1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5 * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
6 *
7 * Author: Rob Clark <robdclark@gmail.com>
8 */
9
10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_cwb.h"
28 #include "dpu_hw_dspp.h"
29 #include "dpu_hw_dsc.h"
30 #include "dpu_hw_merge3d.h"
31 #include "dpu_hw_cdm.h"
32 #include "dpu_formats.h"
33 #include "dpu_encoder_phys.h"
34 #include "dpu_crtc.h"
35 #include "dpu_trace.h"
36 #include "dpu_core_irq.h"
37 #include "disp/msm_disp_snapshot.h"
38
39 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
40 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41
42 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
43 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
44
45 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
46 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
47
48 /*
49 * Two to anticipate panels that can do cmd/vid dynamic switching
50 * plan is to create all possible physical encoder types, and switch between
51 * them at runtime
52 */
53 #define NUM_PHYS_ENCODER_TYPES 2
54
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57
58 #define MAX_CHANNELS_PER_ENC 2
59
60 #define IDLE_SHORT_TIMEOUT 1
61
62 /* timeout in frames waiting for frame done */
63 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
64
65 /**
66 * enum dpu_enc_rc_events - events for resource control state machine
67 * @DPU_ENC_RC_EVENT_KICKOFF:
68 * This event happens at NORMAL priority.
69 * Event that signals the start of the transfer. When this event is
70 * received, enable MDP/DSI core clocks. Regardless of the previous
71 * state, the resource should be in ON state at the end of this event.
72 * @DPU_ENC_RC_EVENT_FRAME_DONE:
73 * This event happens at INTERRUPT level.
74 * Event signals the end of the data transfer after the PP FRAME_DONE
75 * event. At the end of this event, a delayed work is scheduled to go to
76 * IDLE_PC state after IDLE_TIMEOUT time.
77 * @DPU_ENC_RC_EVENT_PRE_STOP:
78 * This event happens at NORMAL priority.
79 * This event, when received during the ON state, leave the RC STATE
80 * in the PRE_OFF state. It should be followed by the STOP event as
81 * part of encoder disable.
82 * If received during IDLE or OFF states, it will do nothing.
83 * @DPU_ENC_RC_EVENT_STOP:
84 * This event happens at NORMAL priority.
85 * When this event is received, disable all the MDP/DSI core clocks, and
86 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
87 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
88 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
89 * Resource state should be in OFF at the end of the event.
90 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
91 * This event happens at NORMAL priority from a work item.
92 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
93 * This would disable MDP/DSI core clocks and change the resource state
94 * to IDLE.
95 */
96 enum dpu_enc_rc_events {
97 DPU_ENC_RC_EVENT_KICKOFF = 1,
98 DPU_ENC_RC_EVENT_FRAME_DONE,
99 DPU_ENC_RC_EVENT_PRE_STOP,
100 DPU_ENC_RC_EVENT_STOP,
101 DPU_ENC_RC_EVENT_ENTER_IDLE
102 };
103
104 /*
105 * enum dpu_enc_rc_states - states that the resource control maintains
106 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
107 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
108 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
109 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
110 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
111 */
112 enum dpu_enc_rc_states {
113 DPU_ENC_RC_STATE_OFF,
114 DPU_ENC_RC_STATE_PRE_OFF,
115 DPU_ENC_RC_STATE_ON,
116 DPU_ENC_RC_STATE_IDLE
117 };
118
119 /**
120 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
121 * encoders. Virtual encoder manages one "logical" display. Physical
122 * encoders manage one intf block, tied to a specific panel/sub-panel.
123 * Virtual encoder defers as much as possible to the physical encoders.
124 * Virtual encoder registers itself with the DRM Framework as the encoder.
125 * @base: drm_encoder base class for registration with DRM
126 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
127 * @enabled: True if the encoder is active, protected by enc_lock
128 * @commit_done_timedout: True if there has been a timeout on commit after
129 * enabling the encoder.
130 * @num_phys_encs: Actual number of physical encoders contained.
131 * @phys_encs: Container of physical encoders managed.
132 * @cur_master: Pointer to the current master in this mode. Optimization
133 * Only valid after enable. Cleared as disable.
134 * @cur_slave: As above but for the slave encoder.
135 * @hw_pp: Handle to the pingpong blocks used for the display. No.
136 * pingpong blocks can be different than num_phys_encs.
137 * @hw_cwb: Handle to the CWB muxes used for concurrent writeback
138 * display. Number of CWB muxes can be different than
139 * num_phys_encs.
140 * @hw_dsc: Handle to the DSC blocks used for the display.
141 * @dsc_mask: Bitmask of used DSC blocks.
142 * @cwb_mask: Bitmask of used CWB muxes
143 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped
144 * for partial update right-only cases, such as pingpong
145 * split where virtual pingpong does not generate IRQs
146 * @crtc: Pointer to the currently assigned crtc. Normally you
147 * would use crtc->state->encoder_mask to determine the
148 * link between encoder/crtc. However in this case we need
149 * to track crtc in the disable() hook which is called
150 * _after_ encoder_mask is cleared.
151 * @connector: If a mode is set, cached pointer to the active connector
152 * @enc_lock: Lock around physical encoder
153 * create/destroy/enable/disable
154 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
155 * busy processing current command.
156 * Bit0 = phys_encs[0] etc.
157 * @frame_done_timeout_ms: frame done timeout in ms
158 * @frame_done_timeout_cnt: atomic counter tracking the number of frame
159 * done timeouts
160 * @frame_done_timer: watchdog timer for frame done event
161 * @disp_info: local copy of msm_display_info struct
162 * @idle_pc_supported: indicate if idle power collaps is supported
163 * @rc_lock: resource control mutex lock to protect
164 * virt encoder over various state changes
165 * @rc_state: resource controller state
166 * @delayed_off_work: delayed worker to schedule disabling of
167 * clks and resources after IDLE_TIMEOUT time.
168 * @topology: topology of the display
169 * @idle_timeout: idle timeout duration in milliseconds
170 * @wide_bus_en: wide bus is enabled on this interface
171 * @dsc: drm_dsc_config pointer, for DSC-enabled encoders
172 */
173 struct dpu_encoder_virt {
174 struct drm_encoder base;
175 spinlock_t enc_spinlock;
176
177 bool enabled;
178 bool commit_done_timedout;
179
180 unsigned int num_phys_encs;
181 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
182 struct dpu_encoder_phys *cur_master;
183 struct dpu_encoder_phys *cur_slave;
184 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
185 struct dpu_hw_cwb *hw_cwb[MAX_CHANNELS_PER_ENC];
186 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
187
188 unsigned int dsc_mask;
189 unsigned int cwb_mask;
190
191 bool intfs_swapped;
192
193 struct drm_crtc *crtc;
194 struct drm_connector *connector;
195
196 struct mutex enc_lock;
197 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
198
199 atomic_t frame_done_timeout_ms;
200 atomic_t frame_done_timeout_cnt;
201 struct timer_list frame_done_timer;
202
203 struct msm_display_info disp_info;
204
205 bool idle_pc_supported;
206 struct mutex rc_lock;
207 enum dpu_enc_rc_states rc_state;
208 struct delayed_work delayed_off_work;
209 struct msm_display_topology topology;
210
211 u32 idle_timeout;
212
213 bool wide_bus_en;
214
215 /* DSC configuration */
216 struct drm_dsc_config *dsc;
217 };
218
219 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
220
221 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
222 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
223 };
224
225 /**
226 * dpu_encoder_get_drm_fmt - return DRM fourcc format
227 * @phys_enc: Pointer to physical encoder structure
228 */
dpu_encoder_get_drm_fmt(struct dpu_encoder_phys * phys_enc)229 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
230 {
231 struct drm_encoder *drm_enc;
232 struct dpu_encoder_virt *dpu_enc;
233 struct drm_display_info *info;
234 struct drm_display_mode *mode;
235
236 drm_enc = phys_enc->parent;
237 dpu_enc = to_dpu_encoder_virt(drm_enc);
238 info = &dpu_enc->connector->display_info;
239 mode = &phys_enc->cached_mode;
240
241 if (drm_mode_is_420_only(info, mode))
242 return DRM_FORMAT_YUV420;
243
244 return DRM_FORMAT_RGB888;
245 }
246
247 /**
248 * dpu_encoder_needs_periph_flush - return true if physical encoder requires
249 * peripheral flush
250 * @phys_enc: Pointer to physical encoder structure
251 */
dpu_encoder_needs_periph_flush(struct dpu_encoder_phys * phys_enc)252 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
253 {
254 struct drm_encoder *drm_enc;
255 struct dpu_encoder_virt *dpu_enc;
256 struct msm_display_info *disp_info;
257 struct msm_drm_private *priv;
258 struct drm_display_mode *mode;
259
260 drm_enc = phys_enc->parent;
261 dpu_enc = to_dpu_encoder_virt(drm_enc);
262 disp_info = &dpu_enc->disp_info;
263 priv = drm_enc->dev->dev_private;
264 mode = &phys_enc->cached_mode;
265
266 return phys_enc->hw_intf->cap->type == INTF_DP &&
267 msm_dp_needs_periph_flush(priv->kms->dp[disp_info->h_tile_instance[0]], mode);
268 }
269
270 /**
271 * dpu_encoder_is_widebus_enabled - return bool value if widebus is enabled
272 * @drm_enc: Pointer to previously created drm encoder structure
273 */
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)274 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
275 {
276 const struct dpu_encoder_virt *dpu_enc;
277 struct msm_drm_private *priv = drm_enc->dev->dev_private;
278 const struct msm_display_info *disp_info;
279 int index;
280
281 dpu_enc = to_dpu_encoder_virt(drm_enc);
282 disp_info = &dpu_enc->disp_info;
283 index = disp_info->h_tile_instance[0];
284
285 if (disp_info->intf_type == INTF_DP)
286 return msm_dp_wide_bus_available(priv->kms->dp[index]);
287 else if (disp_info->intf_type == INTF_DSI)
288 return msm_dsi_wide_bus_enabled(priv->kms->dsi[index]);
289
290 return false;
291 }
292
293 /**
294 * dpu_encoder_is_dsc_enabled - indicate whether dsc is enabled
295 * for the encoder.
296 * @drm_enc: Pointer to previously created drm encoder structure
297 */
dpu_encoder_is_dsc_enabled(const struct drm_encoder * drm_enc)298 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
299 {
300 const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
301
302 return dpu_enc->dsc ? true : false;
303 }
304
305 /**
306 * dpu_encoder_get_crc_values_cnt - get number of physical encoders contained
307 * in virtual encoder that can collect CRC values
308 * @drm_enc: Pointer to previously created drm encoder structure
309 * Returns: Number of physical encoders for given drm encoder
310 */
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)311 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
312 {
313 struct dpu_encoder_virt *dpu_enc;
314 int i, num_intf = 0;
315
316 dpu_enc = to_dpu_encoder_virt(drm_enc);
317
318 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
319 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
320
321 if (phys->hw_intf && phys->hw_intf->ops.setup_misr
322 && phys->hw_intf->ops.collect_misr)
323 num_intf++;
324 }
325
326 return num_intf;
327 }
328
329 /**
330 * dpu_encoder_setup_misr - enable misr calculations
331 * @drm_enc: Pointer to previously created drm encoder structure
332 */
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)333 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
334 {
335 struct dpu_encoder_virt *dpu_enc;
336
337 int i;
338
339 dpu_enc = to_dpu_encoder_virt(drm_enc);
340
341 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
342 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
343
344 if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
345 continue;
346
347 phys->hw_intf->ops.setup_misr(phys->hw_intf);
348 }
349 }
350
351 /**
352 * dpu_encoder_get_crc - get the crc value from interface blocks
353 * @drm_enc: Pointer to previously created drm encoder structure
354 * @crcs: array to fill with CRC data
355 * @pos: offset into the @crcs array
356 * Returns: 0 on success, error otherwise
357 */
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)358 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
359 {
360 struct dpu_encoder_virt *dpu_enc;
361
362 int i, rc = 0, entries_added = 0;
363
364 if (!drm_enc->crtc) {
365 DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
366 return -EINVAL;
367 }
368
369 dpu_enc = to_dpu_encoder_virt(drm_enc);
370
371 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
372 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
373
374 if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
375 continue;
376
377 rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
378 if (rc)
379 return rc;
380 entries_added++;
381 }
382
383 return entries_added;
384 }
385
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)386 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
387 {
388 struct dpu_hw_dither_cfg dither_cfg = { 0 };
389
390 if (!hw_pp->ops.setup_dither)
391 return;
392
393 switch (bpc) {
394 case 6:
395 dither_cfg.c0_bitdepth = 6;
396 dither_cfg.c1_bitdepth = 6;
397 dither_cfg.c2_bitdepth = 6;
398 dither_cfg.c3_bitdepth = 6;
399 dither_cfg.temporal_en = 0;
400 break;
401 default:
402 hw_pp->ops.setup_dither(hw_pp, NULL);
403 return;
404 }
405
406 memcpy(&dither_cfg.matrix, dither_matrix,
407 sizeof(u32) * DITHER_MATRIX_SZ);
408
409 hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
410 }
411
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)412 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
413 {
414 switch (intf_mode) {
415 case INTF_MODE_VIDEO:
416 return "INTF_MODE_VIDEO";
417 case INTF_MODE_CMD:
418 return "INTF_MODE_CMD";
419 case INTF_MODE_WB_BLOCK:
420 return "INTF_MODE_WB_BLOCK";
421 case INTF_MODE_WB_LINE:
422 return "INTF_MODE_WB_LINE";
423 default:
424 return "INTF_MODE_UNKNOWN";
425 }
426 }
427
428 /**
429 * dpu_encoder_helper_report_irq_timeout - utility to report error that irq has
430 * timed out, including reporting frame error event to crtc and debug dump
431 * @phys_enc: Pointer to physical encoder structure
432 * @intr_idx: Failing interrupt index
433 */
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)434 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
435 enum dpu_intr_idx intr_idx)
436 {
437 DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
438 DRMID(phys_enc->parent),
439 dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
440 phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
441 phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
442 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
443
444 dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
445 DPU_ENCODER_FRAME_EVENT_ERROR);
446 }
447
448 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
449 u32 irq_idx, struct dpu_encoder_wait_info *info);
450
451 /**
452 * dpu_encoder_helper_wait_for_irq - utility to wait on an irq.
453 * note: will call dpu_encoder_helper_wait_for_irq on timeout
454 * @phys_enc: Pointer to physical encoder structure
455 * @irq_idx: IRQ index
456 * @func: IRQ callback to be called in case of timeout
457 * @wait_info: wait info struct
458 * @return: 0 or -ERROR
459 */
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,unsigned int irq_idx,void (* func)(void * arg),struct dpu_encoder_wait_info * wait_info)460 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
461 unsigned int irq_idx,
462 void (*func)(void *arg),
463 struct dpu_encoder_wait_info *wait_info)
464 {
465 u32 irq_status;
466 int ret;
467
468 if (!wait_info) {
469 DPU_ERROR("invalid params\n");
470 return -EINVAL;
471 }
472 /* note: do master / slave checking outside */
473
474 /* return EWOULDBLOCK since we know the wait isn't necessary */
475 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
476 DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
477 DRMID(phys_enc->parent), func,
478 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
479 return -EWOULDBLOCK;
480 }
481
482 if (irq_idx == 0) {
483 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
484 DRMID(phys_enc->parent), func);
485 return 0;
486 }
487
488 DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
489 DRMID(phys_enc->parent), func,
490 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
491 atomic_read(wait_info->atomic_cnt));
492
493 ret = dpu_encoder_helper_wait_event_timeout(
494 DRMID(phys_enc->parent),
495 irq_idx,
496 wait_info);
497
498 if (ret <= 0) {
499 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
500 if (irq_status) {
501 unsigned long flags;
502
503 DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
504 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
505 DRMID(phys_enc->parent), func,
506 phys_enc->hw_pp->idx - PINGPONG_0,
507 atomic_read(wait_info->atomic_cnt));
508 local_irq_save(flags);
509 func(phys_enc);
510 local_irq_restore(flags);
511 ret = 0;
512 } else {
513 ret = -ETIMEDOUT;
514 DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
515 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
516 DRMID(phys_enc->parent), func,
517 phys_enc->hw_pp->idx - PINGPONG_0,
518 atomic_read(wait_info->atomic_cnt));
519 }
520 } else {
521 ret = 0;
522 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
523 func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
524 phys_enc->hw_pp->idx - PINGPONG_0,
525 atomic_read(wait_info->atomic_cnt));
526 }
527
528 return ret;
529 }
530
531 /**
532 * dpu_encoder_get_vsync_count - get vsync count for the encoder.
533 * @drm_enc: Pointer to previously created drm encoder structure
534 */
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)535 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
536 {
537 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
538 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
539 return phys ? atomic_read(&phys->vsync_cnt) : 0;
540 }
541
542 /**
543 * dpu_encoder_get_linecount - get interface line count for the encoder.
544 * @drm_enc: Pointer to previously created drm encoder structure
545 */
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)546 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
547 {
548 struct dpu_encoder_virt *dpu_enc;
549 struct dpu_encoder_phys *phys;
550 int linecount = 0;
551
552 dpu_enc = to_dpu_encoder_virt(drm_enc);
553 phys = dpu_enc ? dpu_enc->cur_master : NULL;
554
555 if (phys && phys->ops.get_line_count)
556 linecount = phys->ops.get_line_count(phys);
557
558 return linecount;
559 }
560
561 /**
562 * dpu_encoder_helper_split_config - split display configuration helper function
563 * This helper function may be used by physical encoders to configure
564 * the split display related registers.
565 * @phys_enc: Pointer to physical encoder structure
566 * @interface: enum dpu_intf setting
567 */
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)568 void dpu_encoder_helper_split_config(
569 struct dpu_encoder_phys *phys_enc,
570 enum dpu_intf interface)
571 {
572 struct dpu_encoder_virt *dpu_enc;
573 struct split_pipe_cfg cfg = { 0 };
574 struct dpu_hw_mdp *hw_mdptop;
575 struct msm_display_info *disp_info;
576
577 if (!phys_enc->hw_mdptop || !phys_enc->parent) {
578 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
579 return;
580 }
581
582 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
583 hw_mdptop = phys_enc->hw_mdptop;
584 disp_info = &dpu_enc->disp_info;
585
586 if (disp_info->intf_type != INTF_DSI)
587 return;
588
589 /**
590 * disable split modes since encoder will be operating in as the only
591 * encoder, either for the entire use case in the case of, for example,
592 * single DSI, or for this frame in the case of left/right only partial
593 * update.
594 */
595 if (phys_enc->split_role == ENC_ROLE_SOLO) {
596 if (hw_mdptop->ops.setup_split_pipe)
597 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
598 return;
599 }
600
601 cfg.en = true;
602 cfg.mode = phys_enc->intf_mode;
603 cfg.intf = interface;
604
605 if (cfg.en && phys_enc->ops.needs_single_flush &&
606 phys_enc->ops.needs_single_flush(phys_enc))
607 cfg.split_flush_en = true;
608
609 if (phys_enc->split_role == ENC_ROLE_MASTER) {
610 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
611
612 if (hw_mdptop->ops.setup_split_pipe)
613 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
614 }
615 }
616
617 /**
618 * dpu_encoder_use_dsc_merge - returns true if the encoder uses DSC merge topology.
619 * @drm_enc: Pointer to previously created drm encoder structure
620 */
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)621 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
622 {
623 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
624 int i, intf_count = 0, num_dsc = 0;
625
626 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
627 if (dpu_enc->phys_encs[i])
628 intf_count++;
629
630 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
631 if (dpu_enc->hw_dsc[i])
632 num_dsc++;
633
634 return (num_dsc > 0) && (num_dsc > intf_count);
635 }
636
637 /**
638 * dpu_encoder_get_dsc_config - get DSC config for the DPU encoder
639 * This helper function is used by physical encoder to get DSC config
640 * used for this encoder.
641 * @drm_enc: Pointer to encoder structure
642 */
dpu_encoder_get_dsc_config(struct drm_encoder * drm_enc)643 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
644 {
645 struct msm_drm_private *priv = drm_enc->dev->dev_private;
646 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
647 int index = dpu_enc->disp_info.h_tile_instance[0];
648
649 if (dpu_enc->disp_info.intf_type == INTF_DSI)
650 return msm_dsi_get_dsc_config(priv->kms->dsi[index]);
651
652 return NULL;
653 }
654
dpu_encoder_update_topology(struct drm_encoder * drm_enc,struct msm_display_topology * topology,struct drm_atomic_state * state,const struct drm_display_mode * adj_mode)655 void dpu_encoder_update_topology(struct drm_encoder *drm_enc,
656 struct msm_display_topology *topology,
657 struct drm_atomic_state *state,
658 const struct drm_display_mode *adj_mode)
659 {
660 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
661 struct msm_drm_private *priv = dpu_enc->base.dev->dev_private;
662 struct msm_display_info *disp_info = &dpu_enc->disp_info;
663 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
664 struct drm_connector *connector;
665 struct drm_connector_state *conn_state;
666 struct drm_framebuffer *fb;
667 struct drm_dsc_config *dsc;
668
669 int i;
670
671 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
672 if (dpu_enc->phys_encs[i])
673 topology->num_intf++;
674
675 dsc = dpu_encoder_get_dsc_config(drm_enc);
676
677 /* We only support 2 DSC mode (with 2 LM and 1 INTF) */
678 if (dsc) {
679 /*
680 * Use 2 DSC encoders, 2 layer mixers and 1 or 2 interfaces
681 * when Display Stream Compression (DSC) is enabled,
682 * and when enough DSC blocks are available.
683 * This is power-optimal and can drive up to (including) 4k
684 * screens.
685 */
686 WARN(topology->num_intf > 2,
687 "DSC topology cannot support more than 2 interfaces\n");
688 if (topology->num_intf >= 2 || dpu_kms->catalog->dsc_count >= 2)
689 topology->num_dsc = 2;
690 else
691 topology->num_dsc = 1;
692 }
693
694 connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
695 if (!connector)
696 return;
697 conn_state = drm_atomic_get_new_connector_state(state, connector);
698 if (!conn_state)
699 return;
700
701 /*
702 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
703 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
704 * earlier.
705 */
706 if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
707 fb = conn_state->writeback_job->fb;
708
709 if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
710 topology->num_cdm++;
711 } else if (disp_info->intf_type == INTF_DP) {
712 if (msm_dp_is_yuv_420_enabled(priv->kms->dp[disp_info->h_tile_instance[0]],
713 adj_mode))
714 topology->num_cdm++;
715 }
716 }
717
dpu_encoder_needs_modeset(struct drm_encoder * drm_enc,struct drm_atomic_state * state)718 bool dpu_encoder_needs_modeset(struct drm_encoder *drm_enc, struct drm_atomic_state *state)
719 {
720 struct drm_connector *connector;
721 struct drm_connector_state *conn_state;
722 struct drm_framebuffer *fb;
723 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
724
725 if (!drm_enc || !state)
726 return false;
727
728 connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
729 if (!connector)
730 return false;
731
732 conn_state = drm_atomic_get_new_connector_state(state, connector);
733 if (!conn_state)
734 return false;
735
736 /**
737 * These checks are duplicated from dpu_encoder_update_topology() since
738 * CRTC and encoder don't hold topology information
739 */
740 if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) {
741 fb = conn_state->writeback_job->fb;
742 if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb))) {
743 if (!dpu_enc->cur_master->hw_cdm)
744 return true;
745 } else {
746 if (dpu_enc->cur_master->hw_cdm)
747 return true;
748 }
749 }
750
751 return false;
752 }
753
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)754 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
755 struct msm_display_info *disp_info)
756 {
757 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
758 struct msm_drm_private *priv;
759 struct dpu_kms *dpu_kms;
760 struct dpu_hw_mdp *hw_mdptop;
761 struct drm_encoder *drm_enc;
762 struct dpu_encoder_phys *phys_enc;
763 int i;
764
765 if (!dpu_enc || !disp_info) {
766 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
767 dpu_enc != NULL, disp_info != NULL);
768 return;
769 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
770 DPU_ERROR("invalid num phys enc %d/%d\n",
771 dpu_enc->num_phys_encs,
772 (int) ARRAY_SIZE(dpu_enc->hw_pp));
773 return;
774 }
775
776 drm_enc = &dpu_enc->base;
777 /* this pointers are checked in virt_enable_helper */
778 priv = drm_enc->dev->dev_private;
779
780 dpu_kms = to_dpu_kms(priv->kms);
781 hw_mdptop = dpu_kms->hw_mdp;
782 if (!hw_mdptop) {
783 DPU_ERROR("invalid mdptop\n");
784 return;
785 }
786
787 if (hw_mdptop->ops.setup_vsync_source) {
788 for (i = 0; i < dpu_enc->num_phys_encs; i++)
789 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
790
791 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
792 vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
793
794 vsync_cfg.vsync_source = disp_info->vsync_source;
795
796 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
797
798 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
799 phys_enc = dpu_enc->phys_encs[i];
800
801 if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
802 phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
803 vsync_cfg.vsync_source);
804 }
805 }
806 }
807
_dpu_encoder_irq_enable(struct drm_encoder * drm_enc)808 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
809 {
810 struct dpu_encoder_virt *dpu_enc;
811 int i;
812
813 if (!drm_enc) {
814 DPU_ERROR("invalid encoder\n");
815 return;
816 }
817
818 dpu_enc = to_dpu_encoder_virt(drm_enc);
819
820 DPU_DEBUG_ENC(dpu_enc, "\n");
821 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
822 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
823
824 phys->ops.irq_enable(phys);
825 }
826 }
827
_dpu_encoder_irq_disable(struct drm_encoder * drm_enc)828 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
829 {
830 struct dpu_encoder_virt *dpu_enc;
831 int i;
832
833 if (!drm_enc) {
834 DPU_ERROR("invalid encoder\n");
835 return;
836 }
837
838 dpu_enc = to_dpu_encoder_virt(drm_enc);
839
840 DPU_DEBUG_ENC(dpu_enc, "\n");
841 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
842 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
843
844 phys->ops.irq_disable(phys);
845 }
846 }
847
_dpu_encoder_resource_enable(struct drm_encoder * drm_enc)848 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
849 {
850 struct msm_drm_private *priv;
851 struct dpu_kms *dpu_kms;
852 struct dpu_encoder_virt *dpu_enc;
853
854 dpu_enc = to_dpu_encoder_virt(drm_enc);
855 priv = drm_enc->dev->dev_private;
856 dpu_kms = to_dpu_kms(priv->kms);
857
858 trace_dpu_enc_rc_enable(DRMID(drm_enc));
859
860 if (!dpu_enc->cur_master) {
861 DPU_ERROR("encoder master not set\n");
862 return;
863 }
864
865 /* enable DPU core clks */
866 pm_runtime_get_sync(&dpu_kms->pdev->dev);
867
868 /* enable all the irq */
869 _dpu_encoder_irq_enable(drm_enc);
870 }
871
_dpu_encoder_resource_disable(struct drm_encoder * drm_enc)872 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
873 {
874 struct msm_drm_private *priv;
875 struct dpu_kms *dpu_kms;
876 struct dpu_encoder_virt *dpu_enc;
877
878 dpu_enc = to_dpu_encoder_virt(drm_enc);
879 priv = drm_enc->dev->dev_private;
880 dpu_kms = to_dpu_kms(priv->kms);
881
882 trace_dpu_enc_rc_disable(DRMID(drm_enc));
883
884 if (!dpu_enc->cur_master) {
885 DPU_ERROR("encoder master not set\n");
886 return;
887 }
888
889 /* disable all the irq */
890 _dpu_encoder_irq_disable(drm_enc);
891
892 /* disable DPU core clks */
893 pm_runtime_put_sync(&dpu_kms->pdev->dev);
894 }
895
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)896 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
897 u32 sw_event)
898 {
899 struct dpu_encoder_virt *dpu_enc;
900 struct msm_drm_private *priv;
901 bool is_vid_mode = false;
902
903 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
904 DPU_ERROR("invalid parameters\n");
905 return -EINVAL;
906 }
907 dpu_enc = to_dpu_encoder_virt(drm_enc);
908 priv = drm_enc->dev->dev_private;
909 is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
910
911 /*
912 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
913 * events and return early for other events (ie wb display).
914 */
915 if (!dpu_enc->idle_pc_supported &&
916 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
917 sw_event != DPU_ENC_RC_EVENT_STOP &&
918 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
919 return 0;
920
921 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
922 dpu_enc->rc_state, "begin");
923
924 switch (sw_event) {
925 case DPU_ENC_RC_EVENT_KICKOFF:
926 /* cancel delayed off work, if any */
927 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
928 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
929 sw_event);
930
931 mutex_lock(&dpu_enc->rc_lock);
932
933 /* return if the resource control is already in ON state */
934 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
935 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
936 DRMID(drm_enc), sw_event);
937 mutex_unlock(&dpu_enc->rc_lock);
938 return 0;
939 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
940 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
941 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
942 DRMID(drm_enc), sw_event,
943 dpu_enc->rc_state);
944 mutex_unlock(&dpu_enc->rc_lock);
945 return -EINVAL;
946 }
947
948 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
949 _dpu_encoder_irq_enable(drm_enc);
950 else
951 _dpu_encoder_resource_enable(drm_enc);
952
953 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
954
955 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
956 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
957 "kickoff");
958
959 mutex_unlock(&dpu_enc->rc_lock);
960 break;
961
962 case DPU_ENC_RC_EVENT_FRAME_DONE:
963 /*
964 * mutex lock is not used as this event happens at interrupt
965 * context. And locking is not required as, the other events
966 * like KICKOFF and STOP does a wait-for-idle before executing
967 * the resource_control
968 */
969 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
970 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
971 DRMID(drm_enc), sw_event,
972 dpu_enc->rc_state);
973 return -EINVAL;
974 }
975
976 /*
977 * schedule off work item only when there are no
978 * frames pending
979 */
980 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
981 DRM_DEBUG_KMS("id:%d skip schedule work\n",
982 DRMID(drm_enc));
983 return 0;
984 }
985
986 queue_delayed_work(priv->kms->wq, &dpu_enc->delayed_off_work,
987 msecs_to_jiffies(dpu_enc->idle_timeout));
988
989 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
990 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
991 "frame done");
992 break;
993
994 case DPU_ENC_RC_EVENT_PRE_STOP:
995 /* cancel delayed off work, if any */
996 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
997 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
998 sw_event);
999
1000 mutex_lock(&dpu_enc->rc_lock);
1001
1002 if (is_vid_mode &&
1003 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1004 _dpu_encoder_irq_enable(drm_enc);
1005 }
1006 /* skip if is already OFF or IDLE, resources are off already */
1007 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
1008 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1009 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
1010 DRMID(drm_enc), sw_event,
1011 dpu_enc->rc_state);
1012 mutex_unlock(&dpu_enc->rc_lock);
1013 return 0;
1014 }
1015
1016 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
1017
1018 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1019 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1020 "pre stop");
1021
1022 mutex_unlock(&dpu_enc->rc_lock);
1023 break;
1024
1025 case DPU_ENC_RC_EVENT_STOP:
1026 mutex_lock(&dpu_enc->rc_lock);
1027
1028 /* return if the resource control is already in OFF state */
1029 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
1030 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
1031 DRMID(drm_enc), sw_event);
1032 mutex_unlock(&dpu_enc->rc_lock);
1033 return 0;
1034 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
1035 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
1036 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1037 mutex_unlock(&dpu_enc->rc_lock);
1038 return -EINVAL;
1039 }
1040
1041 /**
1042 * expect to arrive here only if in either idle state or pre-off
1043 * and in IDLE state the resources are already disabled
1044 */
1045 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1046 _dpu_encoder_resource_disable(drm_enc);
1047
1048 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1049
1050 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1051 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1052 "stop");
1053
1054 mutex_unlock(&dpu_enc->rc_lock);
1055 break;
1056
1057 case DPU_ENC_RC_EVENT_ENTER_IDLE:
1058 mutex_lock(&dpu_enc->rc_lock);
1059
1060 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1061 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1062 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1063 mutex_unlock(&dpu_enc->rc_lock);
1064 return 0;
1065 }
1066
1067 /*
1068 * if we are in ON but a frame was just kicked off,
1069 * ignore the IDLE event, it's probably a stale timer event
1070 */
1071 if (dpu_enc->frame_busy_mask[0]) {
1072 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1073 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1074 mutex_unlock(&dpu_enc->rc_lock);
1075 return 0;
1076 }
1077
1078 if (is_vid_mode)
1079 _dpu_encoder_irq_disable(drm_enc);
1080 else
1081 _dpu_encoder_resource_disable(drm_enc);
1082
1083 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1084
1085 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1086 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1087 "idle");
1088
1089 mutex_unlock(&dpu_enc->rc_lock);
1090 break;
1091
1092 default:
1093 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1094 sw_event);
1095 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1096 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1097 "error");
1098 break;
1099 }
1100
1101 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1102 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1103 "end");
1104 return 0;
1105 }
1106
1107 /**
1108 * dpu_encoder_prepare_wb_job - prepare writeback job for the encoder.
1109 * @drm_enc: Pointer to previously created drm encoder structure
1110 * @job: Pointer to the current drm writeback job
1111 */
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1112 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1113 struct drm_writeback_job *job)
1114 {
1115 struct dpu_encoder_virt *dpu_enc;
1116 int i;
1117
1118 dpu_enc = to_dpu_encoder_virt(drm_enc);
1119
1120 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1121 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1122
1123 if (phys->ops.prepare_wb_job)
1124 phys->ops.prepare_wb_job(phys, job);
1125
1126 }
1127 }
1128
1129 /**
1130 * dpu_encoder_cleanup_wb_job - cleanup writeback job for the encoder.
1131 * @drm_enc: Pointer to previously created drm encoder structure
1132 * @job: Pointer to the current drm writeback job
1133 */
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1134 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1135 struct drm_writeback_job *job)
1136 {
1137 struct dpu_encoder_virt *dpu_enc;
1138 int i;
1139
1140 dpu_enc = to_dpu_encoder_virt(drm_enc);
1141
1142 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1143 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1144
1145 if (phys->ops.cleanup_wb_job)
1146 phys->ops.cleanup_wb_job(phys, job);
1147
1148 }
1149 }
1150
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1151 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1152 struct drm_crtc_state *crtc_state,
1153 struct drm_connector_state *conn_state)
1154 {
1155 struct dpu_encoder_virt *dpu_enc;
1156 struct msm_drm_private *priv;
1157 struct dpu_kms *dpu_kms;
1158 struct dpu_global_state *global_state;
1159 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1160 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1161 struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1162 struct dpu_hw_blk *hw_cwb[MAX_CHANNELS_PER_ENC];
1163 int num_ctl, num_pp, num_dsc;
1164 int num_cwb = 0;
1165 bool is_cwb_encoder;
1166 unsigned int dsc_mask = 0;
1167 unsigned int cwb_mask = 0;
1168 int i;
1169
1170 if (!drm_enc) {
1171 DPU_ERROR("invalid encoder\n");
1172 return;
1173 }
1174
1175 dpu_enc = to_dpu_encoder_virt(drm_enc);
1176 DPU_DEBUG_ENC(dpu_enc, "\n");
1177
1178 priv = drm_enc->dev->dev_private;
1179 dpu_kms = to_dpu_kms(priv->kms);
1180 is_cwb_encoder = drm_crtc_in_clone_mode(crtc_state) &&
1181 dpu_enc->disp_info.intf_type == INTF_WB;
1182
1183 global_state = dpu_kms_get_existing_global_state(dpu_kms);
1184 if (IS_ERR_OR_NULL(global_state)) {
1185 DPU_ERROR("Failed to get global state");
1186 return;
1187 }
1188
1189 trace_dpu_enc_mode_set(DRMID(drm_enc));
1190
1191 /* Query resource that have been reserved in atomic check step. */
1192 if (is_cwb_encoder) {
1193 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1194 drm_enc->crtc,
1195 DPU_HW_BLK_DCWB_PINGPONG,
1196 hw_pp, ARRAY_SIZE(hw_pp));
1197 num_cwb = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1198 drm_enc->crtc,
1199 DPU_HW_BLK_CWB,
1200 hw_cwb, ARRAY_SIZE(hw_cwb));
1201 } else {
1202 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1203 drm_enc->crtc,
1204 DPU_HW_BLK_PINGPONG, hw_pp,
1205 ARRAY_SIZE(hw_pp));
1206 }
1207
1208 for (i = 0; i < num_cwb; i++) {
1209 dpu_enc->hw_cwb[i] = to_dpu_hw_cwb(hw_cwb[i]);
1210 cwb_mask |= BIT(dpu_enc->hw_cwb[i]->idx - CWB_0);
1211 }
1212
1213 dpu_enc->cwb_mask = cwb_mask;
1214
1215 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1216 drm_enc->crtc, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1217
1218 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1219 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1220 : NULL;
1221
1222 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1223 drm_enc->crtc, DPU_HW_BLK_DSC,
1224 hw_dsc, ARRAY_SIZE(hw_dsc));
1225 for (i = 0; i < num_dsc; i++) {
1226 dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1227 dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1228 }
1229
1230 dpu_enc->dsc_mask = dsc_mask;
1231
1232 if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1233 dpu_enc->disp_info.intf_type == INTF_DP) {
1234 struct dpu_hw_blk *hw_cdm = NULL;
1235
1236 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1237 drm_enc->crtc, DPU_HW_BLK_CDM,
1238 &hw_cdm, 1);
1239 dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1240 }
1241
1242 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1243 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1244
1245 phys->hw_pp = dpu_enc->hw_pp[i];
1246 if (!phys->hw_pp) {
1247 DPU_ERROR_ENC(dpu_enc,
1248 "no pp block assigned at idx: %d\n", i);
1249 return;
1250 }
1251
1252 /* Use first (and only) CTL if active CTLs are supported */
1253 if (num_ctl == 1)
1254 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[0]);
1255 else
1256 phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1257 if (!phys->hw_ctl) {
1258 DPU_ERROR_ENC(dpu_enc,
1259 "no ctl block assigned at idx: %d\n", i);
1260 return;
1261 }
1262
1263 phys->cached_mode = crtc_state->adjusted_mode;
1264 if (phys->ops.atomic_mode_set)
1265 phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1266 }
1267 }
1268
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1269 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1270 {
1271 struct dpu_encoder_virt *dpu_enc = NULL;
1272 int i;
1273
1274 if (!drm_enc || !drm_enc->dev) {
1275 DPU_ERROR("invalid parameters\n");
1276 return;
1277 }
1278
1279 dpu_enc = to_dpu_encoder_virt(drm_enc);
1280 if (!dpu_enc || !dpu_enc->cur_master) {
1281 DPU_ERROR("invalid dpu encoder/master\n");
1282 return;
1283 }
1284
1285
1286 if (dpu_enc->disp_info.intf_type == INTF_DP &&
1287 dpu_enc->cur_master->hw_mdptop &&
1288 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1289 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1290 dpu_enc->cur_master->hw_mdptop);
1291
1292 if (dpu_enc->disp_info.is_cmd_mode)
1293 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1294
1295 if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1296 !WARN_ON(dpu_enc->num_phys_encs == 0)) {
1297 unsigned bpc = dpu_enc->connector->display_info.bpc;
1298 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1299 if (!dpu_enc->hw_pp[i])
1300 continue;
1301 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1302 }
1303 }
1304 }
1305
1306 /**
1307 * dpu_encoder_virt_runtime_resume - pm runtime resume the encoder configs
1308 * @drm_enc: encoder pointer
1309 */
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1310 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1311 {
1312 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1313
1314 mutex_lock(&dpu_enc->enc_lock);
1315
1316 if (!dpu_enc->enabled)
1317 goto out;
1318
1319 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1320 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1321 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1322 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1323
1324 _dpu_encoder_virt_enable_helper(drm_enc);
1325
1326 out:
1327 mutex_unlock(&dpu_enc->enc_lock);
1328 }
1329
dpu_encoder_virt_atomic_enable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1330 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1331 struct drm_atomic_state *state)
1332 {
1333 struct dpu_encoder_virt *dpu_enc = NULL;
1334 int ret = 0;
1335 struct drm_display_mode *cur_mode = NULL;
1336
1337 dpu_enc = to_dpu_encoder_virt(drm_enc);
1338 dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1339
1340 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1341
1342 mutex_lock(&dpu_enc->enc_lock);
1343
1344 dpu_enc->commit_done_timedout = false;
1345
1346 dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1347
1348 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1349
1350 dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1351
1352 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1353 cur_mode->vdisplay);
1354
1355 /* always enable slave encoder before master */
1356 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1357 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1358
1359 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1360 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1361
1362 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1363 if (ret) {
1364 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1365 ret);
1366 goto out;
1367 }
1368
1369 _dpu_encoder_virt_enable_helper(drm_enc);
1370
1371 dpu_enc->enabled = true;
1372
1373 out:
1374 mutex_unlock(&dpu_enc->enc_lock);
1375 }
1376
dpu_encoder_virt_atomic_disable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1377 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1378 struct drm_atomic_state *state)
1379 {
1380 struct dpu_encoder_virt *dpu_enc = NULL;
1381 struct drm_crtc *crtc;
1382 struct drm_crtc_state *old_state = NULL;
1383 int i = 0;
1384
1385 dpu_enc = to_dpu_encoder_virt(drm_enc);
1386 DPU_DEBUG_ENC(dpu_enc, "\n");
1387
1388 crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1389 if (crtc)
1390 old_state = drm_atomic_get_old_crtc_state(state, crtc);
1391
1392 /*
1393 * The encoder is already disabled if self refresh mode was set earlier,
1394 * in the old_state for the corresponding crtc.
1395 */
1396 if (old_state && old_state->self_refresh_active)
1397 return;
1398
1399 mutex_lock(&dpu_enc->enc_lock);
1400 dpu_enc->enabled = false;
1401
1402 trace_dpu_enc_disable(DRMID(drm_enc));
1403
1404 /* wait for idle */
1405 dpu_encoder_wait_for_tx_complete(drm_enc);
1406
1407 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1408
1409 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1410 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1411
1412 if (phys->ops.disable)
1413 phys->ops.disable(phys);
1414 }
1415
1416
1417 /* after phys waits for frame-done, should be no more frames pending */
1418 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1419 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1420 timer_delete_sync(&dpu_enc->frame_done_timer);
1421 }
1422
1423 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1424
1425 dpu_enc->connector = NULL;
1426
1427 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1428
1429 mutex_unlock(&dpu_enc->enc_lock);
1430 }
1431
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,struct dpu_rm * dpu_rm,enum dpu_intf_type type,u32 controller_id)1432 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1433 struct dpu_rm *dpu_rm,
1434 enum dpu_intf_type type, u32 controller_id)
1435 {
1436 int i = 0;
1437
1438 if (type == INTF_WB)
1439 return NULL;
1440
1441 for (i = 0; i < catalog->intf_count; i++) {
1442 if (catalog->intf[i].type == type
1443 && catalog->intf[i].controller_id == controller_id) {
1444 return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1445 }
1446 }
1447
1448 return NULL;
1449 }
1450
1451 /**
1452 * dpu_encoder_vblank_callback - Notify virtual encoder of vblank IRQ reception
1453 * @drm_enc: Pointer to drm encoder structure
1454 * @phy_enc: Pointer to physical encoder
1455 * Note: This is called from IRQ handler context.
1456 */
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1457 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1458 struct dpu_encoder_phys *phy_enc)
1459 {
1460 struct dpu_encoder_virt *dpu_enc = NULL;
1461 unsigned long lock_flags;
1462
1463 if (!drm_enc || !phy_enc)
1464 return;
1465
1466 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1467 dpu_enc = to_dpu_encoder_virt(drm_enc);
1468
1469 atomic_inc(&phy_enc->vsync_cnt);
1470
1471 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1472 if (dpu_enc->crtc)
1473 dpu_crtc_vblank_callback(dpu_enc->crtc);
1474 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1475
1476 DPU_ATRACE_END("encoder_vblank_callback");
1477 }
1478
1479 /**
1480 * dpu_encoder_underrun_callback - Notify virtual encoder of underrun IRQ reception
1481 * @drm_enc: Pointer to drm encoder structure
1482 * @phy_enc: Pointer to physical encoder
1483 * Note: This is called from IRQ handler context.
1484 */
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1485 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1486 struct dpu_encoder_phys *phy_enc)
1487 {
1488 if (!phy_enc)
1489 return;
1490
1491 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1492 atomic_inc(&phy_enc->underrun_cnt);
1493
1494 /* trigger dump only on the first underrun */
1495 if (atomic_read(&phy_enc->underrun_cnt) == 1)
1496 msm_disp_snapshot_state(drm_enc->dev);
1497
1498 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1499 atomic_read(&phy_enc->underrun_cnt));
1500 DPU_ATRACE_END("encoder_underrun_callback");
1501 }
1502
1503 /**
1504 * dpu_encoder_assign_crtc - Link the encoder to the crtc it's assigned to
1505 * @drm_enc: encoder pointer
1506 * @crtc: crtc pointer
1507 */
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1508 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1509 {
1510 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1511 unsigned long lock_flags;
1512
1513 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1514 /* crtc should always be cleared before re-assigning */
1515 WARN_ON(crtc && dpu_enc->crtc);
1516 dpu_enc->crtc = crtc;
1517 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1518 }
1519
1520 /**
1521 * dpu_encoder_toggle_vblank_for_crtc - Toggles vblank interrupts on or off if
1522 * the encoder is assigned to the given crtc
1523 * @drm_enc: encoder pointer
1524 * @crtc: crtc pointer
1525 * @enable: true if vblank should be enabled
1526 */
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1527 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1528 struct drm_crtc *crtc, bool enable)
1529 {
1530 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1531 unsigned long lock_flags;
1532 int i;
1533
1534 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1535
1536 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1537 if (dpu_enc->crtc != crtc) {
1538 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1539 return;
1540 }
1541 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1542
1543 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1544 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1545
1546 if (phys->ops.control_vblank_irq)
1547 phys->ops.control_vblank_irq(phys, enable);
1548 }
1549 }
1550
1551 /**
1552 * dpu_encoder_frame_done_callback - Notify virtual encoder that this phys
1553 * encoder completes last request frame
1554 * @drm_enc: Pointer to drm encoder structure
1555 * @ready_phys: Pointer to physical encoder
1556 * @event: Event to process
1557 */
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1558 void dpu_encoder_frame_done_callback(
1559 struct drm_encoder *drm_enc,
1560 struct dpu_encoder_phys *ready_phys, u32 event)
1561 {
1562 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1563 unsigned int i;
1564
1565 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1566 | DPU_ENCODER_FRAME_EVENT_ERROR
1567 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1568
1569 if (!dpu_enc->frame_busy_mask[0]) {
1570 /**
1571 * suppress frame_done without waiter,
1572 * likely autorefresh
1573 */
1574 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1575 dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1576 ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1577 ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1578 return;
1579 }
1580
1581 /* One of the physical encoders has become idle */
1582 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1583 if (dpu_enc->phys_encs[i] == ready_phys) {
1584 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1585 dpu_enc->frame_busy_mask[0]);
1586 clear_bit(i, dpu_enc->frame_busy_mask);
1587 }
1588 }
1589
1590 if (!dpu_enc->frame_busy_mask[0]) {
1591 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1592 timer_delete(&dpu_enc->frame_done_timer);
1593
1594 dpu_encoder_resource_control(drm_enc,
1595 DPU_ENC_RC_EVENT_FRAME_DONE);
1596
1597 if (dpu_enc->crtc)
1598 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1599 }
1600 } else {
1601 if (dpu_enc->crtc)
1602 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1603 }
1604 }
1605
dpu_encoder_off_work(struct work_struct * work)1606 static void dpu_encoder_off_work(struct work_struct *work)
1607 {
1608 struct dpu_encoder_virt *dpu_enc = container_of(work,
1609 struct dpu_encoder_virt, delayed_off_work.work);
1610
1611 dpu_encoder_resource_control(&dpu_enc->base,
1612 DPU_ENC_RC_EVENT_ENTER_IDLE);
1613
1614 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1615 DPU_ENCODER_FRAME_EVENT_IDLE);
1616 }
1617
1618 /**
1619 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1620 * @drm_enc: Pointer to drm encoder structure
1621 * @phys: Pointer to physical encoder structure
1622 * @extra_flush_bits: Additional bit mask to include in flush trigger
1623 */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1624 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1625 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1626 {
1627 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1628 struct dpu_hw_ctl *ctl;
1629 int pending_kickoff_cnt;
1630 u32 ret = UINT_MAX;
1631
1632 if (!phys->hw_pp) {
1633 DPU_ERROR("invalid pingpong hw\n");
1634 return;
1635 }
1636
1637 ctl = phys->hw_ctl;
1638 if (!ctl->ops.trigger_flush) {
1639 DPU_ERROR("missing trigger cb\n");
1640 return;
1641 }
1642
1643 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1644
1645 /* Return early if encoder is writeback and in clone mode */
1646 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1647 dpu_enc->cwb_mask) {
1648 DPU_DEBUG("encoder %d skip flush for concurrent writeback encoder\n",
1649 DRMID(drm_enc));
1650 return;
1651 }
1652
1653
1654 if (extra_flush_bits && ctl->ops.update_pending_flush)
1655 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1656
1657 ctl->ops.trigger_flush(ctl);
1658
1659 if (ctl->ops.get_pending_flush)
1660 ret = ctl->ops.get_pending_flush(ctl);
1661
1662 trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1663 dpu_encoder_helper_get_intf_type(phys->intf_mode),
1664 phys->hw_intf ? phys->hw_intf->idx : -1,
1665 phys->hw_wb ? phys->hw_wb->idx : -1,
1666 pending_kickoff_cnt, ctl->idx,
1667 extra_flush_bits, ret);
1668 }
1669
1670 /**
1671 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1672 * @phys: Pointer to physical encoder structure
1673 */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1674 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1675 {
1676 struct dpu_encoder_virt *dpu_enc;
1677
1678 if (!phys) {
1679 DPU_ERROR("invalid argument(s)\n");
1680 return;
1681 }
1682
1683 if (!phys->hw_pp) {
1684 DPU_ERROR("invalid pingpong hw\n");
1685 return;
1686 }
1687
1688 dpu_enc = to_dpu_encoder_virt(phys->parent);
1689
1690 if (phys->parent->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1691 dpu_enc->cwb_mask) {
1692 DPU_DEBUG("encoder %d CWB enabled, skipping\n", DRMID(phys->parent));
1693 return;
1694 }
1695
1696 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1697 phys->ops.trigger_start(phys);
1698 }
1699
1700 /**
1701 * dpu_encoder_helper_trigger_start - control start helper function
1702 * This helper function may be optionally specified by physical
1703 * encoders if they require ctl_start triggering.
1704 * @phys_enc: Pointer to physical encoder structure
1705 */
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1706 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1707 {
1708 struct dpu_hw_ctl *ctl;
1709
1710 ctl = phys_enc->hw_ctl;
1711 if (ctl->ops.trigger_start) {
1712 ctl->ops.trigger_start(ctl);
1713 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1714 }
1715 }
1716
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,unsigned int irq_idx,struct dpu_encoder_wait_info * info)1717 static int dpu_encoder_helper_wait_event_timeout(
1718 int32_t drm_id,
1719 unsigned int irq_idx,
1720 struct dpu_encoder_wait_info *info)
1721 {
1722 int rc = 0;
1723 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1724 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1725 s64 time;
1726
1727 do {
1728 rc = wait_event_timeout(*(info->wq),
1729 atomic_read(info->atomic_cnt) == 0, jiffies);
1730 time = ktime_to_ms(ktime_get());
1731
1732 trace_dpu_enc_wait_event_timeout(drm_id,
1733 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1734 rc, time,
1735 expected_time,
1736 atomic_read(info->atomic_cnt));
1737 /* If we timed out, counter is valid and time is less, wait again */
1738 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1739 (time < expected_time));
1740
1741 return rc;
1742 }
1743
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1744 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1745 {
1746 struct dpu_encoder_virt *dpu_enc;
1747 struct dpu_hw_ctl *ctl;
1748 int rc;
1749 struct drm_encoder *drm_enc;
1750
1751 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1752 ctl = phys_enc->hw_ctl;
1753 drm_enc = phys_enc->parent;
1754
1755 if (!ctl->ops.reset)
1756 return;
1757
1758 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1759 ctl->idx);
1760
1761 rc = ctl->ops.reset(ctl);
1762 if (rc) {
1763 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1764 msm_disp_snapshot_state(drm_enc->dev);
1765 }
1766
1767 phys_enc->enable_state = DPU_ENC_ENABLED;
1768 }
1769
1770 /**
1771 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1772 * Iterate through the physical encoders and perform consolidated flush
1773 * and/or control start triggering as needed. This is done in the virtual
1774 * encoder rather than the individual physical ones in order to handle
1775 * use cases that require visibility into multiple physical encoders at
1776 * a time.
1777 * @dpu_enc: Pointer to virtual encoder structure
1778 */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1779 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1780 {
1781 struct dpu_hw_ctl *ctl;
1782 uint32_t i, pending_flush;
1783 unsigned long lock_flags;
1784
1785 pending_flush = 0x0;
1786
1787 /* update pending counts and trigger kickoff ctl flush atomically */
1788 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1789
1790 /* don't perform flush/start operations for slave encoders */
1791 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1792 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1793
1794 if (phys->enable_state == DPU_ENC_DISABLED)
1795 continue;
1796
1797 ctl = phys->hw_ctl;
1798
1799 /*
1800 * This is cleared in frame_done worker, which isn't invoked
1801 * for async commits. So don't set this for async, since it'll
1802 * roll over to the next commit.
1803 */
1804 if (phys->split_role != ENC_ROLE_SLAVE)
1805 set_bit(i, dpu_enc->frame_busy_mask);
1806
1807 if (!phys->ops.needs_single_flush ||
1808 !phys->ops.needs_single_flush(phys))
1809 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1810 else if (ctl->ops.get_pending_flush)
1811 pending_flush |= ctl->ops.get_pending_flush(ctl);
1812 }
1813
1814 /* for split flush, combine pending flush masks and send to master */
1815 if (pending_flush && dpu_enc->cur_master) {
1816 _dpu_encoder_trigger_flush(
1817 &dpu_enc->base,
1818 dpu_enc->cur_master,
1819 pending_flush);
1820 }
1821
1822 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1823
1824 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1825 }
1826
1827 /**
1828 * dpu_encoder_trigger_kickoff_pending - Clear the flush bits from previous
1829 * kickoff and trigger the ctl prepare progress for command mode display.
1830 * @drm_enc: encoder pointer
1831 */
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1832 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1833 {
1834 struct dpu_encoder_virt *dpu_enc;
1835 struct dpu_encoder_phys *phys;
1836 unsigned int i;
1837 struct dpu_hw_ctl *ctl;
1838 struct msm_display_info *disp_info;
1839
1840 if (!drm_enc) {
1841 DPU_ERROR("invalid encoder\n");
1842 return;
1843 }
1844 dpu_enc = to_dpu_encoder_virt(drm_enc);
1845 disp_info = &dpu_enc->disp_info;
1846
1847 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1848 phys = dpu_enc->phys_encs[i];
1849
1850 ctl = phys->hw_ctl;
1851 ctl->ops.clear_pending_flush(ctl);
1852
1853 /* update only for command mode primary ctl */
1854 if ((phys == dpu_enc->cur_master) &&
1855 disp_info->is_cmd_mode
1856 && ctl->ops.trigger_pending)
1857 ctl->ops.trigger_pending(ctl);
1858 }
1859 }
1860
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1861 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1862 struct drm_display_mode *mode)
1863 {
1864 u64 pclk_rate;
1865 u32 pclk_period;
1866 u32 line_time;
1867
1868 /*
1869 * For linetime calculation, only operate on master encoder.
1870 */
1871 if (!dpu_enc->cur_master)
1872 return 0;
1873
1874 if (!dpu_enc->cur_master->ops.get_line_count) {
1875 DPU_ERROR("get_line_count function not defined\n");
1876 return 0;
1877 }
1878
1879 pclk_rate = mode->clock; /* pixel clock in kHz */
1880 if (pclk_rate == 0) {
1881 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1882 return 0;
1883 }
1884
1885 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1886 if (pclk_period == 0) {
1887 DPU_ERROR("pclk period is 0\n");
1888 return 0;
1889 }
1890
1891 /*
1892 * Line time calculation based on Pixel clock and HTOTAL.
1893 * Final unit is in ns.
1894 */
1895 line_time = (pclk_period * mode->htotal) / 1000;
1896 if (line_time == 0) {
1897 DPU_ERROR("line time calculation is 0\n");
1898 return 0;
1899 }
1900
1901 DPU_DEBUG_ENC(dpu_enc,
1902 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1903 pclk_rate, pclk_period, line_time);
1904
1905 return line_time;
1906 }
1907
1908 /**
1909 * dpu_encoder_vsync_time - get the time of the next vsync
1910 * @drm_enc: encoder pointer
1911 * @wakeup_time: pointer to ktime_t to write the vsync time to
1912 */
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1913 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1914 {
1915 struct drm_display_mode *mode;
1916 struct dpu_encoder_virt *dpu_enc;
1917 u32 cur_line;
1918 u32 line_time;
1919 u32 vtotal, time_to_vsync;
1920 ktime_t cur_time;
1921
1922 dpu_enc = to_dpu_encoder_virt(drm_enc);
1923
1924 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1925 DPU_ERROR("crtc/crtc state object is NULL\n");
1926 return -EINVAL;
1927 }
1928 mode = &drm_enc->crtc->state->adjusted_mode;
1929
1930 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1931 if (!line_time)
1932 return -EINVAL;
1933
1934 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1935
1936 vtotal = mode->vtotal;
1937 if (cur_line >= vtotal)
1938 time_to_vsync = line_time * vtotal;
1939 else
1940 time_to_vsync = line_time * (vtotal - cur_line);
1941
1942 if (time_to_vsync == 0) {
1943 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1944 vtotal);
1945 return -EINVAL;
1946 }
1947
1948 cur_time = ktime_get();
1949 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1950
1951 DPU_DEBUG_ENC(dpu_enc,
1952 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1953 cur_line, vtotal, time_to_vsync,
1954 ktime_to_ms(cur_time),
1955 ktime_to_ms(*wakeup_time));
1956 return 0;
1957 }
1958
1959 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1960 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1961 u32 enc_ip_width)
1962 {
1963 int ssm_delay, total_pixels, soft_slice_per_enc;
1964
1965 soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1966
1967 /*
1968 * minimum number of initial line pixels is a sum of:
1969 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1970 * 91 for 10 bpc) * 3
1971 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1972 * 3. the initial xmit delay
1973 * 4. total pipeline delay through the "lock step" of encoder (47)
1974 * 5. 6 additional pixels as the output of the rate buffer is
1975 * 48 bits wide
1976 */
1977 ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1978 total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1979 if (soft_slice_per_enc > 1)
1980 total_pixels += (ssm_delay * 3);
1981 return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1982 }
1983
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1984 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1985 struct dpu_hw_dsc *hw_dsc,
1986 struct dpu_hw_pingpong *hw_pp,
1987 struct drm_dsc_config *dsc,
1988 u32 common_mode,
1989 u32 initial_lines)
1990 {
1991 if (hw_dsc->ops.dsc_config)
1992 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1993
1994 if (hw_dsc->ops.dsc_config_thresh)
1995 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1996
1997 if (hw_pp->ops.setup_dsc)
1998 hw_pp->ops.setup_dsc(hw_pp);
1999
2000 if (hw_dsc->ops.dsc_bind_pingpong_blk)
2001 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
2002
2003 if (hw_pp->ops.enable_dsc)
2004 hw_pp->ops.enable_dsc(hw_pp);
2005
2006 if (ctl->ops.update_pending_flush_dsc)
2007 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2008 }
2009
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)2010 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
2011 struct drm_dsc_config *dsc)
2012 {
2013 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2014 struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2015 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2016 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2017 int this_frame_slices;
2018 int intf_ip_w, enc_ip_w;
2019 int dsc_common_mode;
2020 int pic_width;
2021 u32 initial_lines;
2022 int num_dsc = 0;
2023 int i;
2024
2025 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2026 hw_pp[i] = dpu_enc->hw_pp[i];
2027 hw_dsc[i] = dpu_enc->hw_dsc[i];
2028
2029 if (!hw_pp[i] || !hw_dsc[i])
2030 break;
2031
2032 num_dsc++;
2033 }
2034
2035 pic_width = dsc->pic_width;
2036
2037 dsc_common_mode = 0;
2038 if (num_dsc > 1)
2039 dsc_common_mode |= DSC_MODE_SPLIT_PANEL;
2040 if (dpu_encoder_use_dsc_merge(enc_master->parent))
2041 dsc_common_mode |= DSC_MODE_MULTIPLEX;
2042 if (enc_master->intf_mode == INTF_MODE_VIDEO)
2043 dsc_common_mode |= DSC_MODE_VIDEO;
2044
2045 this_frame_slices = pic_width / dsc->slice_width;
2046 intf_ip_w = this_frame_slices * dsc->slice_width;
2047
2048 enc_ip_w = intf_ip_w / num_dsc;
2049 initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
2050
2051 for (i = 0; i < num_dsc; i++)
2052 dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
2053 dsc, dsc_common_mode, initial_lines);
2054 }
2055
2056 /**
2057 * dpu_encoder_prepare_for_kickoff - schedule double buffer flip of the ctl
2058 * path (i.e. ctl flush and start) at next appropriate time.
2059 * Immediately: if no previous commit is outstanding.
2060 * Delayed: Block until next trigger can be issued.
2061 * @drm_enc: encoder pointer
2062 */
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)2063 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
2064 {
2065 struct dpu_encoder_virt *dpu_enc;
2066 struct dpu_encoder_phys *phys;
2067 bool needs_hw_reset = false;
2068 unsigned int i;
2069
2070 dpu_enc = to_dpu_encoder_virt(drm_enc);
2071
2072 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
2073
2074 /* prepare for next kickoff, may include waiting on previous kickoff */
2075 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
2076 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2077 phys = dpu_enc->phys_encs[i];
2078 if (phys->ops.prepare_for_kickoff)
2079 phys->ops.prepare_for_kickoff(phys);
2080 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
2081 needs_hw_reset = true;
2082 }
2083 DPU_ATRACE_END("enc_prepare_for_kickoff");
2084
2085 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
2086
2087 /* if any phys needs reset, reset all phys, in-order */
2088 if (needs_hw_reset) {
2089 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
2090 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2091 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
2092 }
2093 }
2094
2095 if (dpu_enc->dsc)
2096 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
2097 }
2098
2099 /**
2100 * dpu_encoder_is_valid_for_commit - check if encode has valid parameters for commit.
2101 * @drm_enc: Pointer to drm encoder structure
2102 */
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)2103 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
2104 {
2105 struct dpu_encoder_virt *dpu_enc;
2106 unsigned int i;
2107 struct dpu_encoder_phys *phys;
2108
2109 dpu_enc = to_dpu_encoder_virt(drm_enc);
2110
2111 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
2112 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2113 phys = dpu_enc->phys_encs[i];
2114 if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
2115 DPU_DEBUG("invalid FB not kicking off\n");
2116 return false;
2117 }
2118 }
2119 }
2120
2121 return true;
2122 }
2123
2124 /**
2125 * dpu_encoder_start_frame_done_timer - Start the encoder frame done timer
2126 * @drm_enc: Pointer to drm encoder structure
2127 */
dpu_encoder_start_frame_done_timer(struct drm_encoder * drm_enc)2128 void dpu_encoder_start_frame_done_timer(struct drm_encoder *drm_enc)
2129 {
2130 struct dpu_encoder_virt *dpu_enc;
2131 unsigned long timeout_ms;
2132
2133 dpu_enc = to_dpu_encoder_virt(drm_enc);
2134 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2135 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2136
2137 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2138 mod_timer(&dpu_enc->frame_done_timer,
2139 jiffies + msecs_to_jiffies(timeout_ms));
2140
2141 }
2142
2143 /**
2144 * dpu_encoder_kickoff - trigger a double buffer flip of the ctl path
2145 * (i.e. ctl flush and start) immediately.
2146 * @drm_enc: encoder pointer
2147 */
dpu_encoder_kickoff(struct drm_encoder * drm_enc)2148 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
2149 {
2150 struct dpu_encoder_virt *dpu_enc;
2151 struct dpu_encoder_phys *phys;
2152 unsigned int i;
2153
2154 DPU_ATRACE_BEGIN("encoder_kickoff");
2155 dpu_enc = to_dpu_encoder_virt(drm_enc);
2156
2157 trace_dpu_enc_kickoff(DRMID(drm_enc));
2158
2159 /* All phys encs are ready to go, trigger the kickoff */
2160 _dpu_encoder_kickoff_phys(dpu_enc);
2161
2162 /* allow phys encs to handle any post-kickoff business */
2163 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2164 phys = dpu_enc->phys_encs[i];
2165 if (phys->ops.handle_post_kickoff)
2166 phys->ops.handle_post_kickoff(phys);
2167 }
2168
2169 DPU_ATRACE_END("encoder_kickoff");
2170 }
2171
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)2172 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2173 {
2174 struct dpu_hw_mixer_cfg mixer;
2175 int i, num_lm;
2176 struct dpu_global_state *global_state;
2177 struct dpu_hw_blk *hw_lm[2];
2178 struct dpu_hw_mixer *hw_mixer[2];
2179 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2180
2181 memset(&mixer, 0, sizeof(mixer));
2182
2183 /* reset all mixers for this encoder */
2184 if (ctl->ops.clear_all_blendstages)
2185 ctl->ops.clear_all_blendstages(ctl);
2186
2187 global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2188
2189 num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2190 phys_enc->parent->crtc, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2191
2192 for (i = 0; i < num_lm; i++) {
2193 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2194 if (ctl->ops.update_pending_flush_mixer)
2195 ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2196
2197 /* clear all blendstages */
2198 if (ctl->ops.setup_blendstage)
2199 ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2200
2201 if (hw_mixer[i]->ops.clear_all_blendstages)
2202 hw_mixer[i]->ops.clear_all_blendstages(hw_mixer[i]);
2203
2204 if (ctl->ops.set_active_lms)
2205 ctl->ops.set_active_lms(ctl, NULL);
2206
2207 if (ctl->ops.set_active_fetch_pipes)
2208 ctl->ops.set_active_fetch_pipes(ctl, NULL);
2209
2210 if (ctl->ops.set_active_pipes)
2211 ctl->ops.set_active_pipes(ctl, NULL);
2212 }
2213 }
2214
dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp)2215 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2216 struct dpu_hw_dsc *hw_dsc,
2217 struct dpu_hw_pingpong *hw_pp)
2218 {
2219 if (hw_dsc->ops.dsc_disable)
2220 hw_dsc->ops.dsc_disable(hw_dsc);
2221
2222 if (hw_pp->ops.disable_dsc)
2223 hw_pp->ops.disable_dsc(hw_pp);
2224
2225 if (hw_dsc->ops.dsc_bind_pingpong_blk)
2226 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2227
2228 if (ctl->ops.update_pending_flush_dsc)
2229 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2230 }
2231
dpu_encoder_unprep_dsc(struct dpu_encoder_virt * dpu_enc)2232 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2233 {
2234 /* coding only for 2LM, 2enc, 1 dsc config */
2235 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2236 struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2237 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2238 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2239 int i;
2240
2241 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2242 hw_pp[i] = dpu_enc->hw_pp[i];
2243 hw_dsc[i] = dpu_enc->hw_dsc[i];
2244
2245 if (hw_pp[i] && hw_dsc[i])
2246 dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2247 }
2248 }
2249
2250 /**
2251 * dpu_encoder_helper_phys_cleanup - helper to cleanup dpu pipeline
2252 * @phys_enc: Pointer to physical encoder structure
2253 */
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2254 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2255 {
2256 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2257 struct dpu_hw_intf_cfg intf_cfg = { 0 };
2258 int i;
2259 struct dpu_encoder_virt *dpu_enc;
2260
2261 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2262
2263 ctl->ops.reset(ctl);
2264
2265 dpu_encoder_helper_reset_mixers(phys_enc);
2266
2267 /*
2268 * TODO: move the once-only operation like CTL flush/trigger
2269 * into dpu_encoder_virt_disable() and all operations which need
2270 * to be done per phys encoder into the phys_disable() op.
2271 */
2272 if (phys_enc->hw_wb) {
2273 /* disable the PP block */
2274 if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2275 phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2276
2277 /* mark WB flush as pending */
2278 if (ctl->ops.update_pending_flush_wb)
2279 ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2280 } else {
2281 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2282 if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2283 phys_enc->hw_intf->ops.bind_pingpong_blk(
2284 dpu_enc->phys_encs[i]->hw_intf,
2285 PINGPONG_NONE);
2286
2287 /* mark INTF flush as pending */
2288 if (ctl->ops.update_pending_flush_intf)
2289 ctl->ops.update_pending_flush_intf(ctl,
2290 dpu_enc->phys_encs[i]->hw_intf->idx);
2291 }
2292 }
2293
2294 if (phys_enc->hw_pp && phys_enc->hw_pp->ops.setup_dither)
2295 phys_enc->hw_pp->ops.setup_dither(phys_enc->hw_pp, NULL);
2296
2297 if (dpu_enc->cwb_mask)
2298 dpu_encoder_helper_phys_setup_cwb(phys_enc, false);
2299
2300 /* reset the merge 3D HW block */
2301 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2302 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2303 BLEND_3D_NONE);
2304 if (ctl->ops.update_pending_flush_merge_3d)
2305 ctl->ops.update_pending_flush_merge_3d(ctl,
2306 phys_enc->hw_pp->merge_3d->idx);
2307 }
2308
2309 if (phys_enc->hw_cdm) {
2310 if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2311 phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2312 PINGPONG_NONE);
2313 if (ctl->ops.update_pending_flush_cdm)
2314 ctl->ops.update_pending_flush_cdm(ctl,
2315 phys_enc->hw_cdm->idx);
2316 }
2317
2318 if (dpu_enc->dsc) {
2319 dpu_encoder_unprep_dsc(dpu_enc);
2320 dpu_enc->dsc = NULL;
2321 }
2322
2323 intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2324 intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2325 intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2326 intf_cfg.cwb = dpu_enc->cwb_mask;
2327
2328 if (phys_enc->hw_intf)
2329 intf_cfg.intf = phys_enc->hw_intf->idx;
2330 if (phys_enc->hw_wb)
2331 intf_cfg.wb = phys_enc->hw_wb->idx;
2332
2333 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2334 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2335
2336 if (ctl->ops.reset_intf_cfg)
2337 ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2338
2339 ctl->ops.trigger_flush(ctl);
2340 ctl->ops.trigger_start(ctl);
2341 ctl->ops.clear_pending_flush(ctl);
2342 }
2343
dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys * phys_enc,bool enable)2344 void dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys *phys_enc,
2345 bool enable)
2346 {
2347 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2348 struct dpu_hw_cwb *hw_cwb;
2349 struct dpu_hw_ctl *hw_ctl;
2350 struct dpu_hw_cwb_setup_cfg cwb_cfg;
2351
2352 struct dpu_kms *dpu_kms;
2353 struct dpu_global_state *global_state;
2354 struct dpu_hw_blk *rt_pp_list[MAX_CHANNELS_PER_ENC];
2355 int num_pp;
2356
2357 if (!phys_enc->hw_wb)
2358 return;
2359
2360 hw_ctl = phys_enc->hw_ctl;
2361
2362 if (!phys_enc->hw_ctl) {
2363 DPU_DEBUG("[wb:%d] no ctl assigned\n",
2364 phys_enc->hw_wb->idx - WB_0);
2365 return;
2366 }
2367
2368 dpu_kms = phys_enc->dpu_kms;
2369 global_state = dpu_kms_get_existing_global_state(dpu_kms);
2370 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
2371 phys_enc->parent->crtc,
2372 DPU_HW_BLK_PINGPONG, rt_pp_list,
2373 ARRAY_SIZE(rt_pp_list));
2374
2375 if (num_pp == 0 || num_pp > MAX_CHANNELS_PER_ENC) {
2376 DPU_DEBUG_ENC(dpu_enc, "invalid num_pp %d\n", num_pp);
2377 return;
2378 }
2379
2380 /*
2381 * The CWB mux supports using LM or DSPP as tap points. For now,
2382 * always use LM tap point
2383 */
2384 cwb_cfg.input = INPUT_MODE_LM_OUT;
2385
2386 for (int i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2387 hw_cwb = dpu_enc->hw_cwb[i];
2388 if (!hw_cwb)
2389 continue;
2390
2391 if (enable) {
2392 struct dpu_hw_pingpong *hw_pp =
2393 to_dpu_hw_pingpong(rt_pp_list[i]);
2394 cwb_cfg.pp_idx = hw_pp->idx;
2395 } else {
2396 cwb_cfg.pp_idx = PINGPONG_NONE;
2397 }
2398
2399 hw_cwb->ops.config_cwb(hw_cwb, &cwb_cfg);
2400
2401 if (hw_ctl->ops.update_pending_flush_cwb)
2402 hw_ctl->ops.update_pending_flush_cwb(hw_ctl, hw_cwb->idx);
2403 }
2404 }
2405
2406 /**
2407 * dpu_encoder_helper_phys_setup_cdm - setup chroma down sampling block
2408 * @phys_enc: Pointer to physical encoder
2409 * @dpu_fmt: Pinter to the format description
2410 * @output_type: HDMI/WB
2411 */
dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys * phys_enc,const struct msm_format * dpu_fmt,u32 output_type)2412 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2413 const struct msm_format *dpu_fmt,
2414 u32 output_type)
2415 {
2416 struct dpu_hw_cdm *hw_cdm;
2417 struct dpu_hw_cdm_cfg *cdm_cfg;
2418 struct dpu_hw_pingpong *hw_pp;
2419 int ret;
2420
2421 if (!phys_enc)
2422 return;
2423
2424 cdm_cfg = &phys_enc->cdm_cfg;
2425 hw_pp = phys_enc->hw_pp;
2426 hw_cdm = phys_enc->hw_cdm;
2427
2428 if (!hw_cdm)
2429 return;
2430
2431 if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2432 DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2433 &dpu_fmt->pixel_format);
2434 if (hw_cdm->ops.bind_pingpong_blk)
2435 hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2436
2437 return;
2438 }
2439
2440 memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2441
2442 cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2443 cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2444 cdm_cfg->output_fmt = dpu_fmt;
2445 cdm_cfg->output_type = output_type;
2446 cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2447 CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2448 cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2449
2450 /* enable 10 bit logic */
2451 switch (cdm_cfg->output_fmt->chroma_sample) {
2452 case CHROMA_FULL:
2453 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2454 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2455 break;
2456 case CHROMA_H2V1:
2457 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2458 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2459 break;
2460 case CHROMA_420:
2461 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2462 cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2463 break;
2464 case CHROMA_H1V2:
2465 default:
2466 DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2467 DRMID(phys_enc->parent));
2468 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2469 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2470 break;
2471 }
2472
2473 DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2474 DRMID(phys_enc->parent), cdm_cfg->output_width,
2475 cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2476 cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2477 cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2478
2479 if (hw_cdm->ops.enable) {
2480 cdm_cfg->pp_id = hw_pp->idx;
2481 ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2482 if (ret < 0) {
2483 DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2484 DRMID(phys_enc->parent), ret);
2485 return;
2486 }
2487 }
2488 }
2489
2490 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2491 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2492 {
2493 struct drm_encoder *drm_enc = s->private;
2494 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2495 int i;
2496
2497 mutex_lock(&dpu_enc->enc_lock);
2498 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2499 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2500
2501 seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d frame_done_cnt:%d",
2502 phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2503 phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2504 atomic_read(&phys->vsync_cnt),
2505 atomic_read(&phys->underrun_cnt),
2506 atomic_read(&dpu_enc->frame_done_timeout_cnt));
2507
2508 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2509 }
2510 mutex_unlock(&dpu_enc->enc_lock);
2511
2512 return 0;
2513 }
2514
2515 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2516
dpu_encoder_debugfs_init(struct drm_encoder * drm_enc,struct dentry * root)2517 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2518 {
2519 /* don't error check these */
2520 debugfs_create_file("status", 0600,
2521 root, drm_enc, &_dpu_encoder_status_fops);
2522 }
2523 #else
2524 #define dpu_encoder_debugfs_init NULL
2525 #endif
2526
dpu_encoder_virt_add_phys_encs(struct drm_device * dev,struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2527 static int dpu_encoder_virt_add_phys_encs(
2528 struct drm_device *dev,
2529 struct msm_display_info *disp_info,
2530 struct dpu_encoder_virt *dpu_enc,
2531 struct dpu_enc_phys_init_params *params)
2532 {
2533 struct dpu_encoder_phys *enc = NULL;
2534
2535 DPU_DEBUG_ENC(dpu_enc, "\n");
2536
2537 /*
2538 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2539 * in this function, check up-front.
2540 */
2541 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2542 ARRAY_SIZE(dpu_enc->phys_encs)) {
2543 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2544 dpu_enc->num_phys_encs);
2545 return -EINVAL;
2546 }
2547
2548
2549 if (disp_info->intf_type == INTF_WB) {
2550 enc = dpu_encoder_phys_wb_init(dev, params);
2551
2552 if (IS_ERR(enc)) {
2553 DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2554 PTR_ERR(enc));
2555 return PTR_ERR(enc);
2556 }
2557
2558 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2559 ++dpu_enc->num_phys_encs;
2560 } else if (disp_info->is_cmd_mode) {
2561 enc = dpu_encoder_phys_cmd_init(dev, params);
2562
2563 if (IS_ERR(enc)) {
2564 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2565 PTR_ERR(enc));
2566 return PTR_ERR(enc);
2567 }
2568
2569 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2570 ++dpu_enc->num_phys_encs;
2571 } else {
2572 enc = dpu_encoder_phys_vid_init(dev, params);
2573
2574 if (IS_ERR(enc)) {
2575 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2576 PTR_ERR(enc));
2577 return PTR_ERR(enc);
2578 }
2579
2580 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2581 ++dpu_enc->num_phys_encs;
2582 }
2583
2584 if (params->split_role == ENC_ROLE_SLAVE)
2585 dpu_enc->cur_slave = enc;
2586 else
2587 dpu_enc->cur_master = enc;
2588
2589 return 0;
2590 }
2591
2592 /**
2593 * dpu_encoder_get_clones - Calculate the possible_clones for DPU encoder
2594 * @drm_enc: DRM encoder pointer
2595 * Returns: possible_clones mask
2596 */
dpu_encoder_get_clones(struct drm_encoder * drm_enc)2597 uint32_t dpu_encoder_get_clones(struct drm_encoder *drm_enc)
2598 {
2599 struct drm_encoder *curr;
2600 int type = drm_enc->encoder_type;
2601 uint32_t clone_mask = drm_encoder_mask(drm_enc);
2602
2603 /*
2604 * Set writeback as possible clones of real-time DSI encoders and vice
2605 * versa
2606 *
2607 * Writeback encoders can't be clones of each other and DSI
2608 * encoders can't be clones of each other.
2609 *
2610 * TODO: Add DP encoders as valid possible clones for writeback encoders
2611 * (and vice versa) once concurrent writeback has been validated for DP
2612 */
2613 drm_for_each_encoder(curr, drm_enc->dev) {
2614 if ((type == DRM_MODE_ENCODER_VIRTUAL &&
2615 curr->encoder_type == DRM_MODE_ENCODER_DSI) ||
2616 (type == DRM_MODE_ENCODER_DSI &&
2617 curr->encoder_type == DRM_MODE_ENCODER_VIRTUAL))
2618 clone_mask |= drm_encoder_mask(curr);
2619 }
2620
2621 return clone_mask;
2622 }
2623
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2624 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2625 struct dpu_kms *dpu_kms,
2626 struct msm_display_info *disp_info)
2627 {
2628 int ret = 0;
2629 int i = 0;
2630 struct dpu_enc_phys_init_params phys_params;
2631
2632 if (!dpu_enc) {
2633 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2634 return -EINVAL;
2635 }
2636
2637 dpu_enc->cur_master = NULL;
2638
2639 memset(&phys_params, 0, sizeof(phys_params));
2640 phys_params.dpu_kms = dpu_kms;
2641 phys_params.parent = &dpu_enc->base;
2642 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2643
2644 WARN_ON(disp_info->num_of_h_tiles < 1);
2645
2646 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2647
2648 if (disp_info->intf_type != INTF_WB)
2649 dpu_enc->idle_pc_supported =
2650 dpu_kms->catalog->caps->has_idle_pc;
2651
2652 mutex_lock(&dpu_enc->enc_lock);
2653 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2654 /*
2655 * Left-most tile is at index 0, content is controller id
2656 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2657 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2658 */
2659 u32 controller_id = disp_info->h_tile_instance[i];
2660
2661 if (disp_info->num_of_h_tiles > 1) {
2662 if (i == 0)
2663 phys_params.split_role = ENC_ROLE_MASTER;
2664 else
2665 phys_params.split_role = ENC_ROLE_SLAVE;
2666 } else {
2667 phys_params.split_role = ENC_ROLE_SOLO;
2668 }
2669
2670 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2671 i, controller_id, phys_params.split_role);
2672
2673 phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2674 disp_info->intf_type,
2675 controller_id);
2676
2677 if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2678 phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2679
2680 if (!phys_params.hw_intf && !phys_params.hw_wb) {
2681 DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2682 ret = -EINVAL;
2683 break;
2684 }
2685
2686 if (phys_params.hw_intf && phys_params.hw_wb) {
2687 DPU_ERROR_ENC(dpu_enc,
2688 "invalid phys both intf and wb block at idx: %d\n", i);
2689 ret = -EINVAL;
2690 break;
2691 }
2692
2693 ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2694 dpu_enc, &phys_params);
2695 if (ret) {
2696 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2697 break;
2698 }
2699 }
2700
2701 mutex_unlock(&dpu_enc->enc_lock);
2702
2703 return ret;
2704 }
2705
dpu_encoder_frame_done_timeout(struct timer_list * t)2706 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2707 {
2708 struct dpu_encoder_virt *dpu_enc = timer_container_of(dpu_enc, t,
2709 frame_done_timer);
2710 struct drm_encoder *drm_enc = &dpu_enc->base;
2711 u32 event;
2712
2713 if (!drm_enc->dev) {
2714 DPU_ERROR("invalid parameters\n");
2715 return;
2716 }
2717
2718 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2719 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2720 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2721 return;
2722 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2723 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2724 return;
2725 }
2726
2727 DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2728
2729 if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2730 msm_disp_snapshot_state(drm_enc->dev);
2731
2732 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2733 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2734 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2735 }
2736
2737 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2738 .atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2739 .atomic_disable = dpu_encoder_virt_atomic_disable,
2740 .atomic_enable = dpu_encoder_virt_atomic_enable,
2741 };
2742
2743 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2744 .debugfs_init = dpu_encoder_debugfs_init,
2745 };
2746
2747 /**
2748 * dpu_encoder_init - initialize virtual encoder object
2749 * @dev: Pointer to drm device structure
2750 * @drm_enc_mode: corresponding DRM_MODE_ENCODER_* constant
2751 * @disp_info: Pointer to display information structure
2752 * Returns: Pointer to newly created drm encoder
2753 */
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode,struct msm_display_info * disp_info)2754 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2755 int drm_enc_mode,
2756 struct msm_display_info *disp_info)
2757 {
2758 struct msm_drm_private *priv = dev->dev_private;
2759 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2760 struct dpu_encoder_virt *dpu_enc;
2761 int ret;
2762
2763 dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2764 &dpu_encoder_funcs, drm_enc_mode, NULL);
2765 if (IS_ERR(dpu_enc))
2766 return ERR_CAST(dpu_enc);
2767
2768 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2769
2770 spin_lock_init(&dpu_enc->enc_spinlock);
2771 dpu_enc->enabled = false;
2772 mutex_init(&dpu_enc->enc_lock);
2773 mutex_init(&dpu_enc->rc_lock);
2774
2775 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2776 if (ret) {
2777 DPU_ERROR("failed to setup encoder\n");
2778 return ERR_PTR(-ENOMEM);
2779 }
2780
2781 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2782 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2783 timer_setup(&dpu_enc->frame_done_timer,
2784 dpu_encoder_frame_done_timeout, 0);
2785
2786 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2787 dpu_encoder_off_work);
2788 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2789
2790 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2791
2792 DPU_DEBUG_ENC(dpu_enc, "created\n");
2793
2794 return &dpu_enc->base;
2795 }
2796
2797 /**
2798 * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2799 * @drm_enc: encoder pointer
2800 *
2801 * Wait for hardware to have flushed the current pending changes to hardware at
2802 * a vblank or CTL_START. Physical encoders will map this differently depending
2803 * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2804 *
2805 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2806 */
dpu_encoder_wait_for_commit_done(struct drm_encoder * drm_enc)2807 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2808 {
2809 struct dpu_encoder_virt *dpu_enc = NULL;
2810 int i, ret = 0;
2811
2812 if (!drm_enc) {
2813 DPU_ERROR("invalid encoder\n");
2814 return -EINVAL;
2815 }
2816 dpu_enc = to_dpu_encoder_virt(drm_enc);
2817 DPU_DEBUG_ENC(dpu_enc, "\n");
2818
2819 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2820 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2821
2822 if (phys->ops.wait_for_commit_done) {
2823 DPU_ATRACE_BEGIN("wait_for_commit_done");
2824 ret = phys->ops.wait_for_commit_done(phys);
2825 DPU_ATRACE_END("wait_for_commit_done");
2826 if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2827 dpu_enc->commit_done_timedout = true;
2828 msm_disp_snapshot_state(drm_enc->dev);
2829 }
2830 if (ret)
2831 return ret;
2832 }
2833 }
2834
2835 return ret;
2836 }
2837
2838 /**
2839 * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2840 * @drm_enc: encoder pointer
2841 *
2842 * Wait for the hardware to transfer all the pixels to the panel. Physical
2843 * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2844 * cmd mode -> pp_done.
2845 *
2846 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2847 */
dpu_encoder_wait_for_tx_complete(struct drm_encoder * drm_enc)2848 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2849 {
2850 struct dpu_encoder_virt *dpu_enc = NULL;
2851 int i, ret = 0;
2852
2853 if (!drm_enc) {
2854 DPU_ERROR("invalid encoder\n");
2855 return -EINVAL;
2856 }
2857 dpu_enc = to_dpu_encoder_virt(drm_enc);
2858 DPU_DEBUG_ENC(dpu_enc, "\n");
2859
2860 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2861 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2862
2863 if (phys->ops.wait_for_tx_complete) {
2864 DPU_ATRACE_BEGIN("wait_for_tx_complete");
2865 ret = phys->ops.wait_for_tx_complete(phys);
2866 DPU_ATRACE_END("wait_for_tx_complete");
2867 if (ret)
2868 return ret;
2869 }
2870 }
2871
2872 return ret;
2873 }
2874
2875 /**
2876 * dpu_encoder_get_intf_mode - get interface mode of the given encoder
2877 * @encoder: Pointer to drm encoder object
2878 */
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2879 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2880 {
2881 struct dpu_encoder_virt *dpu_enc = NULL;
2882
2883 if (!encoder) {
2884 DPU_ERROR("invalid encoder\n");
2885 return INTF_MODE_NONE;
2886 }
2887 dpu_enc = to_dpu_encoder_virt(encoder);
2888
2889 if (dpu_enc->cur_master)
2890 return dpu_enc->cur_master->intf_mode;
2891
2892 if (dpu_enc->num_phys_encs)
2893 return dpu_enc->phys_encs[0]->intf_mode;
2894
2895 return INTF_MODE_NONE;
2896 }
2897
2898 /**
2899 * dpu_encoder_helper_get_cwb_mask - get CWB blocks mask for the DPU encoder
2900 * @phys_enc: Pointer to physical encoder structure
2901 */
dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys * phys_enc)2902 unsigned int dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys *phys_enc)
2903 {
2904 struct drm_encoder *encoder = phys_enc->parent;
2905 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2906
2907 return dpu_enc->cwb_mask;
2908 }
2909
2910 /**
2911 * dpu_encoder_helper_get_dsc - get DSC blocks mask for the DPU encoder
2912 * This helper function is used by physical encoder to get DSC blocks mask
2913 * used for this encoder.
2914 * @phys_enc: Pointer to physical encoder structure
2915 */
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2916 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2917 {
2918 struct drm_encoder *encoder = phys_enc->parent;
2919 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2920
2921 return dpu_enc->dsc_mask;
2922 }
2923
dpu_encoder_phys_init(struct dpu_encoder_phys * phys_enc,struct dpu_enc_phys_init_params * p)2924 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2925 struct dpu_enc_phys_init_params *p)
2926 {
2927 phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2928 phys_enc->hw_intf = p->hw_intf;
2929 phys_enc->hw_wb = p->hw_wb;
2930 phys_enc->parent = p->parent;
2931 phys_enc->dpu_kms = p->dpu_kms;
2932 phys_enc->split_role = p->split_role;
2933 phys_enc->enc_spinlock = p->enc_spinlock;
2934 phys_enc->enable_state = DPU_ENC_DISABLED;
2935
2936 atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2937 atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2938
2939 atomic_set(&phys_enc->vsync_cnt, 0);
2940 atomic_set(&phys_enc->underrun_cnt, 0);
2941
2942 init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2943 }
2944