1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4 * Copyright (C) 2011 - 2014 Cisco Systems Inc
5 * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6 * Copyright (C) 2001 Lennert Buytenhek (buytenh@gnu.org) and
7 * James Leu (jleu@mindspring.net).
8 * Copyright (C) 2001 by various other people who didn't put their name here.
9 */
10
11 #define pr_fmt(fmt) "uml-vector: " fmt
12
13 #include <linux/memblock.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/hex.h>
17 #include <linux/inetdevice.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
20 #include <linux/netdevice.h>
21 #include <linux/platform_device.h>
22 #include <linux/rtnetlink.h>
23 #include <linux/skbuff.h>
24 #include <linux/slab.h>
25 #include <linux/interrupt.h>
26 #include <linux/firmware.h>
27 #include <linux/fs.h>
28 #include <asm/atomic.h>
29 #include <uapi/linux/filter.h>
30 #include <init.h>
31 #include <irq_kern.h>
32 #include <irq_user.h>
33 #include <os.h>
34 #include "mconsole_kern.h"
35 #include "vector_user.h"
36 #include "vector_kern.h"
37
38 /*
39 * Adapted from network devices with the following major changes:
40 * All transports are static - simplifies the code significantly
41 * Multiple FDs/IRQs per device
42 * Vector IO optionally used for read/write, falling back to legacy
43 * based on configuration and/or availability
44 * Configuration is no longer positional - L2TPv3 and GRE require up to
45 * 10 parameters, passing this as positional is not fit for purpose.
46 * Only socket transports are supported
47 */
48
49
50 #define DRIVER_NAME "uml-vector"
51 struct vector_cmd_line_arg {
52 struct list_head list;
53 int unit;
54 char *arguments;
55 };
56
57 struct vector_device {
58 struct list_head list;
59 struct net_device *dev;
60 struct platform_device pdev;
61 int unit;
62 int opened;
63 };
64
65 static LIST_HEAD(vec_cmd_line);
66
67 static DEFINE_SPINLOCK(vector_devices_lock);
68 static LIST_HEAD(vector_devices);
69
70 static int driver_registered;
71
72 static void vector_eth_configure(int n, struct arglist *def);
73 static int vector_mmsg_rx(struct vector_private *vp, int budget);
74
75 /* Argument accessors to set variables (and/or set default values)
76 * mtu, buffer sizing, default headroom, etc
77 */
78
79 #define DEFAULT_HEADROOM 2
80 #define SAFETY_MARGIN 32
81 #define DEFAULT_VECTOR_SIZE 64
82 #define TX_SMALL_PACKET 128
83 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
84
85 static const struct {
86 const char string[ETH_GSTRING_LEN];
87 } ethtool_stats_keys[] = {
88 { "rx_queue_max" },
89 { "rx_queue_running_average" },
90 { "tx_queue_max" },
91 { "tx_queue_running_average" },
92 { "rx_encaps_errors" },
93 { "tx_timeout_count" },
94 { "tx_restart_queue" },
95 { "tx_kicks" },
96 { "tx_flow_control_xon" },
97 { "tx_flow_control_xoff" },
98 { "rx_csum_offload_good" },
99 { "rx_csum_offload_errors"},
100 { "sg_ok"},
101 { "sg_linearized"},
102 };
103
104 #define VECTOR_NUM_STATS ARRAY_SIZE(ethtool_stats_keys)
105
vector_reset_stats(struct vector_private * vp)106 static void vector_reset_stats(struct vector_private *vp)
107 {
108 /* We reuse the existing queue locks for stats */
109
110 /* RX stats are modified with RX head_lock held
111 * in vector_poll.
112 */
113
114 spin_lock(&vp->rx_queue->head_lock);
115 vp->estats.rx_queue_max = 0;
116 vp->estats.rx_queue_running_average = 0;
117 vp->estats.rx_encaps_errors = 0;
118 vp->estats.sg_ok = 0;
119 vp->estats.sg_linearized = 0;
120 spin_unlock(&vp->rx_queue->head_lock);
121
122 /* TX stats are modified with TX head_lock held
123 * in vector_send.
124 */
125
126 spin_lock(&vp->tx_queue->head_lock);
127 vp->estats.tx_timeout_count = 0;
128 vp->estats.tx_restart_queue = 0;
129 vp->estats.tx_kicks = 0;
130 vp->estats.tx_flow_control_xon = 0;
131 vp->estats.tx_flow_control_xoff = 0;
132 vp->estats.tx_queue_max = 0;
133 vp->estats.tx_queue_running_average = 0;
134 spin_unlock(&vp->tx_queue->head_lock);
135 }
136
get_mtu(struct arglist * def)137 static int get_mtu(struct arglist *def)
138 {
139 char *mtu = uml_vector_fetch_arg(def, "mtu");
140 long result;
141
142 if (mtu != NULL) {
143 if (kstrtoul(mtu, 10, &result) == 0)
144 if ((result < (1 << 16) - 1) && (result >= 576))
145 return result;
146 }
147 return ETH_MAX_PACKET;
148 }
149
get_bpf_file(struct arglist * def)150 static char *get_bpf_file(struct arglist *def)
151 {
152 return uml_vector_fetch_arg(def, "bpffile");
153 }
154
get_bpf_flash(struct arglist * def)155 static bool get_bpf_flash(struct arglist *def)
156 {
157 char *allow = uml_vector_fetch_arg(def, "bpfflash");
158 long result;
159
160 if (allow != NULL) {
161 if (kstrtoul(allow, 10, &result) == 0)
162 return result > 0;
163 }
164 return false;
165 }
166
get_depth(struct arglist * def)167 static int get_depth(struct arglist *def)
168 {
169 char *mtu = uml_vector_fetch_arg(def, "depth");
170 long result;
171
172 if (mtu != NULL) {
173 if (kstrtoul(mtu, 10, &result) == 0)
174 return result;
175 }
176 return DEFAULT_VECTOR_SIZE;
177 }
178
get_headroom(struct arglist * def)179 static int get_headroom(struct arglist *def)
180 {
181 char *mtu = uml_vector_fetch_arg(def, "headroom");
182 long result;
183
184 if (mtu != NULL) {
185 if (kstrtoul(mtu, 10, &result) == 0)
186 return result;
187 }
188 return DEFAULT_HEADROOM;
189 }
190
get_req_size(struct arglist * def)191 static int get_req_size(struct arglist *def)
192 {
193 char *gro = uml_vector_fetch_arg(def, "gro");
194 long result;
195
196 if (gro != NULL) {
197 if (kstrtoul(gro, 10, &result) == 0) {
198 if (result > 0)
199 return 65536;
200 }
201 }
202 return get_mtu(def) + ETH_HEADER_OTHER +
203 get_headroom(def) + SAFETY_MARGIN;
204 }
205
206
get_transport_options(struct arglist * def)207 static int get_transport_options(struct arglist *def)
208 {
209 char *transport = uml_vector_fetch_arg(def, "transport");
210 char *vector = uml_vector_fetch_arg(def, "vec");
211
212 int vec_rx = VECTOR_RX;
213 int vec_tx = VECTOR_TX;
214 long parsed;
215 int result = 0;
216
217 if (transport == NULL)
218 return -EINVAL;
219
220 if (vector != NULL) {
221 if (kstrtoul(vector, 10, &parsed) == 0) {
222 if (parsed == 0) {
223 vec_rx = 0;
224 vec_tx = 0;
225 }
226 }
227 }
228
229 if (get_bpf_flash(def))
230 result = VECTOR_BPF_FLASH;
231
232 if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
233 return result;
234 if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
235 return (result | vec_rx | VECTOR_BPF);
236 if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
237 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
238 return (result | vec_rx | vec_tx);
239 }
240
241
242 /* A mini-buffer for packet drop read
243 * All of our supported transports are datagram oriented and we always
244 * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
245 * than the packet size it still counts as full packet read and will
246 * clean the incoming stream to keep sigio/epoll happy
247 */
248
249 #define DROP_BUFFER_SIZE 32
250
251 static char *drop_buffer;
252
253
254 /*
255 * Advance the mmsg queue head by n = advance. Resets the queue to
256 * maximum enqueue/dequeue-at-once capacity if possible. Called by
257 * dequeuers. Caller must hold the head_lock!
258 */
259
vector_advancehead(struct vector_queue * qi,int advance)260 static int vector_advancehead(struct vector_queue *qi, int advance)
261 {
262 qi->head =
263 (qi->head + advance)
264 % qi->max_depth;
265
266
267 atomic_sub(advance, &qi->queue_depth);
268 return atomic_read(&qi->queue_depth);
269 }
270
271 /* Advance the queue tail by n = advance.
272 * This is called by enqueuers which should hold the
273 * head lock already
274 */
275
vector_advancetail(struct vector_queue * qi,int advance)276 static int vector_advancetail(struct vector_queue *qi, int advance)
277 {
278 qi->tail =
279 (qi->tail + advance)
280 % qi->max_depth;
281 atomic_add(advance, &qi->queue_depth);
282 return atomic_read(&qi->queue_depth);
283 }
284
prep_msg(struct vector_private * vp,struct sk_buff * skb,struct iovec * iov)285 static int prep_msg(struct vector_private *vp,
286 struct sk_buff *skb,
287 struct iovec *iov)
288 {
289 int iov_index = 0;
290 int nr_frags, frag;
291 skb_frag_t *skb_frag;
292
293 nr_frags = skb_shinfo(skb)->nr_frags;
294 if (nr_frags > MAX_IOV_SIZE) {
295 if (skb_linearize(skb) != 0)
296 goto drop;
297 }
298 if (vp->header_size > 0) {
299 iov[iov_index].iov_len = vp->header_size;
300 vp->form_header(iov[iov_index].iov_base, skb, vp);
301 iov_index++;
302 }
303 iov[iov_index].iov_base = skb->data;
304 if (nr_frags > 0) {
305 iov[iov_index].iov_len = skb->len - skb->data_len;
306 vp->estats.sg_ok++;
307 } else
308 iov[iov_index].iov_len = skb->len;
309 iov_index++;
310 for (frag = 0; frag < nr_frags; frag++) {
311 skb_frag = &skb_shinfo(skb)->frags[frag];
312 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
313 iov[iov_index].iov_len = skb_frag_size(skb_frag);
314 iov_index++;
315 }
316 return iov_index;
317 drop:
318 return -1;
319 }
320 /*
321 * Generic vector enqueue with support for forming headers using transport
322 * specific callback. Allows GRE, L2TPv3, RAW and other transports
323 * to use a common enqueue procedure in vector mode
324 */
325
vector_enqueue(struct vector_queue * qi,struct sk_buff * skb)326 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
327 {
328 struct vector_private *vp = netdev_priv(qi->dev);
329 int queue_depth;
330 int packet_len;
331 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
332 int iov_count;
333
334 spin_lock(&qi->tail_lock);
335 queue_depth = atomic_read(&qi->queue_depth);
336
337 if (skb)
338 packet_len = skb->len;
339
340 if (queue_depth < qi->max_depth) {
341
342 *(qi->skbuff_vector + qi->tail) = skb;
343 mmsg_vector += qi->tail;
344 iov_count = prep_msg(
345 vp,
346 skb,
347 mmsg_vector->msg_hdr.msg_iov
348 );
349 if (iov_count < 1)
350 goto drop;
351 mmsg_vector->msg_hdr.msg_iovlen = iov_count;
352 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
353 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
354 wmb(); /* Make the packet visible to the NAPI poll thread */
355 queue_depth = vector_advancetail(qi, 1);
356 } else
357 goto drop;
358 spin_unlock(&qi->tail_lock);
359 return queue_depth;
360 drop:
361 qi->dev->stats.tx_dropped++;
362 if (skb != NULL) {
363 packet_len = skb->len;
364 dev_consume_skb_any(skb);
365 netdev_completed_queue(qi->dev, 1, packet_len);
366 }
367 spin_unlock(&qi->tail_lock);
368 return queue_depth;
369 }
370
consume_vector_skbs(struct vector_queue * qi,int count)371 static int consume_vector_skbs(struct vector_queue *qi, int count)
372 {
373 struct sk_buff *skb;
374 int skb_index;
375 int bytes_compl = 0;
376
377 for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
378 skb = *(qi->skbuff_vector + skb_index);
379 /* mark as empty to ensure correct destruction if
380 * needed
381 */
382 bytes_compl += skb->len;
383 *(qi->skbuff_vector + skb_index) = NULL;
384 dev_consume_skb_any(skb);
385 }
386 qi->dev->stats.tx_bytes += bytes_compl;
387 qi->dev->stats.tx_packets += count;
388 netdev_completed_queue(qi->dev, count, bytes_compl);
389 return vector_advancehead(qi, count);
390 }
391
392 /*
393 * Generic vector dequeue via sendmmsg with support for forming headers
394 * using transport specific callback. Allows GRE, L2TPv3, RAW and
395 * other transports to use a common dequeue procedure in vector mode
396 */
397
398
vector_send(struct vector_queue * qi)399 static int vector_send(struct vector_queue *qi)
400 {
401 struct vector_private *vp = netdev_priv(qi->dev);
402 struct mmsghdr *send_from;
403 int result = 0, send_len;
404
405 if (spin_trylock(&qi->head_lock)) {
406 /* update queue_depth to current value */
407 while (atomic_read(&qi->queue_depth) > 0) {
408 /* Calculate the start of the vector */
409 send_len = atomic_read(&qi->queue_depth);
410 send_from = qi->mmsg_vector;
411 send_from += qi->head;
412 /* Adjust vector size if wraparound */
413 if (send_len + qi->head > qi->max_depth)
414 send_len = qi->max_depth - qi->head;
415 /* Try to TX as many packets as possible */
416 if (send_len > 0) {
417 result = uml_vector_sendmmsg(
418 vp->fds->tx_fd,
419 send_from,
420 send_len,
421 0
422 );
423 vp->in_write_poll =
424 (result != send_len);
425 }
426 /* For some of the sendmmsg error scenarios
427 * we may end being unsure in the TX success
428 * for all packets. It is safer to declare
429 * them all TX-ed and blame the network.
430 */
431 if (result < 0) {
432 if (net_ratelimit())
433 netdev_err(vp->dev, "sendmmsg err=%i\n",
434 result);
435 vp->in_error = true;
436 result = send_len;
437 }
438 if (result > 0) {
439 consume_vector_skbs(qi, result);
440 /* This is equivalent to an TX IRQ.
441 * Restart the upper layers to feed us
442 * more packets.
443 */
444 if (result > vp->estats.tx_queue_max)
445 vp->estats.tx_queue_max = result;
446 vp->estats.tx_queue_running_average =
447 (vp->estats.tx_queue_running_average + result) >> 1;
448 }
449 netif_wake_queue(qi->dev);
450 /* if TX is busy, break out of the send loop,
451 * poll write IRQ will reschedule xmit for us.
452 */
453 if (result != send_len) {
454 vp->estats.tx_restart_queue++;
455 break;
456 }
457 }
458 spin_unlock(&qi->head_lock);
459 }
460 return atomic_read(&qi->queue_depth);
461 }
462
463 /* Queue destructor. Deliberately stateless so we can use
464 * it in queue cleanup if initialization fails.
465 */
466
destroy_queue(struct vector_queue * qi)467 static void destroy_queue(struct vector_queue *qi)
468 {
469 int i;
470 struct iovec *iov;
471 struct vector_private *vp = netdev_priv(qi->dev);
472 struct mmsghdr *mmsg_vector;
473
474 if (qi == NULL)
475 return;
476 /* deallocate any skbuffs - we rely on any unused to be
477 * set to NULL.
478 */
479 if (qi->skbuff_vector != NULL) {
480 for (i = 0; i < qi->max_depth; i++) {
481 if (*(qi->skbuff_vector + i) != NULL)
482 dev_kfree_skb_any(*(qi->skbuff_vector + i));
483 }
484 kfree(qi->skbuff_vector);
485 }
486 /* deallocate matching IOV structures including header buffs */
487 if (qi->mmsg_vector != NULL) {
488 mmsg_vector = qi->mmsg_vector;
489 for (i = 0; i < qi->max_depth; i++) {
490 iov = mmsg_vector->msg_hdr.msg_iov;
491 if (iov != NULL) {
492 if ((vp->header_size > 0) &&
493 (iov->iov_base != NULL))
494 kfree(iov->iov_base);
495 kfree(iov);
496 }
497 mmsg_vector++;
498 }
499 kfree(qi->mmsg_vector);
500 }
501 kfree(qi);
502 }
503
504 /*
505 * Queue constructor. Create a queue with a given side.
506 */
create_queue(struct vector_private * vp,int max_size,int header_size,int num_extra_frags)507 static struct vector_queue *create_queue(
508 struct vector_private *vp,
509 int max_size,
510 int header_size,
511 int num_extra_frags)
512 {
513 struct vector_queue *result;
514 int i;
515 struct iovec *iov;
516 struct mmsghdr *mmsg_vector;
517
518 result = kmalloc_obj(struct vector_queue, GFP_KERNEL);
519 if (result == NULL)
520 return NULL;
521 result->max_depth = max_size;
522 result->dev = vp->dev;
523 result->mmsg_vector = kmalloc(
524 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
525 if (result->mmsg_vector == NULL)
526 goto out_mmsg_fail;
527 result->skbuff_vector = kmalloc(
528 (sizeof(void *) * max_size), GFP_KERNEL);
529 if (result->skbuff_vector == NULL)
530 goto out_skb_fail;
531
532 /* further failures can be handled safely by destroy_queue*/
533
534 mmsg_vector = result->mmsg_vector;
535 for (i = 0; i < max_size; i++) {
536 /* Clear all pointers - we use non-NULL as marking on
537 * what to free on destruction
538 */
539 *(result->skbuff_vector + i) = NULL;
540 mmsg_vector->msg_hdr.msg_iov = NULL;
541 mmsg_vector++;
542 }
543 mmsg_vector = result->mmsg_vector;
544 result->max_iov_frags = num_extra_frags;
545 for (i = 0; i < max_size; i++) {
546 if (vp->header_size > 0)
547 iov = kmalloc_objs(struct iovec, 3 + num_extra_frags,
548 GFP_KERNEL);
549 else
550 iov = kmalloc_objs(struct iovec, 2 + num_extra_frags,
551 GFP_KERNEL);
552 if (iov == NULL)
553 goto out_fail;
554 mmsg_vector->msg_hdr.msg_iov = iov;
555 mmsg_vector->msg_hdr.msg_iovlen = 1;
556 mmsg_vector->msg_hdr.msg_control = NULL;
557 mmsg_vector->msg_hdr.msg_controllen = 0;
558 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
559 mmsg_vector->msg_hdr.msg_name = NULL;
560 mmsg_vector->msg_hdr.msg_namelen = 0;
561 if (vp->header_size > 0) {
562 iov->iov_base = kmalloc(header_size, GFP_KERNEL);
563 if (iov->iov_base == NULL)
564 goto out_fail;
565 iov->iov_len = header_size;
566 mmsg_vector->msg_hdr.msg_iovlen = 2;
567 iov++;
568 }
569 iov->iov_base = NULL;
570 iov->iov_len = 0;
571 mmsg_vector++;
572 }
573 spin_lock_init(&result->head_lock);
574 spin_lock_init(&result->tail_lock);
575 atomic_set(&result->queue_depth, 0);
576 result->head = 0;
577 result->tail = 0;
578 return result;
579 out_skb_fail:
580 kfree(result->mmsg_vector);
581 out_mmsg_fail:
582 kfree(result);
583 return NULL;
584 out_fail:
585 destroy_queue(result);
586 return NULL;
587 }
588
589 /*
590 * We do not use the RX queue as a proper wraparound queue for now
591 * This is not necessary because the consumption via napi_gro_receive()
592 * happens in-line. While we can try using the return code of
593 * netif_rx() for flow control there are no drivers doing this today.
594 * For this RX specific use we ignore the tail/head locks and
595 * just read into a prepared queue filled with skbuffs.
596 */
597
prep_skb(struct vector_private * vp,struct user_msghdr * msg)598 static struct sk_buff *prep_skb(
599 struct vector_private *vp,
600 struct user_msghdr *msg)
601 {
602 int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
603 struct sk_buff *result;
604 int iov_index = 0, len;
605 struct iovec *iov = msg->msg_iov;
606 int err, nr_frags, frag;
607 skb_frag_t *skb_frag;
608
609 if (vp->req_size <= linear)
610 len = linear;
611 else
612 len = vp->req_size;
613 result = alloc_skb_with_frags(
614 linear,
615 len - vp->max_packet,
616 3,
617 &err,
618 GFP_ATOMIC
619 );
620 if (vp->header_size > 0)
621 iov_index++;
622 if (result == NULL) {
623 iov[iov_index].iov_base = NULL;
624 iov[iov_index].iov_len = 0;
625 goto done;
626 }
627 skb_reserve(result, vp->headroom);
628 result->dev = vp->dev;
629 skb_put(result, vp->max_packet);
630 result->data_len = len - vp->max_packet;
631 result->len += len - vp->max_packet;
632 skb_reset_mac_header(result);
633 result->ip_summed = CHECKSUM_NONE;
634 iov[iov_index].iov_base = result->data;
635 iov[iov_index].iov_len = vp->max_packet;
636 iov_index++;
637
638 nr_frags = skb_shinfo(result)->nr_frags;
639 for (frag = 0; frag < nr_frags; frag++) {
640 skb_frag = &skb_shinfo(result)->frags[frag];
641 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
642 if (iov[iov_index].iov_base != NULL)
643 iov[iov_index].iov_len = skb_frag_size(skb_frag);
644 else
645 iov[iov_index].iov_len = 0;
646 iov_index++;
647 }
648 done:
649 msg->msg_iovlen = iov_index;
650 return result;
651 }
652
653
654 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs */
655
prep_queue_for_rx(struct vector_queue * qi)656 static void prep_queue_for_rx(struct vector_queue *qi)
657 {
658 struct vector_private *vp = netdev_priv(qi->dev);
659 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
660 void **skbuff_vector = qi->skbuff_vector;
661 int i, queue_depth;
662
663 queue_depth = atomic_read(&qi->queue_depth);
664
665 if (queue_depth == 0)
666 return;
667
668 /* RX is always emptied 100% during each cycle, so we do not
669 * have to do the tail wraparound math for it.
670 */
671
672 qi->head = qi->tail = 0;
673
674 for (i = 0; i < queue_depth; i++) {
675 /* it is OK if allocation fails - recvmmsg with NULL data in
676 * iov argument still performs an RX, just drops the packet
677 * This allows us stop faffing around with a "drop buffer"
678 */
679
680 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
681 skbuff_vector++;
682 mmsg_vector++;
683 }
684 atomic_set(&qi->queue_depth, 0);
685 }
686
find_device(int n)687 static struct vector_device *find_device(int n)
688 {
689 struct vector_device *device;
690 struct list_head *ele;
691
692 spin_lock(&vector_devices_lock);
693 list_for_each(ele, &vector_devices) {
694 device = list_entry(ele, struct vector_device, list);
695 if (device->unit == n)
696 goto out;
697 }
698 device = NULL;
699 out:
700 spin_unlock(&vector_devices_lock);
701 return device;
702 }
703
vector_parse(char * str,int * index_out,char ** str_out,char ** error_out)704 static int vector_parse(char *str, int *index_out, char **str_out,
705 char **error_out)
706 {
707 int n, err;
708 char *start = str;
709
710 while ((*str != ':') && (strlen(str) > 1))
711 str++;
712 if (*str != ':') {
713 *error_out = "Expected ':' after device number";
714 return -EINVAL;
715 }
716 *str = '\0';
717
718 err = kstrtouint(start, 0, &n);
719 if (err < 0) {
720 *error_out = "Bad device number";
721 return err;
722 }
723
724 str++;
725 if (find_device(n)) {
726 *error_out = "Device already configured";
727 return -EINVAL;
728 }
729
730 *index_out = n;
731 *str_out = str;
732 return 0;
733 }
734
vector_config(char * str,char ** error_out)735 static int vector_config(char *str, char **error_out)
736 {
737 int err, n;
738 char *params;
739 struct arglist *parsed;
740
741 err = vector_parse(str, &n, ¶ms, error_out);
742 if (err != 0)
743 return err;
744
745 /* This string is broken up and the pieces used by the underlying
746 * driver. We should copy it to make sure things do not go wrong
747 * later.
748 */
749
750 params = kstrdup(params, GFP_KERNEL);
751 if (params == NULL) {
752 *error_out = "vector_config failed to strdup string";
753 return -ENOMEM;
754 }
755
756 parsed = uml_parse_vector_ifspec(params);
757
758 if (parsed == NULL) {
759 *error_out = "vector_config failed to parse parameters";
760 kfree(params);
761 return -EINVAL;
762 }
763
764 vector_eth_configure(n, parsed);
765 return 0;
766 }
767
vector_id(char ** str,int * start_out,int * end_out)768 static int vector_id(char **str, int *start_out, int *end_out)
769 {
770 char *end;
771 int n;
772
773 n = simple_strtoul(*str, &end, 0);
774 if ((*end != '\0') || (end == *str))
775 return -1;
776
777 *start_out = n;
778 *end_out = n;
779 *str = end;
780 return n;
781 }
782
vector_remove(int n,char ** error_out)783 static int vector_remove(int n, char **error_out)
784 {
785 struct vector_device *vec_d;
786 struct net_device *dev;
787 struct vector_private *vp;
788
789 vec_d = find_device(n);
790 if (vec_d == NULL)
791 return -ENODEV;
792 dev = vec_d->dev;
793 vp = netdev_priv(dev);
794 if (vp->fds != NULL)
795 return -EBUSY;
796 unregister_netdev(dev);
797 platform_device_unregister(&vec_d->pdev);
798 return 0;
799 }
800
801 /*
802 * There is no shared per-transport initialization code, so
803 * we will just initialize each interface one by one and
804 * add them to a list
805 */
806
807 static struct platform_driver uml_net_driver = {
808 .driver = {
809 .name = DRIVER_NAME,
810 },
811 };
812
813
vector_device_release(struct device * dev)814 static void vector_device_release(struct device *dev)
815 {
816 struct vector_device *device =
817 container_of(dev, struct vector_device, pdev.dev);
818 struct net_device *netdev = device->dev;
819
820 list_del(&device->list);
821 kfree(device);
822 free_netdev(netdev);
823 }
824
825 /* Bog standard recv using recvmsg - not used normally unless the user
826 * explicitly specifies not to use recvmmsg vector RX.
827 */
828
vector_legacy_rx(struct vector_private * vp)829 static int vector_legacy_rx(struct vector_private *vp)
830 {
831 int pkt_len;
832 struct user_msghdr hdr;
833 struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
834 int iovpos = 0;
835 struct sk_buff *skb;
836 int header_check;
837
838 hdr.msg_name = NULL;
839 hdr.msg_namelen = 0;
840 hdr.msg_iov = (struct iovec *) &iov;
841 hdr.msg_control = NULL;
842 hdr.msg_controllen = 0;
843 hdr.msg_flags = 0;
844
845 if (vp->header_size > 0) {
846 iov[0].iov_base = vp->header_rxbuffer;
847 iov[0].iov_len = vp->header_size;
848 }
849
850 skb = prep_skb(vp, &hdr);
851
852 if (skb == NULL) {
853 /* Read a packet into drop_buffer and don't do
854 * anything with it.
855 */
856 iov[iovpos].iov_base = drop_buffer;
857 iov[iovpos].iov_len = DROP_BUFFER_SIZE;
858 hdr.msg_iovlen = 1;
859 vp->dev->stats.rx_dropped++;
860 }
861
862 pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
863 if (pkt_len < 0) {
864 vp->in_error = true;
865 return pkt_len;
866 }
867
868 if (skb != NULL) {
869 if (pkt_len > vp->header_size) {
870 if (vp->header_size > 0) {
871 header_check = vp->verify_header(
872 vp->header_rxbuffer, skb, vp);
873 if (header_check < 0) {
874 dev_kfree_skb_irq(skb);
875 vp->dev->stats.rx_dropped++;
876 vp->estats.rx_encaps_errors++;
877 return 0;
878 }
879 if (header_check > 0) {
880 vp->estats.rx_csum_offload_good++;
881 skb->ip_summed = CHECKSUM_UNNECESSARY;
882 }
883 }
884 pskb_trim(skb, pkt_len - vp->rx_header_size);
885 skb->protocol = eth_type_trans(skb, skb->dev);
886 vp->dev->stats.rx_bytes += skb->len;
887 vp->dev->stats.rx_packets++;
888 napi_gro_receive(&vp->napi, skb);
889 } else {
890 dev_kfree_skb_irq(skb);
891 }
892 }
893 return pkt_len;
894 }
895
896 /*
897 * Packet at a time TX which falls back to vector TX if the
898 * underlying transport is busy.
899 */
900
901
902
writev_tx(struct vector_private * vp,struct sk_buff * skb)903 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
904 {
905 struct iovec iov[3 + MAX_IOV_SIZE];
906 int iov_count, pkt_len = 0;
907
908 iov[0].iov_base = vp->header_txbuffer;
909 iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
910
911 if (iov_count < 1)
912 goto drop;
913
914 pkt_len = uml_vector_writev(
915 vp->fds->tx_fd,
916 (struct iovec *) &iov,
917 iov_count
918 );
919
920 if (pkt_len < 0)
921 goto drop;
922
923 netif_trans_update(vp->dev);
924 netif_wake_queue(vp->dev);
925
926 if (pkt_len > 0) {
927 vp->dev->stats.tx_bytes += skb->len;
928 vp->dev->stats.tx_packets++;
929 } else {
930 vp->dev->stats.tx_dropped++;
931 }
932 consume_skb(skb);
933 return pkt_len;
934 drop:
935 vp->dev->stats.tx_dropped++;
936 consume_skb(skb);
937 if (pkt_len < 0)
938 vp->in_error = true;
939 return pkt_len;
940 }
941
942 /*
943 * Receive as many messages as we can in one call using the special
944 * mmsg vector matched to an skb vector which we prepared earlier.
945 */
946
vector_mmsg_rx(struct vector_private * vp,int budget)947 static int vector_mmsg_rx(struct vector_private *vp, int budget)
948 {
949 int packet_count, i;
950 struct vector_queue *qi = vp->rx_queue;
951 struct sk_buff *skb;
952 struct mmsghdr *mmsg_vector = qi->mmsg_vector;
953 void **skbuff_vector = qi->skbuff_vector;
954 int header_check;
955
956 /* Refresh the vector and make sure it is with new skbs and the
957 * iovs are updated to point to them.
958 */
959
960 prep_queue_for_rx(qi);
961
962 /* Fire the Lazy Gun - get as many packets as we can in one go. */
963
964 if (budget > qi->max_depth)
965 budget = qi->max_depth;
966
967 packet_count = uml_vector_recvmmsg(
968 vp->fds->rx_fd, qi->mmsg_vector, budget, 0);
969
970 if (packet_count < 0)
971 vp->in_error = true;
972
973 if (packet_count <= 0)
974 return packet_count;
975
976 /* We treat packet processing as enqueue, buffer refresh as dequeue
977 * The queue_depth tells us how many buffers have been used and how
978 * many do we need to prep the next time prep_queue_for_rx() is called.
979 */
980
981 atomic_add(packet_count, &qi->queue_depth);
982
983 for (i = 0; i < packet_count; i++) {
984 skb = (*skbuff_vector);
985 if (mmsg_vector->msg_len > vp->header_size) {
986 if (vp->header_size > 0) {
987 header_check = vp->verify_header(
988 mmsg_vector->msg_hdr.msg_iov->iov_base,
989 skb,
990 vp
991 );
992 if (header_check < 0) {
993 /* Overlay header failed to verify - discard.
994 * We can actually keep this skb and reuse it,
995 * but that will make the prep logic too
996 * complex.
997 */
998 dev_kfree_skb_irq(skb);
999 vp->estats.rx_encaps_errors++;
1000 continue;
1001 }
1002 if (header_check > 0) {
1003 vp->estats.rx_csum_offload_good++;
1004 skb->ip_summed = CHECKSUM_UNNECESSARY;
1005 }
1006 }
1007 pskb_trim(skb,
1008 mmsg_vector->msg_len - vp->rx_header_size);
1009 skb->protocol = eth_type_trans(skb, skb->dev);
1010 /*
1011 * We do not need to lock on updating stats here
1012 * The interrupt loop is non-reentrant.
1013 */
1014 vp->dev->stats.rx_bytes += skb->len;
1015 vp->dev->stats.rx_packets++;
1016 napi_gro_receive(&vp->napi, skb);
1017 } else {
1018 /* Overlay header too short to do anything - discard.
1019 * We can actually keep this skb and reuse it,
1020 * but that will make the prep logic too complex.
1021 */
1022 if (skb != NULL)
1023 dev_kfree_skb_irq(skb);
1024 }
1025 (*skbuff_vector) = NULL;
1026 /* Move to the next buffer element */
1027 mmsg_vector++;
1028 skbuff_vector++;
1029 }
1030 if (packet_count > 0) {
1031 if (vp->estats.rx_queue_max < packet_count)
1032 vp->estats.rx_queue_max = packet_count;
1033 vp->estats.rx_queue_running_average =
1034 (vp->estats.rx_queue_running_average + packet_count) >> 1;
1035 }
1036 return packet_count;
1037 }
1038
vector_net_start_xmit(struct sk_buff * skb,struct net_device * dev)1039 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1040 {
1041 struct vector_private *vp = netdev_priv(dev);
1042 int queue_depth = 0;
1043
1044 if (vp->in_error) {
1045 deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1046 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1047 deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1048 return NETDEV_TX_BUSY;
1049 }
1050
1051 if ((vp->options & VECTOR_TX) == 0) {
1052 writev_tx(vp, skb);
1053 return NETDEV_TX_OK;
1054 }
1055
1056 /* We do BQL only in the vector path, no point doing it in
1057 * packet at a time mode as there is no device queue
1058 */
1059
1060 netdev_sent_queue(vp->dev, skb->len);
1061 queue_depth = vector_enqueue(vp->tx_queue, skb);
1062
1063 if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1064 mod_timer(&vp->tl, vp->coalesce);
1065 return NETDEV_TX_OK;
1066 } else {
1067 queue_depth = vector_send(vp->tx_queue);
1068 if (queue_depth > 0)
1069 napi_schedule(&vp->napi);
1070 }
1071
1072 return NETDEV_TX_OK;
1073 }
1074
vector_rx_interrupt(int irq,void * dev_id)1075 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1076 {
1077 struct net_device *dev = dev_id;
1078 struct vector_private *vp = netdev_priv(dev);
1079
1080 if (!netif_running(dev))
1081 return IRQ_NONE;
1082 napi_schedule(&vp->napi);
1083 return IRQ_HANDLED;
1084
1085 }
1086
vector_tx_interrupt(int irq,void * dev_id)1087 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1088 {
1089 struct net_device *dev = dev_id;
1090 struct vector_private *vp = netdev_priv(dev);
1091
1092 if (!netif_running(dev))
1093 return IRQ_NONE;
1094 /* We need to pay attention to it only if we got
1095 * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1096 * we ignore it. In the future, it may be worth
1097 * it to improve the IRQ controller a bit to make
1098 * tweaking the IRQ mask less costly
1099 */
1100
1101 napi_schedule(&vp->napi);
1102 return IRQ_HANDLED;
1103
1104 }
1105
1106 static int irq_rr;
1107
vector_net_close(struct net_device * dev)1108 static int vector_net_close(struct net_device *dev)
1109 {
1110 struct vector_private *vp = netdev_priv(dev);
1111
1112 netif_stop_queue(dev);
1113 timer_delete(&vp->tl);
1114
1115 vp->opened = false;
1116
1117 if (vp->fds == NULL)
1118 return 0;
1119
1120 /* Disable and free all IRQS */
1121 if (vp->rx_irq > 0) {
1122 um_free_irq(vp->rx_irq, dev);
1123 vp->rx_irq = 0;
1124 }
1125 if (vp->tx_irq > 0) {
1126 um_free_irq(vp->tx_irq, dev);
1127 vp->tx_irq = 0;
1128 }
1129 napi_disable(&vp->napi);
1130 netif_napi_del(&vp->napi);
1131 if (vp->fds->rx_fd > 0) {
1132 if (vp->bpf)
1133 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1134 os_close_file(vp->fds->rx_fd);
1135 vp->fds->rx_fd = -1;
1136 }
1137 if (vp->fds->tx_fd > 0) {
1138 os_close_file(vp->fds->tx_fd);
1139 vp->fds->tx_fd = -1;
1140 }
1141 if (vp->bpf != NULL)
1142 kfree(vp->bpf->filter);
1143 kfree(vp->bpf);
1144 vp->bpf = NULL;
1145 kfree(vp->fds->remote_addr);
1146 kfree(vp->transport_data);
1147 kfree(vp->header_rxbuffer);
1148 kfree(vp->header_txbuffer);
1149 if (vp->rx_queue != NULL)
1150 destroy_queue(vp->rx_queue);
1151 if (vp->tx_queue != NULL)
1152 destroy_queue(vp->tx_queue);
1153 kfree(vp->fds);
1154 vp->fds = NULL;
1155 vp->in_error = false;
1156 return 0;
1157 }
1158
vector_poll(struct napi_struct * napi,int budget)1159 static int vector_poll(struct napi_struct *napi, int budget)
1160 {
1161 struct vector_private *vp = container_of(napi, struct vector_private, napi);
1162 int work_done = 0;
1163 int err;
1164 bool tx_enqueued = false;
1165
1166 if ((vp->options & VECTOR_TX) != 0)
1167 tx_enqueued = (vector_send(vp->tx_queue) > 0);
1168 spin_lock(&vp->rx_queue->head_lock);
1169 if ((vp->options & VECTOR_RX) > 0)
1170 err = vector_mmsg_rx(vp, budget);
1171 else {
1172 err = vector_legacy_rx(vp);
1173 if (err > 0)
1174 err = 1;
1175 }
1176 spin_unlock(&vp->rx_queue->head_lock);
1177 if (err > 0)
1178 work_done += err;
1179
1180 if (tx_enqueued || err > 0)
1181 napi_schedule(napi);
1182 if (work_done <= budget)
1183 napi_complete_done(napi, work_done);
1184 return work_done;
1185 }
1186
vector_reset_tx(struct work_struct * work)1187 static void vector_reset_tx(struct work_struct *work)
1188 {
1189 struct vector_private *vp =
1190 container_of(work, struct vector_private, reset_tx);
1191 netdev_reset_queue(vp->dev);
1192 netif_start_queue(vp->dev);
1193 netif_wake_queue(vp->dev);
1194 }
1195
vector_net_open(struct net_device * dev)1196 static int vector_net_open(struct net_device *dev)
1197 {
1198 struct vector_private *vp = netdev_priv(dev);
1199 int err = -EINVAL;
1200 struct vector_device *vdevice;
1201
1202 if (vp->opened)
1203 return -ENXIO;
1204 vp->opened = true;
1205
1206 vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1207
1208 vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1209
1210 if (vp->fds == NULL)
1211 goto out_close;
1212
1213 if (build_transport_data(vp) < 0)
1214 goto out_close;
1215
1216 if ((vp->options & VECTOR_RX) > 0) {
1217 vp->rx_queue = create_queue(
1218 vp,
1219 get_depth(vp->parsed),
1220 vp->rx_header_size,
1221 MAX_IOV_SIZE
1222 );
1223 atomic_set(&vp->rx_queue->queue_depth, get_depth(vp->parsed));
1224 } else {
1225 vp->header_rxbuffer = kmalloc(
1226 vp->rx_header_size,
1227 GFP_KERNEL
1228 );
1229 if (vp->header_rxbuffer == NULL)
1230 goto out_close;
1231 }
1232 if ((vp->options & VECTOR_TX) > 0) {
1233 vp->tx_queue = create_queue(
1234 vp,
1235 get_depth(vp->parsed),
1236 vp->header_size,
1237 MAX_IOV_SIZE
1238 );
1239 } else {
1240 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1241 if (vp->header_txbuffer == NULL)
1242 goto out_close;
1243 }
1244
1245 netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1246 get_depth(vp->parsed));
1247 napi_enable(&vp->napi);
1248
1249 /* READ IRQ */
1250 err = um_request_irq(
1251 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1252 IRQ_READ, vector_rx_interrupt,
1253 IRQF_SHARED, dev->name, dev);
1254 if (err < 0) {
1255 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1256 err = -ENETUNREACH;
1257 goto out_close;
1258 }
1259 vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1260 dev->irq = irq_rr + VECTOR_BASE_IRQ;
1261 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1262
1263 /* WRITE IRQ - we need it only if we have vector TX */
1264 if ((vp->options & VECTOR_TX) > 0) {
1265 err = um_request_irq(
1266 irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1267 IRQ_WRITE, vector_tx_interrupt,
1268 IRQF_SHARED, dev->name, dev);
1269 if (err < 0) {
1270 netdev_err(dev,
1271 "vector_open: failed to get tx irq(%d)\n", err);
1272 err = -ENETUNREACH;
1273 goto out_close;
1274 }
1275 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1276 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1277 }
1278
1279 if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1280 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1281 vp->options |= VECTOR_BPF;
1282 }
1283 if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1284 vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1285
1286 if (vp->bpf != NULL)
1287 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1288
1289 netif_start_queue(dev);
1290 vector_reset_stats(vp);
1291
1292 /* clear buffer - it can happen that the host side of the interface
1293 * is full when we get here. In this case, new data is never queued,
1294 * SIGIOs never arrive, and the net never works.
1295 */
1296
1297 napi_schedule(&vp->napi);
1298
1299 vdevice = find_device(vp->unit);
1300 vdevice->opened = 1;
1301
1302 if ((vp->options & VECTOR_TX) != 0)
1303 add_timer(&vp->tl);
1304 return 0;
1305 out_close:
1306 vector_net_close(dev);
1307 return err;
1308 }
1309
1310
vector_net_set_multicast_list(struct net_device * dev)1311 static void vector_net_set_multicast_list(struct net_device *dev)
1312 {
1313 /* TODO: - we can do some BPF games here */
1314 return;
1315 }
1316
vector_net_tx_timeout(struct net_device * dev,unsigned int txqueue)1317 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1318 {
1319 struct vector_private *vp = netdev_priv(dev);
1320
1321 vp->estats.tx_timeout_count++;
1322 netif_trans_update(dev);
1323 schedule_work(&vp->reset_tx);
1324 }
1325
vector_fix_features(struct net_device * dev,netdev_features_t features)1326 static netdev_features_t vector_fix_features(struct net_device *dev,
1327 netdev_features_t features)
1328 {
1329 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1330 return features;
1331 }
1332
vector_set_features(struct net_device * dev,netdev_features_t features)1333 static int vector_set_features(struct net_device *dev,
1334 netdev_features_t features)
1335 {
1336 struct vector_private *vp = netdev_priv(dev);
1337 /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1338 * no way to negotiate it on raw sockets, so we can change
1339 * only our side.
1340 */
1341 if (features & NETIF_F_GRO)
1342 /* All new frame buffers will be GRO-sized */
1343 vp->req_size = 65536;
1344 else
1345 /* All new frame buffers will be normal sized */
1346 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1347 return 0;
1348 }
1349
1350 #ifdef CONFIG_NET_POLL_CONTROLLER
vector_net_poll_controller(struct net_device * dev)1351 static void vector_net_poll_controller(struct net_device *dev)
1352 {
1353 disable_irq(dev->irq);
1354 vector_rx_interrupt(dev->irq, dev);
1355 enable_irq(dev->irq);
1356 }
1357 #endif
1358
vector_net_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1359 static void vector_net_get_drvinfo(struct net_device *dev,
1360 struct ethtool_drvinfo *info)
1361 {
1362 strscpy(info->driver, DRIVER_NAME);
1363 }
1364
vector_net_load_bpf_flash(struct net_device * dev,struct ethtool_flash * efl)1365 static int vector_net_load_bpf_flash(struct net_device *dev,
1366 struct ethtool_flash *efl)
1367 {
1368 struct vector_private *vp = netdev_priv(dev);
1369 struct vector_device *vdevice;
1370 const struct firmware *fw;
1371 int result = 0;
1372
1373 if (!(vp->options & VECTOR_BPF_FLASH)) {
1374 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1375 return -1;
1376 }
1377
1378 if (vp->bpf != NULL) {
1379 if (vp->opened)
1380 uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1381 kfree(vp->bpf->filter);
1382 vp->bpf->filter = NULL;
1383 } else {
1384 vp->bpf = kmalloc_obj(struct sock_fprog, GFP_ATOMIC);
1385 if (vp->bpf == NULL) {
1386 netdev_err(dev, "failed to allocate memory for firmware\n");
1387 goto flash_fail;
1388 }
1389 }
1390
1391 vdevice = find_device(vp->unit);
1392
1393 if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1394 goto flash_fail;
1395
1396 vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1397 if (!vp->bpf->filter)
1398 goto free_buffer;
1399
1400 vp->bpf->len = fw->size / sizeof(struct sock_filter);
1401 release_firmware(fw);
1402
1403 if (vp->opened)
1404 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1405
1406 return result;
1407
1408 free_buffer:
1409 release_firmware(fw);
1410
1411 flash_fail:
1412 if (vp->bpf != NULL)
1413 kfree(vp->bpf->filter);
1414 kfree(vp->bpf);
1415 vp->bpf = NULL;
1416 return -1;
1417 }
1418
vector_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring,struct kernel_ethtool_ringparam * kernel_ring,struct netlink_ext_ack * extack)1419 static void vector_get_ringparam(struct net_device *netdev,
1420 struct ethtool_ringparam *ring,
1421 struct kernel_ethtool_ringparam *kernel_ring,
1422 struct netlink_ext_ack *extack)
1423 {
1424 struct vector_private *vp = netdev_priv(netdev);
1425
1426 ring->rx_max_pending = vp->rx_queue->max_depth;
1427 ring->tx_max_pending = vp->tx_queue->max_depth;
1428 ring->rx_pending = vp->rx_queue->max_depth;
1429 ring->tx_pending = vp->tx_queue->max_depth;
1430 }
1431
vector_get_strings(struct net_device * dev,u32 stringset,u8 * buf)1432 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1433 {
1434 switch (stringset) {
1435 case ETH_SS_TEST:
1436 *buf = '\0';
1437 break;
1438 case ETH_SS_STATS:
1439 memcpy(buf, ðtool_stats_keys, sizeof(ethtool_stats_keys));
1440 break;
1441 default:
1442 WARN_ON(1);
1443 break;
1444 }
1445 }
1446
vector_get_sset_count(struct net_device * dev,int sset)1447 static int vector_get_sset_count(struct net_device *dev, int sset)
1448 {
1449 switch (sset) {
1450 case ETH_SS_TEST:
1451 return 0;
1452 case ETH_SS_STATS:
1453 return VECTOR_NUM_STATS;
1454 default:
1455 return -EOPNOTSUPP;
1456 }
1457 }
1458
vector_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * estats,u64 * tmp_stats)1459 static void vector_get_ethtool_stats(struct net_device *dev,
1460 struct ethtool_stats *estats,
1461 u64 *tmp_stats)
1462 {
1463 struct vector_private *vp = netdev_priv(dev);
1464
1465 /* Stats are modified in the dequeue portions of
1466 * rx/tx which are protected by the head locks
1467 * grabbing these locks here ensures they are up
1468 * to date.
1469 */
1470
1471 spin_lock(&vp->tx_queue->head_lock);
1472 spin_lock(&vp->rx_queue->head_lock);
1473 memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1474 spin_unlock(&vp->rx_queue->head_lock);
1475 spin_unlock(&vp->tx_queue->head_lock);
1476 }
1477
vector_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1478 static int vector_get_coalesce(struct net_device *netdev,
1479 struct ethtool_coalesce *ec,
1480 struct kernel_ethtool_coalesce *kernel_coal,
1481 struct netlink_ext_ack *extack)
1482 {
1483 struct vector_private *vp = netdev_priv(netdev);
1484
1485 ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1486 return 0;
1487 }
1488
vector_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec,struct kernel_ethtool_coalesce * kernel_coal,struct netlink_ext_ack * extack)1489 static int vector_set_coalesce(struct net_device *netdev,
1490 struct ethtool_coalesce *ec,
1491 struct kernel_ethtool_coalesce *kernel_coal,
1492 struct netlink_ext_ack *extack)
1493 {
1494 struct vector_private *vp = netdev_priv(netdev);
1495
1496 vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1497 if (vp->coalesce == 0)
1498 vp->coalesce = 1;
1499 return 0;
1500 }
1501
1502 static const struct ethtool_ops vector_net_ethtool_ops = {
1503 .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1504 .get_drvinfo = vector_net_get_drvinfo,
1505 .get_link = ethtool_op_get_link,
1506 .get_ts_info = ethtool_op_get_ts_info,
1507 .get_ringparam = vector_get_ringparam,
1508 .get_strings = vector_get_strings,
1509 .get_sset_count = vector_get_sset_count,
1510 .get_ethtool_stats = vector_get_ethtool_stats,
1511 .get_coalesce = vector_get_coalesce,
1512 .set_coalesce = vector_set_coalesce,
1513 .flash_device = vector_net_load_bpf_flash,
1514 };
1515
1516
1517 static const struct net_device_ops vector_netdev_ops = {
1518 .ndo_open = vector_net_open,
1519 .ndo_stop = vector_net_close,
1520 .ndo_start_xmit = vector_net_start_xmit,
1521 .ndo_set_rx_mode = vector_net_set_multicast_list,
1522 .ndo_tx_timeout = vector_net_tx_timeout,
1523 .ndo_set_mac_address = eth_mac_addr,
1524 .ndo_validate_addr = eth_validate_addr,
1525 .ndo_fix_features = vector_fix_features,
1526 .ndo_set_features = vector_set_features,
1527 #ifdef CONFIG_NET_POLL_CONTROLLER
1528 .ndo_poll_controller = vector_net_poll_controller,
1529 #endif
1530 };
1531
vector_timer_expire(struct timer_list * t)1532 static void vector_timer_expire(struct timer_list *t)
1533 {
1534 struct vector_private *vp = timer_container_of(vp, t, tl);
1535
1536 vp->estats.tx_kicks++;
1537 napi_schedule(&vp->napi);
1538 }
1539
vector_setup_etheraddr(struct net_device * dev,char * str)1540 static void vector_setup_etheraddr(struct net_device *dev, char *str)
1541 {
1542 u8 addr[ETH_ALEN];
1543
1544 if (str == NULL)
1545 goto random;
1546
1547 if (!mac_pton(str, addr)) {
1548 netdev_err(dev,
1549 "Failed to parse '%s' as an ethernet address\n", str);
1550 goto random;
1551 }
1552 if (is_multicast_ether_addr(addr)) {
1553 netdev_err(dev,
1554 "Attempt to assign a multicast ethernet address to a device disallowed\n");
1555 goto random;
1556 }
1557 if (!is_valid_ether_addr(addr)) {
1558 netdev_err(dev,
1559 "Attempt to assign an invalid ethernet address to a device disallowed\n");
1560 goto random;
1561 }
1562 if (!is_local_ether_addr(addr)) {
1563 netdev_warn(dev, "Warning: Assigning a globally valid ethernet address to a device\n");
1564 netdev_warn(dev, "You should set the 2nd rightmost bit in the first byte of the MAC,\n");
1565 netdev_warn(dev, "i.e. %02x:%02x:%02x:%02x:%02x:%02x\n",
1566 addr[0] | 0x02, addr[1], addr[2], addr[3], addr[4], addr[5]);
1567 }
1568 eth_hw_addr_set(dev, addr);
1569 return;
1570
1571 random:
1572 netdev_info(dev, "Choosing a random ethernet address\n");
1573 eth_hw_addr_random(dev);
1574 }
1575
vector_eth_configure(int n,struct arglist * def)1576 static void vector_eth_configure(
1577 int n,
1578 struct arglist *def
1579 )
1580 {
1581 struct vector_device *device;
1582 struct net_device *dev;
1583 struct vector_private *vp;
1584 int err;
1585
1586 device = kzalloc_obj(*device, GFP_KERNEL);
1587 if (device == NULL) {
1588 pr_err("Failed to allocate struct vector_device for vec%d\n", n);
1589 return;
1590 }
1591 dev = alloc_etherdev(sizeof(struct vector_private));
1592 if (dev == NULL) {
1593 pr_err("Failed to allocate struct net_device for vec%d\n", n);
1594 goto out_free_device;
1595 }
1596
1597 dev->mtu = get_mtu(def);
1598
1599 INIT_LIST_HEAD(&device->list);
1600 device->unit = n;
1601
1602 /* If this name ends up conflicting with an existing registered
1603 * netdevice, that is OK, register_netdev{,ice}() will notice this
1604 * and fail.
1605 */
1606 snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1607 vector_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1608 vp = netdev_priv(dev);
1609
1610 /* sysfs register */
1611 if (!driver_registered) {
1612 platform_driver_register(¨_net_driver);
1613 driver_registered = 1;
1614 }
1615 device->pdev.id = n;
1616 device->pdev.name = DRIVER_NAME;
1617 device->pdev.dev.release = vector_device_release;
1618 dev_set_drvdata(&device->pdev.dev, device);
1619 if (platform_device_register(&device->pdev))
1620 goto out_free_netdev;
1621 SET_NETDEV_DEV(dev, &device->pdev.dev);
1622
1623 device->dev = dev;
1624
1625 INIT_LIST_HEAD(&vp->list);
1626 vp->dev = dev;
1627 vp->unit = n;
1628 vp->options = get_transport_options(def);
1629 vp->parsed = def;
1630 vp->max_packet = get_mtu(def) + ETH_HEADER_OTHER;
1631 /*
1632 * TODO - we need to calculate headroom so that ip header
1633 * is 16 byte aligned all the time
1634 */
1635 vp->headroom = get_headroom(def);
1636 vp->coalesce = 2;
1637 vp->req_size = get_req_size(def);
1638
1639 dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1640 INIT_WORK(&vp->reset_tx, vector_reset_tx);
1641
1642 timer_setup(&vp->tl, vector_timer_expire, 0);
1643
1644 /* FIXME */
1645 dev->netdev_ops = &vector_netdev_ops;
1646 dev->ethtool_ops = &vector_net_ethtool_ops;
1647 dev->watchdog_timeo = (HZ >> 1);
1648 /* primary IRQ - fixme */
1649 dev->irq = 0; /* we will adjust this once opened */
1650
1651 rtnl_lock();
1652 err = register_netdevice(dev);
1653 rtnl_unlock();
1654 if (err)
1655 goto out_undo_user_init;
1656
1657 spin_lock(&vector_devices_lock);
1658 list_add(&device->list, &vector_devices);
1659 spin_unlock(&vector_devices_lock);
1660
1661 return;
1662
1663 out_undo_user_init:
1664 return;
1665 out_free_netdev:
1666 free_netdev(dev);
1667 out_free_device:
1668 kfree(device);
1669 }
1670
1671
1672
1673
1674 /*
1675 * Invoked late in the init
1676 */
1677
vector_init(void)1678 static int __init vector_init(void)
1679 {
1680 struct list_head *ele;
1681 struct vector_cmd_line_arg *def;
1682 struct arglist *parsed;
1683
1684 list_for_each(ele, &vec_cmd_line) {
1685 def = list_entry(ele, struct vector_cmd_line_arg, list);
1686 parsed = uml_parse_vector_ifspec(def->arguments);
1687 if (parsed != NULL)
1688 vector_eth_configure(def->unit, parsed);
1689 }
1690 return 0;
1691 }
1692
1693
1694 /* Invoked at initial argument parsing, only stores
1695 * arguments until a proper vector_init is called
1696 * later
1697 */
1698
vector_setup(char * str)1699 static int __init vector_setup(char *str)
1700 {
1701 char *error;
1702 int n, err;
1703 struct vector_cmd_line_arg *new;
1704
1705 err = vector_parse(str, &n, &str, &error);
1706 if (err) {
1707 pr_err("Couldn't parse '%s': %s\n", str, error);
1708 return 1;
1709 }
1710 new = memblock_alloc_or_panic(sizeof(*new), SMP_CACHE_BYTES);
1711 INIT_LIST_HEAD(&new->list);
1712 new->unit = n;
1713 new->arguments = str;
1714 list_add_tail(&new->list, &vec_cmd_line);
1715 return 1;
1716 }
1717
1718 __setup("vec", vector_setup);
1719 __uml_help(vector_setup,
1720 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1721 " Configure a vector io network device.\n\n"
1722 );
1723
1724 late_initcall(vector_init);
1725
1726 static struct mc_device vector_mc = {
1727 .list = LIST_HEAD_INIT(vector_mc.list),
1728 .name = "vec",
1729 .config = vector_config,
1730 .get_config = NULL,
1731 .id = vector_id,
1732 .remove = vector_remove,
1733 };
1734
1735 #ifdef CONFIG_INET
vector_inetaddr_event(struct notifier_block * this,unsigned long event,void * ptr)1736 static int vector_inetaddr_event(
1737 struct notifier_block *this,
1738 unsigned long event,
1739 void *ptr)
1740 {
1741 return NOTIFY_DONE;
1742 }
1743
1744 static struct notifier_block vector_inetaddr_notifier = {
1745 .notifier_call = vector_inetaddr_event,
1746 };
1747
inet_register(void)1748 static void inet_register(void)
1749 {
1750 register_inetaddr_notifier(&vector_inetaddr_notifier);
1751 }
1752 #else
inet_register(void)1753 static inline void inet_register(void)
1754 {
1755 }
1756 #endif
1757
vector_net_init(void)1758 static int vector_net_init(void)
1759 {
1760 mconsole_register_dev(&vector_mc);
1761 inet_register();
1762 return 0;
1763 }
1764
1765 __initcall(vector_net_init);
1766
1767
1768
1769