1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * DSA topology and switch handling
4 *
5 * Copyright (c) 2008-2009 Marvell Semiconductor
6 * Copyright (c) 2013 Florian Fainelli <florian@openwrt.org>
7 * Copyright (c) 2016 Andrew Lunn <andrew@lunn.ch>
8 */
9
10 #include <linux/device.h>
11 #include <linux/err.h>
12 #include <linux/if_hsr.h>
13 #include <linux/list.h>
14 #include <linux/module.h>
15 #include <linux/netdevice.h>
16 #include <linux/slab.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/of.h>
19 #include <linux/of_net.h>
20 #include <net/dsa_stubs.h>
21 #include <net/sch_generic.h>
22
23 #include "conduit.h"
24 #include "devlink.h"
25 #include "dsa.h"
26 #include "netlink.h"
27 #include "port.h"
28 #include "switch.h"
29 #include "tag.h"
30 #include "user.h"
31
32 #define DSA_MAX_NUM_OFFLOADING_BRIDGES BITS_PER_LONG
33
34 static DEFINE_MUTEX(dsa2_mutex);
35 LIST_HEAD(dsa_tree_list);
36
37 static struct workqueue_struct *dsa_owq;
38
39 /* Track the bridges with forwarding offload enabled */
40 static unsigned long dsa_fwd_offloading_bridges;
41
dsa_schedule_work(struct work_struct * work)42 bool dsa_schedule_work(struct work_struct *work)
43 {
44 return queue_work(dsa_owq, work);
45 }
46
dsa_flush_workqueue(void)47 void dsa_flush_workqueue(void)
48 {
49 flush_workqueue(dsa_owq);
50 }
51 EXPORT_SYMBOL_GPL(dsa_flush_workqueue);
52
53 /**
54 * dsa_lag_map() - Map LAG structure to a linear LAG array
55 * @dst: Tree in which to record the mapping.
56 * @lag: LAG structure that is to be mapped to the tree's array.
57 *
58 * dsa_lag_id/dsa_lag_by_id can then be used to translate between the
59 * two spaces. The size of the mapping space is determined by the
60 * driver by setting ds->num_lag_ids. It is perfectly legal to leave
61 * it unset if it is not needed, in which case these functions become
62 * no-ops.
63 */
dsa_lag_map(struct dsa_switch_tree * dst,struct dsa_lag * lag)64 void dsa_lag_map(struct dsa_switch_tree *dst, struct dsa_lag *lag)
65 {
66 unsigned int id;
67
68 for (id = 1; id <= dst->lags_len; id++) {
69 if (!dsa_lag_by_id(dst, id)) {
70 dst->lags[id - 1] = lag;
71 lag->id = id;
72 return;
73 }
74 }
75
76 /* No IDs left, which is OK. Some drivers do not need it. The
77 * ones that do, e.g. mv88e6xxx, will discover that dsa_lag_id
78 * returns an error for this device when joining the LAG. The
79 * driver can then return -EOPNOTSUPP back to DSA, which will
80 * fall back to a software LAG.
81 */
82 }
83
84 /**
85 * dsa_lag_unmap() - Remove a LAG ID mapping
86 * @dst: Tree in which the mapping is recorded.
87 * @lag: LAG structure that was mapped.
88 *
89 * As there may be multiple users of the mapping, it is only removed
90 * if there are no other references to it.
91 */
dsa_lag_unmap(struct dsa_switch_tree * dst,struct dsa_lag * lag)92 void dsa_lag_unmap(struct dsa_switch_tree *dst, struct dsa_lag *lag)
93 {
94 unsigned int id;
95
96 dsa_lags_foreach_id(id, dst) {
97 if (dsa_lag_by_id(dst, id) == lag) {
98 dst->lags[id - 1] = NULL;
99 lag->id = 0;
100 break;
101 }
102 }
103 }
104
dsa_tree_lag_find(struct dsa_switch_tree * dst,const struct net_device * lag_dev)105 struct dsa_lag *dsa_tree_lag_find(struct dsa_switch_tree *dst,
106 const struct net_device *lag_dev)
107 {
108 struct dsa_port *dp;
109
110 list_for_each_entry(dp, &dst->ports, list)
111 if (dsa_port_lag_dev_get(dp) == lag_dev)
112 return dp->lag;
113
114 return NULL;
115 }
116
dsa_tree_bridge_find(struct dsa_switch_tree * dst,const struct net_device * br)117 struct dsa_bridge *dsa_tree_bridge_find(struct dsa_switch_tree *dst,
118 const struct net_device *br)
119 {
120 struct dsa_port *dp;
121
122 list_for_each_entry(dp, &dst->ports, list)
123 if (dsa_port_bridge_dev_get(dp) == br)
124 return dp->bridge;
125
126 return NULL;
127 }
128
dsa_bridge_num_find(const struct net_device * bridge_dev)129 static int dsa_bridge_num_find(const struct net_device *bridge_dev)
130 {
131 struct dsa_switch_tree *dst;
132
133 list_for_each_entry(dst, &dsa_tree_list, list) {
134 struct dsa_bridge *bridge;
135
136 bridge = dsa_tree_bridge_find(dst, bridge_dev);
137 if (bridge)
138 return bridge->num;
139 }
140
141 return 0;
142 }
143
dsa_bridge_num_get(const struct net_device * bridge_dev,int max)144 unsigned int dsa_bridge_num_get(const struct net_device *bridge_dev, int max)
145 {
146 unsigned int bridge_num = dsa_bridge_num_find(bridge_dev);
147
148 /* Switches without FDB isolation support don't get unique
149 * bridge numbering
150 */
151 if (!max)
152 return 0;
153
154 if (!bridge_num) {
155 /* First port that requests FDB isolation or TX forwarding
156 * offload for this bridge
157 */
158 bridge_num = find_next_zero_bit(&dsa_fwd_offloading_bridges,
159 DSA_MAX_NUM_OFFLOADING_BRIDGES,
160 1);
161 if (bridge_num >= max)
162 return 0;
163
164 set_bit(bridge_num, &dsa_fwd_offloading_bridges);
165 }
166
167 return bridge_num;
168 }
169
dsa_bridge_num_put(const struct net_device * bridge_dev,unsigned int bridge_num)170 void dsa_bridge_num_put(const struct net_device *bridge_dev,
171 unsigned int bridge_num)
172 {
173 /* Since we refcount bridges, we know that when we call this function
174 * it is no longer in use, so we can just go ahead and remove it from
175 * the bit mask.
176 */
177 clear_bit(bridge_num, &dsa_fwd_offloading_bridges);
178 }
179
dsa_switch_find(int tree_index,int sw_index)180 struct dsa_switch *dsa_switch_find(int tree_index, int sw_index)
181 {
182 struct dsa_switch_tree *dst;
183 struct dsa_port *dp;
184
185 list_for_each_entry(dst, &dsa_tree_list, list) {
186 if (dst->index != tree_index)
187 continue;
188
189 list_for_each_entry(dp, &dst->ports, list) {
190 if (dp->ds->index != sw_index)
191 continue;
192
193 return dp->ds;
194 }
195 }
196
197 return NULL;
198 }
199 EXPORT_SYMBOL_GPL(dsa_switch_find);
200
dsa_tree_find(int index)201 static struct dsa_switch_tree *dsa_tree_find(int index)
202 {
203 struct dsa_switch_tree *dst;
204
205 list_for_each_entry(dst, &dsa_tree_list, list)
206 if (dst->index == index)
207 return dst;
208
209 return NULL;
210 }
211
dsa_tree_alloc(int index)212 static struct dsa_switch_tree *dsa_tree_alloc(int index)
213 {
214 struct dsa_switch_tree *dst;
215
216 dst = kzalloc(sizeof(*dst), GFP_KERNEL);
217 if (!dst)
218 return NULL;
219
220 dst->index = index;
221
222 INIT_LIST_HEAD(&dst->rtable);
223
224 INIT_LIST_HEAD(&dst->ports);
225
226 INIT_LIST_HEAD(&dst->list);
227 list_add_tail(&dst->list, &dsa_tree_list);
228
229 kref_init(&dst->refcount);
230
231 return dst;
232 }
233
dsa_tree_free(struct dsa_switch_tree * dst)234 static void dsa_tree_free(struct dsa_switch_tree *dst)
235 {
236 if (dst->tag_ops)
237 dsa_tag_driver_put(dst->tag_ops);
238 list_del(&dst->list);
239 kfree(dst);
240 }
241
dsa_tree_get(struct dsa_switch_tree * dst)242 static struct dsa_switch_tree *dsa_tree_get(struct dsa_switch_tree *dst)
243 {
244 if (dst)
245 kref_get(&dst->refcount);
246
247 return dst;
248 }
249
dsa_tree_touch(int index)250 static struct dsa_switch_tree *dsa_tree_touch(int index)
251 {
252 struct dsa_switch_tree *dst;
253
254 dst = dsa_tree_find(index);
255 if (dst)
256 return dsa_tree_get(dst);
257 else
258 return dsa_tree_alloc(index);
259 }
260
dsa_tree_release(struct kref * ref)261 static void dsa_tree_release(struct kref *ref)
262 {
263 struct dsa_switch_tree *dst;
264
265 dst = container_of(ref, struct dsa_switch_tree, refcount);
266
267 dsa_tree_free(dst);
268 }
269
dsa_tree_put(struct dsa_switch_tree * dst)270 static void dsa_tree_put(struct dsa_switch_tree *dst)
271 {
272 if (dst)
273 kref_put(&dst->refcount, dsa_tree_release);
274 }
275
dsa_tree_find_port_by_node(struct dsa_switch_tree * dst,struct device_node * dn)276 static struct dsa_port *dsa_tree_find_port_by_node(struct dsa_switch_tree *dst,
277 struct device_node *dn)
278 {
279 struct dsa_port *dp;
280
281 list_for_each_entry(dp, &dst->ports, list)
282 if (dp->dn == dn)
283 return dp;
284
285 return NULL;
286 }
287
dsa_link_touch(struct dsa_port * dp,struct dsa_port * link_dp)288 static struct dsa_link *dsa_link_touch(struct dsa_port *dp,
289 struct dsa_port *link_dp)
290 {
291 struct dsa_switch *ds = dp->ds;
292 struct dsa_switch_tree *dst;
293 struct dsa_link *dl;
294
295 dst = ds->dst;
296
297 list_for_each_entry(dl, &dst->rtable, list)
298 if (dl->dp == dp && dl->link_dp == link_dp)
299 return dl;
300
301 dl = kzalloc(sizeof(*dl), GFP_KERNEL);
302 if (!dl)
303 return NULL;
304
305 dl->dp = dp;
306 dl->link_dp = link_dp;
307
308 INIT_LIST_HEAD(&dl->list);
309 list_add_tail(&dl->list, &dst->rtable);
310
311 return dl;
312 }
313
dsa_port_setup_routing_table(struct dsa_port * dp)314 static bool dsa_port_setup_routing_table(struct dsa_port *dp)
315 {
316 struct dsa_switch *ds = dp->ds;
317 struct dsa_switch_tree *dst = ds->dst;
318 struct device_node *dn = dp->dn;
319 struct of_phandle_iterator it;
320 struct dsa_port *link_dp;
321 struct dsa_link *dl;
322 int err;
323
324 of_for_each_phandle(&it, err, dn, "link", NULL, 0) {
325 link_dp = dsa_tree_find_port_by_node(dst, it.node);
326 if (!link_dp) {
327 of_node_put(it.node);
328 return false;
329 }
330
331 dl = dsa_link_touch(dp, link_dp);
332 if (!dl) {
333 of_node_put(it.node);
334 return false;
335 }
336 }
337
338 return true;
339 }
340
dsa_tree_setup_routing_table(struct dsa_switch_tree * dst)341 static bool dsa_tree_setup_routing_table(struct dsa_switch_tree *dst)
342 {
343 bool complete = true;
344 struct dsa_port *dp;
345
346 list_for_each_entry(dp, &dst->ports, list) {
347 if (dsa_port_is_dsa(dp)) {
348 complete = dsa_port_setup_routing_table(dp);
349 if (!complete)
350 break;
351 }
352 }
353
354 return complete;
355 }
356
dsa_tree_find_first_cpu(struct dsa_switch_tree * dst)357 static struct dsa_port *dsa_tree_find_first_cpu(struct dsa_switch_tree *dst)
358 {
359 struct dsa_port *dp;
360
361 list_for_each_entry(dp, &dst->ports, list)
362 if (dsa_port_is_cpu(dp))
363 return dp;
364
365 return NULL;
366 }
367
dsa_tree_find_first_conduit(struct dsa_switch_tree * dst)368 struct net_device *dsa_tree_find_first_conduit(struct dsa_switch_tree *dst)
369 {
370 struct dsa_port *cpu_dp;
371
372 cpu_dp = dsa_tree_find_first_cpu(dst);
373 return cpu_dp->conduit;
374 }
375
376 /* Assign the default CPU port (the first one in the tree) to all ports of the
377 * fabric which don't already have one as part of their own switch.
378 */
dsa_tree_setup_default_cpu(struct dsa_switch_tree * dst)379 static int dsa_tree_setup_default_cpu(struct dsa_switch_tree *dst)
380 {
381 struct dsa_port *cpu_dp, *dp;
382
383 cpu_dp = dsa_tree_find_first_cpu(dst);
384 if (!cpu_dp) {
385 pr_err("DSA: tree %d has no CPU port\n", dst->index);
386 return -EINVAL;
387 }
388
389 list_for_each_entry(dp, &dst->ports, list) {
390 if (dp->cpu_dp)
391 continue;
392
393 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
394 dp->cpu_dp = cpu_dp;
395 }
396
397 return 0;
398 }
399
400 static struct dsa_port *
dsa_switch_preferred_default_local_cpu_port(struct dsa_switch * ds)401 dsa_switch_preferred_default_local_cpu_port(struct dsa_switch *ds)
402 {
403 struct dsa_port *cpu_dp;
404
405 if (!ds->ops->preferred_default_local_cpu_port)
406 return NULL;
407
408 cpu_dp = ds->ops->preferred_default_local_cpu_port(ds);
409 if (!cpu_dp)
410 return NULL;
411
412 if (WARN_ON(!dsa_port_is_cpu(cpu_dp) || cpu_dp->ds != ds))
413 return NULL;
414
415 return cpu_dp;
416 }
417
418 /* Perform initial assignment of CPU ports to user ports and DSA links in the
419 * fabric, giving preference to CPU ports local to each switch. Default to
420 * using the first CPU port in the switch tree if the port does not have a CPU
421 * port local to this switch.
422 */
dsa_tree_setup_cpu_ports(struct dsa_switch_tree * dst)423 static int dsa_tree_setup_cpu_ports(struct dsa_switch_tree *dst)
424 {
425 struct dsa_port *preferred_cpu_dp, *cpu_dp, *dp;
426
427 list_for_each_entry(cpu_dp, &dst->ports, list) {
428 if (!dsa_port_is_cpu(cpu_dp))
429 continue;
430
431 preferred_cpu_dp = dsa_switch_preferred_default_local_cpu_port(cpu_dp->ds);
432 if (preferred_cpu_dp && preferred_cpu_dp != cpu_dp)
433 continue;
434
435 /* Prefer a local CPU port */
436 dsa_switch_for_each_port(dp, cpu_dp->ds) {
437 /* Prefer the first local CPU port found */
438 if (dp->cpu_dp)
439 continue;
440
441 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
442 dp->cpu_dp = cpu_dp;
443 }
444 }
445
446 return dsa_tree_setup_default_cpu(dst);
447 }
448
dsa_tree_teardown_cpu_ports(struct dsa_switch_tree * dst)449 static void dsa_tree_teardown_cpu_ports(struct dsa_switch_tree *dst)
450 {
451 struct dsa_port *dp;
452
453 list_for_each_entry(dp, &dst->ports, list)
454 if (dsa_port_is_user(dp) || dsa_port_is_dsa(dp))
455 dp->cpu_dp = NULL;
456 }
457
dsa_port_setup(struct dsa_port * dp)458 static int dsa_port_setup(struct dsa_port *dp)
459 {
460 bool dsa_port_link_registered = false;
461 struct dsa_switch *ds = dp->ds;
462 bool dsa_port_enabled = false;
463 int err = 0;
464
465 if (dp->setup)
466 return 0;
467
468 err = dsa_port_devlink_setup(dp);
469 if (err)
470 return err;
471
472 switch (dp->type) {
473 case DSA_PORT_TYPE_UNUSED:
474 dsa_port_disable(dp);
475 break;
476 case DSA_PORT_TYPE_CPU:
477 if (dp->dn) {
478 err = dsa_shared_port_link_register_of(dp);
479 if (err)
480 break;
481 dsa_port_link_registered = true;
482 } else {
483 dev_warn(ds->dev,
484 "skipping link registration for CPU port %d\n",
485 dp->index);
486 }
487
488 err = dsa_port_enable(dp, NULL);
489 if (err)
490 break;
491 dsa_port_enabled = true;
492
493 break;
494 case DSA_PORT_TYPE_DSA:
495 if (dp->dn) {
496 err = dsa_shared_port_link_register_of(dp);
497 if (err)
498 break;
499 dsa_port_link_registered = true;
500 } else {
501 dev_warn(ds->dev,
502 "skipping link registration for DSA port %d\n",
503 dp->index);
504 }
505
506 err = dsa_port_enable(dp, NULL);
507 if (err)
508 break;
509 dsa_port_enabled = true;
510
511 break;
512 case DSA_PORT_TYPE_USER:
513 of_get_mac_address(dp->dn, dp->mac);
514 err = dsa_user_create(dp);
515 break;
516 }
517
518 if (err && dsa_port_enabled)
519 dsa_port_disable(dp);
520 if (err && dsa_port_link_registered)
521 dsa_shared_port_link_unregister_of(dp);
522 if (err) {
523 dsa_port_devlink_teardown(dp);
524 return err;
525 }
526
527 dp->setup = true;
528
529 return 0;
530 }
531
dsa_port_teardown(struct dsa_port * dp)532 static void dsa_port_teardown(struct dsa_port *dp)
533 {
534 if (!dp->setup)
535 return;
536
537 switch (dp->type) {
538 case DSA_PORT_TYPE_UNUSED:
539 break;
540 case DSA_PORT_TYPE_CPU:
541 dsa_port_disable(dp);
542 if (dp->dn)
543 dsa_shared_port_link_unregister_of(dp);
544 break;
545 case DSA_PORT_TYPE_DSA:
546 dsa_port_disable(dp);
547 if (dp->dn)
548 dsa_shared_port_link_unregister_of(dp);
549 break;
550 case DSA_PORT_TYPE_USER:
551 if (dp->user) {
552 dsa_user_destroy(dp->user);
553 dp->user = NULL;
554 }
555 break;
556 }
557
558 dsa_port_devlink_teardown(dp);
559
560 dp->setup = false;
561 }
562
dsa_port_setup_as_unused(struct dsa_port * dp)563 static int dsa_port_setup_as_unused(struct dsa_port *dp)
564 {
565 dp->type = DSA_PORT_TYPE_UNUSED;
566 return dsa_port_setup(dp);
567 }
568
dsa_switch_setup_tag_protocol(struct dsa_switch * ds)569 static int dsa_switch_setup_tag_protocol(struct dsa_switch *ds)
570 {
571 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
572 struct dsa_switch_tree *dst = ds->dst;
573 int err;
574
575 if (tag_ops->proto == dst->default_proto)
576 goto connect;
577
578 rtnl_lock();
579 err = ds->ops->change_tag_protocol(ds, tag_ops->proto);
580 rtnl_unlock();
581 if (err) {
582 dev_err(ds->dev, "Unable to use tag protocol \"%s\": %pe\n",
583 tag_ops->name, ERR_PTR(err));
584 return err;
585 }
586
587 connect:
588 if (tag_ops->connect) {
589 err = tag_ops->connect(ds);
590 if (err)
591 return err;
592 }
593
594 if (ds->ops->connect_tag_protocol) {
595 err = ds->ops->connect_tag_protocol(ds, tag_ops->proto);
596 if (err) {
597 dev_err(ds->dev,
598 "Unable to connect to tag protocol \"%s\": %pe\n",
599 tag_ops->name, ERR_PTR(err));
600 goto disconnect;
601 }
602 }
603
604 return 0;
605
606 disconnect:
607 if (tag_ops->disconnect)
608 tag_ops->disconnect(ds);
609
610 return err;
611 }
612
dsa_switch_teardown_tag_protocol(struct dsa_switch * ds)613 static void dsa_switch_teardown_tag_protocol(struct dsa_switch *ds)
614 {
615 const struct dsa_device_ops *tag_ops = ds->dst->tag_ops;
616
617 if (tag_ops->disconnect)
618 tag_ops->disconnect(ds);
619 }
620
dsa_switch_setup(struct dsa_switch * ds)621 static int dsa_switch_setup(struct dsa_switch *ds)
622 {
623 int err;
624
625 if (ds->setup)
626 return 0;
627
628 /* Initialize ds->phys_mii_mask before registering the user MDIO bus
629 * driver and before ops->setup() has run, since the switch drivers and
630 * the user MDIO bus driver rely on these values for probing PHY
631 * devices or not
632 */
633 ds->phys_mii_mask |= dsa_user_ports(ds);
634
635 err = dsa_switch_devlink_alloc(ds);
636 if (err)
637 return err;
638
639 err = dsa_switch_register_notifier(ds);
640 if (err)
641 goto devlink_free;
642
643 ds->configure_vlan_while_not_filtering = true;
644
645 err = ds->ops->setup(ds);
646 if (err < 0)
647 goto unregister_notifier;
648
649 err = dsa_switch_setup_tag_protocol(ds);
650 if (err)
651 goto teardown;
652
653 if (!ds->user_mii_bus && ds->ops->phy_read) {
654 ds->user_mii_bus = mdiobus_alloc();
655 if (!ds->user_mii_bus) {
656 err = -ENOMEM;
657 goto teardown;
658 }
659
660 dsa_user_mii_bus_init(ds);
661
662 err = mdiobus_register(ds->user_mii_bus);
663 if (err < 0)
664 goto free_user_mii_bus;
665 }
666
667 dsa_switch_devlink_register(ds);
668
669 ds->setup = true;
670 return 0;
671
672 free_user_mii_bus:
673 if (ds->user_mii_bus && ds->ops->phy_read)
674 mdiobus_free(ds->user_mii_bus);
675 teardown:
676 if (ds->ops->teardown)
677 ds->ops->teardown(ds);
678 unregister_notifier:
679 dsa_switch_unregister_notifier(ds);
680 devlink_free:
681 dsa_switch_devlink_free(ds);
682 return err;
683 }
684
dsa_switch_teardown(struct dsa_switch * ds)685 static void dsa_switch_teardown(struct dsa_switch *ds)
686 {
687 if (!ds->setup)
688 return;
689
690 dsa_switch_devlink_unregister(ds);
691
692 if (ds->user_mii_bus && ds->ops->phy_read) {
693 mdiobus_unregister(ds->user_mii_bus);
694 mdiobus_free(ds->user_mii_bus);
695 ds->user_mii_bus = NULL;
696 }
697
698 dsa_switch_teardown_tag_protocol(ds);
699
700 if (ds->ops->teardown)
701 ds->ops->teardown(ds);
702
703 dsa_switch_unregister_notifier(ds);
704
705 dsa_switch_devlink_free(ds);
706
707 ds->setup = false;
708 }
709
710 /* First tear down the non-shared, then the shared ports. This ensures that
711 * all work items scheduled by our switchdev handlers for user ports have
712 * completed before we destroy the refcounting kept on the shared ports.
713 */
dsa_tree_teardown_ports(struct dsa_switch_tree * dst)714 static void dsa_tree_teardown_ports(struct dsa_switch_tree *dst)
715 {
716 struct dsa_port *dp;
717
718 list_for_each_entry(dp, &dst->ports, list)
719 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp))
720 dsa_port_teardown(dp);
721
722 dsa_flush_workqueue();
723
724 list_for_each_entry(dp, &dst->ports, list)
725 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp))
726 dsa_port_teardown(dp);
727 }
728
dsa_tree_teardown_switches(struct dsa_switch_tree * dst)729 static void dsa_tree_teardown_switches(struct dsa_switch_tree *dst)
730 {
731 struct dsa_port *dp;
732
733 list_for_each_entry(dp, &dst->ports, list)
734 dsa_switch_teardown(dp->ds);
735 }
736
737 /* Bring shared ports up first, then non-shared ports */
dsa_tree_setup_ports(struct dsa_switch_tree * dst)738 static int dsa_tree_setup_ports(struct dsa_switch_tree *dst)
739 {
740 struct dsa_port *dp;
741 int err = 0;
742
743 list_for_each_entry(dp, &dst->ports, list) {
744 if (dsa_port_is_dsa(dp) || dsa_port_is_cpu(dp)) {
745 err = dsa_port_setup(dp);
746 if (err)
747 goto teardown;
748 }
749 }
750
751 list_for_each_entry(dp, &dst->ports, list) {
752 if (dsa_port_is_user(dp) || dsa_port_is_unused(dp)) {
753 err = dsa_port_setup(dp);
754 if (err) {
755 err = dsa_port_setup_as_unused(dp);
756 if (err)
757 goto teardown;
758 }
759 }
760 }
761
762 return 0;
763
764 teardown:
765 dsa_tree_teardown_ports(dst);
766
767 return err;
768 }
769
dsa_tree_setup_switches(struct dsa_switch_tree * dst)770 static int dsa_tree_setup_switches(struct dsa_switch_tree *dst)
771 {
772 struct dsa_port *dp;
773 int err = 0;
774
775 list_for_each_entry(dp, &dst->ports, list) {
776 err = dsa_switch_setup(dp->ds);
777 if (err) {
778 dsa_tree_teardown_switches(dst);
779 break;
780 }
781 }
782
783 return err;
784 }
785
dsa_tree_setup_conduit(struct dsa_switch_tree * dst)786 static int dsa_tree_setup_conduit(struct dsa_switch_tree *dst)
787 {
788 struct dsa_port *cpu_dp;
789 int err = 0;
790
791 rtnl_lock();
792
793 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
794 struct net_device *conduit = cpu_dp->conduit;
795 bool admin_up = (conduit->flags & IFF_UP) &&
796 !qdisc_tx_is_noop(conduit);
797
798 err = dsa_conduit_setup(conduit, cpu_dp);
799 if (err)
800 break;
801
802 /* Replay conduit state event */
803 dsa_tree_conduit_admin_state_change(dst, conduit, admin_up);
804 dsa_tree_conduit_oper_state_change(dst, conduit,
805 netif_oper_up(conduit));
806 }
807
808 rtnl_unlock();
809
810 return err;
811 }
812
dsa_tree_teardown_conduit(struct dsa_switch_tree * dst)813 static void dsa_tree_teardown_conduit(struct dsa_switch_tree *dst)
814 {
815 struct dsa_port *cpu_dp;
816
817 rtnl_lock();
818
819 dsa_tree_for_each_cpu_port(cpu_dp, dst) {
820 struct net_device *conduit = cpu_dp->conduit;
821
822 /* Synthesizing an "admin down" state is sufficient for
823 * the switches to get a notification if the conduit is
824 * currently up and running.
825 */
826 dsa_tree_conduit_admin_state_change(dst, conduit, false);
827
828 dsa_conduit_teardown(conduit);
829 }
830
831 rtnl_unlock();
832 }
833
dsa_tree_setup_lags(struct dsa_switch_tree * dst)834 static int dsa_tree_setup_lags(struct dsa_switch_tree *dst)
835 {
836 unsigned int len = 0;
837 struct dsa_port *dp;
838
839 list_for_each_entry(dp, &dst->ports, list) {
840 if (dp->ds->num_lag_ids > len)
841 len = dp->ds->num_lag_ids;
842 }
843
844 if (!len)
845 return 0;
846
847 dst->lags = kcalloc(len, sizeof(*dst->lags), GFP_KERNEL);
848 if (!dst->lags)
849 return -ENOMEM;
850
851 dst->lags_len = len;
852 return 0;
853 }
854
dsa_tree_teardown_lags(struct dsa_switch_tree * dst)855 static void dsa_tree_teardown_lags(struct dsa_switch_tree *dst)
856 {
857 kfree(dst->lags);
858 }
859
dsa_tree_teardown_routing_table(struct dsa_switch_tree * dst)860 static void dsa_tree_teardown_routing_table(struct dsa_switch_tree *dst)
861 {
862 struct dsa_link *dl, *next;
863
864 list_for_each_entry_safe(dl, next, &dst->rtable, list) {
865 list_del(&dl->list);
866 kfree(dl);
867 }
868 }
869
dsa_tree_setup(struct dsa_switch_tree * dst)870 static int dsa_tree_setup(struct dsa_switch_tree *dst)
871 {
872 bool complete;
873 int err;
874
875 if (dst->setup) {
876 pr_err("DSA: tree %d already setup! Disjoint trees?\n",
877 dst->index);
878 return -EEXIST;
879 }
880
881 complete = dsa_tree_setup_routing_table(dst);
882 if (!complete)
883 return 0;
884
885 err = dsa_tree_setup_cpu_ports(dst);
886 if (err)
887 goto teardown_rtable;
888
889 err = dsa_tree_setup_switches(dst);
890 if (err)
891 goto teardown_cpu_ports;
892
893 err = dsa_tree_setup_ports(dst);
894 if (err)
895 goto teardown_switches;
896
897 err = dsa_tree_setup_conduit(dst);
898 if (err)
899 goto teardown_ports;
900
901 err = dsa_tree_setup_lags(dst);
902 if (err)
903 goto teardown_conduit;
904
905 dst->setup = true;
906
907 pr_info("DSA: tree %d setup\n", dst->index);
908
909 return 0;
910
911 teardown_conduit:
912 dsa_tree_teardown_conduit(dst);
913 teardown_ports:
914 dsa_tree_teardown_ports(dst);
915 teardown_switches:
916 dsa_tree_teardown_switches(dst);
917 teardown_cpu_ports:
918 dsa_tree_teardown_cpu_ports(dst);
919 teardown_rtable:
920 dsa_tree_teardown_routing_table(dst);
921
922 return err;
923 }
924
dsa_tree_teardown(struct dsa_switch_tree * dst)925 static void dsa_tree_teardown(struct dsa_switch_tree *dst)
926 {
927 if (!dst->setup)
928 return;
929
930 dsa_tree_teardown_lags(dst);
931
932 dsa_tree_teardown_conduit(dst);
933
934 dsa_tree_teardown_ports(dst);
935
936 dsa_tree_teardown_switches(dst);
937
938 dsa_tree_teardown_cpu_ports(dst);
939
940 dsa_tree_teardown_routing_table(dst);
941
942 pr_info("DSA: tree %d torn down\n", dst->index);
943
944 dst->setup = false;
945 }
946
dsa_tree_bind_tag_proto(struct dsa_switch_tree * dst,const struct dsa_device_ops * tag_ops)947 static int dsa_tree_bind_tag_proto(struct dsa_switch_tree *dst,
948 const struct dsa_device_ops *tag_ops)
949 {
950 const struct dsa_device_ops *old_tag_ops = dst->tag_ops;
951 struct dsa_notifier_tag_proto_info info;
952 int err;
953
954 dst->tag_ops = tag_ops;
955
956 /* Notify the switches from this tree about the connection
957 * to the new tagger
958 */
959 info.tag_ops = tag_ops;
960 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_CONNECT, &info);
961 if (err && err != -EOPNOTSUPP)
962 goto out_disconnect;
963
964 /* Notify the old tagger about the disconnection from this tree */
965 info.tag_ops = old_tag_ops;
966 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
967
968 return 0;
969
970 out_disconnect:
971 info.tag_ops = tag_ops;
972 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO_DISCONNECT, &info);
973 dst->tag_ops = old_tag_ops;
974
975 return err;
976 }
977
978 /* Since the dsa/tagging sysfs device attribute is per conduit, the assumption
979 * is that all DSA switches within a tree share the same tagger, otherwise
980 * they would have formed disjoint trees (different "dsa,member" values).
981 */
dsa_tree_change_tag_proto(struct dsa_switch_tree * dst,const struct dsa_device_ops * tag_ops,const struct dsa_device_ops * old_tag_ops)982 int dsa_tree_change_tag_proto(struct dsa_switch_tree *dst,
983 const struct dsa_device_ops *tag_ops,
984 const struct dsa_device_ops *old_tag_ops)
985 {
986 struct dsa_notifier_tag_proto_info info;
987 struct dsa_port *dp;
988 int err = -EBUSY;
989
990 if (!rtnl_trylock())
991 return restart_syscall();
992
993 /* At the moment we don't allow changing the tag protocol under
994 * traffic. The rtnl_mutex also happens to serialize concurrent
995 * attempts to change the tagging protocol. If we ever lift the IFF_UP
996 * restriction, there needs to be another mutex which serializes this.
997 */
998 dsa_tree_for_each_user_port(dp, dst) {
999 if (dsa_port_to_conduit(dp)->flags & IFF_UP)
1000 goto out_unlock;
1001
1002 if (dp->user->flags & IFF_UP)
1003 goto out_unlock;
1004 }
1005
1006 /* Notify the tag protocol change */
1007 info.tag_ops = tag_ops;
1008 err = dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1009 if (err)
1010 goto out_unwind_tagger;
1011
1012 err = dsa_tree_bind_tag_proto(dst, tag_ops);
1013 if (err)
1014 goto out_unwind_tagger;
1015
1016 rtnl_unlock();
1017
1018 return 0;
1019
1020 out_unwind_tagger:
1021 info.tag_ops = old_tag_ops;
1022 dsa_tree_notify(dst, DSA_NOTIFIER_TAG_PROTO, &info);
1023 out_unlock:
1024 rtnl_unlock();
1025 return err;
1026 }
1027
dsa_tree_conduit_state_change(struct dsa_switch_tree * dst,struct net_device * conduit)1028 static void dsa_tree_conduit_state_change(struct dsa_switch_tree *dst,
1029 struct net_device *conduit)
1030 {
1031 struct dsa_notifier_conduit_state_info info;
1032 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1033
1034 info.conduit = conduit;
1035 info.operational = dsa_port_conduit_is_operational(cpu_dp);
1036
1037 dsa_tree_notify(dst, DSA_NOTIFIER_CONDUIT_STATE_CHANGE, &info);
1038 }
1039
dsa_tree_conduit_admin_state_change(struct dsa_switch_tree * dst,struct net_device * conduit,bool up)1040 void dsa_tree_conduit_admin_state_change(struct dsa_switch_tree *dst,
1041 struct net_device *conduit,
1042 bool up)
1043 {
1044 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1045 bool notify = false;
1046
1047 /* Don't keep track of admin state on LAG DSA conduits,
1048 * but rather just of physical DSA conduits
1049 */
1050 if (netif_is_lag_master(conduit))
1051 return;
1052
1053 if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1054 (up && cpu_dp->conduit_oper_up))
1055 notify = true;
1056
1057 cpu_dp->conduit_admin_up = up;
1058
1059 if (notify)
1060 dsa_tree_conduit_state_change(dst, conduit);
1061 }
1062
dsa_tree_conduit_oper_state_change(struct dsa_switch_tree * dst,struct net_device * conduit,bool up)1063 void dsa_tree_conduit_oper_state_change(struct dsa_switch_tree *dst,
1064 struct net_device *conduit,
1065 bool up)
1066 {
1067 struct dsa_port *cpu_dp = conduit->dsa_ptr;
1068 bool notify = false;
1069
1070 /* Don't keep track of oper state on LAG DSA conduits,
1071 * but rather just of physical DSA conduits
1072 */
1073 if (netif_is_lag_master(conduit))
1074 return;
1075
1076 if ((dsa_port_conduit_is_operational(cpu_dp)) !=
1077 (cpu_dp->conduit_admin_up && up))
1078 notify = true;
1079
1080 cpu_dp->conduit_oper_up = up;
1081
1082 if (notify)
1083 dsa_tree_conduit_state_change(dst, conduit);
1084 }
1085
dsa_port_touch(struct dsa_switch * ds,int index)1086 static struct dsa_port *dsa_port_touch(struct dsa_switch *ds, int index)
1087 {
1088 struct dsa_switch_tree *dst = ds->dst;
1089 struct dsa_port *dp;
1090
1091 dsa_switch_for_each_port(dp, ds)
1092 if (dp->index == index)
1093 return dp;
1094
1095 dp = kzalloc(sizeof(*dp), GFP_KERNEL);
1096 if (!dp)
1097 return NULL;
1098
1099 dp->ds = ds;
1100 dp->index = index;
1101
1102 mutex_init(&dp->addr_lists_lock);
1103 mutex_init(&dp->vlans_lock);
1104 INIT_LIST_HEAD(&dp->fdbs);
1105 INIT_LIST_HEAD(&dp->mdbs);
1106 INIT_LIST_HEAD(&dp->vlans); /* also initializes &dp->user_vlans */
1107 INIT_LIST_HEAD(&dp->list);
1108 list_add_tail(&dp->list, &dst->ports);
1109
1110 return dp;
1111 }
1112
dsa_port_parse_user(struct dsa_port * dp,const char * name)1113 static int dsa_port_parse_user(struct dsa_port *dp, const char *name)
1114 {
1115 dp->type = DSA_PORT_TYPE_USER;
1116 dp->name = name;
1117
1118 return 0;
1119 }
1120
dsa_port_parse_dsa(struct dsa_port * dp)1121 static int dsa_port_parse_dsa(struct dsa_port *dp)
1122 {
1123 dp->type = DSA_PORT_TYPE_DSA;
1124
1125 return 0;
1126 }
1127
dsa_get_tag_protocol(struct dsa_port * dp,struct net_device * conduit)1128 static enum dsa_tag_protocol dsa_get_tag_protocol(struct dsa_port *dp,
1129 struct net_device *conduit)
1130 {
1131 enum dsa_tag_protocol tag_protocol = DSA_TAG_PROTO_NONE;
1132 struct dsa_switch *mds, *ds = dp->ds;
1133 unsigned int mdp_upstream;
1134 struct dsa_port *mdp;
1135
1136 /* It is possible to stack DSA switches onto one another when that
1137 * happens the switch driver may want to know if its tagging protocol
1138 * is going to work in such a configuration.
1139 */
1140 if (dsa_user_dev_check(conduit)) {
1141 mdp = dsa_user_to_port(conduit);
1142 mds = mdp->ds;
1143 mdp_upstream = dsa_upstream_port(mds, mdp->index);
1144 tag_protocol = mds->ops->get_tag_protocol(mds, mdp_upstream,
1145 DSA_TAG_PROTO_NONE);
1146 }
1147
1148 /* If the conduit device is not itself a DSA user in a disjoint DSA
1149 * tree, then return immediately.
1150 */
1151 return ds->ops->get_tag_protocol(ds, dp->index, tag_protocol);
1152 }
1153
dsa_port_parse_cpu(struct dsa_port * dp,struct net_device * conduit,const char * user_protocol)1154 static int dsa_port_parse_cpu(struct dsa_port *dp, struct net_device *conduit,
1155 const char *user_protocol)
1156 {
1157 const struct dsa_device_ops *tag_ops = NULL;
1158 struct dsa_switch *ds = dp->ds;
1159 struct dsa_switch_tree *dst = ds->dst;
1160 enum dsa_tag_protocol default_proto;
1161
1162 /* Find out which protocol the switch would prefer. */
1163 default_proto = dsa_get_tag_protocol(dp, conduit);
1164 if (dst->default_proto) {
1165 if (dst->default_proto != default_proto) {
1166 dev_err(ds->dev,
1167 "A DSA switch tree can have only one tagging protocol\n");
1168 return -EINVAL;
1169 }
1170 } else {
1171 dst->default_proto = default_proto;
1172 }
1173
1174 /* See if the user wants to override that preference. */
1175 if (user_protocol) {
1176 if (!ds->ops->change_tag_protocol) {
1177 dev_err(ds->dev, "Tag protocol cannot be modified\n");
1178 return -EINVAL;
1179 }
1180
1181 tag_ops = dsa_tag_driver_get_by_name(user_protocol);
1182 if (IS_ERR(tag_ops)) {
1183 dev_warn(ds->dev,
1184 "Failed to find a tagging driver for protocol %s, using default\n",
1185 user_protocol);
1186 tag_ops = NULL;
1187 }
1188 }
1189
1190 if (!tag_ops)
1191 tag_ops = dsa_tag_driver_get_by_id(default_proto);
1192
1193 if (IS_ERR(tag_ops)) {
1194 if (PTR_ERR(tag_ops) == -ENOPROTOOPT)
1195 return -EPROBE_DEFER;
1196
1197 dev_warn(ds->dev, "No tagger for this switch\n");
1198 return PTR_ERR(tag_ops);
1199 }
1200
1201 if (dst->tag_ops) {
1202 if (dst->tag_ops != tag_ops) {
1203 dev_err(ds->dev,
1204 "A DSA switch tree can have only one tagging protocol\n");
1205
1206 dsa_tag_driver_put(tag_ops);
1207 return -EINVAL;
1208 }
1209
1210 /* In the case of multiple CPU ports per switch, the tagging
1211 * protocol is still reference-counted only per switch tree.
1212 */
1213 dsa_tag_driver_put(tag_ops);
1214 } else {
1215 dst->tag_ops = tag_ops;
1216 }
1217
1218 dp->conduit = conduit;
1219 dp->type = DSA_PORT_TYPE_CPU;
1220 dsa_port_set_tag_protocol(dp, dst->tag_ops);
1221 dp->dst = dst;
1222
1223 /* At this point, the tree may be configured to use a different
1224 * tagger than the one chosen by the switch driver during
1225 * .setup, in the case when a user selects a custom protocol
1226 * through the DT.
1227 *
1228 * This is resolved by syncing the driver with the tree in
1229 * dsa_switch_setup_tag_protocol once .setup has run and the
1230 * driver is ready to accept calls to .change_tag_protocol. If
1231 * the driver does not support the custom protocol at that
1232 * point, the tree is wholly rejected, thereby ensuring that the
1233 * tree and driver are always in agreement on the protocol to
1234 * use.
1235 */
1236 return 0;
1237 }
1238
dsa_port_parse_of(struct dsa_port * dp,struct device_node * dn)1239 static int dsa_port_parse_of(struct dsa_port *dp, struct device_node *dn)
1240 {
1241 struct device_node *ethernet = of_parse_phandle(dn, "ethernet", 0);
1242 const char *name = of_get_property(dn, "label", NULL);
1243 bool link = of_property_read_bool(dn, "link");
1244
1245 dp->dn = dn;
1246
1247 if (ethernet) {
1248 struct net_device *conduit;
1249 const char *user_protocol;
1250 int err;
1251
1252 rtnl_lock();
1253 conduit = of_find_net_device_by_node(ethernet);
1254 of_node_put(ethernet);
1255 if (!conduit) {
1256 rtnl_unlock();
1257 return -EPROBE_DEFER;
1258 }
1259
1260 netdev_hold(conduit, &dp->conduit_tracker, GFP_KERNEL);
1261 put_device(&conduit->dev);
1262 rtnl_unlock();
1263
1264 user_protocol = of_get_property(dn, "dsa-tag-protocol", NULL);
1265 err = dsa_port_parse_cpu(dp, conduit, user_protocol);
1266 if (err)
1267 netdev_put(conduit, &dp->conduit_tracker);
1268 return err;
1269 }
1270
1271 if (link)
1272 return dsa_port_parse_dsa(dp);
1273
1274 return dsa_port_parse_user(dp, name);
1275 }
1276
dsa_switch_parse_ports_of(struct dsa_switch * ds,struct device_node * dn)1277 static int dsa_switch_parse_ports_of(struct dsa_switch *ds,
1278 struct device_node *dn)
1279 {
1280 struct device_node *ports, *port;
1281 struct dsa_port *dp;
1282 int err = 0;
1283 u32 reg;
1284
1285 ports = of_get_child_by_name(dn, "ports");
1286 if (!ports) {
1287 /* The second possibility is "ethernet-ports" */
1288 ports = of_get_child_by_name(dn, "ethernet-ports");
1289 if (!ports) {
1290 dev_err(ds->dev, "no ports child node found\n");
1291 return -EINVAL;
1292 }
1293 }
1294
1295 for_each_available_child_of_node(ports, port) {
1296 err = of_property_read_u32(port, "reg", ®);
1297 if (err) {
1298 of_node_put(port);
1299 goto out_put_node;
1300 }
1301
1302 if (reg >= ds->num_ports) {
1303 dev_err(ds->dev, "port %pOF index %u exceeds num_ports (%u)\n",
1304 port, reg, ds->num_ports);
1305 of_node_put(port);
1306 err = -EINVAL;
1307 goto out_put_node;
1308 }
1309
1310 dp = dsa_to_port(ds, reg);
1311
1312 err = dsa_port_parse_of(dp, port);
1313 if (err) {
1314 of_node_put(port);
1315 goto out_put_node;
1316 }
1317 }
1318
1319 out_put_node:
1320 of_node_put(ports);
1321 return err;
1322 }
1323
dsa_switch_parse_member_of(struct dsa_switch * ds,struct device_node * dn)1324 static int dsa_switch_parse_member_of(struct dsa_switch *ds,
1325 struct device_node *dn)
1326 {
1327 u32 m[2] = { 0, 0 };
1328 int sz;
1329
1330 /* Don't error out if this optional property isn't found */
1331 sz = of_property_read_variable_u32_array(dn, "dsa,member", m, 2, 2);
1332 if (sz < 0 && sz != -EINVAL)
1333 return sz;
1334
1335 ds->index = m[1];
1336
1337 ds->dst = dsa_tree_touch(m[0]);
1338 if (!ds->dst)
1339 return -ENOMEM;
1340
1341 if (dsa_switch_find(ds->dst->index, ds->index)) {
1342 dev_err(ds->dev,
1343 "A DSA switch with index %d already exists in tree %d\n",
1344 ds->index, ds->dst->index);
1345 return -EEXIST;
1346 }
1347
1348 if (ds->dst->last_switch < ds->index)
1349 ds->dst->last_switch = ds->index;
1350
1351 return 0;
1352 }
1353
dsa_switch_touch_ports(struct dsa_switch * ds)1354 static int dsa_switch_touch_ports(struct dsa_switch *ds)
1355 {
1356 struct dsa_port *dp;
1357 int port;
1358
1359 for (port = 0; port < ds->num_ports; port++) {
1360 dp = dsa_port_touch(ds, port);
1361 if (!dp)
1362 return -ENOMEM;
1363 }
1364
1365 return 0;
1366 }
1367
dsa_switch_parse_of(struct dsa_switch * ds,struct device_node * dn)1368 static int dsa_switch_parse_of(struct dsa_switch *ds, struct device_node *dn)
1369 {
1370 int err;
1371
1372 err = dsa_switch_parse_member_of(ds, dn);
1373 if (err)
1374 return err;
1375
1376 err = dsa_switch_touch_ports(ds);
1377 if (err)
1378 return err;
1379
1380 return dsa_switch_parse_ports_of(ds, dn);
1381 }
1382
dev_is_class(struct device * dev,const void * class)1383 static int dev_is_class(struct device *dev, const void *class)
1384 {
1385 if (dev->class != NULL && !strcmp(dev->class->name, class))
1386 return 1;
1387
1388 return 0;
1389 }
1390
dev_find_class(struct device * parent,char * class)1391 static struct device *dev_find_class(struct device *parent, char *class)
1392 {
1393 if (dev_is_class(parent, class)) {
1394 get_device(parent);
1395 return parent;
1396 }
1397
1398 return device_find_child(parent, class, dev_is_class);
1399 }
1400
dsa_port_parse(struct dsa_port * dp,const char * name,struct device * dev)1401 static int dsa_port_parse(struct dsa_port *dp, const char *name,
1402 struct device *dev)
1403 {
1404 if (!strcmp(name, "cpu")) {
1405 struct net_device *conduit;
1406 struct device *d;
1407 int err;
1408
1409 rtnl_lock();
1410 d = dev_find_class(dev, "net");
1411 if (!d) {
1412 rtnl_unlock();
1413 return -EPROBE_DEFER;
1414 }
1415
1416 conduit = to_net_dev(d);
1417 netdev_hold(conduit, &dp->conduit_tracker, GFP_KERNEL);
1418 put_device(d);
1419 rtnl_unlock();
1420
1421 err = dsa_port_parse_cpu(dp, conduit, NULL);
1422 if (err)
1423 netdev_put(conduit, &dp->conduit_tracker);
1424 return err;
1425 }
1426
1427 if (!strcmp(name, "dsa"))
1428 return dsa_port_parse_dsa(dp);
1429
1430 return dsa_port_parse_user(dp, name);
1431 }
1432
dsa_switch_parse_ports(struct dsa_switch * ds,struct dsa_chip_data * cd)1433 static int dsa_switch_parse_ports(struct dsa_switch *ds,
1434 struct dsa_chip_data *cd)
1435 {
1436 bool valid_name_found = false;
1437 struct dsa_port *dp;
1438 struct device *dev;
1439 const char *name;
1440 unsigned int i;
1441 int err;
1442
1443 for (i = 0; i < DSA_MAX_PORTS; i++) {
1444 name = cd->port_names[i];
1445 dev = cd->netdev[i];
1446 dp = dsa_to_port(ds, i);
1447
1448 if (!name)
1449 continue;
1450
1451 err = dsa_port_parse(dp, name, dev);
1452 if (err)
1453 return err;
1454
1455 valid_name_found = true;
1456 }
1457
1458 if (!valid_name_found && i == DSA_MAX_PORTS)
1459 return -EINVAL;
1460
1461 return 0;
1462 }
1463
dsa_switch_parse(struct dsa_switch * ds,struct dsa_chip_data * cd)1464 static int dsa_switch_parse(struct dsa_switch *ds, struct dsa_chip_data *cd)
1465 {
1466 int err;
1467
1468 ds->cd = cd;
1469
1470 /* We don't support interconnected switches nor multiple trees via
1471 * platform data, so this is the unique switch of the tree.
1472 */
1473 ds->index = 0;
1474 ds->dst = dsa_tree_touch(0);
1475 if (!ds->dst)
1476 return -ENOMEM;
1477
1478 err = dsa_switch_touch_ports(ds);
1479 if (err)
1480 return err;
1481
1482 return dsa_switch_parse_ports(ds, cd);
1483 }
1484
dsa_switch_release_ports(struct dsa_switch * ds)1485 static void dsa_switch_release_ports(struct dsa_switch *ds)
1486 {
1487 struct dsa_mac_addr *a, *tmp;
1488 struct dsa_port *dp, *next;
1489 struct dsa_vlan *v, *n;
1490
1491 dsa_switch_for_each_port_safe(dp, next, ds) {
1492 if (dsa_port_is_cpu(dp) && dp->conduit)
1493 netdev_put(dp->conduit, &dp->conduit_tracker);
1494
1495 /* These are either entries that upper layers lost track of
1496 * (probably due to bugs), or installed through interfaces
1497 * where one does not necessarily have to remove them, like
1498 * ndo_dflt_fdb_add().
1499 */
1500 list_for_each_entry_safe(a, tmp, &dp->fdbs, list) {
1501 dev_info(ds->dev,
1502 "Cleaning up unicast address %pM vid %u from port %d\n",
1503 a->addr, a->vid, dp->index);
1504 list_del(&a->list);
1505 kfree(a);
1506 }
1507
1508 list_for_each_entry_safe(a, tmp, &dp->mdbs, list) {
1509 dev_info(ds->dev,
1510 "Cleaning up multicast address %pM vid %u from port %d\n",
1511 a->addr, a->vid, dp->index);
1512 list_del(&a->list);
1513 kfree(a);
1514 }
1515
1516 /* These are entries that upper layers have lost track of,
1517 * probably due to bugs, but also due to dsa_port_do_vlan_del()
1518 * having failed and the VLAN entry still lingering on.
1519 */
1520 list_for_each_entry_safe(v, n, &dp->vlans, list) {
1521 dev_info(ds->dev,
1522 "Cleaning up vid %u from port %d\n",
1523 v->vid, dp->index);
1524 list_del(&v->list);
1525 kfree(v);
1526 }
1527
1528 list_del(&dp->list);
1529 kfree(dp);
1530 }
1531 }
1532
dsa_switch_probe(struct dsa_switch * ds)1533 static int dsa_switch_probe(struct dsa_switch *ds)
1534 {
1535 struct dsa_switch_tree *dst;
1536 struct dsa_chip_data *pdata;
1537 struct device_node *np;
1538 int err;
1539
1540 if (!ds->dev)
1541 return -ENODEV;
1542
1543 pdata = ds->dev->platform_data;
1544 np = ds->dev->of_node;
1545
1546 if (!ds->num_ports)
1547 return -EINVAL;
1548
1549 if (np) {
1550 err = dsa_switch_parse_of(ds, np);
1551 if (err)
1552 dsa_switch_release_ports(ds);
1553 } else if (pdata) {
1554 err = dsa_switch_parse(ds, pdata);
1555 if (err)
1556 dsa_switch_release_ports(ds);
1557 } else {
1558 err = -ENODEV;
1559 }
1560
1561 if (err)
1562 return err;
1563
1564 dst = ds->dst;
1565 dsa_tree_get(dst);
1566 err = dsa_tree_setup(dst);
1567 if (err) {
1568 dsa_switch_release_ports(ds);
1569 dsa_tree_put(dst);
1570 }
1571
1572 return err;
1573 }
1574
dsa_register_switch(struct dsa_switch * ds)1575 int dsa_register_switch(struct dsa_switch *ds)
1576 {
1577 int err;
1578
1579 mutex_lock(&dsa2_mutex);
1580 err = dsa_switch_probe(ds);
1581 dsa_tree_put(ds->dst);
1582 mutex_unlock(&dsa2_mutex);
1583
1584 return err;
1585 }
1586 EXPORT_SYMBOL_GPL(dsa_register_switch);
1587
dsa_switch_remove(struct dsa_switch * ds)1588 static void dsa_switch_remove(struct dsa_switch *ds)
1589 {
1590 struct dsa_switch_tree *dst = ds->dst;
1591
1592 dsa_tree_teardown(dst);
1593 dsa_switch_release_ports(ds);
1594 dsa_tree_put(dst);
1595 }
1596
dsa_unregister_switch(struct dsa_switch * ds)1597 void dsa_unregister_switch(struct dsa_switch *ds)
1598 {
1599 mutex_lock(&dsa2_mutex);
1600 dsa_switch_remove(ds);
1601 mutex_unlock(&dsa2_mutex);
1602 }
1603 EXPORT_SYMBOL_GPL(dsa_unregister_switch);
1604
1605 /* If the DSA conduit chooses to unregister its net_device on .shutdown, DSA is
1606 * blocking that operation from completion, due to the dev_hold taken inside
1607 * netdev_upper_dev_link. Unlink the DSA user interfaces from being uppers of
1608 * the DSA conduit, so that the system can reboot successfully.
1609 */
dsa_switch_shutdown(struct dsa_switch * ds)1610 void dsa_switch_shutdown(struct dsa_switch *ds)
1611 {
1612 struct net_device *conduit, *user_dev;
1613 LIST_HEAD(close_list);
1614 struct dsa_port *dp;
1615
1616 mutex_lock(&dsa2_mutex);
1617
1618 if (!ds->setup)
1619 goto out;
1620
1621 rtnl_lock();
1622
1623 dsa_switch_for_each_cpu_port(dp, ds)
1624 list_add(&dp->conduit->close_list, &close_list);
1625
1626 netif_close_many(&close_list, true);
1627
1628 dsa_switch_for_each_user_port(dp, ds) {
1629 conduit = dsa_port_to_conduit(dp);
1630 user_dev = dp->user;
1631
1632 netif_device_detach(user_dev);
1633 netdev_upper_dev_unlink(conduit, user_dev);
1634 }
1635
1636 /* Disconnect from further netdevice notifiers on the conduit,
1637 * since netdev_uses_dsa() will now return false.
1638 */
1639 dsa_switch_for_each_cpu_port(dp, ds) {
1640 dp->conduit->dsa_ptr = NULL;
1641 netdev_put(dp->conduit, &dp->conduit_tracker);
1642 }
1643
1644 rtnl_unlock();
1645 out:
1646 mutex_unlock(&dsa2_mutex);
1647 }
1648 EXPORT_SYMBOL_GPL(dsa_switch_shutdown);
1649
1650 #ifdef CONFIG_PM_SLEEP
dsa_port_is_initialized(const struct dsa_port * dp)1651 static bool dsa_port_is_initialized(const struct dsa_port *dp)
1652 {
1653 return dp->type == DSA_PORT_TYPE_USER && dp->user;
1654 }
1655
dsa_switch_suspend(struct dsa_switch * ds)1656 int dsa_switch_suspend(struct dsa_switch *ds)
1657 {
1658 struct dsa_port *dp;
1659 int ret = 0;
1660
1661 /* Suspend user network devices */
1662 dsa_switch_for_each_port(dp, ds) {
1663 if (!dsa_port_is_initialized(dp))
1664 continue;
1665
1666 ret = dsa_user_suspend(dp->user);
1667 if (ret)
1668 return ret;
1669 }
1670
1671 if (ds->ops->suspend)
1672 ret = ds->ops->suspend(ds);
1673
1674 return ret;
1675 }
1676 EXPORT_SYMBOL_GPL(dsa_switch_suspend);
1677
dsa_switch_resume(struct dsa_switch * ds)1678 int dsa_switch_resume(struct dsa_switch *ds)
1679 {
1680 struct dsa_port *dp;
1681 int ret = 0;
1682
1683 if (ds->ops->resume)
1684 ret = ds->ops->resume(ds);
1685
1686 if (ret)
1687 return ret;
1688
1689 /* Resume user network devices */
1690 dsa_switch_for_each_port(dp, ds) {
1691 if (!dsa_port_is_initialized(dp))
1692 continue;
1693
1694 ret = dsa_user_resume(dp->user);
1695 if (ret)
1696 return ret;
1697 }
1698
1699 return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(dsa_switch_resume);
1702 #endif
1703
dsa_port_from_netdev(struct net_device * netdev)1704 struct dsa_port *dsa_port_from_netdev(struct net_device *netdev)
1705 {
1706 if (!netdev || !dsa_user_dev_check(netdev))
1707 return ERR_PTR(-ENODEV);
1708
1709 return dsa_user_to_port(netdev);
1710 }
1711 EXPORT_SYMBOL_GPL(dsa_port_from_netdev);
1712
dsa_db_equal(const struct dsa_db * a,const struct dsa_db * b)1713 bool dsa_db_equal(const struct dsa_db *a, const struct dsa_db *b)
1714 {
1715 if (a->type != b->type)
1716 return false;
1717
1718 switch (a->type) {
1719 case DSA_DB_PORT:
1720 return a->dp == b->dp;
1721 case DSA_DB_LAG:
1722 return a->lag.dev == b->lag.dev;
1723 case DSA_DB_BRIDGE:
1724 return a->bridge.num == b->bridge.num;
1725 default:
1726 WARN_ON(1);
1727 return false;
1728 }
1729 }
1730
dsa_fdb_present_in_other_db(struct dsa_switch * ds,int port,const unsigned char * addr,u16 vid,struct dsa_db db)1731 bool dsa_fdb_present_in_other_db(struct dsa_switch *ds, int port,
1732 const unsigned char *addr, u16 vid,
1733 struct dsa_db db)
1734 {
1735 struct dsa_port *dp = dsa_to_port(ds, port);
1736 struct dsa_mac_addr *a;
1737
1738 lockdep_assert_held(&dp->addr_lists_lock);
1739
1740 list_for_each_entry(a, &dp->fdbs, list) {
1741 if (!ether_addr_equal(a->addr, addr) || a->vid != vid)
1742 continue;
1743
1744 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1745 return true;
1746 }
1747
1748 return false;
1749 }
1750 EXPORT_SYMBOL_GPL(dsa_fdb_present_in_other_db);
1751
dsa_mdb_present_in_other_db(struct dsa_switch * ds,int port,const struct switchdev_obj_port_mdb * mdb,struct dsa_db db)1752 bool dsa_mdb_present_in_other_db(struct dsa_switch *ds, int port,
1753 const struct switchdev_obj_port_mdb *mdb,
1754 struct dsa_db db)
1755 {
1756 struct dsa_port *dp = dsa_to_port(ds, port);
1757 struct dsa_mac_addr *a;
1758
1759 lockdep_assert_held(&dp->addr_lists_lock);
1760
1761 list_for_each_entry(a, &dp->mdbs, list) {
1762 if (!ether_addr_equal(a->addr, mdb->addr) || a->vid != mdb->vid)
1763 continue;
1764
1765 if (a->db.type == db.type && !dsa_db_equal(&a->db, &db))
1766 return true;
1767 }
1768
1769 return false;
1770 }
1771 EXPORT_SYMBOL_GPL(dsa_mdb_present_in_other_db);
1772
1773 /* Helpers for switches without specific HSR offloads, but which can implement
1774 * NETIF_F_HW_HSR_DUP because their tagger uses dsa_xmit_port_mask()
1775 */
dsa_port_simple_hsr_validate(struct dsa_switch * ds,int port,struct net_device * hsr,struct netlink_ext_ack * extack)1776 int dsa_port_simple_hsr_validate(struct dsa_switch *ds, int port,
1777 struct net_device *hsr,
1778 struct netlink_ext_ack *extack)
1779 {
1780 enum hsr_port_type type;
1781 int err;
1782
1783 err = hsr_get_port_type(hsr, dsa_to_port(ds, port)->user, &type);
1784 if (err)
1785 return err;
1786
1787 if (type != HSR_PT_SLAVE_A && type != HSR_PT_SLAVE_B) {
1788 NL_SET_ERR_MSG_MOD(extack,
1789 "Only HSR slave ports can be offloaded");
1790 return -EOPNOTSUPP;
1791 }
1792
1793 return 0;
1794 }
1795 EXPORT_SYMBOL_GPL(dsa_port_simple_hsr_validate);
1796
dsa_port_simple_hsr_join(struct dsa_switch * ds,int port,struct net_device * hsr,struct netlink_ext_ack * extack)1797 int dsa_port_simple_hsr_join(struct dsa_switch *ds, int port,
1798 struct net_device *hsr,
1799 struct netlink_ext_ack *extack)
1800 {
1801 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1802 int err;
1803
1804 err = dsa_port_simple_hsr_validate(ds, port, hsr, extack);
1805 if (err)
1806 return err;
1807
1808 dsa_hsr_foreach_port(other_dp, ds, hsr) {
1809 if (other_dp != dp) {
1810 dp->user->features |= NETIF_F_HW_HSR_DUP;
1811 other_dp->user->features |= NETIF_F_HW_HSR_DUP;
1812 break;
1813 }
1814 }
1815
1816 return 0;
1817 }
1818 EXPORT_SYMBOL_GPL(dsa_port_simple_hsr_join);
1819
dsa_port_simple_hsr_leave(struct dsa_switch * ds,int port,struct net_device * hsr)1820 int dsa_port_simple_hsr_leave(struct dsa_switch *ds, int port,
1821 struct net_device *hsr)
1822 {
1823 struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1824
1825 dsa_hsr_foreach_port(other_dp, ds, hsr) {
1826 if (other_dp != dp) {
1827 dp->user->features &= ~NETIF_F_HW_HSR_DUP;
1828 other_dp->user->features &= ~NETIF_F_HW_HSR_DUP;
1829 break;
1830 }
1831 }
1832
1833 return 0;
1834 }
1835 EXPORT_SYMBOL_GPL(dsa_port_simple_hsr_leave);
1836
1837 static const struct dsa_stubs __dsa_stubs = {
1838 .conduit_hwtstamp_validate = __dsa_conduit_hwtstamp_validate,
1839 };
1840
dsa_register_stubs(void)1841 static void dsa_register_stubs(void)
1842 {
1843 dsa_stubs = &__dsa_stubs;
1844 }
1845
dsa_unregister_stubs(void)1846 static void dsa_unregister_stubs(void)
1847 {
1848 dsa_stubs = NULL;
1849 }
1850
dsa_init_module(void)1851 static int __init dsa_init_module(void)
1852 {
1853 int rc;
1854
1855 dsa_owq = alloc_ordered_workqueue("dsa_ordered",
1856 WQ_MEM_RECLAIM);
1857 if (!dsa_owq)
1858 return -ENOMEM;
1859
1860 rc = dsa_user_register_notifier();
1861 if (rc)
1862 goto register_notifier_fail;
1863
1864 dev_add_pack(&dsa_pack_type);
1865
1866 rc = rtnl_link_register(&dsa_link_ops);
1867 if (rc)
1868 goto netlink_register_fail;
1869
1870 dsa_register_stubs();
1871
1872 return 0;
1873
1874 netlink_register_fail:
1875 dsa_user_unregister_notifier();
1876 dev_remove_pack(&dsa_pack_type);
1877 register_notifier_fail:
1878 destroy_workqueue(dsa_owq);
1879
1880 return rc;
1881 }
1882 module_init(dsa_init_module);
1883
dsa_cleanup_module(void)1884 static void __exit dsa_cleanup_module(void)
1885 {
1886 dsa_unregister_stubs();
1887
1888 rtnl_link_unregister(&dsa_link_ops);
1889
1890 dsa_user_unregister_notifier();
1891 dev_remove_pack(&dsa_pack_type);
1892 destroy_workqueue(dsa_owq);
1893 }
1894 module_exit(dsa_cleanup_module);
1895
1896 MODULE_AUTHOR("Lennert Buytenhek <buytenh@wantstofly.org>");
1897 MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips");
1898 MODULE_LICENSE("GPL");
1899 MODULE_ALIAS("platform:dsa");
1900 MODULE_IMPORT_NS("NETDEV_INTERNAL");
1901