xref: /linux/mm/memcontrol.c (revision b687034b1a4d85333ced0fe07f67b17276cccdc8)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  *
10  * Memory thresholds
11  * Copyright (C) 2009 Nokia Corporation
12  * Author: Kirill A. Shutemov
13  *
14  * Kernel Memory Controller
15  * Copyright (C) 2012 Parallels Inc. and Google Inc.
16  * Authors: Glauber Costa and Suleiman Souhlal
17  *
18  * Native page reclaim
19  * Charge lifetime sanitation
20  * Lockless page tracking & accounting
21  * Unified hierarchy configuration model
22  * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23  *
24  * Per memcg lru locking
25  * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26  */
27 
28 #include <linux/cgroup-defs.h>
29 #include <linux/page_counter.h>
30 #include <linux/memcontrol.h>
31 #include <linux/cgroup.h>
32 #include <linux/cpuset.h>
33 #include <linux/sched/mm.h>
34 #include <linux/shmem_fs.h>
35 #include <linux/hugetlb.h>
36 #include <linux/pagemap.h>
37 #include <linux/pagevec.h>
38 #include <linux/vm_event_item.h>
39 #include <linux/smp.h>
40 #include <linux/page-flags.h>
41 #include <linux/backing-dev.h>
42 #include <linux/bit_spinlock.h>
43 #include <linux/rcupdate.h>
44 #include <linux/limits.h>
45 #include <linux/export.h>
46 #include <linux/list.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swapops.h>
51 #include <linux/spinlock.h>
52 #include <linux/fs.h>
53 #include <linux/seq_file.h>
54 #include <linux/vmpressure.h>
55 #include <linux/memremap.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/resume_user_mode.h>
62 #include <linux/psi.h>
63 #include <linux/seq_buf.h>
64 #include <linux/sched/isolation.h>
65 #include <linux/kmemleak.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70 #include "memcontrol-v1.h"
71 
72 #include <linux/uaccess.h>
73 
74 #define CREATE_TRACE_POINTS
75 #include <trace/events/memcg.h>
76 #undef CREATE_TRACE_POINTS
77 
78 #include <trace/events/vmscan.h>
79 
80 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
81 EXPORT_SYMBOL(memory_cgrp_subsys);
82 
83 struct mem_cgroup *root_mem_cgroup __read_mostly;
84 
85 /* Active memory cgroup to use from an interrupt context */
86 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
87 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
88 
89 /* Socket memory accounting disabled? */
90 static bool cgroup_memory_nosocket __ro_after_init;
91 
92 /* Kernel memory accounting disabled? */
93 static bool cgroup_memory_nokmem __ro_after_init;
94 
95 /* BPF memory accounting disabled? */
96 static bool cgroup_memory_nobpf __ro_after_init;
97 
98 static struct kmem_cache *memcg_cachep;
99 static struct kmem_cache *memcg_pn_cachep;
100 
101 #ifdef CONFIG_CGROUP_WRITEBACK
102 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
103 #endif
104 
task_is_dying(void)105 static inline bool task_is_dying(void)
106 {
107 	return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
108 		(current->flags & PF_EXITING);
109 }
110 
111 /* Some nice accessors for the vmpressure. */
memcg_to_vmpressure(struct mem_cgroup * memcg)112 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
113 {
114 	if (!memcg)
115 		memcg = root_mem_cgroup;
116 	return &memcg->vmpressure;
117 }
118 
vmpressure_to_memcg(struct vmpressure * vmpr)119 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
120 {
121 	return container_of(vmpr, struct mem_cgroup, vmpressure);
122 }
123 
124 #define SEQ_BUF_SIZE SZ_4K
125 #define CURRENT_OBJCG_UPDATE_BIT 0
126 #define CURRENT_OBJCG_UPDATE_FLAG (1UL << CURRENT_OBJCG_UPDATE_BIT)
127 
128 static DEFINE_SPINLOCK(objcg_lock);
129 
mem_cgroup_kmem_disabled(void)130 bool mem_cgroup_kmem_disabled(void)
131 {
132 	return cgroup_memory_nokmem;
133 }
134 
135 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
136 
obj_cgroup_release(struct percpu_ref * ref)137 static void obj_cgroup_release(struct percpu_ref *ref)
138 {
139 	struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
140 	unsigned int nr_bytes;
141 	unsigned int nr_pages;
142 	unsigned long flags;
143 
144 	/*
145 	 * At this point all allocated objects are freed, and
146 	 * objcg->nr_charged_bytes can't have an arbitrary byte value.
147 	 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
148 	 *
149 	 * The following sequence can lead to it:
150 	 * 1) CPU0: objcg == stock->cached_objcg
151 	 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
152 	 *          PAGE_SIZE bytes are charged
153 	 * 3) CPU1: a process from another memcg is allocating something,
154 	 *          the stock if flushed,
155 	 *          objcg->nr_charged_bytes = PAGE_SIZE - 92
156 	 * 5) CPU0: we do release this object,
157 	 *          92 bytes are added to stock->nr_bytes
158 	 * 6) CPU0: stock is flushed,
159 	 *          92 bytes are added to objcg->nr_charged_bytes
160 	 *
161 	 * In the result, nr_charged_bytes == PAGE_SIZE.
162 	 * This page will be uncharged in obj_cgroup_release().
163 	 */
164 	nr_bytes = atomic_read(&objcg->nr_charged_bytes);
165 	WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
166 	nr_pages = nr_bytes >> PAGE_SHIFT;
167 
168 	if (nr_pages) {
169 		struct mem_cgroup *memcg;
170 
171 		memcg = get_mem_cgroup_from_objcg(objcg);
172 		mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
173 		memcg1_account_kmem(memcg, -nr_pages);
174 		if (!mem_cgroup_is_root(memcg))
175 			memcg_uncharge(memcg, nr_pages);
176 		mem_cgroup_put(memcg);
177 	}
178 
179 	spin_lock_irqsave(&objcg_lock, flags);
180 	list_del(&objcg->list);
181 	spin_unlock_irqrestore(&objcg_lock, flags);
182 
183 	percpu_ref_exit(ref);
184 	kfree_rcu(objcg, rcu);
185 }
186 
obj_cgroup_alloc(void)187 static struct obj_cgroup *obj_cgroup_alloc(void)
188 {
189 	struct obj_cgroup *objcg;
190 	int ret;
191 
192 	objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
193 	if (!objcg)
194 		return NULL;
195 
196 	ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
197 			      GFP_KERNEL);
198 	if (ret) {
199 		kfree(objcg);
200 		return NULL;
201 	}
202 	INIT_LIST_HEAD(&objcg->list);
203 	return objcg;
204 }
205 
memcg_reparent_objcgs(struct mem_cgroup * memcg,struct mem_cgroup * parent)206 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
207 				  struct mem_cgroup *parent)
208 {
209 	struct obj_cgroup *objcg, *iter;
210 
211 	objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
212 
213 	spin_lock_irq(&objcg_lock);
214 
215 	/* 1) Ready to reparent active objcg. */
216 	list_add(&objcg->list, &memcg->objcg_list);
217 	/* 2) Reparent active objcg and already reparented objcgs to parent. */
218 	list_for_each_entry(iter, &memcg->objcg_list, list)
219 		WRITE_ONCE(iter->memcg, parent);
220 	/* 3) Move already reparented objcgs to the parent's list */
221 	list_splice(&memcg->objcg_list, &parent->objcg_list);
222 
223 	spin_unlock_irq(&objcg_lock);
224 
225 	percpu_ref_kill(&objcg->refcnt);
226 }
227 
228 /*
229  * A lot of the calls to the cache allocation functions are expected to be
230  * inlined by the compiler. Since the calls to memcg_slab_post_alloc_hook() are
231  * conditional to this static branch, we'll have to allow modules that does
232  * kmem_cache_alloc and the such to see this symbol as well
233  */
234 DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
235 EXPORT_SYMBOL(memcg_kmem_online_key);
236 
237 DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
238 EXPORT_SYMBOL(memcg_bpf_enabled_key);
239 
240 /**
241  * mem_cgroup_css_from_folio - css of the memcg associated with a folio
242  * @folio: folio of interest
243  *
244  * If memcg is bound to the default hierarchy, css of the memcg associated
245  * with @folio is returned.  The returned css remains associated with @folio
246  * until it is released.
247  *
248  * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
249  * is returned.
250  */
mem_cgroup_css_from_folio(struct folio * folio)251 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
252 {
253 	struct mem_cgroup *memcg = folio_memcg(folio);
254 
255 	if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
256 		memcg = root_mem_cgroup;
257 
258 	return &memcg->css;
259 }
260 
261 /**
262  * page_cgroup_ino - return inode number of the memcg a page is charged to
263  * @page: the page
264  *
265  * Look up the closest online ancestor of the memory cgroup @page is charged to
266  * and return its inode number or 0 if @page is not charged to any cgroup. It
267  * is safe to call this function without holding a reference to @page.
268  *
269  * Note, this function is inherently racy, because there is nothing to prevent
270  * the cgroup inode from getting torn down and potentially reallocated a moment
271  * after page_cgroup_ino() returns, so it only should be used by callers that
272  * do not care (such as procfs interfaces).
273  */
page_cgroup_ino(struct page * page)274 ino_t page_cgroup_ino(struct page *page)
275 {
276 	struct mem_cgroup *memcg;
277 	unsigned long ino = 0;
278 
279 	rcu_read_lock();
280 	/* page_folio() is racy here, but the entire function is racy anyway */
281 	memcg = folio_memcg_check(page_folio(page));
282 
283 	while (memcg && !(memcg->css.flags & CSS_ONLINE))
284 		memcg = parent_mem_cgroup(memcg);
285 	if (memcg)
286 		ino = cgroup_ino(memcg->css.cgroup);
287 	rcu_read_unlock();
288 	return ino;
289 }
290 EXPORT_SYMBOL_GPL(page_cgroup_ino);
291 
292 /* Subset of node_stat_item for memcg stats */
293 static const unsigned int memcg_node_stat_items[] = {
294 	NR_INACTIVE_ANON,
295 	NR_ACTIVE_ANON,
296 	NR_INACTIVE_FILE,
297 	NR_ACTIVE_FILE,
298 	NR_UNEVICTABLE,
299 	NR_SLAB_RECLAIMABLE_B,
300 	NR_SLAB_UNRECLAIMABLE_B,
301 	WORKINGSET_REFAULT_ANON,
302 	WORKINGSET_REFAULT_FILE,
303 	WORKINGSET_ACTIVATE_ANON,
304 	WORKINGSET_ACTIVATE_FILE,
305 	WORKINGSET_RESTORE_ANON,
306 	WORKINGSET_RESTORE_FILE,
307 	WORKINGSET_NODERECLAIM,
308 	NR_ANON_MAPPED,
309 	NR_FILE_MAPPED,
310 	NR_FILE_PAGES,
311 	NR_FILE_DIRTY,
312 	NR_WRITEBACK,
313 	NR_SHMEM,
314 	NR_SHMEM_THPS,
315 	NR_FILE_THPS,
316 	NR_ANON_THPS,
317 	NR_KERNEL_STACK_KB,
318 	NR_PAGETABLE,
319 	NR_SECONDARY_PAGETABLE,
320 #ifdef CONFIG_SWAP
321 	NR_SWAPCACHE,
322 #endif
323 #ifdef CONFIG_NUMA_BALANCING
324 	PGPROMOTE_SUCCESS,
325 #endif
326 	PGDEMOTE_KSWAPD,
327 	PGDEMOTE_DIRECT,
328 	PGDEMOTE_KHUGEPAGED,
329 	PGDEMOTE_PROACTIVE,
330 #ifdef CONFIG_HUGETLB_PAGE
331 	NR_HUGETLB,
332 #endif
333 };
334 
335 static const unsigned int memcg_stat_items[] = {
336 	MEMCG_SWAP,
337 	MEMCG_SOCK,
338 	MEMCG_PERCPU_B,
339 	MEMCG_VMALLOC,
340 	MEMCG_KMEM,
341 	MEMCG_ZSWAP_B,
342 	MEMCG_ZSWAPPED,
343 };
344 
345 #define NR_MEMCG_NODE_STAT_ITEMS ARRAY_SIZE(memcg_node_stat_items)
346 #define MEMCG_VMSTAT_SIZE (NR_MEMCG_NODE_STAT_ITEMS + \
347 			   ARRAY_SIZE(memcg_stat_items))
348 #define BAD_STAT_IDX(index) ((u32)(index) >= U8_MAX)
349 static u8 mem_cgroup_stats_index[MEMCG_NR_STAT] __read_mostly;
350 
init_memcg_stats(void)351 static void init_memcg_stats(void)
352 {
353 	u8 i, j = 0;
354 
355 	BUILD_BUG_ON(MEMCG_NR_STAT >= U8_MAX);
356 
357 	memset(mem_cgroup_stats_index, U8_MAX, sizeof(mem_cgroup_stats_index));
358 
359 	for (i = 0; i < NR_MEMCG_NODE_STAT_ITEMS; ++i, ++j)
360 		mem_cgroup_stats_index[memcg_node_stat_items[i]] = j;
361 
362 	for (i = 0; i < ARRAY_SIZE(memcg_stat_items); ++i, ++j)
363 		mem_cgroup_stats_index[memcg_stat_items[i]] = j;
364 }
365 
memcg_stats_index(int idx)366 static inline int memcg_stats_index(int idx)
367 {
368 	return mem_cgroup_stats_index[idx];
369 }
370 
371 struct lruvec_stats_percpu {
372 	/* Local (CPU and cgroup) state */
373 	long state[NR_MEMCG_NODE_STAT_ITEMS];
374 
375 	/* Delta calculation for lockless upward propagation */
376 	long state_prev[NR_MEMCG_NODE_STAT_ITEMS];
377 };
378 
379 struct lruvec_stats {
380 	/* Aggregated (CPU and subtree) state */
381 	long state[NR_MEMCG_NODE_STAT_ITEMS];
382 
383 	/* Non-hierarchical (CPU aggregated) state */
384 	long state_local[NR_MEMCG_NODE_STAT_ITEMS];
385 
386 	/* Pending child counts during tree propagation */
387 	long state_pending[NR_MEMCG_NODE_STAT_ITEMS];
388 };
389 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)390 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx)
391 {
392 	struct mem_cgroup_per_node *pn;
393 	long x;
394 	int i;
395 
396 	if (mem_cgroup_disabled())
397 		return node_page_state(lruvec_pgdat(lruvec), idx);
398 
399 	i = memcg_stats_index(idx);
400 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
401 		return 0;
402 
403 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
404 	x = READ_ONCE(pn->lruvec_stats->state[i]);
405 #ifdef CONFIG_SMP
406 	if (x < 0)
407 		x = 0;
408 #endif
409 	return x;
410 }
411 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)412 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
413 				      enum node_stat_item idx)
414 {
415 	struct mem_cgroup_per_node *pn;
416 	long x;
417 	int i;
418 
419 	if (mem_cgroup_disabled())
420 		return node_page_state(lruvec_pgdat(lruvec), idx);
421 
422 	i = memcg_stats_index(idx);
423 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
424 		return 0;
425 
426 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
427 	x = READ_ONCE(pn->lruvec_stats->state_local[i]);
428 #ifdef CONFIG_SMP
429 	if (x < 0)
430 		x = 0;
431 #endif
432 	return x;
433 }
434 
435 /* Subset of vm_event_item to report for memcg event stats */
436 static const unsigned int memcg_vm_event_stat[] = {
437 #ifdef CONFIG_MEMCG_V1
438 	PGPGIN,
439 	PGPGOUT,
440 #endif
441 	PSWPIN,
442 	PSWPOUT,
443 	PGSCAN_KSWAPD,
444 	PGSCAN_DIRECT,
445 	PGSCAN_KHUGEPAGED,
446 	PGSCAN_PROACTIVE,
447 	PGSTEAL_KSWAPD,
448 	PGSTEAL_DIRECT,
449 	PGSTEAL_KHUGEPAGED,
450 	PGSTEAL_PROACTIVE,
451 	PGFAULT,
452 	PGMAJFAULT,
453 	PGREFILL,
454 	PGACTIVATE,
455 	PGDEACTIVATE,
456 	PGLAZYFREE,
457 	PGLAZYFREED,
458 #ifdef CONFIG_SWAP
459 	SWPIN_ZERO,
460 	SWPOUT_ZERO,
461 #endif
462 #ifdef CONFIG_ZSWAP
463 	ZSWPIN,
464 	ZSWPOUT,
465 	ZSWPWB,
466 #endif
467 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
468 	THP_FAULT_ALLOC,
469 	THP_COLLAPSE_ALLOC,
470 	THP_SWPOUT,
471 	THP_SWPOUT_FALLBACK,
472 #endif
473 #ifdef CONFIG_NUMA_BALANCING
474 	NUMA_PAGE_MIGRATE,
475 	NUMA_PTE_UPDATES,
476 	NUMA_HINT_FAULTS,
477 #endif
478 };
479 
480 #define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
481 static u8 mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
482 
init_memcg_events(void)483 static void init_memcg_events(void)
484 {
485 	u8 i;
486 
487 	BUILD_BUG_ON(NR_VM_EVENT_ITEMS >= U8_MAX);
488 
489 	memset(mem_cgroup_events_index, U8_MAX,
490 	       sizeof(mem_cgroup_events_index));
491 
492 	for (i = 0; i < NR_MEMCG_EVENTS; ++i)
493 		mem_cgroup_events_index[memcg_vm_event_stat[i]] = i;
494 }
495 
memcg_events_index(enum vm_event_item idx)496 static inline int memcg_events_index(enum vm_event_item idx)
497 {
498 	return mem_cgroup_events_index[idx];
499 }
500 
501 struct memcg_vmstats_percpu {
502 	/* Stats updates since the last flush */
503 	unsigned int			stats_updates;
504 
505 	/* Cached pointers for fast iteration in memcg_rstat_updated() */
506 	struct memcg_vmstats_percpu __percpu	*parent_pcpu;
507 	struct memcg_vmstats			*vmstats;
508 
509 	/* The above should fit a single cacheline for memcg_rstat_updated() */
510 
511 	/* Local (CPU and cgroup) page state & events */
512 	long			state[MEMCG_VMSTAT_SIZE];
513 	unsigned long		events[NR_MEMCG_EVENTS];
514 
515 	/* Delta calculation for lockless upward propagation */
516 	long			state_prev[MEMCG_VMSTAT_SIZE];
517 	unsigned long		events_prev[NR_MEMCG_EVENTS];
518 } ____cacheline_aligned;
519 
520 struct memcg_vmstats {
521 	/* Aggregated (CPU and subtree) page state & events */
522 	long			state[MEMCG_VMSTAT_SIZE];
523 	unsigned long		events[NR_MEMCG_EVENTS];
524 
525 	/* Non-hierarchical (CPU aggregated) page state & events */
526 	long			state_local[MEMCG_VMSTAT_SIZE];
527 	unsigned long		events_local[NR_MEMCG_EVENTS];
528 
529 	/* Pending child counts during tree propagation */
530 	long			state_pending[MEMCG_VMSTAT_SIZE];
531 	unsigned long		events_pending[NR_MEMCG_EVENTS];
532 
533 	/* Stats updates since the last flush */
534 	atomic_t		stats_updates;
535 };
536 
537 /*
538  * memcg and lruvec stats flushing
539  *
540  * Many codepaths leading to stats update or read are performance sensitive and
541  * adding stats flushing in such codepaths is not desirable. So, to optimize the
542  * flushing the kernel does:
543  *
544  * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
545  *    rstat update tree grow unbounded.
546  *
547  * 2) Flush the stats synchronously on reader side only when there are more than
548  *    (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
549  *    will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
550  *    only for 2 seconds due to (1).
551  */
552 static void flush_memcg_stats_dwork(struct work_struct *w);
553 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
554 static u64 flush_last_time;
555 
556 #define FLUSH_TIME (2UL*HZ)
557 
memcg_vmstats_needs_flush(struct memcg_vmstats * vmstats)558 static bool memcg_vmstats_needs_flush(struct memcg_vmstats *vmstats)
559 {
560 	return atomic_read(&vmstats->stats_updates) >
561 		MEMCG_CHARGE_BATCH * num_online_cpus();
562 }
563 
memcg_rstat_updated(struct mem_cgroup * memcg,int val,int cpu)564 static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val,
565 				       int cpu)
566 {
567 	struct memcg_vmstats_percpu __percpu *statc_pcpu;
568 	struct memcg_vmstats_percpu *statc;
569 	unsigned int stats_updates;
570 
571 	if (!val)
572 		return;
573 
574 	css_rstat_updated(&memcg->css, cpu);
575 	statc_pcpu = memcg->vmstats_percpu;
576 	for (; statc_pcpu; statc_pcpu = statc->parent_pcpu) {
577 		statc = this_cpu_ptr(statc_pcpu);
578 		/*
579 		 * If @memcg is already flushable then all its ancestors are
580 		 * flushable as well and also there is no need to increase
581 		 * stats_updates.
582 		 */
583 		if (memcg_vmstats_needs_flush(statc->vmstats))
584 			break;
585 
586 		stats_updates = this_cpu_add_return(statc_pcpu->stats_updates,
587 						    abs(val));
588 		if (stats_updates < MEMCG_CHARGE_BATCH)
589 			continue;
590 
591 		stats_updates = this_cpu_xchg(statc_pcpu->stats_updates, 0);
592 		atomic_add(stats_updates, &statc->vmstats->stats_updates);
593 	}
594 }
595 
__mem_cgroup_flush_stats(struct mem_cgroup * memcg,bool force)596 static void __mem_cgroup_flush_stats(struct mem_cgroup *memcg, bool force)
597 {
598 	bool needs_flush = memcg_vmstats_needs_flush(memcg->vmstats);
599 
600 	trace_memcg_flush_stats(memcg, atomic_read(&memcg->vmstats->stats_updates),
601 		force, needs_flush);
602 
603 	if (!force && !needs_flush)
604 		return;
605 
606 	if (mem_cgroup_is_root(memcg))
607 		WRITE_ONCE(flush_last_time, jiffies_64);
608 
609 	css_rstat_flush(&memcg->css);
610 }
611 
612 /*
613  * mem_cgroup_flush_stats - flush the stats of a memory cgroup subtree
614  * @memcg: root of the subtree to flush
615  *
616  * Flushing is serialized by the underlying global rstat lock. There is also a
617  * minimum amount of work to be done even if there are no stat updates to flush.
618  * Hence, we only flush the stats if the updates delta exceeds a threshold. This
619  * avoids unnecessary work and contention on the underlying lock.
620  */
mem_cgroup_flush_stats(struct mem_cgroup * memcg)621 void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
622 {
623 	if (mem_cgroup_disabled())
624 		return;
625 
626 	if (!memcg)
627 		memcg = root_mem_cgroup;
628 
629 	__mem_cgroup_flush_stats(memcg, false);
630 }
631 
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)632 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
633 {
634 	/* Only flush if the periodic flusher is one full cycle late */
635 	if (time_after64(jiffies_64, READ_ONCE(flush_last_time) + 2*FLUSH_TIME))
636 		mem_cgroup_flush_stats(memcg);
637 }
638 
flush_memcg_stats_dwork(struct work_struct * w)639 static void flush_memcg_stats_dwork(struct work_struct *w)
640 {
641 	/*
642 	 * Deliberately ignore memcg_vmstats_needs_flush() here so that flushing
643 	 * in latency-sensitive paths is as cheap as possible.
644 	 */
645 	__mem_cgroup_flush_stats(root_mem_cgroup, true);
646 	queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
647 }
648 
memcg_page_state(struct mem_cgroup * memcg,int idx)649 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
650 {
651 	long x;
652 	int i = memcg_stats_index(idx);
653 
654 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
655 		return 0;
656 
657 	x = READ_ONCE(memcg->vmstats->state[i]);
658 #ifdef CONFIG_SMP
659 	if (x < 0)
660 		x = 0;
661 #endif
662 	return x;
663 }
664 
665 static int memcg_page_state_unit(int item);
666 
667 /*
668  * Normalize the value passed into memcg_rstat_updated() to be in pages. Round
669  * up non-zero sub-page updates to 1 page as zero page updates are ignored.
670  */
memcg_state_val_in_pages(int idx,int val)671 static int memcg_state_val_in_pages(int idx, int val)
672 {
673 	int unit = memcg_page_state_unit(idx);
674 
675 	if (!val || unit == PAGE_SIZE)
676 		return val;
677 	else
678 		return max(val * unit / PAGE_SIZE, 1UL);
679 }
680 
681 /**
682  * mod_memcg_state - update cgroup memory statistics
683  * @memcg: the memory cgroup
684  * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
685  * @val: delta to add to the counter, can be negative
686  */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)687 void mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
688 		       int val)
689 {
690 	int i = memcg_stats_index(idx);
691 	int cpu;
692 
693 	if (mem_cgroup_disabled())
694 		return;
695 
696 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
697 		return;
698 
699 	cpu = get_cpu();
700 
701 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
702 	val = memcg_state_val_in_pages(idx, val);
703 	memcg_rstat_updated(memcg, val, cpu);
704 	trace_mod_memcg_state(memcg, idx, val);
705 
706 	put_cpu();
707 }
708 
709 #ifdef CONFIG_MEMCG_V1
710 /* idx can be of type enum memcg_stat_item or node_stat_item. */
memcg_page_state_local(struct mem_cgroup * memcg,int idx)711 unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
712 {
713 	long x;
714 	int i = memcg_stats_index(idx);
715 
716 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
717 		return 0;
718 
719 	x = READ_ONCE(memcg->vmstats->state_local[i]);
720 #ifdef CONFIG_SMP
721 	if (x < 0)
722 		x = 0;
723 #endif
724 	return x;
725 }
726 #endif
727 
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)728 static void mod_memcg_lruvec_state(struct lruvec *lruvec,
729 				     enum node_stat_item idx,
730 				     int val)
731 {
732 	struct mem_cgroup_per_node *pn;
733 	struct mem_cgroup *memcg;
734 	int i = memcg_stats_index(idx);
735 	int cpu;
736 
737 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
738 		return;
739 
740 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 	memcg = pn->memcg;
742 
743 	cpu = get_cpu();
744 
745 	/* Update memcg */
746 	this_cpu_add(memcg->vmstats_percpu->state[i], val);
747 
748 	/* Update lruvec */
749 	this_cpu_add(pn->lruvec_stats_percpu->state[i], val);
750 
751 	val = memcg_state_val_in_pages(idx, val);
752 	memcg_rstat_updated(memcg, val, cpu);
753 	trace_mod_memcg_lruvec_state(memcg, idx, val);
754 
755 	put_cpu();
756 }
757 
758 /**
759  * __mod_lruvec_state - update lruvec memory statistics
760  * @lruvec: the lruvec
761  * @idx: the stat item
762  * @val: delta to add to the counter, can be negative
763  *
764  * The lruvec is the intersection of the NUMA node and a cgroup. This
765  * function updates the all three counters that are affected by a
766  * change of state at this level: per-node, per-cgroup, per-lruvec.
767  */
__mod_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)768 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
769 			int val)
770 {
771 	/* Update node */
772 	__mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
773 
774 	/* Update memcg and lruvec */
775 	if (!mem_cgroup_disabled())
776 		mod_memcg_lruvec_state(lruvec, idx, val);
777 }
778 
__lruvec_stat_mod_folio(struct folio * folio,enum node_stat_item idx,int val)779 void __lruvec_stat_mod_folio(struct folio *folio, enum node_stat_item idx,
780 			     int val)
781 {
782 	struct mem_cgroup *memcg;
783 	pg_data_t *pgdat = folio_pgdat(folio);
784 	struct lruvec *lruvec;
785 
786 	rcu_read_lock();
787 	memcg = folio_memcg(folio);
788 	/* Untracked pages have no memcg, no lruvec. Update only the node */
789 	if (!memcg) {
790 		rcu_read_unlock();
791 		__mod_node_page_state(pgdat, idx, val);
792 		return;
793 	}
794 
795 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
796 	__mod_lruvec_state(lruvec, idx, val);
797 	rcu_read_unlock();
798 }
799 EXPORT_SYMBOL(__lruvec_stat_mod_folio);
800 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)801 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
802 {
803 	pg_data_t *pgdat = page_pgdat(virt_to_page(p));
804 	struct mem_cgroup *memcg;
805 	struct lruvec *lruvec;
806 
807 	rcu_read_lock();
808 	memcg = mem_cgroup_from_slab_obj(p);
809 
810 	/*
811 	 * Untracked pages have no memcg, no lruvec. Update only the
812 	 * node. If we reparent the slab objects to the root memcg,
813 	 * when we free the slab object, we need to update the per-memcg
814 	 * vmstats to keep it correct for the root memcg.
815 	 */
816 	if (!memcg) {
817 		__mod_node_page_state(pgdat, idx, val);
818 	} else {
819 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
820 		__mod_lruvec_state(lruvec, idx, val);
821 	}
822 	rcu_read_unlock();
823 }
824 
825 /**
826  * count_memcg_events - account VM events in a cgroup
827  * @memcg: the memory cgroup
828  * @idx: the event item
829  * @count: the number of events that occurred
830  */
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)831 void count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
832 			  unsigned long count)
833 {
834 	int i = memcg_events_index(idx);
835 	int cpu;
836 
837 	if (mem_cgroup_disabled())
838 		return;
839 
840 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, idx))
841 		return;
842 
843 	cpu = get_cpu();
844 
845 	this_cpu_add(memcg->vmstats_percpu->events[i], count);
846 	memcg_rstat_updated(memcg, count, cpu);
847 	trace_count_memcg_events(memcg, idx, count);
848 
849 	put_cpu();
850 }
851 
memcg_events(struct mem_cgroup * memcg,int event)852 unsigned long memcg_events(struct mem_cgroup *memcg, int event)
853 {
854 	int i = memcg_events_index(event);
855 
856 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
857 		return 0;
858 
859 	return READ_ONCE(memcg->vmstats->events[i]);
860 }
861 
862 #ifdef CONFIG_MEMCG_V1
memcg_events_local(struct mem_cgroup * memcg,int event)863 unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
864 {
865 	int i = memcg_events_index(event);
866 
867 	if (WARN_ONCE(BAD_STAT_IDX(i), "%s: missing stat item %d\n", __func__, event))
868 		return 0;
869 
870 	return READ_ONCE(memcg->vmstats->events_local[i]);
871 }
872 #endif
873 
mem_cgroup_from_task(struct task_struct * p)874 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
875 {
876 	/*
877 	 * mm_update_next_owner() may clear mm->owner to NULL
878 	 * if it races with swapoff, page migration, etc.
879 	 * So this can be called with p == NULL.
880 	 */
881 	if (unlikely(!p))
882 		return NULL;
883 
884 	return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
885 }
886 EXPORT_SYMBOL(mem_cgroup_from_task);
887 
active_memcg(void)888 static __always_inline struct mem_cgroup *active_memcg(void)
889 {
890 	if (!in_task())
891 		return this_cpu_read(int_active_memcg);
892 	else
893 		return current->active_memcg;
894 }
895 
896 /**
897  * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
898  * @mm: mm from which memcg should be extracted. It can be NULL.
899  *
900  * Obtain a reference on mm->memcg and returns it if successful. If mm
901  * is NULL, then the memcg is chosen as follows:
902  * 1) The active memcg, if set.
903  * 2) current->mm->memcg, if available
904  * 3) root memcg
905  * If mem_cgroup is disabled, NULL is returned.
906  */
get_mem_cgroup_from_mm(struct mm_struct * mm)907 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
908 {
909 	struct mem_cgroup *memcg;
910 
911 	if (mem_cgroup_disabled())
912 		return NULL;
913 
914 	/*
915 	 * Page cache insertions can happen without an
916 	 * actual mm context, e.g. during disk probing
917 	 * on boot, loopback IO, acct() writes etc.
918 	 *
919 	 * No need to css_get on root memcg as the reference
920 	 * counting is disabled on the root level in the
921 	 * cgroup core. See CSS_NO_REF.
922 	 */
923 	if (unlikely(!mm)) {
924 		memcg = active_memcg();
925 		if (unlikely(memcg)) {
926 			/* remote memcg must hold a ref */
927 			css_get(&memcg->css);
928 			return memcg;
929 		}
930 		mm = current->mm;
931 		if (unlikely(!mm))
932 			return root_mem_cgroup;
933 	}
934 
935 	rcu_read_lock();
936 	do {
937 		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
938 		if (unlikely(!memcg))
939 			memcg = root_mem_cgroup;
940 	} while (!css_tryget(&memcg->css));
941 	rcu_read_unlock();
942 	return memcg;
943 }
944 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
945 
946 /**
947  * get_mem_cgroup_from_current - Obtain a reference on current task's memcg.
948  */
get_mem_cgroup_from_current(void)949 struct mem_cgroup *get_mem_cgroup_from_current(void)
950 {
951 	struct mem_cgroup *memcg;
952 
953 	if (mem_cgroup_disabled())
954 		return NULL;
955 
956 again:
957 	rcu_read_lock();
958 	memcg = mem_cgroup_from_task(current);
959 	if (!css_tryget(&memcg->css)) {
960 		rcu_read_unlock();
961 		goto again;
962 	}
963 	rcu_read_unlock();
964 	return memcg;
965 }
966 
967 /**
968  * get_mem_cgroup_from_folio - Obtain a reference on a given folio's memcg.
969  * @folio: folio from which memcg should be extracted.
970  */
get_mem_cgroup_from_folio(struct folio * folio)971 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
972 {
973 	struct mem_cgroup *memcg = folio_memcg(folio);
974 
975 	if (mem_cgroup_disabled())
976 		return NULL;
977 
978 	rcu_read_lock();
979 	if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
980 		memcg = root_mem_cgroup;
981 	rcu_read_unlock();
982 	return memcg;
983 }
984 
985 /**
986  * mem_cgroup_iter - iterate over memory cgroup hierarchy
987  * @root: hierarchy root
988  * @prev: previously returned memcg, NULL on first invocation
989  * @reclaim: cookie for shared reclaim walks, NULL for full walks
990  *
991  * Returns references to children of the hierarchy below @root, or
992  * @root itself, or %NULL after a full round-trip.
993  *
994  * Caller must pass the return value in @prev on subsequent
995  * invocations for reference counting, or use mem_cgroup_iter_break()
996  * to cancel a hierarchy walk before the round-trip is complete.
997  *
998  * Reclaimers can specify a node in @reclaim to divide up the memcgs
999  * in the hierarchy among all concurrent reclaimers operating on the
1000  * same node.
1001  */
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1002 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1003 				   struct mem_cgroup *prev,
1004 				   struct mem_cgroup_reclaim_cookie *reclaim)
1005 {
1006 	struct mem_cgroup_reclaim_iter *iter;
1007 	struct cgroup_subsys_state *css;
1008 	struct mem_cgroup *pos;
1009 	struct mem_cgroup *next;
1010 
1011 	if (mem_cgroup_disabled())
1012 		return NULL;
1013 
1014 	if (!root)
1015 		root = root_mem_cgroup;
1016 
1017 	rcu_read_lock();
1018 restart:
1019 	next = NULL;
1020 
1021 	if (reclaim) {
1022 		int gen;
1023 		int nid = reclaim->pgdat->node_id;
1024 
1025 		iter = &root->nodeinfo[nid]->iter;
1026 		gen = atomic_read(&iter->generation);
1027 
1028 		/*
1029 		 * On start, join the current reclaim iteration cycle.
1030 		 * Exit when a concurrent walker completes it.
1031 		 */
1032 		if (!prev)
1033 			reclaim->generation = gen;
1034 		else if (reclaim->generation != gen)
1035 			goto out_unlock;
1036 
1037 		pos = READ_ONCE(iter->position);
1038 	} else
1039 		pos = prev;
1040 
1041 	css = pos ? &pos->css : NULL;
1042 
1043 	while ((css = css_next_descendant_pre(css, &root->css))) {
1044 		/*
1045 		 * Verify the css and acquire a reference.  The root
1046 		 * is provided by the caller, so we know it's alive
1047 		 * and kicking, and don't take an extra reference.
1048 		 */
1049 		if (css == &root->css || css_tryget(css))
1050 			break;
1051 	}
1052 
1053 	next = mem_cgroup_from_css(css);
1054 
1055 	if (reclaim) {
1056 		/*
1057 		 * The position could have already been updated by a competing
1058 		 * thread, so check that the value hasn't changed since we read
1059 		 * it to avoid reclaiming from the same cgroup twice.
1060 		 */
1061 		if (cmpxchg(&iter->position, pos, next) != pos) {
1062 			if (css && css != &root->css)
1063 				css_put(css);
1064 			goto restart;
1065 		}
1066 
1067 		if (!next) {
1068 			atomic_inc(&iter->generation);
1069 
1070 			/*
1071 			 * Reclaimers share the hierarchy walk, and a
1072 			 * new one might jump in right at the end of
1073 			 * the hierarchy - make sure they see at least
1074 			 * one group and restart from the beginning.
1075 			 */
1076 			if (!prev)
1077 				goto restart;
1078 		}
1079 	}
1080 
1081 out_unlock:
1082 	rcu_read_unlock();
1083 	if (prev && prev != root)
1084 		css_put(&prev->css);
1085 
1086 	return next;
1087 }
1088 
1089 /**
1090  * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1091  * @root: hierarchy root
1092  * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1093  */
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1094 void mem_cgroup_iter_break(struct mem_cgroup *root,
1095 			   struct mem_cgroup *prev)
1096 {
1097 	if (!root)
1098 		root = root_mem_cgroup;
1099 	if (prev && prev != root)
1100 		css_put(&prev->css);
1101 }
1102 
__invalidate_reclaim_iterators(struct mem_cgroup * from,struct mem_cgroup * dead_memcg)1103 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1104 					struct mem_cgroup *dead_memcg)
1105 {
1106 	struct mem_cgroup_reclaim_iter *iter;
1107 	struct mem_cgroup_per_node *mz;
1108 	int nid;
1109 
1110 	for_each_node(nid) {
1111 		mz = from->nodeinfo[nid];
1112 		iter = &mz->iter;
1113 		cmpxchg(&iter->position, dead_memcg, NULL);
1114 	}
1115 }
1116 
invalidate_reclaim_iterators(struct mem_cgroup * dead_memcg)1117 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1118 {
1119 	struct mem_cgroup *memcg = dead_memcg;
1120 	struct mem_cgroup *last;
1121 
1122 	do {
1123 		__invalidate_reclaim_iterators(memcg, dead_memcg);
1124 		last = memcg;
1125 	} while ((memcg = parent_mem_cgroup(memcg)));
1126 
1127 	/*
1128 	 * When cgroup1 non-hierarchy mode is used,
1129 	 * parent_mem_cgroup() does not walk all the way up to the
1130 	 * cgroup root (root_mem_cgroup). So we have to handle
1131 	 * dead_memcg from cgroup root separately.
1132 	 */
1133 	if (!mem_cgroup_is_root(last))
1134 		__invalidate_reclaim_iterators(root_mem_cgroup,
1135 						dead_memcg);
1136 }
1137 
1138 /**
1139  * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1140  * @memcg: hierarchy root
1141  * @fn: function to call for each task
1142  * @arg: argument passed to @fn
1143  *
1144  * This function iterates over tasks attached to @memcg or to any of its
1145  * descendants and calls @fn for each task. If @fn returns a non-zero
1146  * value, the function breaks the iteration loop. Otherwise, it will iterate
1147  * over all tasks and return 0.
1148  *
1149  * This function must not be called for the root memory cgroup.
1150  */
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1151 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1152 			   int (*fn)(struct task_struct *, void *), void *arg)
1153 {
1154 	struct mem_cgroup *iter;
1155 	int ret = 0;
1156 
1157 	BUG_ON(mem_cgroup_is_root(memcg));
1158 
1159 	for_each_mem_cgroup_tree(iter, memcg) {
1160 		struct css_task_iter it;
1161 		struct task_struct *task;
1162 
1163 		css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1164 		while (!ret && (task = css_task_iter_next(&it))) {
1165 			ret = fn(task, arg);
1166 			/* Avoid potential softlockup warning */
1167 			cond_resched();
1168 		}
1169 		css_task_iter_end(&it);
1170 		if (ret) {
1171 			mem_cgroup_iter_break(memcg, iter);
1172 			break;
1173 		}
1174 	}
1175 }
1176 
1177 #ifdef CONFIG_DEBUG_VM
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1178 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1179 {
1180 	struct mem_cgroup *memcg;
1181 
1182 	if (mem_cgroup_disabled())
1183 		return;
1184 
1185 	memcg = folio_memcg(folio);
1186 
1187 	if (!memcg)
1188 		VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1189 	else
1190 		VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1191 }
1192 #endif
1193 
1194 /**
1195  * folio_lruvec_lock - Lock the lruvec for a folio.
1196  * @folio: Pointer to the folio.
1197  *
1198  * These functions are safe to use under any of the following conditions:
1199  * - folio locked
1200  * - folio_test_lru false
1201  * - folio frozen (refcount of 0)
1202  *
1203  * Return: The lruvec this folio is on with its lock held.
1204  */
folio_lruvec_lock(struct folio * folio)1205 struct lruvec *folio_lruvec_lock(struct folio *folio)
1206 {
1207 	struct lruvec *lruvec = folio_lruvec(folio);
1208 
1209 	spin_lock(&lruvec->lru_lock);
1210 	lruvec_memcg_debug(lruvec, folio);
1211 
1212 	return lruvec;
1213 }
1214 
1215 /**
1216  * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1217  * @folio: Pointer to the folio.
1218  *
1219  * These functions are safe to use under any of the following conditions:
1220  * - folio locked
1221  * - folio_test_lru false
1222  * - folio frozen (refcount of 0)
1223  *
1224  * Return: The lruvec this folio is on with its lock held and interrupts
1225  * disabled.
1226  */
folio_lruvec_lock_irq(struct folio * folio)1227 struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1228 {
1229 	struct lruvec *lruvec = folio_lruvec(folio);
1230 
1231 	spin_lock_irq(&lruvec->lru_lock);
1232 	lruvec_memcg_debug(lruvec, folio);
1233 
1234 	return lruvec;
1235 }
1236 
1237 /**
1238  * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1239  * @folio: Pointer to the folio.
1240  * @flags: Pointer to irqsave flags.
1241  *
1242  * These functions are safe to use under any of the following conditions:
1243  * - folio locked
1244  * - folio_test_lru false
1245  * - folio frozen (refcount of 0)
1246  *
1247  * Return: The lruvec this folio is on with its lock held and interrupts
1248  * disabled.
1249  */
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flags)1250 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1251 		unsigned long *flags)
1252 {
1253 	struct lruvec *lruvec = folio_lruvec(folio);
1254 
1255 	spin_lock_irqsave(&lruvec->lru_lock, *flags);
1256 	lruvec_memcg_debug(lruvec, folio);
1257 
1258 	return lruvec;
1259 }
1260 
1261 /**
1262  * mem_cgroup_update_lru_size - account for adding or removing an lru page
1263  * @lruvec: mem_cgroup per zone lru vector
1264  * @lru: index of lru list the page is sitting on
1265  * @zid: zone id of the accounted pages
1266  * @nr_pages: positive when adding or negative when removing
1267  *
1268  * This function must be called under lru_lock, just before a page is added
1269  * to or just after a page is removed from an lru list.
1270  */
mem_cgroup_update_lru_size(struct lruvec * lruvec,enum lru_list lru,int zid,int nr_pages)1271 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1272 				int zid, int nr_pages)
1273 {
1274 	struct mem_cgroup_per_node *mz;
1275 	unsigned long *lru_size;
1276 	long size;
1277 
1278 	if (mem_cgroup_disabled())
1279 		return;
1280 
1281 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1282 	lru_size = &mz->lru_zone_size[zid][lru];
1283 
1284 	if (nr_pages < 0)
1285 		*lru_size += nr_pages;
1286 
1287 	size = *lru_size;
1288 	if (WARN_ONCE(size < 0,
1289 		"%s(%p, %d, %d): lru_size %ld\n",
1290 		__func__, lruvec, lru, nr_pages, size)) {
1291 		VM_BUG_ON(1);
1292 		*lru_size = 0;
1293 	}
1294 
1295 	if (nr_pages > 0)
1296 		*lru_size += nr_pages;
1297 }
1298 
1299 /**
1300  * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1301  * @memcg: the memory cgroup
1302  *
1303  * Returns the maximum amount of memory @mem can be charged with, in
1304  * pages.
1305  */
mem_cgroup_margin(struct mem_cgroup * memcg)1306 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1307 {
1308 	unsigned long margin = 0;
1309 	unsigned long count;
1310 	unsigned long limit;
1311 
1312 	count = page_counter_read(&memcg->memory);
1313 	limit = READ_ONCE(memcg->memory.max);
1314 	if (count < limit)
1315 		margin = limit - count;
1316 
1317 	if (do_memsw_account()) {
1318 		count = page_counter_read(&memcg->memsw);
1319 		limit = READ_ONCE(memcg->memsw.max);
1320 		if (count < limit)
1321 			margin = min(margin, limit - count);
1322 		else
1323 			margin = 0;
1324 	}
1325 
1326 	return margin;
1327 }
1328 
1329 struct memory_stat {
1330 	const char *name;
1331 	unsigned int idx;
1332 };
1333 
1334 static const struct memory_stat memory_stats[] = {
1335 	{ "anon",			NR_ANON_MAPPED			},
1336 	{ "file",			NR_FILE_PAGES			},
1337 	{ "kernel",			MEMCG_KMEM			},
1338 	{ "kernel_stack",		NR_KERNEL_STACK_KB		},
1339 	{ "pagetables",			NR_PAGETABLE			},
1340 	{ "sec_pagetables",		NR_SECONDARY_PAGETABLE		},
1341 	{ "percpu",			MEMCG_PERCPU_B			},
1342 	{ "sock",			MEMCG_SOCK			},
1343 	{ "vmalloc",			MEMCG_VMALLOC			},
1344 	{ "shmem",			NR_SHMEM			},
1345 #ifdef CONFIG_ZSWAP
1346 	{ "zswap",			MEMCG_ZSWAP_B			},
1347 	{ "zswapped",			MEMCG_ZSWAPPED			},
1348 #endif
1349 	{ "file_mapped",		NR_FILE_MAPPED			},
1350 	{ "file_dirty",			NR_FILE_DIRTY			},
1351 	{ "file_writeback",		NR_WRITEBACK			},
1352 #ifdef CONFIG_SWAP
1353 	{ "swapcached",			NR_SWAPCACHE			},
1354 #endif
1355 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1356 	{ "anon_thp",			NR_ANON_THPS			},
1357 	{ "file_thp",			NR_FILE_THPS			},
1358 	{ "shmem_thp",			NR_SHMEM_THPS			},
1359 #endif
1360 	{ "inactive_anon",		NR_INACTIVE_ANON		},
1361 	{ "active_anon",		NR_ACTIVE_ANON			},
1362 	{ "inactive_file",		NR_INACTIVE_FILE		},
1363 	{ "active_file",		NR_ACTIVE_FILE			},
1364 	{ "unevictable",		NR_UNEVICTABLE			},
1365 	{ "slab_reclaimable",		NR_SLAB_RECLAIMABLE_B		},
1366 	{ "slab_unreclaimable",		NR_SLAB_UNRECLAIMABLE_B		},
1367 #ifdef CONFIG_HUGETLB_PAGE
1368 	{ "hugetlb",			NR_HUGETLB			},
1369 #endif
1370 
1371 	/* The memory events */
1372 	{ "workingset_refault_anon",	WORKINGSET_REFAULT_ANON		},
1373 	{ "workingset_refault_file",	WORKINGSET_REFAULT_FILE		},
1374 	{ "workingset_activate_anon",	WORKINGSET_ACTIVATE_ANON	},
1375 	{ "workingset_activate_file",	WORKINGSET_ACTIVATE_FILE	},
1376 	{ "workingset_restore_anon",	WORKINGSET_RESTORE_ANON		},
1377 	{ "workingset_restore_file",	WORKINGSET_RESTORE_FILE		},
1378 	{ "workingset_nodereclaim",	WORKINGSET_NODERECLAIM		},
1379 
1380 	{ "pgdemote_kswapd",		PGDEMOTE_KSWAPD		},
1381 	{ "pgdemote_direct",		PGDEMOTE_DIRECT		},
1382 	{ "pgdemote_khugepaged",	PGDEMOTE_KHUGEPAGED	},
1383 	{ "pgdemote_proactive",		PGDEMOTE_PROACTIVE	},
1384 #ifdef CONFIG_NUMA_BALANCING
1385 	{ "pgpromote_success",		PGPROMOTE_SUCCESS	},
1386 #endif
1387 };
1388 
1389 /* The actual unit of the state item, not the same as the output unit */
memcg_page_state_unit(int item)1390 static int memcg_page_state_unit(int item)
1391 {
1392 	switch (item) {
1393 	case MEMCG_PERCPU_B:
1394 	case MEMCG_ZSWAP_B:
1395 	case NR_SLAB_RECLAIMABLE_B:
1396 	case NR_SLAB_UNRECLAIMABLE_B:
1397 		return 1;
1398 	case NR_KERNEL_STACK_KB:
1399 		return SZ_1K;
1400 	default:
1401 		return PAGE_SIZE;
1402 	}
1403 }
1404 
1405 /* Translate stat items to the correct unit for memory.stat output */
memcg_page_state_output_unit(int item)1406 static int memcg_page_state_output_unit(int item)
1407 {
1408 	/*
1409 	 * Workingset state is actually in pages, but we export it to userspace
1410 	 * as a scalar count of events, so special case it here.
1411 	 *
1412 	 * Demotion and promotion activities are exported in pages, consistent
1413 	 * with their global counterparts.
1414 	 */
1415 	switch (item) {
1416 	case WORKINGSET_REFAULT_ANON:
1417 	case WORKINGSET_REFAULT_FILE:
1418 	case WORKINGSET_ACTIVATE_ANON:
1419 	case WORKINGSET_ACTIVATE_FILE:
1420 	case WORKINGSET_RESTORE_ANON:
1421 	case WORKINGSET_RESTORE_FILE:
1422 	case WORKINGSET_NODERECLAIM:
1423 	case PGDEMOTE_KSWAPD:
1424 	case PGDEMOTE_DIRECT:
1425 	case PGDEMOTE_KHUGEPAGED:
1426 	case PGDEMOTE_PROACTIVE:
1427 #ifdef CONFIG_NUMA_BALANCING
1428 	case PGPROMOTE_SUCCESS:
1429 #endif
1430 		return 1;
1431 	default:
1432 		return memcg_page_state_unit(item);
1433 	}
1434 }
1435 
memcg_page_state_output(struct mem_cgroup * memcg,int item)1436 unsigned long memcg_page_state_output(struct mem_cgroup *memcg, int item)
1437 {
1438 	return memcg_page_state(memcg, item) *
1439 		memcg_page_state_output_unit(item);
1440 }
1441 
1442 #ifdef CONFIG_MEMCG_V1
memcg_page_state_local_output(struct mem_cgroup * memcg,int item)1443 unsigned long memcg_page_state_local_output(struct mem_cgroup *memcg, int item)
1444 {
1445 	return memcg_page_state_local(memcg, item) *
1446 		memcg_page_state_output_unit(item);
1447 }
1448 #endif
1449 
1450 #ifdef CONFIG_HUGETLB_PAGE
memcg_accounts_hugetlb(void)1451 static bool memcg_accounts_hugetlb(void)
1452 {
1453 	return cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_HUGETLB_ACCOUNTING;
1454 }
1455 #else /* CONFIG_HUGETLB_PAGE */
memcg_accounts_hugetlb(void)1456 static bool memcg_accounts_hugetlb(void)
1457 {
1458 	return false;
1459 }
1460 #endif /* CONFIG_HUGETLB_PAGE */
1461 
memcg_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1462 static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1463 {
1464 	int i;
1465 
1466 	/*
1467 	 * Provide statistics on the state of the memory subsystem as
1468 	 * well as cumulative event counters that show past behavior.
1469 	 *
1470 	 * This list is ordered following a combination of these gradients:
1471 	 * 1) generic big picture -> specifics and details
1472 	 * 2) reflecting userspace activity -> reflecting kernel heuristics
1473 	 *
1474 	 * Current memory state:
1475 	 */
1476 	mem_cgroup_flush_stats(memcg);
1477 
1478 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1479 		u64 size;
1480 
1481 #ifdef CONFIG_HUGETLB_PAGE
1482 		if (unlikely(memory_stats[i].idx == NR_HUGETLB) &&
1483 			!memcg_accounts_hugetlb())
1484 			continue;
1485 #endif
1486 		size = memcg_page_state_output(memcg, memory_stats[i].idx);
1487 		seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1488 
1489 		if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1490 			size += memcg_page_state_output(memcg,
1491 							NR_SLAB_RECLAIMABLE_B);
1492 			seq_buf_printf(s, "slab %llu\n", size);
1493 		}
1494 	}
1495 
1496 	/* Accumulated memory events */
1497 	seq_buf_printf(s, "pgscan %lu\n",
1498 		       memcg_events(memcg, PGSCAN_KSWAPD) +
1499 		       memcg_events(memcg, PGSCAN_DIRECT) +
1500 		       memcg_events(memcg, PGSCAN_PROACTIVE) +
1501 		       memcg_events(memcg, PGSCAN_KHUGEPAGED));
1502 	seq_buf_printf(s, "pgsteal %lu\n",
1503 		       memcg_events(memcg, PGSTEAL_KSWAPD) +
1504 		       memcg_events(memcg, PGSTEAL_DIRECT) +
1505 		       memcg_events(memcg, PGSTEAL_PROACTIVE) +
1506 		       memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1507 
1508 	for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1509 #ifdef CONFIG_MEMCG_V1
1510 		if (memcg_vm_event_stat[i] == PGPGIN ||
1511 		    memcg_vm_event_stat[i] == PGPGOUT)
1512 			continue;
1513 #endif
1514 		seq_buf_printf(s, "%s %lu\n",
1515 			       vm_event_name(memcg_vm_event_stat[i]),
1516 			       memcg_events(memcg, memcg_vm_event_stat[i]));
1517 	}
1518 }
1519 
memory_stat_format(struct mem_cgroup * memcg,struct seq_buf * s)1520 static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1521 {
1522 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1523 		memcg_stat_format(memcg, s);
1524 	else
1525 		memcg1_stat_format(memcg, s);
1526 	if (seq_buf_has_overflowed(s))
1527 		pr_warn("%s: Warning, stat buffer overflow, please report\n", __func__);
1528 }
1529 
1530 /**
1531  * mem_cgroup_print_oom_context: Print OOM information relevant to
1532  * memory controller.
1533  * @memcg: The memory cgroup that went over limit
1534  * @p: Task that is going to be killed
1535  *
1536  * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1537  * enabled
1538  */
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1539 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1540 {
1541 	rcu_read_lock();
1542 
1543 	if (memcg) {
1544 		pr_cont(",oom_memcg=");
1545 		pr_cont_cgroup_path(memcg->css.cgroup);
1546 	} else
1547 		pr_cont(",global_oom");
1548 	if (p) {
1549 		pr_cont(",task_memcg=");
1550 		pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1551 	}
1552 	rcu_read_unlock();
1553 }
1554 
1555 /**
1556  * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1557  * memory controller.
1558  * @memcg: The memory cgroup that went over limit
1559  */
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1560 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1561 {
1562 	/* Use static buffer, for the caller is holding oom_lock. */
1563 	static char buf[SEQ_BUF_SIZE];
1564 	struct seq_buf s;
1565 	unsigned long memory_failcnt;
1566 
1567 	lockdep_assert_held(&oom_lock);
1568 
1569 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1570 		memory_failcnt = atomic_long_read(&memcg->memory_events[MEMCG_MAX]);
1571 	else
1572 		memory_failcnt = memcg->memory.failcnt;
1573 
1574 	pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1575 		K((u64)page_counter_read(&memcg->memory)),
1576 		K((u64)READ_ONCE(memcg->memory.max)), memory_failcnt);
1577 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1578 		pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1579 			K((u64)page_counter_read(&memcg->swap)),
1580 			K((u64)READ_ONCE(memcg->swap.max)),
1581 			atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
1582 #ifdef CONFIG_MEMCG_V1
1583 	else {
1584 		pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1585 			K((u64)page_counter_read(&memcg->memsw)),
1586 			K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1587 		pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1588 			K((u64)page_counter_read(&memcg->kmem)),
1589 			K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1590 	}
1591 #endif
1592 
1593 	pr_info("Memory cgroup stats for ");
1594 	pr_cont_cgroup_path(memcg->css.cgroup);
1595 	pr_cont(":");
1596 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
1597 	memory_stat_format(memcg, &s);
1598 	seq_buf_do_printk(&s, KERN_INFO);
1599 }
1600 
1601 /*
1602  * Return the memory (and swap, if configured) limit for a memcg.
1603  */
mem_cgroup_get_max(struct mem_cgroup * memcg)1604 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1605 {
1606 	unsigned long max = READ_ONCE(memcg->memory.max);
1607 
1608 	if (do_memsw_account()) {
1609 		if (mem_cgroup_swappiness(memcg)) {
1610 			/* Calculate swap excess capacity from memsw limit */
1611 			unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1612 
1613 			max += min(swap, (unsigned long)total_swap_pages);
1614 		}
1615 	} else {
1616 		if (mem_cgroup_swappiness(memcg))
1617 			max += min(READ_ONCE(memcg->swap.max),
1618 				   (unsigned long)total_swap_pages);
1619 	}
1620 	return max;
1621 }
1622 
mem_cgroup_size(struct mem_cgroup * memcg)1623 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1624 {
1625 	return page_counter_read(&memcg->memory);
1626 }
1627 
mem_cgroup_out_of_memory(struct mem_cgroup * memcg,gfp_t gfp_mask,int order)1628 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1629 				     int order)
1630 {
1631 	struct oom_control oc = {
1632 		.zonelist = NULL,
1633 		.nodemask = NULL,
1634 		.memcg = memcg,
1635 		.gfp_mask = gfp_mask,
1636 		.order = order,
1637 	};
1638 	bool ret = true;
1639 
1640 	if (mutex_lock_killable(&oom_lock))
1641 		return true;
1642 
1643 	if (mem_cgroup_margin(memcg) >= (1 << order))
1644 		goto unlock;
1645 
1646 	/*
1647 	 * A few threads which were not waiting at mutex_lock_killable() can
1648 	 * fail to bail out. Therefore, check again after holding oom_lock.
1649 	 */
1650 	ret = out_of_memory(&oc);
1651 
1652 unlock:
1653 	mutex_unlock(&oom_lock);
1654 	return ret;
1655 }
1656 
1657 /*
1658  * Returns true if successfully killed one or more processes. Though in some
1659  * corner cases it can return true even without killing any process.
1660  */
mem_cgroup_oom(struct mem_cgroup * memcg,gfp_t mask,int order)1661 static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1662 {
1663 	bool locked, ret;
1664 
1665 	if (order > PAGE_ALLOC_COSTLY_ORDER)
1666 		return false;
1667 
1668 	memcg_memory_event(memcg, MEMCG_OOM);
1669 
1670 	if (!memcg1_oom_prepare(memcg, &locked))
1671 		return false;
1672 
1673 	ret = mem_cgroup_out_of_memory(memcg, mask, order);
1674 
1675 	memcg1_oom_finish(memcg, locked);
1676 
1677 	return ret;
1678 }
1679 
1680 /**
1681  * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1682  * @victim: task to be killed by the OOM killer
1683  * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1684  *
1685  * Returns a pointer to a memory cgroup, which has to be cleaned up
1686  * by killing all belonging OOM-killable tasks.
1687  *
1688  * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1689  */
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1690 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1691 					    struct mem_cgroup *oom_domain)
1692 {
1693 	struct mem_cgroup *oom_group = NULL;
1694 	struct mem_cgroup *memcg;
1695 
1696 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1697 		return NULL;
1698 
1699 	if (!oom_domain)
1700 		oom_domain = root_mem_cgroup;
1701 
1702 	rcu_read_lock();
1703 
1704 	memcg = mem_cgroup_from_task(victim);
1705 	if (mem_cgroup_is_root(memcg))
1706 		goto out;
1707 
1708 	/*
1709 	 * If the victim task has been asynchronously moved to a different
1710 	 * memory cgroup, we might end up killing tasks outside oom_domain.
1711 	 * In this case it's better to ignore memory.group.oom.
1712 	 */
1713 	if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1714 		goto out;
1715 
1716 	/*
1717 	 * Traverse the memory cgroup hierarchy from the victim task's
1718 	 * cgroup up to the OOMing cgroup (or root) to find the
1719 	 * highest-level memory cgroup with oom.group set.
1720 	 */
1721 	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1722 		if (READ_ONCE(memcg->oom_group))
1723 			oom_group = memcg;
1724 
1725 		if (memcg == oom_domain)
1726 			break;
1727 	}
1728 
1729 	if (oom_group)
1730 		css_get(&oom_group->css);
1731 out:
1732 	rcu_read_unlock();
1733 
1734 	return oom_group;
1735 }
1736 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1737 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1738 {
1739 	pr_info("Tasks in ");
1740 	pr_cont_cgroup_path(memcg->css.cgroup);
1741 	pr_cont(" are going to be killed due to memory.oom.group set\n");
1742 }
1743 
1744 /*
1745  * The value of NR_MEMCG_STOCK is selected to keep the cached memcgs and their
1746  * nr_pages in a single cacheline. This may change in future.
1747  */
1748 #define NR_MEMCG_STOCK 7
1749 #define FLUSHING_CACHED_CHARGE	0
1750 struct memcg_stock_pcp {
1751 	local_trylock_t lock;
1752 	uint8_t nr_pages[NR_MEMCG_STOCK];
1753 	struct mem_cgroup *cached[NR_MEMCG_STOCK];
1754 
1755 	struct work_struct work;
1756 	unsigned long flags;
1757 };
1758 
1759 static DEFINE_PER_CPU_ALIGNED(struct memcg_stock_pcp, memcg_stock) = {
1760 	.lock = INIT_LOCAL_TRYLOCK(lock),
1761 };
1762 
1763 struct obj_stock_pcp {
1764 	local_trylock_t lock;
1765 	unsigned int nr_bytes;
1766 	struct obj_cgroup *cached_objcg;
1767 	struct pglist_data *cached_pgdat;
1768 	int nr_slab_reclaimable_b;
1769 	int nr_slab_unreclaimable_b;
1770 
1771 	struct work_struct work;
1772 	unsigned long flags;
1773 };
1774 
1775 static DEFINE_PER_CPU_ALIGNED(struct obj_stock_pcp, obj_stock) = {
1776 	.lock = INIT_LOCAL_TRYLOCK(lock),
1777 };
1778 
1779 static DEFINE_MUTEX(percpu_charge_mutex);
1780 
1781 static void drain_obj_stock(struct obj_stock_pcp *stock);
1782 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
1783 				     struct mem_cgroup *root_memcg);
1784 
1785 /**
1786  * consume_stock: Try to consume stocked charge on this cpu.
1787  * @memcg: memcg to consume from.
1788  * @nr_pages: how many pages to charge.
1789  *
1790  * Consume the cached charge if enough nr_pages are present otherwise return
1791  * failure. Also return failure for charge request larger than
1792  * MEMCG_CHARGE_BATCH or if the local lock is already taken.
1793  *
1794  * returns true if successful, false otherwise.
1795  */
consume_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1796 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1797 {
1798 	struct memcg_stock_pcp *stock;
1799 	uint8_t stock_pages;
1800 	bool ret = false;
1801 	int i;
1802 
1803 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1804 	    !local_trylock(&memcg_stock.lock))
1805 		return ret;
1806 
1807 	stock = this_cpu_ptr(&memcg_stock);
1808 
1809 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1810 		if (memcg != READ_ONCE(stock->cached[i]))
1811 			continue;
1812 
1813 		stock_pages = READ_ONCE(stock->nr_pages[i]);
1814 		if (stock_pages >= nr_pages) {
1815 			WRITE_ONCE(stock->nr_pages[i], stock_pages - nr_pages);
1816 			ret = true;
1817 		}
1818 		break;
1819 	}
1820 
1821 	local_unlock(&memcg_stock.lock);
1822 
1823 	return ret;
1824 }
1825 
memcg_uncharge(struct mem_cgroup * memcg,unsigned int nr_pages)1826 static void memcg_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
1827 {
1828 	page_counter_uncharge(&memcg->memory, nr_pages);
1829 	if (do_memsw_account())
1830 		page_counter_uncharge(&memcg->memsw, nr_pages);
1831 }
1832 
1833 /*
1834  * Returns stocks cached in percpu and reset cached information.
1835  */
drain_stock(struct memcg_stock_pcp * stock,int i)1836 static void drain_stock(struct memcg_stock_pcp *stock, int i)
1837 {
1838 	struct mem_cgroup *old = READ_ONCE(stock->cached[i]);
1839 	uint8_t stock_pages;
1840 
1841 	if (!old)
1842 		return;
1843 
1844 	stock_pages = READ_ONCE(stock->nr_pages[i]);
1845 	if (stock_pages) {
1846 		memcg_uncharge(old, stock_pages);
1847 		WRITE_ONCE(stock->nr_pages[i], 0);
1848 	}
1849 
1850 	css_put(&old->css);
1851 	WRITE_ONCE(stock->cached[i], NULL);
1852 }
1853 
drain_stock_fully(struct memcg_stock_pcp * stock)1854 static void drain_stock_fully(struct memcg_stock_pcp *stock)
1855 {
1856 	int i;
1857 
1858 	for (i = 0; i < NR_MEMCG_STOCK; ++i)
1859 		drain_stock(stock, i);
1860 }
1861 
drain_local_memcg_stock(struct work_struct * dummy)1862 static void drain_local_memcg_stock(struct work_struct *dummy)
1863 {
1864 	struct memcg_stock_pcp *stock;
1865 
1866 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1867 		return;
1868 
1869 	local_lock(&memcg_stock.lock);
1870 
1871 	stock = this_cpu_ptr(&memcg_stock);
1872 	drain_stock_fully(stock);
1873 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1874 
1875 	local_unlock(&memcg_stock.lock);
1876 }
1877 
drain_local_obj_stock(struct work_struct * dummy)1878 static void drain_local_obj_stock(struct work_struct *dummy)
1879 {
1880 	struct obj_stock_pcp *stock;
1881 
1882 	if (WARN_ONCE(!in_task(), "drain in non-task context"))
1883 		return;
1884 
1885 	local_lock(&obj_stock.lock);
1886 
1887 	stock = this_cpu_ptr(&obj_stock);
1888 	drain_obj_stock(stock);
1889 	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1890 
1891 	local_unlock(&obj_stock.lock);
1892 }
1893 
refill_stock(struct mem_cgroup * memcg,unsigned int nr_pages)1894 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1895 {
1896 	struct memcg_stock_pcp *stock;
1897 	struct mem_cgroup *cached;
1898 	uint8_t stock_pages;
1899 	bool success = false;
1900 	int empty_slot = -1;
1901 	int i;
1902 
1903 	/*
1904 	 * For now limit MEMCG_CHARGE_BATCH to 127 and less. In future if we
1905 	 * decide to increase it more than 127 then we will need more careful
1906 	 * handling of nr_pages[] in struct memcg_stock_pcp.
1907 	 */
1908 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S8_MAX);
1909 
1910 	VM_WARN_ON_ONCE(mem_cgroup_is_root(memcg));
1911 
1912 	if (nr_pages > MEMCG_CHARGE_BATCH ||
1913 	    !local_trylock(&memcg_stock.lock)) {
1914 		/*
1915 		 * In case of larger than batch refill or unlikely failure to
1916 		 * lock the percpu memcg_stock.lock, uncharge memcg directly.
1917 		 */
1918 		memcg_uncharge(memcg, nr_pages);
1919 		return;
1920 	}
1921 
1922 	stock = this_cpu_ptr(&memcg_stock);
1923 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1924 		cached = READ_ONCE(stock->cached[i]);
1925 		if (!cached && empty_slot == -1)
1926 			empty_slot = i;
1927 		if (memcg == READ_ONCE(stock->cached[i])) {
1928 			stock_pages = READ_ONCE(stock->nr_pages[i]) + nr_pages;
1929 			WRITE_ONCE(stock->nr_pages[i], stock_pages);
1930 			if (stock_pages > MEMCG_CHARGE_BATCH)
1931 				drain_stock(stock, i);
1932 			success = true;
1933 			break;
1934 		}
1935 	}
1936 
1937 	if (!success) {
1938 		i = empty_slot;
1939 		if (i == -1) {
1940 			i = get_random_u32_below(NR_MEMCG_STOCK);
1941 			drain_stock(stock, i);
1942 		}
1943 		css_get(&memcg->css);
1944 		WRITE_ONCE(stock->cached[i], memcg);
1945 		WRITE_ONCE(stock->nr_pages[i], nr_pages);
1946 	}
1947 
1948 	local_unlock(&memcg_stock.lock);
1949 }
1950 
is_memcg_drain_needed(struct memcg_stock_pcp * stock,struct mem_cgroup * root_memcg)1951 static bool is_memcg_drain_needed(struct memcg_stock_pcp *stock,
1952 				  struct mem_cgroup *root_memcg)
1953 {
1954 	struct mem_cgroup *memcg;
1955 	bool flush = false;
1956 	int i;
1957 
1958 	rcu_read_lock();
1959 	for (i = 0; i < NR_MEMCG_STOCK; ++i) {
1960 		memcg = READ_ONCE(stock->cached[i]);
1961 		if (!memcg)
1962 			continue;
1963 
1964 		if (READ_ONCE(stock->nr_pages[i]) &&
1965 		    mem_cgroup_is_descendant(memcg, root_memcg)) {
1966 			flush = true;
1967 			break;
1968 		}
1969 	}
1970 	rcu_read_unlock();
1971 	return flush;
1972 }
1973 
1974 /*
1975  * Drains all per-CPU charge caches for given root_memcg resp. subtree
1976  * of the hierarchy under it.
1977  */
drain_all_stock(struct mem_cgroup * root_memcg)1978 void drain_all_stock(struct mem_cgroup *root_memcg)
1979 {
1980 	int cpu, curcpu;
1981 
1982 	/* If someone's already draining, avoid adding running more workers. */
1983 	if (!mutex_trylock(&percpu_charge_mutex))
1984 		return;
1985 	/*
1986 	 * Notify other cpus that system-wide "drain" is running
1987 	 * We do not care about races with the cpu hotplug because cpu down
1988 	 * as well as workers from this path always operate on the local
1989 	 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1990 	 */
1991 	migrate_disable();
1992 	curcpu = smp_processor_id();
1993 	for_each_online_cpu(cpu) {
1994 		struct memcg_stock_pcp *memcg_st = &per_cpu(memcg_stock, cpu);
1995 		struct obj_stock_pcp *obj_st = &per_cpu(obj_stock, cpu);
1996 
1997 		if (!test_bit(FLUSHING_CACHED_CHARGE, &memcg_st->flags) &&
1998 		    is_memcg_drain_needed(memcg_st, root_memcg) &&
1999 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2000 				      &memcg_st->flags)) {
2001 			if (cpu == curcpu)
2002 				drain_local_memcg_stock(&memcg_st->work);
2003 			else if (!cpu_is_isolated(cpu))
2004 				schedule_work_on(cpu, &memcg_st->work);
2005 		}
2006 
2007 		if (!test_bit(FLUSHING_CACHED_CHARGE, &obj_st->flags) &&
2008 		    obj_stock_flush_required(obj_st, root_memcg) &&
2009 		    !test_and_set_bit(FLUSHING_CACHED_CHARGE,
2010 				      &obj_st->flags)) {
2011 			if (cpu == curcpu)
2012 				drain_local_obj_stock(&obj_st->work);
2013 			else if (!cpu_is_isolated(cpu))
2014 				schedule_work_on(cpu, &obj_st->work);
2015 		}
2016 	}
2017 	migrate_enable();
2018 	mutex_unlock(&percpu_charge_mutex);
2019 }
2020 
memcg_hotplug_cpu_dead(unsigned int cpu)2021 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2022 {
2023 	/* no need for the local lock */
2024 	drain_obj_stock(&per_cpu(obj_stock, cpu));
2025 	drain_stock_fully(&per_cpu(memcg_stock, cpu));
2026 
2027 	return 0;
2028 }
2029 
reclaim_high(struct mem_cgroup * memcg,unsigned int nr_pages,gfp_t gfp_mask)2030 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2031 				  unsigned int nr_pages,
2032 				  gfp_t gfp_mask)
2033 {
2034 	unsigned long nr_reclaimed = 0;
2035 
2036 	do {
2037 		unsigned long pflags;
2038 
2039 		if (page_counter_read(&memcg->memory) <=
2040 		    READ_ONCE(memcg->memory.high))
2041 			continue;
2042 
2043 		memcg_memory_event(memcg, MEMCG_HIGH);
2044 
2045 		psi_memstall_enter(&pflags);
2046 		nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2047 							gfp_mask,
2048 							MEMCG_RECLAIM_MAY_SWAP,
2049 							NULL);
2050 		psi_memstall_leave(&pflags);
2051 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2052 		 !mem_cgroup_is_root(memcg));
2053 
2054 	return nr_reclaimed;
2055 }
2056 
high_work_func(struct work_struct * work)2057 static void high_work_func(struct work_struct *work)
2058 {
2059 	struct mem_cgroup *memcg;
2060 
2061 	memcg = container_of(work, struct mem_cgroup, high_work);
2062 	reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2063 }
2064 
2065 /*
2066  * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2067  * enough to still cause a significant slowdown in most cases, while still
2068  * allowing diagnostics and tracing to proceed without becoming stuck.
2069  */
2070 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2071 
2072 /*
2073  * When calculating the delay, we use these either side of the exponentiation to
2074  * maintain precision and scale to a reasonable number of jiffies (see the table
2075  * below.
2076  *
2077  * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2078  *   overage ratio to a delay.
2079  * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2080  *   proposed penalty in order to reduce to a reasonable number of jiffies, and
2081  *   to produce a reasonable delay curve.
2082  *
2083  * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2084  * reasonable delay curve compared to precision-adjusted overage, not
2085  * penalising heavily at first, but still making sure that growth beyond the
2086  * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2087  * example, with a high of 100 megabytes:
2088  *
2089  *  +-------+------------------------+
2090  *  | usage | time to allocate in ms |
2091  *  +-------+------------------------+
2092  *  | 100M  |                      0 |
2093  *  | 101M  |                      6 |
2094  *  | 102M  |                     25 |
2095  *  | 103M  |                     57 |
2096  *  | 104M  |                    102 |
2097  *  | 105M  |                    159 |
2098  *  | 106M  |                    230 |
2099  *  | 107M  |                    313 |
2100  *  | 108M  |                    409 |
2101  *  | 109M  |                    518 |
2102  *  | 110M  |                    639 |
2103  *  | 111M  |                    774 |
2104  *  | 112M  |                    921 |
2105  *  | 113M  |                   1081 |
2106  *  | 114M  |                   1254 |
2107  *  | 115M  |                   1439 |
2108  *  | 116M  |                   1638 |
2109  *  | 117M  |                   1849 |
2110  *  | 118M  |                   2000 |
2111  *  | 119M  |                   2000 |
2112  *  | 120M  |                   2000 |
2113  *  +-------+------------------------+
2114  */
2115  #define MEMCG_DELAY_PRECISION_SHIFT 20
2116  #define MEMCG_DELAY_SCALING_SHIFT 14
2117 
calculate_overage(unsigned long usage,unsigned long high)2118 static u64 calculate_overage(unsigned long usage, unsigned long high)
2119 {
2120 	u64 overage;
2121 
2122 	if (usage <= high)
2123 		return 0;
2124 
2125 	/*
2126 	 * Prevent division by 0 in overage calculation by acting as if
2127 	 * it was a threshold of 1 page
2128 	 */
2129 	high = max(high, 1UL);
2130 
2131 	overage = usage - high;
2132 	overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2133 	return div64_u64(overage, high);
2134 }
2135 
mem_find_max_overage(struct mem_cgroup * memcg)2136 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2137 {
2138 	u64 overage, max_overage = 0;
2139 
2140 	do {
2141 		overage = calculate_overage(page_counter_read(&memcg->memory),
2142 					    READ_ONCE(memcg->memory.high));
2143 		max_overage = max(overage, max_overage);
2144 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2145 		 !mem_cgroup_is_root(memcg));
2146 
2147 	return max_overage;
2148 }
2149 
swap_find_max_overage(struct mem_cgroup * memcg)2150 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2151 {
2152 	u64 overage, max_overage = 0;
2153 
2154 	do {
2155 		overage = calculate_overage(page_counter_read(&memcg->swap),
2156 					    READ_ONCE(memcg->swap.high));
2157 		if (overage)
2158 			memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2159 		max_overage = max(overage, max_overage);
2160 	} while ((memcg = parent_mem_cgroup(memcg)) &&
2161 		 !mem_cgroup_is_root(memcg));
2162 
2163 	return max_overage;
2164 }
2165 
2166 /*
2167  * Get the number of jiffies that we should penalise a mischievous cgroup which
2168  * is exceeding its memory.high by checking both it and its ancestors.
2169  */
calculate_high_delay(struct mem_cgroup * memcg,unsigned int nr_pages,u64 max_overage)2170 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2171 					  unsigned int nr_pages,
2172 					  u64 max_overage)
2173 {
2174 	unsigned long penalty_jiffies;
2175 
2176 	if (!max_overage)
2177 		return 0;
2178 
2179 	/*
2180 	 * We use overage compared to memory.high to calculate the number of
2181 	 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2182 	 * fairly lenient on small overages, and increasingly harsh when the
2183 	 * memcg in question makes it clear that it has no intention of stopping
2184 	 * its crazy behaviour, so we exponentially increase the delay based on
2185 	 * overage amount.
2186 	 */
2187 	penalty_jiffies = max_overage * max_overage * HZ;
2188 	penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2189 	penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2190 
2191 	/*
2192 	 * Factor in the task's own contribution to the overage, such that four
2193 	 * N-sized allocations are throttled approximately the same as one
2194 	 * 4N-sized allocation.
2195 	 *
2196 	 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2197 	 * larger the current charge patch is than that.
2198 	 */
2199 	return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2200 }
2201 
2202 /*
2203  * Reclaims memory over the high limit. Called directly from
2204  * try_charge() (context permitting), as well as from the userland
2205  * return path where reclaim is always able to block.
2206  */
__mem_cgroup_handle_over_high(gfp_t gfp_mask)2207 void __mem_cgroup_handle_over_high(gfp_t gfp_mask)
2208 {
2209 	unsigned long penalty_jiffies;
2210 	unsigned long pflags;
2211 	unsigned long nr_reclaimed;
2212 	unsigned int nr_pages = current->memcg_nr_pages_over_high;
2213 	int nr_retries = MAX_RECLAIM_RETRIES;
2214 	struct mem_cgroup *memcg;
2215 	bool in_retry = false;
2216 
2217 	memcg = get_mem_cgroup_from_mm(current->mm);
2218 	current->memcg_nr_pages_over_high = 0;
2219 
2220 retry_reclaim:
2221 	/*
2222 	 * Bail if the task is already exiting. Unlike memory.max,
2223 	 * memory.high enforcement isn't as strict, and there is no
2224 	 * OOM killer involved, which means the excess could already
2225 	 * be much bigger (and still growing) than it could for
2226 	 * memory.max; the dying task could get stuck in fruitless
2227 	 * reclaim for a long time, which isn't desirable.
2228 	 */
2229 	if (task_is_dying())
2230 		goto out;
2231 
2232 	/*
2233 	 * The allocating task should reclaim at least the batch size, but for
2234 	 * subsequent retries we only want to do what's necessary to prevent oom
2235 	 * or breaching resource isolation.
2236 	 *
2237 	 * This is distinct from memory.max or page allocator behaviour because
2238 	 * memory.high is currently batched, whereas memory.max and the page
2239 	 * allocator run every time an allocation is made.
2240 	 */
2241 	nr_reclaimed = reclaim_high(memcg,
2242 				    in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2243 				    gfp_mask);
2244 
2245 	/*
2246 	 * memory.high is breached and reclaim is unable to keep up. Throttle
2247 	 * allocators proactively to slow down excessive growth.
2248 	 */
2249 	penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2250 					       mem_find_max_overage(memcg));
2251 
2252 	penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2253 						swap_find_max_overage(memcg));
2254 
2255 	/*
2256 	 * Clamp the max delay per usermode return so as to still keep the
2257 	 * application moving forwards and also permit diagnostics, albeit
2258 	 * extremely slowly.
2259 	 */
2260 	penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2261 
2262 	/*
2263 	 * Don't sleep if the amount of jiffies this memcg owes us is so low
2264 	 * that it's not even worth doing, in an attempt to be nice to those who
2265 	 * go only a small amount over their memory.high value and maybe haven't
2266 	 * been aggressively reclaimed enough yet.
2267 	 */
2268 	if (penalty_jiffies <= HZ / 100)
2269 		goto out;
2270 
2271 	/*
2272 	 * If reclaim is making forward progress but we're still over
2273 	 * memory.high, we want to encourage that rather than doing allocator
2274 	 * throttling.
2275 	 */
2276 	if (nr_reclaimed || nr_retries--) {
2277 		in_retry = true;
2278 		goto retry_reclaim;
2279 	}
2280 
2281 	/*
2282 	 * Reclaim didn't manage to push usage below the limit, slow
2283 	 * this allocating task down.
2284 	 *
2285 	 * If we exit early, we're guaranteed to die (since
2286 	 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2287 	 * need to account for any ill-begotten jiffies to pay them off later.
2288 	 */
2289 	psi_memstall_enter(&pflags);
2290 	schedule_timeout_killable(penalty_jiffies);
2291 	psi_memstall_leave(&pflags);
2292 
2293 out:
2294 	css_put(&memcg->css);
2295 }
2296 
try_charge_memcg(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2297 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2298 			    unsigned int nr_pages)
2299 {
2300 	unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2301 	int nr_retries = MAX_RECLAIM_RETRIES;
2302 	struct mem_cgroup *mem_over_limit;
2303 	struct page_counter *counter;
2304 	unsigned long nr_reclaimed;
2305 	bool passed_oom = false;
2306 	unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2307 	bool drained = false;
2308 	bool raised_max_event = false;
2309 	unsigned long pflags;
2310 	bool allow_spinning = gfpflags_allow_spinning(gfp_mask);
2311 
2312 retry:
2313 	if (consume_stock(memcg, nr_pages))
2314 		return 0;
2315 
2316 	if (!allow_spinning)
2317 		/* Avoid the refill and flush of the older stock */
2318 		batch = nr_pages;
2319 
2320 	if (!do_memsw_account() ||
2321 	    page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2322 		if (page_counter_try_charge(&memcg->memory, batch, &counter))
2323 			goto done_restock;
2324 		if (do_memsw_account())
2325 			page_counter_uncharge(&memcg->memsw, batch);
2326 		mem_over_limit = mem_cgroup_from_counter(counter, memory);
2327 	} else {
2328 		mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2329 		reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2330 	}
2331 
2332 	if (batch > nr_pages) {
2333 		batch = nr_pages;
2334 		goto retry;
2335 	}
2336 
2337 	/*
2338 	 * Prevent unbounded recursion when reclaim operations need to
2339 	 * allocate memory. This might exceed the limits temporarily,
2340 	 * but we prefer facilitating memory reclaim and getting back
2341 	 * under the limit over triggering OOM kills in these cases.
2342 	 */
2343 	if (unlikely(current->flags & PF_MEMALLOC))
2344 		goto force;
2345 
2346 	if (unlikely(task_in_memcg_oom(current)))
2347 		goto nomem;
2348 
2349 	if (!gfpflags_allow_blocking(gfp_mask))
2350 		goto nomem;
2351 
2352 	__memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2353 	raised_max_event = true;
2354 
2355 	psi_memstall_enter(&pflags);
2356 	nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2357 						    gfp_mask, reclaim_options, NULL);
2358 	psi_memstall_leave(&pflags);
2359 
2360 	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2361 		goto retry;
2362 
2363 	if (!drained) {
2364 		drain_all_stock(mem_over_limit);
2365 		drained = true;
2366 		goto retry;
2367 	}
2368 
2369 	if (gfp_mask & __GFP_NORETRY)
2370 		goto nomem;
2371 	/*
2372 	 * Even though the limit is exceeded at this point, reclaim
2373 	 * may have been able to free some pages.  Retry the charge
2374 	 * before killing the task.
2375 	 *
2376 	 * Only for regular pages, though: huge pages are rather
2377 	 * unlikely to succeed so close to the limit, and we fall back
2378 	 * to regular pages anyway in case of failure.
2379 	 */
2380 	if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2381 		goto retry;
2382 
2383 	if (nr_retries--)
2384 		goto retry;
2385 
2386 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
2387 		goto nomem;
2388 
2389 	/* Avoid endless loop for tasks bypassed by the oom killer */
2390 	if (passed_oom && task_is_dying())
2391 		goto nomem;
2392 
2393 	/*
2394 	 * keep retrying as long as the memcg oom killer is able to make
2395 	 * a forward progress or bypass the charge if the oom killer
2396 	 * couldn't make any progress.
2397 	 */
2398 	if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2399 			   get_order(nr_pages * PAGE_SIZE))) {
2400 		passed_oom = true;
2401 		nr_retries = MAX_RECLAIM_RETRIES;
2402 		goto retry;
2403 	}
2404 nomem:
2405 	/*
2406 	 * Memcg doesn't have a dedicated reserve for atomic
2407 	 * allocations. But like the global atomic pool, we need to
2408 	 * put the burden of reclaim on regular allocation requests
2409 	 * and let these go through as privileged allocations.
2410 	 */
2411 	if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2412 		return -ENOMEM;
2413 force:
2414 	/*
2415 	 * If the allocation has to be enforced, don't forget to raise
2416 	 * a MEMCG_MAX event.
2417 	 */
2418 	if (!raised_max_event)
2419 		__memcg_memory_event(mem_over_limit, MEMCG_MAX, allow_spinning);
2420 
2421 	/*
2422 	 * The allocation either can't fail or will lead to more memory
2423 	 * being freed very soon.  Allow memory usage go over the limit
2424 	 * temporarily by force charging it.
2425 	 */
2426 	page_counter_charge(&memcg->memory, nr_pages);
2427 	if (do_memsw_account())
2428 		page_counter_charge(&memcg->memsw, nr_pages);
2429 
2430 	return 0;
2431 
2432 done_restock:
2433 	if (batch > nr_pages)
2434 		refill_stock(memcg, batch - nr_pages);
2435 
2436 	/*
2437 	 * If the hierarchy is above the normal consumption range, schedule
2438 	 * reclaim on returning to userland.  We can perform reclaim here
2439 	 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2440 	 * GFP_KERNEL can consistently be used during reclaim.  @memcg is
2441 	 * not recorded as it most likely matches current's and won't
2442 	 * change in the meantime.  As high limit is checked again before
2443 	 * reclaim, the cost of mismatch is negligible.
2444 	 */
2445 	do {
2446 		bool mem_high, swap_high;
2447 
2448 		mem_high = page_counter_read(&memcg->memory) >
2449 			READ_ONCE(memcg->memory.high);
2450 		swap_high = page_counter_read(&memcg->swap) >
2451 			READ_ONCE(memcg->swap.high);
2452 
2453 		/* Don't bother a random interrupted task */
2454 		if (!in_task()) {
2455 			if (mem_high) {
2456 				schedule_work(&memcg->high_work);
2457 				break;
2458 			}
2459 			continue;
2460 		}
2461 
2462 		if (mem_high || swap_high) {
2463 			/*
2464 			 * The allocating tasks in this cgroup will need to do
2465 			 * reclaim or be throttled to prevent further growth
2466 			 * of the memory or swap footprints.
2467 			 *
2468 			 * Target some best-effort fairness between the tasks,
2469 			 * and distribute reclaim work and delay penalties
2470 			 * based on how much each task is actually allocating.
2471 			 */
2472 			current->memcg_nr_pages_over_high += batch;
2473 			set_notify_resume(current);
2474 			break;
2475 		}
2476 	} while ((memcg = parent_mem_cgroup(memcg)));
2477 
2478 	/*
2479 	 * Reclaim is set up above to be called from the userland
2480 	 * return path. But also attempt synchronous reclaim to avoid
2481 	 * excessive overrun while the task is still inside the
2482 	 * kernel. If this is successful, the return path will see it
2483 	 * when it rechecks the overage and simply bail out.
2484 	 */
2485 	if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2486 	    !(current->flags & PF_MEMALLOC) &&
2487 	    gfpflags_allow_blocking(gfp_mask))
2488 		__mem_cgroup_handle_over_high(gfp_mask);
2489 	return 0;
2490 }
2491 
try_charge(struct mem_cgroup * memcg,gfp_t gfp_mask,unsigned int nr_pages)2492 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2493 			     unsigned int nr_pages)
2494 {
2495 	if (mem_cgroup_is_root(memcg))
2496 		return 0;
2497 
2498 	return try_charge_memcg(memcg, gfp_mask, nr_pages);
2499 }
2500 
commit_charge(struct folio * folio,struct mem_cgroup * memcg)2501 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2502 {
2503 	VM_BUG_ON_FOLIO(folio_memcg_charged(folio), folio);
2504 	/*
2505 	 * Any of the following ensures page's memcg stability:
2506 	 *
2507 	 * - the page lock
2508 	 * - LRU isolation
2509 	 * - exclusive reference
2510 	 */
2511 	folio->memcg_data = (unsigned long)memcg;
2512 }
2513 
2514 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2515 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2516 					 struct pglist_data *pgdat,
2517 					 enum node_stat_item idx, int nr)
2518 {
2519 	struct lruvec *lruvec;
2520 
2521 	if (likely(!in_nmi())) {
2522 		lruvec = mem_cgroup_lruvec(memcg, pgdat);
2523 		mod_memcg_lruvec_state(lruvec, idx, nr);
2524 	} else {
2525 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[pgdat->node_id];
2526 
2527 		/* preemption is disabled in_nmi(). */
2528 		css_rstat_updated(&memcg->css, smp_processor_id());
2529 		if (idx == NR_SLAB_RECLAIMABLE_B)
2530 			atomic_add(nr, &pn->slab_reclaimable);
2531 		else
2532 			atomic_add(nr, &pn->slab_unreclaimable);
2533 	}
2534 }
2535 #else
account_slab_nmi_safe(struct mem_cgroup * memcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2536 static inline void account_slab_nmi_safe(struct mem_cgroup *memcg,
2537 					 struct pglist_data *pgdat,
2538 					 enum node_stat_item idx, int nr)
2539 {
2540 	struct lruvec *lruvec;
2541 
2542 	lruvec = mem_cgroup_lruvec(memcg, pgdat);
2543 	mod_memcg_lruvec_state(lruvec, idx, nr);
2544 }
2545 #endif
2546 
mod_objcg_mlstate(struct obj_cgroup * objcg,struct pglist_data * pgdat,enum node_stat_item idx,int nr)2547 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2548 				       struct pglist_data *pgdat,
2549 				       enum node_stat_item idx, int nr)
2550 {
2551 	struct mem_cgroup *memcg;
2552 
2553 	rcu_read_lock();
2554 	memcg = obj_cgroup_memcg(objcg);
2555 	account_slab_nmi_safe(memcg, pgdat, idx, nr);
2556 	rcu_read_unlock();
2557 }
2558 
2559 static __always_inline
mem_cgroup_from_obj_slab(struct slab * slab,void * p)2560 struct mem_cgroup *mem_cgroup_from_obj_slab(struct slab *slab, void *p)
2561 {
2562 	/*
2563 	 * Slab objects are accounted individually, not per-page.
2564 	 * Memcg membership data for each individual object is saved in
2565 	 * slab->obj_exts.
2566 	 */
2567 	struct slabobj_ext *obj_exts;
2568 	unsigned int off;
2569 
2570 	obj_exts = slab_obj_exts(slab);
2571 	if (!obj_exts)
2572 		return NULL;
2573 
2574 	off = obj_to_index(slab->slab_cache, slab, p);
2575 	if (obj_exts[off].objcg)
2576 		return obj_cgroup_memcg(obj_exts[off].objcg);
2577 
2578 	return NULL;
2579 }
2580 
2581 /*
2582  * Returns a pointer to the memory cgroup to which the kernel object is charged.
2583  * It is not suitable for objects allocated using vmalloc().
2584  *
2585  * A passed kernel object must be a slab object or a generic kernel page.
2586  *
2587  * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2588  * cgroup_mutex, etc.
2589  */
mem_cgroup_from_slab_obj(void * p)2590 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2591 {
2592 	struct slab *slab;
2593 
2594 	if (mem_cgroup_disabled())
2595 		return NULL;
2596 
2597 	slab = virt_to_slab(p);
2598 	if (slab)
2599 		return mem_cgroup_from_obj_slab(slab, p);
2600 	return folio_memcg_check(virt_to_folio(p));
2601 }
2602 
__get_obj_cgroup_from_memcg(struct mem_cgroup * memcg)2603 static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2604 {
2605 	struct obj_cgroup *objcg = NULL;
2606 
2607 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2608 		objcg = rcu_dereference(memcg->objcg);
2609 		if (likely(objcg && obj_cgroup_tryget(objcg)))
2610 			break;
2611 		objcg = NULL;
2612 	}
2613 	return objcg;
2614 }
2615 
current_objcg_update(void)2616 static struct obj_cgroup *current_objcg_update(void)
2617 {
2618 	struct mem_cgroup *memcg;
2619 	struct obj_cgroup *old, *objcg = NULL;
2620 
2621 	do {
2622 		/* Atomically drop the update bit. */
2623 		old = xchg(&current->objcg, NULL);
2624 		if (old) {
2625 			old = (struct obj_cgroup *)
2626 				((unsigned long)old & ~CURRENT_OBJCG_UPDATE_FLAG);
2627 			obj_cgroup_put(old);
2628 
2629 			old = NULL;
2630 		}
2631 
2632 		/* If new objcg is NULL, no reason for the second atomic update. */
2633 		if (!current->mm || (current->flags & PF_KTHREAD))
2634 			return NULL;
2635 
2636 		/*
2637 		 * Release the objcg pointer from the previous iteration,
2638 		 * if try_cmpxcg() below fails.
2639 		 */
2640 		if (unlikely(objcg)) {
2641 			obj_cgroup_put(objcg);
2642 			objcg = NULL;
2643 		}
2644 
2645 		/*
2646 		 * Obtain the new objcg pointer. The current task can be
2647 		 * asynchronously moved to another memcg and the previous
2648 		 * memcg can be offlined. So let's get the memcg pointer
2649 		 * and try get a reference to objcg under a rcu read lock.
2650 		 */
2651 
2652 		rcu_read_lock();
2653 		memcg = mem_cgroup_from_task(current);
2654 		objcg = __get_obj_cgroup_from_memcg(memcg);
2655 		rcu_read_unlock();
2656 
2657 		/*
2658 		 * Try set up a new objcg pointer atomically. If it
2659 		 * fails, it means the update flag was set concurrently, so
2660 		 * the whole procedure should be repeated.
2661 		 */
2662 	} while (!try_cmpxchg(&current->objcg, &old, objcg));
2663 
2664 	return objcg;
2665 }
2666 
current_obj_cgroup(void)2667 __always_inline struct obj_cgroup *current_obj_cgroup(void)
2668 {
2669 	struct mem_cgroup *memcg;
2670 	struct obj_cgroup *objcg;
2671 
2672 	if (IS_ENABLED(CONFIG_MEMCG_NMI_UNSAFE) && in_nmi())
2673 		return NULL;
2674 
2675 	if (in_task()) {
2676 		memcg = current->active_memcg;
2677 		if (unlikely(memcg))
2678 			goto from_memcg;
2679 
2680 		objcg = READ_ONCE(current->objcg);
2681 		if (unlikely((unsigned long)objcg & CURRENT_OBJCG_UPDATE_FLAG))
2682 			objcg = current_objcg_update();
2683 		/*
2684 		 * Objcg reference is kept by the task, so it's safe
2685 		 * to use the objcg by the current task.
2686 		 */
2687 		return objcg;
2688 	}
2689 
2690 	memcg = this_cpu_read(int_active_memcg);
2691 	if (unlikely(memcg))
2692 		goto from_memcg;
2693 
2694 	return NULL;
2695 
2696 from_memcg:
2697 	objcg = NULL;
2698 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
2699 		/*
2700 		 * Memcg pointer is protected by scope (see set_active_memcg())
2701 		 * and is pinning the corresponding objcg, so objcg can't go
2702 		 * away and can be used within the scope without any additional
2703 		 * protection.
2704 		 */
2705 		objcg = rcu_dereference_check(memcg->objcg, 1);
2706 		if (likely(objcg))
2707 			break;
2708 	}
2709 
2710 	return objcg;
2711 }
2712 
get_obj_cgroup_from_folio(struct folio * folio)2713 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
2714 {
2715 	struct obj_cgroup *objcg;
2716 
2717 	if (!memcg_kmem_online())
2718 		return NULL;
2719 
2720 	if (folio_memcg_kmem(folio)) {
2721 		objcg = __folio_objcg(folio);
2722 		obj_cgroup_get(objcg);
2723 	} else {
2724 		struct mem_cgroup *memcg;
2725 
2726 		rcu_read_lock();
2727 		memcg = __folio_memcg(folio);
2728 		if (memcg)
2729 			objcg = __get_obj_cgroup_from_memcg(memcg);
2730 		else
2731 			objcg = NULL;
2732 		rcu_read_unlock();
2733 	}
2734 	return objcg;
2735 }
2736 
2737 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2738 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2739 {
2740 	if (likely(!in_nmi())) {
2741 		mod_memcg_state(memcg, MEMCG_KMEM, val);
2742 	} else {
2743 		/* preemption is disabled in_nmi(). */
2744 		css_rstat_updated(&memcg->css, smp_processor_id());
2745 		atomic_add(val, &memcg->kmem_stat);
2746 	}
2747 }
2748 #else
account_kmem_nmi_safe(struct mem_cgroup * memcg,int val)2749 static inline void account_kmem_nmi_safe(struct mem_cgroup *memcg, int val)
2750 {
2751 	mod_memcg_state(memcg, MEMCG_KMEM, val);
2752 }
2753 #endif
2754 
2755 /*
2756  * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2757  * @objcg: object cgroup to uncharge
2758  * @nr_pages: number of pages to uncharge
2759  */
obj_cgroup_uncharge_pages(struct obj_cgroup * objcg,unsigned int nr_pages)2760 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2761 				      unsigned int nr_pages)
2762 {
2763 	struct mem_cgroup *memcg;
2764 
2765 	memcg = get_mem_cgroup_from_objcg(objcg);
2766 
2767 	account_kmem_nmi_safe(memcg, -nr_pages);
2768 	memcg1_account_kmem(memcg, -nr_pages);
2769 	if (!mem_cgroup_is_root(memcg))
2770 		refill_stock(memcg, nr_pages);
2771 
2772 	css_put(&memcg->css);
2773 }
2774 
2775 /*
2776  * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2777  * @objcg: object cgroup to charge
2778  * @gfp: reclaim mode
2779  * @nr_pages: number of pages to charge
2780  *
2781  * Returns 0 on success, an error code on failure.
2782  */
obj_cgroup_charge_pages(struct obj_cgroup * objcg,gfp_t gfp,unsigned int nr_pages)2783 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2784 				   unsigned int nr_pages)
2785 {
2786 	struct mem_cgroup *memcg;
2787 	int ret;
2788 
2789 	memcg = get_mem_cgroup_from_objcg(objcg);
2790 
2791 	ret = try_charge_memcg(memcg, gfp, nr_pages);
2792 	if (ret)
2793 		goto out;
2794 
2795 	account_kmem_nmi_safe(memcg, nr_pages);
2796 	memcg1_account_kmem(memcg, nr_pages);
2797 out:
2798 	css_put(&memcg->css);
2799 
2800 	return ret;
2801 }
2802 
page_objcg(const struct page * page)2803 static struct obj_cgroup *page_objcg(const struct page *page)
2804 {
2805 	unsigned long memcg_data = page->memcg_data;
2806 
2807 	if (mem_cgroup_disabled() || !memcg_data)
2808 		return NULL;
2809 
2810 	VM_BUG_ON_PAGE((memcg_data & OBJEXTS_FLAGS_MASK) != MEMCG_DATA_KMEM,
2811 			page);
2812 	return (struct obj_cgroup *)(memcg_data - MEMCG_DATA_KMEM);
2813 }
2814 
page_set_objcg(struct page * page,const struct obj_cgroup * objcg)2815 static void page_set_objcg(struct page *page, const struct obj_cgroup *objcg)
2816 {
2817 	page->memcg_data = (unsigned long)objcg | MEMCG_DATA_KMEM;
2818 }
2819 
2820 /**
2821  * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2822  * @page: page to charge
2823  * @gfp: reclaim mode
2824  * @order: allocation order
2825  *
2826  * Returns 0 on success, an error code on failure.
2827  */
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)2828 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2829 {
2830 	struct obj_cgroup *objcg;
2831 	int ret = 0;
2832 
2833 	objcg = current_obj_cgroup();
2834 	if (objcg) {
2835 		ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2836 		if (!ret) {
2837 			obj_cgroup_get(objcg);
2838 			page_set_objcg(page, objcg);
2839 			return 0;
2840 		}
2841 	}
2842 	return ret;
2843 }
2844 
2845 /**
2846  * __memcg_kmem_uncharge_page: uncharge a kmem page
2847  * @page: page to uncharge
2848  * @order: allocation order
2849  */
__memcg_kmem_uncharge_page(struct page * page,int order)2850 void __memcg_kmem_uncharge_page(struct page *page, int order)
2851 {
2852 	struct obj_cgroup *objcg = page_objcg(page);
2853 	unsigned int nr_pages = 1 << order;
2854 
2855 	if (!objcg)
2856 		return;
2857 
2858 	obj_cgroup_uncharge_pages(objcg, nr_pages);
2859 	page->memcg_data = 0;
2860 	obj_cgroup_put(objcg);
2861 }
2862 
__account_obj_stock(struct obj_cgroup * objcg,struct obj_stock_pcp * stock,int nr,struct pglist_data * pgdat,enum node_stat_item idx)2863 static void __account_obj_stock(struct obj_cgroup *objcg,
2864 				struct obj_stock_pcp *stock, int nr,
2865 				struct pglist_data *pgdat, enum node_stat_item idx)
2866 {
2867 	int *bytes;
2868 
2869 	/*
2870 	 * Save vmstat data in stock and skip vmstat array update unless
2871 	 * accumulating over a page of vmstat data or when pgdat changes.
2872 	 */
2873 	if (stock->cached_pgdat != pgdat) {
2874 		/* Flush the existing cached vmstat data */
2875 		struct pglist_data *oldpg = stock->cached_pgdat;
2876 
2877 		if (stock->nr_slab_reclaimable_b) {
2878 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
2879 					  stock->nr_slab_reclaimable_b);
2880 			stock->nr_slab_reclaimable_b = 0;
2881 		}
2882 		if (stock->nr_slab_unreclaimable_b) {
2883 			mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
2884 					  stock->nr_slab_unreclaimable_b);
2885 			stock->nr_slab_unreclaimable_b = 0;
2886 		}
2887 		stock->cached_pgdat = pgdat;
2888 	}
2889 
2890 	bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
2891 					       : &stock->nr_slab_unreclaimable_b;
2892 	/*
2893 	 * Even for large object >= PAGE_SIZE, the vmstat data will still be
2894 	 * cached locally at least once before pushing it out.
2895 	 */
2896 	if (!*bytes) {
2897 		*bytes = nr;
2898 		nr = 0;
2899 	} else {
2900 		*bytes += nr;
2901 		if (abs(*bytes) > PAGE_SIZE) {
2902 			nr = *bytes;
2903 			*bytes = 0;
2904 		} else {
2905 			nr = 0;
2906 		}
2907 	}
2908 	if (nr)
2909 		mod_objcg_mlstate(objcg, pgdat, idx, nr);
2910 }
2911 
consume_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,struct pglist_data * pgdat,enum node_stat_item idx)2912 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
2913 			      struct pglist_data *pgdat, enum node_stat_item idx)
2914 {
2915 	struct obj_stock_pcp *stock;
2916 	bool ret = false;
2917 
2918 	if (!local_trylock(&obj_stock.lock))
2919 		return ret;
2920 
2921 	stock = this_cpu_ptr(&obj_stock);
2922 	if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
2923 		stock->nr_bytes -= nr_bytes;
2924 		ret = true;
2925 
2926 		if (pgdat)
2927 			__account_obj_stock(objcg, stock, nr_bytes, pgdat, idx);
2928 	}
2929 
2930 	local_unlock(&obj_stock.lock);
2931 
2932 	return ret;
2933 }
2934 
drain_obj_stock(struct obj_stock_pcp * stock)2935 static void drain_obj_stock(struct obj_stock_pcp *stock)
2936 {
2937 	struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
2938 
2939 	if (!old)
2940 		return;
2941 
2942 	if (stock->nr_bytes) {
2943 		unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
2944 		unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
2945 
2946 		if (nr_pages) {
2947 			struct mem_cgroup *memcg;
2948 
2949 			memcg = get_mem_cgroup_from_objcg(old);
2950 
2951 			mod_memcg_state(memcg, MEMCG_KMEM, -nr_pages);
2952 			memcg1_account_kmem(memcg, -nr_pages);
2953 			if (!mem_cgroup_is_root(memcg))
2954 				memcg_uncharge(memcg, nr_pages);
2955 
2956 			css_put(&memcg->css);
2957 		}
2958 
2959 		/*
2960 		 * The leftover is flushed to the centralized per-memcg value.
2961 		 * On the next attempt to refill obj stock it will be moved
2962 		 * to a per-cpu stock (probably, on an other CPU), see
2963 		 * refill_obj_stock().
2964 		 *
2965 		 * How often it's flushed is a trade-off between the memory
2966 		 * limit enforcement accuracy and potential CPU contention,
2967 		 * so it might be changed in the future.
2968 		 */
2969 		atomic_add(nr_bytes, &old->nr_charged_bytes);
2970 		stock->nr_bytes = 0;
2971 	}
2972 
2973 	/*
2974 	 * Flush the vmstat data in current stock
2975 	 */
2976 	if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
2977 		if (stock->nr_slab_reclaimable_b) {
2978 			mod_objcg_mlstate(old, stock->cached_pgdat,
2979 					  NR_SLAB_RECLAIMABLE_B,
2980 					  stock->nr_slab_reclaimable_b);
2981 			stock->nr_slab_reclaimable_b = 0;
2982 		}
2983 		if (stock->nr_slab_unreclaimable_b) {
2984 			mod_objcg_mlstate(old, stock->cached_pgdat,
2985 					  NR_SLAB_UNRECLAIMABLE_B,
2986 					  stock->nr_slab_unreclaimable_b);
2987 			stock->nr_slab_unreclaimable_b = 0;
2988 		}
2989 		stock->cached_pgdat = NULL;
2990 	}
2991 
2992 	WRITE_ONCE(stock->cached_objcg, NULL);
2993 	obj_cgroup_put(old);
2994 }
2995 
obj_stock_flush_required(struct obj_stock_pcp * stock,struct mem_cgroup * root_memcg)2996 static bool obj_stock_flush_required(struct obj_stock_pcp *stock,
2997 				     struct mem_cgroup *root_memcg)
2998 {
2999 	struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3000 	struct mem_cgroup *memcg;
3001 	bool flush = false;
3002 
3003 	rcu_read_lock();
3004 	if (objcg) {
3005 		memcg = obj_cgroup_memcg(objcg);
3006 		if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3007 			flush = true;
3008 	}
3009 	rcu_read_unlock();
3010 
3011 	return flush;
3012 }
3013 
refill_obj_stock(struct obj_cgroup * objcg,unsigned int nr_bytes,bool allow_uncharge,int nr_acct,struct pglist_data * pgdat,enum node_stat_item idx)3014 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3015 		bool allow_uncharge, int nr_acct, struct pglist_data *pgdat,
3016 		enum node_stat_item idx)
3017 {
3018 	struct obj_stock_pcp *stock;
3019 	unsigned int nr_pages = 0;
3020 
3021 	if (!local_trylock(&obj_stock.lock)) {
3022 		if (pgdat)
3023 			mod_objcg_mlstate(objcg, pgdat, idx, nr_bytes);
3024 		nr_pages = nr_bytes >> PAGE_SHIFT;
3025 		nr_bytes = nr_bytes & (PAGE_SIZE - 1);
3026 		atomic_add(nr_bytes, &objcg->nr_charged_bytes);
3027 		goto out;
3028 	}
3029 
3030 	stock = this_cpu_ptr(&obj_stock);
3031 	if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3032 		drain_obj_stock(stock);
3033 		obj_cgroup_get(objcg);
3034 		stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3035 				? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3036 		WRITE_ONCE(stock->cached_objcg, objcg);
3037 
3038 		allow_uncharge = true;	/* Allow uncharge when objcg changes */
3039 	}
3040 	stock->nr_bytes += nr_bytes;
3041 
3042 	if (pgdat)
3043 		__account_obj_stock(objcg, stock, nr_acct, pgdat, idx);
3044 
3045 	if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3046 		nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3047 		stock->nr_bytes &= (PAGE_SIZE - 1);
3048 	}
3049 
3050 	local_unlock(&obj_stock.lock);
3051 out:
3052 	if (nr_pages)
3053 		obj_cgroup_uncharge_pages(objcg, nr_pages);
3054 }
3055 
obj_cgroup_charge_account(struct obj_cgroup * objcg,gfp_t gfp,size_t size,struct pglist_data * pgdat,enum node_stat_item idx)3056 static int obj_cgroup_charge_account(struct obj_cgroup *objcg, gfp_t gfp, size_t size,
3057 				     struct pglist_data *pgdat, enum node_stat_item idx)
3058 {
3059 	unsigned int nr_pages, nr_bytes;
3060 	int ret;
3061 
3062 	if (likely(consume_obj_stock(objcg, size, pgdat, idx)))
3063 		return 0;
3064 
3065 	/*
3066 	 * In theory, objcg->nr_charged_bytes can have enough
3067 	 * pre-charged bytes to satisfy the allocation. However,
3068 	 * flushing objcg->nr_charged_bytes requires two atomic
3069 	 * operations, and objcg->nr_charged_bytes can't be big.
3070 	 * The shared objcg->nr_charged_bytes can also become a
3071 	 * performance bottleneck if all tasks of the same memcg are
3072 	 * trying to update it. So it's better to ignore it and try
3073 	 * grab some new pages. The stock's nr_bytes will be flushed to
3074 	 * objcg->nr_charged_bytes later on when objcg changes.
3075 	 *
3076 	 * The stock's nr_bytes may contain enough pre-charged bytes
3077 	 * to allow one less page from being charged, but we can't rely
3078 	 * on the pre-charged bytes not being changed outside of
3079 	 * consume_obj_stock() or refill_obj_stock(). So ignore those
3080 	 * pre-charged bytes as well when charging pages. To avoid a
3081 	 * page uncharge right after a page charge, we set the
3082 	 * allow_uncharge flag to false when calling refill_obj_stock()
3083 	 * to temporarily allow the pre-charged bytes to exceed the page
3084 	 * size limit. The maximum reachable value of the pre-charged
3085 	 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3086 	 * race.
3087 	 */
3088 	nr_pages = size >> PAGE_SHIFT;
3089 	nr_bytes = size & (PAGE_SIZE - 1);
3090 
3091 	if (nr_bytes)
3092 		nr_pages += 1;
3093 
3094 	ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3095 	if (!ret && (nr_bytes || pgdat))
3096 		refill_obj_stock(objcg, nr_bytes ? PAGE_SIZE - nr_bytes : 0,
3097 					 false, size, pgdat, idx);
3098 
3099 	return ret;
3100 }
3101 
obj_cgroup_charge(struct obj_cgroup * objcg,gfp_t gfp,size_t size)3102 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3103 {
3104 	return obj_cgroup_charge_account(objcg, gfp, size, NULL, 0);
3105 }
3106 
obj_cgroup_uncharge(struct obj_cgroup * objcg,size_t size)3107 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3108 {
3109 	refill_obj_stock(objcg, size, true, 0, NULL, 0);
3110 }
3111 
obj_full_size(struct kmem_cache * s)3112 static inline size_t obj_full_size(struct kmem_cache *s)
3113 {
3114 	/*
3115 	 * For each accounted object there is an extra space which is used
3116 	 * to store obj_cgroup membership. Charge it too.
3117 	 */
3118 	return s->size + sizeof(struct obj_cgroup *);
3119 }
3120 
__memcg_slab_post_alloc_hook(struct kmem_cache * s,struct list_lru * lru,gfp_t flags,size_t size,void ** p)3121 bool __memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
3122 				  gfp_t flags, size_t size, void **p)
3123 {
3124 	struct obj_cgroup *objcg;
3125 	struct slab *slab;
3126 	unsigned long off;
3127 	size_t i;
3128 
3129 	/*
3130 	 * The obtained objcg pointer is safe to use within the current scope,
3131 	 * defined by current task or set_active_memcg() pair.
3132 	 * obj_cgroup_get() is used to get a permanent reference.
3133 	 */
3134 	objcg = current_obj_cgroup();
3135 	if (!objcg)
3136 		return true;
3137 
3138 	/*
3139 	 * slab_alloc_node() avoids the NULL check, so we might be called with a
3140 	 * single NULL object. kmem_cache_alloc_bulk() aborts if it can't fill
3141 	 * the whole requested size.
3142 	 * return success as there's nothing to free back
3143 	 */
3144 	if (unlikely(*p == NULL))
3145 		return true;
3146 
3147 	flags &= gfp_allowed_mask;
3148 
3149 	if (lru) {
3150 		int ret;
3151 		struct mem_cgroup *memcg;
3152 
3153 		memcg = get_mem_cgroup_from_objcg(objcg);
3154 		ret = memcg_list_lru_alloc(memcg, lru, flags);
3155 		css_put(&memcg->css);
3156 
3157 		if (ret)
3158 			return false;
3159 	}
3160 
3161 	for (i = 0; i < size; i++) {
3162 		slab = virt_to_slab(p[i]);
3163 
3164 		if (!slab_obj_exts(slab) &&
3165 		    alloc_slab_obj_exts(slab, s, flags, false)) {
3166 			continue;
3167 		}
3168 
3169 		/*
3170 		 * if we fail and size is 1, memcg_alloc_abort_single() will
3171 		 * just free the object, which is ok as we have not assigned
3172 		 * objcg to its obj_ext yet
3173 		 *
3174 		 * for larger sizes, kmem_cache_free_bulk() will uncharge
3175 		 * any objects that were already charged and obj_ext assigned
3176 		 *
3177 		 * TODO: we could batch this until slab_pgdat(slab) changes
3178 		 * between iterations, with a more complicated undo
3179 		 */
3180 		if (obj_cgroup_charge_account(objcg, flags, obj_full_size(s),
3181 					slab_pgdat(slab), cache_vmstat_idx(s)))
3182 			return false;
3183 
3184 		off = obj_to_index(s, slab, p[i]);
3185 		obj_cgroup_get(objcg);
3186 		slab_obj_exts(slab)[off].objcg = objcg;
3187 	}
3188 
3189 	return true;
3190 }
3191 
__memcg_slab_free_hook(struct kmem_cache * s,struct slab * slab,void ** p,int objects,struct slabobj_ext * obj_exts)3192 void __memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
3193 			    void **p, int objects, struct slabobj_ext *obj_exts)
3194 {
3195 	size_t obj_size = obj_full_size(s);
3196 
3197 	for (int i = 0; i < objects; i++) {
3198 		struct obj_cgroup *objcg;
3199 		unsigned int off;
3200 
3201 		off = obj_to_index(s, slab, p[i]);
3202 		objcg = obj_exts[off].objcg;
3203 		if (!objcg)
3204 			continue;
3205 
3206 		obj_exts[off].objcg = NULL;
3207 		refill_obj_stock(objcg, obj_size, true, -obj_size,
3208 				 slab_pgdat(slab), cache_vmstat_idx(s));
3209 		obj_cgroup_put(objcg);
3210 	}
3211 }
3212 
3213 /*
3214  * The objcg is only set on the first page, so transfer it to all the
3215  * other pages.
3216  */
split_page_memcg(struct page * page,unsigned order)3217 void split_page_memcg(struct page *page, unsigned order)
3218 {
3219 	struct obj_cgroup *objcg = page_objcg(page);
3220 	unsigned int i, nr = 1 << order;
3221 
3222 	if (!objcg)
3223 		return;
3224 
3225 	for (i = 1; i < nr; i++)
3226 		page_set_objcg(&page[i], objcg);
3227 
3228 	obj_cgroup_get_many(objcg, nr - 1);
3229 }
3230 
folio_split_memcg_refs(struct folio * folio,unsigned old_order,unsigned new_order)3231 void folio_split_memcg_refs(struct folio *folio, unsigned old_order,
3232 		unsigned new_order)
3233 {
3234 	unsigned new_refs;
3235 
3236 	if (mem_cgroup_disabled() || !folio_memcg_charged(folio))
3237 		return;
3238 
3239 	new_refs = (1 << (old_order - new_order)) - 1;
3240 	css_get_many(&__folio_memcg(folio)->css, new_refs);
3241 }
3242 
mem_cgroup_usage(struct mem_cgroup * memcg,bool swap)3243 unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3244 {
3245 	unsigned long val;
3246 
3247 	if (mem_cgroup_is_root(memcg)) {
3248 		/*
3249 		 * Approximate root's usage from global state. This isn't
3250 		 * perfect, but the root usage was always an approximation.
3251 		 */
3252 		val = global_node_page_state(NR_FILE_PAGES) +
3253 			global_node_page_state(NR_ANON_MAPPED);
3254 		if (swap)
3255 			val += total_swap_pages - get_nr_swap_pages();
3256 	} else {
3257 		if (!swap)
3258 			val = page_counter_read(&memcg->memory);
3259 		else
3260 			val = page_counter_read(&memcg->memsw);
3261 	}
3262 	return val;
3263 }
3264 
memcg_online_kmem(struct mem_cgroup * memcg)3265 static int memcg_online_kmem(struct mem_cgroup *memcg)
3266 {
3267 	struct obj_cgroup *objcg;
3268 
3269 	if (mem_cgroup_kmem_disabled())
3270 		return 0;
3271 
3272 	if (unlikely(mem_cgroup_is_root(memcg)))
3273 		return 0;
3274 
3275 	objcg = obj_cgroup_alloc();
3276 	if (!objcg)
3277 		return -ENOMEM;
3278 
3279 	objcg->memcg = memcg;
3280 	rcu_assign_pointer(memcg->objcg, objcg);
3281 	obj_cgroup_get(objcg);
3282 	memcg->orig_objcg = objcg;
3283 
3284 	static_branch_enable(&memcg_kmem_online_key);
3285 
3286 	memcg->kmemcg_id = memcg->id.id;
3287 
3288 	return 0;
3289 }
3290 
memcg_offline_kmem(struct mem_cgroup * memcg)3291 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3292 {
3293 	struct mem_cgroup *parent;
3294 
3295 	if (mem_cgroup_kmem_disabled())
3296 		return;
3297 
3298 	if (unlikely(mem_cgroup_is_root(memcg)))
3299 		return;
3300 
3301 	parent = parent_mem_cgroup(memcg);
3302 	if (!parent)
3303 		parent = root_mem_cgroup;
3304 
3305 	memcg_reparent_list_lrus(memcg, parent);
3306 
3307 	/*
3308 	 * Objcg's reparenting must be after list_lru's, make sure list_lru
3309 	 * helpers won't use parent's list_lru until child is drained.
3310 	 */
3311 	memcg_reparent_objcgs(memcg, parent);
3312 }
3313 
3314 #ifdef CONFIG_CGROUP_WRITEBACK
3315 
3316 #include <trace/events/writeback.h>
3317 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3318 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3319 {
3320 	return wb_domain_init(&memcg->cgwb_domain, gfp);
3321 }
3322 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3323 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3324 {
3325 	wb_domain_exit(&memcg->cgwb_domain);
3326 }
3327 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3328 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3329 {
3330 	wb_domain_size_changed(&memcg->cgwb_domain);
3331 }
3332 
mem_cgroup_wb_domain(struct bdi_writeback * wb)3333 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3334 {
3335 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3336 
3337 	if (!memcg->css.parent)
3338 		return NULL;
3339 
3340 	return &memcg->cgwb_domain;
3341 }
3342 
3343 /**
3344  * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3345  * @wb: bdi_writeback in question
3346  * @pfilepages: out parameter for number of file pages
3347  * @pheadroom: out parameter for number of allocatable pages according to memcg
3348  * @pdirty: out parameter for number of dirty pages
3349  * @pwriteback: out parameter for number of pages under writeback
3350  *
3351  * Determine the numbers of file, headroom, dirty, and writeback pages in
3352  * @wb's memcg.  File, dirty and writeback are self-explanatory.  Headroom
3353  * is a bit more involved.
3354  *
3355  * A memcg's headroom is "min(max, high) - used".  In the hierarchy, the
3356  * headroom is calculated as the lowest headroom of itself and the
3357  * ancestors.  Note that this doesn't consider the actual amount of
3358  * available memory in the system.  The caller should further cap
3359  * *@pheadroom accordingly.
3360  */
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)3361 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3362 			 unsigned long *pheadroom, unsigned long *pdirty,
3363 			 unsigned long *pwriteback)
3364 {
3365 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3366 	struct mem_cgroup *parent;
3367 
3368 	mem_cgroup_flush_stats_ratelimited(memcg);
3369 
3370 	*pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3371 	*pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3372 	*pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
3373 			memcg_page_state(memcg, NR_ACTIVE_FILE);
3374 
3375 	*pheadroom = PAGE_COUNTER_MAX;
3376 	while ((parent = parent_mem_cgroup(memcg))) {
3377 		unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
3378 					    READ_ONCE(memcg->memory.high));
3379 		unsigned long used = page_counter_read(&memcg->memory);
3380 
3381 		*pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3382 		memcg = parent;
3383 	}
3384 }
3385 
3386 /*
3387  * Foreign dirty flushing
3388  *
3389  * There's an inherent mismatch between memcg and writeback.  The former
3390  * tracks ownership per-page while the latter per-inode.  This was a
3391  * deliberate design decision because honoring per-page ownership in the
3392  * writeback path is complicated, may lead to higher CPU and IO overheads
3393  * and deemed unnecessary given that write-sharing an inode across
3394  * different cgroups isn't a common use-case.
3395  *
3396  * Combined with inode majority-writer ownership switching, this works well
3397  * enough in most cases but there are some pathological cases.  For
3398  * example, let's say there are two cgroups A and B which keep writing to
3399  * different but confined parts of the same inode.  B owns the inode and
3400  * A's memory is limited far below B's.  A's dirty ratio can rise enough to
3401  * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
3402  * triggering background writeback.  A will be slowed down without a way to
3403  * make writeback of the dirty pages happen.
3404  *
3405  * Conditions like the above can lead to a cgroup getting repeatedly and
3406  * severely throttled after making some progress after each
3407  * dirty_expire_interval while the underlying IO device is almost
3408  * completely idle.
3409  *
3410  * Solving this problem completely requires matching the ownership tracking
3411  * granularities between memcg and writeback in either direction.  However,
3412  * the more egregious behaviors can be avoided by simply remembering the
3413  * most recent foreign dirtying events and initiating remote flushes on
3414  * them when local writeback isn't enough to keep the memory clean enough.
3415  *
3416  * The following two functions implement such mechanism.  When a foreign
3417  * page - a page whose memcg and writeback ownerships don't match - is
3418  * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
3419  * bdi_writeback on the page owning memcg.  When balance_dirty_pages()
3420  * decides that the memcg needs to sleep due to high dirty ratio, it calls
3421  * mem_cgroup_flush_foreign() which queues writeback on the recorded
3422  * foreign bdi_writebacks which haven't expired.  Both the numbers of
3423  * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
3424  * limited to MEMCG_CGWB_FRN_CNT.
3425  *
3426  * The mechanism only remembers IDs and doesn't hold any object references.
3427  * As being wrong occasionally doesn't matter, updates and accesses to the
3428  * records are lockless and racy.
3429  */
mem_cgroup_track_foreign_dirty_slowpath(struct folio * folio,struct bdi_writeback * wb)3430 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
3431 					     struct bdi_writeback *wb)
3432 {
3433 	struct mem_cgroup *memcg = folio_memcg(folio);
3434 	struct memcg_cgwb_frn *frn;
3435 	u64 now = get_jiffies_64();
3436 	u64 oldest_at = now;
3437 	int oldest = -1;
3438 	int i;
3439 
3440 	trace_track_foreign_dirty(folio, wb);
3441 
3442 	/*
3443 	 * Pick the slot to use.  If there is already a slot for @wb, keep
3444 	 * using it.  If not replace the oldest one which isn't being
3445 	 * written out.
3446 	 */
3447 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3448 		frn = &memcg->cgwb_frn[i];
3449 		if (frn->bdi_id == wb->bdi->id &&
3450 		    frn->memcg_id == wb->memcg_css->id)
3451 			break;
3452 		if (time_before64(frn->at, oldest_at) &&
3453 		    atomic_read(&frn->done.cnt) == 1) {
3454 			oldest = i;
3455 			oldest_at = frn->at;
3456 		}
3457 	}
3458 
3459 	if (i < MEMCG_CGWB_FRN_CNT) {
3460 		/*
3461 		 * Re-using an existing one.  Update timestamp lazily to
3462 		 * avoid making the cacheline hot.  We want them to be
3463 		 * reasonably up-to-date and significantly shorter than
3464 		 * dirty_expire_interval as that's what expires the record.
3465 		 * Use the shorter of 1s and dirty_expire_interval / 8.
3466 		 */
3467 		unsigned long update_intv =
3468 			min_t(unsigned long, HZ,
3469 			      msecs_to_jiffies(dirty_expire_interval * 10) / 8);
3470 
3471 		if (time_before64(frn->at, now - update_intv))
3472 			frn->at = now;
3473 	} else if (oldest >= 0) {
3474 		/* replace the oldest free one */
3475 		frn = &memcg->cgwb_frn[oldest];
3476 		frn->bdi_id = wb->bdi->id;
3477 		frn->memcg_id = wb->memcg_css->id;
3478 		frn->at = now;
3479 	}
3480 }
3481 
3482 /* issue foreign writeback flushes for recorded foreign dirtying events */
mem_cgroup_flush_foreign(struct bdi_writeback * wb)3483 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
3484 {
3485 	struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3486 	unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
3487 	u64 now = jiffies_64;
3488 	int i;
3489 
3490 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
3491 		struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
3492 
3493 		/*
3494 		 * If the record is older than dirty_expire_interval,
3495 		 * writeback on it has already started.  No need to kick it
3496 		 * off again.  Also, don't start a new one if there's
3497 		 * already one in flight.
3498 		 */
3499 		if (time_after64(frn->at, now - intv) &&
3500 		    atomic_read(&frn->done.cnt) == 1) {
3501 			frn->at = 0;
3502 			trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
3503 			cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
3504 					       WB_REASON_FOREIGN_FLUSH,
3505 					       &frn->done);
3506 		}
3507 	}
3508 }
3509 
3510 #else	/* CONFIG_CGROUP_WRITEBACK */
3511 
memcg_wb_domain_init(struct mem_cgroup * memcg,gfp_t gfp)3512 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3513 {
3514 	return 0;
3515 }
3516 
memcg_wb_domain_exit(struct mem_cgroup * memcg)3517 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3518 {
3519 }
3520 
memcg_wb_domain_size_changed(struct mem_cgroup * memcg)3521 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3522 {
3523 }
3524 
3525 #endif	/* CONFIG_CGROUP_WRITEBACK */
3526 
3527 /*
3528  * Private memory cgroup IDR
3529  *
3530  * Swap-out records and page cache shadow entries need to store memcg
3531  * references in constrained space, so we maintain an ID space that is
3532  * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
3533  * memory-controlled cgroups to 64k.
3534  *
3535  * However, there usually are many references to the offline CSS after
3536  * the cgroup has been destroyed, such as page cache or reclaimable
3537  * slab objects, that don't need to hang on to the ID. We want to keep
3538  * those dead CSS from occupying IDs, or we might quickly exhaust the
3539  * relatively small ID space and prevent the creation of new cgroups
3540  * even when there are much fewer than 64k cgroups - possibly none.
3541  *
3542  * Maintain a private 16-bit ID space for memcg, and allow the ID to
3543  * be freed and recycled when it's no longer needed, which is usually
3544  * when the CSS is offlined.
3545  *
3546  * The only exception to that are records of swapped out tmpfs/shmem
3547  * pages that need to be attributed to live ancestors on swapin. But
3548  * those references are manageable from userspace.
3549  */
3550 
3551 #define MEM_CGROUP_ID_MAX	((1UL << MEM_CGROUP_ID_SHIFT) - 1)
3552 static DEFINE_XARRAY_ALLOC1(mem_cgroup_ids);
3553 
mem_cgroup_id_remove(struct mem_cgroup * memcg)3554 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
3555 {
3556 	if (memcg->id.id > 0) {
3557 		xa_erase(&mem_cgroup_ids, memcg->id.id);
3558 		memcg->id.id = 0;
3559 	}
3560 }
3561 
mem_cgroup_id_get_many(struct mem_cgroup * memcg,unsigned int n)3562 void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
3563 					   unsigned int n)
3564 {
3565 	refcount_add(n, &memcg->id.ref);
3566 }
3567 
mem_cgroup_id_put_many(struct mem_cgroup * memcg,unsigned int n)3568 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
3569 {
3570 	if (refcount_sub_and_test(n, &memcg->id.ref)) {
3571 		mem_cgroup_id_remove(memcg);
3572 
3573 		/* Memcg ID pins CSS */
3574 		css_put(&memcg->css);
3575 	}
3576 }
3577 
mem_cgroup_id_put(struct mem_cgroup * memcg)3578 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
3579 {
3580 	mem_cgroup_id_put_many(memcg, 1);
3581 }
3582 
mem_cgroup_id_get_online(struct mem_cgroup * memcg)3583 struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
3584 {
3585 	while (!refcount_inc_not_zero(&memcg->id.ref)) {
3586 		/*
3587 		 * The root cgroup cannot be destroyed, so it's refcount must
3588 		 * always be >= 1.
3589 		 */
3590 		if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
3591 			VM_BUG_ON(1);
3592 			break;
3593 		}
3594 		memcg = parent_mem_cgroup(memcg);
3595 		if (!memcg)
3596 			memcg = root_mem_cgroup;
3597 	}
3598 	return memcg;
3599 }
3600 
3601 /**
3602  * mem_cgroup_from_id - look up a memcg from a memcg id
3603  * @id: the memcg id to look up
3604  *
3605  * Caller must hold rcu_read_lock().
3606  */
mem_cgroup_from_id(unsigned short id)3607 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
3608 {
3609 	WARN_ON_ONCE(!rcu_read_lock_held());
3610 	return xa_load(&mem_cgroup_ids, id);
3611 }
3612 
3613 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_get_from_ino(unsigned long ino)3614 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
3615 {
3616 	struct cgroup *cgrp;
3617 	struct cgroup_subsys_state *css;
3618 	struct mem_cgroup *memcg;
3619 
3620 	cgrp = cgroup_get_from_id(ino);
3621 	if (IS_ERR(cgrp))
3622 		return ERR_CAST(cgrp);
3623 
3624 	css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
3625 	if (css)
3626 		memcg = container_of(css, struct mem_cgroup, css);
3627 	else
3628 		memcg = ERR_PTR(-ENOENT);
3629 
3630 	cgroup_put(cgrp);
3631 
3632 	return memcg;
3633 }
3634 #endif
3635 
free_mem_cgroup_per_node_info(struct mem_cgroup_per_node * pn)3636 static void free_mem_cgroup_per_node_info(struct mem_cgroup_per_node *pn)
3637 {
3638 	if (!pn)
3639 		return;
3640 
3641 	free_percpu(pn->lruvec_stats_percpu);
3642 	kfree(pn->lruvec_stats);
3643 	kfree(pn);
3644 }
3645 
alloc_mem_cgroup_per_node_info(struct mem_cgroup * memcg,int node)3646 static bool alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
3647 {
3648 	struct mem_cgroup_per_node *pn;
3649 
3650 	pn = kmem_cache_alloc_node(memcg_pn_cachep, GFP_KERNEL | __GFP_ZERO,
3651 				   node);
3652 	if (!pn)
3653 		return false;
3654 
3655 	pn->lruvec_stats = kzalloc_node(sizeof(struct lruvec_stats),
3656 					GFP_KERNEL_ACCOUNT, node);
3657 	if (!pn->lruvec_stats)
3658 		goto fail;
3659 
3660 	pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
3661 						   GFP_KERNEL_ACCOUNT);
3662 	if (!pn->lruvec_stats_percpu)
3663 		goto fail;
3664 
3665 	lruvec_init(&pn->lruvec);
3666 	pn->memcg = memcg;
3667 
3668 	memcg->nodeinfo[node] = pn;
3669 	return true;
3670 fail:
3671 	free_mem_cgroup_per_node_info(pn);
3672 	return false;
3673 }
3674 
__mem_cgroup_free(struct mem_cgroup * memcg)3675 static void __mem_cgroup_free(struct mem_cgroup *memcg)
3676 {
3677 	int node;
3678 
3679 	obj_cgroup_put(memcg->orig_objcg);
3680 
3681 	for_each_node(node)
3682 		free_mem_cgroup_per_node_info(memcg->nodeinfo[node]);
3683 	memcg1_free_events(memcg);
3684 	kfree(memcg->vmstats);
3685 	free_percpu(memcg->vmstats_percpu);
3686 	kfree(memcg);
3687 }
3688 
mem_cgroup_free(struct mem_cgroup * memcg)3689 static void mem_cgroup_free(struct mem_cgroup *memcg)
3690 {
3691 	lru_gen_exit_memcg(memcg);
3692 	memcg_wb_domain_exit(memcg);
3693 	__mem_cgroup_free(memcg);
3694 }
3695 
mem_cgroup_alloc(struct mem_cgroup * parent)3696 static struct mem_cgroup *mem_cgroup_alloc(struct mem_cgroup *parent)
3697 {
3698 	struct memcg_vmstats_percpu *statc;
3699 	struct memcg_vmstats_percpu __percpu *pstatc_pcpu;
3700 	struct mem_cgroup *memcg;
3701 	int node, cpu;
3702 	int __maybe_unused i;
3703 	long error;
3704 
3705 	memcg = kmem_cache_zalloc(memcg_cachep, GFP_KERNEL);
3706 	if (!memcg)
3707 		return ERR_PTR(-ENOMEM);
3708 
3709 	error = xa_alloc(&mem_cgroup_ids, &memcg->id.id, NULL,
3710 			 XA_LIMIT(1, MEM_CGROUP_ID_MAX), GFP_KERNEL);
3711 	if (error)
3712 		goto fail;
3713 	error = -ENOMEM;
3714 
3715 	memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats),
3716 				 GFP_KERNEL_ACCOUNT);
3717 	if (!memcg->vmstats)
3718 		goto fail;
3719 
3720 	memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
3721 						 GFP_KERNEL_ACCOUNT);
3722 	if (!memcg->vmstats_percpu)
3723 		goto fail;
3724 
3725 	if (!memcg1_alloc_events(memcg))
3726 		goto fail;
3727 
3728 	for_each_possible_cpu(cpu) {
3729 		if (parent)
3730 			pstatc_pcpu = parent->vmstats_percpu;
3731 		statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
3732 		statc->parent_pcpu = parent ? pstatc_pcpu : NULL;
3733 		statc->vmstats = memcg->vmstats;
3734 	}
3735 
3736 	for_each_node(node)
3737 		if (!alloc_mem_cgroup_per_node_info(memcg, node))
3738 			goto fail;
3739 
3740 	if (memcg_wb_domain_init(memcg, GFP_KERNEL))
3741 		goto fail;
3742 
3743 	INIT_WORK(&memcg->high_work, high_work_func);
3744 	vmpressure_init(&memcg->vmpressure);
3745 	INIT_LIST_HEAD(&memcg->memory_peaks);
3746 	INIT_LIST_HEAD(&memcg->swap_peaks);
3747 	spin_lock_init(&memcg->peaks_lock);
3748 	memcg->socket_pressure = get_jiffies_64();
3749 #if BITS_PER_LONG < 64
3750 	seqlock_init(&memcg->socket_pressure_seqlock);
3751 #endif
3752 	memcg1_memcg_init(memcg);
3753 	memcg->kmemcg_id = -1;
3754 	INIT_LIST_HEAD(&memcg->objcg_list);
3755 #ifdef CONFIG_CGROUP_WRITEBACK
3756 	INIT_LIST_HEAD(&memcg->cgwb_list);
3757 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3758 		memcg->cgwb_frn[i].done =
3759 			__WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
3760 #endif
3761 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3762 	spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
3763 	INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
3764 	memcg->deferred_split_queue.split_queue_len = 0;
3765 #endif
3766 	lru_gen_init_memcg(memcg);
3767 	return memcg;
3768 fail:
3769 	mem_cgroup_id_remove(memcg);
3770 	__mem_cgroup_free(memcg);
3771 	return ERR_PTR(error);
3772 }
3773 
3774 static struct cgroup_subsys_state * __ref
mem_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)3775 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
3776 {
3777 	struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
3778 	struct mem_cgroup *memcg, *old_memcg;
3779 	bool memcg_on_dfl = cgroup_subsys_on_dfl(memory_cgrp_subsys);
3780 
3781 	old_memcg = set_active_memcg(parent);
3782 	memcg = mem_cgroup_alloc(parent);
3783 	set_active_memcg(old_memcg);
3784 	if (IS_ERR(memcg))
3785 		return ERR_CAST(memcg);
3786 
3787 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3788 	memcg1_soft_limit_reset(memcg);
3789 #ifdef CONFIG_ZSWAP
3790 	memcg->zswap_max = PAGE_COUNTER_MAX;
3791 	WRITE_ONCE(memcg->zswap_writeback, true);
3792 #endif
3793 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3794 	if (parent) {
3795 		WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
3796 
3797 		page_counter_init(&memcg->memory, &parent->memory, memcg_on_dfl);
3798 		page_counter_init(&memcg->swap, &parent->swap, false);
3799 #ifdef CONFIG_MEMCG_V1
3800 		memcg->memory.track_failcnt = !memcg_on_dfl;
3801 		WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
3802 		page_counter_init(&memcg->kmem, &parent->kmem, false);
3803 		page_counter_init(&memcg->tcpmem, &parent->tcpmem, false);
3804 #endif
3805 	} else {
3806 		init_memcg_stats();
3807 		init_memcg_events();
3808 		page_counter_init(&memcg->memory, NULL, true);
3809 		page_counter_init(&memcg->swap, NULL, false);
3810 #ifdef CONFIG_MEMCG_V1
3811 		page_counter_init(&memcg->kmem, NULL, false);
3812 		page_counter_init(&memcg->tcpmem, NULL, false);
3813 #endif
3814 		root_mem_cgroup = memcg;
3815 		return &memcg->css;
3816 	}
3817 
3818 	if (memcg_on_dfl && !cgroup_memory_nosocket)
3819 		static_branch_inc(&memcg_sockets_enabled_key);
3820 
3821 	if (!cgroup_memory_nobpf)
3822 		static_branch_inc(&memcg_bpf_enabled_key);
3823 
3824 	return &memcg->css;
3825 }
3826 
mem_cgroup_css_online(struct cgroup_subsys_state * css)3827 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
3828 {
3829 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3830 
3831 	if (memcg_online_kmem(memcg))
3832 		goto remove_id;
3833 
3834 	/*
3835 	 * A memcg must be visible for expand_shrinker_info()
3836 	 * by the time the maps are allocated. So, we allocate maps
3837 	 * here, when for_each_mem_cgroup() can't skip it.
3838 	 */
3839 	if (alloc_shrinker_info(memcg))
3840 		goto offline_kmem;
3841 
3842 	if (unlikely(mem_cgroup_is_root(memcg)) && !mem_cgroup_disabled())
3843 		queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
3844 				   FLUSH_TIME);
3845 	lru_gen_online_memcg(memcg);
3846 
3847 	/* Online state pins memcg ID, memcg ID pins CSS */
3848 	refcount_set(&memcg->id.ref, 1);
3849 	css_get(css);
3850 
3851 	/*
3852 	 * Ensure mem_cgroup_from_id() works once we're fully online.
3853 	 *
3854 	 * We could do this earlier and require callers to filter with
3855 	 * css_tryget_online(). But right now there are no users that
3856 	 * need earlier access, and the workingset code relies on the
3857 	 * cgroup tree linkage (mem_cgroup_get_nr_swap_pages()). So
3858 	 * publish it here at the end of onlining. This matches the
3859 	 * regular ID destruction during offlining.
3860 	 */
3861 	xa_store(&mem_cgroup_ids, memcg->id.id, memcg, GFP_KERNEL);
3862 
3863 	return 0;
3864 offline_kmem:
3865 	memcg_offline_kmem(memcg);
3866 remove_id:
3867 	mem_cgroup_id_remove(memcg);
3868 	return -ENOMEM;
3869 }
3870 
mem_cgroup_css_offline(struct cgroup_subsys_state * css)3871 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
3872 {
3873 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3874 
3875 	memcg1_css_offline(memcg);
3876 
3877 	page_counter_set_min(&memcg->memory, 0);
3878 	page_counter_set_low(&memcg->memory, 0);
3879 
3880 	zswap_memcg_offline_cleanup(memcg);
3881 
3882 	memcg_offline_kmem(memcg);
3883 	reparent_shrinker_deferred(memcg);
3884 	wb_memcg_offline(memcg);
3885 	lru_gen_offline_memcg(memcg);
3886 
3887 	drain_all_stock(memcg);
3888 
3889 	mem_cgroup_id_put(memcg);
3890 }
3891 
mem_cgroup_css_released(struct cgroup_subsys_state * css)3892 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
3893 {
3894 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3895 
3896 	invalidate_reclaim_iterators(memcg);
3897 	lru_gen_release_memcg(memcg);
3898 }
3899 
mem_cgroup_css_free(struct cgroup_subsys_state * css)3900 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
3901 {
3902 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3903 	int __maybe_unused i;
3904 
3905 #ifdef CONFIG_CGROUP_WRITEBACK
3906 	for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
3907 		wb_wait_for_completion(&memcg->cgwb_frn[i].done);
3908 #endif
3909 	if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
3910 		static_branch_dec(&memcg_sockets_enabled_key);
3911 
3912 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg1_tcpmem_active(memcg))
3913 		static_branch_dec(&memcg_sockets_enabled_key);
3914 
3915 	if (!cgroup_memory_nobpf)
3916 		static_branch_dec(&memcg_bpf_enabled_key);
3917 
3918 	vmpressure_cleanup(&memcg->vmpressure);
3919 	cancel_work_sync(&memcg->high_work);
3920 	memcg1_remove_from_trees(memcg);
3921 	free_shrinker_info(memcg);
3922 	mem_cgroup_free(memcg);
3923 }
3924 
3925 /**
3926  * mem_cgroup_css_reset - reset the states of a mem_cgroup
3927  * @css: the target css
3928  *
3929  * Reset the states of the mem_cgroup associated with @css.  This is
3930  * invoked when the userland requests disabling on the default hierarchy
3931  * but the memcg is pinned through dependency.  The memcg should stop
3932  * applying policies and should revert to the vanilla state as it may be
3933  * made visible again.
3934  *
3935  * The current implementation only resets the essential configurations.
3936  * This needs to be expanded to cover all the visible parts.
3937  */
mem_cgroup_css_reset(struct cgroup_subsys_state * css)3938 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
3939 {
3940 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3941 
3942 	page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
3943 	page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
3944 #ifdef CONFIG_MEMCG_V1
3945 	page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
3946 	page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
3947 #endif
3948 	page_counter_set_min(&memcg->memory, 0);
3949 	page_counter_set_low(&memcg->memory, 0);
3950 	page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
3951 	memcg1_soft_limit_reset(memcg);
3952 	page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
3953 	memcg_wb_domain_size_changed(memcg);
3954 }
3955 
3956 struct aggregate_control {
3957 	/* pointer to the aggregated (CPU and subtree aggregated) counters */
3958 	long *aggregate;
3959 	/* pointer to the non-hierarchichal (CPU aggregated) counters */
3960 	long *local;
3961 	/* pointer to the pending child counters during tree propagation */
3962 	long *pending;
3963 	/* pointer to the parent's pending counters, could be NULL */
3964 	long *ppending;
3965 	/* pointer to the percpu counters to be aggregated */
3966 	long *cstat;
3967 	/* pointer to the percpu counters of the last aggregation*/
3968 	long *cstat_prev;
3969 	/* size of the above counters */
3970 	int size;
3971 };
3972 
mem_cgroup_stat_aggregate(struct aggregate_control * ac)3973 static void mem_cgroup_stat_aggregate(struct aggregate_control *ac)
3974 {
3975 	int i;
3976 	long delta, delta_cpu, v;
3977 
3978 	for (i = 0; i < ac->size; i++) {
3979 		/*
3980 		 * Collect the aggregated propagation counts of groups
3981 		 * below us. We're in a per-cpu loop here and this is
3982 		 * a global counter, so the first cycle will get them.
3983 		 */
3984 		delta = ac->pending[i];
3985 		if (delta)
3986 			ac->pending[i] = 0;
3987 
3988 		/* Add CPU changes on this level since the last flush */
3989 		delta_cpu = 0;
3990 		v = READ_ONCE(ac->cstat[i]);
3991 		if (v != ac->cstat_prev[i]) {
3992 			delta_cpu = v - ac->cstat_prev[i];
3993 			delta += delta_cpu;
3994 			ac->cstat_prev[i] = v;
3995 		}
3996 
3997 		/* Aggregate counts on this level and propagate upwards */
3998 		if (delta_cpu)
3999 			ac->local[i] += delta_cpu;
4000 
4001 		if (delta) {
4002 			ac->aggregate[i] += delta;
4003 			if (ac->ppending)
4004 				ac->ppending[i] += delta;
4005 		}
4006 	}
4007 }
4008 
4009 #ifdef CONFIG_MEMCG_NMI_SAFETY_REQUIRES_ATOMIC
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4010 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4011 			    int cpu)
4012 {
4013 	int nid;
4014 
4015 	if (atomic_read(&memcg->kmem_stat)) {
4016 		int kmem = atomic_xchg(&memcg->kmem_stat, 0);
4017 		int index = memcg_stats_index(MEMCG_KMEM);
4018 
4019 		memcg->vmstats->state[index] += kmem;
4020 		if (parent)
4021 			parent->vmstats->state_pending[index] += kmem;
4022 	}
4023 
4024 	for_each_node_state(nid, N_MEMORY) {
4025 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4026 		struct lruvec_stats *lstats = pn->lruvec_stats;
4027 		struct lruvec_stats *plstats = NULL;
4028 
4029 		if (parent)
4030 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4031 
4032 		if (atomic_read(&pn->slab_reclaimable)) {
4033 			int slab = atomic_xchg(&pn->slab_reclaimable, 0);
4034 			int index = memcg_stats_index(NR_SLAB_RECLAIMABLE_B);
4035 
4036 			lstats->state[index] += slab;
4037 			if (plstats)
4038 				plstats->state_pending[index] += slab;
4039 		}
4040 		if (atomic_read(&pn->slab_unreclaimable)) {
4041 			int slab = atomic_xchg(&pn->slab_unreclaimable, 0);
4042 			int index = memcg_stats_index(NR_SLAB_UNRECLAIMABLE_B);
4043 
4044 			lstats->state[index] += slab;
4045 			if (plstats)
4046 				plstats->state_pending[index] += slab;
4047 		}
4048 	}
4049 }
4050 #else
flush_nmi_stats(struct mem_cgroup * memcg,struct mem_cgroup * parent,int cpu)4051 static void flush_nmi_stats(struct mem_cgroup *memcg, struct mem_cgroup *parent,
4052 			    int cpu)
4053 {}
4054 #endif
4055 
mem_cgroup_css_rstat_flush(struct cgroup_subsys_state * css,int cpu)4056 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
4057 {
4058 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4059 	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4060 	struct memcg_vmstats_percpu *statc;
4061 	struct aggregate_control ac;
4062 	int nid;
4063 
4064 	flush_nmi_stats(memcg, parent, cpu);
4065 
4066 	statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
4067 
4068 	ac = (struct aggregate_control) {
4069 		.aggregate = memcg->vmstats->state,
4070 		.local = memcg->vmstats->state_local,
4071 		.pending = memcg->vmstats->state_pending,
4072 		.ppending = parent ? parent->vmstats->state_pending : NULL,
4073 		.cstat = statc->state,
4074 		.cstat_prev = statc->state_prev,
4075 		.size = MEMCG_VMSTAT_SIZE,
4076 	};
4077 	mem_cgroup_stat_aggregate(&ac);
4078 
4079 	ac = (struct aggregate_control) {
4080 		.aggregate = memcg->vmstats->events,
4081 		.local = memcg->vmstats->events_local,
4082 		.pending = memcg->vmstats->events_pending,
4083 		.ppending = parent ? parent->vmstats->events_pending : NULL,
4084 		.cstat = statc->events,
4085 		.cstat_prev = statc->events_prev,
4086 		.size = NR_MEMCG_EVENTS,
4087 	};
4088 	mem_cgroup_stat_aggregate(&ac);
4089 
4090 	for_each_node_state(nid, N_MEMORY) {
4091 		struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
4092 		struct lruvec_stats *lstats = pn->lruvec_stats;
4093 		struct lruvec_stats *plstats = NULL;
4094 		struct lruvec_stats_percpu *lstatc;
4095 
4096 		if (parent)
4097 			plstats = parent->nodeinfo[nid]->lruvec_stats;
4098 
4099 		lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
4100 
4101 		ac = (struct aggregate_control) {
4102 			.aggregate = lstats->state,
4103 			.local = lstats->state_local,
4104 			.pending = lstats->state_pending,
4105 			.ppending = plstats ? plstats->state_pending : NULL,
4106 			.cstat = lstatc->state,
4107 			.cstat_prev = lstatc->state_prev,
4108 			.size = NR_MEMCG_NODE_STAT_ITEMS,
4109 		};
4110 		mem_cgroup_stat_aggregate(&ac);
4111 
4112 	}
4113 	WRITE_ONCE(statc->stats_updates, 0);
4114 	/* We are in a per-cpu loop here, only do the atomic write once */
4115 	if (atomic_read(&memcg->vmstats->stats_updates))
4116 		atomic_set(&memcg->vmstats->stats_updates, 0);
4117 }
4118 
mem_cgroup_fork(struct task_struct * task)4119 static void mem_cgroup_fork(struct task_struct *task)
4120 {
4121 	/*
4122 	 * Set the update flag to cause task->objcg to be initialized lazily
4123 	 * on the first allocation. It can be done without any synchronization
4124 	 * because it's always performed on the current task, so does
4125 	 * current_objcg_update().
4126 	 */
4127 	task->objcg = (struct obj_cgroup *)CURRENT_OBJCG_UPDATE_FLAG;
4128 }
4129 
mem_cgroup_exit(struct task_struct * task)4130 static void mem_cgroup_exit(struct task_struct *task)
4131 {
4132 	struct obj_cgroup *objcg = task->objcg;
4133 
4134 	objcg = (struct obj_cgroup *)
4135 		((unsigned long)objcg & ~CURRENT_OBJCG_UPDATE_FLAG);
4136 	obj_cgroup_put(objcg);
4137 
4138 	/*
4139 	 * Some kernel allocations can happen after this point,
4140 	 * but let's ignore them. It can be done without any synchronization
4141 	 * because it's always performed on the current task, so does
4142 	 * current_objcg_update().
4143 	 */
4144 	task->objcg = NULL;
4145 }
4146 
4147 #ifdef CONFIG_LRU_GEN
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4148 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset)
4149 {
4150 	struct task_struct *task;
4151 	struct cgroup_subsys_state *css;
4152 
4153 	/* find the first leader if there is any */
4154 	cgroup_taskset_for_each_leader(task, css, tset)
4155 		break;
4156 
4157 	if (!task)
4158 		return;
4159 
4160 	task_lock(task);
4161 	if (task->mm && READ_ONCE(task->mm->owner) == task)
4162 		lru_gen_migrate_mm(task->mm);
4163 	task_unlock(task);
4164 }
4165 #else
mem_cgroup_lru_gen_attach(struct cgroup_taskset * tset)4166 static void mem_cgroup_lru_gen_attach(struct cgroup_taskset *tset) {}
4167 #endif /* CONFIG_LRU_GEN */
4168 
mem_cgroup_kmem_attach(struct cgroup_taskset * tset)4169 static void mem_cgroup_kmem_attach(struct cgroup_taskset *tset)
4170 {
4171 	struct task_struct *task;
4172 	struct cgroup_subsys_state *css;
4173 
4174 	cgroup_taskset_for_each(task, css, tset) {
4175 		/* atomically set the update bit */
4176 		set_bit(CURRENT_OBJCG_UPDATE_BIT, (unsigned long *)&task->objcg);
4177 	}
4178 }
4179 
mem_cgroup_attach(struct cgroup_taskset * tset)4180 static void mem_cgroup_attach(struct cgroup_taskset *tset)
4181 {
4182 	mem_cgroup_lru_gen_attach(tset);
4183 	mem_cgroup_kmem_attach(tset);
4184 }
4185 
seq_puts_memcg_tunable(struct seq_file * m,unsigned long value)4186 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
4187 {
4188 	if (value == PAGE_COUNTER_MAX)
4189 		seq_puts(m, "max\n");
4190 	else
4191 		seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
4192 
4193 	return 0;
4194 }
4195 
memory_current_read(struct cgroup_subsys_state * css,struct cftype * cft)4196 static u64 memory_current_read(struct cgroup_subsys_state *css,
4197 			       struct cftype *cft)
4198 {
4199 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4200 
4201 	return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4202 }
4203 
4204 #define OFP_PEAK_UNSET (((-1UL)))
4205 
peak_show(struct seq_file * sf,void * v,struct page_counter * pc)4206 static int peak_show(struct seq_file *sf, void *v, struct page_counter *pc)
4207 {
4208 	struct cgroup_of_peak *ofp = of_peak(sf->private);
4209 	u64 fd_peak = READ_ONCE(ofp->value), peak;
4210 
4211 	/* User wants global or local peak? */
4212 	if (fd_peak == OFP_PEAK_UNSET)
4213 		peak = pc->watermark;
4214 	else
4215 		peak = max(fd_peak, READ_ONCE(pc->local_watermark));
4216 
4217 	seq_printf(sf, "%llu\n", peak * PAGE_SIZE);
4218 	return 0;
4219 }
4220 
memory_peak_show(struct seq_file * sf,void * v)4221 static int memory_peak_show(struct seq_file *sf, void *v)
4222 {
4223 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4224 
4225 	return peak_show(sf, v, &memcg->memory);
4226 }
4227 
peak_open(struct kernfs_open_file * of)4228 static int peak_open(struct kernfs_open_file *of)
4229 {
4230 	struct cgroup_of_peak *ofp = of_peak(of);
4231 
4232 	ofp->value = OFP_PEAK_UNSET;
4233 	return 0;
4234 }
4235 
peak_release(struct kernfs_open_file * of)4236 static void peak_release(struct kernfs_open_file *of)
4237 {
4238 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4239 	struct cgroup_of_peak *ofp = of_peak(of);
4240 
4241 	if (ofp->value == OFP_PEAK_UNSET) {
4242 		/* fast path (no writes on this fd) */
4243 		return;
4244 	}
4245 	spin_lock(&memcg->peaks_lock);
4246 	list_del(&ofp->list);
4247 	spin_unlock(&memcg->peaks_lock);
4248 }
4249 
peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,struct page_counter * pc,struct list_head * watchers)4250 static ssize_t peak_write(struct kernfs_open_file *of, char *buf, size_t nbytes,
4251 			  loff_t off, struct page_counter *pc,
4252 			  struct list_head *watchers)
4253 {
4254 	unsigned long usage;
4255 	struct cgroup_of_peak *peer_ctx;
4256 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4257 	struct cgroup_of_peak *ofp = of_peak(of);
4258 
4259 	spin_lock(&memcg->peaks_lock);
4260 
4261 	usage = page_counter_read(pc);
4262 	WRITE_ONCE(pc->local_watermark, usage);
4263 
4264 	list_for_each_entry(peer_ctx, watchers, list)
4265 		if (usage > peer_ctx->value)
4266 			WRITE_ONCE(peer_ctx->value, usage);
4267 
4268 	/* initial write, register watcher */
4269 	if (ofp->value == OFP_PEAK_UNSET)
4270 		list_add(&ofp->list, watchers);
4271 
4272 	WRITE_ONCE(ofp->value, usage);
4273 	spin_unlock(&memcg->peaks_lock);
4274 
4275 	return nbytes;
4276 }
4277 
memory_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4278 static ssize_t memory_peak_write(struct kernfs_open_file *of, char *buf,
4279 				 size_t nbytes, loff_t off)
4280 {
4281 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4282 
4283 	return peak_write(of, buf, nbytes, off, &memcg->memory,
4284 			  &memcg->memory_peaks);
4285 }
4286 
4287 #undef OFP_PEAK_UNSET
4288 
memory_min_show(struct seq_file * m,void * v)4289 static int memory_min_show(struct seq_file *m, void *v)
4290 {
4291 	return seq_puts_memcg_tunable(m,
4292 		READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
4293 }
4294 
memory_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4295 static ssize_t memory_min_write(struct kernfs_open_file *of,
4296 				char *buf, size_t nbytes, loff_t off)
4297 {
4298 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4299 	unsigned long min;
4300 	int err;
4301 
4302 	buf = strstrip(buf);
4303 	err = page_counter_memparse(buf, "max", &min);
4304 	if (err)
4305 		return err;
4306 
4307 	page_counter_set_min(&memcg->memory, min);
4308 
4309 	return nbytes;
4310 }
4311 
memory_low_show(struct seq_file * m,void * v)4312 static int memory_low_show(struct seq_file *m, void *v)
4313 {
4314 	return seq_puts_memcg_tunable(m,
4315 		READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
4316 }
4317 
memory_low_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4318 static ssize_t memory_low_write(struct kernfs_open_file *of,
4319 				char *buf, size_t nbytes, loff_t off)
4320 {
4321 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4322 	unsigned long low;
4323 	int err;
4324 
4325 	buf = strstrip(buf);
4326 	err = page_counter_memparse(buf, "max", &low);
4327 	if (err)
4328 		return err;
4329 
4330 	page_counter_set_low(&memcg->memory, low);
4331 
4332 	return nbytes;
4333 }
4334 
memory_high_show(struct seq_file * m,void * v)4335 static int memory_high_show(struct seq_file *m, void *v)
4336 {
4337 	return seq_puts_memcg_tunable(m,
4338 		READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
4339 }
4340 
memory_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4341 static ssize_t memory_high_write(struct kernfs_open_file *of,
4342 				 char *buf, size_t nbytes, loff_t off)
4343 {
4344 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4345 	unsigned int nr_retries = MAX_RECLAIM_RETRIES;
4346 	bool drained = false;
4347 	unsigned long high;
4348 	int err;
4349 
4350 	buf = strstrip(buf);
4351 	err = page_counter_memparse(buf, "max", &high);
4352 	if (err)
4353 		return err;
4354 
4355 	page_counter_set_high(&memcg->memory, high);
4356 
4357 	if (of->file->f_flags & O_NONBLOCK)
4358 		goto out;
4359 
4360 	for (;;) {
4361 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4362 		unsigned long reclaimed;
4363 
4364 		if (nr_pages <= high)
4365 			break;
4366 
4367 		if (signal_pending(current))
4368 			break;
4369 
4370 		if (!drained) {
4371 			drain_all_stock(memcg);
4372 			drained = true;
4373 			continue;
4374 		}
4375 
4376 		reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
4377 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL);
4378 
4379 		if (!reclaimed && !nr_retries--)
4380 			break;
4381 	}
4382 out:
4383 	memcg_wb_domain_size_changed(memcg);
4384 	return nbytes;
4385 }
4386 
memory_max_show(struct seq_file * m,void * v)4387 static int memory_max_show(struct seq_file *m, void *v)
4388 {
4389 	return seq_puts_memcg_tunable(m,
4390 		READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
4391 }
4392 
memory_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4393 static ssize_t memory_max_write(struct kernfs_open_file *of,
4394 				char *buf, size_t nbytes, loff_t off)
4395 {
4396 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4397 	unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
4398 	bool drained = false;
4399 	unsigned long max;
4400 	int err;
4401 
4402 	buf = strstrip(buf);
4403 	err = page_counter_memparse(buf, "max", &max);
4404 	if (err)
4405 		return err;
4406 
4407 	xchg(&memcg->memory.max, max);
4408 
4409 	if (of->file->f_flags & O_NONBLOCK)
4410 		goto out;
4411 
4412 	for (;;) {
4413 		unsigned long nr_pages = page_counter_read(&memcg->memory);
4414 
4415 		if (nr_pages <= max)
4416 			break;
4417 
4418 		if (signal_pending(current))
4419 			break;
4420 
4421 		if (!drained) {
4422 			drain_all_stock(memcg);
4423 			drained = true;
4424 			continue;
4425 		}
4426 
4427 		if (nr_reclaims) {
4428 			if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
4429 					GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP, NULL))
4430 				nr_reclaims--;
4431 			continue;
4432 		}
4433 
4434 		memcg_memory_event(memcg, MEMCG_OOM);
4435 		if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
4436 			break;
4437 		cond_resched();
4438 	}
4439 out:
4440 	memcg_wb_domain_size_changed(memcg);
4441 	return nbytes;
4442 }
4443 
4444 /*
4445  * Note: don't forget to update the 'samples/cgroup/memcg_event_listener'
4446  * if any new events become available.
4447  */
__memory_events_show(struct seq_file * m,atomic_long_t * events)4448 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
4449 {
4450 	seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
4451 	seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
4452 	seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
4453 	seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
4454 	seq_printf(m, "oom_kill %lu\n",
4455 		   atomic_long_read(&events[MEMCG_OOM_KILL]));
4456 	seq_printf(m, "oom_group_kill %lu\n",
4457 		   atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
4458 }
4459 
memory_events_show(struct seq_file * m,void * v)4460 static int memory_events_show(struct seq_file *m, void *v)
4461 {
4462 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4463 
4464 	__memory_events_show(m, memcg->memory_events);
4465 	return 0;
4466 }
4467 
memory_events_local_show(struct seq_file * m,void * v)4468 static int memory_events_local_show(struct seq_file *m, void *v)
4469 {
4470 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4471 
4472 	__memory_events_show(m, memcg->memory_events_local);
4473 	return 0;
4474 }
4475 
memory_stat_show(struct seq_file * m,void * v)4476 int memory_stat_show(struct seq_file *m, void *v)
4477 {
4478 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4479 	char *buf = kmalloc(SEQ_BUF_SIZE, GFP_KERNEL);
4480 	struct seq_buf s;
4481 
4482 	if (!buf)
4483 		return -ENOMEM;
4484 	seq_buf_init(&s, buf, SEQ_BUF_SIZE);
4485 	memory_stat_format(memcg, &s);
4486 	seq_puts(m, buf);
4487 	kfree(buf);
4488 	return 0;
4489 }
4490 
4491 #ifdef CONFIG_NUMA
lruvec_page_state_output(struct lruvec * lruvec,int item)4492 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
4493 						     int item)
4494 {
4495 	return lruvec_page_state(lruvec, item) *
4496 		memcg_page_state_output_unit(item);
4497 }
4498 
memory_numa_stat_show(struct seq_file * m,void * v)4499 static int memory_numa_stat_show(struct seq_file *m, void *v)
4500 {
4501 	int i;
4502 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4503 
4504 	mem_cgroup_flush_stats(memcg);
4505 
4506 	for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
4507 		int nid;
4508 
4509 		if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
4510 			continue;
4511 
4512 		seq_printf(m, "%s", memory_stats[i].name);
4513 		for_each_node_state(nid, N_MEMORY) {
4514 			u64 size;
4515 			struct lruvec *lruvec;
4516 
4517 			lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4518 			size = lruvec_page_state_output(lruvec,
4519 							memory_stats[i].idx);
4520 			seq_printf(m, " N%d=%llu", nid, size);
4521 		}
4522 		seq_putc(m, '\n');
4523 	}
4524 
4525 	return 0;
4526 }
4527 #endif
4528 
memory_oom_group_show(struct seq_file * m,void * v)4529 static int memory_oom_group_show(struct seq_file *m, void *v)
4530 {
4531 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4532 
4533 	seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
4534 
4535 	return 0;
4536 }
4537 
memory_oom_group_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4538 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
4539 				      char *buf, size_t nbytes, loff_t off)
4540 {
4541 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4542 	int ret, oom_group;
4543 
4544 	buf = strstrip(buf);
4545 	if (!buf)
4546 		return -EINVAL;
4547 
4548 	ret = kstrtoint(buf, 0, &oom_group);
4549 	if (ret)
4550 		return ret;
4551 
4552 	if (oom_group != 0 && oom_group != 1)
4553 		return -EINVAL;
4554 
4555 	WRITE_ONCE(memcg->oom_group, oom_group);
4556 
4557 	return nbytes;
4558 }
4559 
memory_reclaim(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)4560 static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
4561 			      size_t nbytes, loff_t off)
4562 {
4563 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4564 	int ret;
4565 
4566 	ret = user_proactive_reclaim(buf, memcg, NULL);
4567 	if (ret)
4568 		return ret;
4569 
4570 	return nbytes;
4571 }
4572 
4573 static struct cftype memory_files[] = {
4574 	{
4575 		.name = "current",
4576 		.flags = CFTYPE_NOT_ON_ROOT,
4577 		.read_u64 = memory_current_read,
4578 	},
4579 	{
4580 		.name = "peak",
4581 		.flags = CFTYPE_NOT_ON_ROOT,
4582 		.open = peak_open,
4583 		.release = peak_release,
4584 		.seq_show = memory_peak_show,
4585 		.write = memory_peak_write,
4586 	},
4587 	{
4588 		.name = "min",
4589 		.flags = CFTYPE_NOT_ON_ROOT,
4590 		.seq_show = memory_min_show,
4591 		.write = memory_min_write,
4592 	},
4593 	{
4594 		.name = "low",
4595 		.flags = CFTYPE_NOT_ON_ROOT,
4596 		.seq_show = memory_low_show,
4597 		.write = memory_low_write,
4598 	},
4599 	{
4600 		.name = "high",
4601 		.flags = CFTYPE_NOT_ON_ROOT,
4602 		.seq_show = memory_high_show,
4603 		.write = memory_high_write,
4604 	},
4605 	{
4606 		.name = "max",
4607 		.flags = CFTYPE_NOT_ON_ROOT,
4608 		.seq_show = memory_max_show,
4609 		.write = memory_max_write,
4610 	},
4611 	{
4612 		.name = "events",
4613 		.flags = CFTYPE_NOT_ON_ROOT,
4614 		.file_offset = offsetof(struct mem_cgroup, events_file),
4615 		.seq_show = memory_events_show,
4616 	},
4617 	{
4618 		.name = "events.local",
4619 		.flags = CFTYPE_NOT_ON_ROOT,
4620 		.file_offset = offsetof(struct mem_cgroup, events_local_file),
4621 		.seq_show = memory_events_local_show,
4622 	},
4623 	{
4624 		.name = "stat",
4625 		.seq_show = memory_stat_show,
4626 	},
4627 #ifdef CONFIG_NUMA
4628 	{
4629 		.name = "numa_stat",
4630 		.seq_show = memory_numa_stat_show,
4631 	},
4632 #endif
4633 	{
4634 		.name = "oom.group",
4635 		.flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
4636 		.seq_show = memory_oom_group_show,
4637 		.write = memory_oom_group_write,
4638 	},
4639 	{
4640 		.name = "reclaim",
4641 		.flags = CFTYPE_NS_DELEGATABLE,
4642 		.write = memory_reclaim,
4643 	},
4644 	{ }	/* terminate */
4645 };
4646 
4647 struct cgroup_subsys memory_cgrp_subsys = {
4648 	.css_alloc = mem_cgroup_css_alloc,
4649 	.css_online = mem_cgroup_css_online,
4650 	.css_offline = mem_cgroup_css_offline,
4651 	.css_released = mem_cgroup_css_released,
4652 	.css_free = mem_cgroup_css_free,
4653 	.css_reset = mem_cgroup_css_reset,
4654 	.css_rstat_flush = mem_cgroup_css_rstat_flush,
4655 	.attach = mem_cgroup_attach,
4656 	.fork = mem_cgroup_fork,
4657 	.exit = mem_cgroup_exit,
4658 	.dfl_cftypes = memory_files,
4659 #ifdef CONFIG_MEMCG_V1
4660 	.legacy_cftypes = mem_cgroup_legacy_files,
4661 #endif
4662 	.early_init = 0,
4663 };
4664 
4665 /**
4666  * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
4667  * @root: the top ancestor of the sub-tree being checked
4668  * @memcg: the memory cgroup to check
4669  *
4670  * WARNING: This function is not stateless! It can only be used as part
4671  *          of a top-down tree iteration, not for isolated queries.
4672  */
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)4673 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
4674 				     struct mem_cgroup *memcg)
4675 {
4676 	bool recursive_protection =
4677 		cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT;
4678 
4679 	if (mem_cgroup_disabled())
4680 		return;
4681 
4682 	if (!root)
4683 		root = root_mem_cgroup;
4684 
4685 	page_counter_calculate_protection(&root->memory, &memcg->memory, recursive_protection);
4686 }
4687 
charge_memcg(struct folio * folio,struct mem_cgroup * memcg,gfp_t gfp)4688 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
4689 			gfp_t gfp)
4690 {
4691 	int ret;
4692 
4693 	ret = try_charge(memcg, gfp, folio_nr_pages(folio));
4694 	if (ret)
4695 		goto out;
4696 
4697 	css_get(&memcg->css);
4698 	commit_charge(folio, memcg);
4699 	memcg1_commit_charge(folio, memcg);
4700 out:
4701 	return ret;
4702 }
4703 
__mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)4704 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
4705 {
4706 	struct mem_cgroup *memcg;
4707 	int ret;
4708 
4709 	memcg = get_mem_cgroup_from_mm(mm);
4710 	ret = charge_memcg(folio, memcg, gfp);
4711 	css_put(&memcg->css);
4712 
4713 	return ret;
4714 }
4715 
4716 /**
4717  * mem_cgroup_charge_hugetlb - charge the memcg for a hugetlb folio
4718  * @folio: folio being charged
4719  * @gfp: reclaim mode
4720  *
4721  * This function is called when allocating a huge page folio, after the page has
4722  * already been obtained and charged to the appropriate hugetlb cgroup
4723  * controller (if it is enabled).
4724  *
4725  * Returns ENOMEM if the memcg is already full.
4726  * Returns 0 if either the charge was successful, or if we skip the charging.
4727  */
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)4728 int mem_cgroup_charge_hugetlb(struct folio *folio, gfp_t gfp)
4729 {
4730 	struct mem_cgroup *memcg = get_mem_cgroup_from_current();
4731 	int ret = 0;
4732 
4733 	/*
4734 	 * Even memcg does not account for hugetlb, we still want to update
4735 	 * system-level stats via lruvec_stat_mod_folio. Return 0, and skip
4736 	 * charging the memcg.
4737 	 */
4738 	if (mem_cgroup_disabled() || !memcg_accounts_hugetlb() ||
4739 		!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
4740 		goto out;
4741 
4742 	if (charge_memcg(folio, memcg, gfp))
4743 		ret = -ENOMEM;
4744 
4745 out:
4746 	mem_cgroup_put(memcg);
4747 	return ret;
4748 }
4749 
4750 /**
4751  * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
4752  * @folio: folio to charge.
4753  * @mm: mm context of the victim
4754  * @gfp: reclaim mode
4755  * @entry: swap entry for which the folio is allocated
4756  *
4757  * This function charges a folio allocated for swapin. Please call this before
4758  * adding the folio to the swapcache.
4759  *
4760  * Returns 0 on success. Otherwise, an error code is returned.
4761  */
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)4762 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
4763 				  gfp_t gfp, swp_entry_t entry)
4764 {
4765 	struct mem_cgroup *memcg;
4766 	unsigned short id;
4767 	int ret;
4768 
4769 	if (mem_cgroup_disabled())
4770 		return 0;
4771 
4772 	id = lookup_swap_cgroup_id(entry);
4773 	rcu_read_lock();
4774 	memcg = mem_cgroup_from_id(id);
4775 	if (!memcg || !css_tryget_online(&memcg->css))
4776 		memcg = get_mem_cgroup_from_mm(mm);
4777 	rcu_read_unlock();
4778 
4779 	ret = charge_memcg(folio, memcg, gfp);
4780 
4781 	css_put(&memcg->css);
4782 	return ret;
4783 }
4784 
4785 struct uncharge_gather {
4786 	struct mem_cgroup *memcg;
4787 	unsigned long nr_memory;
4788 	unsigned long pgpgout;
4789 	unsigned long nr_kmem;
4790 	int nid;
4791 };
4792 
uncharge_gather_clear(struct uncharge_gather * ug)4793 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
4794 {
4795 	memset(ug, 0, sizeof(*ug));
4796 }
4797 
uncharge_batch(const struct uncharge_gather * ug)4798 static void uncharge_batch(const struct uncharge_gather *ug)
4799 {
4800 	if (ug->nr_memory) {
4801 		memcg_uncharge(ug->memcg, ug->nr_memory);
4802 		if (ug->nr_kmem) {
4803 			mod_memcg_state(ug->memcg, MEMCG_KMEM, -ug->nr_kmem);
4804 			memcg1_account_kmem(ug->memcg, -ug->nr_kmem);
4805 		}
4806 		memcg1_oom_recover(ug->memcg);
4807 	}
4808 
4809 	memcg1_uncharge_batch(ug->memcg, ug->pgpgout, ug->nr_memory, ug->nid);
4810 
4811 	/* drop reference from uncharge_folio */
4812 	css_put(&ug->memcg->css);
4813 }
4814 
uncharge_folio(struct folio * folio,struct uncharge_gather * ug)4815 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
4816 {
4817 	long nr_pages;
4818 	struct mem_cgroup *memcg;
4819 	struct obj_cgroup *objcg;
4820 
4821 	VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
4822 
4823 	/*
4824 	 * Nobody should be changing or seriously looking at
4825 	 * folio memcg or objcg at this point, we have fully
4826 	 * exclusive access to the folio.
4827 	 */
4828 	if (folio_memcg_kmem(folio)) {
4829 		objcg = __folio_objcg(folio);
4830 		/*
4831 		 * This get matches the put at the end of the function and
4832 		 * kmem pages do not hold memcg references anymore.
4833 		 */
4834 		memcg = get_mem_cgroup_from_objcg(objcg);
4835 	} else {
4836 		memcg = __folio_memcg(folio);
4837 	}
4838 
4839 	if (!memcg)
4840 		return;
4841 
4842 	if (ug->memcg != memcg) {
4843 		if (ug->memcg) {
4844 			uncharge_batch(ug);
4845 			uncharge_gather_clear(ug);
4846 		}
4847 		ug->memcg = memcg;
4848 		ug->nid = folio_nid(folio);
4849 
4850 		/* pairs with css_put in uncharge_batch */
4851 		css_get(&memcg->css);
4852 	}
4853 
4854 	nr_pages = folio_nr_pages(folio);
4855 
4856 	if (folio_memcg_kmem(folio)) {
4857 		ug->nr_memory += nr_pages;
4858 		ug->nr_kmem += nr_pages;
4859 
4860 		folio->memcg_data = 0;
4861 		obj_cgroup_put(objcg);
4862 	} else {
4863 		/* LRU pages aren't accounted at the root level */
4864 		if (!mem_cgroup_is_root(memcg))
4865 			ug->nr_memory += nr_pages;
4866 		ug->pgpgout++;
4867 
4868 		WARN_ON_ONCE(folio_unqueue_deferred_split(folio));
4869 		folio->memcg_data = 0;
4870 	}
4871 
4872 	css_put(&memcg->css);
4873 }
4874 
__mem_cgroup_uncharge(struct folio * folio)4875 void __mem_cgroup_uncharge(struct folio *folio)
4876 {
4877 	struct uncharge_gather ug;
4878 
4879 	/* Don't touch folio->lru of any random page, pre-check: */
4880 	if (!folio_memcg_charged(folio))
4881 		return;
4882 
4883 	uncharge_gather_clear(&ug);
4884 	uncharge_folio(folio, &ug);
4885 	uncharge_batch(&ug);
4886 }
4887 
__mem_cgroup_uncharge_folios(struct folio_batch * folios)4888 void __mem_cgroup_uncharge_folios(struct folio_batch *folios)
4889 {
4890 	struct uncharge_gather ug;
4891 	unsigned int i;
4892 
4893 	uncharge_gather_clear(&ug);
4894 	for (i = 0; i < folios->nr; i++)
4895 		uncharge_folio(folios->folios[i], &ug);
4896 	if (ug.memcg)
4897 		uncharge_batch(&ug);
4898 }
4899 
4900 /**
4901  * mem_cgroup_replace_folio - Charge a folio's replacement.
4902  * @old: Currently circulating folio.
4903  * @new: Replacement folio.
4904  *
4905  * Charge @new as a replacement folio for @old. @old will
4906  * be uncharged upon free.
4907  *
4908  * Both folios must be locked, @new->mapping must be set up.
4909  */
mem_cgroup_replace_folio(struct folio * old,struct folio * new)4910 void mem_cgroup_replace_folio(struct folio *old, struct folio *new)
4911 {
4912 	struct mem_cgroup *memcg;
4913 	long nr_pages = folio_nr_pages(new);
4914 
4915 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4916 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4917 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4918 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
4919 
4920 	if (mem_cgroup_disabled())
4921 		return;
4922 
4923 	/* Page cache replacement: new folio already charged? */
4924 	if (folio_memcg_charged(new))
4925 		return;
4926 
4927 	memcg = folio_memcg(old);
4928 	VM_WARN_ON_ONCE_FOLIO(!memcg, old);
4929 	if (!memcg)
4930 		return;
4931 
4932 	/* Force-charge the new page. The old one will be freed soon */
4933 	if (!mem_cgroup_is_root(memcg)) {
4934 		page_counter_charge(&memcg->memory, nr_pages);
4935 		if (do_memsw_account())
4936 			page_counter_charge(&memcg->memsw, nr_pages);
4937 	}
4938 
4939 	css_get(&memcg->css);
4940 	commit_charge(new, memcg);
4941 	memcg1_commit_charge(new, memcg);
4942 }
4943 
4944 /**
4945  * mem_cgroup_migrate - Transfer the memcg data from the old to the new folio.
4946  * @old: Currently circulating folio.
4947  * @new: Replacement folio.
4948  *
4949  * Transfer the memcg data from the old folio to the new folio for migration.
4950  * The old folio's data info will be cleared. Note that the memory counters
4951  * will remain unchanged throughout the process.
4952  *
4953  * Both folios must be locked, @new->mapping must be set up.
4954  */
mem_cgroup_migrate(struct folio * old,struct folio * new)4955 void mem_cgroup_migrate(struct folio *old, struct folio *new)
4956 {
4957 	struct mem_cgroup *memcg;
4958 
4959 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
4960 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
4961 	VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
4962 	VM_BUG_ON_FOLIO(folio_nr_pages(old) != folio_nr_pages(new), new);
4963 	VM_BUG_ON_FOLIO(folio_test_lru(old), old);
4964 
4965 	if (mem_cgroup_disabled())
4966 		return;
4967 
4968 	memcg = folio_memcg(old);
4969 	/*
4970 	 * Note that it is normal to see !memcg for a hugetlb folio.
4971 	 * For e.g, itt could have been allocated when memory_hugetlb_accounting
4972 	 * was not selected.
4973 	 */
4974 	VM_WARN_ON_ONCE_FOLIO(!folio_test_hugetlb(old) && !memcg, old);
4975 	if (!memcg)
4976 		return;
4977 
4978 	/* Transfer the charge and the css ref */
4979 	commit_charge(new, memcg);
4980 
4981 	/* Warning should never happen, so don't worry about refcount non-0 */
4982 	WARN_ON_ONCE(folio_unqueue_deferred_split(old));
4983 	old->memcg_data = 0;
4984 }
4985 
4986 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
4987 EXPORT_SYMBOL(memcg_sockets_enabled_key);
4988 
mem_cgroup_sk_alloc(struct sock * sk)4989 void mem_cgroup_sk_alloc(struct sock *sk)
4990 {
4991 	struct mem_cgroup *memcg;
4992 
4993 	if (!mem_cgroup_sockets_enabled)
4994 		return;
4995 
4996 	/* Do not associate the sock with unrelated interrupted task's memcg. */
4997 	if (!in_task())
4998 		return;
4999 
5000 	rcu_read_lock();
5001 	memcg = mem_cgroup_from_task(current);
5002 	if (mem_cgroup_is_root(memcg))
5003 		goto out;
5004 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg1_tcpmem_active(memcg))
5005 		goto out;
5006 	if (css_tryget(&memcg->css))
5007 		sk->sk_memcg = memcg;
5008 out:
5009 	rcu_read_unlock();
5010 }
5011 
mem_cgroup_sk_free(struct sock * sk)5012 void mem_cgroup_sk_free(struct sock *sk)
5013 {
5014 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5015 
5016 	if (memcg)
5017 		css_put(&memcg->css);
5018 }
5019 
mem_cgroup_sk_inherit(const struct sock * sk,struct sock * newsk)5020 void mem_cgroup_sk_inherit(const struct sock *sk, struct sock *newsk)
5021 {
5022 	struct mem_cgroup *memcg;
5023 
5024 	if (sk->sk_memcg == newsk->sk_memcg)
5025 		return;
5026 
5027 	mem_cgroup_sk_free(newsk);
5028 
5029 	memcg = mem_cgroup_from_sk(sk);
5030 	if (memcg)
5031 		css_get(&memcg->css);
5032 
5033 	newsk->sk_memcg = sk->sk_memcg;
5034 }
5035 
5036 /**
5037  * mem_cgroup_sk_charge - charge socket memory
5038  * @sk: socket in memcg to charge
5039  * @nr_pages: number of pages to charge
5040  * @gfp_mask: reclaim mode
5041  *
5042  * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5043  * @memcg's configured limit, %false if it doesn't.
5044  */
mem_cgroup_sk_charge(const struct sock * sk,unsigned int nr_pages,gfp_t gfp_mask)5045 bool mem_cgroup_sk_charge(const struct sock *sk, unsigned int nr_pages,
5046 			  gfp_t gfp_mask)
5047 {
5048 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5049 
5050 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5051 		return memcg1_charge_skmem(memcg, nr_pages, gfp_mask);
5052 
5053 	if (try_charge_memcg(memcg, gfp_mask, nr_pages) == 0) {
5054 		mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5055 		return true;
5056 	}
5057 
5058 	return false;
5059 }
5060 
5061 /**
5062  * mem_cgroup_sk_uncharge - uncharge socket memory
5063  * @sk: socket in memcg to uncharge
5064  * @nr_pages: number of pages to uncharge
5065  */
mem_cgroup_sk_uncharge(const struct sock * sk,unsigned int nr_pages)5066 void mem_cgroup_sk_uncharge(const struct sock *sk, unsigned int nr_pages)
5067 {
5068 	struct mem_cgroup *memcg = mem_cgroup_from_sk(sk);
5069 
5070 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5071 		memcg1_uncharge_skmem(memcg, nr_pages);
5072 		return;
5073 	}
5074 
5075 	mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5076 
5077 	refill_stock(memcg, nr_pages);
5078 }
5079 
cgroup_memory(char * s)5080 static int __init cgroup_memory(char *s)
5081 {
5082 	char *token;
5083 
5084 	while ((token = strsep(&s, ",")) != NULL) {
5085 		if (!*token)
5086 			continue;
5087 		if (!strcmp(token, "nosocket"))
5088 			cgroup_memory_nosocket = true;
5089 		if (!strcmp(token, "nokmem"))
5090 			cgroup_memory_nokmem = true;
5091 		if (!strcmp(token, "nobpf"))
5092 			cgroup_memory_nobpf = true;
5093 	}
5094 	return 1;
5095 }
5096 __setup("cgroup.memory=", cgroup_memory);
5097 
5098 /*
5099  * Memory controller init before cgroup_init() initialize root_mem_cgroup.
5100  *
5101  * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5102  * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5103  * basically everything that doesn't depend on a specific mem_cgroup structure
5104  * should be initialized from here.
5105  */
mem_cgroup_init(void)5106 int __init mem_cgroup_init(void)
5107 {
5108 	unsigned int memcg_size;
5109 	int cpu;
5110 
5111 	/*
5112 	 * Currently s32 type (can refer to struct batched_lruvec_stat) is
5113 	 * used for per-memcg-per-cpu caching of per-node statistics. In order
5114 	 * to work fine, we should make sure that the overfill threshold can't
5115 	 * exceed S32_MAX / PAGE_SIZE.
5116 	 */
5117 	BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
5118 
5119 	cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5120 				  memcg_hotplug_cpu_dead);
5121 
5122 	for_each_possible_cpu(cpu) {
5123 		INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5124 			  drain_local_memcg_stock);
5125 		INIT_WORK(&per_cpu_ptr(&obj_stock, cpu)->work,
5126 			  drain_local_obj_stock);
5127 	}
5128 
5129 	memcg_size = struct_size_t(struct mem_cgroup, nodeinfo, nr_node_ids);
5130 	memcg_cachep = kmem_cache_create("mem_cgroup", memcg_size, 0,
5131 					 SLAB_PANIC | SLAB_HWCACHE_ALIGN, NULL);
5132 
5133 	memcg_pn_cachep = KMEM_CACHE(mem_cgroup_per_node,
5134 				     SLAB_PANIC | SLAB_HWCACHE_ALIGN);
5135 
5136 	return 0;
5137 }
5138 
5139 #ifdef CONFIG_SWAP
5140 /**
5141  * __mem_cgroup_try_charge_swap - try charging swap space for a folio
5142  * @folio: folio being added to swap
5143  * @entry: swap entry to charge
5144  *
5145  * Try to charge @folio's memcg for the swap space at @entry.
5146  *
5147  * Returns 0 on success, -ENOMEM on failure.
5148  */
__mem_cgroup_try_charge_swap(struct folio * folio,swp_entry_t entry)5149 int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
5150 {
5151 	unsigned int nr_pages = folio_nr_pages(folio);
5152 	struct page_counter *counter;
5153 	struct mem_cgroup *memcg;
5154 
5155 	if (do_memsw_account())
5156 		return 0;
5157 
5158 	memcg = folio_memcg(folio);
5159 
5160 	VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
5161 	if (!memcg)
5162 		return 0;
5163 
5164 	if (!entry.val) {
5165 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5166 		return 0;
5167 	}
5168 
5169 	memcg = mem_cgroup_id_get_online(memcg);
5170 
5171 	if (!mem_cgroup_is_root(memcg) &&
5172 	    !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
5173 		memcg_memory_event(memcg, MEMCG_SWAP_MAX);
5174 		memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
5175 		mem_cgroup_id_put(memcg);
5176 		return -ENOMEM;
5177 	}
5178 
5179 	/* Get references for the tail pages, too */
5180 	if (nr_pages > 1)
5181 		mem_cgroup_id_get_many(memcg, nr_pages - 1);
5182 	mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
5183 
5184 	swap_cgroup_record(folio, mem_cgroup_id(memcg), entry);
5185 
5186 	return 0;
5187 }
5188 
5189 /**
5190  * __mem_cgroup_uncharge_swap - uncharge swap space
5191  * @entry: swap entry to uncharge
5192  * @nr_pages: the amount of swap space to uncharge
5193  */
__mem_cgroup_uncharge_swap(swp_entry_t entry,unsigned int nr_pages)5194 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
5195 {
5196 	struct mem_cgroup *memcg;
5197 	unsigned short id;
5198 
5199 	id = swap_cgroup_clear(entry, nr_pages);
5200 	rcu_read_lock();
5201 	memcg = mem_cgroup_from_id(id);
5202 	if (memcg) {
5203 		if (!mem_cgroup_is_root(memcg)) {
5204 			if (do_memsw_account())
5205 				page_counter_uncharge(&memcg->memsw, nr_pages);
5206 			else
5207 				page_counter_uncharge(&memcg->swap, nr_pages);
5208 		}
5209 		mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
5210 		mem_cgroup_id_put_many(memcg, nr_pages);
5211 	}
5212 	rcu_read_unlock();
5213 }
5214 
mem_cgroup_get_nr_swap_pages(struct mem_cgroup * memcg)5215 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5216 {
5217 	long nr_swap_pages = get_nr_swap_pages();
5218 
5219 	if (mem_cgroup_disabled() || do_memsw_account())
5220 		return nr_swap_pages;
5221 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
5222 		nr_swap_pages = min_t(long, nr_swap_pages,
5223 				      READ_ONCE(memcg->swap.max) -
5224 				      page_counter_read(&memcg->swap));
5225 	return nr_swap_pages;
5226 }
5227 
mem_cgroup_swap_full(struct folio * folio)5228 bool mem_cgroup_swap_full(struct folio *folio)
5229 {
5230 	struct mem_cgroup *memcg;
5231 
5232 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5233 
5234 	if (vm_swap_full())
5235 		return true;
5236 	if (do_memsw_account())
5237 		return false;
5238 
5239 	memcg = folio_memcg(folio);
5240 	if (!memcg)
5241 		return false;
5242 
5243 	for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
5244 		unsigned long usage = page_counter_read(&memcg->swap);
5245 
5246 		if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
5247 		    usage * 2 >= READ_ONCE(memcg->swap.max))
5248 			return true;
5249 	}
5250 
5251 	return false;
5252 }
5253 
setup_swap_account(char * s)5254 static int __init setup_swap_account(char *s)
5255 {
5256 	bool res;
5257 
5258 	if (!kstrtobool(s, &res) && !res)
5259 		pr_warn_once("The swapaccount=0 commandline option is deprecated "
5260 			     "in favor of configuring swap control via cgroupfs. "
5261 			     "Please report your usecase to linux-mm@kvack.org if you "
5262 			     "depend on this functionality.\n");
5263 	return 1;
5264 }
5265 __setup("swapaccount=", setup_swap_account);
5266 
swap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5267 static u64 swap_current_read(struct cgroup_subsys_state *css,
5268 			     struct cftype *cft)
5269 {
5270 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5271 
5272 	return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5273 }
5274 
swap_peak_show(struct seq_file * sf,void * v)5275 static int swap_peak_show(struct seq_file *sf, void *v)
5276 {
5277 	struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5278 
5279 	return peak_show(sf, v, &memcg->swap);
5280 }
5281 
swap_peak_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5282 static ssize_t swap_peak_write(struct kernfs_open_file *of, char *buf,
5283 			       size_t nbytes, loff_t off)
5284 {
5285 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5286 
5287 	return peak_write(of, buf, nbytes, off, &memcg->swap,
5288 			  &memcg->swap_peaks);
5289 }
5290 
swap_high_show(struct seq_file * m,void * v)5291 static int swap_high_show(struct seq_file *m, void *v)
5292 {
5293 	return seq_puts_memcg_tunable(m,
5294 		READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
5295 }
5296 
swap_high_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5297 static ssize_t swap_high_write(struct kernfs_open_file *of,
5298 			       char *buf, size_t nbytes, loff_t off)
5299 {
5300 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5301 	unsigned long high;
5302 	int err;
5303 
5304 	buf = strstrip(buf);
5305 	err = page_counter_memparse(buf, "max", &high);
5306 	if (err)
5307 		return err;
5308 
5309 	page_counter_set_high(&memcg->swap, high);
5310 
5311 	return nbytes;
5312 }
5313 
swap_max_show(struct seq_file * m,void * v)5314 static int swap_max_show(struct seq_file *m, void *v)
5315 {
5316 	return seq_puts_memcg_tunable(m,
5317 		READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
5318 }
5319 
swap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5320 static ssize_t swap_max_write(struct kernfs_open_file *of,
5321 			      char *buf, size_t nbytes, loff_t off)
5322 {
5323 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5324 	unsigned long max;
5325 	int err;
5326 
5327 	buf = strstrip(buf);
5328 	err = page_counter_memparse(buf, "max", &max);
5329 	if (err)
5330 		return err;
5331 
5332 	xchg(&memcg->swap.max, max);
5333 
5334 	return nbytes;
5335 }
5336 
swap_events_show(struct seq_file * m,void * v)5337 static int swap_events_show(struct seq_file *m, void *v)
5338 {
5339 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5340 
5341 	seq_printf(m, "high %lu\n",
5342 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
5343 	seq_printf(m, "max %lu\n",
5344 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
5345 	seq_printf(m, "fail %lu\n",
5346 		   atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
5347 
5348 	return 0;
5349 }
5350 
5351 static struct cftype swap_files[] = {
5352 	{
5353 		.name = "swap.current",
5354 		.flags = CFTYPE_NOT_ON_ROOT,
5355 		.read_u64 = swap_current_read,
5356 	},
5357 	{
5358 		.name = "swap.high",
5359 		.flags = CFTYPE_NOT_ON_ROOT,
5360 		.seq_show = swap_high_show,
5361 		.write = swap_high_write,
5362 	},
5363 	{
5364 		.name = "swap.max",
5365 		.flags = CFTYPE_NOT_ON_ROOT,
5366 		.seq_show = swap_max_show,
5367 		.write = swap_max_write,
5368 	},
5369 	{
5370 		.name = "swap.peak",
5371 		.flags = CFTYPE_NOT_ON_ROOT,
5372 		.open = peak_open,
5373 		.release = peak_release,
5374 		.seq_show = swap_peak_show,
5375 		.write = swap_peak_write,
5376 	},
5377 	{
5378 		.name = "swap.events",
5379 		.flags = CFTYPE_NOT_ON_ROOT,
5380 		.file_offset = offsetof(struct mem_cgroup, swap_events_file),
5381 		.seq_show = swap_events_show,
5382 	},
5383 	{ }	/* terminate */
5384 };
5385 
5386 #ifdef CONFIG_ZSWAP
5387 /**
5388  * obj_cgroup_may_zswap - check if this cgroup can zswap
5389  * @objcg: the object cgroup
5390  *
5391  * Check if the hierarchical zswap limit has been reached.
5392  *
5393  * This doesn't check for specific headroom, and it is not atomic
5394  * either. But with zswap, the size of the allocation is only known
5395  * once compression has occurred, and this optimistic pre-check avoids
5396  * spending cycles on compression when there is already no room left
5397  * or zswap is disabled altogether somewhere in the hierarchy.
5398  */
obj_cgroup_may_zswap(struct obj_cgroup * objcg)5399 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
5400 {
5401 	struct mem_cgroup *memcg, *original_memcg;
5402 	bool ret = true;
5403 
5404 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5405 		return true;
5406 
5407 	original_memcg = get_mem_cgroup_from_objcg(objcg);
5408 	for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
5409 	     memcg = parent_mem_cgroup(memcg)) {
5410 		unsigned long max = READ_ONCE(memcg->zswap_max);
5411 		unsigned long pages;
5412 
5413 		if (max == PAGE_COUNTER_MAX)
5414 			continue;
5415 		if (max == 0) {
5416 			ret = false;
5417 			break;
5418 		}
5419 
5420 		/* Force flush to get accurate stats for charging */
5421 		__mem_cgroup_flush_stats(memcg, true);
5422 		pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
5423 		if (pages < max)
5424 			continue;
5425 		ret = false;
5426 		break;
5427 	}
5428 	mem_cgroup_put(original_memcg);
5429 	return ret;
5430 }
5431 
5432 /**
5433  * obj_cgroup_charge_zswap - charge compression backend memory
5434  * @objcg: the object cgroup
5435  * @size: size of compressed object
5436  *
5437  * This forces the charge after obj_cgroup_may_zswap() allowed
5438  * compression and storage in zwap for this cgroup to go ahead.
5439  */
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)5440 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
5441 {
5442 	struct mem_cgroup *memcg;
5443 
5444 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5445 		return;
5446 
5447 	VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
5448 
5449 	/* PF_MEMALLOC context, charging must succeed */
5450 	if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
5451 		VM_WARN_ON_ONCE(1);
5452 
5453 	rcu_read_lock();
5454 	memcg = obj_cgroup_memcg(objcg);
5455 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
5456 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
5457 	rcu_read_unlock();
5458 }
5459 
5460 /**
5461  * obj_cgroup_uncharge_zswap - uncharge compression backend memory
5462  * @objcg: the object cgroup
5463  * @size: size of compressed object
5464  *
5465  * Uncharges zswap memory on page in.
5466  */
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)5467 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
5468 {
5469 	struct mem_cgroup *memcg;
5470 
5471 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
5472 		return;
5473 
5474 	obj_cgroup_uncharge(objcg, size);
5475 
5476 	rcu_read_lock();
5477 	memcg = obj_cgroup_memcg(objcg);
5478 	mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
5479 	mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
5480 	rcu_read_unlock();
5481 }
5482 
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)5483 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
5484 {
5485 	/* if zswap is disabled, do not block pages going to the swapping device */
5486 	if (!zswap_is_enabled())
5487 		return true;
5488 
5489 	for (; memcg; memcg = parent_mem_cgroup(memcg))
5490 		if (!READ_ONCE(memcg->zswap_writeback))
5491 			return false;
5492 
5493 	return true;
5494 }
5495 
zswap_current_read(struct cgroup_subsys_state * css,struct cftype * cft)5496 static u64 zswap_current_read(struct cgroup_subsys_state *css,
5497 			      struct cftype *cft)
5498 {
5499 	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5500 
5501 	mem_cgroup_flush_stats(memcg);
5502 	return memcg_page_state(memcg, MEMCG_ZSWAP_B);
5503 }
5504 
zswap_max_show(struct seq_file * m,void * v)5505 static int zswap_max_show(struct seq_file *m, void *v)
5506 {
5507 	return seq_puts_memcg_tunable(m,
5508 		READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
5509 }
5510 
zswap_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5511 static ssize_t zswap_max_write(struct kernfs_open_file *of,
5512 			       char *buf, size_t nbytes, loff_t off)
5513 {
5514 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5515 	unsigned long max;
5516 	int err;
5517 
5518 	buf = strstrip(buf);
5519 	err = page_counter_memparse(buf, "max", &max);
5520 	if (err)
5521 		return err;
5522 
5523 	xchg(&memcg->zswap_max, max);
5524 
5525 	return nbytes;
5526 }
5527 
zswap_writeback_show(struct seq_file * m,void * v)5528 static int zswap_writeback_show(struct seq_file *m, void *v)
5529 {
5530 	struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5531 
5532 	seq_printf(m, "%d\n", READ_ONCE(memcg->zswap_writeback));
5533 	return 0;
5534 }
5535 
zswap_writeback_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)5536 static ssize_t zswap_writeback_write(struct kernfs_open_file *of,
5537 				char *buf, size_t nbytes, loff_t off)
5538 {
5539 	struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5540 	int zswap_writeback;
5541 	ssize_t parse_ret = kstrtoint(strstrip(buf), 0, &zswap_writeback);
5542 
5543 	if (parse_ret)
5544 		return parse_ret;
5545 
5546 	if (zswap_writeback != 0 && zswap_writeback != 1)
5547 		return -EINVAL;
5548 
5549 	WRITE_ONCE(memcg->zswap_writeback, zswap_writeback);
5550 	return nbytes;
5551 }
5552 
5553 static struct cftype zswap_files[] = {
5554 	{
5555 		.name = "zswap.current",
5556 		.flags = CFTYPE_NOT_ON_ROOT,
5557 		.read_u64 = zswap_current_read,
5558 	},
5559 	{
5560 		.name = "zswap.max",
5561 		.flags = CFTYPE_NOT_ON_ROOT,
5562 		.seq_show = zswap_max_show,
5563 		.write = zswap_max_write,
5564 	},
5565 	{
5566 		.name = "zswap.writeback",
5567 		.seq_show = zswap_writeback_show,
5568 		.write = zswap_writeback_write,
5569 	},
5570 	{ }	/* terminate */
5571 };
5572 #endif /* CONFIG_ZSWAP */
5573 
mem_cgroup_swap_init(void)5574 static int __init mem_cgroup_swap_init(void)
5575 {
5576 	if (mem_cgroup_disabled())
5577 		return 0;
5578 
5579 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
5580 #ifdef CONFIG_MEMCG_V1
5581 	WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
5582 #endif
5583 #ifdef CONFIG_ZSWAP
5584 	WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
5585 #endif
5586 	return 0;
5587 }
5588 subsys_initcall(mem_cgroup_swap_init);
5589 
5590 #endif /* CONFIG_SWAP */
5591 
mem_cgroup_node_allowed(struct mem_cgroup * memcg,int nid)5592 bool mem_cgroup_node_allowed(struct mem_cgroup *memcg, int nid)
5593 {
5594 	return memcg ? cpuset_node_allowed(memcg->css.cgroup, nid) : true;
5595 }
5596