsa_tree_teardown_switches(dst); 785 break; 786 } 787 } 788 789 return err; 790 } 791 792 static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst) 793 { 794 struct dsa_port *cpu_dp; 795 int err = 0; 796 797 rtnl_lock(); 798 799 dsa_tree_for_each_cpu_port(cpu_dp, dst) { 800 struct net_device *conduit = cpu_dp->conduit; 801 bool admin_up = (conduit->flags & IFF_UP) && 802 !qdisc_tx_is_noop(conduit); 803 804 err = dsa_conduit_setup(conduit, cpu_dp); 805 if (err) 806 break; 807 808 /* Replay conduit state event */ 809 dsa_tree_conduit_admin_state_change(dst, conduit, admin_up); 810 dsa_tree_conduit_oper_state_change(dst, conduit, 811 netif_oper_up(conduit)); 812 } 813 814 rtnl_unlock(); 815 816 return err; 817 } 818 819 static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst) 820 { 821 struct dsa_port *cpu_dp; 822 823 rtnl_lock(); 824 825 dsa_tree_for_each_cpu_port(cpu_dp, dst) { 826 struct net_device *conduit = cpu_dp->conduit; 827 828 /* Synthesizing an "admin down" state is sufficient for 829 * the switches to get a notification if the conduit is 830 * currently up and running. 831 */ 832 dsa_tree_conduit_admin_state_change(dst, conduit, false); 833 834 dsa_conduit_teardown(conduit); 835 } 836 837 rtnl_unlock(); 838 } 839 840 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst) 841 { 842 unsigned int len = 0; 843 struct dsa_port *dp; 844 845 list_for_each_entry(dp, &dst->ports, list) { 846 if (dp->ds->num_lag_ids > len) 847 len = dp->ds->num_lag_ids; 848 } 849 850 if (!len) 851 return 0; 852 853 dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL); 854 if (!dst->lags) 855 return -ENOMEM; 856 857 dst->lags_len = len; 858 return 0; 859 } 860 861 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst) 862 { 863 kfree(dst->lags); 864 } 865 866 static void dsa_tree_teardown_routing_table(struct dsa_switch_tree *dst) 867 { 868 struct dsa_link *dl, *next; 869 870 list_for_each_entry_safe(dl, next, &dst->rtable, list) { 871 list_del(&dl->list); 872 kfree(dl); 873 } 874 } 875 876 static int dsa_tree_setup(struct dsa_switch_tree *dst) 877 { 878 bool complete; 879 int err; 880 881 if (dst->setup) { 882 pr_err("DSA: tree %d already setup! Disjoint trees?\n", 883 dst->index); 884 return -EEXIST; 885 } 886 887 complete = dsa_tree_setup_routing_table(dst); 888 if (!complete) 889 return 0; 890 891 err = dsa_tree_setup_cpu_ports(dst); 892 if (err) 893 goto teardown_rtable; 894 895 err = dsa_tree_setup_switches(dst); 896 if (err) 897 goto teardown_cpu_ports; 898 899 err = dsa_tree_setup_ports(dst); 900 if (err) 901 goto teardown_switches; 902 903 err = dsa_tree_setup_conduit(dst); 904 if (err) 905 goto teardown_ports; 906 907 err = dsa_tree_setup_lags(dst); 908 if (err) 909 goto teardown_conduit; 910 911 dst->setup = true; 912 913 pr_info("DSA: tree %d setup\n", dst->index); 914 915 return 0; 916 917 teardown_conduit: 918 dsa_tree_teardown_conduit(dst); 919 teardown_ports: 920 dsa_tree_teardown_ports(dst); 921 teardown_switches: 922 dsa_tree_teardown_switches(dst); 923 teardown_cpu_ports: 924 dsa_tree_teardown_cpu_ports(dst); 925 teardown_rtable: 926 dsa_tree_teardown_routing_table(dst); 927 928 return err; 929 } 930 931 static void dsa_tree_teardown(struct dsa_switch_tree *dst) 932 { 933 if (!dst->setup) 934 return; 935 936 dsa_tree_teardown_lags(dst); 937 938 dsa_tree_teardown_conduit(dst); 939 940 dsa_tree_teardown_ports(dst); 941 942 dsa_tree_teardown_switches(dst); 943 944 dsa_tree_teardown_cpu_ports(dst); 945 946 dsa_tree_teardown_routing_table(dst); 947 948 pr_info("DSA: tree %d torn down\n", dst->index); 949 950 dst->setup = false; 951 } 952 953 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst, 954 const struct dsa_device_ops *tag_ops) 955 { 956 const struct dsa_device_ops *old_tag_ops = dst->tag_ops; 957 struct dsa_notifier_tag_proto_info info; 958 int err; 959 960 dst->tag_ops = tag_ops; 961 962 /* Notify the switches from this tree about the connection 963 * to the new tagger 964 */ 965 info.tag_ops = tag_ops; 966 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info); 967 if (err && err != -EOPNOTSUPP) 968 goto out_disconnect; 969 970 /* Notify the old tagger about the disconnection from this tree */ 971 info.tag_ops = old_tag_ops; 972 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); 973 974 return 0; 975 976 out_disconnect: 977 info.tag_ops = tag_ops; 978 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info); 979 dst->tag_ops = old_tag_ops; 980 981 return err; 982 } 983 984 /* Since the dsa/tagging sysfs device attribute is per conduit, the assumption 985 * is that all DSA switches within a tree share the same tagger, otherwise 986 * they would have formed disjoint trees (different "dsa,member" values). 987 */ 988 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst, 989 const struct dsa_device_ops *tag_ops, 990 const struct dsa_device_ops *old_tag_ops) 991 { 992 struct dsa_notifier_tag_proto_info info; 993 struct dsa_port *dp; 994 int err = -EBUSY; 995 996 if (!rtnl_trylock()) 997 return restart_syscall(); 998 999 /* At the moment we don't allow changing the tag protocol under 1000 * traffic. The rtnl_mutex also happens to serialize concurrent 1001 * attempts to change the tagging protocol. If we ever lift the IFF_UP 1002 * restriction, there needs to be another mutex which serializes this. 1003 */ 1004 dsa_tree_for_each_user_port(dp, dst) { 1005 if (dsa_port_to_conduit(dp)->flags & IFF_UP) 1006 goto out_unlock; 1007 1008 if (dp->user->flags & IFF_UP) 1009 goto out_unlock; 1010 } 1011 1012 /* Notify the tag protocol change */ 1013 info.tag_ops = tag_ops; 1014 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); 1015 if (err) 1016 goto out_unwind_tagger; 1017 1018 err = dsa_tree_bind_tag_proto(dst, tag_ops); 1019 if (err) 1020 goto out_unwind_tagger; 1021 1022 rtnl_unlock(); 1023 1024 return 0; 1025 1026 out_unwind_tagger: 1027 info.tag_ops = old_tag_ops; 1028 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info); 1029 out_unlock: 1030 rtnl_unlock(); 1031 return err; 1032 } 1033 1034 static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst, 1035 struct net_device *conduit) 1036 { 1037 struct dsa_notifier_conduit_state_info info; 1038 struct dsa_port *cpu_dp = conduit->dsa_ptr; 1039 1040 info.conduit = conduit; 1041 info.operational = dsa_port_conduit_is_operational(cpu_dp); 1042 1043 dsa_tree_notify(dst, DSA_NOTIFIER_CONDUIT_STATE_CHANGE, &info); 1044 } 1045 1046 void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst, 1047 struct net_device *conduit, 1048 bool up) 1049 { 1050 struct dsa_port *cpu_dp = conduit->dsa_ptr; 1051 bool notify = false; 1052 1053 /* Don't keep track of admin state on LAG DSA conduits, 1054 * but rather just of physical DSA conduits 1055 */ 1056 if (netif_is_lag_master(conduit)) 1057 return; 1058 1059 if ((dsa_port_conduit_is_operational(cpu_dp)) != 1060 (up && cpu_dp->conduit_oper_up)) 1061 notify = true; 1062 1063 cpu_dp->conduit_admin_up = up; 1064 1065 if (notify) 1066 dsa_tree_conduit_state_change(dst, conduit); 1067 } 1068 1069 void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst, 1070 struct net_device *conduit, 1071 bool up) 1072 { 1073 struct dsa_port *cpu_dp = conduit->dsa_ptr; 1074 bool notify = false; 1075 1076 /* Don't keep track of oper state on LAG DSA conduits, 1077 * but rather just of physical DSA conduits 1078 */ 1079 if (netif_is_lag_master(conduit)) 1080 return; 1081 1082 if ((dsa_port_conduit_is_operational(cpu_dp)) != 1083 (cpu_dp->conduit_admin_up && up)) 1084 notify = true; 1085 1086 cpu_dp->conduit_oper_up = up; 1087 1088 if (notify) 1089 dsa_tree_conduit_state_change(dst, conduit); 1090 } 1091 1092 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index) 1093 { 1094 struct dsa_switch_tree *dst = ds->dst; 1095 struct dsa_port *dp; 1096 1097 dsa_switch_for_each_port(dp, ds) 1098 if (dp->index == index) 1099 return dp; 1100 1101 dp = kzalloc(sizeof(*dp), GFP_KERNEL); 1102 if (!dp) 1103 return NULL; 1104 1105 dp->ds = ds; 1106 dp->index = index; 1107 1108 mutex_init(&dp->addr_lists_lock); 1109 mutex_init(&dp->vlans_lock); 1110 INIT_LIST_HEAD(&dp->fdbs); 1111 INIT_LIST_HEAD(&dp->mdbs); 1112 INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */ 1113 INIT_LIST_HEAD(&dp->list); 1114 list_add_tail(&dp->list, &dst->ports); 1115 1116 return dp; 1117 } 1118 1119 static int dsa_port_parse_user(struct dsa_port *dp, const char *name) 1120 { 1121 dp->type = DSA_PORT_TYPE_USER; 1122 dp->name = name; 1123 1124 return 0; 1125 } 1126 1127 static int dsa_port_parse_dsa(struct dsa_port *dp) 1128 { 1129 dp->type = DSA_PORT_TYPE_DSA; 1130 1131 return 0; 1132 } 1133 1134 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp, 1135 struct net_device *conduit) 1136 { 1137 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE; 1138 struct dsa_switch *mds, *ds = dp->ds; 1139 unsigned int mdp_upstream; 1140 struct dsa_port *mdp; 1141 1142 /* It is possible to stack DSA switches onto one another when that 1143 * happens the switch driver may want to know if its tagging protocol 1144 * is going to work in such a configuration. 1145 */ 1146 if (dsa_user_dev_check(conduit)) { 1147 mdp = dsa_user_to_port(conduit); 1148 mds = mdp->ds; 1149 mdp_upstream = dsa_upstream_port(mds, mdp->index); 1150 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream, 1151 DSA_TAG_PROTO_NONE); 1152 } 1153 1154 /* If the conduit device is not itself a DSA user in a disjoint DSA 1155 * tree, then return immediately. 1156 */ 1157 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol); 1158 } 1159 1160 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit, 1161 const char *user_protocol) 1162 { 1163 const struct dsa_device_ops *tag_ops = NULL; 1164 struct dsa_switch *ds = dp->ds; 1165 struct dsa_switch_tree *dst = ds->dst; 1166 enum dsa_tag_protocol default_proto; 1167 1168 /* Find out which protocol the switch would prefer. */ 1169 default_proto = dsa_get_tag_protocol(dp, conduit); 1170 if (dst->default_proto) { 1171 if (dst->default_proto != default_proto) { 1172 dev_err(ds->dev, 1173 "A DSA switch tree can have only one tagging protocol\n"); 1174 return -EINVAL; 1175 } 1176 } else { 1177 dst->default_proto = default_proto; 1178 } 1179 1180 /* See if the user wants to override that preference. */ 1181 if (user_protocol) { 1182 if (!ds->ops->change_tag_protocol) { 1183 dev_err(ds->dev, "Tag protocol cannot be modified\n"); 1184 return -EINVAL; 1185 } 1186 1187 tag_ops = dsa_tag_driver_get_by_name(user_protocol); 1188 if (IS_ERR(tag_ops)) { 1189 dev_warn(ds->dev, 1190 "Failed to find a tagging driver for protocol %s, using default\n", 1191 user_protocol); 1192 tag_ops = NULL; 1193 } 1194 } 1195 1196 if (!tag_ops) 1197 tag_ops = dsa_tag_driver_get_by_id(default_proto); 1198 1199 if (IS_ERR(tag_ops)) { 1200 if (PTR_ERR(tag_ops) == -ENOPROTOOPT) 1201 return -EPROBE_DEFER; 1202 1203 dev_warn(ds->dev, "No tagger for this switch\n"); 1204 return PTR_ERR(tag_ops); 1205 } 1206 1207 if (dst->tag_ops) { 1208 if (dst->tag_ops != tag_ops) { 1209 dev_err(ds->dev, 1210 "A DSA switch tree can have only one tagging protocol\n"); 1211 1212 dsa_tag_driver_put(tag_ops); 1213 return -EINVAL; 1214 } 1215 1216 /* In the case of multiple CPU ports per switch, the tagging 1217 * protocol is still reference-counted only per switch tree. 1218 */ 1219 dsa_tag_driver_put(tag_ops); 1220 } else { 1221 dst->tag_ops = tag_ops; 1222 } 1223 1224 dp->conduit = conduit; 1225 dp->type = DSA_PORT_TYPE_CPU; 1226 dsa_port_set_tag_protocol(dp, dst->tag_ops); 1227 dp->dst = dst; 1228 1229 /* At this point, the tree may be configured to use a different 1230 * tagger than the one chosen by the switch driver during 1231 * .setup, in the case when a user selects a custom protocol 1232 * through the DT. 1233 * 1234 * This is resolved by syncing the driver with the tree in 1235 * dsa_switch_setup_tag_protocol once .setup has run and the 1236 * driver is ready to accept calls to .change_tag_protocol. If 1237 * the driver does not support the custom protocol at that 1238 * point, the tree is wholly rejected, thereby ensuring that the 1239 * tree and driver are always in agreement on the protocol to 1240 * use. 1241 */ 1242 return 0; 1243 } 1244 1245 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn) 1246 { 1247 struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0); 1248 const char *name = of_get_property(dn, "label", NULL); 1249 bool link = of_property_read_bool(dn, "link"); 1250 1251 dp->dn = dn; 1252 1253 if (ethernet) { 1254 struct net_device *conduit; 1255 const char *user_protocol; 1256 1257 conduit = of_find_net_device_by_node(ethernet); 1258 of_node_put(ethernet); 1259 if (!conduit) 1260 return -EPROBE_DEFER; 1261 1262 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL); 1263 return dsa_port_parse_cpu(dp, conduit, user_protocol); 1264 } 1265 1266 if (link) 1267 return dsa_port_parse_dsa(dp); 1268 1269 return dsa_port_parse_user(dp, name); 1270 } 1271 1272 static int dsa_switch_parse_ports_of(struct dsa_switch *ds, 1273 struct device_node *dn) 1274 { 1275 struct device_node *ports, *port; 1276 struct dsa_port *dp; 1277 int err = 0; 1278 u32 reg; 1279 1280 ports = of_get_child_by_name(dn, "ports"); 1281 if (!ports) { 1282 /* The second possibility is "ethernet-ports" */ 1283 ports = of_get_child_by_name(dn, "ethernet-ports"); 1284 if (!ports) { 1285 dev_err(ds->dev, "no ports child node found\n"); 1286 return -EINVAL; 1287 } 1288 } 1289 1290 for_each_available_child_of_node(ports, port) { 1291 err = of_property_read_u32(port, "reg", ®); 1292 if (err) { 1293 of_node_put(port); 1294 goto out_put_node; 1295 } 1296 1297 if (reg >= ds->num_ports) { 1298 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n", 1299 port, reg, ds->num_ports); 1300 of_node_put(port); 1301 err = -EINVAL; 1302 goto out_put_node; 1303 } 1304 1305 dp = dsa_to_port(ds, reg); 1306 1307 err = dsa_port_parse_of(dp, port); 1308 if (err) { 1309 of_node_put(port); 1310 goto out_put_node; 1311 } 1312 } 1313 1314 out_put_node: 1315 of_node_put(ports); 1316 return err; 1317 } 1318 1319 static int dsa_switch_parse_member_of(struct dsa_switch *ds, 1320 struct device_node *dn) 1321 { 1322 u32 m[2] = { 0, 0 }; 1323 int sz; 1324 1325 /* Don't error out if this optional property isn't found */ 1326 sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2); 1327 if (sz < 0 && sz != -EINVAL) 1328 return sz; 1329 1330 ds->index = m[1]; 1331 1332 ds->dst = dsa_tree_touch(m[0]); 1333 if (!ds->dst) 1334 return -ENOMEM; 1335 1336 if (dsa_switch_find(ds->dst->index, ds->index)) { 1337 dev_err(ds->dev, 1338 "A DSA switch with index %d already exists in tree %d\n", 1339 ds->index, ds->dst->index); 1340 return -EEXIST; 1341 } 1342 1343 if (ds->dst->last_switch < ds->index) 1344 ds->dst->last_switch = ds->index; 1345 1346 return 0; 1347 } 1348 1349 static int dsa_switch_touch_ports(struct dsa_switch *ds) 1350 { 1351 struct dsa_port *dp; 1352 int port; 1353 1354 for (port = 0; port < ds->num_ports; port++) { 1355 dp = dsa_port_touch(ds, port); 1356 if (!dp) 1357 return -ENOMEM; 1358 } 1359 1360 return 0; 1361 } 1362 1363 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn) 1364 { 1365 int err; 1366 1367 err = dsa_switch_parse_member_of(ds, dn); 1368 if (err) 1369 return err; 1370 1371 err = dsa_switch_touch_ports(ds); 1372 if (err) 1373 return err; 1374 1375 return dsa_switch_parse_ports_of(ds, dn); 1376 } 1377 1378 static int dev_is_class(struct device *dev, const void *class) 1379 { 1380 if (dev->class != NULL && !strcmp(dev->class->name, class)) 1381 return 1; 1382 1383 return 0; 1384 } 1385 1386 static struct device *dev_find_class(struct device *parent, char *class) 1387 { 1388 if (dev_is_class(parent, class)) { 1389 get_device(parent); 1390 return parent; 1391 } 1392 1393 return device_find_child(parent, class, dev_is_class); 1394 } 1395 1396 static struct net_device *dsa_dev_to_net_device(struct device *dev) 1397 { 1398 struct device *d; 1399 1400 d = dev_find_class(dev, "net"); 1401 if (d != NULL) { 1402 struct net_device *nd; 1403 1404 nd = to_net_dev(d); 1405 dev_hold(nd); 1406 put_device(d); 1407 1408 return nd; 1409 } 1410 1411 return NULL; 1412 } 1413 1414 static int dsa_port_parse(struct dsa_port *dp, const char *name, 1415 struct device *dev) 1416 { 1417 if (!strcmp(name, "cpu")) { 1418 struct net_device *conduit; 1419 1420 conduit = dsa_dev_to_net_device(dev); 1421 if (!conduit) 1422 return -EPROBE_DEFER; 1423 1424 dev_put(conduit); 1425 1426 return dsa_port_parse_cpu(dp, conduit, NULL); 1427 } 1428 1429 if (!strcmp(name, "dsa")) 1430 return dsa_port_parse_dsa(dp); 1431 1432 return dsa_port_parse_user(dp, name); 1433 } 1434 1435 static int dsa_switch_parse_ports(struct dsa_switch *ds, 1436 struct dsa_chip_data *cd) 1437 { 1438 bool valid_name_found = false; 1439 struct dsa_port *dp; 1440 struct device *dev; 1441 const char *name; 1442 unsigned int i; 1443 int err; 1444 1445 for (i = 0; i < DSA_MAX_PORTS; i++) { 1446 name = cd->port_names[i]; 1447 dev = cd->netdev[i]; 1448 dp = dsa_to_port(ds, i); 1449 1450 if (!name) 1451 continue; 1452 1453 err = dsa_port_parse(dp, name, dev); 1454 if (err) 1455 return err; 1456 1457 valid_name_found = true; 1458 } 1459 1460 if (!valid_name_found && i == DSA_MAX_PORTS) 1461 return -EINVAL; 1462 1463 return 0; 1464 } 1465 1466 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd) 1467 { 1468 int err; 1469 1470 ds->cd = cd; 1471 1472 /* We don't support interconnected switches nor multiple trees via 1473 * platform data, so this is the unique switch of the tree. 1474 */ 1475 ds->index = 0; 1476 ds->dst = dsa_tree_touch(0); 1477 if (!ds->dst) 1478 return -ENOMEM; 1479 1480 err = dsa_switch_touch_ports(ds); 1481 if (err) 1482 return err; 1483 1484 return dsa_switch_parse_ports(ds, cd); 1485 } 1486 1487 static void dsa_switch_release_ports(struct dsa_switch *ds) 1488 { 1489 struct dsa_mac_addr *a, *tmp; 1490 struct dsa_port *dp, *next; 1491 struct dsa_vlan *v, *n; 1492 1493 dsa_switch_for_each_port_safe(dp, next, ds) { 1494 /* These are either entries that upper layers lost track of 1495 * (probably due to bugs), or installed through interfaces 1496 * where one does not necessarily have to remove them, like 1497 * ndo_dflt_fdb_add(). 1498 */ 1499 list_for_each_entry_safe(a, tmp, &dp->fdbs, list) { 1500 dev_info(ds->dev, 1501 "Cleaning up unicast address %pM vid %u from port %d\n", 1502 a->addr, a->vid, dp->index); 1503 list_del(&a->list); 1504 kfree(a); 1505 } 1506 1507 list_for_each_entry_safe(a, tmp, &dp->mdbs, list) { 1508 dev_info(ds->dev, 1509 "Cleaning up multicast address %pM vid %u from port %d\n", 1510 a->addr, a->vid, dp->index); 1511 list_del(&a->list); 1512 kfree(a); 1513 } 1514 1515 /* These are entries that upper layers have lost track of, 1516 * probably due to bugs, but also due to dsa_port_do_vlan_del() 1517 * having failed and the VLAN entry still lingering on. 1518 */ 1519 list_for_each_entry_safe(v, n, &dp->vlans, list) { 1520 dev_info(ds->dev, 1521 "Cleaning up vid %u from port %d\n", 1522 v->vid, dp->index); 1523 list_del(&v->list); 1524 kfree(v); 1525 } 1526 1527 list_del(&dp->list); 1528 kfree(dp); 1529 } 1530 } 1531 1532 static int dsa_switch_probe(struct dsa_switch *ds) 1533 { 1534 struct dsa_switch_tree *dst; 1535 struct dsa_chip_data *pdata; 1536 struct device_node *np; 1537 int err; 1538 1539 if (!ds->dev) 1540 return -ENODEV; 1541 1542 pdata = ds->dev->platform_data; 1543 np = ds->dev->of_node; 1544 1545 if (!ds->num_ports) 1546 return -EINVAL; 1547 1548 if (np) { 1549 err = dsa_switch_parse_of(ds, np); 1550 if (err) 1551 dsa_switch_release_ports(ds); 1552 } else if (pdata) { 1553 err = dsa_switch_parse(ds, pdata); 1554 if (err) 1555 dsa_switch_release_ports(ds); 1556 } else { 1557 err = -ENODEV; 1558 } 1559 1560 if (err) 1561 return err; 1562 1563 dst = ds->dst; 1564 dsa_tree_get(dst); 1565 err = dsa_tree_setup(dst); 1566 if (err) { 1567 dsa_switch_release_ports(ds); 1568 dsa_tree_put(dst); 1569 } 1570 1571 return err; 1572 } 1573 1574 int dsa_register_switch(struct dsa_switch *ds) 1575 { 1576 int err; 1577 1578 mutex_lock(&dsa2_mutex); 1579 err = dsa_switch_probe(ds); 1580 dsa_tree_put(ds->dst); 1581 mutex_unlock(&dsa2_mutex); 1582 1583 return err; 1584 } 1585 EXPORT_SYMBOL_GPL(dsa_register_switch); 1586 1587 static void dsa_switch_remove(struct dsa_switch *ds) 1588 { 1589 struct dsa_switch_tree *dst = ds->dst; 1590 1591 dsa_tree_teardown(dst); 1592 dsa_switch_release_ports(ds); 1593 dsa_tree_put(dst); 1594 } 1595 1596 void dsa_unregister_switch(struct dsa_switch *ds) 1597 { 1598 mutex_lock(&dsa2_mutex); 1599 dsa_switch_remove(ds); 1600 mutex_unlock(&dsa2_mutex); 1601 } 1602 EXPORT_SYMBOL_GPL(dsa_unregister_switch); 1603 1604 /* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is 1605 * blocking that operation from completion, due to the dev_hold taken inside 1606 * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of 1607 * the DSA conduit, so that the system can reboot successfully. 1608 */ 1609 void dsa_switch_shutdown(struct dsa_switch *ds) 1610 { 1611 struct net_device *conduit, *user_dev; 1612 LIST_HEAD(close_list); 1613 struct dsa_port *dp; 1614 1615 mutex_lock(&dsa2_mutex); 1616 1617 if (!ds->setup) 1618 goto out; 1619 1620 rtnl_lock(); 1621 1622 dsa_switch_for_each_cpu_port(dp, ds) 1623 list_add(&dp->conduit->close_list, &close_list); 1624 1625 netif_close_many(&close_list, true); 1626 1627 dsa_switch_for_each_user_port(dp, ds) { 1628 conduit = dsa_port_to_conduit(dp); 1629 user_dev = dp->user; 1630 1631 netif_device_detach(user_dev); 1632 netdev_upper_dev_unlink(conduit, user_dev); 1633 } 1634 1635 /* Disconnect from further netdevice notifiers on the conduit, 1636 * since netdev_uses_dsa() will now return false. 1637 */ 1638 dsa_switch_for_each_cpu_port(dp, ds) 1639 dp->conduit->dsa_ptr = NULL; 1640 1641 rtnl_unlock(); 1642 out: 1643 mutex_unlock(&dsa2_mutex); 1644 } 1645 EXPORT_SYMBOL_GPL(dsa_switch_shutdown); 1646 1647 #ifdef CONFIG_PM_SLEEP 1648 static bool dsa_port_is_initialized(const struct dsa_port *dp) 1649 { 1650 return dp->type == DSA_PORT_TYPE_USER && dp->user; 1651 } 1652 1653 int dsa_switch_suspend(struct dsa_switch *ds) 1654 { 1655 struct dsa_port *dp; 1656 int ret = 0; 1657 1658 /* Suspend user network devices */ 1659 dsa_switch_for_each_port(dp, ds) { 1660 if (!dsa_port_is_initialized(dp)) 1661 continue; 1662 1663 ret = dsa_user_suspend(dp->user); 1664 if (ret) 1665 return ret; 1666 } 1667 1668 if (ds->ops->suspend) 1669 ret = ds->ops->suspend(ds); 1670 1671 return ret; 1672 } 1673 EXPORT_SYMBOL_GPL(dsa_switch_suspend); 1674 1675 int dsa_switch_resume(struct dsa_switch *ds) 1676 { 1677 struct dsa_port *dp; 1678 int ret = 0; 1679 1680 if (ds->ops->resume) 1681 ret = ds->ops->resume(ds); 1682 1683 if (ret) 1684 return ret; 1685 1686 /* Resume user network devices */ 1687 dsa_switch_for_each_port(dp, ds) { 1688 if (!dsa_port_is_initialized(dp)) 1689 continue; 1690 1691 ret = dsa_user_resume(dp->user); 1692 if (ret) 1693 return ret; 1694 } 1695 1696 return 0; 1697 } 1698 EXPORT_SYMBOL_GPL(dsa_switch_resume); 1699 #endif 1700 1701 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev) 1702 { 1703 if (!netdev || !dsa_user_dev_check(netdev)) 1704 return ERR_PTR(-ENODEV); 1705 1706 return dsa_user_to_port(netdev); 1707 } 1708 EXPORT_SYMBOL_GPL(dsa_port_from_netdev); 1709 1710 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b) 1711 { 1712 if (a->type != b->type) 1713 return false; 1714 1715 switch (a->type) { 1716 case DSA_DB_PORT: 1717 return a->dp == b->dp; 1718 case DSA_DB_LAG: 1719 return a->lag.dev == b->lag.dev; 1720 case DSA_DB_BRIDGE: 1721 return a->bridge.num == b->bridge.num; 1722 default: 1723 WARN_ON(1); 1724 return false; 1725 } 1726 } 1727 1728 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port, 1729 const unsigned char *addr, u16 vid, 1730 struct dsa_db db) 1731 { 1732 struct dsa_port *dp = dsa_to_port(ds, port); 1733 struct dsa_mac_addr *a; 1734 1735 lockdep_assert_held(&dp->addr_lists_lock); 1736 1737 list_for_each_entry(a, &dp->fdbs, list) { 1738 if (!ether_addr_equal(a->addr, addr) || a->vid != vid) 1739 continue; 1740 1741 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db)) 1742 return true; 1743 } 1744 1745 return false; 1746 } 1747 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db); 1748 1749 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port, 1750 const struct switchdev_obj_port_mdb *mdb, 1751 struct dsa_db db) 1752 { 1753 struct dsa_port *dp = dsa_to_port(ds, port); 1754 struct dsa_mac_addr *a; 1755 1756 lockdep_assert_held(&dp->addr_lists_lock); 1757 1758 list_for_each_entry(a, &dp->mdbs, list) { 1759 if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid) 1760 continue; 1761 1762 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db)) 1763 return true; 1764 } 1765 1766 return false; 1767 } 1768 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db); 1769 1770 /* Helpers for switches without specific HSR offloads, but which can implement 1771 * NETIF_F_HW_HSR_DUP because their tagger uses dsa_xmit_port_mask() 1772 */ 1773 int dsa_port_simple_hsr_validate(struct dsa_switch *ds, int port, 1774 struct net_device *hsr, 1775 struct netlink_ext_ack *extack) 1776 { 1777 enum hsr_port_type type; 1778 int err; 1779 1780 err = hsr_get_port_type(hsr, dsa_to_port(ds, port)->user, &type); 1781 if (err) 1782 return err; 1783 1784 if (type != HSR_PT_SLAVE_A && type != HSR_PT_SLAVE_B) { 1785 NL_SET_ERR_MSG_MOD(extack, 1786 "Only HSR slave ports can be offloaded"); 1787 return -EOPNOTSUPP; 1788 } 1789 1790 return 0; 1791 } 1792 EXPORT_SYMBOL_GPL(dsa_port_simple_hsr_validate); 1793 1794 int dsa_port_simple_hsr_join(struct dsa_switch *ds, int port, 1795 struct net_device *hsr, 1796 struct netlink_ext_ack *extack) 1797 { 1798 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp; 1799 int err; 1800 1801 err = dsa_port_simple_hsr_validate(ds, port, hsr, extack); 1802 if (err) 1803 return err; 1804 1805 dsa_hsr_foreach_port(other_dp, ds, hsr) { 1806 if (other_dp != dp) { 1807 dp->user->features |= NETIF_F_HW_HSR_DUP; 1808 other_dp->user->features |= NETIF_F_HW_HSR_DUP; 1809 break; 1810 } 1811 } 1812 1813 return 0; 1814 } 1815 EXPORT_SYMBOL_GPL(dsa_port_simple_hsr_join); 1816 1817 int dsa_port_simple_hsr_leave(struct dsa_switch *ds, int port, 1818 struct net_device *hsr) 1819 { 1820 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp; 1821 1822 dsa_hsr_foreach_port(other_dp, ds, hsr) { 1823 if (other_dp != dp) { 1824 dp->user->features &= ~NETIF_F_HW_HSR_DUP; 1825 other_dp->user->features &= ~NETIF_F_HW_HSR_DUP; 1826 break; 1827 } 1828 } 1829 1830 return 0; 1831 } 1832 EXPORT_SYMBOL_GPL(dsa_port_simple_hsr_leave); 1833 1834 static const struct dsa_stubs __dsa_stubs = { 1835 .conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate, 1836 }; 1837 1838 static void dsa_register_stubs(void) 1839 { 1840 dsa_stubs = &__dsa_stubs; 1841 } 1842 1843 static void dsa_unregister_stubs(void) 1844 { 1845 dsa_stubs = NULL; 1846 } 1847 1848 static int __init dsa_init_module(void) 1849 { 1850 int rc; 1851 1852 dsa_owq = alloc_ordered_workqueue("dsa_ordered", 1853 WQ_MEM_RECLAIM); 1854 if (!dsa_owq) 1855 return -ENOMEM; 1856 1857 rc = dsa_user_register_notifier(); 1858 if (rc) 1859 goto register_notifier_fail; 1860 1861 dev_add_pack(&dsa_pack_type); 1862 1863 rc = rtnl_link_register(&dsa_link_ops); 1864 if (rc) 1865 goto netlink_register_fail; 1866 1867 dsa_register_stubs(); 1868 1869 return 0; 1870 1871 netlink_register_fail: 1872 dsa_user_unregister_notifier(); 1873 dev_remove_pack(&dsa_pack_type); 1874 register_notifier_fail: 1875 destroy_workqueue(dsa_owq); 1876 1877 return rc; 1878 } 1879 module_init(dsa_init_module); 1880 1881 static void __exit dsa_cleanup_module(void) 1882 { 1883 dsa_unregister_stubs(); 1884 1885 rtnl_link_unregister(&dsa_link_ops); 1886 1887 dsa_user_unregister_notifier(); 1888 dev_remove_pack(&dsa_pack_type); 1889 destroy_workqueue(dsa_owq); 1890 } 1891 module_exit(dsa_cleanup_module); 1892 1893 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>"); 1894 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips"); 1895 MODULE_LICENSE("GPL"); 1896 MODULE_ALIAS("platform:dsa"); 1897 MODULE_IMPORT_NS("NETDEV_INTERNAL"); 1898