1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 drbd.c
4
5 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
6
7 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
8 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
9 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
10
11 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
12 from Logicworks, Inc. for making SDP replication support possible.
13
14
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/module.h>
20 #include <linux/jiffies.h>
21 #include <linux/drbd.h>
22 #include <linux/uaccess.h>
23 #include <asm/types.h>
24 #include <net/sock.h>
25 #include <linux/ctype.h>
26 #include <linux/mutex.h>
27 #include <linux/fs.h>
28 #include <linux/file.h>
29 #include <linux/proc_fs.h>
30 #include <linux/init.h>
31 #include <linux/mm.h>
32 #include <linux/memcontrol.h>
33 #include <linux/mm_inline.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/reboot.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/workqueue.h>
40 #include <linux/unistd.h>
41 #include <linux/vmalloc.h>
42 #include <linux/sched/signal.h>
43
44 #include <linux/drbd_limits.h>
45 #include "drbd_int.h"
46 #include "drbd_protocol.h"
47 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
48 #include "drbd_vli.h"
49 #include "drbd_debugfs.h"
50
51 static DEFINE_MUTEX(drbd_main_mutex);
52 static int drbd_open(struct gendisk *disk, blk_mode_t mode);
53 static void drbd_release(struct gendisk *gd);
54 static void md_sync_timer_fn(struct timer_list *t);
55 static int w_bitmap_io(struct drbd_work *w, int unused);
56
57 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
58 "Lars Ellenberg <lars@linbit.com>");
59 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
60 MODULE_VERSION(REL_VERSION);
61 MODULE_LICENSE("GPL");
62 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
63 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
64 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
65
66 #include <linux/moduleparam.h>
67 /* thanks to these macros, if compiled into the kernel (not-module),
68 * these become boot parameters (e.g., drbd.minor_count) */
69
70 #ifdef CONFIG_DRBD_FAULT_INJECTION
71 int drbd_enable_faults;
72 int drbd_fault_rate;
73 static int drbd_fault_count;
74 static int drbd_fault_devs;
75 /* bitmap of enabled faults */
76 module_param_named(enable_faults, drbd_enable_faults, int, 0664);
77 /* fault rate % value - applies to all enabled faults */
78 module_param_named(fault_rate, drbd_fault_rate, int, 0664);
79 /* count of faults inserted */
80 module_param_named(fault_count, drbd_fault_count, int, 0664);
81 /* bitmap of devices to insert faults on */
82 module_param_named(fault_devs, drbd_fault_devs, int, 0644);
83 #endif
84
85 /* module parameters we can keep static */
86 static bool drbd_allow_oos; /* allow_open_on_secondary */
87 static bool drbd_disable_sendpage;
88 MODULE_PARM_DESC(allow_oos, "DONT USE!");
89 module_param_named(allow_oos, drbd_allow_oos, bool, 0);
90 module_param_named(disable_sendpage, drbd_disable_sendpage, bool, 0644);
91
92 /* module parameters we share */
93 int drbd_proc_details; /* Detail level in proc drbd*/
94 module_param_named(proc_details, drbd_proc_details, int, 0644);
95 /* module parameters shared with defaults */
96 unsigned int drbd_minor_count = DRBD_MINOR_COUNT_DEF;
97 /* Module parameter for setting the user mode helper program
98 * to run. Default is /sbin/drbdadm */
99 char drbd_usermode_helper[80] = "/sbin/drbdadm";
100 module_param_named(minor_count, drbd_minor_count, uint, 0444);
101 module_param_string(usermode_helper, drbd_usermode_helper, sizeof(drbd_usermode_helper), 0644);
102
103 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
104 * as member "struct gendisk *vdisk;"
105 */
106 struct idr drbd_devices;
107 struct list_head drbd_resources;
108 struct mutex resources_mutex;
109
110 struct kmem_cache *drbd_request_cache;
111 struct kmem_cache *drbd_ee_cache; /* peer requests */
112 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
113 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
114 mempool_t drbd_request_mempool;
115 mempool_t drbd_ee_mempool;
116 mempool_t drbd_md_io_page_pool;
117 struct bio_set drbd_md_io_bio_set;
118 struct bio_set drbd_io_bio_set;
119
120 /* I do not use a standard mempool, because:
121 1) I want to hand out the pre-allocated objects first.
122 2) I want to be able to interrupt sleeping allocation with a signal.
123 Note: This is a single linked list, the next pointer is the private
124 member of struct page.
125 */
126 struct page *drbd_pp_pool;
127 DEFINE_SPINLOCK(drbd_pp_lock);
128 int drbd_pp_vacant;
129 wait_queue_head_t drbd_pp_wait;
130
131 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
132
133 static const struct block_device_operations drbd_ops = {
134 .owner = THIS_MODULE,
135 .submit_bio = drbd_submit_bio,
136 .open = drbd_open,
137 .release = drbd_release,
138 };
139
140 #ifdef __CHECKER__
141 /* When checking with sparse, and this is an inline function, sparse will
142 give tons of false positives. When this is a real functions sparse works.
143 */
_get_ldev_if_state(struct drbd_device * device,enum drbd_disk_state mins)144 int _get_ldev_if_state(struct drbd_device *device, enum drbd_disk_state mins)
145 {
146 int io_allowed;
147
148 atomic_inc(&device->local_cnt);
149 io_allowed = (device->state.disk >= mins);
150 if (!io_allowed) {
151 if (atomic_dec_and_test(&device->local_cnt))
152 wake_up(&device->misc_wait);
153 }
154 return io_allowed;
155 }
156
157 #endif
158
159 /**
160 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
161 * @connection: DRBD connection.
162 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
163 * @set_size: Expected number of requests before that barrier.
164 *
165 * In case the passed barrier_nr or set_size does not match the oldest
166 * epoch of not yet barrier-acked requests, this function will cause a
167 * termination of the connection.
168 */
tl_release(struct drbd_connection * connection,unsigned int barrier_nr,unsigned int set_size)169 void tl_release(struct drbd_connection *connection, unsigned int barrier_nr,
170 unsigned int set_size)
171 {
172 struct drbd_request *r;
173 struct drbd_request *req = NULL, *tmp = NULL;
174 int expect_epoch = 0;
175 int expect_size = 0;
176
177 spin_lock_irq(&connection->resource->req_lock);
178
179 /* find oldest not yet barrier-acked write request,
180 * count writes in its epoch. */
181 list_for_each_entry(r, &connection->transfer_log, tl_requests) {
182 const unsigned s = r->rq_state;
183 if (!req) {
184 if (!(s & RQ_WRITE))
185 continue;
186 if (!(s & RQ_NET_MASK))
187 continue;
188 if (s & RQ_NET_DONE)
189 continue;
190 req = r;
191 expect_epoch = req->epoch;
192 expect_size ++;
193 } else {
194 if (r->epoch != expect_epoch)
195 break;
196 if (!(s & RQ_WRITE))
197 continue;
198 /* if (s & RQ_DONE): not expected */
199 /* if (!(s & RQ_NET_MASK)): not expected */
200 expect_size++;
201 }
202 }
203
204 /* first some paranoia code */
205 if (req == NULL) {
206 drbd_err(connection, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
207 barrier_nr);
208 goto bail;
209 }
210 if (expect_epoch != barrier_nr) {
211 drbd_err(connection, "BAD! BarrierAck #%u received, expected #%u!\n",
212 barrier_nr, expect_epoch);
213 goto bail;
214 }
215
216 if (expect_size != set_size) {
217 drbd_err(connection, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
218 barrier_nr, set_size, expect_size);
219 goto bail;
220 }
221
222 /* Clean up list of requests processed during current epoch. */
223 /* this extra list walk restart is paranoia,
224 * to catch requests being barrier-acked "unexpectedly".
225 * It usually should find the same req again, or some READ preceding it. */
226 list_for_each_entry(req, &connection->transfer_log, tl_requests)
227 if (req->epoch == expect_epoch) {
228 tmp = req;
229 break;
230 }
231 req = list_prepare_entry(tmp, &connection->transfer_log, tl_requests);
232 list_for_each_entry_safe_from(req, r, &connection->transfer_log, tl_requests) {
233 struct drbd_peer_device *peer_device;
234 if (req->epoch != expect_epoch)
235 break;
236 peer_device = conn_peer_device(connection, req->device->vnr);
237 _req_mod(req, BARRIER_ACKED, peer_device);
238 }
239 spin_unlock_irq(&connection->resource->req_lock);
240
241 return;
242
243 bail:
244 spin_unlock_irq(&connection->resource->req_lock);
245 conn_request_state(connection, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
246 }
247
248
249 /**
250 * _tl_restart() - Walks the transfer log, and applies an action to all requests
251 * @connection: DRBD connection to operate on.
252 * @what: The action/event to perform with all request objects
253 *
254 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
255 * RESTART_FROZEN_DISK_IO.
256 */
257 /* must hold resource->req_lock */
_tl_restart(struct drbd_connection * connection,enum drbd_req_event what)258 void _tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
259 {
260 struct drbd_peer_device *peer_device;
261 struct drbd_request *req, *r;
262
263 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
264 peer_device = conn_peer_device(connection, req->device->vnr);
265 _req_mod(req, what, peer_device);
266 }
267 }
268
tl_restart(struct drbd_connection * connection,enum drbd_req_event what)269 void tl_restart(struct drbd_connection *connection, enum drbd_req_event what)
270 {
271 spin_lock_irq(&connection->resource->req_lock);
272 _tl_restart(connection, what);
273 spin_unlock_irq(&connection->resource->req_lock);
274 }
275
276 /**
277 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
278 * @connection: DRBD connection.
279 *
280 * This is called after the connection to the peer was lost. The storage covered
281 * by the requests on the transfer gets marked as our of sync. Called from the
282 * receiver thread and the worker thread.
283 */
tl_clear(struct drbd_connection * connection)284 void tl_clear(struct drbd_connection *connection)
285 {
286 tl_restart(connection, CONNECTION_LOST_WHILE_PENDING);
287 }
288
289 /**
290 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain device in the TL
291 * @device: DRBD device.
292 */
tl_abort_disk_io(struct drbd_device * device)293 void tl_abort_disk_io(struct drbd_device *device)
294 {
295 struct drbd_connection *connection = first_peer_device(device)->connection;
296 struct drbd_request *req, *r;
297
298 spin_lock_irq(&connection->resource->req_lock);
299 list_for_each_entry_safe(req, r, &connection->transfer_log, tl_requests) {
300 if (!(req->rq_state & RQ_LOCAL_PENDING))
301 continue;
302 if (req->device != device)
303 continue;
304 _req_mod(req, ABORT_DISK_IO, NULL);
305 }
306 spin_unlock_irq(&connection->resource->req_lock);
307 }
308
drbd_thread_setup(void * arg)309 static int drbd_thread_setup(void *arg)
310 {
311 struct drbd_thread *thi = (struct drbd_thread *) arg;
312 struct drbd_resource *resource = thi->resource;
313 unsigned long flags;
314 int retval;
315
316 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
317 thi->name[0],
318 resource->name);
319
320 allow_kernel_signal(DRBD_SIGKILL);
321 allow_kernel_signal(SIGXCPU);
322 restart:
323 retval = thi->function(thi);
324
325 spin_lock_irqsave(&thi->t_lock, flags);
326
327 /* if the receiver has been "EXITING", the last thing it did
328 * was set the conn state to "StandAlone",
329 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
330 * and receiver thread will be "started".
331 * drbd_thread_start needs to set "RESTARTING" in that case.
332 * t_state check and assignment needs to be within the same spinlock,
333 * so either thread_start sees EXITING, and can remap to RESTARTING,
334 * or thread_start see NONE, and can proceed as normal.
335 */
336
337 if (thi->t_state == RESTARTING) {
338 drbd_info(resource, "Restarting %s thread\n", thi->name);
339 thi->t_state = RUNNING;
340 spin_unlock_irqrestore(&thi->t_lock, flags);
341 goto restart;
342 }
343
344 thi->task = NULL;
345 thi->t_state = NONE;
346 smp_mb();
347 complete_all(&thi->stop);
348 spin_unlock_irqrestore(&thi->t_lock, flags);
349
350 drbd_info(resource, "Terminating %s\n", current->comm);
351
352 /* Release mod reference taken when thread was started */
353
354 if (thi->connection)
355 kref_put(&thi->connection->kref, drbd_destroy_connection);
356 kref_put(&resource->kref, drbd_destroy_resource);
357 module_put(THIS_MODULE);
358 return retval;
359 }
360
drbd_thread_init(struct drbd_resource * resource,struct drbd_thread * thi,int (* func)(struct drbd_thread *),const char * name)361 static void drbd_thread_init(struct drbd_resource *resource, struct drbd_thread *thi,
362 int (*func) (struct drbd_thread *), const char *name)
363 {
364 spin_lock_init(&thi->t_lock);
365 thi->task = NULL;
366 thi->t_state = NONE;
367 thi->function = func;
368 thi->resource = resource;
369 thi->connection = NULL;
370 thi->name = name;
371 }
372
drbd_thread_start(struct drbd_thread * thi)373 int drbd_thread_start(struct drbd_thread *thi)
374 {
375 struct drbd_resource *resource = thi->resource;
376 struct task_struct *nt;
377 unsigned long flags;
378
379 /* is used from state engine doing drbd_thread_stop_nowait,
380 * while holding the req lock irqsave */
381 spin_lock_irqsave(&thi->t_lock, flags);
382
383 switch (thi->t_state) {
384 case NONE:
385 drbd_info(resource, "Starting %s thread (from %s [%d])\n",
386 thi->name, current->comm, current->pid);
387
388 /* Get ref on module for thread - this is released when thread exits */
389 if (!try_module_get(THIS_MODULE)) {
390 drbd_err(resource, "Failed to get module reference in drbd_thread_start\n");
391 spin_unlock_irqrestore(&thi->t_lock, flags);
392 return false;
393 }
394
395 kref_get(&resource->kref);
396 if (thi->connection)
397 kref_get(&thi->connection->kref);
398
399 init_completion(&thi->stop);
400 thi->reset_cpu_mask = 1;
401 thi->t_state = RUNNING;
402 spin_unlock_irqrestore(&thi->t_lock, flags);
403 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
404
405 nt = kthread_create(drbd_thread_setup, (void *) thi,
406 "drbd_%c_%s", thi->name[0], thi->resource->name);
407
408 if (IS_ERR(nt)) {
409 drbd_err(resource, "Couldn't start thread\n");
410
411 if (thi->connection)
412 kref_put(&thi->connection->kref, drbd_destroy_connection);
413 kref_put(&resource->kref, drbd_destroy_resource);
414 module_put(THIS_MODULE);
415 return false;
416 }
417 spin_lock_irqsave(&thi->t_lock, flags);
418 thi->task = nt;
419 thi->t_state = RUNNING;
420 spin_unlock_irqrestore(&thi->t_lock, flags);
421 wake_up_process(nt);
422 break;
423 case EXITING:
424 thi->t_state = RESTARTING;
425 drbd_info(resource, "Restarting %s thread (from %s [%d])\n",
426 thi->name, current->comm, current->pid);
427 fallthrough;
428 case RUNNING:
429 case RESTARTING:
430 default:
431 spin_unlock_irqrestore(&thi->t_lock, flags);
432 break;
433 }
434
435 return true;
436 }
437
438
_drbd_thread_stop(struct drbd_thread * thi,int restart,int wait)439 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
440 {
441 unsigned long flags;
442
443 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
444
445 /* may be called from state engine, holding the req lock irqsave */
446 spin_lock_irqsave(&thi->t_lock, flags);
447
448 if (thi->t_state == NONE) {
449 spin_unlock_irqrestore(&thi->t_lock, flags);
450 if (restart)
451 drbd_thread_start(thi);
452 return;
453 }
454
455 if (thi->t_state != ns) {
456 if (thi->task == NULL) {
457 spin_unlock_irqrestore(&thi->t_lock, flags);
458 return;
459 }
460
461 thi->t_state = ns;
462 smp_mb();
463 init_completion(&thi->stop);
464 if (thi->task != current)
465 send_sig(DRBD_SIGKILL, thi->task, 1);
466 }
467
468 spin_unlock_irqrestore(&thi->t_lock, flags);
469
470 if (wait)
471 wait_for_completion(&thi->stop);
472 }
473
474 #ifdef CONFIG_SMP
475 /*
476 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
477 *
478 * Forces all threads of a resource onto the same CPU. This is beneficial for
479 * DRBD's performance. May be overwritten by user's configuration.
480 */
drbd_calc_cpu_mask(cpumask_var_t * cpu_mask)481 static void drbd_calc_cpu_mask(cpumask_var_t *cpu_mask)
482 {
483 unsigned int *resources_per_cpu, min_index = ~0;
484
485 resources_per_cpu = kcalloc(nr_cpu_ids, sizeof(*resources_per_cpu),
486 GFP_KERNEL);
487 if (resources_per_cpu) {
488 struct drbd_resource *resource;
489 unsigned int cpu, min = ~0;
490
491 rcu_read_lock();
492 for_each_resource_rcu(resource, &drbd_resources) {
493 for_each_cpu(cpu, resource->cpu_mask)
494 resources_per_cpu[cpu]++;
495 }
496 rcu_read_unlock();
497 for_each_online_cpu(cpu) {
498 if (resources_per_cpu[cpu] < min) {
499 min = resources_per_cpu[cpu];
500 min_index = cpu;
501 }
502 }
503 kfree(resources_per_cpu);
504 }
505 if (min_index == ~0) {
506 cpumask_setall(*cpu_mask);
507 return;
508 }
509 cpumask_set_cpu(min_index, *cpu_mask);
510 }
511
512 /**
513 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
514 * @thi: drbd_thread object
515 *
516 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
517 * prematurely.
518 */
drbd_thread_current_set_cpu(struct drbd_thread * thi)519 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
520 {
521 struct drbd_resource *resource = thi->resource;
522 struct task_struct *p = current;
523
524 if (!thi->reset_cpu_mask)
525 return;
526 thi->reset_cpu_mask = 0;
527 set_cpus_allowed_ptr(p, resource->cpu_mask);
528 }
529 #else
530 #define drbd_calc_cpu_mask(A) ({})
531 #endif
532
533 /*
534 * drbd_header_size - size of a packet header
535 *
536 * The header size is a multiple of 8, so any payload following the header is
537 * word aligned on 64-bit architectures. (The bitmap send and receive code
538 * relies on this.)
539 */
drbd_header_size(struct drbd_connection * connection)540 unsigned int drbd_header_size(struct drbd_connection *connection)
541 {
542 if (connection->agreed_pro_version >= 100) {
543 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
544 return sizeof(struct p_header100);
545 } else {
546 BUILD_BUG_ON(sizeof(struct p_header80) !=
547 sizeof(struct p_header95));
548 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
549 return sizeof(struct p_header80);
550 }
551 }
552
prepare_header80(struct p_header80 * h,enum drbd_packet cmd,int size)553 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
554 {
555 h->magic = cpu_to_be32(DRBD_MAGIC);
556 h->command = cpu_to_be16(cmd);
557 h->length = cpu_to_be16(size);
558 return sizeof(struct p_header80);
559 }
560
prepare_header95(struct p_header95 * h,enum drbd_packet cmd,int size)561 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
562 {
563 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
564 h->command = cpu_to_be16(cmd);
565 h->length = cpu_to_be32(size);
566 return sizeof(struct p_header95);
567 }
568
prepare_header100(struct p_header100 * h,enum drbd_packet cmd,int size,int vnr)569 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
570 int size, int vnr)
571 {
572 h->magic = cpu_to_be32(DRBD_MAGIC_100);
573 h->volume = cpu_to_be16(vnr);
574 h->command = cpu_to_be16(cmd);
575 h->length = cpu_to_be32(size);
576 h->pad = 0;
577 return sizeof(struct p_header100);
578 }
579
prepare_header(struct drbd_connection * connection,int vnr,void * buffer,enum drbd_packet cmd,int size)580 static unsigned int prepare_header(struct drbd_connection *connection, int vnr,
581 void *buffer, enum drbd_packet cmd, int size)
582 {
583 if (connection->agreed_pro_version >= 100)
584 return prepare_header100(buffer, cmd, size, vnr);
585 else if (connection->agreed_pro_version >= 95 &&
586 size > DRBD_MAX_SIZE_H80_PACKET)
587 return prepare_header95(buffer, cmd, size);
588 else
589 return prepare_header80(buffer, cmd, size);
590 }
591
__conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)592 static void *__conn_prepare_command(struct drbd_connection *connection,
593 struct drbd_socket *sock)
594 {
595 if (!sock->socket)
596 return NULL;
597 return sock->sbuf + drbd_header_size(connection);
598 }
599
conn_prepare_command(struct drbd_connection * connection,struct drbd_socket * sock)600 void *conn_prepare_command(struct drbd_connection *connection, struct drbd_socket *sock)
601 {
602 void *p;
603
604 mutex_lock(&sock->mutex);
605 p = __conn_prepare_command(connection, sock);
606 if (!p)
607 mutex_unlock(&sock->mutex);
608
609 return p;
610 }
611
drbd_prepare_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock)612 void *drbd_prepare_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock)
613 {
614 return conn_prepare_command(peer_device->connection, sock);
615 }
616
__send_command(struct drbd_connection * connection,int vnr,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)617 static int __send_command(struct drbd_connection *connection, int vnr,
618 struct drbd_socket *sock, enum drbd_packet cmd,
619 unsigned int header_size, void *data,
620 unsigned int size)
621 {
622 int msg_flags;
623 int err;
624
625 /*
626 * Called with @data == NULL and the size of the data blocks in @size
627 * for commands that send data blocks. For those commands, omit the
628 * MSG_MORE flag: this will increase the likelihood that data blocks
629 * which are page aligned on the sender will end up page aligned on the
630 * receiver.
631 */
632 msg_flags = data ? MSG_MORE : 0;
633
634 header_size += prepare_header(connection, vnr, sock->sbuf, cmd,
635 header_size + size);
636 err = drbd_send_all(connection, sock->socket, sock->sbuf, header_size,
637 msg_flags);
638 if (data && !err)
639 err = drbd_send_all(connection, sock->socket, data, size, 0);
640 /* DRBD protocol "pings" are latency critical.
641 * This is supposed to trigger tcp_push_pending_frames() */
642 if (!err && (cmd == P_PING || cmd == P_PING_ACK))
643 tcp_sock_set_nodelay(sock->socket->sk);
644
645 return err;
646 }
647
__conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)648 static int __conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
649 enum drbd_packet cmd, unsigned int header_size,
650 void *data, unsigned int size)
651 {
652 return __send_command(connection, 0, sock, cmd, header_size, data, size);
653 }
654
conn_send_command(struct drbd_connection * connection,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)655 int conn_send_command(struct drbd_connection *connection, struct drbd_socket *sock,
656 enum drbd_packet cmd, unsigned int header_size,
657 void *data, unsigned int size)
658 {
659 int err;
660
661 err = __conn_send_command(connection, sock, cmd, header_size, data, size);
662 mutex_unlock(&sock->mutex);
663 return err;
664 }
665
drbd_send_command(struct drbd_peer_device * peer_device,struct drbd_socket * sock,enum drbd_packet cmd,unsigned int header_size,void * data,unsigned int size)666 int drbd_send_command(struct drbd_peer_device *peer_device, struct drbd_socket *sock,
667 enum drbd_packet cmd, unsigned int header_size,
668 void *data, unsigned int size)
669 {
670 int err;
671
672 err = __send_command(peer_device->connection, peer_device->device->vnr,
673 sock, cmd, header_size, data, size);
674 mutex_unlock(&sock->mutex);
675 return err;
676 }
677
drbd_send_ping(struct drbd_connection * connection)678 int drbd_send_ping(struct drbd_connection *connection)
679 {
680 struct drbd_socket *sock;
681
682 sock = &connection->meta;
683 if (!conn_prepare_command(connection, sock))
684 return -EIO;
685 return conn_send_command(connection, sock, P_PING, 0, NULL, 0);
686 }
687
drbd_send_ping_ack(struct drbd_connection * connection)688 int drbd_send_ping_ack(struct drbd_connection *connection)
689 {
690 struct drbd_socket *sock;
691
692 sock = &connection->meta;
693 if (!conn_prepare_command(connection, sock))
694 return -EIO;
695 return conn_send_command(connection, sock, P_PING_ACK, 0, NULL, 0);
696 }
697
drbd_send_sync_param(struct drbd_peer_device * peer_device)698 int drbd_send_sync_param(struct drbd_peer_device *peer_device)
699 {
700 struct drbd_socket *sock;
701 struct p_rs_param_95 *p;
702 int size;
703 const int apv = peer_device->connection->agreed_pro_version;
704 enum drbd_packet cmd;
705 struct net_conf *nc;
706 struct disk_conf *dc;
707
708 sock = &peer_device->connection->data;
709 p = drbd_prepare_command(peer_device, sock);
710 if (!p)
711 return -EIO;
712
713 rcu_read_lock();
714 nc = rcu_dereference(peer_device->connection->net_conf);
715
716 size = apv <= 87 ? sizeof(struct p_rs_param)
717 : apv == 88 ? sizeof(struct p_rs_param)
718 + strlen(nc->verify_alg) + 1
719 : apv <= 94 ? sizeof(struct p_rs_param_89)
720 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
721
722 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
723
724 /* initialize verify_alg and csums_alg */
725 BUILD_BUG_ON(sizeof(p->algs) != 2 * SHARED_SECRET_MAX);
726 memset(&p->algs, 0, sizeof(p->algs));
727
728 if (get_ldev(peer_device->device)) {
729 dc = rcu_dereference(peer_device->device->ldev->disk_conf);
730 p->resync_rate = cpu_to_be32(dc->resync_rate);
731 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
732 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
733 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
734 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
735 put_ldev(peer_device->device);
736 } else {
737 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
738 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
739 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
740 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
741 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
742 }
743
744 if (apv >= 88)
745 strcpy(p->verify_alg, nc->verify_alg);
746 if (apv >= 89)
747 strcpy(p->csums_alg, nc->csums_alg);
748 rcu_read_unlock();
749
750 return drbd_send_command(peer_device, sock, cmd, size, NULL, 0);
751 }
752
__drbd_send_protocol(struct drbd_connection * connection,enum drbd_packet cmd)753 int __drbd_send_protocol(struct drbd_connection *connection, enum drbd_packet cmd)
754 {
755 struct drbd_socket *sock;
756 struct p_protocol *p;
757 struct net_conf *nc;
758 int size, cf;
759
760 sock = &connection->data;
761 p = __conn_prepare_command(connection, sock);
762 if (!p)
763 return -EIO;
764
765 rcu_read_lock();
766 nc = rcu_dereference(connection->net_conf);
767
768 if (nc->tentative && connection->agreed_pro_version < 92) {
769 rcu_read_unlock();
770 drbd_err(connection, "--dry-run is not supported by peer");
771 return -EOPNOTSUPP;
772 }
773
774 size = sizeof(*p);
775 if (connection->agreed_pro_version >= 87)
776 size += strlen(nc->integrity_alg) + 1;
777
778 p->protocol = cpu_to_be32(nc->wire_protocol);
779 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
780 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
781 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
782 p->two_primaries = cpu_to_be32(nc->two_primaries);
783 cf = 0;
784 if (nc->discard_my_data)
785 cf |= CF_DISCARD_MY_DATA;
786 if (nc->tentative)
787 cf |= CF_DRY_RUN;
788 p->conn_flags = cpu_to_be32(cf);
789
790 if (connection->agreed_pro_version >= 87)
791 strcpy(p->integrity_alg, nc->integrity_alg);
792 rcu_read_unlock();
793
794 return __conn_send_command(connection, sock, cmd, size, NULL, 0);
795 }
796
drbd_send_protocol(struct drbd_connection * connection)797 int drbd_send_protocol(struct drbd_connection *connection)
798 {
799 int err;
800
801 mutex_lock(&connection->data.mutex);
802 err = __drbd_send_protocol(connection, P_PROTOCOL);
803 mutex_unlock(&connection->data.mutex);
804
805 return err;
806 }
807
_drbd_send_uuids(struct drbd_peer_device * peer_device,u64 uuid_flags)808 static int _drbd_send_uuids(struct drbd_peer_device *peer_device, u64 uuid_flags)
809 {
810 struct drbd_device *device = peer_device->device;
811 struct drbd_socket *sock;
812 struct p_uuids *p;
813 int i;
814
815 if (!get_ldev_if_state(device, D_NEGOTIATING))
816 return 0;
817
818 sock = &peer_device->connection->data;
819 p = drbd_prepare_command(peer_device, sock);
820 if (!p) {
821 put_ldev(device);
822 return -EIO;
823 }
824 spin_lock_irq(&device->ldev->md.uuid_lock);
825 for (i = UI_CURRENT; i < UI_SIZE; i++)
826 p->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
827 spin_unlock_irq(&device->ldev->md.uuid_lock);
828
829 device->comm_bm_set = drbd_bm_total_weight(device);
830 p->uuid[UI_SIZE] = cpu_to_be64(device->comm_bm_set);
831 rcu_read_lock();
832 uuid_flags |= rcu_dereference(peer_device->connection->net_conf)->discard_my_data ? 1 : 0;
833 rcu_read_unlock();
834 uuid_flags |= test_bit(CRASHED_PRIMARY, &device->flags) ? 2 : 0;
835 uuid_flags |= device->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
836 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
837
838 put_ldev(device);
839 return drbd_send_command(peer_device, sock, P_UUIDS, sizeof(*p), NULL, 0);
840 }
841
drbd_send_uuids(struct drbd_peer_device * peer_device)842 int drbd_send_uuids(struct drbd_peer_device *peer_device)
843 {
844 return _drbd_send_uuids(peer_device, 0);
845 }
846
drbd_send_uuids_skip_initial_sync(struct drbd_peer_device * peer_device)847 int drbd_send_uuids_skip_initial_sync(struct drbd_peer_device *peer_device)
848 {
849 return _drbd_send_uuids(peer_device, 8);
850 }
851
drbd_print_uuids(struct drbd_device * device,const char * text)852 void drbd_print_uuids(struct drbd_device *device, const char *text)
853 {
854 if (get_ldev_if_state(device, D_NEGOTIATING)) {
855 u64 *uuid = device->ldev->md.uuid;
856 drbd_info(device, "%s %016llX:%016llX:%016llX:%016llX\n",
857 text,
858 (unsigned long long)uuid[UI_CURRENT],
859 (unsigned long long)uuid[UI_BITMAP],
860 (unsigned long long)uuid[UI_HISTORY_START],
861 (unsigned long long)uuid[UI_HISTORY_END]);
862 put_ldev(device);
863 } else {
864 drbd_info(device, "%s effective data uuid: %016llX\n",
865 text,
866 (unsigned long long)device->ed_uuid);
867 }
868 }
869
drbd_gen_and_send_sync_uuid(struct drbd_peer_device * peer_device)870 void drbd_gen_and_send_sync_uuid(struct drbd_peer_device *peer_device)
871 {
872 struct drbd_device *device = peer_device->device;
873 struct drbd_socket *sock;
874 struct p_rs_uuid *p;
875 u64 uuid;
876
877 D_ASSERT(device, device->state.disk == D_UP_TO_DATE);
878
879 uuid = device->ldev->md.uuid[UI_BITMAP];
880 if (uuid && uuid != UUID_JUST_CREATED)
881 uuid = uuid + UUID_NEW_BM_OFFSET;
882 else
883 get_random_bytes(&uuid, sizeof(u64));
884 drbd_uuid_set(device, UI_BITMAP, uuid);
885 drbd_print_uuids(device, "updated sync UUID");
886 drbd_md_sync(device);
887
888 sock = &peer_device->connection->data;
889 p = drbd_prepare_command(peer_device, sock);
890 if (p) {
891 p->uuid = cpu_to_be64(uuid);
892 drbd_send_command(peer_device, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
893 }
894 }
895
drbd_send_sizes(struct drbd_peer_device * peer_device,int trigger_reply,enum dds_flags flags)896 int drbd_send_sizes(struct drbd_peer_device *peer_device, int trigger_reply, enum dds_flags flags)
897 {
898 struct drbd_device *device = peer_device->device;
899 struct drbd_socket *sock;
900 struct p_sizes *p;
901 sector_t d_size, u_size;
902 int q_order_type;
903 unsigned int max_bio_size;
904 unsigned int packet_size;
905
906 sock = &peer_device->connection->data;
907 p = drbd_prepare_command(peer_device, sock);
908 if (!p)
909 return -EIO;
910
911 packet_size = sizeof(*p);
912 if (peer_device->connection->agreed_features & DRBD_FF_WSAME)
913 packet_size += sizeof(p->qlim[0]);
914
915 memset(p, 0, packet_size);
916 if (get_ldev_if_state(device, D_NEGOTIATING)) {
917 struct block_device *bdev = device->ldev->backing_bdev;
918 struct request_queue *q = bdev_get_queue(bdev);
919
920 d_size = drbd_get_max_capacity(device->ldev);
921 rcu_read_lock();
922 u_size = rcu_dereference(device->ldev->disk_conf)->disk_size;
923 rcu_read_unlock();
924 q_order_type = drbd_queue_order_type(device);
925 max_bio_size = queue_max_hw_sectors(q) << 9;
926 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
927 p->qlim->physical_block_size =
928 cpu_to_be32(bdev_physical_block_size(bdev));
929 p->qlim->logical_block_size =
930 cpu_to_be32(bdev_logical_block_size(bdev));
931 p->qlim->alignment_offset =
932 cpu_to_be32(bdev_alignment_offset(bdev));
933 p->qlim->io_min = cpu_to_be32(bdev_io_min(bdev));
934 p->qlim->io_opt = cpu_to_be32(bdev_io_opt(bdev));
935 p->qlim->discard_enabled = !!bdev_max_discard_sectors(bdev);
936 put_ldev(device);
937 } else {
938 struct request_queue *q = device->rq_queue;
939
940 p->qlim->physical_block_size =
941 cpu_to_be32(queue_physical_block_size(q));
942 p->qlim->logical_block_size =
943 cpu_to_be32(queue_logical_block_size(q));
944 p->qlim->alignment_offset = 0;
945 p->qlim->io_min = cpu_to_be32(queue_io_min(q));
946 p->qlim->io_opt = cpu_to_be32(queue_io_opt(q));
947 p->qlim->discard_enabled = 0;
948
949 d_size = 0;
950 u_size = 0;
951 q_order_type = QUEUE_ORDERED_NONE;
952 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
953 }
954
955 if (peer_device->connection->agreed_pro_version <= 94)
956 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
957 else if (peer_device->connection->agreed_pro_version < 100)
958 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
959
960 p->d_size = cpu_to_be64(d_size);
961 p->u_size = cpu_to_be64(u_size);
962 if (trigger_reply)
963 p->c_size = 0;
964 else
965 p->c_size = cpu_to_be64(get_capacity(device->vdisk));
966 p->max_bio_size = cpu_to_be32(max_bio_size);
967 p->queue_order_type = cpu_to_be16(q_order_type);
968 p->dds_flags = cpu_to_be16(flags);
969
970 return drbd_send_command(peer_device, sock, P_SIZES, packet_size, NULL, 0);
971 }
972
973 /**
974 * drbd_send_current_state() - Sends the drbd state to the peer
975 * @peer_device: DRBD peer device.
976 */
drbd_send_current_state(struct drbd_peer_device * peer_device)977 int drbd_send_current_state(struct drbd_peer_device *peer_device)
978 {
979 struct drbd_socket *sock;
980 struct p_state *p;
981
982 sock = &peer_device->connection->data;
983 p = drbd_prepare_command(peer_device, sock);
984 if (!p)
985 return -EIO;
986 p->state = cpu_to_be32(peer_device->device->state.i); /* Within the send mutex */
987 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
988 }
989
990 /**
991 * drbd_send_state() - After a state change, sends the new state to the peer
992 * @peer_device: DRBD peer device.
993 * @state: the state to send, not necessarily the current state.
994 *
995 * Each state change queues an "after_state_ch" work, which will eventually
996 * send the resulting new state to the peer. If more state changes happen
997 * between queuing and processing of the after_state_ch work, we still
998 * want to send each intermediary state in the order it occurred.
999 */
drbd_send_state(struct drbd_peer_device * peer_device,union drbd_state state)1000 int drbd_send_state(struct drbd_peer_device *peer_device, union drbd_state state)
1001 {
1002 struct drbd_socket *sock;
1003 struct p_state *p;
1004
1005 sock = &peer_device->connection->data;
1006 p = drbd_prepare_command(peer_device, sock);
1007 if (!p)
1008 return -EIO;
1009 p->state = cpu_to_be32(state.i); /* Within the send mutex */
1010 return drbd_send_command(peer_device, sock, P_STATE, sizeof(*p), NULL, 0);
1011 }
1012
drbd_send_state_req(struct drbd_peer_device * peer_device,union drbd_state mask,union drbd_state val)1013 int drbd_send_state_req(struct drbd_peer_device *peer_device, union drbd_state mask, union drbd_state val)
1014 {
1015 struct drbd_socket *sock;
1016 struct p_req_state *p;
1017
1018 sock = &peer_device->connection->data;
1019 p = drbd_prepare_command(peer_device, sock);
1020 if (!p)
1021 return -EIO;
1022 p->mask = cpu_to_be32(mask.i);
1023 p->val = cpu_to_be32(val.i);
1024 return drbd_send_command(peer_device, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1025 }
1026
conn_send_state_req(struct drbd_connection * connection,union drbd_state mask,union drbd_state val)1027 int conn_send_state_req(struct drbd_connection *connection, union drbd_state mask, union drbd_state val)
1028 {
1029 enum drbd_packet cmd;
1030 struct drbd_socket *sock;
1031 struct p_req_state *p;
1032
1033 cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1034 sock = &connection->data;
1035 p = conn_prepare_command(connection, sock);
1036 if (!p)
1037 return -EIO;
1038 p->mask = cpu_to_be32(mask.i);
1039 p->val = cpu_to_be32(val.i);
1040 return conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1041 }
1042
drbd_send_sr_reply(struct drbd_peer_device * peer_device,enum drbd_state_rv retcode)1043 void drbd_send_sr_reply(struct drbd_peer_device *peer_device, enum drbd_state_rv retcode)
1044 {
1045 struct drbd_socket *sock;
1046 struct p_req_state_reply *p;
1047
1048 sock = &peer_device->connection->meta;
1049 p = drbd_prepare_command(peer_device, sock);
1050 if (p) {
1051 p->retcode = cpu_to_be32(retcode);
1052 drbd_send_command(peer_device, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1053 }
1054 }
1055
conn_send_sr_reply(struct drbd_connection * connection,enum drbd_state_rv retcode)1056 void conn_send_sr_reply(struct drbd_connection *connection, enum drbd_state_rv retcode)
1057 {
1058 struct drbd_socket *sock;
1059 struct p_req_state_reply *p;
1060 enum drbd_packet cmd = connection->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1061
1062 sock = &connection->meta;
1063 p = conn_prepare_command(connection, sock);
1064 if (p) {
1065 p->retcode = cpu_to_be32(retcode);
1066 conn_send_command(connection, sock, cmd, sizeof(*p), NULL, 0);
1067 }
1068 }
1069
dcbp_set_code(struct p_compressed_bm * p,enum drbd_bitmap_code code)1070 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1071 {
1072 BUG_ON(code & ~0xf);
1073 p->encoding = (p->encoding & ~0xf) | code;
1074 }
1075
dcbp_set_start(struct p_compressed_bm * p,int set)1076 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1077 {
1078 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1079 }
1080
dcbp_set_pad_bits(struct p_compressed_bm * p,int n)1081 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1082 {
1083 BUG_ON(n & ~0x7);
1084 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1085 }
1086
fill_bitmap_rle_bits(struct drbd_device * device,struct p_compressed_bm * p,unsigned int size,struct bm_xfer_ctx * c)1087 static int fill_bitmap_rle_bits(struct drbd_device *device,
1088 struct p_compressed_bm *p,
1089 unsigned int size,
1090 struct bm_xfer_ctx *c)
1091 {
1092 struct bitstream bs;
1093 unsigned long plain_bits;
1094 unsigned long tmp;
1095 unsigned long rl;
1096 unsigned len;
1097 unsigned toggle;
1098 int bits, use_rle;
1099
1100 /* may we use this feature? */
1101 rcu_read_lock();
1102 use_rle = rcu_dereference(first_peer_device(device)->connection->net_conf)->use_rle;
1103 rcu_read_unlock();
1104 if (!use_rle || first_peer_device(device)->connection->agreed_pro_version < 90)
1105 return 0;
1106
1107 if (c->bit_offset >= c->bm_bits)
1108 return 0; /* nothing to do. */
1109
1110 /* use at most thus many bytes */
1111 bitstream_init(&bs, p->code, size, 0);
1112 memset(p->code, 0, size);
1113 /* plain bits covered in this code string */
1114 plain_bits = 0;
1115
1116 /* p->encoding & 0x80 stores whether the first run length is set.
1117 * bit offset is implicit.
1118 * start with toggle == 2 to be able to tell the first iteration */
1119 toggle = 2;
1120
1121 /* see how much plain bits we can stuff into one packet
1122 * using RLE and VLI. */
1123 do {
1124 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(device, c->bit_offset)
1125 : _drbd_bm_find_next(device, c->bit_offset);
1126 if (tmp == -1UL)
1127 tmp = c->bm_bits;
1128 rl = tmp - c->bit_offset;
1129
1130 if (toggle == 2) { /* first iteration */
1131 if (rl == 0) {
1132 /* the first checked bit was set,
1133 * store start value, */
1134 dcbp_set_start(p, 1);
1135 /* but skip encoding of zero run length */
1136 toggle = !toggle;
1137 continue;
1138 }
1139 dcbp_set_start(p, 0);
1140 }
1141
1142 /* paranoia: catch zero runlength.
1143 * can only happen if bitmap is modified while we scan it. */
1144 if (rl == 0) {
1145 drbd_err(device, "unexpected zero runlength while encoding bitmap "
1146 "t:%u bo:%lu\n", toggle, c->bit_offset);
1147 return -1;
1148 }
1149
1150 bits = vli_encode_bits(&bs, rl);
1151 if (bits == -ENOBUFS) /* buffer full */
1152 break;
1153 if (bits <= 0) {
1154 drbd_err(device, "error while encoding bitmap: %d\n", bits);
1155 return 0;
1156 }
1157
1158 toggle = !toggle;
1159 plain_bits += rl;
1160 c->bit_offset = tmp;
1161 } while (c->bit_offset < c->bm_bits);
1162
1163 len = bs.cur.b - p->code + !!bs.cur.bit;
1164
1165 if (plain_bits < (len << 3)) {
1166 /* incompressible with this method.
1167 * we need to rewind both word and bit position. */
1168 c->bit_offset -= plain_bits;
1169 bm_xfer_ctx_bit_to_word_offset(c);
1170 c->bit_offset = c->word_offset * BITS_PER_LONG;
1171 return 0;
1172 }
1173
1174 /* RLE + VLI was able to compress it just fine.
1175 * update c->word_offset. */
1176 bm_xfer_ctx_bit_to_word_offset(c);
1177
1178 /* store pad_bits */
1179 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1180
1181 return len;
1182 }
1183
1184 /*
1185 * send_bitmap_rle_or_plain
1186 *
1187 * Return 0 when done, 1 when another iteration is needed, and a negative error
1188 * code upon failure.
1189 */
1190 static int
send_bitmap_rle_or_plain(struct drbd_peer_device * peer_device,struct bm_xfer_ctx * c)1191 send_bitmap_rle_or_plain(struct drbd_peer_device *peer_device, struct bm_xfer_ctx *c)
1192 {
1193 struct drbd_device *device = peer_device->device;
1194 struct drbd_socket *sock = &peer_device->connection->data;
1195 unsigned int header_size = drbd_header_size(peer_device->connection);
1196 struct p_compressed_bm *p = sock->sbuf + header_size;
1197 int len, err;
1198
1199 len = fill_bitmap_rle_bits(device, p,
1200 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1201 if (len < 0)
1202 return -EIO;
1203
1204 if (len) {
1205 dcbp_set_code(p, RLE_VLI_Bits);
1206 err = __send_command(peer_device->connection, device->vnr, sock,
1207 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1208 NULL, 0);
1209 c->packets[0]++;
1210 c->bytes[0] += header_size + sizeof(*p) + len;
1211
1212 if (c->bit_offset >= c->bm_bits)
1213 len = 0; /* DONE */
1214 } else {
1215 /* was not compressible.
1216 * send a buffer full of plain text bits instead. */
1217 unsigned int data_size;
1218 unsigned long num_words;
1219 unsigned long *p = sock->sbuf + header_size;
1220
1221 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1222 num_words = min_t(size_t, data_size / sizeof(*p),
1223 c->bm_words - c->word_offset);
1224 len = num_words * sizeof(*p);
1225 if (len)
1226 drbd_bm_get_lel(device, c->word_offset, num_words, p);
1227 err = __send_command(peer_device->connection, device->vnr, sock, P_BITMAP,
1228 len, NULL, 0);
1229 c->word_offset += num_words;
1230 c->bit_offset = c->word_offset * BITS_PER_LONG;
1231
1232 c->packets[1]++;
1233 c->bytes[1] += header_size + len;
1234
1235 if (c->bit_offset > c->bm_bits)
1236 c->bit_offset = c->bm_bits;
1237 }
1238 if (!err) {
1239 if (len == 0) {
1240 INFO_bm_xfer_stats(peer_device, "send", c);
1241 return 0;
1242 } else
1243 return 1;
1244 }
1245 return -EIO;
1246 }
1247
1248 /* See the comment at receive_bitmap() */
_drbd_send_bitmap(struct drbd_device * device,struct drbd_peer_device * peer_device)1249 static int _drbd_send_bitmap(struct drbd_device *device,
1250 struct drbd_peer_device *peer_device)
1251 {
1252 struct bm_xfer_ctx c;
1253 int err;
1254
1255 if (!expect(device, device->bitmap))
1256 return false;
1257
1258 if (get_ldev(device)) {
1259 if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC)) {
1260 drbd_info(device, "Writing the whole bitmap, MDF_FullSync was set.\n");
1261 drbd_bm_set_all(device);
1262 if (drbd_bm_write(device, peer_device)) {
1263 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1264 * but otherwise process as per normal - need to tell other
1265 * side that a full resync is required! */
1266 drbd_err(device, "Failed to write bitmap to disk!\n");
1267 } else {
1268 drbd_md_clear_flag(device, MDF_FULL_SYNC);
1269 drbd_md_sync(device);
1270 }
1271 }
1272 put_ldev(device);
1273 }
1274
1275 c = (struct bm_xfer_ctx) {
1276 .bm_bits = drbd_bm_bits(device),
1277 .bm_words = drbd_bm_words(device),
1278 };
1279
1280 do {
1281 err = send_bitmap_rle_or_plain(peer_device, &c);
1282 } while (err > 0);
1283
1284 return err == 0;
1285 }
1286
drbd_send_bitmap(struct drbd_device * device,struct drbd_peer_device * peer_device)1287 int drbd_send_bitmap(struct drbd_device *device, struct drbd_peer_device *peer_device)
1288 {
1289 struct drbd_socket *sock = &peer_device->connection->data;
1290 int err = -1;
1291
1292 mutex_lock(&sock->mutex);
1293 if (sock->socket)
1294 err = !_drbd_send_bitmap(device, peer_device);
1295 mutex_unlock(&sock->mutex);
1296 return err;
1297 }
1298
drbd_send_b_ack(struct drbd_connection * connection,u32 barrier_nr,u32 set_size)1299 void drbd_send_b_ack(struct drbd_connection *connection, u32 barrier_nr, u32 set_size)
1300 {
1301 struct drbd_socket *sock;
1302 struct p_barrier_ack *p;
1303
1304 if (connection->cstate < C_WF_REPORT_PARAMS)
1305 return;
1306
1307 sock = &connection->meta;
1308 p = conn_prepare_command(connection, sock);
1309 if (!p)
1310 return;
1311 p->barrier = barrier_nr;
1312 p->set_size = cpu_to_be32(set_size);
1313 conn_send_command(connection, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1314 }
1315
1316 /**
1317 * _drbd_send_ack() - Sends an ack packet
1318 * @peer_device: DRBD peer device.
1319 * @cmd: Packet command code.
1320 * @sector: sector, needs to be in big endian byte order
1321 * @blksize: size in byte, needs to be in big endian byte order
1322 * @block_id: Id, big endian byte order
1323 */
_drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,u64 sector,u32 blksize,u64 block_id)1324 static int _drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1325 u64 sector, u32 blksize, u64 block_id)
1326 {
1327 struct drbd_socket *sock;
1328 struct p_block_ack *p;
1329
1330 if (peer_device->device->state.conn < C_CONNECTED)
1331 return -EIO;
1332
1333 sock = &peer_device->connection->meta;
1334 p = drbd_prepare_command(peer_device, sock);
1335 if (!p)
1336 return -EIO;
1337 p->sector = sector;
1338 p->block_id = block_id;
1339 p->blksize = blksize;
1340 p->seq_num = cpu_to_be32(atomic_inc_return(&peer_device->device->packet_seq));
1341 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1342 }
1343
1344 /* dp->sector and dp->block_id already/still in network byte order,
1345 * data_size is payload size according to dp->head,
1346 * and may need to be corrected for digest size. */
drbd_send_ack_dp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_data * dp,int data_size)1347 void drbd_send_ack_dp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1348 struct p_data *dp, int data_size)
1349 {
1350 if (peer_device->connection->peer_integrity_tfm)
1351 data_size -= crypto_shash_digestsize(peer_device->connection->peer_integrity_tfm);
1352 _drbd_send_ack(peer_device, cmd, dp->sector, cpu_to_be32(data_size),
1353 dp->block_id);
1354 }
1355
drbd_send_ack_rp(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct p_block_req * rp)1356 void drbd_send_ack_rp(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1357 struct p_block_req *rp)
1358 {
1359 _drbd_send_ack(peer_device, cmd, rp->sector, rp->blksize, rp->block_id);
1360 }
1361
1362 /**
1363 * drbd_send_ack() - Sends an ack packet
1364 * @peer_device: DRBD peer device
1365 * @cmd: packet command code
1366 * @peer_req: peer request
1367 */
drbd_send_ack(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1368 int drbd_send_ack(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1369 struct drbd_peer_request *peer_req)
1370 {
1371 return _drbd_send_ack(peer_device, cmd,
1372 cpu_to_be64(peer_req->i.sector),
1373 cpu_to_be32(peer_req->i.size),
1374 peer_req->block_id);
1375 }
1376
1377 /* This function misuses the block_id field to signal if the blocks
1378 * are is sync or not. */
drbd_send_ack_ex(struct drbd_peer_device * peer_device,enum drbd_packet cmd,sector_t sector,int blksize,u64 block_id)1379 int drbd_send_ack_ex(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1380 sector_t sector, int blksize, u64 block_id)
1381 {
1382 return _drbd_send_ack(peer_device, cmd,
1383 cpu_to_be64(sector),
1384 cpu_to_be32(blksize),
1385 cpu_to_be64(block_id));
1386 }
1387
drbd_send_rs_deallocated(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1388 int drbd_send_rs_deallocated(struct drbd_peer_device *peer_device,
1389 struct drbd_peer_request *peer_req)
1390 {
1391 struct drbd_socket *sock;
1392 struct p_block_desc *p;
1393
1394 sock = &peer_device->connection->data;
1395 p = drbd_prepare_command(peer_device, sock);
1396 if (!p)
1397 return -EIO;
1398 p->sector = cpu_to_be64(peer_req->i.sector);
1399 p->blksize = cpu_to_be32(peer_req->i.size);
1400 p->pad = 0;
1401 return drbd_send_command(peer_device, sock, P_RS_DEALLOCATED, sizeof(*p), NULL, 0);
1402 }
1403
drbd_send_drequest(struct drbd_peer_device * peer_device,int cmd,sector_t sector,int size,u64 block_id)1404 int drbd_send_drequest(struct drbd_peer_device *peer_device, int cmd,
1405 sector_t sector, int size, u64 block_id)
1406 {
1407 struct drbd_socket *sock;
1408 struct p_block_req *p;
1409
1410 sock = &peer_device->connection->data;
1411 p = drbd_prepare_command(peer_device, sock);
1412 if (!p)
1413 return -EIO;
1414 p->sector = cpu_to_be64(sector);
1415 p->block_id = block_id;
1416 p->blksize = cpu_to_be32(size);
1417 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), NULL, 0);
1418 }
1419
drbd_send_drequest_csum(struct drbd_peer_device * peer_device,sector_t sector,int size,void * digest,int digest_size,enum drbd_packet cmd)1420 int drbd_send_drequest_csum(struct drbd_peer_device *peer_device, sector_t sector, int size,
1421 void *digest, int digest_size, enum drbd_packet cmd)
1422 {
1423 struct drbd_socket *sock;
1424 struct p_block_req *p;
1425
1426 /* FIXME: Put the digest into the preallocated socket buffer. */
1427
1428 sock = &peer_device->connection->data;
1429 p = drbd_prepare_command(peer_device, sock);
1430 if (!p)
1431 return -EIO;
1432 p->sector = cpu_to_be64(sector);
1433 p->block_id = ID_SYNCER /* unused */;
1434 p->blksize = cpu_to_be32(size);
1435 return drbd_send_command(peer_device, sock, cmd, sizeof(*p), digest, digest_size);
1436 }
1437
drbd_send_ov_request(struct drbd_peer_device * peer_device,sector_t sector,int size)1438 int drbd_send_ov_request(struct drbd_peer_device *peer_device, sector_t sector, int size)
1439 {
1440 struct drbd_socket *sock;
1441 struct p_block_req *p;
1442
1443 sock = &peer_device->connection->data;
1444 p = drbd_prepare_command(peer_device, sock);
1445 if (!p)
1446 return -EIO;
1447 p->sector = cpu_to_be64(sector);
1448 p->block_id = ID_SYNCER /* unused */;
1449 p->blksize = cpu_to_be32(size);
1450 return drbd_send_command(peer_device, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1451 }
1452
1453 /* called on sndtimeo
1454 * returns false if we should retry,
1455 * true if we think connection is dead
1456 */
we_should_drop_the_connection(struct drbd_connection * connection,struct socket * sock)1457 static int we_should_drop_the_connection(struct drbd_connection *connection, struct socket *sock)
1458 {
1459 int drop_it;
1460 /* long elapsed = (long)(jiffies - device->last_received); */
1461
1462 drop_it = connection->meta.socket == sock
1463 || !connection->ack_receiver.task
1464 || get_t_state(&connection->ack_receiver) != RUNNING
1465 || connection->cstate < C_WF_REPORT_PARAMS;
1466
1467 if (drop_it)
1468 return true;
1469
1470 drop_it = !--connection->ko_count;
1471 if (!drop_it) {
1472 drbd_err(connection, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1473 current->comm, current->pid, connection->ko_count);
1474 request_ping(connection);
1475 }
1476
1477 return drop_it; /* && (device->state == R_PRIMARY) */;
1478 }
1479
drbd_update_congested(struct drbd_connection * connection)1480 static void drbd_update_congested(struct drbd_connection *connection)
1481 {
1482 struct sock *sk = connection->data.socket->sk;
1483 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1484 set_bit(NET_CONGESTED, &connection->flags);
1485 }
1486
1487 /* The idea of sendpage seems to be to put some kind of reference
1488 * to the page into the skb, and to hand it over to the NIC. In
1489 * this process get_page() gets called.
1490 *
1491 * As soon as the page was really sent over the network put_page()
1492 * gets called by some part of the network layer. [ NIC driver? ]
1493 *
1494 * [ get_page() / put_page() increment/decrement the count. If count
1495 * reaches 0 the page will be freed. ]
1496 *
1497 * This works nicely with pages from FSs.
1498 * But this means that in protocol A we might signal IO completion too early!
1499 *
1500 * In order not to corrupt data during a resync we must make sure
1501 * that we do not reuse our own buffer pages (EEs) to early, therefore
1502 * we have the net_ee list.
1503 *
1504 * XFS seems to have problems, still, it submits pages with page_count == 0!
1505 * As a workaround, we disable sendpage on pages
1506 * with page_count == 0 or PageSlab.
1507 */
_drbd_no_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1508 static int _drbd_no_send_page(struct drbd_peer_device *peer_device, struct page *page,
1509 int offset, size_t size, unsigned msg_flags)
1510 {
1511 struct socket *socket;
1512 void *addr;
1513 int err;
1514
1515 socket = peer_device->connection->data.socket;
1516 addr = kmap(page) + offset;
1517 err = drbd_send_all(peer_device->connection, socket, addr, size, msg_flags);
1518 kunmap(page);
1519 if (!err)
1520 peer_device->device->send_cnt += size >> 9;
1521 return err;
1522 }
1523
_drbd_send_page(struct drbd_peer_device * peer_device,struct page * page,int offset,size_t size,unsigned msg_flags)1524 static int _drbd_send_page(struct drbd_peer_device *peer_device, struct page *page,
1525 int offset, size_t size, unsigned msg_flags)
1526 {
1527 struct socket *socket = peer_device->connection->data.socket;
1528 struct msghdr msg = { .msg_flags = msg_flags, };
1529 struct bio_vec bvec;
1530 int len = size;
1531 int err = -EIO;
1532
1533 /* e.g. XFS meta- & log-data is in slab pages, which have a
1534 * page_count of 0 and/or have PageSlab() set.
1535 * we cannot use send_page for those, as that does get_page();
1536 * put_page(); and would cause either a VM_BUG directly, or
1537 * __page_cache_release a page that would actually still be referenced
1538 * by someone, leading to some obscure delayed Oops somewhere else. */
1539 if (!drbd_disable_sendpage && sendpages_ok(page, len, offset))
1540 msg.msg_flags |= MSG_NOSIGNAL | MSG_SPLICE_PAGES;
1541
1542 drbd_update_congested(peer_device->connection);
1543 do {
1544 int sent;
1545
1546 bvec_set_page(&bvec, page, len, offset);
1547 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1548
1549 sent = sock_sendmsg(socket, &msg);
1550 if (sent <= 0) {
1551 if (sent == -EAGAIN) {
1552 if (we_should_drop_the_connection(peer_device->connection, socket))
1553 break;
1554 continue;
1555 }
1556 drbd_warn(peer_device->device, "%s: size=%d len=%d sent=%d\n",
1557 __func__, (int)size, len, sent);
1558 if (sent < 0)
1559 err = sent;
1560 break;
1561 }
1562 len -= sent;
1563 offset += sent;
1564 } while (len > 0 /* THINK && device->cstate >= C_CONNECTED*/);
1565 clear_bit(NET_CONGESTED, &peer_device->connection->flags);
1566
1567 if (len == 0) {
1568 err = 0;
1569 peer_device->device->send_cnt += size >> 9;
1570 }
1571 return err;
1572 }
1573
_drbd_send_bio(struct drbd_peer_device * peer_device,struct bio * bio)1574 static int _drbd_send_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1575 {
1576 struct bio_vec bvec;
1577 struct bvec_iter iter;
1578
1579 /* hint all but last page with MSG_MORE */
1580 bio_for_each_segment(bvec, bio, iter) {
1581 int err;
1582
1583 err = _drbd_no_send_page(peer_device, bvec.bv_page,
1584 bvec.bv_offset, bvec.bv_len,
1585 bio_iter_last(bvec, iter)
1586 ? 0 : MSG_MORE);
1587 if (err)
1588 return err;
1589 }
1590 return 0;
1591 }
1592
_drbd_send_zc_bio(struct drbd_peer_device * peer_device,struct bio * bio)1593 static int _drbd_send_zc_bio(struct drbd_peer_device *peer_device, struct bio *bio)
1594 {
1595 struct bio_vec bvec;
1596 struct bvec_iter iter;
1597
1598 /* hint all but last page with MSG_MORE */
1599 bio_for_each_segment(bvec, bio, iter) {
1600 int err;
1601
1602 err = _drbd_send_page(peer_device, bvec.bv_page,
1603 bvec.bv_offset, bvec.bv_len,
1604 bio_iter_last(bvec, iter) ? 0 : MSG_MORE);
1605 if (err)
1606 return err;
1607 }
1608 return 0;
1609 }
1610
_drbd_send_zc_ee(struct drbd_peer_device * peer_device,struct drbd_peer_request * peer_req)1611 static int _drbd_send_zc_ee(struct drbd_peer_device *peer_device,
1612 struct drbd_peer_request *peer_req)
1613 {
1614 struct page *page = peer_req->pages;
1615 unsigned len = peer_req->i.size;
1616 int err;
1617
1618 /* hint all but last page with MSG_MORE */
1619 page_chain_for_each(page) {
1620 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1621
1622 err = _drbd_send_page(peer_device, page, 0, l,
1623 page_chain_next(page) ? MSG_MORE : 0);
1624 if (err)
1625 return err;
1626 len -= l;
1627 }
1628 return 0;
1629 }
1630
bio_flags_to_wire(struct drbd_connection * connection,struct bio * bio)1631 static u32 bio_flags_to_wire(struct drbd_connection *connection,
1632 struct bio *bio)
1633 {
1634 if (connection->agreed_pro_version >= 95)
1635 return (bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0) |
1636 (bio->bi_opf & REQ_FUA ? DP_FUA : 0) |
1637 (bio->bi_opf & REQ_PREFLUSH ? DP_FLUSH : 0) |
1638 (bio_op(bio) == REQ_OP_DISCARD ? DP_DISCARD : 0) |
1639 (bio_op(bio) == REQ_OP_WRITE_ZEROES ?
1640 ((connection->agreed_features & DRBD_FF_WZEROES) ?
1641 (DP_ZEROES |(!(bio->bi_opf & REQ_NOUNMAP) ? DP_DISCARD : 0))
1642 : DP_DISCARD)
1643 : 0);
1644 else
1645 return bio->bi_opf & REQ_SYNC ? DP_RW_SYNC : 0;
1646 }
1647
1648 /* Used to send write or TRIM aka REQ_OP_DISCARD requests
1649 * R_PRIMARY -> Peer (P_DATA, P_TRIM)
1650 */
drbd_send_dblock(struct drbd_peer_device * peer_device,struct drbd_request * req)1651 int drbd_send_dblock(struct drbd_peer_device *peer_device, struct drbd_request *req)
1652 {
1653 struct drbd_device *device = peer_device->device;
1654 struct drbd_socket *sock;
1655 struct p_data *p;
1656 void *digest_out;
1657 unsigned int dp_flags = 0;
1658 int digest_size;
1659 int err;
1660
1661 sock = &peer_device->connection->data;
1662 p = drbd_prepare_command(peer_device, sock);
1663 digest_size = peer_device->connection->integrity_tfm ?
1664 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1665
1666 if (!p)
1667 return -EIO;
1668 p->sector = cpu_to_be64(req->i.sector);
1669 p->block_id = (unsigned long)req;
1670 p->seq_num = cpu_to_be32(atomic_inc_return(&device->packet_seq));
1671 dp_flags = bio_flags_to_wire(peer_device->connection, req->master_bio);
1672 if (device->state.conn >= C_SYNC_SOURCE &&
1673 device->state.conn <= C_PAUSED_SYNC_T)
1674 dp_flags |= DP_MAY_SET_IN_SYNC;
1675 if (peer_device->connection->agreed_pro_version >= 100) {
1676 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1677 dp_flags |= DP_SEND_RECEIVE_ACK;
1678 /* During resync, request an explicit write ack,
1679 * even in protocol != C */
1680 if (req->rq_state & RQ_EXP_WRITE_ACK
1681 || (dp_flags & DP_MAY_SET_IN_SYNC))
1682 dp_flags |= DP_SEND_WRITE_ACK;
1683 }
1684 p->dp_flags = cpu_to_be32(dp_flags);
1685
1686 if (dp_flags & (DP_DISCARD|DP_ZEROES)) {
1687 enum drbd_packet cmd = (dp_flags & DP_ZEROES) ? P_ZEROES : P_TRIM;
1688 struct p_trim *t = (struct p_trim*)p;
1689 t->size = cpu_to_be32(req->i.size);
1690 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*t), NULL, 0);
1691 goto out;
1692 }
1693 digest_out = p + 1;
1694
1695 /* our digest is still only over the payload.
1696 * TRIM does not carry any payload. */
1697 if (digest_size)
1698 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest_out);
1699 err = __send_command(peer_device->connection, device->vnr, sock, P_DATA,
1700 sizeof(*p) + digest_size, NULL, req->i.size);
1701 if (!err) {
1702 /* For protocol A, we have to memcpy the payload into
1703 * socket buffers, as we may complete right away
1704 * as soon as we handed it over to tcp, at which point the data
1705 * pages may become invalid.
1706 *
1707 * For data-integrity enabled, we copy it as well, so we can be
1708 * sure that even if the bio pages may still be modified, it
1709 * won't change the data on the wire, thus if the digest checks
1710 * out ok after sending on this side, but does not fit on the
1711 * receiving side, we sure have detected corruption elsewhere.
1712 */
1713 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || digest_size)
1714 err = _drbd_send_bio(peer_device, req->master_bio);
1715 else
1716 err = _drbd_send_zc_bio(peer_device, req->master_bio);
1717
1718 /* double check digest, sometimes buffers have been modified in flight. */
1719 if (digest_size > 0 && digest_size <= 64) {
1720 /* 64 byte, 512 bit, is the largest digest size
1721 * currently supported in kernel crypto. */
1722 unsigned char digest[64];
1723 drbd_csum_bio(peer_device->connection->integrity_tfm, req->master_bio, digest);
1724 if (memcmp(p + 1, digest, digest_size)) {
1725 drbd_warn(device,
1726 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1727 (unsigned long long)req->i.sector, req->i.size);
1728 }
1729 } /* else if (digest_size > 64) {
1730 ... Be noisy about digest too large ...
1731 } */
1732 }
1733 out:
1734 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1735
1736 return err;
1737 }
1738
1739 /* answer packet, used to send data back for read requests:
1740 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1741 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1742 */
drbd_send_block(struct drbd_peer_device * peer_device,enum drbd_packet cmd,struct drbd_peer_request * peer_req)1743 int drbd_send_block(struct drbd_peer_device *peer_device, enum drbd_packet cmd,
1744 struct drbd_peer_request *peer_req)
1745 {
1746 struct drbd_device *device = peer_device->device;
1747 struct drbd_socket *sock;
1748 struct p_data *p;
1749 int err;
1750 int digest_size;
1751
1752 sock = &peer_device->connection->data;
1753 p = drbd_prepare_command(peer_device, sock);
1754
1755 digest_size = peer_device->connection->integrity_tfm ?
1756 crypto_shash_digestsize(peer_device->connection->integrity_tfm) : 0;
1757
1758 if (!p)
1759 return -EIO;
1760 p->sector = cpu_to_be64(peer_req->i.sector);
1761 p->block_id = peer_req->block_id;
1762 p->seq_num = 0; /* unused */
1763 p->dp_flags = 0;
1764 if (digest_size)
1765 drbd_csum_ee(peer_device->connection->integrity_tfm, peer_req, p + 1);
1766 err = __send_command(peer_device->connection, device->vnr, sock, cmd, sizeof(*p) + digest_size, NULL, peer_req->i.size);
1767 if (!err)
1768 err = _drbd_send_zc_ee(peer_device, peer_req);
1769 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1770
1771 return err;
1772 }
1773
drbd_send_out_of_sync(struct drbd_peer_device * peer_device,struct drbd_request * req)1774 int drbd_send_out_of_sync(struct drbd_peer_device *peer_device, struct drbd_request *req)
1775 {
1776 struct drbd_socket *sock;
1777 struct p_block_desc *p;
1778
1779 sock = &peer_device->connection->data;
1780 p = drbd_prepare_command(peer_device, sock);
1781 if (!p)
1782 return -EIO;
1783 p->sector = cpu_to_be64(req->i.sector);
1784 p->blksize = cpu_to_be32(req->i.size);
1785 return drbd_send_command(peer_device, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1786 }
1787
1788 /*
1789 drbd_send distinguishes two cases:
1790
1791 Packets sent via the data socket "sock"
1792 and packets sent via the meta data socket "msock"
1793
1794 sock msock
1795 -----------------+-------------------------+------------------------------
1796 timeout conf.timeout / 2 conf.timeout / 2
1797 timeout action send a ping via msock Abort communication
1798 and close all sockets
1799 */
1800
1801 /*
1802 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1803 */
drbd_send(struct drbd_connection * connection,struct socket * sock,void * buf,size_t size,unsigned msg_flags)1804 int drbd_send(struct drbd_connection *connection, struct socket *sock,
1805 void *buf, size_t size, unsigned msg_flags)
1806 {
1807 struct kvec iov = {.iov_base = buf, .iov_len = size};
1808 struct msghdr msg = {.msg_flags = msg_flags | MSG_NOSIGNAL};
1809 int rv, sent = 0;
1810
1811 if (!sock)
1812 return -EBADR;
1813
1814 /* THINK if (signal_pending) return ... ? */
1815
1816 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &iov, 1, size);
1817
1818 if (sock == connection->data.socket) {
1819 rcu_read_lock();
1820 connection->ko_count = rcu_dereference(connection->net_conf)->ko_count;
1821 rcu_read_unlock();
1822 drbd_update_congested(connection);
1823 }
1824 do {
1825 rv = sock_sendmsg(sock, &msg);
1826 if (rv == -EAGAIN) {
1827 if (we_should_drop_the_connection(connection, sock))
1828 break;
1829 else
1830 continue;
1831 }
1832 if (rv == -EINTR) {
1833 flush_signals(current);
1834 rv = 0;
1835 }
1836 if (rv < 0)
1837 break;
1838 sent += rv;
1839 } while (sent < size);
1840
1841 if (sock == connection->data.socket)
1842 clear_bit(NET_CONGESTED, &connection->flags);
1843
1844 if (rv <= 0) {
1845 if (rv != -EAGAIN) {
1846 drbd_err(connection, "%s_sendmsg returned %d\n",
1847 sock == connection->meta.socket ? "msock" : "sock",
1848 rv);
1849 conn_request_state(connection, NS(conn, C_BROKEN_PIPE), CS_HARD);
1850 } else
1851 conn_request_state(connection, NS(conn, C_TIMEOUT), CS_HARD);
1852 }
1853
1854 return sent;
1855 }
1856
1857 /*
1858 * drbd_send_all - Send an entire buffer
1859 *
1860 * Returns 0 upon success and a negative error value otherwise.
1861 */
drbd_send_all(struct drbd_connection * connection,struct socket * sock,void * buffer,size_t size,unsigned msg_flags)1862 int drbd_send_all(struct drbd_connection *connection, struct socket *sock, void *buffer,
1863 size_t size, unsigned msg_flags)
1864 {
1865 int err;
1866
1867 err = drbd_send(connection, sock, buffer, size, msg_flags);
1868 if (err < 0)
1869 return err;
1870 if (err != size)
1871 return -EIO;
1872 return 0;
1873 }
1874
drbd_open(struct gendisk * disk,blk_mode_t mode)1875 static int drbd_open(struct gendisk *disk, blk_mode_t mode)
1876 {
1877 struct drbd_device *device = disk->private_data;
1878 unsigned long flags;
1879 int rv = 0;
1880
1881 mutex_lock(&drbd_main_mutex);
1882 spin_lock_irqsave(&device->resource->req_lock, flags);
1883 /* to have a stable device->state.role
1884 * and no race with updating open_cnt */
1885
1886 if (device->state.role != R_PRIMARY) {
1887 if (mode & BLK_OPEN_WRITE)
1888 rv = -EROFS;
1889 else if (!drbd_allow_oos)
1890 rv = -EMEDIUMTYPE;
1891 }
1892
1893 if (!rv)
1894 device->open_cnt++;
1895 spin_unlock_irqrestore(&device->resource->req_lock, flags);
1896 mutex_unlock(&drbd_main_mutex);
1897
1898 return rv;
1899 }
1900
drbd_release(struct gendisk * gd)1901 static void drbd_release(struct gendisk *gd)
1902 {
1903 struct drbd_device *device = gd->private_data;
1904
1905 mutex_lock(&drbd_main_mutex);
1906 device->open_cnt--;
1907 mutex_unlock(&drbd_main_mutex);
1908 }
1909
1910 /* need to hold resource->req_lock */
drbd_queue_unplug(struct drbd_device * device)1911 void drbd_queue_unplug(struct drbd_device *device)
1912 {
1913 if (device->state.pdsk >= D_INCONSISTENT && device->state.conn >= C_CONNECTED) {
1914 D_ASSERT(device, device->state.role == R_PRIMARY);
1915 if (test_and_clear_bit(UNPLUG_REMOTE, &device->flags)) {
1916 drbd_queue_work_if_unqueued(
1917 &first_peer_device(device)->connection->sender_work,
1918 &device->unplug_work);
1919 }
1920 }
1921 }
1922
drbd_set_defaults(struct drbd_device * device)1923 static void drbd_set_defaults(struct drbd_device *device)
1924 {
1925 /* Beware! The actual layout differs
1926 * between big endian and little endian */
1927 device->state = (union drbd_dev_state) {
1928 { .role = R_SECONDARY,
1929 .peer = R_UNKNOWN,
1930 .conn = C_STANDALONE,
1931 .disk = D_DISKLESS,
1932 .pdsk = D_UNKNOWN,
1933 } };
1934 }
1935
drbd_init_set_defaults(struct drbd_device * device)1936 void drbd_init_set_defaults(struct drbd_device *device)
1937 {
1938 /* the memset(,0,) did most of this.
1939 * note: only assignments, no allocation in here */
1940
1941 drbd_set_defaults(device);
1942
1943 atomic_set(&device->ap_bio_cnt, 0);
1944 atomic_set(&device->ap_actlog_cnt, 0);
1945 atomic_set(&device->ap_pending_cnt, 0);
1946 atomic_set(&device->rs_pending_cnt, 0);
1947 atomic_set(&device->unacked_cnt, 0);
1948 atomic_set(&device->local_cnt, 0);
1949 atomic_set(&device->pp_in_use_by_net, 0);
1950 atomic_set(&device->rs_sect_in, 0);
1951 atomic_set(&device->rs_sect_ev, 0);
1952 atomic_set(&device->ap_in_flight, 0);
1953 atomic_set(&device->md_io.in_use, 0);
1954
1955 mutex_init(&device->own_state_mutex);
1956 device->state_mutex = &device->own_state_mutex;
1957
1958 spin_lock_init(&device->al_lock);
1959 spin_lock_init(&device->peer_seq_lock);
1960
1961 INIT_LIST_HEAD(&device->active_ee);
1962 INIT_LIST_HEAD(&device->sync_ee);
1963 INIT_LIST_HEAD(&device->done_ee);
1964 INIT_LIST_HEAD(&device->read_ee);
1965 INIT_LIST_HEAD(&device->net_ee);
1966 INIT_LIST_HEAD(&device->resync_reads);
1967 INIT_LIST_HEAD(&device->resync_work.list);
1968 INIT_LIST_HEAD(&device->unplug_work.list);
1969 INIT_LIST_HEAD(&device->bm_io_work.w.list);
1970 INIT_LIST_HEAD(&device->pending_master_completion[0]);
1971 INIT_LIST_HEAD(&device->pending_master_completion[1]);
1972 INIT_LIST_HEAD(&device->pending_completion[0]);
1973 INIT_LIST_HEAD(&device->pending_completion[1]);
1974
1975 device->resync_work.cb = w_resync_timer;
1976 device->unplug_work.cb = w_send_write_hint;
1977 device->bm_io_work.w.cb = w_bitmap_io;
1978
1979 timer_setup(&device->resync_timer, resync_timer_fn, 0);
1980 timer_setup(&device->md_sync_timer, md_sync_timer_fn, 0);
1981 timer_setup(&device->start_resync_timer, start_resync_timer_fn, 0);
1982 timer_setup(&device->request_timer, request_timer_fn, 0);
1983
1984 init_waitqueue_head(&device->misc_wait);
1985 init_waitqueue_head(&device->state_wait);
1986 init_waitqueue_head(&device->ee_wait);
1987 init_waitqueue_head(&device->al_wait);
1988 init_waitqueue_head(&device->seq_wait);
1989
1990 device->resync_wenr = LC_FREE;
1991 device->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1992 device->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1993 }
1994
drbd_set_my_capacity(struct drbd_device * device,sector_t size)1995 void drbd_set_my_capacity(struct drbd_device *device, sector_t size)
1996 {
1997 char ppb[10];
1998
1999 set_capacity_and_notify(device->vdisk, size);
2000
2001 drbd_info(device, "size = %s (%llu KB)\n",
2002 ppsize(ppb, size>>1), (unsigned long long)size>>1);
2003 }
2004
drbd_device_cleanup(struct drbd_device * device)2005 void drbd_device_cleanup(struct drbd_device *device)
2006 {
2007 int i;
2008 if (first_peer_device(device)->connection->receiver.t_state != NONE)
2009 drbd_err(device, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
2010 first_peer_device(device)->connection->receiver.t_state);
2011
2012 device->al_writ_cnt =
2013 device->bm_writ_cnt =
2014 device->read_cnt =
2015 device->recv_cnt =
2016 device->send_cnt =
2017 device->writ_cnt =
2018 device->p_size =
2019 device->rs_start =
2020 device->rs_total =
2021 device->rs_failed = 0;
2022 device->rs_last_events = 0;
2023 device->rs_last_sect_ev = 0;
2024 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
2025 device->rs_mark_left[i] = 0;
2026 device->rs_mark_time[i] = 0;
2027 }
2028 D_ASSERT(device, first_peer_device(device)->connection->net_conf == NULL);
2029
2030 set_capacity_and_notify(device->vdisk, 0);
2031 if (device->bitmap) {
2032 /* maybe never allocated. */
2033 drbd_bm_resize(device, 0, 1);
2034 drbd_bm_cleanup(device);
2035 }
2036
2037 drbd_backing_dev_free(device, device->ldev);
2038 device->ldev = NULL;
2039
2040 clear_bit(AL_SUSPENDED, &device->flags);
2041
2042 D_ASSERT(device, list_empty(&device->active_ee));
2043 D_ASSERT(device, list_empty(&device->sync_ee));
2044 D_ASSERT(device, list_empty(&device->done_ee));
2045 D_ASSERT(device, list_empty(&device->read_ee));
2046 D_ASSERT(device, list_empty(&device->net_ee));
2047 D_ASSERT(device, list_empty(&device->resync_reads));
2048 D_ASSERT(device, list_empty(&first_peer_device(device)->connection->sender_work.q));
2049 D_ASSERT(device, list_empty(&device->resync_work.list));
2050 D_ASSERT(device, list_empty(&device->unplug_work.list));
2051
2052 drbd_set_defaults(device);
2053 }
2054
2055
drbd_destroy_mempools(void)2056 static void drbd_destroy_mempools(void)
2057 {
2058 struct page *page;
2059
2060 while (drbd_pp_pool) {
2061 page = drbd_pp_pool;
2062 drbd_pp_pool = (struct page *)page_private(page);
2063 __free_page(page);
2064 drbd_pp_vacant--;
2065 }
2066
2067 /* D_ASSERT(device, atomic_read(&drbd_pp_vacant)==0); */
2068
2069 bioset_exit(&drbd_io_bio_set);
2070 bioset_exit(&drbd_md_io_bio_set);
2071 mempool_exit(&drbd_md_io_page_pool);
2072 mempool_exit(&drbd_ee_mempool);
2073 mempool_exit(&drbd_request_mempool);
2074 kmem_cache_destroy(drbd_ee_cache);
2075 kmem_cache_destroy(drbd_request_cache);
2076 kmem_cache_destroy(drbd_bm_ext_cache);
2077 kmem_cache_destroy(drbd_al_ext_cache);
2078
2079 drbd_ee_cache = NULL;
2080 drbd_request_cache = NULL;
2081 drbd_bm_ext_cache = NULL;
2082 drbd_al_ext_cache = NULL;
2083
2084 return;
2085 }
2086
drbd_create_mempools(void)2087 static int drbd_create_mempools(void)
2088 {
2089 struct page *page;
2090 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * drbd_minor_count;
2091 int i, ret;
2092
2093 /* caches */
2094 drbd_request_cache = kmem_cache_create(
2095 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2096 if (drbd_request_cache == NULL)
2097 goto Enomem;
2098
2099 drbd_ee_cache = kmem_cache_create(
2100 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2101 if (drbd_ee_cache == NULL)
2102 goto Enomem;
2103
2104 drbd_bm_ext_cache = kmem_cache_create(
2105 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2106 if (drbd_bm_ext_cache == NULL)
2107 goto Enomem;
2108
2109 drbd_al_ext_cache = kmem_cache_create(
2110 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2111 if (drbd_al_ext_cache == NULL)
2112 goto Enomem;
2113
2114 /* mempools */
2115 ret = bioset_init(&drbd_io_bio_set, BIO_POOL_SIZE, 0, 0);
2116 if (ret)
2117 goto Enomem;
2118
2119 ret = bioset_init(&drbd_md_io_bio_set, DRBD_MIN_POOL_PAGES, 0,
2120 BIOSET_NEED_BVECS);
2121 if (ret)
2122 goto Enomem;
2123
2124 ret = mempool_init_page_pool(&drbd_md_io_page_pool, DRBD_MIN_POOL_PAGES, 0);
2125 if (ret)
2126 goto Enomem;
2127
2128 ret = mempool_init_slab_pool(&drbd_request_mempool, number,
2129 drbd_request_cache);
2130 if (ret)
2131 goto Enomem;
2132
2133 ret = mempool_init_slab_pool(&drbd_ee_mempool, number, drbd_ee_cache);
2134 if (ret)
2135 goto Enomem;
2136
2137 for (i = 0; i < number; i++) {
2138 page = alloc_page(GFP_HIGHUSER);
2139 if (!page)
2140 goto Enomem;
2141 set_page_private(page, (unsigned long)drbd_pp_pool);
2142 drbd_pp_pool = page;
2143 }
2144 drbd_pp_vacant = number;
2145
2146 return 0;
2147
2148 Enomem:
2149 drbd_destroy_mempools(); /* in case we allocated some */
2150 return -ENOMEM;
2151 }
2152
drbd_release_all_peer_reqs(struct drbd_device * device)2153 static void drbd_release_all_peer_reqs(struct drbd_device *device)
2154 {
2155 int rr;
2156
2157 rr = drbd_free_peer_reqs(device, &device->active_ee);
2158 if (rr)
2159 drbd_err(device, "%d EEs in active list found!\n", rr);
2160
2161 rr = drbd_free_peer_reqs(device, &device->sync_ee);
2162 if (rr)
2163 drbd_err(device, "%d EEs in sync list found!\n", rr);
2164
2165 rr = drbd_free_peer_reqs(device, &device->read_ee);
2166 if (rr)
2167 drbd_err(device, "%d EEs in read list found!\n", rr);
2168
2169 rr = drbd_free_peer_reqs(device, &device->done_ee);
2170 if (rr)
2171 drbd_err(device, "%d EEs in done list found!\n", rr);
2172
2173 rr = drbd_free_peer_reqs(device, &device->net_ee);
2174 if (rr)
2175 drbd_err(device, "%d EEs in net list found!\n", rr);
2176 }
2177
2178 /* caution. no locking. */
drbd_destroy_device(struct kref * kref)2179 void drbd_destroy_device(struct kref *kref)
2180 {
2181 struct drbd_device *device = container_of(kref, struct drbd_device, kref);
2182 struct drbd_resource *resource = device->resource;
2183 struct drbd_peer_device *peer_device, *tmp_peer_device;
2184
2185 timer_shutdown_sync(&device->request_timer);
2186
2187 /* paranoia asserts */
2188 D_ASSERT(device, device->open_cnt == 0);
2189 /* end paranoia asserts */
2190
2191 /* cleanup stuff that may have been allocated during
2192 * device (re-)configuration or state changes */
2193
2194 drbd_backing_dev_free(device, device->ldev);
2195 device->ldev = NULL;
2196
2197 drbd_release_all_peer_reqs(device);
2198
2199 lc_destroy(device->act_log);
2200 lc_destroy(device->resync);
2201
2202 kfree(device->p_uuid);
2203 /* device->p_uuid = NULL; */
2204
2205 if (device->bitmap) /* should no longer be there. */
2206 drbd_bm_cleanup(device);
2207 __free_page(device->md_io.page);
2208 put_disk(device->vdisk);
2209 kfree(device->rs_plan_s);
2210
2211 /* not for_each_connection(connection, resource):
2212 * those may have been cleaned up and disassociated already.
2213 */
2214 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2215 kref_put(&peer_device->connection->kref, drbd_destroy_connection);
2216 kfree(peer_device);
2217 }
2218 if (device->submit.wq)
2219 destroy_workqueue(device->submit.wq);
2220 kfree(device);
2221 kref_put(&resource->kref, drbd_destroy_resource);
2222 }
2223
2224 /* One global retry thread, if we need to push back some bio and have it
2225 * reinserted through our make request function.
2226 */
2227 static struct retry_worker {
2228 struct workqueue_struct *wq;
2229 struct work_struct worker;
2230
2231 spinlock_t lock;
2232 struct list_head writes;
2233 } retry;
2234
do_retry(struct work_struct * ws)2235 static void do_retry(struct work_struct *ws)
2236 {
2237 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2238 LIST_HEAD(writes);
2239 struct drbd_request *req, *tmp;
2240
2241 spin_lock_irq(&retry->lock);
2242 list_splice_init(&retry->writes, &writes);
2243 spin_unlock_irq(&retry->lock);
2244
2245 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2246 struct drbd_device *device = req->device;
2247 struct bio *bio = req->master_bio;
2248 bool expected;
2249
2250 expected =
2251 expect(device, atomic_read(&req->completion_ref) == 0) &&
2252 expect(device, req->rq_state & RQ_POSTPONED) &&
2253 expect(device, (req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2254 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2255
2256 if (!expected)
2257 drbd_err(device, "req=%p completion_ref=%d rq_state=%x\n",
2258 req, atomic_read(&req->completion_ref),
2259 req->rq_state);
2260
2261 /* We still need to put one kref associated with the
2262 * "completion_ref" going zero in the code path that queued it
2263 * here. The request object may still be referenced by a
2264 * frozen local req->private_bio, in case we force-detached.
2265 */
2266 kref_put(&req->kref, drbd_req_destroy);
2267
2268 /* A single suspended or otherwise blocking device may stall
2269 * all others as well. Fortunately, this code path is to
2270 * recover from a situation that "should not happen":
2271 * concurrent writes in multi-primary setup.
2272 * In a "normal" lifecycle, this workqueue is supposed to be
2273 * destroyed without ever doing anything.
2274 * If it turns out to be an issue anyways, we can do per
2275 * resource (replication group) or per device (minor) retry
2276 * workqueues instead.
2277 */
2278
2279 /* We are not just doing submit_bio_noacct(),
2280 * as we want to keep the start_time information. */
2281 inc_ap_bio(device);
2282 __drbd_make_request(device, bio);
2283 }
2284 }
2285
2286 /* called via drbd_req_put_completion_ref(),
2287 * holds resource->req_lock */
drbd_restart_request(struct drbd_request * req)2288 void drbd_restart_request(struct drbd_request *req)
2289 {
2290 unsigned long flags;
2291 spin_lock_irqsave(&retry.lock, flags);
2292 list_move_tail(&req->tl_requests, &retry.writes);
2293 spin_unlock_irqrestore(&retry.lock, flags);
2294
2295 /* Drop the extra reference that would otherwise
2296 * have been dropped by complete_master_bio.
2297 * do_retry() needs to grab a new one. */
2298 dec_ap_bio(req->device);
2299
2300 queue_work(retry.wq, &retry.worker);
2301 }
2302
drbd_destroy_resource(struct kref * kref)2303 void drbd_destroy_resource(struct kref *kref)
2304 {
2305 struct drbd_resource *resource =
2306 container_of(kref, struct drbd_resource, kref);
2307
2308 idr_destroy(&resource->devices);
2309 free_cpumask_var(resource->cpu_mask);
2310 kfree(resource->name);
2311 kfree(resource);
2312 }
2313
drbd_free_resource(struct drbd_resource * resource)2314 void drbd_free_resource(struct drbd_resource *resource)
2315 {
2316 struct drbd_connection *connection, *tmp;
2317
2318 for_each_connection_safe(connection, tmp, resource) {
2319 list_del(&connection->connections);
2320 drbd_debugfs_connection_cleanup(connection);
2321 kref_put(&connection->kref, drbd_destroy_connection);
2322 }
2323 drbd_debugfs_resource_cleanup(resource);
2324 kref_put(&resource->kref, drbd_destroy_resource);
2325 }
2326
drbd_cleanup(void)2327 static void drbd_cleanup(void)
2328 {
2329 unsigned int i;
2330 struct drbd_device *device;
2331 struct drbd_resource *resource, *tmp;
2332
2333 /* first remove proc,
2334 * drbdsetup uses it's presence to detect
2335 * whether DRBD is loaded.
2336 * If we would get stuck in proc removal,
2337 * but have netlink already deregistered,
2338 * some drbdsetup commands may wait forever
2339 * for an answer.
2340 */
2341 if (drbd_proc)
2342 remove_proc_entry("drbd", NULL);
2343
2344 if (retry.wq)
2345 destroy_workqueue(retry.wq);
2346
2347 drbd_genl_unregister();
2348
2349 idr_for_each_entry(&drbd_devices, device, i)
2350 drbd_delete_device(device);
2351
2352 /* not _rcu since, no other updater anymore. Genl already unregistered */
2353 for_each_resource_safe(resource, tmp, &drbd_resources) {
2354 list_del(&resource->resources);
2355 drbd_free_resource(resource);
2356 }
2357
2358 drbd_debugfs_cleanup();
2359
2360 drbd_destroy_mempools();
2361 unregister_blkdev(DRBD_MAJOR, "drbd");
2362
2363 idr_destroy(&drbd_devices);
2364
2365 pr_info("module cleanup done.\n");
2366 }
2367
drbd_init_workqueue(struct drbd_work_queue * wq)2368 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2369 {
2370 spin_lock_init(&wq->q_lock);
2371 INIT_LIST_HEAD(&wq->q);
2372 init_waitqueue_head(&wq->q_wait);
2373 }
2374
2375 struct completion_work {
2376 struct drbd_work w;
2377 struct completion done;
2378 };
2379
w_complete(struct drbd_work * w,int cancel)2380 static int w_complete(struct drbd_work *w, int cancel)
2381 {
2382 struct completion_work *completion_work =
2383 container_of(w, struct completion_work, w);
2384
2385 complete(&completion_work->done);
2386 return 0;
2387 }
2388
drbd_flush_workqueue(struct drbd_work_queue * work_queue)2389 void drbd_flush_workqueue(struct drbd_work_queue *work_queue)
2390 {
2391 struct completion_work completion_work;
2392
2393 completion_work.w.cb = w_complete;
2394 init_completion(&completion_work.done);
2395 drbd_queue_work(work_queue, &completion_work.w);
2396 wait_for_completion(&completion_work.done);
2397 }
2398
drbd_find_resource(const char * name)2399 struct drbd_resource *drbd_find_resource(const char *name)
2400 {
2401 struct drbd_resource *resource;
2402
2403 if (!name || !name[0])
2404 return NULL;
2405
2406 rcu_read_lock();
2407 for_each_resource_rcu(resource, &drbd_resources) {
2408 if (!strcmp(resource->name, name)) {
2409 kref_get(&resource->kref);
2410 goto found;
2411 }
2412 }
2413 resource = NULL;
2414 found:
2415 rcu_read_unlock();
2416 return resource;
2417 }
2418
conn_get_by_addrs(void * my_addr,int my_addr_len,void * peer_addr,int peer_addr_len)2419 struct drbd_connection *conn_get_by_addrs(void *my_addr, int my_addr_len,
2420 void *peer_addr, int peer_addr_len)
2421 {
2422 struct drbd_resource *resource;
2423 struct drbd_connection *connection;
2424
2425 rcu_read_lock();
2426 for_each_resource_rcu(resource, &drbd_resources) {
2427 for_each_connection_rcu(connection, resource) {
2428 if (connection->my_addr_len == my_addr_len &&
2429 connection->peer_addr_len == peer_addr_len &&
2430 !memcmp(&connection->my_addr, my_addr, my_addr_len) &&
2431 !memcmp(&connection->peer_addr, peer_addr, peer_addr_len)) {
2432 kref_get(&connection->kref);
2433 goto found;
2434 }
2435 }
2436 }
2437 connection = NULL;
2438 found:
2439 rcu_read_unlock();
2440 return connection;
2441 }
2442
drbd_alloc_socket(struct drbd_socket * socket)2443 static int drbd_alloc_socket(struct drbd_socket *socket)
2444 {
2445 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2446 if (!socket->rbuf)
2447 return -ENOMEM;
2448 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2449 if (!socket->sbuf)
2450 return -ENOMEM;
2451 return 0;
2452 }
2453
drbd_free_socket(struct drbd_socket * socket)2454 static void drbd_free_socket(struct drbd_socket *socket)
2455 {
2456 free_page((unsigned long) socket->sbuf);
2457 free_page((unsigned long) socket->rbuf);
2458 }
2459
conn_free_crypto(struct drbd_connection * connection)2460 void conn_free_crypto(struct drbd_connection *connection)
2461 {
2462 drbd_free_sock(connection);
2463
2464 crypto_free_shash(connection->csums_tfm);
2465 crypto_free_shash(connection->verify_tfm);
2466 crypto_free_shash(connection->cram_hmac_tfm);
2467 crypto_free_shash(connection->integrity_tfm);
2468 crypto_free_shash(connection->peer_integrity_tfm);
2469 kfree(connection->int_dig_in);
2470 kfree(connection->int_dig_vv);
2471
2472 connection->csums_tfm = NULL;
2473 connection->verify_tfm = NULL;
2474 connection->cram_hmac_tfm = NULL;
2475 connection->integrity_tfm = NULL;
2476 connection->peer_integrity_tfm = NULL;
2477 connection->int_dig_in = NULL;
2478 connection->int_dig_vv = NULL;
2479 }
2480
set_resource_options(struct drbd_resource * resource,struct res_opts * res_opts)2481 int set_resource_options(struct drbd_resource *resource, struct res_opts *res_opts)
2482 {
2483 struct drbd_connection *connection;
2484 cpumask_var_t new_cpu_mask;
2485 int err;
2486
2487 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2488 return -ENOMEM;
2489
2490 /* silently ignore cpu mask on UP kernel */
2491 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2492 err = bitmap_parse(res_opts->cpu_mask, DRBD_CPU_MASK_SIZE,
2493 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2494 if (err == -EOVERFLOW) {
2495 /* So what. mask it out. */
2496 cpumask_var_t tmp_cpu_mask;
2497 if (zalloc_cpumask_var(&tmp_cpu_mask, GFP_KERNEL)) {
2498 cpumask_setall(tmp_cpu_mask);
2499 cpumask_and(new_cpu_mask, new_cpu_mask, tmp_cpu_mask);
2500 drbd_warn(resource, "Overflow in bitmap_parse(%.12s%s), truncating to %u bits\n",
2501 res_opts->cpu_mask,
2502 strlen(res_opts->cpu_mask) > 12 ? "..." : "",
2503 nr_cpu_ids);
2504 free_cpumask_var(tmp_cpu_mask);
2505 err = 0;
2506 }
2507 }
2508 if (err) {
2509 drbd_warn(resource, "bitmap_parse() failed with %d\n", err);
2510 /* retcode = ERR_CPU_MASK_PARSE; */
2511 goto fail;
2512 }
2513 }
2514 resource->res_opts = *res_opts;
2515 if (cpumask_empty(new_cpu_mask))
2516 drbd_calc_cpu_mask(&new_cpu_mask);
2517 if (!cpumask_equal(resource->cpu_mask, new_cpu_mask)) {
2518 cpumask_copy(resource->cpu_mask, new_cpu_mask);
2519 for_each_connection_rcu(connection, resource) {
2520 connection->receiver.reset_cpu_mask = 1;
2521 connection->ack_receiver.reset_cpu_mask = 1;
2522 connection->worker.reset_cpu_mask = 1;
2523 }
2524 }
2525 err = 0;
2526
2527 fail:
2528 free_cpumask_var(new_cpu_mask);
2529 return err;
2530
2531 }
2532
drbd_create_resource(const char * name)2533 struct drbd_resource *drbd_create_resource(const char *name)
2534 {
2535 struct drbd_resource *resource;
2536
2537 resource = kzalloc(sizeof(struct drbd_resource), GFP_KERNEL);
2538 if (!resource)
2539 goto fail;
2540 resource->name = kstrdup(name, GFP_KERNEL);
2541 if (!resource->name)
2542 goto fail_free_resource;
2543 if (!zalloc_cpumask_var(&resource->cpu_mask, GFP_KERNEL))
2544 goto fail_free_name;
2545 kref_init(&resource->kref);
2546 idr_init(&resource->devices);
2547 INIT_LIST_HEAD(&resource->connections);
2548 resource->write_ordering = WO_BDEV_FLUSH;
2549 list_add_tail_rcu(&resource->resources, &drbd_resources);
2550 mutex_init(&resource->conf_update);
2551 mutex_init(&resource->adm_mutex);
2552 spin_lock_init(&resource->req_lock);
2553 drbd_debugfs_resource_add(resource);
2554 return resource;
2555
2556 fail_free_name:
2557 kfree(resource->name);
2558 fail_free_resource:
2559 kfree(resource);
2560 fail:
2561 return NULL;
2562 }
2563
2564 /* caller must be under adm_mutex */
conn_create(const char * name,struct res_opts * res_opts)2565 struct drbd_connection *conn_create(const char *name, struct res_opts *res_opts)
2566 {
2567 struct drbd_resource *resource;
2568 struct drbd_connection *connection;
2569
2570 connection = kzalloc(sizeof(struct drbd_connection), GFP_KERNEL);
2571 if (!connection)
2572 return NULL;
2573
2574 if (drbd_alloc_socket(&connection->data))
2575 goto fail;
2576 if (drbd_alloc_socket(&connection->meta))
2577 goto fail;
2578
2579 connection->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2580 if (!connection->current_epoch)
2581 goto fail;
2582
2583 INIT_LIST_HEAD(&connection->transfer_log);
2584
2585 INIT_LIST_HEAD(&connection->current_epoch->list);
2586 connection->epochs = 1;
2587 spin_lock_init(&connection->epoch_lock);
2588
2589 connection->send.seen_any_write_yet = false;
2590 connection->send.current_epoch_nr = 0;
2591 connection->send.current_epoch_writes = 0;
2592
2593 resource = drbd_create_resource(name);
2594 if (!resource)
2595 goto fail;
2596
2597 connection->cstate = C_STANDALONE;
2598 mutex_init(&connection->cstate_mutex);
2599 init_waitqueue_head(&connection->ping_wait);
2600 idr_init(&connection->peer_devices);
2601
2602 drbd_init_workqueue(&connection->sender_work);
2603 mutex_init(&connection->data.mutex);
2604 mutex_init(&connection->meta.mutex);
2605
2606 drbd_thread_init(resource, &connection->receiver, drbd_receiver, "receiver");
2607 connection->receiver.connection = connection;
2608 drbd_thread_init(resource, &connection->worker, drbd_worker, "worker");
2609 connection->worker.connection = connection;
2610 drbd_thread_init(resource, &connection->ack_receiver, drbd_ack_receiver, "ack_recv");
2611 connection->ack_receiver.connection = connection;
2612
2613 kref_init(&connection->kref);
2614
2615 connection->resource = resource;
2616
2617 if (set_resource_options(resource, res_opts))
2618 goto fail_resource;
2619
2620 kref_get(&resource->kref);
2621 list_add_tail_rcu(&connection->connections, &resource->connections);
2622 drbd_debugfs_connection_add(connection);
2623 return connection;
2624
2625 fail_resource:
2626 list_del(&resource->resources);
2627 drbd_free_resource(resource);
2628 fail:
2629 kfree(connection->current_epoch);
2630 drbd_free_socket(&connection->meta);
2631 drbd_free_socket(&connection->data);
2632 kfree(connection);
2633 return NULL;
2634 }
2635
drbd_destroy_connection(struct kref * kref)2636 void drbd_destroy_connection(struct kref *kref)
2637 {
2638 struct drbd_connection *connection = container_of(kref, struct drbd_connection, kref);
2639 struct drbd_resource *resource = connection->resource;
2640
2641 if (atomic_read(&connection->current_epoch->epoch_size) != 0)
2642 drbd_err(connection, "epoch_size:%d\n", atomic_read(&connection->current_epoch->epoch_size));
2643 kfree(connection->current_epoch);
2644
2645 idr_destroy(&connection->peer_devices);
2646
2647 drbd_free_socket(&connection->meta);
2648 drbd_free_socket(&connection->data);
2649 kfree(connection->int_dig_in);
2650 kfree(connection->int_dig_vv);
2651 kfree(connection);
2652 kref_put(&resource->kref, drbd_destroy_resource);
2653 }
2654
init_submitter(struct drbd_device * device)2655 static int init_submitter(struct drbd_device *device)
2656 {
2657 /* opencoded create_singlethread_workqueue(),
2658 * to be able to say "drbd%d", ..., minor */
2659 device->submit.wq =
2660 alloc_ordered_workqueue("drbd%u_submit", WQ_MEM_RECLAIM, device->minor);
2661 if (!device->submit.wq)
2662 return -ENOMEM;
2663
2664 INIT_WORK(&device->submit.worker, do_submit);
2665 INIT_LIST_HEAD(&device->submit.writes);
2666 return 0;
2667 }
2668
drbd_create_device(struct drbd_config_context * adm_ctx,unsigned int minor)2669 enum drbd_ret_code drbd_create_device(struct drbd_config_context *adm_ctx, unsigned int minor)
2670 {
2671 struct drbd_resource *resource = adm_ctx->resource;
2672 struct drbd_connection *connection, *n;
2673 struct drbd_device *device;
2674 struct drbd_peer_device *peer_device, *tmp_peer_device;
2675 struct gendisk *disk;
2676 int id;
2677 int vnr = adm_ctx->volume;
2678 enum drbd_ret_code err = ERR_NOMEM;
2679 struct queue_limits lim = {
2680 /*
2681 * Setting the max_hw_sectors to an odd value of 8kibyte here.
2682 * This triggers a max_bio_size message upon first attach or
2683 * connect.
2684 */
2685 .max_hw_sectors = DRBD_MAX_BIO_SIZE_SAFE >> 8,
2686 .features = BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA |
2687 BLK_FEAT_ROTATIONAL |
2688 BLK_FEAT_STABLE_WRITES,
2689 };
2690
2691 device = minor_to_device(minor);
2692 if (device)
2693 return ERR_MINOR_OR_VOLUME_EXISTS;
2694
2695 /* GFP_KERNEL, we are outside of all write-out paths */
2696 device = kzalloc(sizeof(struct drbd_device), GFP_KERNEL);
2697 if (!device)
2698 return ERR_NOMEM;
2699 kref_init(&device->kref);
2700
2701 kref_get(&resource->kref);
2702 device->resource = resource;
2703 device->minor = minor;
2704 device->vnr = vnr;
2705
2706 drbd_init_set_defaults(device);
2707
2708 disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
2709 if (IS_ERR(disk)) {
2710 err = PTR_ERR(disk);
2711 goto out_no_disk;
2712 }
2713
2714 device->vdisk = disk;
2715 device->rq_queue = disk->queue;
2716
2717 set_disk_ro(disk, true);
2718
2719 disk->major = DRBD_MAJOR;
2720 disk->first_minor = minor;
2721 disk->minors = 1;
2722 disk->fops = &drbd_ops;
2723 disk->flags |= GENHD_FL_NO_PART;
2724 sprintf(disk->disk_name, "drbd%d", minor);
2725 disk->private_data = device;
2726
2727 device->md_io.page = alloc_page(GFP_KERNEL);
2728 if (!device->md_io.page)
2729 goto out_no_io_page;
2730
2731 if (drbd_bm_init(device))
2732 goto out_no_bitmap;
2733 device->read_requests = RB_ROOT;
2734 device->write_requests = RB_ROOT;
2735
2736 id = idr_alloc(&drbd_devices, device, minor, minor + 1, GFP_KERNEL);
2737 if (id < 0) {
2738 if (id == -ENOSPC)
2739 err = ERR_MINOR_OR_VOLUME_EXISTS;
2740 goto out_no_minor_idr;
2741 }
2742 kref_get(&device->kref);
2743
2744 id = idr_alloc(&resource->devices, device, vnr, vnr + 1, GFP_KERNEL);
2745 if (id < 0) {
2746 if (id == -ENOSPC)
2747 err = ERR_MINOR_OR_VOLUME_EXISTS;
2748 goto out_idr_remove_minor;
2749 }
2750 kref_get(&device->kref);
2751
2752 INIT_LIST_HEAD(&device->peer_devices);
2753 INIT_LIST_HEAD(&device->pending_bitmap_io);
2754 for_each_connection(connection, resource) {
2755 peer_device = kzalloc(sizeof(struct drbd_peer_device), GFP_KERNEL);
2756 if (!peer_device)
2757 goto out_idr_remove_from_resource;
2758 peer_device->connection = connection;
2759 peer_device->device = device;
2760
2761 list_add(&peer_device->peer_devices, &device->peer_devices);
2762 kref_get(&device->kref);
2763
2764 id = idr_alloc(&connection->peer_devices, peer_device, vnr, vnr + 1, GFP_KERNEL);
2765 if (id < 0) {
2766 if (id == -ENOSPC)
2767 err = ERR_INVALID_REQUEST;
2768 goto out_idr_remove_from_resource;
2769 }
2770 kref_get(&connection->kref);
2771 INIT_WORK(&peer_device->send_acks_work, drbd_send_acks_wf);
2772 }
2773
2774 if (init_submitter(device)) {
2775 err = ERR_NOMEM;
2776 goto out_idr_remove_from_resource;
2777 }
2778
2779 err = add_disk(disk);
2780 if (err)
2781 goto out_destroy_workqueue;
2782
2783 /* inherit the connection state */
2784 device->state.conn = first_connection(resource)->cstate;
2785 if (device->state.conn == C_WF_REPORT_PARAMS) {
2786 for_each_peer_device(peer_device, device)
2787 drbd_connected(peer_device);
2788 }
2789 /* move to create_peer_device() */
2790 for_each_peer_device(peer_device, device)
2791 drbd_debugfs_peer_device_add(peer_device);
2792 drbd_debugfs_device_add(device);
2793 return NO_ERROR;
2794
2795 out_destroy_workqueue:
2796 destroy_workqueue(device->submit.wq);
2797 out_idr_remove_from_resource:
2798 for_each_connection_safe(connection, n, resource) {
2799 peer_device = idr_remove(&connection->peer_devices, vnr);
2800 if (peer_device)
2801 kref_put(&connection->kref, drbd_destroy_connection);
2802 }
2803 for_each_peer_device_safe(peer_device, tmp_peer_device, device) {
2804 list_del(&peer_device->peer_devices);
2805 kfree(peer_device);
2806 }
2807 idr_remove(&resource->devices, vnr);
2808 out_idr_remove_minor:
2809 idr_remove(&drbd_devices, minor);
2810 synchronize_rcu();
2811 out_no_minor_idr:
2812 drbd_bm_cleanup(device);
2813 out_no_bitmap:
2814 __free_page(device->md_io.page);
2815 out_no_io_page:
2816 put_disk(disk);
2817 out_no_disk:
2818 kref_put(&resource->kref, drbd_destroy_resource);
2819 kfree(device);
2820 return err;
2821 }
2822
drbd_delete_device(struct drbd_device * device)2823 void drbd_delete_device(struct drbd_device *device)
2824 {
2825 struct drbd_resource *resource = device->resource;
2826 struct drbd_connection *connection;
2827 struct drbd_peer_device *peer_device;
2828
2829 /* move to free_peer_device() */
2830 for_each_peer_device(peer_device, device)
2831 drbd_debugfs_peer_device_cleanup(peer_device);
2832 drbd_debugfs_device_cleanup(device);
2833 for_each_connection(connection, resource) {
2834 idr_remove(&connection->peer_devices, device->vnr);
2835 kref_put(&device->kref, drbd_destroy_device);
2836 }
2837 idr_remove(&resource->devices, device->vnr);
2838 kref_put(&device->kref, drbd_destroy_device);
2839 idr_remove(&drbd_devices, device_to_minor(device));
2840 kref_put(&device->kref, drbd_destroy_device);
2841 del_gendisk(device->vdisk);
2842 synchronize_rcu();
2843 kref_put(&device->kref, drbd_destroy_device);
2844 }
2845
drbd_init(void)2846 static int __init drbd_init(void)
2847 {
2848 int err;
2849
2850 if (drbd_minor_count < DRBD_MINOR_COUNT_MIN || drbd_minor_count > DRBD_MINOR_COUNT_MAX) {
2851 pr_err("invalid minor_count (%d)\n", drbd_minor_count);
2852 #ifdef MODULE
2853 return -EINVAL;
2854 #else
2855 drbd_minor_count = DRBD_MINOR_COUNT_DEF;
2856 #endif
2857 }
2858
2859 err = register_blkdev(DRBD_MAJOR, "drbd");
2860 if (err) {
2861 pr_err("unable to register block device major %d\n",
2862 DRBD_MAJOR);
2863 return err;
2864 }
2865
2866 /*
2867 * allocate all necessary structs
2868 */
2869 init_waitqueue_head(&drbd_pp_wait);
2870
2871 drbd_proc = NULL; /* play safe for drbd_cleanup */
2872 idr_init(&drbd_devices);
2873
2874 mutex_init(&resources_mutex);
2875 INIT_LIST_HEAD(&drbd_resources);
2876
2877 err = drbd_genl_register();
2878 if (err) {
2879 pr_err("unable to register generic netlink family\n");
2880 goto fail;
2881 }
2882
2883 err = drbd_create_mempools();
2884 if (err)
2885 goto fail;
2886
2887 err = -ENOMEM;
2888 drbd_proc = proc_create_single("drbd", S_IFREG | 0444 , NULL, drbd_seq_show);
2889 if (!drbd_proc) {
2890 pr_err("unable to register proc file\n");
2891 goto fail;
2892 }
2893
2894 retry.wq = create_singlethread_workqueue("drbd-reissue");
2895 if (!retry.wq) {
2896 pr_err("unable to create retry workqueue\n");
2897 goto fail;
2898 }
2899 INIT_WORK(&retry.worker, do_retry);
2900 spin_lock_init(&retry.lock);
2901 INIT_LIST_HEAD(&retry.writes);
2902
2903 drbd_debugfs_init();
2904
2905 pr_info("initialized. "
2906 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2907 GENL_MAGIC_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2908 pr_info("%s\n", drbd_buildtag());
2909 pr_info("registered as block device major %d\n", DRBD_MAJOR);
2910 return 0; /* Success! */
2911
2912 fail:
2913 drbd_cleanup();
2914 if (err == -ENOMEM)
2915 pr_err("ran out of memory\n");
2916 else
2917 pr_err("initialization failure\n");
2918 return err;
2919 }
2920
drbd_free_one_sock(struct drbd_socket * ds)2921 static void drbd_free_one_sock(struct drbd_socket *ds)
2922 {
2923 struct socket *s;
2924 mutex_lock(&ds->mutex);
2925 s = ds->socket;
2926 ds->socket = NULL;
2927 mutex_unlock(&ds->mutex);
2928 if (s) {
2929 /* so debugfs does not need to mutex_lock() */
2930 synchronize_rcu();
2931 kernel_sock_shutdown(s, SHUT_RDWR);
2932 sock_release(s);
2933 }
2934 }
2935
drbd_free_sock(struct drbd_connection * connection)2936 void drbd_free_sock(struct drbd_connection *connection)
2937 {
2938 if (connection->data.socket)
2939 drbd_free_one_sock(&connection->data);
2940 if (connection->meta.socket)
2941 drbd_free_one_sock(&connection->meta);
2942 }
2943
2944 /* meta data management */
2945
conn_md_sync(struct drbd_connection * connection)2946 void conn_md_sync(struct drbd_connection *connection)
2947 {
2948 struct drbd_peer_device *peer_device;
2949 int vnr;
2950
2951 rcu_read_lock();
2952 idr_for_each_entry(&connection->peer_devices, peer_device, vnr) {
2953 struct drbd_device *device = peer_device->device;
2954
2955 kref_get(&device->kref);
2956 rcu_read_unlock();
2957 drbd_md_sync(device);
2958 kref_put(&device->kref, drbd_destroy_device);
2959 rcu_read_lock();
2960 }
2961 rcu_read_unlock();
2962 }
2963
2964 /* aligned 4kByte */
2965 struct meta_data_on_disk {
2966 u64 la_size_sect; /* last agreed size. */
2967 u64 uuid[UI_SIZE]; /* UUIDs. */
2968 u64 device_uuid;
2969 u64 reserved_u64_1;
2970 u32 flags; /* MDF */
2971 u32 magic;
2972 u32 md_size_sect;
2973 u32 al_offset; /* offset to this block */
2974 u32 al_nr_extents; /* important for restoring the AL (userspace) */
2975 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2976 u32 bm_offset; /* offset to the bitmap, from here */
2977 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2978 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2979
2980 /* see al_tr_number_to_on_disk_sector() */
2981 u32 al_stripes;
2982 u32 al_stripe_size_4k;
2983
2984 u8 reserved_u8[4096 - (7*8 + 10*4)];
2985 } __packed;
2986
2987
2988
drbd_md_write(struct drbd_device * device,void * b)2989 void drbd_md_write(struct drbd_device *device, void *b)
2990 {
2991 struct meta_data_on_disk *buffer = b;
2992 sector_t sector;
2993 int i;
2994
2995 memset(buffer, 0, sizeof(*buffer));
2996
2997 buffer->la_size_sect = cpu_to_be64(get_capacity(device->vdisk));
2998 for (i = UI_CURRENT; i < UI_SIZE; i++)
2999 buffer->uuid[i] = cpu_to_be64(device->ldev->md.uuid[i]);
3000 buffer->flags = cpu_to_be32(device->ldev->md.flags);
3001 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
3002
3003 buffer->md_size_sect = cpu_to_be32(device->ldev->md.md_size_sect);
3004 buffer->al_offset = cpu_to_be32(device->ldev->md.al_offset);
3005 buffer->al_nr_extents = cpu_to_be32(device->act_log->nr_elements);
3006 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
3007 buffer->device_uuid = cpu_to_be64(device->ldev->md.device_uuid);
3008
3009 buffer->bm_offset = cpu_to_be32(device->ldev->md.bm_offset);
3010 buffer->la_peer_max_bio_size = cpu_to_be32(device->peer_max_bio_size);
3011
3012 buffer->al_stripes = cpu_to_be32(device->ldev->md.al_stripes);
3013 buffer->al_stripe_size_4k = cpu_to_be32(device->ldev->md.al_stripe_size_4k);
3014
3015 D_ASSERT(device, drbd_md_ss(device->ldev) == device->ldev->md.md_offset);
3016 sector = device->ldev->md.md_offset;
3017
3018 if (drbd_md_sync_page_io(device, device->ldev, sector, REQ_OP_WRITE)) {
3019 /* this was a try anyways ... */
3020 drbd_err(device, "meta data update failed!\n");
3021 drbd_chk_io_error(device, 1, DRBD_META_IO_ERROR);
3022 }
3023 }
3024
3025 /**
3026 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
3027 * @device: DRBD device.
3028 */
drbd_md_sync(struct drbd_device * device)3029 void drbd_md_sync(struct drbd_device *device)
3030 {
3031 struct meta_data_on_disk *buffer;
3032
3033 /* Don't accidentally change the DRBD meta data layout. */
3034 BUILD_BUG_ON(UI_SIZE != 4);
3035 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
3036
3037 del_timer(&device->md_sync_timer);
3038 /* timer may be rearmed by drbd_md_mark_dirty() now. */
3039 if (!test_and_clear_bit(MD_DIRTY, &device->flags))
3040 return;
3041
3042 /* We use here D_FAILED and not D_ATTACHING because we try to write
3043 * metadata even if we detach due to a disk failure! */
3044 if (!get_ldev_if_state(device, D_FAILED))
3045 return;
3046
3047 buffer = drbd_md_get_buffer(device, __func__);
3048 if (!buffer)
3049 goto out;
3050
3051 drbd_md_write(device, buffer);
3052
3053 /* Update device->ldev->md.la_size_sect,
3054 * since we updated it on metadata. */
3055 device->ldev->md.la_size_sect = get_capacity(device->vdisk);
3056
3057 drbd_md_put_buffer(device);
3058 out:
3059 put_ldev(device);
3060 }
3061
check_activity_log_stripe_size(struct drbd_device * device,struct meta_data_on_disk * on_disk,struct drbd_md * in_core)3062 static int check_activity_log_stripe_size(struct drbd_device *device,
3063 struct meta_data_on_disk *on_disk,
3064 struct drbd_md *in_core)
3065 {
3066 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
3067 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
3068 u64 al_size_4k;
3069
3070 /* both not set: default to old fixed size activity log */
3071 if (al_stripes == 0 && al_stripe_size_4k == 0) {
3072 al_stripes = 1;
3073 al_stripe_size_4k = MD_32kB_SECT/8;
3074 }
3075
3076 /* some paranoia plausibility checks */
3077
3078 /* we need both values to be set */
3079 if (al_stripes == 0 || al_stripe_size_4k == 0)
3080 goto err;
3081
3082 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
3083
3084 /* Upper limit of activity log area, to avoid potential overflow
3085 * problems in al_tr_number_to_on_disk_sector(). As right now, more
3086 * than 72 * 4k blocks total only increases the amount of history,
3087 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
3088 if (al_size_4k > (16 * 1024 * 1024/4))
3089 goto err;
3090
3091 /* Lower limit: we need at least 8 transaction slots (32kB)
3092 * to not break existing setups */
3093 if (al_size_4k < MD_32kB_SECT/8)
3094 goto err;
3095
3096 in_core->al_stripe_size_4k = al_stripe_size_4k;
3097 in_core->al_stripes = al_stripes;
3098 in_core->al_size_4k = al_size_4k;
3099
3100 return 0;
3101 err:
3102 drbd_err(device, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
3103 al_stripes, al_stripe_size_4k);
3104 return -EINVAL;
3105 }
3106
check_offsets_and_sizes(struct drbd_device * device,struct drbd_backing_dev * bdev)3107 static int check_offsets_and_sizes(struct drbd_device *device, struct drbd_backing_dev *bdev)
3108 {
3109 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
3110 struct drbd_md *in_core = &bdev->md;
3111 s32 on_disk_al_sect;
3112 s32 on_disk_bm_sect;
3113
3114 /* The on-disk size of the activity log, calculated from offsets, and
3115 * the size of the activity log calculated from the stripe settings,
3116 * should match.
3117 * Though we could relax this a bit: it is ok, if the striped activity log
3118 * fits in the available on-disk activity log size.
3119 * Right now, that would break how resize is implemented.
3120 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3121 * of possible unused padding space in the on disk layout. */
3122 if (in_core->al_offset < 0) {
3123 if (in_core->bm_offset > in_core->al_offset)
3124 goto err;
3125 on_disk_al_sect = -in_core->al_offset;
3126 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3127 } else {
3128 if (in_core->al_offset != MD_4kB_SECT)
3129 goto err;
3130 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3131 goto err;
3132
3133 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3134 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3135 }
3136
3137 /* old fixed size meta data is exactly that: fixed. */
3138 if (in_core->meta_dev_idx >= 0) {
3139 if (in_core->md_size_sect != MD_128MB_SECT
3140 || in_core->al_offset != MD_4kB_SECT
3141 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3142 || in_core->al_stripes != 1
3143 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3144 goto err;
3145 }
3146
3147 if (capacity < in_core->md_size_sect)
3148 goto err;
3149 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3150 goto err;
3151
3152 /* should be aligned, and at least 32k */
3153 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3154 goto err;
3155
3156 /* should fit (for now: exactly) into the available on-disk space;
3157 * overflow prevention is in check_activity_log_stripe_size() above. */
3158 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3159 goto err;
3160
3161 /* again, should be aligned */
3162 if (in_core->bm_offset & 7)
3163 goto err;
3164
3165 /* FIXME check for device grow with flex external meta data? */
3166
3167 /* can the available bitmap space cover the last agreed device size? */
3168 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3169 goto err;
3170
3171 return 0;
3172
3173 err:
3174 drbd_err(device, "meta data offsets don't make sense: idx=%d "
3175 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3176 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3177 in_core->meta_dev_idx,
3178 in_core->al_stripes, in_core->al_stripe_size_4k,
3179 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3180 (unsigned long long)in_core->la_size_sect,
3181 (unsigned long long)capacity);
3182
3183 return -EINVAL;
3184 }
3185
3186
3187 /**
3188 * drbd_md_read() - Reads in the meta data super block
3189 * @device: DRBD device.
3190 * @bdev: Device from which the meta data should be read in.
3191 *
3192 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3193 * something goes wrong.
3194 *
3195 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3196 * even before @bdev is assigned to @device->ldev.
3197 */
drbd_md_read(struct drbd_device * device,struct drbd_backing_dev * bdev)3198 int drbd_md_read(struct drbd_device *device, struct drbd_backing_dev *bdev)
3199 {
3200 struct meta_data_on_disk *buffer;
3201 u32 magic, flags;
3202 int i, rv = NO_ERROR;
3203
3204 if (device->state.disk != D_DISKLESS)
3205 return ERR_DISK_CONFIGURED;
3206
3207 buffer = drbd_md_get_buffer(device, __func__);
3208 if (!buffer)
3209 return ERR_NOMEM;
3210
3211 /* First, figure out where our meta data superblock is located,
3212 * and read it. */
3213 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3214 bdev->md.md_offset = drbd_md_ss(bdev);
3215 /* Even for (flexible or indexed) external meta data,
3216 * initially restrict us to the 4k superblock for now.
3217 * Affects the paranoia out-of-range access check in drbd_md_sync_page_io(). */
3218 bdev->md.md_size_sect = 8;
3219
3220 if (drbd_md_sync_page_io(device, bdev, bdev->md.md_offset,
3221 REQ_OP_READ)) {
3222 /* NOTE: can't do normal error processing here as this is
3223 called BEFORE disk is attached */
3224 drbd_err(device, "Error while reading metadata.\n");
3225 rv = ERR_IO_MD_DISK;
3226 goto err;
3227 }
3228
3229 magic = be32_to_cpu(buffer->magic);
3230 flags = be32_to_cpu(buffer->flags);
3231 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3232 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3233 /* btw: that's Activity Log clean, not "all" clean. */
3234 drbd_err(device, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3235 rv = ERR_MD_UNCLEAN;
3236 goto err;
3237 }
3238
3239 rv = ERR_MD_INVALID;
3240 if (magic != DRBD_MD_MAGIC_08) {
3241 if (magic == DRBD_MD_MAGIC_07)
3242 drbd_err(device, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3243 else
3244 drbd_err(device, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3245 goto err;
3246 }
3247
3248 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3249 drbd_err(device, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3250 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3251 goto err;
3252 }
3253
3254
3255 /* convert to in_core endian */
3256 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3257 for (i = UI_CURRENT; i < UI_SIZE; i++)
3258 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3259 bdev->md.flags = be32_to_cpu(buffer->flags);
3260 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3261
3262 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3263 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3264 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3265
3266 if (check_activity_log_stripe_size(device, buffer, &bdev->md))
3267 goto err;
3268 if (check_offsets_and_sizes(device, bdev))
3269 goto err;
3270
3271 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3272 drbd_err(device, "unexpected bm_offset: %d (expected %d)\n",
3273 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3274 goto err;
3275 }
3276 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3277 drbd_err(device, "unexpected md_size: %u (expected %u)\n",
3278 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3279 goto err;
3280 }
3281
3282 rv = NO_ERROR;
3283
3284 spin_lock_irq(&device->resource->req_lock);
3285 if (device->state.conn < C_CONNECTED) {
3286 unsigned int peer;
3287 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3288 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3289 device->peer_max_bio_size = peer;
3290 }
3291 spin_unlock_irq(&device->resource->req_lock);
3292
3293 err:
3294 drbd_md_put_buffer(device);
3295
3296 return rv;
3297 }
3298
3299 /**
3300 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3301 * @device: DRBD device.
3302 *
3303 * Call this function if you change anything that should be written to
3304 * the meta-data super block. This function sets MD_DIRTY, and starts a
3305 * timer that ensures that within five seconds you have to call drbd_md_sync().
3306 */
drbd_md_mark_dirty(struct drbd_device * device)3307 void drbd_md_mark_dirty(struct drbd_device *device)
3308 {
3309 if (!test_and_set_bit(MD_DIRTY, &device->flags))
3310 mod_timer(&device->md_sync_timer, jiffies + 5*HZ);
3311 }
3312
drbd_uuid_move_history(struct drbd_device * device)3313 void drbd_uuid_move_history(struct drbd_device *device) __must_hold(local)
3314 {
3315 int i;
3316
3317 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3318 device->ldev->md.uuid[i+1] = device->ldev->md.uuid[i];
3319 }
3320
__drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3321 void __drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3322 {
3323 if (idx == UI_CURRENT) {
3324 if (device->state.role == R_PRIMARY)
3325 val |= 1;
3326 else
3327 val &= ~((u64)1);
3328
3329 drbd_set_ed_uuid(device, val);
3330 }
3331
3332 device->ldev->md.uuid[idx] = val;
3333 drbd_md_mark_dirty(device);
3334 }
3335
_drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3336 void _drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3337 {
3338 unsigned long flags;
3339 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3340 __drbd_uuid_set(device, idx, val);
3341 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3342 }
3343
drbd_uuid_set(struct drbd_device * device,int idx,u64 val)3344 void drbd_uuid_set(struct drbd_device *device, int idx, u64 val) __must_hold(local)
3345 {
3346 unsigned long flags;
3347 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3348 if (device->ldev->md.uuid[idx]) {
3349 drbd_uuid_move_history(device);
3350 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[idx];
3351 }
3352 __drbd_uuid_set(device, idx, val);
3353 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3354 }
3355
3356 /**
3357 * drbd_uuid_new_current() - Creates a new current UUID
3358 * @device: DRBD device.
3359 *
3360 * Creates a new current UUID, and rotates the old current UUID into
3361 * the bitmap slot. Causes an incremental resync upon next connect.
3362 */
drbd_uuid_new_current(struct drbd_device * device)3363 void drbd_uuid_new_current(struct drbd_device *device) __must_hold(local)
3364 {
3365 u64 val;
3366 unsigned long long bm_uuid;
3367
3368 get_random_bytes(&val, sizeof(u64));
3369
3370 spin_lock_irq(&device->ldev->md.uuid_lock);
3371 bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3372
3373 if (bm_uuid)
3374 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3375
3376 device->ldev->md.uuid[UI_BITMAP] = device->ldev->md.uuid[UI_CURRENT];
3377 __drbd_uuid_set(device, UI_CURRENT, val);
3378 spin_unlock_irq(&device->ldev->md.uuid_lock);
3379
3380 drbd_print_uuids(device, "new current UUID");
3381 /* get it to stable storage _now_ */
3382 drbd_md_sync(device);
3383 }
3384
drbd_uuid_set_bm(struct drbd_device * device,u64 val)3385 void drbd_uuid_set_bm(struct drbd_device *device, u64 val) __must_hold(local)
3386 {
3387 unsigned long flags;
3388 spin_lock_irqsave(&device->ldev->md.uuid_lock, flags);
3389 if (device->ldev->md.uuid[UI_BITMAP] == 0 && val == 0) {
3390 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3391 return;
3392 }
3393
3394 if (val == 0) {
3395 drbd_uuid_move_history(device);
3396 device->ldev->md.uuid[UI_HISTORY_START] = device->ldev->md.uuid[UI_BITMAP];
3397 device->ldev->md.uuid[UI_BITMAP] = 0;
3398 } else {
3399 unsigned long long bm_uuid = device->ldev->md.uuid[UI_BITMAP];
3400 if (bm_uuid)
3401 drbd_warn(device, "bm UUID was already set: %llX\n", bm_uuid);
3402
3403 device->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3404 }
3405 spin_unlock_irqrestore(&device->ldev->md.uuid_lock, flags);
3406
3407 drbd_md_mark_dirty(device);
3408 }
3409
3410 /**
3411 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3412 * @device: DRBD device.
3413 * @peer_device: Peer DRBD device.
3414 *
3415 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3416 */
drbd_bmio_set_n_write(struct drbd_device * device,struct drbd_peer_device * peer_device)3417 int drbd_bmio_set_n_write(struct drbd_device *device,
3418 struct drbd_peer_device *peer_device) __must_hold(local)
3419
3420 {
3421 int rv = -EIO;
3422
3423 drbd_md_set_flag(device, MDF_FULL_SYNC);
3424 drbd_md_sync(device);
3425 drbd_bm_set_all(device);
3426
3427 rv = drbd_bm_write(device, peer_device);
3428
3429 if (!rv) {
3430 drbd_md_clear_flag(device, MDF_FULL_SYNC);
3431 drbd_md_sync(device);
3432 }
3433
3434 return rv;
3435 }
3436
3437 /**
3438 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3439 * @device: DRBD device.
3440 * @peer_device: Peer DRBD device.
3441 *
3442 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3443 */
drbd_bmio_clear_n_write(struct drbd_device * device,struct drbd_peer_device * peer_device)3444 int drbd_bmio_clear_n_write(struct drbd_device *device,
3445 struct drbd_peer_device *peer_device) __must_hold(local)
3446
3447 {
3448 drbd_resume_al(device);
3449 drbd_bm_clear_all(device);
3450 return drbd_bm_write(device, peer_device);
3451 }
3452
w_bitmap_io(struct drbd_work * w,int unused)3453 static int w_bitmap_io(struct drbd_work *w, int unused)
3454 {
3455 struct drbd_device *device =
3456 container_of(w, struct drbd_device, bm_io_work.w);
3457 struct bm_io_work *work = &device->bm_io_work;
3458 int rv = -EIO;
3459
3460 if (work->flags != BM_LOCKED_CHANGE_ALLOWED) {
3461 int cnt = atomic_read(&device->ap_bio_cnt);
3462 if (cnt)
3463 drbd_err(device, "FIXME: ap_bio_cnt %d, expected 0; queued for '%s'\n",
3464 cnt, work->why);
3465 }
3466
3467 if (get_ldev(device)) {
3468 drbd_bm_lock(device, work->why, work->flags);
3469 rv = work->io_fn(device, work->peer_device);
3470 drbd_bm_unlock(device);
3471 put_ldev(device);
3472 }
3473
3474 clear_bit_unlock(BITMAP_IO, &device->flags);
3475 wake_up(&device->misc_wait);
3476
3477 if (work->done)
3478 work->done(device, rv);
3479
3480 clear_bit(BITMAP_IO_QUEUED, &device->flags);
3481 work->why = NULL;
3482 work->flags = 0;
3483
3484 return 0;
3485 }
3486
3487 /**
3488 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3489 * @device: DRBD device.
3490 * @io_fn: IO callback to be called when bitmap IO is possible
3491 * @done: callback to be called after the bitmap IO was performed
3492 * @why: Descriptive text of the reason for doing the IO
3493 * @flags: Bitmap flags
3494 * @peer_device: Peer DRBD device.
3495 *
3496 * While IO on the bitmap happens we freeze application IO thus we ensure
3497 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3498 * called from worker context. It MUST NOT be used while a previous such
3499 * work is still pending!
3500 *
3501 * Its worker function encloses the call of io_fn() by get_ldev() and
3502 * put_ldev().
3503 */
drbd_queue_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *,struct drbd_peer_device *),void (* done)(struct drbd_device *,int),char * why,enum bm_flag flags,struct drbd_peer_device * peer_device)3504 void drbd_queue_bitmap_io(struct drbd_device *device,
3505 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3506 void (*done)(struct drbd_device *, int),
3507 char *why, enum bm_flag flags,
3508 struct drbd_peer_device *peer_device)
3509 {
3510 D_ASSERT(device, current == peer_device->connection->worker.task);
3511
3512 D_ASSERT(device, !test_bit(BITMAP_IO_QUEUED, &device->flags));
3513 D_ASSERT(device, !test_bit(BITMAP_IO, &device->flags));
3514 D_ASSERT(device, list_empty(&device->bm_io_work.w.list));
3515 if (device->bm_io_work.why)
3516 drbd_err(device, "FIXME going to queue '%s' but '%s' still pending?\n",
3517 why, device->bm_io_work.why);
3518
3519 device->bm_io_work.peer_device = peer_device;
3520 device->bm_io_work.io_fn = io_fn;
3521 device->bm_io_work.done = done;
3522 device->bm_io_work.why = why;
3523 device->bm_io_work.flags = flags;
3524
3525 spin_lock_irq(&device->resource->req_lock);
3526 set_bit(BITMAP_IO, &device->flags);
3527 /* don't wait for pending application IO if the caller indicates that
3528 * application IO does not conflict anyways. */
3529 if (flags == BM_LOCKED_CHANGE_ALLOWED || atomic_read(&device->ap_bio_cnt) == 0) {
3530 if (!test_and_set_bit(BITMAP_IO_QUEUED, &device->flags))
3531 drbd_queue_work(&peer_device->connection->sender_work,
3532 &device->bm_io_work.w);
3533 }
3534 spin_unlock_irq(&device->resource->req_lock);
3535 }
3536
3537 /**
3538 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3539 * @device: DRBD device.
3540 * @io_fn: IO callback to be called when bitmap IO is possible
3541 * @why: Descriptive text of the reason for doing the IO
3542 * @flags: Bitmap flags
3543 * @peer_device: Peer DRBD device.
3544 *
3545 * freezes application IO while that the actual IO operations runs. This
3546 * functions MAY NOT be called from worker context.
3547 */
drbd_bitmap_io(struct drbd_device * device,int (* io_fn)(struct drbd_device *,struct drbd_peer_device *),char * why,enum bm_flag flags,struct drbd_peer_device * peer_device)3548 int drbd_bitmap_io(struct drbd_device *device,
3549 int (*io_fn)(struct drbd_device *, struct drbd_peer_device *),
3550 char *why, enum bm_flag flags,
3551 struct drbd_peer_device *peer_device)
3552 {
3553 /* Only suspend io, if some operation is supposed to be locked out */
3554 const bool do_suspend_io = flags & (BM_DONT_CLEAR|BM_DONT_SET|BM_DONT_TEST);
3555 int rv;
3556
3557 D_ASSERT(device, current != first_peer_device(device)->connection->worker.task);
3558
3559 if (do_suspend_io)
3560 drbd_suspend_io(device);
3561
3562 drbd_bm_lock(device, why, flags);
3563 rv = io_fn(device, peer_device);
3564 drbd_bm_unlock(device);
3565
3566 if (do_suspend_io)
3567 drbd_resume_io(device);
3568
3569 return rv;
3570 }
3571
drbd_md_set_flag(struct drbd_device * device,int flag)3572 void drbd_md_set_flag(struct drbd_device *device, int flag) __must_hold(local)
3573 {
3574 if ((device->ldev->md.flags & flag) != flag) {
3575 drbd_md_mark_dirty(device);
3576 device->ldev->md.flags |= flag;
3577 }
3578 }
3579
drbd_md_clear_flag(struct drbd_device * device,int flag)3580 void drbd_md_clear_flag(struct drbd_device *device, int flag) __must_hold(local)
3581 {
3582 if ((device->ldev->md.flags & flag) != 0) {
3583 drbd_md_mark_dirty(device);
3584 device->ldev->md.flags &= ~flag;
3585 }
3586 }
drbd_md_test_flag(struct drbd_backing_dev * bdev,int flag)3587 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3588 {
3589 return (bdev->md.flags & flag) != 0;
3590 }
3591
md_sync_timer_fn(struct timer_list * t)3592 static void md_sync_timer_fn(struct timer_list *t)
3593 {
3594 struct drbd_device *device = from_timer(device, t, md_sync_timer);
3595 drbd_device_post_work(device, MD_SYNC);
3596 }
3597
cmdname(enum drbd_packet cmd)3598 const char *cmdname(enum drbd_packet cmd)
3599 {
3600 /* THINK may need to become several global tables
3601 * when we want to support more than
3602 * one PRO_VERSION */
3603 static const char *cmdnames[] = {
3604
3605 [P_DATA] = "Data",
3606 [P_DATA_REPLY] = "DataReply",
3607 [P_RS_DATA_REPLY] = "RSDataReply",
3608 [P_BARRIER] = "Barrier",
3609 [P_BITMAP] = "ReportBitMap",
3610 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3611 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3612 [P_UNPLUG_REMOTE] = "UnplugRemote",
3613 [P_DATA_REQUEST] = "DataRequest",
3614 [P_RS_DATA_REQUEST] = "RSDataRequest",
3615 [P_SYNC_PARAM] = "SyncParam",
3616 [P_PROTOCOL] = "ReportProtocol",
3617 [P_UUIDS] = "ReportUUIDs",
3618 [P_SIZES] = "ReportSizes",
3619 [P_STATE] = "ReportState",
3620 [P_SYNC_UUID] = "ReportSyncUUID",
3621 [P_AUTH_CHALLENGE] = "AuthChallenge",
3622 [P_AUTH_RESPONSE] = "AuthResponse",
3623 [P_STATE_CHG_REQ] = "StateChgRequest",
3624 [P_PING] = "Ping",
3625 [P_PING_ACK] = "PingAck",
3626 [P_RECV_ACK] = "RecvAck",
3627 [P_WRITE_ACK] = "WriteAck",
3628 [P_RS_WRITE_ACK] = "RSWriteAck",
3629 [P_SUPERSEDED] = "Superseded",
3630 [P_NEG_ACK] = "NegAck",
3631 [P_NEG_DREPLY] = "NegDReply",
3632 [P_NEG_RS_DREPLY] = "NegRSDReply",
3633 [P_BARRIER_ACK] = "BarrierAck",
3634 [P_STATE_CHG_REPLY] = "StateChgReply",
3635 [P_OV_REQUEST] = "OVRequest",
3636 [P_OV_REPLY] = "OVReply",
3637 [P_OV_RESULT] = "OVResult",
3638 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3639 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3640 [P_SYNC_PARAM89] = "SyncParam89",
3641 [P_COMPRESSED_BITMAP] = "CBitmap",
3642 [P_DELAY_PROBE] = "DelayProbe",
3643 [P_OUT_OF_SYNC] = "OutOfSync",
3644 [P_RS_CANCEL] = "RSCancel",
3645 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3646 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3647 [P_PROTOCOL_UPDATE] = "protocol_update",
3648 [P_TRIM] = "Trim",
3649 [P_RS_THIN_REQ] = "rs_thin_req",
3650 [P_RS_DEALLOCATED] = "rs_deallocated",
3651 [P_WSAME] = "WriteSame",
3652 [P_ZEROES] = "Zeroes",
3653
3654 /* enum drbd_packet, but not commands - obsoleted flags:
3655 * P_MAY_IGNORE
3656 * P_MAX_OPT_CMD
3657 */
3658 };
3659
3660 /* too big for the array: 0xfffX */
3661 if (cmd == P_INITIAL_META)
3662 return "InitialMeta";
3663 if (cmd == P_INITIAL_DATA)
3664 return "InitialData";
3665 if (cmd == P_CONNECTION_FEATURES)
3666 return "ConnectionFeatures";
3667 if (cmd >= ARRAY_SIZE(cmdnames))
3668 return "Unknown";
3669 return cmdnames[cmd];
3670 }
3671
3672 /**
3673 * drbd_wait_misc - wait for a request to make progress
3674 * @device: device associated with the request
3675 * @i: the struct drbd_interval embedded in struct drbd_request or
3676 * struct drbd_peer_request
3677 */
drbd_wait_misc(struct drbd_device * device,struct drbd_interval * i)3678 int drbd_wait_misc(struct drbd_device *device, struct drbd_interval *i)
3679 {
3680 struct net_conf *nc;
3681 DEFINE_WAIT(wait);
3682 long timeout;
3683
3684 rcu_read_lock();
3685 nc = rcu_dereference(first_peer_device(device)->connection->net_conf);
3686 if (!nc) {
3687 rcu_read_unlock();
3688 return -ETIMEDOUT;
3689 }
3690 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3691 rcu_read_unlock();
3692
3693 /* Indicate to wake up device->misc_wait on progress. */
3694 i->waiting = true;
3695 prepare_to_wait(&device->misc_wait, &wait, TASK_INTERRUPTIBLE);
3696 spin_unlock_irq(&device->resource->req_lock);
3697 timeout = schedule_timeout(timeout);
3698 finish_wait(&device->misc_wait, &wait);
3699 spin_lock_irq(&device->resource->req_lock);
3700 if (!timeout || device->state.conn < C_CONNECTED)
3701 return -ETIMEDOUT;
3702 if (signal_pending(current))
3703 return -ERESTARTSYS;
3704 return 0;
3705 }
3706
lock_all_resources(void)3707 void lock_all_resources(void)
3708 {
3709 struct drbd_resource *resource;
3710 int __maybe_unused i = 0;
3711
3712 mutex_lock(&resources_mutex);
3713 local_irq_disable();
3714 for_each_resource(resource, &drbd_resources)
3715 spin_lock_nested(&resource->req_lock, i++);
3716 }
3717
unlock_all_resources(void)3718 void unlock_all_resources(void)
3719 {
3720 struct drbd_resource *resource;
3721
3722 for_each_resource(resource, &drbd_resources)
3723 spin_unlock(&resource->req_lock);
3724 local_irq_enable();
3725 mutex_unlock(&resources_mutex);
3726 }
3727
3728 #ifdef CONFIG_DRBD_FAULT_INJECTION
3729 /* Fault insertion support including random number generator shamelessly
3730 * stolen from kernel/rcutorture.c */
3731 struct fault_random_state {
3732 unsigned long state;
3733 unsigned long count;
3734 };
3735
3736 #define FAULT_RANDOM_MULT 39916801 /* prime */
3737 #define FAULT_RANDOM_ADD 479001701 /* prime */
3738 #define FAULT_RANDOM_REFRESH 10000
3739
3740 /*
3741 * Crude but fast random-number generator. Uses a linear congruential
3742 * generator, with occasional help from get_random_bytes().
3743 */
3744 static unsigned long
_drbd_fault_random(struct fault_random_state * rsp)3745 _drbd_fault_random(struct fault_random_state *rsp)
3746 {
3747 long refresh;
3748
3749 if (!rsp->count--) {
3750 get_random_bytes(&refresh, sizeof(refresh));
3751 rsp->state += refresh;
3752 rsp->count = FAULT_RANDOM_REFRESH;
3753 }
3754 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3755 return swahw32(rsp->state);
3756 }
3757
3758 static char *
_drbd_fault_str(unsigned int type)3759 _drbd_fault_str(unsigned int type) {
3760 static char *_faults[] = {
3761 [DRBD_FAULT_MD_WR] = "Meta-data write",
3762 [DRBD_FAULT_MD_RD] = "Meta-data read",
3763 [DRBD_FAULT_RS_WR] = "Resync write",
3764 [DRBD_FAULT_RS_RD] = "Resync read",
3765 [DRBD_FAULT_DT_WR] = "Data write",
3766 [DRBD_FAULT_DT_RD] = "Data read",
3767 [DRBD_FAULT_DT_RA] = "Data read ahead",
3768 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3769 [DRBD_FAULT_AL_EE] = "EE allocation",
3770 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3771 };
3772
3773 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3774 }
3775
3776 unsigned int
_drbd_insert_fault(struct drbd_device * device,unsigned int type)3777 _drbd_insert_fault(struct drbd_device *device, unsigned int type)
3778 {
3779 static struct fault_random_state rrs = {0, 0};
3780
3781 unsigned int ret = (
3782 (drbd_fault_devs == 0 ||
3783 ((1 << device_to_minor(device)) & drbd_fault_devs) != 0) &&
3784 (((_drbd_fault_random(&rrs) % 100) + 1) <= drbd_fault_rate));
3785
3786 if (ret) {
3787 drbd_fault_count++;
3788
3789 if (drbd_ratelimit())
3790 drbd_warn(device, "***Simulating %s failure\n",
3791 _drbd_fault_str(type));
3792 }
3793
3794 return ret;
3795 }
3796 #endif
3797
3798 module_init(drbd_init)
3799 module_exit(drbd_cleanup)
3800
3801 EXPORT_SYMBOL(drbd_conn_str);
3802 EXPORT_SYMBOL(drbd_role_str);
3803 EXPORT_SYMBOL(drbd_disk_str);
3804 EXPORT_SYMBOL(drbd_set_st_err_str);
3805