xref: /linux/arch/um/drivers/vector_kern.c (revision 8934827db5403eae57d4537114a9ff88b0a8460f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
5  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7  * James Leu (jleu@mindspring.net).
8  * Copyright (C) 2001 by various other people who didn't put their name here.
9  */
10 
11 #define pr_fmt(fmt) "uml-vector: " fmt
12 
13 #include <linux/memblock.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/hex.h>
17 #include <linux/inetdevice.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
20 #include <linux/netdevice.h>
21 #include <linux/platform_device.h>
22 #include <linux/rtnetlink.h>
23 #include <linux/skbuff.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/firmware.h>
27 #include <linux/fs.h>
28 #include <asm/atomic.h>
29 #include <uapi/linux/filter.h>
30 #include <init.h>
31 #include <irq_kern.h>
32 #include <irq_user.h>
33 #include <os.h>
34 #include "mconsole_kern.h"
35 #include "vector_user.h"
36 #include "vector_kern.h"
37 
38 /*
39  * Adapted from network devices with the following major changes:
40  * All transports are static - simplifies the code significantly
41  * Multiple FDs/IRQs per device
42  * Vector IO optionally used for read/write, falling back to legacy
43  * based on configuration and/or availability
44  * Configuration is no longer positional - L2TPv3 and GRE require up to
45  * 10 parameters, passing this as positional is not fit for purpose.
46  * Only socket transports are supported
47  */
48 
49 
50 #define DRIVER_NAME "uml-vector"
51 struct vector_cmd_line_arg {
52 	struct list_head list;
53 	int unit;
54 	char *arguments;
55 };
56 
57 struct vector_device {
58 	struct list_head list;
59 	struct net_device *dev;
60 	struct platform_device pdev;
61 	int unit;
62 	int opened;
63 };
64 
65 static LIST_HEAD(vec_cmd_line);
66 
67 static DEFINE_SPINLOCK(vector_devices_lock);
68 static LIST_HEAD(vector_devices);
69 
70 static int driver_registered;
71 
72 static void vector_eth_configure(int n, struct arglist *def);
73 static int vector_mmsg_rx(struct vector_private *vp, int budget);
74 
75 /* Argument accessors to set variables (and/or set default values)
76  * mtu, buffer sizing, default headroom, etc
77  */
78 
79 #define DEFAULT_HEADROOM 2
80 #define SAFETY_MARGIN 32
81 #define DEFAULT_VECTOR_SIZE 64
82 #define TX_SMALL_PACKET 128
83 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
84 
85 static const struct {
86 	const char string[ETH_GSTRING_LEN];
87 } ethtool_stats_keys[] = {
88 	{ "rx_queue_max" },
89 	{ "rx_queue_running_average" },
90 	{ "tx_queue_max" },
91 	{ "tx_queue_running_average" },
92 	{ "rx_encaps_errors" },
93 	{ "tx_timeout_count" },
94 	{ "tx_restart_queue" },
95 	{ "tx_kicks" },
96 	{ "tx_flow_control_xon" },
97 	{ "tx_flow_control_xoff" },
98 	{ "rx_csum_offload_good" },
99 	{ "rx_csum_offload_errors"},
100 	{ "sg_ok"},
101 	{ "sg_linearized"},
102 };
103 
104 #define VECTOR_NUM_STATS	ARRAY_SIZE(ethtool_stats_keys)
105 
vector_reset_stats(struct vector_private * vp)106 static void vector_reset_stats(struct vector_private *vp)
107 {
108 	/* We reuse the existing queue locks for stats */
109 
110 	/* RX stats are modified with RX head_lock held
111 	 * in vector_poll.
112 	 */
113 
114 	spin_lock(&vp->rx_queue->head_lock);
115 	vp->estats.rx_queue_max = 0;
116 	vp->estats.rx_queue_running_average = 0;
117 	vp->estats.rx_encaps_errors = 0;
118 	vp->estats.sg_ok = 0;
119 	vp->estats.sg_linearized = 0;
120 	spin_unlock(&vp->rx_queue->head_lock);
121 
122 	/* TX stats are modified with TX head_lock held
123 	 * in vector_send.
124 	 */
125 
126 	spin_lock(&vp->tx_queue->head_lock);
127 	vp->estats.tx_timeout_count = 0;
128 	vp->estats.tx_restart_queue = 0;
129 	vp->estats.tx_kicks = 0;
130 	vp->estats.tx_flow_control_xon = 0;
131 	vp->estats.tx_flow_control_xoff = 0;
132 	vp->estats.tx_queue_max = 0;
133 	vp->estats.tx_queue_running_average = 0;
134 	spin_unlock(&vp->tx_queue->head_lock);
135 }
136 
get_mtu(struct arglist * def)137 static int get_mtu(struct arglist *def)
138 {
139 	char *mtu = uml_vector_fetch_arg(def, "mtu");
140 	long result;
141 
142 	if (mtu != NULL) {
143 		if (kstrtoul(mtu, 10, &result) == 0)
144 			if ((result < (1 << 16) - 1) && (result >= 576))
145 				return result;
146 	}
147 	return ETH_MAX_PACKET;
148 }
149 
get_bpf_file(struct arglist * def)150 static char *get_bpf_file(struct arglist *def)
151 {
152 	return uml_vector_fetch_arg(def, "bpffile");
153 }
154 
get_bpf_flash(struct arglist * def)155 static bool get_bpf_flash(struct arglist *def)
156 {
157 	char *allow = uml_vector_fetch_arg(def, "bpfflash");
158 	long result;
159 
160 	if (allow != NULL) {
161 		if (kstrtoul(allow, 10, &result) == 0)
162 			return result > 0;
163 	}
164 	return false;
165 }
166 
get_depth(struct arglist * def)167 static int get_depth(struct arglist *def)
168 {
169 	char *mtu = uml_vector_fetch_arg(def, "depth");
170 	long result;
171 
172 	if (mtu != NULL) {
173 		if (kstrtoul(mtu, 10, &result) == 0)
174 			return result;
175 	}
176 	return DEFAULT_VECTOR_SIZE;
177 }
178 
get_headroom(struct arglist * def)179 static int get_headroom(struct arglist *def)
180 {
181 	char *mtu = uml_vector_fetch_arg(def, "headroom");
182 	long result;
183 
184 	if (mtu != NULL) {
185 		if (kstrtoul(mtu, 10, &result) == 0)
186 			return result;
187 	}
188 	return DEFAULT_HEADROOM;
189 }
190 
get_req_size(struct arglist * def)191 static int get_req_size(struct arglist *def)
192 {
193 	char *gro = uml_vector_fetch_arg(def, "gro");
194 	long result;
195 
196 	if (gro != NULL) {
197 		if (kstrtoul(gro, 10, &result) == 0) {
198 			if (result > 0)
199 				return 65536;
200 		}
201 	}
202 	return get_mtu(def) + ETH_HEADER_OTHER +
203 		get_headroom(def) + SAFETY_MARGIN;
204 }
205 
206 
get_transport_options(struct arglist * def)207 static int get_transport_options(struct arglist *def)
208 {
209 	char *transport = uml_vector_fetch_arg(def, "transport");
210 	char *vector = uml_vector_fetch_arg(def, "vec");
211 
212 	int vec_rx = VECTOR_RX;
213 	int vec_tx = VECTOR_TX;
214 	long parsed;
215 	int result = 0;
216 
217 	if (transport == NULL)
218 		return -EINVAL;
219 
220 	if (vector != NULL) {
221 		if (kstrtoul(vector, 10, &parsed) == 0) {
222 			if (parsed == 0) {
223 				vec_rx = 0;
224 				vec_tx = 0;
225 			}
226 		}
227 	}
228 
229 	if (get_bpf_flash(def))
230 		result = VECTOR_BPF_FLASH;
231 
232 	if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
233 		return result;
234 	if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
235 		return (result | vec_rx | VECTOR_BPF);
236 	if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
237 		return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
238 	return (result | vec_rx | vec_tx);
239 }
240 
241 
242 /* A mini-buffer for packet drop read
243  * All of our supported transports are datagram oriented and we always
244  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
245  * than the packet size it still counts as full packet read and will
246  * clean the incoming stream to keep sigio/epoll happy
247  */
248 
249 #define DROP_BUFFER_SIZE 32
250 
251 static char *drop_buffer;
252 
253 
254 /*
255  * Advance the mmsg queue head by n = advance. Resets the queue to
256  * maximum enqueue/dequeue-at-once capacity if possible. Called by
257  * dequeuers. Caller must hold the head_lock!
258  */
259 
vector_advancehead(struct vector_queue * qi,int advance)260 static int vector_advancehead(struct vector_queue *qi, int advance)
261 {
262 	qi->head =
263 		(qi->head + advance)
264 			% qi->max_depth;
265 
266 
267 	atomic_sub(advance, &qi->queue_depth);
268 	return atomic_read(&qi->queue_depth);
269 }
270 
271 /*	Advance the queue tail by n = advance.
272  *	This is called by enqueuers which should hold the
273  *	head lock already
274  */
275 
vector_advancetail(struct vector_queue * qi,int advance)276 static int vector_advancetail(struct vector_queue *qi, int advance)
277 {
278 	qi->tail =
279 		(qi->tail + advance)
280 			% qi->max_depth;
281 	atomic_add(advance, &qi->queue_depth);
282 	return atomic_read(&qi->queue_depth);
283 }
284 
prep_msg(struct vector_private * vp,struct sk_buff * skb,struct iovec * iov)285 static int prep_msg(struct vector_private *vp,
286 	struct sk_buff *skb,
287 	struct iovec *iov)
288 {
289 	int iov_index = 0;
290 	int nr_frags, frag;
291 	skb_frag_t *skb_frag;
292 
293 	nr_frags = skb_shinfo(skb)->nr_frags;
294 	if (nr_frags > MAX_IOV_SIZE) {
295 		if (skb_linearize(skb) != 0)
296 			goto drop;
297 	}
298 	if (vp->header_size > 0) {
299 		iov[iov_index].iov_len = vp->header_size;
300 		vp->form_header(iov[iov_index].iov_base, skb, vp);
301 		iov_index++;
302 	}
303 	iov[iov_index].iov_base = skb->data;
304 	if (nr_frags > 0) {
305 		iov[iov_index].iov_len = skb->len - skb->data_len;
306 		vp->estats.sg_ok++;
307 	} else
308 		iov[iov_index].iov_len = skb->len;
309 	iov_index++;
310 	for (frag = 0; frag < nr_frags; frag++) {
311 		skb_frag = &skb_shinfo(skb)->frags[frag];
312 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
313 		iov[iov_index].iov_len = skb_frag_size(skb_frag);
314 		iov_index++;
315 	}
316 	return iov_index;
317 drop:
318 	return -1;
319 }
320 /*
321  * Generic vector enqueue with support for forming headers using transport
322  * specific callback. Allows GRE, L2TPv3, RAW and other transports
323  * to use a common enqueue procedure in vector mode
324  */
325 
vector_enqueue(struct vector_queue * qi,struct sk_buff * skb)326 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
327 {
328 	struct vector_private *vp = netdev_priv(qi->dev);
329 	int queue_depth;
330 	int packet_len;
331 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
332 	int iov_count;
333 
334 	spin_lock(&qi->tail_lock);
335 	queue_depth = atomic_read(&qi->queue_depth);
336 
337 	if (skb)
338 		packet_len = skb->len;
339 
340 	if (queue_depth < qi->max_depth) {
341 
342 		*(qi->skbuff_vector + qi->tail) = skb;
343 		mmsg_vector += qi->tail;
344 		iov_count = prep_msg(
345 			vp,
346 			skb,
347 			mmsg_vector->msg_hdr.msg_iov
348 		);
349 		if (iov_count < 1)
350 			goto drop;
351 		mmsg_vector->msg_hdr.msg_iovlen = iov_count;
352 		mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
353 		mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
354 		wmb(); /* Make the packet visible to the NAPI poll thread */
355 		queue_depth = vector_advancetail(qi, 1);
356 	} else
357 		goto drop;
358 	spin_unlock(&qi->tail_lock);
359 	return queue_depth;
360 drop:
361 	qi->dev->stats.tx_dropped++;
362 	if (skb != NULL) {
363 		packet_len = skb->len;
364 		dev_consume_skb_any(skb);
365 		netdev_completed_queue(qi->dev, 1, packet_len);
366 	}
367 	spin_unlock(&qi->tail_lock);
368 	return queue_depth;
369 }
370 
consume_vector_skbs(struct vector_queue * qi,int count)371 static int consume_vector_skbs(struct vector_queue *qi, int count)
372 {
373 	struct sk_buff *skb;
374 	int skb_index;
375 	int bytes_compl = 0;
376 
377 	for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
378 		skb = *(qi->skbuff_vector + skb_index);
379 		/* mark as empty to ensure correct destruction if
380 		 * needed
381 		 */
382 		bytes_compl += skb->len;
383 		*(qi->skbuff_vector + skb_index) = NULL;
384 		dev_consume_skb_any(skb);
385 	}
386 	qi->dev->stats.tx_bytes += bytes_compl;
387 	qi->dev->stats.tx_packets += count;
388 	netdev_completed_queue(qi->dev, count, bytes_compl);
389 	return vector_advancehead(qi, count);
390 }
391 
392 /*
393  * Generic vector dequeue via sendmmsg with support for forming headers
394  * using transport specific callback. Allows GRE, L2TPv3, RAW and
395  * other transports to use a common dequeue procedure in vector mode
396  */
397 
398 
vector_send(struct vector_queue * qi)399 static int vector_send(struct vector_queue *qi)
400 {
401 	struct vector_private *vp = netdev_priv(qi->dev);
402 	struct mmsghdr *send_from;
403 	int result = 0, send_len;
404 
405 	if (spin_trylock(&qi->head_lock)) {
406 		/* update queue_depth to current value */
407 		while (atomic_read(&qi->queue_depth) > 0) {
408 			/* Calculate the start of the vector */
409 			send_len = atomic_read(&qi->queue_depth);
410 			send_from = qi->mmsg_vector;
411 			send_from += qi->head;
412 			/* Adjust vector size if wraparound */
413 			if (send_len + qi->head > qi->max_depth)
414 				send_len = qi->max_depth - qi->head;
415 			/* Try to TX as many packets as possible */
416 			if (send_len > 0) {
417 				result = uml_vector_sendmmsg(
418 					 vp->fds->tx_fd,
419 					 send_from,
420 					 send_len,
421 					 0
422 				);
423 				vp->in_write_poll =
424 					(result != send_len);
425 			}
426 			/* For some of the sendmmsg error scenarios
427 			 * we may end being unsure in the TX success
428 			 * for all packets. It is safer to declare
429 			 * them all TX-ed and blame the network.
430 			 */
431 			if (result < 0) {
432 				if (net_ratelimit())
433 					netdev_err(vp->dev, "sendmmsg err=%i\n",
434 						result);
435 				vp->in_error = true;
436 				result = send_len;
437 			}
438 			if (result > 0) {
439 				consume_vector_skbs(qi, result);
440 				/* This is equivalent to an TX IRQ.
441 				 * Restart the upper layers to feed us
442 				 * more packets.
443 				 */
444 				if (result > vp->estats.tx_queue_max)
445 					vp->estats.tx_queue_max = result;
446 				vp->estats.tx_queue_running_average =
447 					(vp->estats.tx_queue_running_average + result) >> 1;
448 			}
449 			netif_wake_queue(qi->dev);
450 			/* if TX is busy, break out of the send loop,
451 			 *  poll write IRQ will reschedule xmit for us.
452 			 */
453 			if (result != send_len) {
454 				vp->estats.tx_restart_queue++;
455 				break;
456 			}
457 		}
458 		spin_unlock(&qi->head_lock);
459 	}
460 	return atomic_read(&qi->queue_depth);
461 }
462 
463 /* Queue destructor. Deliberately stateless so we can use
464  * it in queue cleanup if initialization fails.
465  */
466 
destroy_queue(struct vector_queue * qi)467 static void destroy_queue(struct vector_queue *qi)
468 {
469 	int i;
470 	struct iovec *iov;
471 	struct vector_private *vp = netdev_priv(qi->dev);
472 	struct mmsghdr *mmsg_vector;
473 
474 	if (qi == NULL)
475 		return;
476 	/* deallocate any skbuffs - we rely on any unused to be
477 	 * set to NULL.
478 	 */
479 	if (qi->skbuff_vector != NULL) {
480 		for (i = 0; i < qi->max_depth; i++) {
481 			if (*(qi->skbuff_vector + i) != NULL)
482 				dev_kfree_skb_any(*(qi->skbuff_vector + i));
483 		}
484 		kfree(qi->skbuff_vector);
485 	}
486 	/* deallocate matching IOV structures including header buffs */
487 	if (qi->mmsg_vector != NULL) {
488 		mmsg_vector = qi->mmsg_vector;
489 		for (i = 0; i < qi->max_depth; i++) {
490 			iov = mmsg_vector->msg_hdr.msg_iov;
491 			if (iov != NULL) {
492 				if ((vp->header_size > 0) &&
493 					(iov->iov_base != NULL))
494 					kfree(iov->iov_base);
495 				kfree(iov);
496 			}
497 			mmsg_vector++;
498 		}
499 		kfree(qi->mmsg_vector);
500 	}
501 	kfree(qi);
502 }
503 
504 /*
505  * Queue constructor. Create a queue with a given side.
506  */
create_queue(struct vector_private * vp,int max_size,int header_size,int num_extra_frags)507 static struct vector_queue *create_queue(
508 	struct vector_private *vp,
509 	int max_size,
510 	int header_size,
511 	int num_extra_frags)
512 {
513 	struct vector_queue *result;
514 	int i;
515 	struct iovec *iov;
516 	struct mmsghdr *mmsg_vector;
517 
518 	result = kmalloc_obj(struct vector_queue, GFP_KERNEL);
519 	if (result == NULL)
520 		return NULL;
521 	result->max_depth = max_size;
522 	result->dev = vp->dev;
523 	result->mmsg_vector = kmalloc(
524 		(sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
525 	if (result->mmsg_vector == NULL)
526 		goto out_mmsg_fail;
527 	result->skbuff_vector = kmalloc(
528 		(sizeof(void *) * max_size), GFP_KERNEL);
529 	if (result->skbuff_vector == NULL)
530 		goto out_skb_fail;
531 
532 	/* further failures can be handled safely by destroy_queue*/
533 
534 	mmsg_vector = result->mmsg_vector;
535 	for (i = 0; i < max_size; i++) {
536 		/* Clear all pointers - we use non-NULL as marking on
537 		 * what to free on destruction
538 		 */
539 		*(result->skbuff_vector + i) = NULL;
540 		mmsg_vector->msg_hdr.msg_iov = NULL;
541 		mmsg_vector++;
542 	}
543 	mmsg_vector = result->mmsg_vector;
544 	result->max_iov_frags = num_extra_frags;
545 	for (i = 0; i < max_size; i++) {
546 		if (vp->header_size > 0)
547 			iov = kmalloc_objs(struct iovec, 3 + num_extra_frags,
548 					   GFP_KERNEL);
549 		else
550 			iov = kmalloc_objs(struct iovec, 2 + num_extra_frags,
551 					   GFP_KERNEL);
552 		if (iov == NULL)
553 			goto out_fail;
554 		mmsg_vector->msg_hdr.msg_iov = iov;
555 		mmsg_vector->msg_hdr.msg_iovlen = 1;
556 		mmsg_vector->msg_hdr.msg_control = NULL;
557 		mmsg_vector->msg_hdr.msg_controllen = 0;
558 		mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
559 		mmsg_vector->msg_hdr.msg_name = NULL;
560 		mmsg_vector->msg_hdr.msg_namelen = 0;
561 		if (vp->header_size > 0) {
562 			iov->iov_base = kmalloc(header_size, GFP_KERNEL);
563 			if (iov->iov_base == NULL)
564 				goto out_fail;
565 			iov->iov_len = header_size;
566 			mmsg_vector->msg_hdr.msg_iovlen = 2;
567 			iov++;
568 		}
569 		iov->iov_base = NULL;
570 		iov->iov_len = 0;
571 		mmsg_vector++;
572 	}
573 	spin_lock_init(&result->head_lock);
574 	spin_lock_init(&result->tail_lock);
575 	atomic_set(&result->queue_depth, 0);
576 	result->head = 0;
577 	result->tail = 0;
578 	return result;
579 out_skb_fail:
580 	kfree(result->mmsg_vector);
581 out_mmsg_fail:
582 	kfree(result);
583 	return NULL;
584 out_fail:
585 	destroy_queue(result);
586 	return NULL;
587 }
588 
589 /*
590  * We do not use the RX queue as a proper wraparound queue for now
591  * This is not necessary because the consumption via napi_gro_receive()
592  * happens in-line. While we can try using the return code of
593  * netif_rx() for flow control there are no drivers doing this today.
594  * For this RX specific use we ignore the tail/head locks and
595  * just read into a prepared queue filled with skbuffs.
596  */
597 
prep_skb(struct vector_private * vp,struct user_msghdr * msg)598 static struct sk_buff *prep_skb(
599 	struct vector_private *vp,
600 	struct user_msghdr *msg)
601 {
602 	int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
603 	struct sk_buff *result;
604 	int iov_index = 0, len;
605 	struct iovec *iov = msg->msg_iov;
606 	int err, nr_frags, frag;
607 	skb_frag_t *skb_frag;
608 
609 	if (vp->req_size <= linear)
610 		len = linear;
611 	else
612 		len = vp->req_size;
613 	result = alloc_skb_with_frags(
614 		linear,
615 		len - vp->max_packet,
616 		3,
617 		&err,
618 		GFP_ATOMIC
619 	);
620 	if (vp->header_size > 0)
621 		iov_index++;
622 	if (result == NULL) {
623 		iov[iov_index].iov_base = NULL;
624 		iov[iov_index].iov_len = 0;
625 		goto done;
626 	}
627 	skb_reserve(result, vp->headroom);
628 	result->dev = vp->dev;
629 	skb_put(result, vp->max_packet);
630 	result->data_len = len - vp->max_packet;
631 	result->len += len - vp->max_packet;
632 	skb_reset_mac_header(result);
633 	result->ip_summed = CHECKSUM_NONE;
634 	iov[iov_index].iov_base = result->data;
635 	iov[iov_index].iov_len = vp->max_packet;
636 	iov_index++;
637 
638 	nr_frags = skb_shinfo(result)->nr_frags;
639 	for (frag = 0; frag < nr_frags; frag++) {
640 		skb_frag = &skb_shinfo(result)->frags[frag];
641 		iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
642 		if (iov[iov_index].iov_base != NULL)
643 			iov[iov_index].iov_len = skb_frag_size(skb_frag);
644 		else
645 			iov[iov_index].iov_len = 0;
646 		iov_index++;
647 	}
648 done:
649 	msg->msg_iovlen = iov_index;
650 	return result;
651 }
652 
653 
654 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs */
655 
prep_queue_for_rx(struct vector_queue * qi)656 static void prep_queue_for_rx(struct vector_queue *qi)
657 {
658 	struct vector_private *vp = netdev_priv(qi->dev);
659 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
660 	void **skbuff_vector = qi->skbuff_vector;
661 	int i, queue_depth;
662 
663 	queue_depth = atomic_read(&qi->queue_depth);
664 
665 	if (queue_depth == 0)
666 		return;
667 
668 	/* RX is always emptied 100% during each cycle, so we do not
669 	 * have to do the tail wraparound math for it.
670 	 */
671 
672 	qi->head = qi->tail = 0;
673 
674 	for (i = 0; i < queue_depth; i++) {
675 		/* it is OK if allocation fails - recvmmsg with NULL data in
676 		 * iov argument still performs an RX, just drops the packet
677 		 * This allows us stop faffing around with a "drop buffer"
678 		 */
679 
680 		*skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
681 		skbuff_vector++;
682 		mmsg_vector++;
683 	}
684 	atomic_set(&qi->queue_depth, 0);
685 }
686 
find_device(int n)687 static struct vector_device *find_device(int n)
688 {
689 	struct vector_device *device;
690 	struct list_head *ele;
691 
692 	spin_lock(&vector_devices_lock);
693 	list_for_each(ele, &vector_devices) {
694 		device = list_entry(ele, struct vector_device, list);
695 		if (device->unit == n)
696 			goto out;
697 	}
698 	device = NULL;
699  out:
700 	spin_unlock(&vector_devices_lock);
701 	return device;
702 }
703 
vector_parse(char * str,int * index_out,char ** str_out,char ** error_out)704 static int vector_parse(char *str, int *index_out, char **str_out,
705 			char **error_out)
706 {
707 	int n, err;
708 	char *start = str;
709 
710 	while ((*str != ':') && (strlen(str) > 1))
711 		str++;
712 	if (*str != ':') {
713 		*error_out = "Expected ':' after device number";
714 		return -EINVAL;
715 	}
716 	*str = '\0';
717 
718 	err = kstrtouint(start, 0, &n);
719 	if (err < 0) {
720 		*error_out = "Bad device number";
721 		return err;
722 	}
723 
724 	str++;
725 	if (find_device(n)) {
726 		*error_out = "Device already configured";
727 		return -EINVAL;
728 	}
729 
730 	*index_out = n;
731 	*str_out = str;
732 	return 0;
733 }
734 
vector_config(char * str,char ** error_out)735 static int vector_config(char *str, char **error_out)
736 {
737 	int err, n;
738 	char *params;
739 	struct arglist *parsed;
740 
741 	err = vector_parse(str, &n, &params, error_out);
742 	if (err != 0)
743 		return err;
744 
745 	/* This string is broken up and the pieces used by the underlying
746 	 * driver. We should copy it to make sure things do not go wrong
747 	 * later.
748 	 */
749 
750 	params = kstrdup(params, GFP_KERNEL);
751 	if (params == NULL) {
752 		*error_out = "vector_config failed to strdup string";
753 		return -ENOMEM;
754 	}
755 
756 	parsed = uml_parse_vector_ifspec(params);
757 
758 	if (parsed == NULL) {
759 		*error_out = "vector_config failed to parse parameters";
760 		kfree(params);
761 		return -EINVAL;
762 	}
763 
764 	vector_eth_configure(n, parsed);
765 	return 0;
766 }
767 
vector_id(char ** str,int * start_out,int * end_out)768 static int vector_id(char **str, int *start_out, int *end_out)
769 {
770 	char *end;
771 	int n;
772 
773 	n = simple_strtoul(*str, &end, 0);
774 	if ((*end != '\0') || (end == *str))
775 		return -1;
776 
777 	*start_out = n;
778 	*end_out = n;
779 	*str = end;
780 	return n;
781 }
782 
vector_remove(int n,char ** error_out)783 static int vector_remove(int n, char **error_out)
784 {
785 	struct vector_device *vec_d;
786 	struct net_device *dev;
787 	struct vector_private *vp;
788 
789 	vec_d = find_device(n);
790 	if (vec_d == NULL)
791 		return -ENODEV;
792 	dev = vec_d->dev;
793 	vp = netdev_priv(dev);
794 	if (vp->fds != NULL)
795 		return -EBUSY;
796 	unregister_netdev(dev);
797 	platform_device_unregister(&vec_d->pdev);
798 	return 0;
799 }
800 
801 /*
802  * There is no shared per-transport initialization code, so
803  * we will just initialize each interface one by one and
804  * add them to a list
805  */
806 
807 static struct platform_driver uml_net_driver = {
808 	.driver = {
809 		.name = DRIVER_NAME,
810 	},
811 };
812 
813 
vector_device_release(struct device * dev)814 static void vector_device_release(struct device *dev)
815 {
816 	struct vector_device *device =
817 		container_of(dev, struct vector_device, pdev.dev);
818 	struct net_device *netdev = device->dev;
819 
820 	list_del(&device->list);
821 	kfree(device);
822 	free_netdev(netdev);
823 }
824 
825 /* Bog standard recv using recvmsg - not used normally unless the user
826  * explicitly specifies not to use recvmmsg vector RX.
827  */
828 
vector_legacy_rx(struct vector_private * vp)829 static int vector_legacy_rx(struct vector_private *vp)
830 {
831 	int pkt_len;
832 	struct user_msghdr hdr;
833 	struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
834 	int iovpos = 0;
835 	struct sk_buff *skb;
836 	int header_check;
837 
838 	hdr.msg_name = NULL;
839 	hdr.msg_namelen = 0;
840 	hdr.msg_iov = (struct iovec *) &iov;
841 	hdr.msg_control = NULL;
842 	hdr.msg_controllen = 0;
843 	hdr.msg_flags = 0;
844 
845 	if (vp->header_size > 0) {
846 		iov[0].iov_base = vp->header_rxbuffer;
847 		iov[0].iov_len = vp->header_size;
848 	}
849 
850 	skb = prep_skb(vp, &hdr);
851 
852 	if (skb == NULL) {
853 		/* Read a packet into drop_buffer and don't do
854 		 * anything with it.
855 		 */
856 		iov[iovpos].iov_base = drop_buffer;
857 		iov[iovpos].iov_len = DROP_BUFFER_SIZE;
858 		hdr.msg_iovlen = 1;
859 		vp->dev->stats.rx_dropped++;
860 	}
861 
862 	pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
863 	if (pkt_len < 0) {
864 		vp->in_error = true;
865 		return pkt_len;
866 	}
867 
868 	if (skb != NULL) {
869 		if (pkt_len > vp->header_size) {
870 			if (vp->header_size > 0) {
871 				header_check = vp->verify_header(
872 					vp->header_rxbuffer, skb, vp);
873 				if (header_check < 0) {
874 					dev_kfree_skb_irq(skb);
875 					vp->dev->stats.rx_dropped++;
876 					vp->estats.rx_encaps_errors++;
877 					return 0;
878 				}
879 				if (header_check > 0) {
880 					vp->estats.rx_csum_offload_good++;
881 					skb->ip_summed = CHECKSUM_UNNECESSARY;
882 				}
883 			}
884 			pskb_trim(skb, pkt_len - vp->rx_header_size);
885 			skb->protocol = eth_type_trans(skb, skb->dev);
886 			vp->dev->stats.rx_bytes += skb->len;
887 			vp->dev->stats.rx_packets++;
888 			napi_gro_receive(&vp->napi, skb);
889 		} else {
890 			dev_kfree_skb_irq(skb);
891 		}
892 	}
893 	return pkt_len;
894 }
895 
896 /*
897  * Packet at a time TX which falls back to vector TX if the
898  * underlying transport is busy.
899  */
900 
901 
902 
writev_tx(struct vector_private * vp,struct sk_buff * skb)903 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
904 {
905 	struct iovec iov[3 + MAX_IOV_SIZE];
906 	int iov_count, pkt_len = 0;
907 
908 	iov[0].iov_base = vp->header_txbuffer;
909 	iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
910 
911 	if (iov_count < 1)
912 		goto drop;
913 
914 	pkt_len = uml_vector_writev(
915 		vp->fds->tx_fd,
916 		(struct iovec *) &iov,
917 		iov_count
918 	);
919 
920 	if (pkt_len < 0)
921 		goto drop;
922 
923 	netif_trans_update(vp->dev);
924 	netif_wake_queue(vp->dev);
925 
926 	if (pkt_len > 0) {
927 		vp->dev->stats.tx_bytes += skb->len;
928 		vp->dev->stats.tx_packets++;
929 	} else {
930 		vp->dev->stats.tx_dropped++;
931 	}
932 	consume_skb(skb);
933 	return pkt_len;
934 drop:
935 	vp->dev->stats.tx_dropped++;
936 	consume_skb(skb);
937 	if (pkt_len < 0)
938 		vp->in_error = true;
939 	return pkt_len;
940 }
941 
942 /*
943  * Receive as many messages as we can in one call using the special
944  * mmsg vector matched to an skb vector which we prepared earlier.
945  */
946 
vector_mmsg_rx(struct vector_private * vp,int budget)947 static int vector_mmsg_rx(struct vector_private *vp, int budget)
948 {
949 	int packet_count, i;
950 	struct vector_queue *qi = vp->rx_queue;
951 	struct sk_buff *skb;
952 	struct mmsghdr *mmsg_vector = qi->mmsg_vector;
953 	void **skbuff_vector = qi->skbuff_vector;
954 	int header_check;
955 
956 	/* Refresh the vector and make sure it is with new skbs and the
957 	 * iovs are updated to point to them.
958 	 */
959 
960 	prep_queue_for_rx(qi);
961 
962 	/* Fire the Lazy Gun - get as many packets as we can in one go. */
963 
964 	if (budget > qi->max_depth)
965 		budget = qi->max_depth;
966 
967 	packet_count = uml_vector_recvmmsg(
968 		vp->fds->rx_fd, qi->mmsg_vector, budget, 0);
969 
970 	if (packet_count < 0)
971 		vp->in_error = true;
972 
973 	if (packet_count <= 0)
974 		return packet_count;
975 
976 	/* We treat packet processing as enqueue, buffer refresh as dequeue
977 	 * The queue_depth tells us how many buffers have been used and how
978 	 * many do we need to prep the next time prep_queue_for_rx() is called.
979 	 */
980 
981 	atomic_add(packet_count, &qi->queue_depth);
982 
983 	for (i = 0; i < packet_count; i++) {
984 		skb = (*skbuff_vector);
985 		if (mmsg_vector->msg_len > vp->header_size) {
986 			if (vp->header_size > 0) {
987 				header_check = vp->verify_header(
988 					mmsg_vector->msg_hdr.msg_iov->iov_base,
989 					skb,
990 					vp
991 				);
992 				if (header_check < 0) {
993 				/* Overlay header failed to verify - discard.
994 				 * We can actually keep this skb and reuse it,
995 				 * but that will make the prep logic too
996 				 * complex.
997 				 */
998 					dev_kfree_skb_irq(skb);
999 					vp->estats.rx_encaps_errors++;
1000 					continue;
1001 				}
1002 				if (header_check > 0) {
1003 					vp->estats.rx_csum_offload_good++;
1004 					skb->ip_summed = CHECKSUM_UNNECESSARY;
1005 				}
1006 			}
1007 			pskb_trim(skb,
1008 				mmsg_vector->msg_len - vp->rx_header_size);
1009 			skb->protocol = eth_type_trans(skb, skb->dev);
1010 			/*
1011 			 * We do not need to lock on updating stats here
1012 			 * The interrupt loop is non-reentrant.
1013 			 */
1014 			vp->dev->stats.rx_bytes += skb->len;
1015 			vp->dev->stats.rx_packets++;
1016 			napi_gro_receive(&vp->napi, skb);
1017 		} else {
1018 			/* Overlay header too short to do anything - discard.
1019 			 * We can actually keep this skb and reuse it,
1020 			 * but that will make the prep logic too complex.
1021 			 */
1022 			if (skb != NULL)
1023 				dev_kfree_skb_irq(skb);
1024 		}
1025 		(*skbuff_vector) = NULL;
1026 		/* Move to the next buffer element */
1027 		mmsg_vector++;
1028 		skbuff_vector++;
1029 	}
1030 	if (packet_count > 0) {
1031 		if (vp->estats.rx_queue_max < packet_count)
1032 			vp->estats.rx_queue_max = packet_count;
1033 		vp->estats.rx_queue_running_average =
1034 			(vp->estats.rx_queue_running_average + packet_count) >> 1;
1035 	}
1036 	return packet_count;
1037 }
1038 
vector_net_start_xmit(struct sk_buff * skb,struct net_device * dev)1039 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1040 {
1041 	struct vector_private *vp = netdev_priv(dev);
1042 	int queue_depth = 0;
1043 
1044 	if (vp->in_error) {
1045 		deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1046 		if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1047 			deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1048 		return NETDEV_TX_BUSY;
1049 	}
1050 
1051 	if ((vp->options & VECTOR_TX) == 0) {
1052 		writev_tx(vp, skb);
1053 		return NETDEV_TX_OK;
1054 	}
1055 
1056 	/* We do BQL only in the vector path, no point doing it in
1057 	 * packet at a time mode as there is no device queue
1058 	 */
1059 
1060 	netdev_sent_queue(vp->dev, skb->len);
1061 	queue_depth = vector_enqueue(vp->tx_queue, skb);
1062 
1063 	if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1064 		mod_timer(&vp->tl, vp->coalesce);
1065 		return NETDEV_TX_OK;
1066 	} else {
1067 		queue_depth = vector_send(vp->tx_queue);
1068 		if (queue_depth > 0)
1069 			napi_schedule(&vp->napi);
1070 	}
1071 
1072 	return NETDEV_TX_OK;
1073 }
1074 
vector_rx_interrupt(int irq,void * dev_id)1075 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1076 {
1077 	struct net_device *dev = dev_id;
1078 	struct vector_private *vp = netdev_priv(dev);
1079 
1080 	if (!netif_running(dev))
1081 		return IRQ_NONE;
1082 	napi_schedule(&vp->napi);
1083 	return IRQ_HANDLED;
1084 
1085 }
1086 
vector_tx_interrupt(int irq,void * dev_id)1087 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1088 {
1089 	struct net_device *dev = dev_id;
1090 	struct vector_private *vp = netdev_priv(dev);
1091 
1092 	if (!netif_running(dev))
1093 		return IRQ_NONE;
1094 	/* We need to pay attention to it only if we got
1095 	 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1096 	 * we ignore it. In the future, it may be worth
1097 	 * it to improve the IRQ controller a bit to make
1098 	 * tweaking the IRQ mask less costly
1099 	 */
1100 
1101 	napi_schedule(&vp->napi);
1102 	return IRQ_HANDLED;
1103 
1104 }
1105 
1106 static int irq_rr;
1107 
vector_net_close(struct net_device * dev)1108 static int vector_net_close(struct net_device *dev)
1109 {
1110 	struct vector_private *vp = netdev_priv(dev);
1111 
1112 	netif_stop_queue(dev);
1113 	timer_delete(&vp->tl);
1114 
1115 	vp->opened = false;
1116 
1117 	if (vp->fds == NULL)
1118 		return 0;
1119 
1120 	/* Disable and free all IRQS */
1121 	if (vp->rx_irq > 0) {
1122 		um_free_irq(vp->rx_irq, dev);
1123 		vp->rx_irq = 0;
1124 	}
1125 	if (vp->tx_irq > 0) {
1126 		um_free_irq(vp->tx_irq, dev);
1127 		vp->tx_irq = 0;
1128 	}
1129 	napi_disable(&vp->napi);
1130 	netif_napi_del(&vp->napi);
1131 	if (vp->fds->rx_fd > 0) {
1132 		if (vp->bpf)
1133 			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1134 		os_close_file(vp->fds->rx_fd);
1135 		vp->fds->rx_fd = -1;
1136 	}
1137 	if (vp->fds->tx_fd > 0) {
1138 		os_close_file(vp->fds->tx_fd);
1139 		vp->fds->tx_fd = -1;
1140 	}
1141 	if (vp->bpf != NULL)
1142 		kfree(vp->bpf->filter);
1143 	kfree(vp->bpf);
1144 	vp->bpf = NULL;
1145 	kfree(vp->fds->remote_addr);
1146 	kfree(vp->transport_data);
1147 	kfree(vp->header_rxbuffer);
1148 	kfree(vp->header_txbuffer);
1149 	if (vp->rx_queue != NULL)
1150 		destroy_queue(vp->rx_queue);
1151 	if (vp->tx_queue != NULL)
1152 		destroy_queue(vp->tx_queue);
1153 	kfree(vp->fds);
1154 	vp->fds = NULL;
1155 	vp->in_error = false;
1156 	return 0;
1157 }
1158 
vector_poll(struct napi_struct * napi,int budget)1159 static int vector_poll(struct napi_struct *napi, int budget)
1160 {
1161 	struct vector_private *vp = container_of(napi, struct vector_private, napi);
1162 	int work_done = 0;
1163 	int err;
1164 	bool tx_enqueued = false;
1165 
1166 	if ((vp->options & VECTOR_TX) != 0)
1167 		tx_enqueued = (vector_send(vp->tx_queue) > 0);
1168 	spin_lock(&vp->rx_queue->head_lock);
1169 	if ((vp->options & VECTOR_RX) > 0)
1170 		err = vector_mmsg_rx(vp, budget);
1171 	else {
1172 		err = vector_legacy_rx(vp);
1173 		if (err > 0)
1174 			err = 1;
1175 	}
1176 	spin_unlock(&vp->rx_queue->head_lock);
1177 	if (err > 0)
1178 		work_done += err;
1179 
1180 	if (tx_enqueued || err > 0)
1181 		napi_schedule(napi);
1182 	if (work_done <= budget)
1183 		napi_complete_done(napi, work_done);
1184 	return work_done;
1185 }
1186 
vector_reset_tx(struct work_struct * work)1187 static void vector_reset_tx(struct work_struct *work)
1188 {
1189 	struct vector_private *vp =
1190 		container_of(work, struct vector_private, reset_tx);
1191 	netdev_reset_queue(vp->dev);
1192 	netif_start_queue(vp->dev);
1193 	netif_wake_queue(vp->dev);
1194 }
1195 
vector_net_open(struct net_device * dev)1196 static int vector_net_open(struct net_device *dev)
1197 {
1198 	struct vector_private *vp = netdev_priv(dev);
1199 	int err = -EINVAL;
1200 	struct vector_device *vdevice;
1201 
1202 	if (vp->opened)
1203 		return -ENXIO;
1204 	vp->opened = true;
1205 
1206 	vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1207 
1208 	vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1209 
1210 	if (vp->fds == NULL)
1211 		goto out_close;
1212 
1213 	if (build_transport_data(vp) < 0)
1214 		goto out_close;
1215 
1216 	if ((vp->options & VECTOR_RX) > 0) {
1217 		vp->rx_queue = create_queue(
1218 			vp,
1219 			get_depth(vp->parsed),
1220 			vp->rx_header_size,
1221 			MAX_IOV_SIZE
1222 		);
1223 		atomic_set(&vp->rx_queue->queue_depth, get_depth(vp->parsed));
1224 	} else {
1225 		vp->header_rxbuffer = kmalloc(
1226 			vp->rx_header_size,
1227 			GFP_KERNEL
1228 		);
1229 		if (vp->header_rxbuffer == NULL)
1230 			goto out_close;
1231 	}
1232 	if ((vp->options & VECTOR_TX) > 0) {
1233 		vp->tx_queue = create_queue(
1234 			vp,
1235 			get_depth(vp->parsed),
1236 			vp->header_size,
1237 			MAX_IOV_SIZE
1238 		);
1239 	} else {
1240 		vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1241 		if (vp->header_txbuffer == NULL)
1242 			goto out_close;
1243 	}
1244 
1245 	netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1246 			      get_depth(vp->parsed));
1247 	napi_enable(&vp->napi);
1248 
1249 	/* READ IRQ */
1250 	err = um_request_irq(
1251 		irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1252 			IRQ_READ, vector_rx_interrupt,
1253 			IRQF_SHARED, dev->name, dev);
1254 	if (err < 0) {
1255 		netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1256 		err = -ENETUNREACH;
1257 		goto out_close;
1258 	}
1259 	vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1260 	dev->irq = irq_rr + VECTOR_BASE_IRQ;
1261 	irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1262 
1263 	/* WRITE IRQ - we need it only if we have vector TX */
1264 	if ((vp->options & VECTOR_TX) > 0) {
1265 		err = um_request_irq(
1266 			irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1267 				IRQ_WRITE, vector_tx_interrupt,
1268 				IRQF_SHARED, dev->name, dev);
1269 		if (err < 0) {
1270 			netdev_err(dev,
1271 				"vector_open: failed to get tx irq(%d)\n", err);
1272 			err = -ENETUNREACH;
1273 			goto out_close;
1274 		}
1275 		vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1276 		irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1277 	}
1278 
1279 	if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1280 		if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1281 			vp->options |= VECTOR_BPF;
1282 	}
1283 	if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1284 		vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1285 
1286 	if (vp->bpf != NULL)
1287 		uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1288 
1289 	netif_start_queue(dev);
1290 	vector_reset_stats(vp);
1291 
1292 	/* clear buffer - it can happen that the host side of the interface
1293 	 * is full when we get here. In this case, new data is never queued,
1294 	 * SIGIOs never arrive, and the net never works.
1295 	 */
1296 
1297 	napi_schedule(&vp->napi);
1298 
1299 	vdevice = find_device(vp->unit);
1300 	vdevice->opened = 1;
1301 
1302 	if ((vp->options & VECTOR_TX) != 0)
1303 		add_timer(&vp->tl);
1304 	return 0;
1305 out_close:
1306 	vector_net_close(dev);
1307 	return err;
1308 }
1309 
1310 
vector_net_set_multicast_list(struct net_device * dev)1311 static void vector_net_set_multicast_list(struct net_device *dev)
1312 {
1313 	/* TODO: - we can do some BPF games here */
1314 	return;
1315 }
1316 
vector_net_tx_timeout(struct net_device * dev,unsigned int txqueue)1317 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1318 {
1319 	struct vector_private *vp = netdev_priv(dev);
1320 
1321 	vp->estats.tx_timeout_count++;
1322 	netif_trans_update(dev);
1323 	schedule_work(&vp->reset_tx);
1324 }
1325 
vector_fix_features(struct net_device * dev,netdev_features_t features)1326 static netdev_features_t vector_fix_features(struct net_device *dev,
1327 	netdev_features_t features)
1328 {
1329 	features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1330 	return features;
1331 }
1332 
vector_set_features(struct net_device * dev,netdev_features_t features)1333 static int vector_set_features(struct net_device *dev,
1334 	netdev_features_t features)
1335 {
1336 	struct vector_private *vp = netdev_priv(dev);
1337 	/* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1338 	 * no way to negotiate it on raw sockets, so we can change
1339 	 * only our side.
1340 	 */
1341 	if (features & NETIF_F_GRO)
1342 		/* All new frame buffers will be GRO-sized */
1343 		vp->req_size = 65536;
1344 	else
1345 		/* All new frame buffers will be normal sized */
1346 		vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1347 	return 0;
1348 }
1349 
1350 #ifdef CONFIG_NET_POLL_CONTROLLER
vector_net_poll_controller(struct net_device * dev)1351 static void vector_net_poll_controller(struct net_device *dev)
1352 {
1353 	disable_irq(dev->irq);
1354 	vector_rx_interrupt(dev->irq, dev);
1355 	enable_irq(dev->irq);
1356 }
1357 #endif
1358 
vector_net_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1359 static void vector_net_get_drvinfo(struct net_device *dev,
1360 				struct ethtool_drvinfo *info)
1361 {
1362 	strscpy(info->driver, DRIVER_NAME);
1363 }
1364 
vector_net_load_bpf_flash(struct net_device * dev,struct ethtool_flash * efl)1365 static int vector_net_load_bpf_flash(struct net_device *dev,
1366 				struct ethtool_flash *efl)
1367 {
1368 	struct vector_private *vp = netdev_priv(dev);
1369 	struct vector_device *vdevice;
1370 	const struct firmware *fw;
1371 	int result = 0;
1372 
1373 	if (!(vp->options & VECTOR_BPF_FLASH)) {
1374 		netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1375 		return -1;
1376 	}
1377 
1378 	if (vp->bpf != NULL) {
1379 		if (vp->opened)
1380 			uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1381 		kfree(vp->bpf->filter);
1382 		vp->bpf->filter = NULL;
1383 	} else {
1384 		vp->bpf = kmalloc_obj(struct sock_fprog, GFP_ATOMIC);
1385 		if (vp->bpf == NULL) {
1386 			netdev_err(dev, "failed to allocate memory for firmware\n");
1387 			goto flash_fail;
1388 		}
1389 	}
1390 
1391 	vdevice = find_device(vp->unit);
1392 
1393 	if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1394 		goto flash_fail;
1395 
1396 	vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1397 	if (!vp->bpf->filter)
1398 		goto free_buffer;
1399 
1400 	vp->bpf->len = fw->size / sizeof(struct sock_filter);
1401 	release_firmware(fw);
1402 
1403 	if (vp->opened)
1404 		result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1405 
1406 	return result;
1407 
1408 free_buffer:
1409 	release_firmware(fw);
1410 
1411 flash_fail:
1412 	if (vp->bpf != NULL)
1413 		kfree(vp->bpf->filter);
1414 	kfree(vp->bpf);
1415 	vp->bpf = NULL;
1416 	return -1;
1417 }
1418 
vector_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1419 static void vector_get_ringparam(struct net_device *netdev,
1420 				 struct ethtool_ringparam *ring,
1421 				 struct kernel_ethtool_ringparam *kernel_ring,
1422 				 struct netlink_ext_ack *extack)
1423 {
1424 	struct vector_private *vp = netdev_priv(netdev);
1425 
1426 	ring->rx_max_pending = vp->rx_queue->max_depth;
1427 	ring->tx_max_pending = vp->tx_queue->max_depth;
1428 	ring->rx_pending = vp->rx_queue->max_depth;
1429 	ring->tx_pending = vp->tx_queue->max_depth;
1430 }
1431 
vector_get_strings(struct net_device * dev,u32 stringset,u8 * buf)1432 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1433 {
1434 	switch (stringset) {
1435 	case ETH_SS_TEST:
1436 		*buf = '\0';
1437 		break;
1438 	case ETH_SS_STATS:
1439 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1440 		break;
1441 	default:
1442 		WARN_ON(1);
1443 		break;
1444 	}
1445 }
1446 
vector_get_sset_count(struct net_device * dev,int sset)1447 static int vector_get_sset_count(struct net_device *dev, int sset)
1448 {
1449 	switch (sset) {
1450 	case ETH_SS_TEST:
1451 		return 0;
1452 	case ETH_SS_STATS:
1453 		return VECTOR_NUM_STATS;
1454 	default:
1455 		return -EOPNOTSUPP;
1456 	}
1457 }
1458 
vector_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)1459 static void vector_get_ethtool_stats(struct net_device *dev,
1460 	struct ethtool_stats *estats,
1461 	u64 *tmp_stats)
1462 {
1463 	struct vector_private *vp = netdev_priv(dev);
1464 
1465 	/* Stats are modified in the dequeue portions of
1466 	 * rx/tx which are protected by the head locks
1467 	 * grabbing these locks here ensures they are up
1468 	 * to date.
1469 	 */
1470 
1471 	spin_lock(&vp->tx_queue->head_lock);
1472 	spin_lock(&vp->rx_queue->head_lock);
1473 	memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1474 	spin_unlock(&vp->rx_queue->head_lock);
1475 	spin_unlock(&vp->tx_queue->head_lock);
1476 }
1477 
vector_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1478 static int vector_get_coalesce(struct net_device *netdev,
1479 			       struct ethtool_coalesce *ec,
1480 			       struct kernel_ethtool_coalesce *kernel_coal,
1481 			       struct netlink_ext_ack *extack)
1482 {
1483 	struct vector_private *vp = netdev_priv(netdev);
1484 
1485 	ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1486 	return 0;
1487 }
1488 
vector_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1489 static int vector_set_coalesce(struct net_device *netdev,
1490 			       struct ethtool_coalesce *ec,
1491 			       struct kernel_ethtool_coalesce *kernel_coal,
1492 			       struct netlink_ext_ack *extack)
1493 {
1494 	struct vector_private *vp = netdev_priv(netdev);
1495 
1496 	vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1497 	if (vp->coalesce == 0)
1498 		vp->coalesce = 1;
1499 	return 0;
1500 }
1501 
1502 static const struct ethtool_ops vector_net_ethtool_ops = {
1503 	.supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1504 	.get_drvinfo	= vector_net_get_drvinfo,
1505 	.get_link	= ethtool_op_get_link,
1506 	.get_ts_info	= ethtool_op_get_ts_info,
1507 	.get_ringparam	= vector_get_ringparam,
1508 	.get_strings	= vector_get_strings,
1509 	.get_sset_count	= vector_get_sset_count,
1510 	.get_ethtool_stats = vector_get_ethtool_stats,
1511 	.get_coalesce	= vector_get_coalesce,
1512 	.set_coalesce	= vector_set_coalesce,
1513 	.flash_device	= vector_net_load_bpf_flash,
1514 };
1515 
1516 
1517 static const struct net_device_ops vector_netdev_ops = {
1518 	.ndo_open		= vector_net_open,
1519 	.ndo_stop		= vector_net_close,
1520 	.ndo_start_xmit		= vector_net_start_xmit,
1521 	.ndo_set_rx_mode	= vector_net_set_multicast_list,
1522 	.ndo_tx_timeout		= vector_net_tx_timeout,
1523 	.ndo_set_mac_address	= eth_mac_addr,
1524 	.ndo_validate_addr	= eth_validate_addr,
1525 	.ndo_fix_features	= vector_fix_features,
1526 	.ndo_set_features	= vector_set_features,
1527 #ifdef CONFIG_NET_POLL_CONTROLLER
1528 	.ndo_poll_controller = vector_net_poll_controller,
1529 #endif
1530 };
1531 
vector_timer_expire(struct timer_list * t)1532 static void vector_timer_expire(struct timer_list *t)
1533 {
1534 	struct vector_private *vp = timer_container_of(vp, t, tl);
1535 
1536 	vp->estats.tx_kicks++;
1537 	napi_schedule(&vp->napi);
1538 }
1539 
vector_setup_etheraddr(struct net_device * dev,char * str)1540 static void vector_setup_etheraddr(struct net_device *dev, char *str)
1541 {
1542 	u8 addr[ETH_ALEN];
1543 
1544 	if (str == NULL)
1545 		goto random;
1546 
1547 	if (!mac_pton(str, addr)) {
1548 		netdev_err(dev,
1549 			"Failed to parse '%s' as an ethernet address\n", str);
1550 		goto random;
1551 	}
1552 	if (is_multicast_ether_addr(addr)) {
1553 		netdev_err(dev,
1554 			"Attempt to assign a multicast ethernet address to a device disallowed\n");
1555 		goto random;
1556 	}
1557 	if (!is_valid_ether_addr(addr)) {
1558 		netdev_err(dev,
1559 			"Attempt to assign an invalid ethernet address to a device disallowed\n");
1560 		goto random;
1561 	}
1562 	if (!is_local_ether_addr(addr)) {
1563 		netdev_warn(dev, "Warning: Assigning a globally valid ethernet address to a device\n");
1564 		netdev_warn(dev, "You should set the 2nd rightmost bit in the first byte of the MAC,\n");
1565 		netdev_warn(dev, "i.e. %02x:%02x:%02x:%02x:%02x:%02x\n",
1566 			addr[0] | 0x02, addr[1], addr[2], addr[3], addr[4], addr[5]);
1567 	}
1568 	eth_hw_addr_set(dev, addr);
1569 	return;
1570 
1571 random:
1572 	netdev_info(dev, "Choosing a random ethernet address\n");
1573 	eth_hw_addr_random(dev);
1574 }
1575 
vector_eth_configure(int n,struct arglist * def)1576 static void vector_eth_configure(
1577 		int n,
1578 		struct arglist *def
1579 	)
1580 {
1581 	struct vector_device *device;
1582 	struct net_device *dev;
1583 	struct vector_private *vp;
1584 	int err;
1585 
1586 	device = kzalloc_obj(*device, GFP_KERNEL);
1587 	if (device == NULL) {
1588 		pr_err("Failed to allocate struct vector_device for vec%d\n", n);
1589 		return;
1590 	}
1591 	dev = alloc_etherdev(sizeof(struct vector_private));
1592 	if (dev == NULL) {
1593 		pr_err("Failed to allocate struct net_device for vec%d\n", n);
1594 		goto out_free_device;
1595 	}
1596 
1597 	dev->mtu = get_mtu(def);
1598 
1599 	INIT_LIST_HEAD(&device->list);
1600 	device->unit = n;
1601 
1602 	/* If this name ends up conflicting with an existing registered
1603 	 * netdevice, that is OK, register_netdev{,ice}() will notice this
1604 	 * and fail.
1605 	 */
1606 	snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1607 	vector_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1608 	vp = netdev_priv(dev);
1609 
1610 	/* sysfs register */
1611 	if (!driver_registered) {
1612 		platform_driver_register(&uml_net_driver);
1613 		driver_registered = 1;
1614 	}
1615 	device->pdev.id = n;
1616 	device->pdev.name = DRIVER_NAME;
1617 	device->pdev.dev.release = vector_device_release;
1618 	dev_set_drvdata(&device->pdev.dev, device);
1619 	if (platform_device_register(&device->pdev))
1620 		goto out_free_netdev;
1621 	SET_NETDEV_DEV(dev, &device->pdev.dev);
1622 
1623 	device->dev = dev;
1624 
1625 	INIT_LIST_HEAD(&vp->list);
1626 	vp->dev		= dev;
1627 	vp->unit	= n;
1628 	vp->options	= get_transport_options(def);
1629 	vp->parsed	= def;
1630 	vp->max_packet	= get_mtu(def) + ETH_HEADER_OTHER;
1631 	/*
1632 	 * TODO - we need to calculate headroom so that ip header
1633 	 * is 16 byte aligned all the time
1634 	 */
1635 	vp->headroom	= get_headroom(def);
1636 	vp->coalesce	= 2;
1637 	vp->req_size	= get_req_size(def);
1638 
1639 	dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1640 	INIT_WORK(&vp->reset_tx, vector_reset_tx);
1641 
1642 	timer_setup(&vp->tl, vector_timer_expire, 0);
1643 
1644 	/* FIXME */
1645 	dev->netdev_ops = &vector_netdev_ops;
1646 	dev->ethtool_ops = &vector_net_ethtool_ops;
1647 	dev->watchdog_timeo = (HZ >> 1);
1648 	/* primary IRQ - fixme */
1649 	dev->irq = 0; /* we will adjust this once opened */
1650 
1651 	rtnl_lock();
1652 	err = register_netdevice(dev);
1653 	rtnl_unlock();
1654 	if (err)
1655 		goto out_undo_user_init;
1656 
1657 	spin_lock(&vector_devices_lock);
1658 	list_add(&device->list, &vector_devices);
1659 	spin_unlock(&vector_devices_lock);
1660 
1661 	return;
1662 
1663 out_undo_user_init:
1664 	return;
1665 out_free_netdev:
1666 	free_netdev(dev);
1667 out_free_device:
1668 	kfree(device);
1669 }
1670 
1671 
1672 
1673 
1674 /*
1675  * Invoked late in the init
1676  */
1677 
vector_init(void)1678 static int __init vector_init(void)
1679 {
1680 	struct list_head *ele;
1681 	struct vector_cmd_line_arg *def;
1682 	struct arglist *parsed;
1683 
1684 	list_for_each(ele, &vec_cmd_line) {
1685 		def = list_entry(ele, struct vector_cmd_line_arg, list);
1686 		parsed = uml_parse_vector_ifspec(def->arguments);
1687 		if (parsed != NULL)
1688 			vector_eth_configure(def->unit, parsed);
1689 	}
1690 	return 0;
1691 }
1692 
1693 
1694 /* Invoked at initial argument parsing, only stores
1695  * arguments until a proper vector_init is called
1696  * later
1697  */
1698 
vector_setup(char * str)1699 static int __init vector_setup(char *str)
1700 {
1701 	char *error;
1702 	int n, err;
1703 	struct vector_cmd_line_arg *new;
1704 
1705 	err = vector_parse(str, &n, &str, &error);
1706 	if (err) {
1707 		pr_err("Couldn't parse '%s': %s\n", str, error);
1708 		return 1;
1709 	}
1710 	new = memblock_alloc_or_panic(sizeof(*new), SMP_CACHE_BYTES);
1711 	INIT_LIST_HEAD(&new->list);
1712 	new->unit = n;
1713 	new->arguments = str;
1714 	list_add_tail(&new->list, &vec_cmd_line);
1715 	return 1;
1716 }
1717 
1718 __setup("vec", vector_setup);
1719 __uml_help(vector_setup,
1720 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1721 "    Configure a vector io network device.\n\n"
1722 );
1723 
1724 late_initcall(vector_init);
1725 
1726 static struct mc_device vector_mc = {
1727 	.list		= LIST_HEAD_INIT(vector_mc.list),
1728 	.name		= "vec",
1729 	.config		= vector_config,
1730 	.get_config	= NULL,
1731 	.id		= vector_id,
1732 	.remove		= vector_remove,
1733 };
1734 
1735 #ifdef CONFIG_INET
vector_inetaddr_event(struct notifier_block * this,unsigned long event,void * ptr)1736 static int vector_inetaddr_event(
1737 	struct notifier_block *this,
1738 	unsigned long event,
1739 	void *ptr)
1740 {
1741 	return NOTIFY_DONE;
1742 }
1743 
1744 static struct notifier_block vector_inetaddr_notifier = {
1745 	.notifier_call		= vector_inetaddr_event,
1746 };
1747 
inet_register(void)1748 static void inet_register(void)
1749 {
1750 	register_inetaddr_notifier(&vector_inetaddr_notifier);
1751 }
1752 #else
inet_register(void)1753 static inline void inet_register(void)
1754 {
1755 }
1756 #endif
1757 
vector_net_init(void)1758 static int vector_net_init(void)
1759 {
1760 	mconsole_register_dev(&vector_mc);
1761 	inet_register();
1762 	return 0;
1763 }
1764 
1765 __initcall(vector_net_init);
1766 
1767 
1768 
1769