xref: /linux/net/dsa/dsa.c (revision dbf8fe85a16a33d6b6bd01f2bc606fc017771465)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * DSA topology and switch handling
4  *
5  * Copyright (c) 2008-2009 Marvell Semiconductor
6  * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7  * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8  */
9 
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/if_hsr.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/netdevice.h>
16 #include <linux/slab.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/of.h>
19 #include <linux/of_net.h>
20 #include <net/dsa_stubs.h>
21 #include <net/sch_generic.h>
22 
23 #include "conduit.h"
24 #include "devlink.h"
25 #include "dsa.h"
26 #include "netlink.h"
27 #include "port.h"
28 #include "switch.h"
29 #include "tag.h"
30 #include "user.h"
31 
32 #define DSA_MAX_NUM_OFFLOADING_BRIDGES		BITS_PER_LONG
33 
34 static DEFINE_MUTEX(dsa2_mutex);
35 LIST_HEAD(dsa_tree_list);
36 
37 static struct workqueue_struct *dsa_owq;
38 
39 /* Track the bridges with forwarding offload enabled */
40 static unsigned long dsa_fwd_offloading_bridges;
41 
dsa_schedule_work(struct work_struct * work)42 bool dsa_schedule_work(struct work_struct *work)
43 {
44 	return queue_work(dsa_owq, work);
45 }
46 
dsa_flush_workqueue(void)47 void dsa_flush_workqueue(void)
48 {
49 	flush_workqueue(dsa_owq);
50 }
51 EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
52 
53 /**
54  * dsa_lag_map() - Map LAG structure to a linear LAG array
55  * @dst: Tree in which to record the mapping.
56  * @lag: LAG structure that is to be mapped to the tree's array.
57  *
58  * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
59  * two spaces. The size of the mapping space is determined by the
60  * driver by setting ds->num_lag_ids. It is perfectly legal to leave
61  * it unset if it is not needed, in which case these functions become
62  * no-ops.
63  */
dsa_lag_map(struct dsa_switch_tree * dst,struct dsa_lag * lag)64 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
65 {
66 	unsigned int id;
67 
68 	for (id = 1; id <= dst->lags_len; id++) {
69 		if (!dsa_lag_by_id(dst, id)) {
70 			dst->lags[id - 1] = lag;
71 			lag->id = id;
72 			return;
73 		}
74 	}
75 
76 	/* No IDs left, which is OK. Some drivers do not need it. The
77 	 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
78 	 * returns an error for this device when joining the LAG. The
79 	 * driver can then return -EOPNOTSUPP back to DSA, which will
80 	 * fall back to a software LAG.
81 	 */
82 }
83 
84 /**
85  * dsa_lag_unmap() - Remove a LAG ID mapping
86  * @dst: Tree in which the mapping is recorded.
87  * @lag: LAG structure that was mapped.
88  *
89  * As there may be multiple users of the mapping, it is only removed
90  * if there are no other references to it.
91  */
dsa_lag_unmap(struct dsa_switch_tree * dst,struct dsa_lag * lag)92 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
93 {
94 	unsigned int id;
95 
96 	dsa_lags_foreach_id(id, dst) {
97 		if (dsa_lag_by_id(dst, id) == lag) {
98 			dst->lags[id - 1] = NULL;
99 			lag->id = 0;
100 			break;
101 		}
102 	}
103 }
104 
dsa_tree_lag_find(struct dsa_switch_tree * dst,const struct net_device * lag_dev)105 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
106 				  const struct net_device *lag_dev)
107 {
108 	struct dsa_port *dp;
109 
110 	list_for_each_entry(dp, &dst->ports, list)
111 		if (dsa_port_lag_dev_get(dp) == lag_dev)
112 			return dp->lag;
113 
114 	return NULL;
115 }
116 
dsa_tree_bridge_find(struct dsa_switch_tree * dst,const struct net_device * br)117 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
118 					const struct net_device *br)
119 {
120 	struct dsa_port *dp;
121 
122 	list_for_each_entry(dp, &dst->ports, list)
123 		if (dsa_port_bridge_dev_get(dp) == br)
124 			return dp->bridge;
125 
126 	return NULL;
127 }
128 
dsa_bridge_num_find(const struct net_device * bridge_dev)129 static int dsa_bridge_num_find(const struct net_device *bridge_dev)
130 {
131 	struct dsa_switch_tree *dst;
132 
133 	list_for_each_entry(dst, &dsa_tree_list, list) {
134 		struct dsa_bridge *bridge;
135 
136 		bridge = dsa_tree_bridge_find(dst, bridge_dev);
137 		if (bridge)
138 			return bridge->num;
139 	}
140 
141 	return 0;
142 }
143 
dsa_bridge_num_get(const struct net_device * bridge_dev,int max)144 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
145 {
146 	unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
147 
148 	/* Switches without FDB isolation support don't get unique
149 	 * bridge numbering
150 	 */
151 	if (!max)
152 		return 0;
153 
154 	if (!bridge_num) {
155 		/* First port that requests FDB isolation or TX forwarding
156 		 * offload for this bridge
157 		 */
158 		bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
159 						DSA_MAX_NUM_OFFLOADING_BRIDGES,
160 						1);
161 		if (bridge_num >= max)
162 			return 0;
163 
164 		set_bit(bridge_num, &dsa_fwd_offloading_bridges);
165 	}
166 
167 	return bridge_num;
168 }
169 
dsa_bridge_num_put(const struct net_device * bridge_dev,unsigned int bridge_num)170 void dsa_bridge_num_put(const struct net_device *bridge_dev,
171 			unsigned int bridge_num)
172 {
173 	/* Since we refcount bridges, we know that when we call this function
174 	 * it is no longer in use, so we can just go ahead and remove it from
175 	 * the bit mask.
176 	 */
177 	clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
178 }
179 
dsa_switch_find(int tree_index,int sw_index)180 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
181 {
182 	struct dsa_switch_tree *dst;
183 	struct dsa_port *dp;
184 
185 	list_for_each_entry(dst, &dsa_tree_list, list) {
186 		if (dst->index != tree_index)
187 			continue;
188 
189 		list_for_each_entry(dp, &dst->ports, list) {
190 			if (dp->ds->index != sw_index)
191 				continue;
192 
193 			return dp->ds;
194 		}
195 	}
196 
197 	return NULL;
198 }
199 EXPORT_SYMBOL_GPL(dsa_switch_find);
200 
dsa_tree_find(int index)201 static struct dsa_switch_tree *dsa_tree_find(int index)
202 {
203 	struct dsa_switch_tree *dst;
204 
205 	list_for_each_entry(dst, &dsa_tree_list, list)
206 		if (dst->index == index)
207 			return dst;
208 
209 	return NULL;
210 }
211 
dsa_tree_alloc(int index)212 static struct dsa_switch_tree *dsa_tree_alloc(int index)
213 {
214 	struct dsa_switch_tree *dst;
215 
216 	dst = kzalloc(sizeof(*dst), GFP_KERNEL);
217 	if (!dst)
218 		return NULL;
219 
220 	dst->index = index;
221 
222 	INIT_LIST_HEAD(&dst->rtable);
223 
224 	INIT_LIST_HEAD(&dst->ports);
225 
226 	INIT_LIST_HEAD(&dst->list);
227 	list_add_tail(&dst->list, &dsa_tree_list);
228 
229 	kref_init(&dst->refcount);
230 
231 	return dst;
232 }
233 
dsa_tree_free(struct dsa_switch_tree * dst)234 static void dsa_tree_free(struct dsa_switch_tree *dst)
235 {
236 	if (dst->tag_ops)
237 		dsa_tag_driver_put(dst->tag_ops);
238 	list_del(&dst->list);
239 	kfree(dst);
240 }
241 
dsa_tree_get(struct dsa_switch_tree * dst)242 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
243 {
244 	if (dst)
245 		kref_get(&dst->refcount);
246 
247 	return dst;
248 }
249 
dsa_tree_touch(int index)250 static struct dsa_switch_tree *dsa_tree_touch(int index)
251 {
252 	struct dsa_switch_tree *dst;
253 
254 	dst = dsa_tree_find(index);
255 	if (dst)
256 		return dsa_tree_get(dst);
257 	else
258 		return dsa_tree_alloc(index);
259 }
260 
dsa_tree_release(struct kref * ref)261 static void dsa_tree_release(struct kref *ref)
262 {
263 	struct dsa_switch_tree *dst;
264 
265 	dst = container_of(ref, struct dsa_switch_tree, refcount);
266 
267 	dsa_tree_free(dst);
268 }
269 
dsa_tree_put(struct dsa_switch_tree * dst)270 static void dsa_tree_put(struct dsa_switch_tree *dst)
271 {
272 	if (dst)
273 		kref_put(&dst->refcount, dsa_tree_release);
274 }
275 
dsa_tree_find_port_by_node(struct dsa_switch_tree * dst,struct device_node * dn)276 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
277 						   struct device_node *dn)
278 {
279 	struct dsa_port *dp;
280 
281 	list_for_each_entry(dp, &dst->ports, list)
282 		if (dp->dn == dn)
283 			return dp;
284 
285 	return NULL;
286 }
287 
dsa_link_touch(struct dsa_port * dp,struct dsa_port * link_dp)288 static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
289 				       struct dsa_port *link_dp)
290 {
291 	struct dsa_switch *ds = dp->ds;
292 	struct dsa_switch_tree *dst;
293 	struct dsa_link *dl;
294 
295 	dst = ds->dst;
296 
297 	list_for_each_entry(dl, &dst->rtable, list)
298 		if (dl->dp == dp && dl->link_dp == link_dp)
299 			return dl;
300 
301 	dl = kzalloc(sizeof(*dl), GFP_KERNEL);
302 	if (!dl)
303 		return NULL;
304 
305 	dl->dp = dp;
306 	dl->link_dp = link_dp;
307 
308 	INIT_LIST_HEAD(&dl->list);
309 	list_add_tail(&dl->list, &dst->rtable);
310 
311 	return dl;
312 }
313 
dsa_port_setup_routing_table(struct dsa_port * dp)314 static bool dsa_port_setup_routing_table(struct dsa_port *dp)
315 {
316 	struct dsa_switch *ds = dp->ds;
317 	struct dsa_switch_tree *dst = ds->dst;
318 	struct device_node *dn = dp->dn;
319 	struct of_phandle_iterator it;
320 	struct dsa_port *link_dp;
321 	struct dsa_link *dl;
322 	int err;
323 
324 	of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
325 		link_dp = dsa_tree_find_port_by_node(dst, it.node);
326 		if (!link_dp) {
327 			of_node_put(it.node);
328 			return false;
329 		}
330 
331 		dl = dsa_link_touch(dp, link_dp);
332 		if (!dl) {
333 			of_node_put(it.node);
334 			return false;
335 		}
336 	}
337 
338 	return true;
339 }
340 
dsa_tree_setup_routing_table(struct dsa_switch_tree * dst)341 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
342 {
343 	bool complete = true;
344 	struct dsa_port *dp;
345 
346 	list_for_each_entry(dp, &dst->ports, list) {
347 		if (dsa_port_is_dsa(dp)) {
348 			complete = dsa_port_setup_routing_table(dp);
349 			if (!complete)
350 				break;
351 		}
352 	}
353 
354 	return complete;
355 }
356 
dsa_tree_find_first_cpu(struct dsa_switch_tree * dst)357 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
358 {
359 	struct dsa_port *dp;
360 
361 	list_for_each_entry(dp, &dst->ports, list)
362 		if (dsa_port_is_cpu(dp))
363 			return dp;
364 
365 	return NULL;
366 }
367 
dsa_tree_find_first_conduit(struct dsa_switch_tree * dst)368 struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst)
369 {
370 	struct dsa_port *cpu_dp;
371 
372 	cpu_dp = dsa_tree_find_first_cpu(dst);
373 	return cpu_dp->conduit;
374 }
375 
376 /* Assign the default CPU port (the first one in the tree) to all ports of the
377  * fabric which don't already have one as part of their own switch.
378  */
dsa_tree_setup_default_cpu(struct dsa_switch_tree * dst)379 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
380 {
381 	struct dsa_port *cpu_dp, *dp;
382 
383 	cpu_dp = dsa_tree_find_first_cpu(dst);
384 	if (!cpu_dp) {
385 		pr_err("DSA: tree %d has no CPU port\n", dst->index);
386 		return -EINVAL;
387 	}
388 
389 	list_for_each_entry(dp, &dst->ports, list) {
390 		if (dp->cpu_dp)
391 			continue;
392 
393 		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
394 			dp->cpu_dp = cpu_dp;
395 	}
396 
397 	return 0;
398 }
399 
400 static struct dsa_port *
dsa_switch_preferred_default_local_cpu_port(struct dsa_switch * ds)401 dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
402 {
403 	struct dsa_port *cpu_dp;
404 
405 	if (!ds->ops->preferred_default_local_cpu_port)
406 		return NULL;
407 
408 	cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
409 	if (!cpu_dp)
410 		return NULL;
411 
412 	if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
413 		return NULL;
414 
415 	return cpu_dp;
416 }
417 
418 /* Perform initial assignment of CPU ports to user ports and DSA links in the
419  * fabric, giving preference to CPU ports local to each switch. Default to
420  * using the first CPU port in the switch tree if the port does not have a CPU
421  * port local to this switch.
422  */
dsa_tree_setup_cpu_ports(struct dsa_switch_tree * dst)423 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
424 {
425 	struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
426 
427 	list_for_each_entry(cpu_dp, &dst->ports, list) {
428 		if (!dsa_port_is_cpu(cpu_dp))
429 			continue;
430 
431 		preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds);
432 		if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
433 			continue;
434 
435 		/* Prefer a local CPU port */
436 		dsa_switch_for_each_port(dp, cpu_dp->ds) {
437 			/* Prefer the first local CPU port found */
438 			if (dp->cpu_dp)
439 				continue;
440 
441 			if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
442 				dp->cpu_dp = cpu_dp;
443 		}
444 	}
445 
446 	return dsa_tree_setup_default_cpu(dst);
447 }
448 
dsa_tree_teardown_cpu_ports(struct dsa_switch_tree * dst)449 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
450 {
451 	struct dsa_port *dp;
452 
453 	list_for_each_entry(dp, &dst->ports, list)
454 		if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
455 			dp->cpu_dp = NULL;
456 }
457 
dsa_port_setup(struct dsa_port * dp)458 static int dsa_port_setup(struct dsa_port *dp)
459 {
460 	bool dsa_port_link_registered = false;
461 	struct dsa_switch *ds = dp->ds;
462 	bool dsa_port_enabled = false;
463 	int err = 0;
464 
465 	if (dp->setup)
466 		return 0;
467 
468 	err = dsa_port_devlink_setup(dp);
469 	if (err)
470 		return err;
471 
472 	switch (dp->type) {
473 	case DSA_PORT_TYPE_UNUSED:
474 		dsa_port_disable(dp);
475 		break;
476 	case DSA_PORT_TYPE_CPU:
477 		if (dp->dn) {
478 			err = dsa_shared_port_link_register_of(dp);
479 			if (err)
480 				break;
481 			dsa_port_link_registered = true;
482 		} else {
483 			dev_warn(ds->dev,
484 				 "skipping link registration for CPU port %d\n",
485 				 dp->index);
486 		}
487 
488 		err = dsa_port_enable(dp, NULL);
489 		if (err)
490 			break;
491 		dsa_port_enabled = true;
492 
493 		break;
494 	case DSA_PORT_TYPE_DSA:
495 		if (dp->dn) {
496 			err = dsa_shared_port_link_register_of(dp);
497 			if (err)
498 				break;
499 			dsa_port_link_registered = true;
500 		} else {
501 			dev_warn(ds->dev,
502 				 "skipping link registration for DSA port %d\n",
503 				 dp->index);
504 		}
505 
506 		err = dsa_port_enable(dp, NULL);
507 		if (err)
508 			break;
509 		dsa_port_enabled = true;
510 
511 		break;
512 	case DSA_PORT_TYPE_USER:
513 		of_get_mac_address(dp->dn, dp->mac);
514 		err = dsa_user_create(dp);
515 		break;
516 	}
517 
518 	if (err && dsa_port_enabled)
519 		dsa_port_disable(dp);
520 	if (err && dsa_port_link_registered)
521 		dsa_shared_port_link_unregister_of(dp);
522 	if (err) {
523 		dsa_port_devlink_teardown(dp);
524 		return err;
525 	}
526 
527 	dp->setup = true;
528 
529 	return 0;
530 }
531 
dsa_port_teardown(struct dsa_port * dp)532 static void dsa_port_teardown(struct dsa_port *dp)
533 {
534 	if (!dp->setup)
535 		return;
536 
537 	switch (dp->type) {
538 	case DSA_PORT_TYPE_UNUSED:
539 		break;
540 	case DSA_PORT_TYPE_CPU:
541 		dsa_port_disable(dp);
542 		if (dp->dn)
543 			dsa_shared_port_link_unregister_of(dp);
544 		break;
545 	case DSA_PORT_TYPE_DSA:
546 		dsa_port_disable(dp);
547 		if (dp->dn)
548 			dsa_shared_port_link_unregister_of(dp);
549 		break;
550 	case DSA_PORT_TYPE_USER:
551 		if (dp->user) {
552 			dsa_user_destroy(dp->user);
553 			dp->user = NULL;
554 		}
555 		break;
556 	}
557 
558 	dsa_port_devlink_teardown(dp);
559 
560 	dp->setup = false;
561 }
562 
dsa_port_setup_as_unused(struct dsa_port * dp)563 static int dsa_port_setup_as_unused(struct dsa_port *dp)
564 {
565 	dp->type = DSA_PORT_TYPE_UNUSED;
566 	return dsa_port_setup(dp);
567 }
568 
dsa_switch_setup_tag_protocol(struct dsa_switch * ds)569 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
570 {
571 	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
572 	struct dsa_switch_tree *dst = ds->dst;
573 	int err;
574 
575 	if (tag_ops->proto == dst->default_proto)
576 		goto connect;
577 
578 	rtnl_lock();
579 	err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
580 	rtnl_unlock();
581 	if (err) {
582 		dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
583 			tag_ops->name, ERR_PTR(err));
584 		return err;
585 	}
586 
587 connect:
588 	if (tag_ops->connect) {
589 		err = tag_ops->connect(ds);
590 		if (err)
591 			return err;
592 	}
593 
594 	if (ds->ops->connect_tag_protocol) {
595 		err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
596 		if (err) {
597 			dev_err(ds->dev,
598 				"Unable to connect to tag protocol \"%s\": %pe\n",
599 				tag_ops->name, ERR_PTR(err));
600 			goto disconnect;
601 		}
602 	}
603 
604 	return 0;
605 
606 disconnect:
607 	if (tag_ops->disconnect)
608 		tag_ops->disconnect(ds);
609 
610 	return err;
611 }
612 
dsa_switch_teardown_tag_protocol(struct dsa_switch * ds)613 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
614 {
615 	const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
616 
617 	if (tag_ops->disconnect)
618 		tag_ops->disconnect(ds);
619 }
620 
dsa_switch_setup(struct dsa_switch * ds)621 static int dsa_switch_setup(struct dsa_switch *ds)
622 {
623 	int err;
624 
625 	if (ds->setup)
626 		return 0;
627 
628 	/* Initialize ds->phys_mii_mask before registering the user MDIO bus
629 	 * driver and before ops->setup() has run, since the switch drivers and
630 	 * the user MDIO bus driver rely on these values for probing PHY
631 	 * devices or not
632 	 */
633 	ds->phys_mii_mask |= dsa_user_ports(ds);
634 
635 	err = dsa_switch_devlink_alloc(ds);
636 	if (err)
637 		return err;
638 
639 	err = dsa_switch_register_notifier(ds);
640 	if (err)
641 		goto devlink_free;
642 
643 	ds->configure_vlan_while_not_filtering = true;
644 
645 	err = ds->ops->setup(ds);
646 	if (err < 0)
647 		goto unregister_notifier;
648 
649 	err = dsa_switch_setup_tag_protocol(ds);
650 	if (err)
651 		goto teardown;
652 
653 	if (!ds->user_mii_bus && ds->ops->phy_read) {
654 		ds->user_mii_bus = mdiobus_alloc();
655 		if (!ds->user_mii_bus) {
656 			err = -ENOMEM;
657 			goto teardown;
658 		}
659 
660 		dsa_user_mii_bus_init(ds);
661 
662 		err = mdiobus_register(ds->user_mii_bus);
663 		if (err < 0)
664 			goto free_user_mii_bus;
665 	}
666 
667 	dsa_switch_devlink_register(ds);
668 
669 	ds->setup = true;
670 	return 0;
671 
672 free_user_mii_bus:
673 	if (ds->user_mii_bus && ds->ops->phy_read)
674 		mdiobus_free(ds->user_mii_bus);
675 teardown:
676 	if (ds->ops->teardown)
677 		ds->ops->teardown(ds);
678 unregister_notifier:
679 	dsa_switch_unregister_notifier(ds);
680 devlink_free:
681 	dsa_switch_devlink_free(ds);
682 	return err;
683 }
684 
dsa_switch_teardown(struct dsa_switch * ds)685 static void dsa_switch_teardown(struct dsa_switch *ds)
686 {
687 	if (!ds->setup)
688 		return;
689 
690 	dsa_switch_devlink_unregister(ds);
691 
692 	if (ds->user_mii_bus && ds->ops->phy_read) {
693 		mdiobus_unregister(ds->user_mii_bus);
694 		mdiobus_free(ds->user_mii_bus);
695 		ds->user_mii_bus = NULL;
696 	}
697 
698 	dsa_switch_teardown_tag_protocol(ds);
699 
700 	if (ds->ops->teardown)
701 		ds->ops->teardown(ds);
702 
703 	dsa_switch_unregister_notifier(ds);
704 
705 	dsa_switch_devlink_free(ds);
706 
707 	ds->setup = false;
708 }
709 
710 /* First tear down the non-shared, then the shared ports. This ensures that
711  * all work items scheduled by our switchdev handlers for user ports have
712  * completed before we destroy the refcounting kept on the shared ports.
713  */
dsa_tree_teardown_ports(struct dsa_switch_tree * dst)714 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
715 {
716 	struct dsa_port *dp;
717 
718 	list_for_each_entry(dp, &dst->ports, list)
719 		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
720 			dsa_port_teardown(dp);
721 
722 	dsa_flush_workqueue();
723 
724 	list_for_each_entry(dp, &dst->ports, list)
725 		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
726 			dsa_port_teardown(dp);
727 }
728 
dsa_tree_teardown_switches(struct dsa_switch_tree * dst)729 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
730 {
731 	struct dsa_port *dp;
732 
733 	list_for_each_entry(dp, &dst->ports, list)
734 		dsa_switch_teardown(dp->ds);
735 }
736 
737 /* Bring shared ports up first, then non-shared ports */
dsa_tree_setup_ports(struct dsa_switch_tree * dst)738 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
739 {
740 	struct dsa_port *dp;
741 	int err = 0;
742 
743 	list_for_each_entry(dp, &dst->ports, list) {
744 		if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
745 			err = dsa_port_setup(dp);
746 			if (err)
747 				goto teardown;
748 		}
749 	}
750 
751 	list_for_each_entry(dp, &dst->ports, list) {
752 		if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
753 			err = dsa_port_setup(dp);
754 			if (err) {
755 				err = dsa_port_setup_as_unused(dp);
756 				if (err)
757 					goto teardown;
758 			}
759 		}
760 	}
761 
762 	return 0;
763 
764 teardown:
765 	dsa_tree_teardown_ports(dst);
766 
767 	return err;
768 }
769 
dsa_tree_setup_switches(struct dsa_switch_tree * dst)770 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
771 {
772 	struct dsa_port *dp;
773 	int err = 0;
774 
775 	list_for_each_entry(dp, &dst->ports, list) {
776 		err = dsa_switch_setup(dp->ds);
777 		if (err) {
778 			dsa_tree_teardown_switches(dst);
779 			break;
780 		}
781 	}
782 
783 	return err;
784 }
785 
dsa_tree_setup_conduit(struct dsa_switch_tree * dst)786 static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst)
787 {
788 	struct dsa_port *cpu_dp;
789 	int err = 0;
790 
791 	rtnl_lock();
792 
793 	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
794 		struct net_device *conduit = cpu_dp->conduit;
795 		bool admin_up = (conduit->flags & IFF_UP) &&
796 				!qdisc_tx_is_noop(conduit);
797 
798 		err = dsa_conduit_setup(conduit, cpu_dp);
799 		if (err)
800 			break;
801 
802 		/* Replay conduit state event */
803 		dsa_tree_conduit_admin_state_change(dst, conduit, admin_up);
804 		dsa_tree_conduit_oper_state_change(dst, conduit,
805 						   netif_oper_up(conduit));
806 	}
807 
808 	rtnl_unlock();
809 
810 	return err;
811 }
812 
dsa_tree_teardown_conduit(struct dsa_switch_tree * dst)813 static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst)
814 {
815 	struct dsa_port *cpu_dp;
816 
817 	rtnl_lock();
818 
819 	dsa_tree_for_each_cpu_port(cpu_dp, dst) {
820 		struct net_device *conduit = cpu_dp->conduit;
821 
822 		/* Synthesizing an "admin down" state is sufficient for
823 		 * the switches to get a notification if the conduit is
824 		 * currently up and running.
825 		 */
826 		dsa_tree_conduit_admin_state_change(dst, conduit, false);
827 
828 		dsa_conduit_teardown(conduit);
829 	}
830 
831 	rtnl_unlock();
832 }
833 
dsa_tree_setup_lags(struct dsa_switch_tree * dst)834 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
835 {
836 	unsigned int len = 0;
837 	struct dsa_port *dp;
838 
839 	list_for_each_entry(dp, &dst->ports, list) {
840 		if (dp->ds->num_lag_ids > len)
841 			len = dp->ds->num_lag_ids;
842 	}
843 
844 	if (!len)
845 		return 0;
846 
847 	dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
848 	if (!dst->lags)
849 		return -ENOMEM;
850 
851 	dst->lags_len = len;
852 	return 0;
853 }
854 
dsa_tree_teardown_lags(struct dsa_switch_tree * dst)855 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
856 {
857 	kfree(dst->lags);
858 }
859 
dsa_tree_teardown_routing_table(struct dsa_switch_tree * dst)860 static void dsa_tree_teardown_routing_table(struct dsa_switch_tree *dst)
861 {
862 	struct dsa_link *dl, *next;
863 
864 	list_for_each_entry_safe(dl, next, &dst->rtable, list) {
865 		list_del(&dl->list);
866 		kfree(dl);
867 	}
868 }
869 
dsa_tree_setup(struct dsa_switch_tree * dst)870 static int dsa_tree_setup(struct dsa_switch_tree *dst)
871 {
872 	bool complete;
873 	int err;
874 
875 	if (dst->setup) {
876 		pr_err("DSA: tree %d already setup! Disjoint trees?\n",
877 		       dst->index);
878 		return -EEXIST;
879 	}
880 
881 	complete = dsa_tree_setup_routing_table(dst);
882 	if (!complete)
883 		return 0;
884 
885 	err = dsa_tree_setup_cpu_ports(dst);
886 	if (err)
887 		goto teardown_rtable;
888 
889 	err = dsa_tree_setup_switches(dst);
890 	if (err)
891 		goto teardown_cpu_ports;
892 
893 	err = dsa_tree_setup_ports(dst);
894 	if (err)
895 		goto teardown_switches;
896 
897 	err = dsa_tree_setup_conduit(dst);
898 	if (err)
899 		goto teardown_ports;
900 
901 	err = dsa_tree_setup_lags(dst);
902 	if (err)
903 		goto teardown_conduit;
904 
905 	dst->setup = true;
906 
907 	pr_info("DSA: tree %d setup\n", dst->index);
908 
909 	return 0;
910 
911 teardown_conduit:
912 	dsa_tree_teardown_conduit(dst);
913 teardown_ports:
914 	dsa_tree_teardown_ports(dst);
915 teardown_switches:
916 	dsa_tree_teardown_switches(dst);
917 teardown_cpu_ports:
918 	dsa_tree_teardown_cpu_ports(dst);
919 teardown_rtable:
920 	dsa_tree_teardown_routing_table(dst);
921 
922 	return err;
923 }
924 
dsa_tree_teardown(struct dsa_switch_tree * dst)925 static void dsa_tree_teardown(struct dsa_switch_tree *dst)
926 {
927 	if (!dst->setup)
928 		return;
929 
930 	dsa_tree_teardown_lags(dst);
931 
932 	dsa_tree_teardown_conduit(dst);
933 
934 	dsa_tree_teardown_ports(dst);
935 
936 	dsa_tree_teardown_switches(dst);
937 
938 	dsa_tree_teardown_cpu_ports(dst);
939 
940 	dsa_tree_teardown_routing_table(dst);
941 
942 	pr_info("DSA: tree %d torn down\n", dst->index);
943 
944 	dst->setup = false;
945 }
946 
dsa_tree_bind_tag_proto(struct dsa_switch_tree * dst,const struct dsa_device_ops * tag_ops)947 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
948 				   const struct dsa_device_ops *tag_ops)
949 {
950 	const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
951 	struct dsa_notifier_tag_proto_info info;
952 	int err;
953 
954 	dst->tag_ops = tag_ops;
955 
956 	/* Notify the switches from this tree about the connection
957 	 * to the new tagger
958 	 */
959 	info.tag_ops = tag_ops;
960 	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
961 	if (err && err != -EOPNOTSUPP)
962 		goto out_disconnect;
963 
964 	/* Notify the old tagger about the disconnection from this tree */
965 	info.tag_ops = old_tag_ops;
966 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
967 
968 	return 0;
969 
970 out_disconnect:
971 	info.tag_ops = tag_ops;
972 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
973 	dst->tag_ops = old_tag_ops;
974 
975 	return err;
976 }
977 
978 /* Since the dsa/tagging sysfs device attribute is per conduit, the assumption
979  * is that all DSA switches within a tree share the same tagger, otherwise
980  * they would have formed disjoint trees (different "dsa,member" values).
981  */
dsa_tree_change_tag_proto(struct dsa_switch_tree * dst,const struct dsa_device_ops * tag_ops,const struct dsa_device_ops * old_tag_ops)982 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
983 			      const struct dsa_device_ops *tag_ops,
984 			      const struct dsa_device_ops *old_tag_ops)
985 {
986 	struct dsa_notifier_tag_proto_info info;
987 	struct dsa_port *dp;
988 	int err = -EBUSY;
989 
990 	if (!rtnl_trylock())
991 		return restart_syscall();
992 
993 	/* At the moment we don't allow changing the tag protocol under
994 	 * traffic. The rtnl_mutex also happens to serialize concurrent
995 	 * attempts to change the tagging protocol. If we ever lift the IFF_UP
996 	 * restriction, there needs to be another mutex which serializes this.
997 	 */
998 	dsa_tree_for_each_user_port(dp, dst) {
999 		if (dsa_port_to_conduit(dp)->flags & IFF_UP)
1000 			goto out_unlock;
1001 
1002 		if (dp->user->flags & IFF_UP)
1003 			goto out_unlock;
1004 	}
1005 
1006 	/* Notify the tag protocol change */
1007 	info.tag_ops = tag_ops;
1008 	err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1009 	if (err)
1010 		goto out_unwind_tagger;
1011 
1012 	err = dsa_tree_bind_tag_proto(dst, tag_ops);
1013 	if (err)
1014 		goto out_unwind_tagger;
1015 
1016 	rtnl_unlock();
1017 
1018 	return 0;
1019 
1020 out_unwind_tagger:
1021 	info.tag_ops = old_tag_ops;
1022 	dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1023 out_unlock:
1024 	rtnl_unlock();
1025 	return err;
1026 }
1027 
dsa_tree_conduit_state_change(struct dsa_switch_tree * dst,struct net_device * conduit)1028 static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst,
1029 					  struct net_device *conduit)
1030 {
1031 	struct dsa_notifier_conduit_state_info info;
1032 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
1033 
1034 	info.conduit = conduit;
1035 	info.operational = dsa_port_conduit_is_operational(cpu_dp);
1036 
1037 	dsa_tree_notify(dst, DSA_NOTIFIER_CONDUIT_STATE_CHANGE, &info);
1038 }
1039 
dsa_tree_conduit_admin_state_change(struct dsa_switch_tree * dst,struct net_device * conduit,bool up)1040 void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst,
1041 					 struct net_device *conduit,
1042 					 bool up)
1043 {
1044 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
1045 	bool notify = false;
1046 
1047 	/* Don't keep track of admin state on LAG DSA conduits,
1048 	 * but rather just of physical DSA conduits
1049 	 */
1050 	if (netif_is_lag_master(conduit))
1051 		return;
1052 
1053 	if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1054 	    (up && cpu_dp->conduit_oper_up))
1055 		notify = true;
1056 
1057 	cpu_dp->conduit_admin_up = up;
1058 
1059 	if (notify)
1060 		dsa_tree_conduit_state_change(dst, conduit);
1061 }
1062 
dsa_tree_conduit_oper_state_change(struct dsa_switch_tree * dst,struct net_device * conduit,bool up)1063 void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst,
1064 					struct net_device *conduit,
1065 					bool up)
1066 {
1067 	struct dsa_port *cpu_dp = conduit->dsa_ptr;
1068 	bool notify = false;
1069 
1070 	/* Don't keep track of oper state on LAG DSA conduits,
1071 	 * but rather just of physical DSA conduits
1072 	 */
1073 	if (netif_is_lag_master(conduit))
1074 		return;
1075 
1076 	if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1077 	    (cpu_dp->conduit_admin_up && up))
1078 		notify = true;
1079 
1080 	cpu_dp->conduit_oper_up = up;
1081 
1082 	if (notify)
1083 		dsa_tree_conduit_state_change(dst, conduit);
1084 }
1085 
dsa_port_touch(struct dsa_switch * ds,int index)1086 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1087 {
1088 	struct dsa_switch_tree *dst = ds->dst;
1089 	struct dsa_port *dp;
1090 
1091 	dsa_switch_for_each_port(dp, ds)
1092 		if (dp->index == index)
1093 			return dp;
1094 
1095 	dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1096 	if (!dp)
1097 		return NULL;
1098 
1099 	dp->ds = ds;
1100 	dp->index = index;
1101 
1102 	mutex_init(&dp->addr_lists_lock);
1103 	mutex_init(&dp->vlans_lock);
1104 	INIT_LIST_HEAD(&dp->fdbs);
1105 	INIT_LIST_HEAD(&dp->mdbs);
1106 	INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */
1107 	INIT_LIST_HEAD(&dp->list);
1108 	list_add_tail(&dp->list, &dst->ports);
1109 
1110 	return dp;
1111 }
1112 
dsa_port_parse_user(struct dsa_port * dp,const char * name)1113 static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1114 {
1115 	dp->type = DSA_PORT_TYPE_USER;
1116 	dp->name = name;
1117 
1118 	return 0;
1119 }
1120 
dsa_port_parse_dsa(struct dsa_port * dp)1121 static int dsa_port_parse_dsa(struct dsa_port *dp)
1122 {
1123 	dp->type = DSA_PORT_TYPE_DSA;
1124 
1125 	return 0;
1126 }
1127 
dsa_get_tag_protocol(struct dsa_port * dp,struct net_device * conduit)1128 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1129 						  struct net_device *conduit)
1130 {
1131 	enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1132 	struct dsa_switch *mds, *ds = dp->ds;
1133 	unsigned int mdp_upstream;
1134 	struct dsa_port *mdp;
1135 
1136 	/* It is possible to stack DSA switches onto one another when that
1137 	 * happens the switch driver may want to know if its tagging protocol
1138 	 * is going to work in such a configuration.
1139 	 */
1140 	if (dsa_user_dev_check(conduit)) {
1141 		mdp = dsa_user_to_port(conduit);
1142 		mds = mdp->ds;
1143 		mdp_upstream = dsa_upstream_port(mds, mdp->index);
1144 		tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1145 							  DSA_TAG_PROTO_NONE);
1146 	}
1147 
1148 	/* If the conduit device is not itself a DSA user in a disjoint DSA
1149 	 * tree, then return immediately.
1150 	 */
1151 	return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1152 }
1153 
dsa_port_parse_cpu(struct dsa_port * dp,struct net_device * conduit,const char * user_protocol)1154 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit,
1155 			      const char *user_protocol)
1156 {
1157 	const struct dsa_device_ops *tag_ops = NULL;
1158 	struct dsa_switch *ds = dp->ds;
1159 	struct dsa_switch_tree *dst = ds->dst;
1160 	enum dsa_tag_protocol default_proto;
1161 
1162 	/* Find out which protocol the switch would prefer. */
1163 	default_proto = dsa_get_tag_protocol(dp, conduit);
1164 	if (dst->default_proto) {
1165 		if (dst->default_proto != default_proto) {
1166 			dev_err(ds->dev,
1167 				"A DSA switch tree can have only one tagging protocol\n");
1168 			return -EINVAL;
1169 		}
1170 	} else {
1171 		dst->default_proto = default_proto;
1172 	}
1173 
1174 	/* See if the user wants to override that preference. */
1175 	if (user_protocol) {
1176 		if (!ds->ops->change_tag_protocol) {
1177 			dev_err(ds->dev, "Tag protocol cannot be modified\n");
1178 			return -EINVAL;
1179 		}
1180 
1181 		tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1182 		if (IS_ERR(tag_ops)) {
1183 			dev_warn(ds->dev,
1184 				 "Failed to find a tagging driver for protocol %s, using default\n",
1185 				 user_protocol);
1186 			tag_ops = NULL;
1187 		}
1188 	}
1189 
1190 	if (!tag_ops)
1191 		tag_ops = dsa_tag_driver_get_by_id(default_proto);
1192 
1193 	if (IS_ERR(tag_ops)) {
1194 		if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1195 			return -EPROBE_DEFER;
1196 
1197 		dev_warn(ds->dev, "No tagger for this switch\n");
1198 		return PTR_ERR(tag_ops);
1199 	}
1200 
1201 	if (dst->tag_ops) {
1202 		if (dst->tag_ops != tag_ops) {
1203 			dev_err(ds->dev,
1204 				"A DSA switch tree can have only one tagging protocol\n");
1205 
1206 			dsa_tag_driver_put(tag_ops);
1207 			return -EINVAL;
1208 		}
1209 
1210 		/* In the case of multiple CPU ports per switch, the tagging
1211 		 * protocol is still reference-counted only per switch tree.
1212 		 */
1213 		dsa_tag_driver_put(tag_ops);
1214 	} else {
1215 		dst->tag_ops = tag_ops;
1216 	}
1217 
1218 	dp->conduit = conduit;
1219 	dp->type = DSA_PORT_TYPE_CPU;
1220 	dsa_port_set_tag_protocol(dp, dst->tag_ops);
1221 	dp->dst = dst;
1222 
1223 	/* At this point, the tree may be configured to use a different
1224 	 * tagger than the one chosen by the switch driver during
1225 	 * .setup, in the case when a user selects a custom protocol
1226 	 * through the DT.
1227 	 *
1228 	 * This is resolved by syncing the driver with the tree in
1229 	 * dsa_switch_setup_tag_protocol once .setup has run and the
1230 	 * driver is ready to accept calls to .change_tag_protocol. If
1231 	 * the driver does not support the custom protocol at that
1232 	 * point, the tree is wholly rejected, thereby ensuring that the
1233 	 * tree and driver are always in agreement on the protocol to
1234 	 * use.
1235 	 */
1236 	return 0;
1237 }
1238 
dsa_port_parse_of(struct dsa_port * dp,struct device_node * dn)1239 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1240 {
1241 	struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1242 	const char *name = of_get_property(dn, "label", NULL);
1243 	bool link = of_property_read_bool(dn, "link");
1244 
1245 	dp->dn = dn;
1246 
1247 	if (ethernet) {
1248 		struct net_device *conduit;
1249 		const char *user_protocol;
1250 		int err;
1251 
1252 		rtnl_lock();
1253 		conduit = of_find_net_device_by_node(ethernet);
1254 		of_node_put(ethernet);
1255 		if (!conduit) {
1256 			rtnl_unlock();
1257 			return -EPROBE_DEFER;
1258 		}
1259 
1260 		netdev_hold(conduit, &dp->conduit_tracker, GFP_KERNEL);
1261 		put_device(&conduit->dev);
1262 		rtnl_unlock();
1263 
1264 		user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1265 		err = dsa_port_parse_cpu(dp, conduit, user_protocol);
1266 		if (err)
1267 			netdev_put(conduit, &dp->conduit_tracker);
1268 		return err;
1269 	}
1270 
1271 	if (link)
1272 		return dsa_port_parse_dsa(dp);
1273 
1274 	return dsa_port_parse_user(dp, name);
1275 }
1276 
dsa_switch_parse_ports_of(struct dsa_switch * ds,struct device_node * dn)1277 static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1278 				     struct device_node *dn)
1279 {
1280 	struct device_node *ports, *port;
1281 	struct dsa_port *dp;
1282 	int err = 0;
1283 	u32 reg;
1284 
1285 	ports = of_get_child_by_name(dn, "ports");
1286 	if (!ports) {
1287 		/* The second possibility is "ethernet-ports" */
1288 		ports = of_get_child_by_name(dn, "ethernet-ports");
1289 		if (!ports) {
1290 			dev_err(ds->dev, "no ports child node found\n");
1291 			return -EINVAL;
1292 		}
1293 	}
1294 
1295 	for_each_available_child_of_node(ports, port) {
1296 		err = of_property_read_u32(port, "reg", &reg);
1297 		if (err) {
1298 			of_node_put(port);
1299 			goto out_put_node;
1300 		}
1301 
1302 		if (reg >= ds->num_ports) {
1303 			dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1304 				port, reg, ds->num_ports);
1305 			of_node_put(port);
1306 			err = -EINVAL;
1307 			goto out_put_node;
1308 		}
1309 
1310 		dp = dsa_to_port(ds, reg);
1311 
1312 		err = dsa_port_parse_of(dp, port);
1313 		if (err) {
1314 			of_node_put(port);
1315 			goto out_put_node;
1316 		}
1317 	}
1318 
1319 out_put_node:
1320 	of_node_put(ports);
1321 	return err;
1322 }
1323 
dsa_switch_parse_member_of(struct dsa_switch * ds,struct device_node * dn)1324 static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1325 				      struct device_node *dn)
1326 {
1327 	u32 m[2] = { 0, 0 };
1328 	int sz;
1329 
1330 	/* Don't error out if this optional property isn't found */
1331 	sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1332 	if (sz < 0 && sz != -EINVAL)
1333 		return sz;
1334 
1335 	ds->index = m[1];
1336 
1337 	ds->dst = dsa_tree_touch(m[0]);
1338 	if (!ds->dst)
1339 		return -ENOMEM;
1340 
1341 	if (dsa_switch_find(ds->dst->index, ds->index)) {
1342 		dev_err(ds->dev,
1343 			"A DSA switch with index %d already exists in tree %d\n",
1344 			ds->index, ds->dst->index);
1345 		return -EEXIST;
1346 	}
1347 
1348 	if (ds->dst->last_switch < ds->index)
1349 		ds->dst->last_switch = ds->index;
1350 
1351 	return 0;
1352 }
1353 
dsa_switch_touch_ports(struct dsa_switch * ds)1354 static int dsa_switch_touch_ports(struct dsa_switch *ds)
1355 {
1356 	struct dsa_port *dp;
1357 	int port;
1358 
1359 	for (port = 0; port < ds->num_ports; port++) {
1360 		dp = dsa_port_touch(ds, port);
1361 		if (!dp)
1362 			return -ENOMEM;
1363 	}
1364 
1365 	return 0;
1366 }
1367 
dsa_switch_parse_of(struct dsa_switch * ds,struct device_node * dn)1368 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1369 {
1370 	int err;
1371 
1372 	err = dsa_switch_parse_member_of(ds, dn);
1373 	if (err)
1374 		return err;
1375 
1376 	err = dsa_switch_touch_ports(ds);
1377 	if (err)
1378 		return err;
1379 
1380 	return dsa_switch_parse_ports_of(ds, dn);
1381 }
1382 
dev_is_class(struct device * dev,const void * class)1383 static int dev_is_class(struct device *dev, const void *class)
1384 {
1385 	if (dev->class != NULL && !strcmp(dev->class->name, class))
1386 		return 1;
1387 
1388 	return 0;
1389 }
1390 
dev_find_class(struct device * parent,char * class)1391 static struct device *dev_find_class(struct device *parent, char *class)
1392 {
1393 	if (dev_is_class(parent, class)) {
1394 		get_device(parent);
1395 		return parent;
1396 	}
1397 
1398 	return device_find_child(parent, class, dev_is_class);
1399 }
1400 
dsa_port_parse(struct dsa_port * dp,const char * name,struct device * dev)1401 static int dsa_port_parse(struct dsa_port *dp, const char *name,
1402 			  struct device *dev)
1403 {
1404 	if (!strcmp(name, "cpu")) {
1405 		struct net_device *conduit;
1406 		struct device *d;
1407 		int err;
1408 
1409 		rtnl_lock();
1410 		d = dev_find_class(dev, "net");
1411 		if (!d) {
1412 			rtnl_unlock();
1413 			return -EPROBE_DEFER;
1414 		}
1415 
1416 		conduit = to_net_dev(d);
1417 		netdev_hold(conduit, &dp->conduit_tracker, GFP_KERNEL);
1418 		put_device(d);
1419 		rtnl_unlock();
1420 
1421 		err = dsa_port_parse_cpu(dp, conduit, NULL);
1422 		if (err)
1423 			netdev_put(conduit, &dp->conduit_tracker);
1424 		return err;
1425 	}
1426 
1427 	if (!strcmp(name, "dsa"))
1428 		return dsa_port_parse_dsa(dp);
1429 
1430 	return dsa_port_parse_user(dp, name);
1431 }
1432 
dsa_switch_parse_ports(struct dsa_switch * ds,struct dsa_chip_data * cd)1433 static int dsa_switch_parse_ports(struct dsa_switch *ds,
1434 				  struct dsa_chip_data *cd)
1435 {
1436 	bool valid_name_found = false;
1437 	struct dsa_port *dp;
1438 	struct device *dev;
1439 	const char *name;
1440 	unsigned int i;
1441 	int err;
1442 
1443 	for (i = 0; i < DSA_MAX_PORTS; i++) {
1444 		name = cd->port_names[i];
1445 		dev = cd->netdev[i];
1446 		dp = dsa_to_port(ds, i);
1447 
1448 		if (!name)
1449 			continue;
1450 
1451 		err = dsa_port_parse(dp, name, dev);
1452 		if (err)
1453 			return err;
1454 
1455 		valid_name_found = true;
1456 	}
1457 
1458 	if (!valid_name_found && i == DSA_MAX_PORTS)
1459 		return -EINVAL;
1460 
1461 	return 0;
1462 }
1463 
dsa_switch_parse(struct dsa_switch * ds,struct dsa_chip_data * cd)1464 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1465 {
1466 	int err;
1467 
1468 	ds->cd = cd;
1469 
1470 	/* We don't support interconnected switches nor multiple trees via
1471 	 * platform data, so this is the unique switch of the tree.
1472 	 */
1473 	ds->index = 0;
1474 	ds->dst = dsa_tree_touch(0);
1475 	if (!ds->dst)
1476 		return -ENOMEM;
1477 
1478 	err = dsa_switch_touch_ports(ds);
1479 	if (err)
1480 		return err;
1481 
1482 	return dsa_switch_parse_ports(ds, cd);
1483 }
1484 
dsa_switch_release_ports(struct dsa_switch * ds)1485 static void dsa_switch_release_ports(struct dsa_switch *ds)
1486 {
1487 	struct dsa_mac_addr *a, *tmp;
1488 	struct dsa_port *dp, *next;
1489 	struct dsa_vlan *v, *n;
1490 
1491 	dsa_switch_for_each_port_safe(dp, next, ds) {
1492 		if (dsa_port_is_cpu(dp) && dp->conduit)
1493 			netdev_put(dp->conduit, &dp->conduit_tracker);
1494 
1495 		/* These are either entries that upper layers lost track of
1496 		 * (probably due to bugs), or installed through interfaces
1497 		 * where one does not necessarily have to remove them, like
1498 		 * ndo_dflt_fdb_add().
1499 		 */
1500 		list_for_each_entry_safe(a, tmp, &dp->fdbs, list) {
1501 			dev_info(ds->dev,
1502 				 "Cleaning up unicast address %pM vid %u from port %d\n",
1503 				 a->addr, a->vid, dp->index);
1504 			list_del(&a->list);
1505 			kfree(a);
1506 		}
1507 
1508 		list_for_each_entry_safe(a, tmp, &dp->mdbs, list) {
1509 			dev_info(ds->dev,
1510 				 "Cleaning up multicast address %pM vid %u from port %d\n",
1511 				 a->addr, a->vid, dp->index);
1512 			list_del(&a->list);
1513 			kfree(a);
1514 		}
1515 
1516 		/* These are entries that upper layers have lost track of,
1517 		 * probably due to bugs, but also due to dsa_port_do_vlan_del()
1518 		 * having failed and the VLAN entry still lingering on.
1519 		 */
1520 		list_for_each_entry_safe(v, n, &dp->vlans, list) {
1521 			dev_info(ds->dev,
1522 				 "Cleaning up vid %u from port %d\n",
1523 				 v->vid, dp->index);
1524 			list_del(&v->list);
1525 			kfree(v);
1526 		}
1527 
1528 		list_del(&dp->list);
1529 		kfree(dp);
1530 	}
1531 }
1532 
dsa_switch_probe(struct dsa_switch * ds)1533 static int dsa_switch_probe(struct dsa_switch *ds)
1534 {
1535 	struct dsa_switch_tree *dst;
1536 	struct dsa_chip_data *pdata;
1537 	struct device_node *np;
1538 	int err;
1539 
1540 	if (!ds->dev)
1541 		return -ENODEV;
1542 
1543 	pdata = ds->dev->platform_data;
1544 	np = ds->dev->of_node;
1545 
1546 	if (!ds->num_ports)
1547 		return -EINVAL;
1548 
1549 	if (np) {
1550 		err = dsa_switch_parse_of(ds, np);
1551 		if (err)
1552 			dsa_switch_release_ports(ds);
1553 	} else if (pdata) {
1554 		err = dsa_switch_parse(ds, pdata);
1555 		if (err)
1556 			dsa_switch_release_ports(ds);
1557 	} else {
1558 		err = -ENODEV;
1559 	}
1560 
1561 	if (err)
1562 		return err;
1563 
1564 	dst = ds->dst;
1565 	dsa_tree_get(dst);
1566 	err = dsa_tree_setup(dst);
1567 	if (err) {
1568 		dsa_switch_release_ports(ds);
1569 		dsa_tree_put(dst);
1570 	}
1571 
1572 	return err;
1573 }
1574 
dsa_register_switch(struct dsa_switch * ds)1575 int dsa_register_switch(struct dsa_switch *ds)
1576 {
1577 	int err;
1578 
1579 	mutex_lock(&dsa2_mutex);
1580 	err = dsa_switch_probe(ds);
1581 	dsa_tree_put(ds->dst);
1582 	mutex_unlock(&dsa2_mutex);
1583 
1584 	return err;
1585 }
1586 EXPORT_SYMBOL_GPL(dsa_register_switch);
1587 
dsa_switch_remove(struct dsa_switch * ds)1588 static void dsa_switch_remove(struct dsa_switch *ds)
1589 {
1590 	struct dsa_switch_tree *dst = ds->dst;
1591 
1592 	dsa_tree_teardown(dst);
1593 	dsa_switch_release_ports(ds);
1594 	dsa_tree_put(dst);
1595 }
1596 
dsa_unregister_switch(struct dsa_switch * ds)1597 void dsa_unregister_switch(struct dsa_switch *ds)
1598 {
1599 	mutex_lock(&dsa2_mutex);
1600 	dsa_switch_remove(ds);
1601 	mutex_unlock(&dsa2_mutex);
1602 }
1603 EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1604 
1605 /* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is
1606  * blocking that operation from completion, due to the dev_hold taken inside
1607  * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of
1608  * the DSA conduit, so that the system can reboot successfully.
1609  */
dsa_switch_shutdown(struct dsa_switch * ds)1610 void dsa_switch_shutdown(struct dsa_switch *ds)
1611 {
1612 	struct net_device *conduit, *user_dev;
1613 	LIST_HEAD(close_list);
1614 	struct dsa_port *dp;
1615 
1616 	mutex_lock(&dsa2_mutex);
1617 
1618 	if (!ds->setup)
1619 		goto out;
1620 
1621 	rtnl_lock();
1622 
1623 	dsa_switch_for_each_cpu_port(dp, ds)
1624 		list_add(&dp->conduit->close_list, &close_list);
1625 
1626 	netif_close_many(&close_list, true);
1627 
1628 	dsa_switch_for_each_user_port(dp, ds) {
1629 		conduit = dsa_port_to_conduit(dp);
1630 		user_dev = dp->user;
1631 
1632 		netif_device_detach(user_dev);
1633 		netdev_upper_dev_unlink(conduit, user_dev);
1634 	}
1635 
1636 	/* Disconnect from further netdevice notifiers on the conduit,
1637 	 * since netdev_uses_dsa() will now return false.
1638 	 */
1639 	dsa_switch_for_each_cpu_port(dp, ds) {
1640 		dp->conduit->dsa_ptr = NULL;
1641 		netdev_put(dp->conduit, &dp->conduit_tracker);
1642 	}
1643 
1644 	rtnl_unlock();
1645 out:
1646 	mutex_unlock(&dsa2_mutex);
1647 }
1648 EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1649 
1650 #ifdef CONFIG_PM_SLEEP
dsa_port_is_initialized(const struct dsa_port * dp)1651 static bool dsa_port_is_initialized(const struct dsa_port *dp)
1652 {
1653 	return dp->type == DSA_PORT_TYPE_USER && dp->user;
1654 }
1655 
dsa_switch_suspend(struct dsa_switch * ds)1656 int dsa_switch_suspend(struct dsa_switch *ds)
1657 {
1658 	struct dsa_port *dp;
1659 	int ret = 0;
1660 
1661 	/* Suspend user network devices */
1662 	dsa_switch_for_each_port(dp, ds) {
1663 		if (!dsa_port_is_initialized(dp))
1664 			continue;
1665 
1666 		ret = dsa_user_suspend(dp->user);
1667 		if (ret)
1668 			return ret;
1669 	}
1670 
1671 	if (ds->ops->suspend)
1672 		ret = ds->ops->suspend(ds);
1673 
1674 	return ret;
1675 }
1676 EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1677 
dsa_switch_resume(struct dsa_switch * ds)1678 int dsa_switch_resume(struct dsa_switch *ds)
1679 {
1680 	struct dsa_port *dp;
1681 	int ret = 0;
1682 
1683 	if (ds->ops->resume)
1684 		ret = ds->ops->resume(ds);
1685 
1686 	if (ret)
1687 		return ret;
1688 
1689 	/* Resume user network devices */
1690 	dsa_switch_for_each_port(dp, ds) {
1691 		if (!dsa_port_is_initialized(dp))
1692 			continue;
1693 
1694 		ret = dsa_user_resume(dp->user);
1695 		if (ret)
1696 			return ret;
1697 	}
1698 
1699 	return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(dsa_switch_resume);
1702 #endif
1703 
dsa_port_from_netdev(struct net_device * netdev)1704 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1705 {
1706 	if (!netdev || !dsa_user_dev_check(netdev))
1707 		return ERR_PTR(-ENODEV);
1708 
1709 	return dsa_user_to_port(netdev);
1710 }
1711 EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1712 
dsa_db_equal(const struct dsa_db * a,const struct dsa_db * b)1713 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1714 {
1715 	if (a->type != b->type)
1716 		return false;
1717 
1718 	switch (a->type) {
1719 	case DSA_DB_PORT:
1720 		return a->dp == b->dp;
1721 	case DSA_DB_LAG:
1722 		return a->lag.dev == b->lag.dev;
1723 	case DSA_DB_BRIDGE:
1724 		return a->bridge.num == b->bridge.num;
1725 	default:
1726 		WARN_ON(1);
1727 		return false;
1728 	}
1729 }
1730 
dsa_fdb_present_in_other_db(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1731 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1732 				 const unsigned char *addr, u16 vid,
1733 				 struct dsa_db db)
1734 {
1735 	struct dsa_port *dp = dsa_to_port(ds, port);
1736 	struct dsa_mac_addr *a;
1737 
1738 	lockdep_assert_held(&dp->addr_lists_lock);
1739 
1740 	list_for_each_entry(a, &dp->fdbs, list) {
1741 		if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1742 			continue;
1743 
1744 		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1745 			return true;
1746 	}
1747 
1748 	return false;
1749 }
1750 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1751 
dsa_mdb_present_in_other_db(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1752 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1753 				 const struct switchdev_obj_port_mdb *mdb,
1754 				 struct dsa_db db)
1755 {
1756 	struct dsa_port *dp = dsa_to_port(ds, port);
1757 	struct dsa_mac_addr *a;
1758 
1759 	lockdep_assert_held(&dp->addr_lists_lock);
1760 
1761 	list_for_each_entry(a, &dp->mdbs, list) {
1762 		if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1763 			continue;
1764 
1765 		if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1766 			return true;
1767 	}
1768 
1769 	return false;
1770 }
1771 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1772 
1773 /* Helpers for switches without specific HSR offloads, but which can implement
1774  * NETIF_F_HW_HSR_DUP because their tagger uses dsa_xmit_port_mask()
1775  */
dsa_port_simple_hsr_validate(struct dsa_switch * ds,int port,struct net_device * hsr,struct netlink_ext_ack * extack)1776 int dsa_port_simple_hsr_validate(struct dsa_switch *ds, int port,
1777 				 struct net_device *hsr,
1778 				 struct netlink_ext_ack *extack)
1779 {
1780 	enum hsr_port_type type;
1781 	int err;
1782 
1783 	err = hsr_get_port_type(hsr, dsa_to_port(ds, port)->user, &type);
1784 	if (err)
1785 		return err;
1786 
1787 	if (type != HSR_PT_SLAVE_A && type != HSR_PT_SLAVE_B) {
1788 		NL_SET_ERR_MSG_MOD(extack,
1789 				   "Only HSR slave ports can be offloaded");
1790 		return -EOPNOTSUPP;
1791 	}
1792 
1793 	return 0;
1794 }
1795 EXPORT_SYMBOL_GPL(dsa_port_simple_hsr_validate);
1796 
dsa_port_simple_hsr_join(struct dsa_switch * ds,int port,struct net_device * hsr,struct netlink_ext_ack * extack)1797 int dsa_port_simple_hsr_join(struct dsa_switch *ds, int port,
1798 			     struct net_device *hsr,
1799 			     struct netlink_ext_ack *extack)
1800 {
1801 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1802 	int err;
1803 
1804 	err = dsa_port_simple_hsr_validate(ds, port, hsr, extack);
1805 	if (err)
1806 		return err;
1807 
1808 	dsa_hsr_foreach_port(other_dp, ds, hsr) {
1809 		if (other_dp != dp) {
1810 			dp->user->features |= NETIF_F_HW_HSR_DUP;
1811 			other_dp->user->features |= NETIF_F_HW_HSR_DUP;
1812 			break;
1813 		}
1814 	}
1815 
1816 	return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(dsa_port_simple_hsr_join);
1819 
dsa_port_simple_hsr_leave(struct dsa_switch * ds,int port,struct net_device * hsr)1820 int dsa_port_simple_hsr_leave(struct dsa_switch *ds, int port,
1821 			      struct net_device *hsr)
1822 {
1823 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1824 
1825 	dsa_hsr_foreach_port(other_dp, ds, hsr) {
1826 		if (other_dp != dp) {
1827 			dp->user->features &= ~NETIF_F_HW_HSR_DUP;
1828 			other_dp->user->features &= ~NETIF_F_HW_HSR_DUP;
1829 			break;
1830 		}
1831 	}
1832 
1833 	return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(dsa_port_simple_hsr_leave);
1836 
1837 static const struct dsa_stubs __dsa_stubs = {
1838 	.conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate,
1839 };
1840 
dsa_register_stubs(void)1841 static void dsa_register_stubs(void)
1842 {
1843 	dsa_stubs = &__dsa_stubs;
1844 }
1845 
dsa_unregister_stubs(void)1846 static void dsa_unregister_stubs(void)
1847 {
1848 	dsa_stubs = NULL;
1849 }
1850 
dsa_init_module(void)1851 static int __init dsa_init_module(void)
1852 {
1853 	int rc;
1854 
1855 	dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1856 					  WQ_MEM_RECLAIM);
1857 	if (!dsa_owq)
1858 		return -ENOMEM;
1859 
1860 	rc = dsa_user_register_notifier();
1861 	if (rc)
1862 		goto register_notifier_fail;
1863 
1864 	dev_add_pack(&dsa_pack_type);
1865 
1866 	rc = rtnl_link_register(&dsa_link_ops);
1867 	if (rc)
1868 		goto netlink_register_fail;
1869 
1870 	dsa_register_stubs();
1871 
1872 	return 0;
1873 
1874 netlink_register_fail:
1875 	dsa_user_unregister_notifier();
1876 	dev_remove_pack(&dsa_pack_type);
1877 register_notifier_fail:
1878 	destroy_workqueue(dsa_owq);
1879 
1880 	return rc;
1881 }
1882 module_init(dsa_init_module);
1883 
dsa_cleanup_module(void)1884 static void __exit dsa_cleanup_module(void)
1885 {
1886 	dsa_unregister_stubs();
1887 
1888 	rtnl_link_unregister(&dsa_link_ops);
1889 
1890 	dsa_user_unregister_notifier();
1891 	dev_remove_pack(&dsa_pack_type);
1892 	destroy_workqueue(dsa_owq);
1893 }
1894 module_exit(dsa_cleanup_module);
1895 
1896 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1897 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1898 MODULE_LICENSE("GPL");
1899 MODULE_ALIAS("platform:dsa");
1900 MODULE_IMPORT_NS("NETDEV_INTERNAL");
1901