xref: /linux/drivers/gpu/drm/msm/disp/dpu1/dpu_encoder.c (revision 2ee664833000609213114c4bd7efba489cef5f71)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2013 Red Hat
4  * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5  * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
6  *
7  * Author: Rob Clark <robdclark@gmail.com>
8  */
9 
10 #define pr_fmt(fmt)	"[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14 
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20 
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_cwb.h"
28 #include "dpu_hw_dspp.h"
29 #include "dpu_hw_dsc.h"
30 #include "dpu_hw_merge3d.h"
31 #include "dpu_hw_cdm.h"
32 #include "dpu_formats.h"
33 #include "dpu_encoder_phys.h"
34 #include "dpu_crtc.h"
35 #include "dpu_trace.h"
36 #include "dpu_core_irq.h"
37 #include "disp/msm_disp_snapshot.h"
38 
39 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
40 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41 
42 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
43 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
44 
45 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
46 		(e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
47 
48 /*
49  * Two to anticipate panels that can do cmd/vid dynamic switching
50  * plan is to create all possible physical encoder types, and switch between
51  * them at runtime
52  */
53 #define NUM_PHYS_ENCODER_TYPES 2
54 
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 	(MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57 
58 #define MAX_CHANNELS_PER_ENC 2
59 
60 #define IDLE_SHORT_TIMEOUT	1
61 
62 /* timeout in frames waiting for frame done */
63 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
64 
65 /**
66  * enum dpu_enc_rc_events - events for resource control state machine
67  * @DPU_ENC_RC_EVENT_KICKOFF:
68  *	This event happens at NORMAL priority.
69  *	Event that signals the start of the transfer. When this event is
70  *	received, enable MDP/DSI core clocks. Regardless of the previous
71  *	state, the resource should be in ON state at the end of this event.
72  * @DPU_ENC_RC_EVENT_FRAME_DONE:
73  *	This event happens at INTERRUPT level.
74  *	Event signals the end of the data transfer after the PP FRAME_DONE
75  *	event. At the end of this event, a delayed work is scheduled to go to
76  *	IDLE_PC state after IDLE_TIMEOUT time.
77  * @DPU_ENC_RC_EVENT_PRE_STOP:
78  *	This event happens at NORMAL priority.
79  *	This event, when received during the ON state, leave the RC STATE
80  *	in the PRE_OFF state. It should be followed by the STOP event as
81  *	part of encoder disable.
82  *	If received during IDLE or OFF states, it will do nothing.
83  * @DPU_ENC_RC_EVENT_STOP:
84  *	This event happens at NORMAL priority.
85  *	When this event is received, disable all the MDP/DSI core clocks, and
86  *	disable IRQs. It should be called from the PRE_OFF or IDLE states.
87  *	IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
88  *	PRE_OFF is expected when PRE_STOP was executed during the ON state.
89  *	Resource state should be in OFF at the end of the event.
90  * @DPU_ENC_RC_EVENT_ENTER_IDLE:
91  *	This event happens at NORMAL priority from a work item.
92  *	Event signals that there were no frame updates for IDLE_TIMEOUT time.
93  *	This would disable MDP/DSI core clocks and change the resource state
94  *	to IDLE.
95  */
96 enum dpu_enc_rc_events {
97 	DPU_ENC_RC_EVENT_KICKOFF = 1,
98 	DPU_ENC_RC_EVENT_FRAME_DONE,
99 	DPU_ENC_RC_EVENT_PRE_STOP,
100 	DPU_ENC_RC_EVENT_STOP,
101 	DPU_ENC_RC_EVENT_ENTER_IDLE
102 };
103 
104 /*
105  * enum dpu_enc_rc_states - states that the resource control maintains
106  * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
107  * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
108  * @DPU_ENC_RC_STATE_ON: Resource is in ON state
109  * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
110  * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
111  */
112 enum dpu_enc_rc_states {
113 	DPU_ENC_RC_STATE_OFF,
114 	DPU_ENC_RC_STATE_PRE_OFF,
115 	DPU_ENC_RC_STATE_ON,
116 	DPU_ENC_RC_STATE_IDLE
117 };
118 
119 /**
120  * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
121  *	encoders. Virtual encoder manages one "logical" display. Physical
122  *	encoders manage one intf block, tied to a specific panel/sub-panel.
123  *	Virtual encoder defers as much as possible to the physical encoders.
124  *	Virtual encoder registers itself with the DRM Framework as the encoder.
125  * @base:		drm_encoder base class for registration with DRM
126  * @enc_spinlock:	Virtual-Encoder-Wide Spin Lock for IRQ purposes
127  * @enabled:		True if the encoder is active, protected by enc_lock
128  * @commit_done_timedout: True if there has been a timeout on commit after
129  *			enabling the encoder.
130  * @num_phys_encs:	Actual number of physical encoders contained.
131  * @phys_encs:		Container of physical encoders managed.
132  * @cur_master:		Pointer to the current master in this mode. Optimization
133  *			Only valid after enable. Cleared as disable.
134  * @cur_slave:		As above but for the slave encoder.
135  * @hw_pp:		Handle to the pingpong blocks used for the display. No.
136  *			pingpong blocks can be different than num_phys_encs.
137  * @hw_cwb:		Handle to the CWB muxes used for concurrent writeback
138  *			display. Number of CWB muxes can be different than
139  *			num_phys_encs.
140  * @hw_dsc:		Handle to the DSC blocks used for the display.
141  * @dsc_mask:		Bitmask of used DSC blocks.
142  * @cwb_mask:		Bitmask of used CWB muxes
143  * @intfs_swapped:	Whether or not the phys_enc interfaces have been swapped
144  *			for partial update right-only cases, such as pingpong
145  *			split where virtual pingpong does not generate IRQs
146  * @crtc:		Pointer to the currently assigned crtc. Normally you
147  *			would use crtc->state->encoder_mask to determine the
148  *			link between encoder/crtc. However in this case we need
149  *			to track crtc in the disable() hook which is called
150  *			_after_ encoder_mask is cleared.
151  * @connector:		If a mode is set, cached pointer to the active connector
152  * @enc_lock:			Lock around physical encoder
153  *				create/destroy/enable/disable
154  * @frame_busy_mask:		Bitmask tracking which phys_enc we are still
155  *				busy processing current command.
156  *				Bit0 = phys_encs[0] etc.
157  * @frame_done_timeout_ms:	frame done timeout in ms
158  * @frame_done_timeout_cnt:	atomic counter tracking the number of frame
159  * 				done timeouts
160  * @frame_done_timer:		watchdog timer for frame done event
161  * @disp_info:			local copy of msm_display_info struct
162  * @idle_pc_supported:		indicate if idle power collaps is supported
163  * @rc_lock:			resource control mutex lock to protect
164  *				virt encoder over various state changes
165  * @rc_state:			resource controller state
166  * @delayed_off_work:		delayed worker to schedule disabling of
167  *				clks and resources after IDLE_TIMEOUT time.
168  * @topology:                   topology of the display
169  * @idle_timeout:		idle timeout duration in milliseconds
170  * @wide_bus_en:		wide bus is enabled on this interface
171  * @dsc:			drm_dsc_config pointer, for DSC-enabled encoders
172  */
173 struct dpu_encoder_virt {
174 	struct drm_encoder base;
175 	spinlock_t enc_spinlock;
176 
177 	bool enabled;
178 	bool commit_done_timedout;
179 
180 	unsigned int num_phys_encs;
181 	struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
182 	struct dpu_encoder_phys *cur_master;
183 	struct dpu_encoder_phys *cur_slave;
184 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
185 	struct dpu_hw_cwb *hw_cwb[MAX_CHANNELS_PER_ENC];
186 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
187 
188 	unsigned int dsc_mask;
189 	unsigned int cwb_mask;
190 
191 	bool intfs_swapped;
192 
193 	struct drm_crtc *crtc;
194 	struct drm_connector *connector;
195 
196 	struct mutex enc_lock;
197 	DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
198 
199 	atomic_t frame_done_timeout_ms;
200 	atomic_t frame_done_timeout_cnt;
201 	struct timer_list frame_done_timer;
202 
203 	struct msm_display_info disp_info;
204 
205 	bool idle_pc_supported;
206 	struct mutex rc_lock;
207 	enum dpu_enc_rc_states rc_state;
208 	struct delayed_work delayed_off_work;
209 	struct msm_display_topology topology;
210 
211 	u32 idle_timeout;
212 
213 	bool wide_bus_en;
214 
215 	/* DSC configuration */
216 	struct drm_dsc_config *dsc;
217 };
218 
219 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
220 
221 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
222 	15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
223 };
224 
225 /**
226  * dpu_encoder_get_drm_fmt - return DRM fourcc format
227  * @phys_enc: Pointer to physical encoder structure
228  */
229 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
230 {
231 	struct drm_encoder *drm_enc;
232 	struct dpu_encoder_virt *dpu_enc;
233 	struct drm_display_info *info;
234 	struct drm_display_mode *mode;
235 
236 	drm_enc = phys_enc->parent;
237 	dpu_enc = to_dpu_encoder_virt(drm_enc);
238 	info = &dpu_enc->connector->display_info;
239 	mode = &phys_enc->cached_mode;
240 
241 	if (drm_mode_is_420_only(info, mode))
242 		return DRM_FORMAT_YUV420;
243 
244 	return DRM_FORMAT_RGB888;
245 }
246 
247 /**
248  * dpu_encoder_needs_periph_flush - return true if physical encoder requires
249  *	peripheral flush
250  * @phys_enc: Pointer to physical encoder structure
251  */
252 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
253 {
254 	struct drm_encoder *drm_enc;
255 	struct dpu_encoder_virt *dpu_enc;
256 	struct msm_display_info *disp_info;
257 	struct msm_drm_private *priv;
258 	struct drm_display_mode *mode;
259 
260 	drm_enc = phys_enc->parent;
261 	dpu_enc = to_dpu_encoder_virt(drm_enc);
262 	disp_info = &dpu_enc->disp_info;
263 	priv = drm_enc->dev->dev_private;
264 	mode = &phys_enc->cached_mode;
265 
266 	return phys_enc->hw_intf->cap->type == INTF_DP &&
267 	       msm_dp_needs_periph_flush(priv->dp[disp_info->h_tile_instance[0]], mode);
268 }
269 
270 /**
271  * dpu_encoder_is_widebus_enabled - return bool value if widebus is enabled
272  * @drm_enc:    Pointer to previously created drm encoder structure
273  */
274 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
275 {
276 	const struct dpu_encoder_virt *dpu_enc;
277 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
278 	const struct msm_display_info *disp_info;
279 	int index;
280 
281 	dpu_enc = to_dpu_encoder_virt(drm_enc);
282 	disp_info = &dpu_enc->disp_info;
283 	index = disp_info->h_tile_instance[0];
284 
285 	if (disp_info->intf_type == INTF_DP)
286 		return msm_dp_wide_bus_available(priv->dp[index]);
287 	else if (disp_info->intf_type == INTF_DSI)
288 		return msm_dsi_wide_bus_enabled(priv->dsi[index]);
289 
290 	return false;
291 }
292 
293 /**
294  * dpu_encoder_is_dsc_enabled - indicate whether dsc is enabled
295  *				for the encoder.
296  * @drm_enc:    Pointer to previously created drm encoder structure
297  */
298 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
299 {
300 	const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
301 
302 	return dpu_enc->dsc ? true : false;
303 }
304 
305 /**
306  * dpu_encoder_get_crc_values_cnt - get number of physical encoders contained
307  *	in virtual encoder that can collect CRC values
308  * @drm_enc:    Pointer to previously created drm encoder structure
309  * Returns:     Number of physical encoders for given drm encoder
310  */
311 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
312 {
313 	struct dpu_encoder_virt *dpu_enc;
314 	int i, num_intf = 0;
315 
316 	dpu_enc = to_dpu_encoder_virt(drm_enc);
317 
318 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
319 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
320 
321 		if (phys->hw_intf && phys->hw_intf->ops.setup_misr
322 				&& phys->hw_intf->ops.collect_misr)
323 			num_intf++;
324 	}
325 
326 	return num_intf;
327 }
328 
329 /**
330  * dpu_encoder_setup_misr - enable misr calculations
331  * @drm_enc:    Pointer to previously created drm encoder structure
332  */
333 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
334 {
335 	struct dpu_encoder_virt *dpu_enc;
336 
337 	int i;
338 
339 	dpu_enc = to_dpu_encoder_virt(drm_enc);
340 
341 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
342 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
343 
344 		if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
345 			continue;
346 
347 		phys->hw_intf->ops.setup_misr(phys->hw_intf);
348 	}
349 }
350 
351 /**
352  * dpu_encoder_get_crc - get the crc value from interface blocks
353  * @drm_enc:    Pointer to previously created drm encoder structure
354  * @crcs:	array to fill with CRC data
355  * @pos:	offset into the @crcs array
356  * Returns:     0 on success, error otherwise
357  */
358 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
359 {
360 	struct dpu_encoder_virt *dpu_enc;
361 
362 	int i, rc = 0, entries_added = 0;
363 
364 	if (!drm_enc->crtc) {
365 		DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
366 		return -EINVAL;
367 	}
368 
369 	dpu_enc = to_dpu_encoder_virt(drm_enc);
370 
371 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
372 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
373 
374 		if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
375 			continue;
376 
377 		rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
378 		if (rc)
379 			return rc;
380 		entries_added++;
381 	}
382 
383 	return entries_added;
384 }
385 
386 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
387 {
388 	struct dpu_hw_dither_cfg dither_cfg = { 0 };
389 
390 	if (!hw_pp->ops.setup_dither)
391 		return;
392 
393 	switch (bpc) {
394 	case 6:
395 		dither_cfg.c0_bitdepth = 6;
396 		dither_cfg.c1_bitdepth = 6;
397 		dither_cfg.c2_bitdepth = 6;
398 		dither_cfg.c3_bitdepth = 6;
399 		dither_cfg.temporal_en = 0;
400 		break;
401 	default:
402 		hw_pp->ops.setup_dither(hw_pp, NULL);
403 		return;
404 	}
405 
406 	memcpy(&dither_cfg.matrix, dither_matrix,
407 			sizeof(u32) * DITHER_MATRIX_SZ);
408 
409 	hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
410 }
411 
412 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
413 {
414 	switch (intf_mode) {
415 	case INTF_MODE_VIDEO:
416 		return "INTF_MODE_VIDEO";
417 	case INTF_MODE_CMD:
418 		return "INTF_MODE_CMD";
419 	case INTF_MODE_WB_BLOCK:
420 		return "INTF_MODE_WB_BLOCK";
421 	case INTF_MODE_WB_LINE:
422 		return "INTF_MODE_WB_LINE";
423 	default:
424 		return "INTF_MODE_UNKNOWN";
425 	}
426 }
427 
428 /**
429  * dpu_encoder_helper_report_irq_timeout - utility to report error that irq has
430  *	timed out, including reporting frame error event to crtc and debug dump
431  * @phys_enc: Pointer to physical encoder structure
432  * @intr_idx: Failing interrupt index
433  */
434 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
435 		enum dpu_intr_idx intr_idx)
436 {
437 	DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
438 			DRMID(phys_enc->parent),
439 			dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
440 			phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
441 			phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
442 			phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
443 
444 	dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
445 				DPU_ENCODER_FRAME_EVENT_ERROR);
446 }
447 
448 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
449 		u32 irq_idx, struct dpu_encoder_wait_info *info);
450 
451 /**
452  * dpu_encoder_helper_wait_for_irq - utility to wait on an irq.
453  *	note: will call dpu_encoder_helper_wait_for_irq on timeout
454  * @phys_enc: Pointer to physical encoder structure
455  * @irq_idx: IRQ index
456  * @func: IRQ callback to be called in case of timeout
457  * @wait_info: wait info struct
458  * @return: 0 or -ERROR
459  */
460 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
461 		unsigned int irq_idx,
462 		void (*func)(void *arg),
463 		struct dpu_encoder_wait_info *wait_info)
464 {
465 	u32 irq_status;
466 	int ret;
467 
468 	if (!wait_info) {
469 		DPU_ERROR("invalid params\n");
470 		return -EINVAL;
471 	}
472 	/* note: do master / slave checking outside */
473 
474 	/* return EWOULDBLOCK since we know the wait isn't necessary */
475 	if (phys_enc->enable_state == DPU_ENC_DISABLED) {
476 		DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
477 			  DRMID(phys_enc->parent), func,
478 			  DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
479 		return -EWOULDBLOCK;
480 	}
481 
482 	if (irq_idx == 0) {
483 		DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
484 			      DRMID(phys_enc->parent), func);
485 		return 0;
486 	}
487 
488 	DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
489 		      DRMID(phys_enc->parent), func,
490 		      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
491 		      atomic_read(wait_info->atomic_cnt));
492 
493 	ret = dpu_encoder_helper_wait_event_timeout(
494 			DRMID(phys_enc->parent),
495 			irq_idx,
496 			wait_info);
497 
498 	if (ret <= 0) {
499 		irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
500 		if (irq_status) {
501 			unsigned long flags;
502 
503 			DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
504 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
505 				      DRMID(phys_enc->parent), func,
506 				      phys_enc->hw_pp->idx - PINGPONG_0,
507 				      atomic_read(wait_info->atomic_cnt));
508 			local_irq_save(flags);
509 			func(phys_enc);
510 			local_irq_restore(flags);
511 			ret = 0;
512 		} else {
513 			ret = -ETIMEDOUT;
514 			DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
515 				      DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
516 				      DRMID(phys_enc->parent), func,
517 				      phys_enc->hw_pp->idx - PINGPONG_0,
518 				      atomic_read(wait_info->atomic_cnt));
519 		}
520 	} else {
521 		ret = 0;
522 		trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
523 			func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
524 			phys_enc->hw_pp->idx - PINGPONG_0,
525 			atomic_read(wait_info->atomic_cnt));
526 	}
527 
528 	return ret;
529 }
530 
531 /**
532  * dpu_encoder_get_vsync_count - get vsync count for the encoder.
533  * @drm_enc:    Pointer to previously created drm encoder structure
534  */
535 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
536 {
537 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
538 	struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
539 	return phys ? atomic_read(&phys->vsync_cnt) : 0;
540 }
541 
542 /**
543  * dpu_encoder_get_linecount - get interface line count for the encoder.
544  * @drm_enc:    Pointer to previously created drm encoder structure
545  */
546 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
547 {
548 	struct dpu_encoder_virt *dpu_enc;
549 	struct dpu_encoder_phys *phys;
550 	int linecount = 0;
551 
552 	dpu_enc = to_dpu_encoder_virt(drm_enc);
553 	phys = dpu_enc ? dpu_enc->cur_master : NULL;
554 
555 	if (phys && phys->ops.get_line_count)
556 		linecount = phys->ops.get_line_count(phys);
557 
558 	return linecount;
559 }
560 
561 /**
562  * dpu_encoder_helper_split_config - split display configuration helper function
563  *	This helper function may be used by physical encoders to configure
564  *	the split display related registers.
565  * @phys_enc: Pointer to physical encoder structure
566  * @interface: enum dpu_intf setting
567  */
568 void dpu_encoder_helper_split_config(
569 		struct dpu_encoder_phys *phys_enc,
570 		enum dpu_intf interface)
571 {
572 	struct dpu_encoder_virt *dpu_enc;
573 	struct split_pipe_cfg cfg = { 0 };
574 	struct dpu_hw_mdp *hw_mdptop;
575 	struct msm_display_info *disp_info;
576 
577 	if (!phys_enc->hw_mdptop || !phys_enc->parent) {
578 		DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
579 		return;
580 	}
581 
582 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
583 	hw_mdptop = phys_enc->hw_mdptop;
584 	disp_info = &dpu_enc->disp_info;
585 
586 	if (disp_info->intf_type != INTF_DSI)
587 		return;
588 
589 	/**
590 	 * disable split modes since encoder will be operating in as the only
591 	 * encoder, either for the entire use case in the case of, for example,
592 	 * single DSI, or for this frame in the case of left/right only partial
593 	 * update.
594 	 */
595 	if (phys_enc->split_role == ENC_ROLE_SOLO) {
596 		if (hw_mdptop->ops.setup_split_pipe)
597 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
598 		return;
599 	}
600 
601 	cfg.en = true;
602 	cfg.mode = phys_enc->intf_mode;
603 	cfg.intf = interface;
604 
605 	if (cfg.en && phys_enc->ops.needs_single_flush &&
606 			phys_enc->ops.needs_single_flush(phys_enc))
607 		cfg.split_flush_en = true;
608 
609 	if (phys_enc->split_role == ENC_ROLE_MASTER) {
610 		DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
611 
612 		if (hw_mdptop->ops.setup_split_pipe)
613 			hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
614 	}
615 }
616 
617 /**
618  * dpu_encoder_use_dsc_merge - returns true if the encoder uses DSC merge topology.
619  * @drm_enc:    Pointer to previously created drm encoder structure
620  */
621 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
622 {
623 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
624 	int i, intf_count = 0, num_dsc = 0;
625 
626 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
627 		if (dpu_enc->phys_encs[i])
628 			intf_count++;
629 
630 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
631 		if (dpu_enc->hw_dsc[i])
632 			num_dsc++;
633 
634 	return (num_dsc > 0) && (num_dsc > intf_count);
635 }
636 
637 /**
638  * dpu_encoder_get_dsc_config - get DSC config for the DPU encoder
639  *   This helper function is used by physical encoder to get DSC config
640  *   used for this encoder.
641  * @drm_enc: Pointer to encoder structure
642  */
643 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
644 {
645 	struct msm_drm_private *priv = drm_enc->dev->dev_private;
646 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
647 	int index = dpu_enc->disp_info.h_tile_instance[0];
648 
649 	if (dpu_enc->disp_info.intf_type == INTF_DSI)
650 		return msm_dsi_get_dsc_config(priv->dsi[index]);
651 
652 	return NULL;
653 }
654 
655 void dpu_encoder_update_topology(struct drm_encoder *drm_enc,
656 				 struct msm_display_topology *topology,
657 				 struct drm_atomic_state *state,
658 				 const struct drm_display_mode *adj_mode)
659 {
660 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
661 	struct msm_drm_private *priv = dpu_enc->base.dev->dev_private;
662 	struct msm_display_info *disp_info = &dpu_enc->disp_info;
663 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
664 	struct drm_connector *connector;
665 	struct drm_connector_state *conn_state;
666 	struct drm_framebuffer *fb;
667 	struct drm_dsc_config *dsc;
668 
669 	int i;
670 
671 	for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
672 		if (dpu_enc->phys_encs[i])
673 			topology->num_intf++;
674 
675 	dsc = dpu_encoder_get_dsc_config(drm_enc);
676 
677 	/* We only support 2 DSC mode (with 2 LM and 1 INTF) */
678 	if (dsc) {
679 		/*
680 		 * Use 2 DSC encoders, 2 layer mixers and 1 or 2 interfaces
681 		 * when Display Stream Compression (DSC) is enabled,
682 		 * and when enough DSC blocks are available.
683 		 * This is power-optimal and can drive up to (including) 4k
684 		 * screens.
685 		 */
686 		WARN(topology->num_intf > 2,
687 		     "DSC topology cannot support more than 2 interfaces\n");
688 		if (topology->num_intf >= 2 || dpu_kms->catalog->dsc_count >= 2)
689 			topology->num_dsc = 2;
690 		else
691 			topology->num_dsc = 1;
692 	}
693 
694 	connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
695 	if (!connector)
696 		return;
697 	conn_state = drm_atomic_get_new_connector_state(state, connector);
698 	if (!conn_state)
699 		return;
700 
701 	/*
702 	 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
703 	 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
704 	 * earlier.
705 	 */
706 	if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
707 		fb = conn_state->writeback_job->fb;
708 
709 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
710 			topology->num_cdm++;
711 	} else if (disp_info->intf_type == INTF_DP) {
712 		if (msm_dp_is_yuv_420_enabled(priv->dp[disp_info->h_tile_instance[0]], adj_mode))
713 			topology->num_cdm++;
714 	}
715 }
716 
717 bool dpu_encoder_needs_modeset(struct drm_encoder *drm_enc, struct drm_atomic_state *state)
718 {
719 	struct drm_connector *connector;
720 	struct drm_connector_state *conn_state;
721 	struct drm_framebuffer *fb;
722 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
723 
724 	if (!drm_enc || !state)
725 		return false;
726 
727 	connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
728 	if (!connector)
729 		return false;
730 
731 	conn_state = drm_atomic_get_new_connector_state(state, connector);
732 
733 	/**
734 	 * These checks are duplicated from dpu_encoder_update_topology() since
735 	 * CRTC and encoder don't hold topology information
736 	 */
737 	if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) {
738 		fb = conn_state->writeback_job->fb;
739 		if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb))) {
740 			if (!dpu_enc->cur_master->hw_cdm)
741 				return true;
742 		} else {
743 			if (dpu_enc->cur_master->hw_cdm)
744 				return true;
745 		}
746 	}
747 
748 	return false;
749 }
750 
751 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
752 			struct msm_display_info *disp_info)
753 {
754 	struct dpu_vsync_source_cfg vsync_cfg = { 0 };
755 	struct msm_drm_private *priv;
756 	struct dpu_kms *dpu_kms;
757 	struct dpu_hw_mdp *hw_mdptop;
758 	struct drm_encoder *drm_enc;
759 	struct dpu_encoder_phys *phys_enc;
760 	int i;
761 
762 	if (!dpu_enc || !disp_info) {
763 		DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
764 					dpu_enc != NULL, disp_info != NULL);
765 		return;
766 	} else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
767 		DPU_ERROR("invalid num phys enc %d/%d\n",
768 				dpu_enc->num_phys_encs,
769 				(int) ARRAY_SIZE(dpu_enc->hw_pp));
770 		return;
771 	}
772 
773 	drm_enc = &dpu_enc->base;
774 	/* this pointers are checked in virt_enable_helper */
775 	priv = drm_enc->dev->dev_private;
776 
777 	dpu_kms = to_dpu_kms(priv->kms);
778 	hw_mdptop = dpu_kms->hw_mdp;
779 	if (!hw_mdptop) {
780 		DPU_ERROR("invalid mdptop\n");
781 		return;
782 	}
783 
784 	if (hw_mdptop->ops.setup_vsync_source) {
785 		for (i = 0; i < dpu_enc->num_phys_encs; i++)
786 			vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
787 
788 		vsync_cfg.pp_count = dpu_enc->num_phys_encs;
789 		vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
790 
791 		vsync_cfg.vsync_source = disp_info->vsync_source;
792 
793 		hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
794 
795 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
796 			phys_enc = dpu_enc->phys_encs[i];
797 
798 			if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
799 				phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
800 						vsync_cfg.vsync_source);
801 		}
802 	}
803 }
804 
805 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
806 {
807 	struct dpu_encoder_virt *dpu_enc;
808 	int i;
809 
810 	if (!drm_enc) {
811 		DPU_ERROR("invalid encoder\n");
812 		return;
813 	}
814 
815 	dpu_enc = to_dpu_encoder_virt(drm_enc);
816 
817 	DPU_DEBUG_ENC(dpu_enc, "\n");
818 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
819 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
820 
821 		phys->ops.irq_enable(phys);
822 	}
823 }
824 
825 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
826 {
827 	struct dpu_encoder_virt *dpu_enc;
828 	int i;
829 
830 	if (!drm_enc) {
831 		DPU_ERROR("invalid encoder\n");
832 		return;
833 	}
834 
835 	dpu_enc = to_dpu_encoder_virt(drm_enc);
836 
837 	DPU_DEBUG_ENC(dpu_enc, "\n");
838 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
839 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
840 
841 		phys->ops.irq_disable(phys);
842 	}
843 }
844 
845 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
846 {
847 	struct msm_drm_private *priv;
848 	struct dpu_kms *dpu_kms;
849 	struct dpu_encoder_virt *dpu_enc;
850 
851 	dpu_enc = to_dpu_encoder_virt(drm_enc);
852 	priv = drm_enc->dev->dev_private;
853 	dpu_kms = to_dpu_kms(priv->kms);
854 
855 	trace_dpu_enc_rc_enable(DRMID(drm_enc));
856 
857 	if (!dpu_enc->cur_master) {
858 		DPU_ERROR("encoder master not set\n");
859 		return;
860 	}
861 
862 	/* enable DPU core clks */
863 	pm_runtime_get_sync(&dpu_kms->pdev->dev);
864 
865 	/* enable all the irq */
866 	_dpu_encoder_irq_enable(drm_enc);
867 }
868 
869 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
870 {
871 	struct msm_drm_private *priv;
872 	struct dpu_kms *dpu_kms;
873 	struct dpu_encoder_virt *dpu_enc;
874 
875 	dpu_enc = to_dpu_encoder_virt(drm_enc);
876 	priv = drm_enc->dev->dev_private;
877 	dpu_kms = to_dpu_kms(priv->kms);
878 
879 	trace_dpu_enc_rc_disable(DRMID(drm_enc));
880 
881 	if (!dpu_enc->cur_master) {
882 		DPU_ERROR("encoder master not set\n");
883 		return;
884 	}
885 
886 	/* disable all the irq */
887 	_dpu_encoder_irq_disable(drm_enc);
888 
889 	/* disable DPU core clks */
890 	pm_runtime_put_sync(&dpu_kms->pdev->dev);
891 }
892 
893 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
894 		u32 sw_event)
895 {
896 	struct dpu_encoder_virt *dpu_enc;
897 	struct msm_drm_private *priv;
898 	bool is_vid_mode = false;
899 
900 	if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
901 		DPU_ERROR("invalid parameters\n");
902 		return -EINVAL;
903 	}
904 	dpu_enc = to_dpu_encoder_virt(drm_enc);
905 	priv = drm_enc->dev->dev_private;
906 	is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
907 
908 	/*
909 	 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
910 	 * events and return early for other events (ie wb display).
911 	 */
912 	if (!dpu_enc->idle_pc_supported &&
913 			(sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
914 			sw_event != DPU_ENC_RC_EVENT_STOP &&
915 			sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
916 		return 0;
917 
918 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
919 			 dpu_enc->rc_state, "begin");
920 
921 	switch (sw_event) {
922 	case DPU_ENC_RC_EVENT_KICKOFF:
923 		/* cancel delayed off work, if any */
924 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
925 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
926 					sw_event);
927 
928 		mutex_lock(&dpu_enc->rc_lock);
929 
930 		/* return if the resource control is already in ON state */
931 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
932 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
933 				      DRMID(drm_enc), sw_event);
934 			mutex_unlock(&dpu_enc->rc_lock);
935 			return 0;
936 		} else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
937 				dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
938 			DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
939 				      DRMID(drm_enc), sw_event,
940 				      dpu_enc->rc_state);
941 			mutex_unlock(&dpu_enc->rc_lock);
942 			return -EINVAL;
943 		}
944 
945 		if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
946 			_dpu_encoder_irq_enable(drm_enc);
947 		else
948 			_dpu_encoder_resource_enable(drm_enc);
949 
950 		dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
951 
952 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
953 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
954 				 "kickoff");
955 
956 		mutex_unlock(&dpu_enc->rc_lock);
957 		break;
958 
959 	case DPU_ENC_RC_EVENT_FRAME_DONE:
960 		/*
961 		 * mutex lock is not used as this event happens at interrupt
962 		 * context. And locking is not required as, the other events
963 		 * like KICKOFF and STOP does a wait-for-idle before executing
964 		 * the resource_control
965 		 */
966 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
967 			DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
968 				      DRMID(drm_enc), sw_event,
969 				      dpu_enc->rc_state);
970 			return -EINVAL;
971 		}
972 
973 		/*
974 		 * schedule off work item only when there are no
975 		 * frames pending
976 		 */
977 		if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
978 			DRM_DEBUG_KMS("id:%d skip schedule work\n",
979 				      DRMID(drm_enc));
980 			return 0;
981 		}
982 
983 		queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
984 				   msecs_to_jiffies(dpu_enc->idle_timeout));
985 
986 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
987 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
988 				 "frame done");
989 		break;
990 
991 	case DPU_ENC_RC_EVENT_PRE_STOP:
992 		/* cancel delayed off work, if any */
993 		if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
994 			DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
995 					sw_event);
996 
997 		mutex_lock(&dpu_enc->rc_lock);
998 
999 		if (is_vid_mode &&
1000 			  dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1001 			_dpu_encoder_irq_enable(drm_enc);
1002 		}
1003 		/* skip if is already OFF or IDLE, resources are off already */
1004 		else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
1005 				dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
1006 			DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
1007 				      DRMID(drm_enc), sw_event,
1008 				      dpu_enc->rc_state);
1009 			mutex_unlock(&dpu_enc->rc_lock);
1010 			return 0;
1011 		}
1012 
1013 		dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
1014 
1015 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1016 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1017 				 "pre stop");
1018 
1019 		mutex_unlock(&dpu_enc->rc_lock);
1020 		break;
1021 
1022 	case DPU_ENC_RC_EVENT_STOP:
1023 		mutex_lock(&dpu_enc->rc_lock);
1024 
1025 		/* return if the resource control is already in OFF state */
1026 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
1027 			DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
1028 				      DRMID(drm_enc), sw_event);
1029 			mutex_unlock(&dpu_enc->rc_lock);
1030 			return 0;
1031 		} else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
1032 			DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
1033 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1034 			mutex_unlock(&dpu_enc->rc_lock);
1035 			return -EINVAL;
1036 		}
1037 
1038 		/**
1039 		 * expect to arrive here only if in either idle state or pre-off
1040 		 * and in IDLE state the resources are already disabled
1041 		 */
1042 		if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1043 			_dpu_encoder_resource_disable(drm_enc);
1044 
1045 		dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1046 
1047 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1048 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1049 				 "stop");
1050 
1051 		mutex_unlock(&dpu_enc->rc_lock);
1052 		break;
1053 
1054 	case DPU_ENC_RC_EVENT_ENTER_IDLE:
1055 		mutex_lock(&dpu_enc->rc_lock);
1056 
1057 		if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1058 			DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1059 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1060 			mutex_unlock(&dpu_enc->rc_lock);
1061 			return 0;
1062 		}
1063 
1064 		/*
1065 		 * if we are in ON but a frame was just kicked off,
1066 		 * ignore the IDLE event, it's probably a stale timer event
1067 		 */
1068 		if (dpu_enc->frame_busy_mask[0]) {
1069 			DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1070 				  DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1071 			mutex_unlock(&dpu_enc->rc_lock);
1072 			return 0;
1073 		}
1074 
1075 		if (is_vid_mode)
1076 			_dpu_encoder_irq_disable(drm_enc);
1077 		else
1078 			_dpu_encoder_resource_disable(drm_enc);
1079 
1080 		dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1081 
1082 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1083 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1084 				 "idle");
1085 
1086 		mutex_unlock(&dpu_enc->rc_lock);
1087 		break;
1088 
1089 	default:
1090 		DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1091 			  sw_event);
1092 		trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1093 				 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1094 				 "error");
1095 		break;
1096 	}
1097 
1098 	trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1099 			 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1100 			 "end");
1101 	return 0;
1102 }
1103 
1104 /**
1105  * dpu_encoder_prepare_wb_job - prepare writeback job for the encoder.
1106  * @drm_enc:    Pointer to previously created drm encoder structure
1107  * @job:        Pointer to the current drm writeback job
1108  */
1109 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1110 		struct drm_writeback_job *job)
1111 {
1112 	struct dpu_encoder_virt *dpu_enc;
1113 	int i;
1114 
1115 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1116 
1117 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1118 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1119 
1120 		if (phys->ops.prepare_wb_job)
1121 			phys->ops.prepare_wb_job(phys, job);
1122 
1123 	}
1124 }
1125 
1126 /**
1127  * dpu_encoder_cleanup_wb_job - cleanup writeback job for the encoder.
1128  * @drm_enc:    Pointer to previously created drm encoder structure
1129  * @job:        Pointer to the current drm writeback job
1130  */
1131 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1132 		struct drm_writeback_job *job)
1133 {
1134 	struct dpu_encoder_virt *dpu_enc;
1135 	int i;
1136 
1137 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1138 
1139 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1140 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1141 
1142 		if (phys->ops.cleanup_wb_job)
1143 			phys->ops.cleanup_wb_job(phys, job);
1144 
1145 	}
1146 }
1147 
1148 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1149 					     struct drm_crtc_state *crtc_state,
1150 					     struct drm_connector_state *conn_state)
1151 {
1152 	struct dpu_encoder_virt *dpu_enc;
1153 	struct msm_drm_private *priv;
1154 	struct dpu_kms *dpu_kms;
1155 	struct dpu_global_state *global_state;
1156 	struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1157 	struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1158 	struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1159 	struct dpu_hw_blk *hw_cwb[MAX_CHANNELS_PER_ENC];
1160 	int num_ctl, num_pp, num_dsc;
1161 	int num_cwb = 0;
1162 	bool is_cwb_encoder;
1163 	unsigned int dsc_mask = 0;
1164 	unsigned int cwb_mask = 0;
1165 	int i;
1166 
1167 	if (!drm_enc) {
1168 		DPU_ERROR("invalid encoder\n");
1169 		return;
1170 	}
1171 
1172 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1173 	DPU_DEBUG_ENC(dpu_enc, "\n");
1174 
1175 	priv = drm_enc->dev->dev_private;
1176 	dpu_kms = to_dpu_kms(priv->kms);
1177 	is_cwb_encoder = drm_crtc_in_clone_mode(crtc_state) &&
1178 			dpu_enc->disp_info.intf_type == INTF_WB;
1179 
1180 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
1181 	if (IS_ERR_OR_NULL(global_state)) {
1182 		DPU_ERROR("Failed to get global state");
1183 		return;
1184 	}
1185 
1186 	trace_dpu_enc_mode_set(DRMID(drm_enc));
1187 
1188 	/* Query resource that have been reserved in atomic check step. */
1189 	if (is_cwb_encoder) {
1190 		num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1191 						       drm_enc->crtc,
1192 						       DPU_HW_BLK_DCWB_PINGPONG,
1193 						       hw_pp, ARRAY_SIZE(hw_pp));
1194 		num_cwb = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1195 						       drm_enc->crtc,
1196 						       DPU_HW_BLK_CWB,
1197 						       hw_cwb, ARRAY_SIZE(hw_cwb));
1198 	} else {
1199 		num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1200 						       drm_enc->crtc,
1201 						       DPU_HW_BLK_PINGPONG, hw_pp,
1202 						       ARRAY_SIZE(hw_pp));
1203 	}
1204 
1205 	for (i = 0; i < num_cwb; i++) {
1206 		dpu_enc->hw_cwb[i] = to_dpu_hw_cwb(hw_cwb[i]);
1207 		cwb_mask |= BIT(dpu_enc->hw_cwb[i]->idx - CWB_0);
1208 	}
1209 
1210 	dpu_enc->cwb_mask = cwb_mask;
1211 
1212 	num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1213 		drm_enc->crtc, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1214 
1215 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1216 		dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1217 						: NULL;
1218 
1219 	num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1220 						drm_enc->crtc, DPU_HW_BLK_DSC,
1221 						hw_dsc, ARRAY_SIZE(hw_dsc));
1222 	for (i = 0; i < num_dsc; i++) {
1223 		dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1224 		dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1225 	}
1226 
1227 	dpu_enc->dsc_mask = dsc_mask;
1228 
1229 	if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1230 	    dpu_enc->disp_info.intf_type == INTF_DP) {
1231 		struct dpu_hw_blk *hw_cdm = NULL;
1232 
1233 		dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1234 					      drm_enc->crtc, DPU_HW_BLK_CDM,
1235 					      &hw_cdm, 1);
1236 		dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1237 	}
1238 
1239 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1240 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1241 
1242 		phys->hw_pp = dpu_enc->hw_pp[i];
1243 		if (!phys->hw_pp) {
1244 			DPU_ERROR_ENC(dpu_enc,
1245 				"no pp block assigned at idx: %d\n", i);
1246 			return;
1247 		}
1248 
1249 		phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1250 		if (!phys->hw_ctl) {
1251 			DPU_ERROR_ENC(dpu_enc,
1252 				"no ctl block assigned at idx: %d\n", i);
1253 			return;
1254 		}
1255 
1256 		phys->cached_mode = crtc_state->adjusted_mode;
1257 		if (phys->ops.atomic_mode_set)
1258 			phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1259 	}
1260 }
1261 
1262 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1263 {
1264 	struct dpu_encoder_virt *dpu_enc = NULL;
1265 	int i;
1266 
1267 	if (!drm_enc || !drm_enc->dev) {
1268 		DPU_ERROR("invalid parameters\n");
1269 		return;
1270 	}
1271 
1272 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1273 	if (!dpu_enc || !dpu_enc->cur_master) {
1274 		DPU_ERROR("invalid dpu encoder/master\n");
1275 		return;
1276 	}
1277 
1278 
1279 	if (dpu_enc->disp_info.intf_type == INTF_DP &&
1280 		dpu_enc->cur_master->hw_mdptop &&
1281 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1282 		dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1283 			dpu_enc->cur_master->hw_mdptop);
1284 
1285 	if (dpu_enc->disp_info.is_cmd_mode)
1286 		_dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1287 
1288 	if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1289 			!WARN_ON(dpu_enc->num_phys_encs == 0)) {
1290 		unsigned bpc = dpu_enc->connector->display_info.bpc;
1291 		for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1292 			if (!dpu_enc->hw_pp[i])
1293 				continue;
1294 			_dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1295 		}
1296 	}
1297 }
1298 
1299 /**
1300  * dpu_encoder_virt_runtime_resume - pm runtime resume the encoder configs
1301  * @drm_enc:	encoder pointer
1302  */
1303 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1304 {
1305 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1306 
1307 	mutex_lock(&dpu_enc->enc_lock);
1308 
1309 	if (!dpu_enc->enabled)
1310 		goto out;
1311 
1312 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1313 		dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1314 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1315 		dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1316 
1317 	_dpu_encoder_virt_enable_helper(drm_enc);
1318 
1319 out:
1320 	mutex_unlock(&dpu_enc->enc_lock);
1321 }
1322 
1323 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1324 					struct drm_atomic_state *state)
1325 {
1326 	struct dpu_encoder_virt *dpu_enc = NULL;
1327 	int ret = 0;
1328 	struct drm_display_mode *cur_mode = NULL;
1329 
1330 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1331 	dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1332 
1333 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1334 
1335 	mutex_lock(&dpu_enc->enc_lock);
1336 
1337 	dpu_enc->commit_done_timedout = false;
1338 
1339 	dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1340 
1341 	cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1342 
1343 	dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1344 
1345 	trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1346 			     cur_mode->vdisplay);
1347 
1348 	/* always enable slave encoder before master */
1349 	if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1350 		dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1351 
1352 	if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1353 		dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1354 
1355 	ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1356 	if (ret) {
1357 		DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1358 				ret);
1359 		goto out;
1360 	}
1361 
1362 	_dpu_encoder_virt_enable_helper(drm_enc);
1363 
1364 	dpu_enc->enabled = true;
1365 
1366 out:
1367 	mutex_unlock(&dpu_enc->enc_lock);
1368 }
1369 
1370 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1371 					struct drm_atomic_state *state)
1372 {
1373 	struct dpu_encoder_virt *dpu_enc = NULL;
1374 	struct drm_crtc *crtc;
1375 	struct drm_crtc_state *old_state = NULL;
1376 	int i = 0;
1377 
1378 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1379 	DPU_DEBUG_ENC(dpu_enc, "\n");
1380 
1381 	crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1382 	if (crtc)
1383 		old_state = drm_atomic_get_old_crtc_state(state, crtc);
1384 
1385 	/*
1386 	 * The encoder is already disabled if self refresh mode was set earlier,
1387 	 * in the old_state for the corresponding crtc.
1388 	 */
1389 	if (old_state && old_state->self_refresh_active)
1390 		return;
1391 
1392 	mutex_lock(&dpu_enc->enc_lock);
1393 	dpu_enc->enabled = false;
1394 
1395 	trace_dpu_enc_disable(DRMID(drm_enc));
1396 
1397 	/* wait for idle */
1398 	dpu_encoder_wait_for_tx_complete(drm_enc);
1399 
1400 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1401 
1402 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1403 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1404 
1405 		if (phys->ops.disable)
1406 			phys->ops.disable(phys);
1407 	}
1408 
1409 
1410 	/* after phys waits for frame-done, should be no more frames pending */
1411 	if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1412 		DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1413 		del_timer_sync(&dpu_enc->frame_done_timer);
1414 	}
1415 
1416 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1417 
1418 	dpu_enc->connector = NULL;
1419 
1420 	DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1421 
1422 	mutex_unlock(&dpu_enc->enc_lock);
1423 }
1424 
1425 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1426 		struct dpu_rm *dpu_rm,
1427 		enum dpu_intf_type type, u32 controller_id)
1428 {
1429 	int i = 0;
1430 
1431 	if (type == INTF_WB)
1432 		return NULL;
1433 
1434 	for (i = 0; i < catalog->intf_count; i++) {
1435 		if (catalog->intf[i].type == type
1436 		    && catalog->intf[i].controller_id == controller_id) {
1437 			return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1438 		}
1439 	}
1440 
1441 	return NULL;
1442 }
1443 
1444 /**
1445  * dpu_encoder_vblank_callback - Notify virtual encoder of vblank IRQ reception
1446  * @drm_enc:    Pointer to drm encoder structure
1447  * @phy_enc:	Pointer to physical encoder
1448  * Note: This is called from IRQ handler context.
1449  */
1450 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1451 		struct dpu_encoder_phys *phy_enc)
1452 {
1453 	struct dpu_encoder_virt *dpu_enc = NULL;
1454 	unsigned long lock_flags;
1455 
1456 	if (!drm_enc || !phy_enc)
1457 		return;
1458 
1459 	DPU_ATRACE_BEGIN("encoder_vblank_callback");
1460 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1461 
1462 	atomic_inc(&phy_enc->vsync_cnt);
1463 
1464 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1465 	if (dpu_enc->crtc)
1466 		dpu_crtc_vblank_callback(dpu_enc->crtc);
1467 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1468 
1469 	DPU_ATRACE_END("encoder_vblank_callback");
1470 }
1471 
1472 /**
1473  * dpu_encoder_underrun_callback - Notify virtual encoder of underrun IRQ reception
1474  * @drm_enc:    Pointer to drm encoder structure
1475  * @phy_enc:	Pointer to physical encoder
1476  * Note: This is called from IRQ handler context.
1477  */
1478 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1479 		struct dpu_encoder_phys *phy_enc)
1480 {
1481 	if (!phy_enc)
1482 		return;
1483 
1484 	DPU_ATRACE_BEGIN("encoder_underrun_callback");
1485 	atomic_inc(&phy_enc->underrun_cnt);
1486 
1487 	/* trigger dump only on the first underrun */
1488 	if (atomic_read(&phy_enc->underrun_cnt) == 1)
1489 		msm_disp_snapshot_state(drm_enc->dev);
1490 
1491 	trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1492 				  atomic_read(&phy_enc->underrun_cnt));
1493 	DPU_ATRACE_END("encoder_underrun_callback");
1494 }
1495 
1496 /**
1497  * dpu_encoder_assign_crtc - Link the encoder to the crtc it's assigned to
1498  * @drm_enc:	encoder pointer
1499  * @crtc:	crtc pointer
1500  */
1501 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1502 {
1503 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1504 	unsigned long lock_flags;
1505 
1506 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1507 	/* crtc should always be cleared before re-assigning */
1508 	WARN_ON(crtc && dpu_enc->crtc);
1509 	dpu_enc->crtc = crtc;
1510 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1511 }
1512 
1513 /**
1514  * dpu_encoder_toggle_vblank_for_crtc - Toggles vblank interrupts on or off if
1515  *	the encoder is assigned to the given crtc
1516  * @drm_enc:	encoder pointer
1517  * @crtc:	crtc pointer
1518  * @enable:	true if vblank should be enabled
1519  */
1520 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1521 					struct drm_crtc *crtc, bool enable)
1522 {
1523 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1524 	unsigned long lock_flags;
1525 	int i;
1526 
1527 	trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1528 
1529 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1530 	if (dpu_enc->crtc != crtc) {
1531 		spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1532 		return;
1533 	}
1534 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1535 
1536 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1537 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1538 
1539 		if (phys->ops.control_vblank_irq)
1540 			phys->ops.control_vblank_irq(phys, enable);
1541 	}
1542 }
1543 
1544 /**
1545  * dpu_encoder_frame_done_callback - Notify virtual encoder that this phys
1546  *     encoder completes last request frame
1547  * @drm_enc:    Pointer to drm encoder structure
1548  * @ready_phys:	Pointer to physical encoder
1549  * @event:	Event to process
1550  */
1551 void dpu_encoder_frame_done_callback(
1552 		struct drm_encoder *drm_enc,
1553 		struct dpu_encoder_phys *ready_phys, u32 event)
1554 {
1555 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1556 	unsigned int i;
1557 
1558 	if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1559 			| DPU_ENCODER_FRAME_EVENT_ERROR
1560 			| DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1561 
1562 		if (!dpu_enc->frame_busy_mask[0]) {
1563 			/**
1564 			 * suppress frame_done without waiter,
1565 			 * likely autorefresh
1566 			 */
1567 			trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1568 					dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1569 					ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1570 					ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1571 			return;
1572 		}
1573 
1574 		/* One of the physical encoders has become idle */
1575 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1576 			if (dpu_enc->phys_encs[i] == ready_phys) {
1577 				trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1578 						dpu_enc->frame_busy_mask[0]);
1579 				clear_bit(i, dpu_enc->frame_busy_mask);
1580 			}
1581 		}
1582 
1583 		if (!dpu_enc->frame_busy_mask[0]) {
1584 			atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1585 			del_timer(&dpu_enc->frame_done_timer);
1586 
1587 			dpu_encoder_resource_control(drm_enc,
1588 					DPU_ENC_RC_EVENT_FRAME_DONE);
1589 
1590 			if (dpu_enc->crtc)
1591 				dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1592 		}
1593 	} else {
1594 		if (dpu_enc->crtc)
1595 			dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1596 	}
1597 }
1598 
1599 static void dpu_encoder_off_work(struct work_struct *work)
1600 {
1601 	struct dpu_encoder_virt *dpu_enc = container_of(work,
1602 			struct dpu_encoder_virt, delayed_off_work.work);
1603 
1604 	dpu_encoder_resource_control(&dpu_enc->base,
1605 						DPU_ENC_RC_EVENT_ENTER_IDLE);
1606 
1607 	dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1608 				DPU_ENCODER_FRAME_EVENT_IDLE);
1609 }
1610 
1611 /**
1612  * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1613  * @drm_enc: Pointer to drm encoder structure
1614  * @phys: Pointer to physical encoder structure
1615  * @extra_flush_bits: Additional bit mask to include in flush trigger
1616  */
1617 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1618 		struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1619 {
1620 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1621 	struct dpu_hw_ctl *ctl;
1622 	int pending_kickoff_cnt;
1623 	u32 ret = UINT_MAX;
1624 
1625 	if (!phys->hw_pp) {
1626 		DPU_ERROR("invalid pingpong hw\n");
1627 		return;
1628 	}
1629 
1630 	ctl = phys->hw_ctl;
1631 	if (!ctl->ops.trigger_flush) {
1632 		DPU_ERROR("missing trigger cb\n");
1633 		return;
1634 	}
1635 
1636 	pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1637 
1638 	/* Return early if encoder is writeback and in clone mode */
1639 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1640 	    dpu_enc->cwb_mask) {
1641 		DPU_DEBUG("encoder %d skip flush for concurrent writeback encoder\n",
1642 				DRMID(drm_enc));
1643 		return;
1644 	}
1645 
1646 
1647 	if (extra_flush_bits && ctl->ops.update_pending_flush)
1648 		ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1649 
1650 	ctl->ops.trigger_flush(ctl);
1651 
1652 	if (ctl->ops.get_pending_flush)
1653 		ret = ctl->ops.get_pending_flush(ctl);
1654 
1655 	trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1656 			dpu_encoder_helper_get_intf_type(phys->intf_mode),
1657 			phys->hw_intf ? phys->hw_intf->idx : -1,
1658 			phys->hw_wb ? phys->hw_wb->idx : -1,
1659 			pending_kickoff_cnt, ctl->idx,
1660 			extra_flush_bits, ret);
1661 }
1662 
1663 /**
1664  * _dpu_encoder_trigger_start - trigger start for a physical encoder
1665  * @phys: Pointer to physical encoder structure
1666  */
1667 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1668 {
1669 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(phys->parent);
1670 
1671 	if (!phys) {
1672 		DPU_ERROR("invalid argument(s)\n");
1673 		return;
1674 	}
1675 
1676 	if (!phys->hw_pp) {
1677 		DPU_ERROR("invalid pingpong hw\n");
1678 		return;
1679 	}
1680 
1681 	if (phys->parent->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1682 	    dpu_enc->cwb_mask) {
1683 		DPU_DEBUG("encoder %d CWB enabled, skipping\n", DRMID(phys->parent));
1684 		return;
1685 	}
1686 
1687 	if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1688 		phys->ops.trigger_start(phys);
1689 }
1690 
1691 /**
1692  * dpu_encoder_helper_trigger_start - control start helper function
1693  *	This helper function may be optionally specified by physical
1694  *	encoders if they require ctl_start triggering.
1695  * @phys_enc: Pointer to physical encoder structure
1696  */
1697 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1698 {
1699 	struct dpu_hw_ctl *ctl;
1700 
1701 	ctl = phys_enc->hw_ctl;
1702 	if (ctl->ops.trigger_start) {
1703 		ctl->ops.trigger_start(ctl);
1704 		trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1705 	}
1706 }
1707 
1708 static int dpu_encoder_helper_wait_event_timeout(
1709 		int32_t drm_id,
1710 		unsigned int irq_idx,
1711 		struct dpu_encoder_wait_info *info)
1712 {
1713 	int rc = 0;
1714 	s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1715 	s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1716 	s64 time;
1717 
1718 	do {
1719 		rc = wait_event_timeout(*(info->wq),
1720 				atomic_read(info->atomic_cnt) == 0, jiffies);
1721 		time = ktime_to_ms(ktime_get());
1722 
1723 		trace_dpu_enc_wait_event_timeout(drm_id,
1724 						 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1725 						 rc, time,
1726 						 expected_time,
1727 						 atomic_read(info->atomic_cnt));
1728 	/* If we timed out, counter is valid and time is less, wait again */
1729 	} while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1730 			(time < expected_time));
1731 
1732 	return rc;
1733 }
1734 
1735 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1736 {
1737 	struct dpu_encoder_virt *dpu_enc;
1738 	struct dpu_hw_ctl *ctl;
1739 	int rc;
1740 	struct drm_encoder *drm_enc;
1741 
1742 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1743 	ctl = phys_enc->hw_ctl;
1744 	drm_enc = phys_enc->parent;
1745 
1746 	if (!ctl->ops.reset)
1747 		return;
1748 
1749 	DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1750 		      ctl->idx);
1751 
1752 	rc = ctl->ops.reset(ctl);
1753 	if (rc) {
1754 		DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n",  ctl->idx);
1755 		msm_disp_snapshot_state(drm_enc->dev);
1756 	}
1757 
1758 	phys_enc->enable_state = DPU_ENC_ENABLED;
1759 }
1760 
1761 /**
1762  * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1763  *	Iterate through the physical encoders and perform consolidated flush
1764  *	and/or control start triggering as needed. This is done in the virtual
1765  *	encoder rather than the individual physical ones in order to handle
1766  *	use cases that require visibility into multiple physical encoders at
1767  *	a time.
1768  * @dpu_enc: Pointer to virtual encoder structure
1769  */
1770 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1771 {
1772 	struct dpu_hw_ctl *ctl;
1773 	uint32_t i, pending_flush;
1774 	unsigned long lock_flags;
1775 
1776 	pending_flush = 0x0;
1777 
1778 	/* update pending counts and trigger kickoff ctl flush atomically */
1779 	spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1780 
1781 	/* don't perform flush/start operations for slave encoders */
1782 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1783 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1784 
1785 		if (phys->enable_state == DPU_ENC_DISABLED)
1786 			continue;
1787 
1788 		ctl = phys->hw_ctl;
1789 
1790 		/*
1791 		 * This is cleared in frame_done worker, which isn't invoked
1792 		 * for async commits. So don't set this for async, since it'll
1793 		 * roll over to the next commit.
1794 		 */
1795 		if (phys->split_role != ENC_ROLE_SLAVE)
1796 			set_bit(i, dpu_enc->frame_busy_mask);
1797 
1798 		if (!phys->ops.needs_single_flush ||
1799 				!phys->ops.needs_single_flush(phys))
1800 			_dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1801 		else if (ctl->ops.get_pending_flush)
1802 			pending_flush |= ctl->ops.get_pending_flush(ctl);
1803 	}
1804 
1805 	/* for split flush, combine pending flush masks and send to master */
1806 	if (pending_flush && dpu_enc->cur_master) {
1807 		_dpu_encoder_trigger_flush(
1808 				&dpu_enc->base,
1809 				dpu_enc->cur_master,
1810 				pending_flush);
1811 	}
1812 
1813 	_dpu_encoder_trigger_start(dpu_enc->cur_master);
1814 
1815 	spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1816 }
1817 
1818 /**
1819  * dpu_encoder_trigger_kickoff_pending - Clear the flush bits from previous
1820  *        kickoff and trigger the ctl prepare progress for command mode display.
1821  * @drm_enc:	encoder pointer
1822  */
1823 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1824 {
1825 	struct dpu_encoder_virt *dpu_enc;
1826 	struct dpu_encoder_phys *phys;
1827 	unsigned int i;
1828 	struct dpu_hw_ctl *ctl;
1829 	struct msm_display_info *disp_info;
1830 
1831 	if (!drm_enc) {
1832 		DPU_ERROR("invalid encoder\n");
1833 		return;
1834 	}
1835 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1836 	disp_info = &dpu_enc->disp_info;
1837 
1838 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1839 		phys = dpu_enc->phys_encs[i];
1840 
1841 		ctl = phys->hw_ctl;
1842 		ctl->ops.clear_pending_flush(ctl);
1843 
1844 		/* update only for command mode primary ctl */
1845 		if ((phys == dpu_enc->cur_master) &&
1846 		    disp_info->is_cmd_mode
1847 		    && ctl->ops.trigger_pending)
1848 			ctl->ops.trigger_pending(ctl);
1849 	}
1850 }
1851 
1852 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1853 		struct drm_display_mode *mode)
1854 {
1855 	u64 pclk_rate;
1856 	u32 pclk_period;
1857 	u32 line_time;
1858 
1859 	/*
1860 	 * For linetime calculation, only operate on master encoder.
1861 	 */
1862 	if (!dpu_enc->cur_master)
1863 		return 0;
1864 
1865 	if (!dpu_enc->cur_master->ops.get_line_count) {
1866 		DPU_ERROR("get_line_count function not defined\n");
1867 		return 0;
1868 	}
1869 
1870 	pclk_rate = mode->clock; /* pixel clock in kHz */
1871 	if (pclk_rate == 0) {
1872 		DPU_ERROR("pclk is 0, cannot calculate line time\n");
1873 		return 0;
1874 	}
1875 
1876 	pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1877 	if (pclk_period == 0) {
1878 		DPU_ERROR("pclk period is 0\n");
1879 		return 0;
1880 	}
1881 
1882 	/*
1883 	 * Line time calculation based on Pixel clock and HTOTAL.
1884 	 * Final unit is in ns.
1885 	 */
1886 	line_time = (pclk_period * mode->htotal) / 1000;
1887 	if (line_time == 0) {
1888 		DPU_ERROR("line time calculation is 0\n");
1889 		return 0;
1890 	}
1891 
1892 	DPU_DEBUG_ENC(dpu_enc,
1893 			"clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1894 			pclk_rate, pclk_period, line_time);
1895 
1896 	return line_time;
1897 }
1898 
1899 /**
1900  * dpu_encoder_vsync_time - get the time of the next vsync
1901  * @drm_enc:	encoder pointer
1902  * @wakeup_time: pointer to ktime_t to write the vsync time to
1903  */
1904 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1905 {
1906 	struct drm_display_mode *mode;
1907 	struct dpu_encoder_virt *dpu_enc;
1908 	u32 cur_line;
1909 	u32 line_time;
1910 	u32 vtotal, time_to_vsync;
1911 	ktime_t cur_time;
1912 
1913 	dpu_enc = to_dpu_encoder_virt(drm_enc);
1914 
1915 	if (!drm_enc->crtc || !drm_enc->crtc->state) {
1916 		DPU_ERROR("crtc/crtc state object is NULL\n");
1917 		return -EINVAL;
1918 	}
1919 	mode = &drm_enc->crtc->state->adjusted_mode;
1920 
1921 	line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1922 	if (!line_time)
1923 		return -EINVAL;
1924 
1925 	cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1926 
1927 	vtotal = mode->vtotal;
1928 	if (cur_line >= vtotal)
1929 		time_to_vsync = line_time * vtotal;
1930 	else
1931 		time_to_vsync = line_time * (vtotal - cur_line);
1932 
1933 	if (time_to_vsync == 0) {
1934 		DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1935 				vtotal);
1936 		return -EINVAL;
1937 	}
1938 
1939 	cur_time = ktime_get();
1940 	*wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1941 
1942 	DPU_DEBUG_ENC(dpu_enc,
1943 			"cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1944 			cur_line, vtotal, time_to_vsync,
1945 			ktime_to_ms(cur_time),
1946 			ktime_to_ms(*wakeup_time));
1947 	return 0;
1948 }
1949 
1950 static u32
1951 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1952 				  u32 enc_ip_width)
1953 {
1954 	int ssm_delay, total_pixels, soft_slice_per_enc;
1955 
1956 	soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1957 
1958 	/*
1959 	 * minimum number of initial line pixels is a sum of:
1960 	 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1961 	 *    91 for 10 bpc) * 3
1962 	 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1963 	 * 3. the initial xmit delay
1964 	 * 4. total pipeline delay through the "lock step" of encoder (47)
1965 	 * 5. 6 additional pixels as the output of the rate buffer is
1966 	 *    48 bits wide
1967 	 */
1968 	ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1969 	total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1970 	if (soft_slice_per_enc > 1)
1971 		total_pixels += (ssm_delay * 3);
1972 	return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1973 }
1974 
1975 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1976 				     struct dpu_hw_dsc *hw_dsc,
1977 				     struct dpu_hw_pingpong *hw_pp,
1978 				     struct drm_dsc_config *dsc,
1979 				     u32 common_mode,
1980 				     u32 initial_lines)
1981 {
1982 	if (hw_dsc->ops.dsc_config)
1983 		hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1984 
1985 	if (hw_dsc->ops.dsc_config_thresh)
1986 		hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1987 
1988 	if (hw_pp->ops.setup_dsc)
1989 		hw_pp->ops.setup_dsc(hw_pp);
1990 
1991 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
1992 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1993 
1994 	if (hw_pp->ops.enable_dsc)
1995 		hw_pp->ops.enable_dsc(hw_pp);
1996 
1997 	if (ctl->ops.update_pending_flush_dsc)
1998 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1999 }
2000 
2001 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
2002 				 struct drm_dsc_config *dsc)
2003 {
2004 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2005 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2006 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2007 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2008 	int this_frame_slices;
2009 	int intf_ip_w, enc_ip_w;
2010 	int dsc_common_mode;
2011 	int pic_width;
2012 	u32 initial_lines;
2013 	int num_dsc = 0;
2014 	int i;
2015 
2016 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2017 		hw_pp[i] = dpu_enc->hw_pp[i];
2018 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2019 
2020 		if (!hw_pp[i] || !hw_dsc[i])
2021 			break;
2022 
2023 		num_dsc++;
2024 	}
2025 
2026 	pic_width = dsc->pic_width;
2027 
2028 	dsc_common_mode = 0;
2029 	if (num_dsc > 1)
2030 		dsc_common_mode |= DSC_MODE_SPLIT_PANEL;
2031 	if (dpu_encoder_use_dsc_merge(enc_master->parent))
2032 		dsc_common_mode |= DSC_MODE_MULTIPLEX;
2033 	if (enc_master->intf_mode == INTF_MODE_VIDEO)
2034 		dsc_common_mode |= DSC_MODE_VIDEO;
2035 
2036 	this_frame_slices = pic_width / dsc->slice_width;
2037 	intf_ip_w = this_frame_slices * dsc->slice_width;
2038 
2039 	enc_ip_w = intf_ip_w / num_dsc;
2040 	initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
2041 
2042 	for (i = 0; i < num_dsc; i++)
2043 		dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
2044 					 dsc, dsc_common_mode, initial_lines);
2045 }
2046 
2047 /**
2048  * dpu_encoder_prepare_for_kickoff - schedule double buffer flip of the ctl
2049  *	path (i.e. ctl flush and start) at next appropriate time.
2050  *	Immediately: if no previous commit is outstanding.
2051  *	Delayed: Block until next trigger can be issued.
2052  * @drm_enc:	encoder pointer
2053  */
2054 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
2055 {
2056 	struct dpu_encoder_virt *dpu_enc;
2057 	struct dpu_encoder_phys *phys;
2058 	bool needs_hw_reset = false;
2059 	unsigned int i;
2060 
2061 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2062 
2063 	trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
2064 
2065 	/* prepare for next kickoff, may include waiting on previous kickoff */
2066 	DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
2067 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2068 		phys = dpu_enc->phys_encs[i];
2069 		if (phys->ops.prepare_for_kickoff)
2070 			phys->ops.prepare_for_kickoff(phys);
2071 		if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
2072 			needs_hw_reset = true;
2073 	}
2074 	DPU_ATRACE_END("enc_prepare_for_kickoff");
2075 
2076 	dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
2077 
2078 	/* if any phys needs reset, reset all phys, in-order */
2079 	if (needs_hw_reset) {
2080 		trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
2081 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2082 			dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
2083 		}
2084 	}
2085 
2086 	if (dpu_enc->dsc)
2087 		dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
2088 }
2089 
2090 /**
2091  * dpu_encoder_is_valid_for_commit - check if encode has valid parameters for commit.
2092  * @drm_enc:    Pointer to drm encoder structure
2093  */
2094 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
2095 {
2096 	struct dpu_encoder_virt *dpu_enc;
2097 	unsigned int i;
2098 	struct dpu_encoder_phys *phys;
2099 
2100 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2101 
2102 	if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
2103 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2104 			phys = dpu_enc->phys_encs[i];
2105 			if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
2106 				DPU_DEBUG("invalid FB not kicking off\n");
2107 				return false;
2108 			}
2109 		}
2110 	}
2111 
2112 	return true;
2113 }
2114 
2115 /**
2116  * dpu_encoder_start_frame_done_timer - Start the encoder frame done timer
2117  * @drm_enc: Pointer to drm encoder structure
2118  */
2119 void dpu_encoder_start_frame_done_timer(struct drm_encoder *drm_enc)
2120 {
2121 	struct dpu_encoder_virt *dpu_enc;
2122 	unsigned long timeout_ms;
2123 
2124 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2125 	timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2126 			drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2127 
2128 	atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2129 	mod_timer(&dpu_enc->frame_done_timer,
2130 			jiffies + msecs_to_jiffies(timeout_ms));
2131 
2132 }
2133 
2134 /**
2135  * dpu_encoder_kickoff - trigger a double buffer flip of the ctl path
2136  *	(i.e. ctl flush and start) immediately.
2137  * @drm_enc:	encoder pointer
2138  */
2139 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
2140 {
2141 	struct dpu_encoder_virt *dpu_enc;
2142 	struct dpu_encoder_phys *phys;
2143 	unsigned int i;
2144 
2145 	DPU_ATRACE_BEGIN("encoder_kickoff");
2146 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2147 
2148 	trace_dpu_enc_kickoff(DRMID(drm_enc));
2149 
2150 	/* All phys encs are ready to go, trigger the kickoff */
2151 	_dpu_encoder_kickoff_phys(dpu_enc);
2152 
2153 	/* allow phys encs to handle any post-kickoff business */
2154 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2155 		phys = dpu_enc->phys_encs[i];
2156 		if (phys->ops.handle_post_kickoff)
2157 			phys->ops.handle_post_kickoff(phys);
2158 	}
2159 
2160 	DPU_ATRACE_END("encoder_kickoff");
2161 }
2162 
2163 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2164 {
2165 	struct dpu_hw_mixer_cfg mixer;
2166 	int i, num_lm;
2167 	struct dpu_global_state *global_state;
2168 	struct dpu_hw_blk *hw_lm[2];
2169 	struct dpu_hw_mixer *hw_mixer[2];
2170 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2171 
2172 	memset(&mixer, 0, sizeof(mixer));
2173 
2174 	/* reset all mixers for this encoder */
2175 	if (ctl->ops.clear_all_blendstages)
2176 		ctl->ops.clear_all_blendstages(ctl);
2177 
2178 	global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2179 
2180 	num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2181 		phys_enc->parent->crtc, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2182 
2183 	for (i = 0; i < num_lm; i++) {
2184 		hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2185 		if (ctl->ops.update_pending_flush_mixer)
2186 			ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2187 
2188 		/* clear all blendstages */
2189 		if (ctl->ops.setup_blendstage)
2190 			ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2191 	}
2192 }
2193 
2194 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2195 				     struct dpu_hw_dsc *hw_dsc,
2196 				     struct dpu_hw_pingpong *hw_pp)
2197 {
2198 	if (hw_dsc->ops.dsc_disable)
2199 		hw_dsc->ops.dsc_disable(hw_dsc);
2200 
2201 	if (hw_pp->ops.disable_dsc)
2202 		hw_pp->ops.disable_dsc(hw_pp);
2203 
2204 	if (hw_dsc->ops.dsc_bind_pingpong_blk)
2205 		hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2206 
2207 	if (ctl->ops.update_pending_flush_dsc)
2208 		ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2209 }
2210 
2211 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2212 {
2213 	/* coding only for 2LM, 2enc, 1 dsc config */
2214 	struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2215 	struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2216 	struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2217 	struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2218 	int i;
2219 
2220 	for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2221 		hw_pp[i] = dpu_enc->hw_pp[i];
2222 		hw_dsc[i] = dpu_enc->hw_dsc[i];
2223 
2224 		if (hw_pp[i] && hw_dsc[i])
2225 			dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2226 	}
2227 }
2228 
2229 /**
2230  * dpu_encoder_helper_phys_cleanup - helper to cleanup dpu pipeline
2231  * @phys_enc: Pointer to physical encoder structure
2232  */
2233 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2234 {
2235 	struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2236 	struct dpu_hw_intf_cfg intf_cfg = { 0 };
2237 	int i;
2238 	struct dpu_encoder_virt *dpu_enc;
2239 
2240 	dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2241 
2242 	ctl->ops.reset(ctl);
2243 
2244 	dpu_encoder_helper_reset_mixers(phys_enc);
2245 
2246 	/*
2247 	 * TODO: move the once-only operation like CTL flush/trigger
2248 	 * into dpu_encoder_virt_disable() and all operations which need
2249 	 * to be done per phys encoder into the phys_disable() op.
2250 	 */
2251 	if (phys_enc->hw_wb) {
2252 		/* disable the PP block */
2253 		if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2254 			phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2255 
2256 		/* mark WB flush as pending */
2257 		if (ctl->ops.update_pending_flush_wb)
2258 			ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2259 	} else {
2260 		for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2261 			if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2262 				phys_enc->hw_intf->ops.bind_pingpong_blk(
2263 						dpu_enc->phys_encs[i]->hw_intf,
2264 						PINGPONG_NONE);
2265 
2266 			/* mark INTF flush as pending */
2267 			if (ctl->ops.update_pending_flush_intf)
2268 				ctl->ops.update_pending_flush_intf(ctl,
2269 						dpu_enc->phys_encs[i]->hw_intf->idx);
2270 		}
2271 	}
2272 
2273 	if (phys_enc->hw_pp && phys_enc->hw_pp->ops.setup_dither)
2274 		phys_enc->hw_pp->ops.setup_dither(phys_enc->hw_pp, NULL);
2275 
2276 	if (dpu_enc->cwb_mask)
2277 		dpu_encoder_helper_phys_setup_cwb(phys_enc, false);
2278 
2279 	/* reset the merge 3D HW block */
2280 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2281 		phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2282 				BLEND_3D_NONE);
2283 		if (ctl->ops.update_pending_flush_merge_3d)
2284 			ctl->ops.update_pending_flush_merge_3d(ctl,
2285 					phys_enc->hw_pp->merge_3d->idx);
2286 	}
2287 
2288 	if (phys_enc->hw_cdm) {
2289 		if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2290 			phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2291 								PINGPONG_NONE);
2292 		if (ctl->ops.update_pending_flush_cdm)
2293 			ctl->ops.update_pending_flush_cdm(ctl,
2294 							  phys_enc->hw_cdm->idx);
2295 	}
2296 
2297 	if (dpu_enc->dsc) {
2298 		dpu_encoder_unprep_dsc(dpu_enc);
2299 		dpu_enc->dsc = NULL;
2300 	}
2301 
2302 	intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2303 	intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2304 	intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2305 	intf_cfg.cwb = dpu_enc->cwb_mask;
2306 
2307 	if (phys_enc->hw_intf)
2308 		intf_cfg.intf = phys_enc->hw_intf->idx;
2309 	if (phys_enc->hw_wb)
2310 		intf_cfg.wb = phys_enc->hw_wb->idx;
2311 
2312 	if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2313 		intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2314 
2315 	if (ctl->ops.reset_intf_cfg)
2316 		ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2317 
2318 	ctl->ops.trigger_flush(ctl);
2319 	ctl->ops.trigger_start(ctl);
2320 	ctl->ops.clear_pending_flush(ctl);
2321 }
2322 
2323 void dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys *phys_enc,
2324 				       bool enable)
2325 {
2326 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2327 	struct dpu_hw_cwb *hw_cwb;
2328 	struct dpu_hw_ctl *hw_ctl;
2329 	struct dpu_hw_cwb_setup_cfg cwb_cfg;
2330 
2331 	struct dpu_kms *dpu_kms;
2332 	struct dpu_global_state *global_state;
2333 	struct dpu_hw_blk *rt_pp_list[MAX_CHANNELS_PER_ENC];
2334 	int num_pp;
2335 
2336 	if (!phys_enc->hw_wb)
2337 		return;
2338 
2339 	hw_ctl = phys_enc->hw_ctl;
2340 
2341 	if (!phys_enc->hw_ctl) {
2342 		DPU_DEBUG("[wb:%d] no ctl assigned\n",
2343 			  phys_enc->hw_wb->idx - WB_0);
2344 		return;
2345 	}
2346 
2347 	dpu_kms = phys_enc->dpu_kms;
2348 	global_state = dpu_kms_get_existing_global_state(dpu_kms);
2349 	num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
2350 					       phys_enc->parent->crtc,
2351 					       DPU_HW_BLK_PINGPONG, rt_pp_list,
2352 					       ARRAY_SIZE(rt_pp_list));
2353 
2354 	if (num_pp == 0 || num_pp > MAX_CHANNELS_PER_ENC) {
2355 		DPU_DEBUG_ENC(dpu_enc, "invalid num_pp %d\n", num_pp);
2356 		return;
2357 	}
2358 
2359 	/*
2360 	 * The CWB mux supports using LM or DSPP as tap points. For now,
2361 	 * always use LM tap point
2362 	 */
2363 	cwb_cfg.input = INPUT_MODE_LM_OUT;
2364 
2365 	for (int i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2366 		hw_cwb = dpu_enc->hw_cwb[i];
2367 		if (!hw_cwb)
2368 			continue;
2369 
2370 		if (enable) {
2371 			struct dpu_hw_pingpong *hw_pp =
2372 					to_dpu_hw_pingpong(rt_pp_list[i]);
2373 			cwb_cfg.pp_idx = hw_pp->idx;
2374 		} else {
2375 			cwb_cfg.pp_idx = PINGPONG_NONE;
2376 		}
2377 
2378 		hw_cwb->ops.config_cwb(hw_cwb, &cwb_cfg);
2379 
2380 		if (hw_ctl->ops.update_pending_flush_cwb)
2381 			hw_ctl->ops.update_pending_flush_cwb(hw_ctl, hw_cwb->idx);
2382 	}
2383 }
2384 
2385 /**
2386  * dpu_encoder_helper_phys_setup_cdm - setup chroma down sampling block
2387  * @phys_enc: Pointer to physical encoder
2388  * @dpu_fmt: Pinter to the format description
2389  * @output_type: HDMI/WB
2390  */
2391 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2392 				       const struct msm_format *dpu_fmt,
2393 				       u32 output_type)
2394 {
2395 	struct dpu_hw_cdm *hw_cdm;
2396 	struct dpu_hw_cdm_cfg *cdm_cfg;
2397 	struct dpu_hw_pingpong *hw_pp;
2398 	int ret;
2399 
2400 	if (!phys_enc)
2401 		return;
2402 
2403 	cdm_cfg = &phys_enc->cdm_cfg;
2404 	hw_pp = phys_enc->hw_pp;
2405 	hw_cdm = phys_enc->hw_cdm;
2406 
2407 	if (!hw_cdm)
2408 		return;
2409 
2410 	if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2411 		DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2412 			  &dpu_fmt->pixel_format);
2413 		if (hw_cdm->ops.bind_pingpong_blk)
2414 			hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2415 
2416 		return;
2417 	}
2418 
2419 	memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2420 
2421 	cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2422 	cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2423 	cdm_cfg->output_fmt = dpu_fmt;
2424 	cdm_cfg->output_type = output_type;
2425 	cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2426 			CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2427 	cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2428 
2429 	/* enable 10 bit logic */
2430 	switch (cdm_cfg->output_fmt->chroma_sample) {
2431 	case CHROMA_FULL:
2432 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2433 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2434 		break;
2435 	case CHROMA_H2V1:
2436 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2437 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2438 		break;
2439 	case CHROMA_420:
2440 		cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2441 		cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2442 		break;
2443 	case CHROMA_H1V2:
2444 	default:
2445 		DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2446 			  DRMID(phys_enc->parent));
2447 		cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2448 		cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2449 		break;
2450 	}
2451 
2452 	DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2453 		  DRMID(phys_enc->parent), cdm_cfg->output_width,
2454 		  cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2455 		  cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2456 		  cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2457 
2458 	if (hw_cdm->ops.enable) {
2459 		cdm_cfg->pp_id = hw_pp->idx;
2460 		ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2461 		if (ret < 0) {
2462 			DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2463 				  DRMID(phys_enc->parent), ret);
2464 			return;
2465 		}
2466 	}
2467 }
2468 
2469 #ifdef CONFIG_DEBUG_FS
2470 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2471 {
2472 	struct drm_encoder *drm_enc = s->private;
2473 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2474 	int i;
2475 
2476 	mutex_lock(&dpu_enc->enc_lock);
2477 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2478 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2479 
2480 		seq_printf(s, "intf:%d  wb:%d  vsync:%8d     underrun:%8d    frame_done_cnt:%d",
2481 				phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2482 				phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2483 				atomic_read(&phys->vsync_cnt),
2484 				atomic_read(&phys->underrun_cnt),
2485 				atomic_read(&dpu_enc->frame_done_timeout_cnt));
2486 
2487 		seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2488 	}
2489 	mutex_unlock(&dpu_enc->enc_lock);
2490 
2491 	return 0;
2492 }
2493 
2494 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2495 
2496 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2497 {
2498 	/* don't error check these */
2499 	debugfs_create_file("status", 0600,
2500 			    root, drm_enc, &_dpu_encoder_status_fops);
2501 }
2502 #else
2503 #define dpu_encoder_debugfs_init NULL
2504 #endif
2505 
2506 static int dpu_encoder_virt_add_phys_encs(
2507 		struct drm_device *dev,
2508 		struct msm_display_info *disp_info,
2509 		struct dpu_encoder_virt *dpu_enc,
2510 		struct dpu_enc_phys_init_params *params)
2511 {
2512 	struct dpu_encoder_phys *enc = NULL;
2513 
2514 	DPU_DEBUG_ENC(dpu_enc, "\n");
2515 
2516 	/*
2517 	 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2518 	 * in this function, check up-front.
2519 	 */
2520 	if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2521 			ARRAY_SIZE(dpu_enc->phys_encs)) {
2522 		DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2523 			  dpu_enc->num_phys_encs);
2524 		return -EINVAL;
2525 	}
2526 
2527 
2528 	if (disp_info->intf_type == INTF_WB) {
2529 		enc = dpu_encoder_phys_wb_init(dev, params);
2530 
2531 		if (IS_ERR(enc)) {
2532 			DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2533 				PTR_ERR(enc));
2534 			return PTR_ERR(enc);
2535 		}
2536 
2537 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2538 		++dpu_enc->num_phys_encs;
2539 	} else if (disp_info->is_cmd_mode) {
2540 		enc = dpu_encoder_phys_cmd_init(dev, params);
2541 
2542 		if (IS_ERR(enc)) {
2543 			DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2544 				PTR_ERR(enc));
2545 			return PTR_ERR(enc);
2546 		}
2547 
2548 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2549 		++dpu_enc->num_phys_encs;
2550 	} else {
2551 		enc = dpu_encoder_phys_vid_init(dev, params);
2552 
2553 		if (IS_ERR(enc)) {
2554 			DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2555 				PTR_ERR(enc));
2556 			return PTR_ERR(enc);
2557 		}
2558 
2559 		dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2560 		++dpu_enc->num_phys_encs;
2561 	}
2562 
2563 	if (params->split_role == ENC_ROLE_SLAVE)
2564 		dpu_enc->cur_slave = enc;
2565 	else
2566 		dpu_enc->cur_master = enc;
2567 
2568 	return 0;
2569 }
2570 
2571 /**
2572  * dpu_encoder_get_clones - Calculate the possible_clones for DPU encoder
2573  * @drm_enc:        DRM encoder pointer
2574  * Returns:         possible_clones mask
2575  */
2576 uint32_t dpu_encoder_get_clones(struct drm_encoder *drm_enc)
2577 {
2578 	struct drm_encoder *curr;
2579 	int type = drm_enc->encoder_type;
2580 	uint32_t clone_mask = drm_encoder_mask(drm_enc);
2581 
2582 	/*
2583 	 * Set writeback as possible clones of real-time DSI encoders and vice
2584 	 * versa
2585 	 *
2586 	 * Writeback encoders can't be clones of each other and DSI
2587 	 * encoders can't be clones of each other.
2588 	 *
2589 	 * TODO: Add DP encoders as valid possible clones for writeback encoders
2590 	 * (and vice versa) once concurrent writeback has been validated for DP
2591 	 */
2592 	drm_for_each_encoder(curr, drm_enc->dev) {
2593 		if ((type == DRM_MODE_ENCODER_VIRTUAL &&
2594 		    curr->encoder_type == DRM_MODE_ENCODER_DSI) ||
2595 		    (type == DRM_MODE_ENCODER_DSI &&
2596 		    curr->encoder_type == DRM_MODE_ENCODER_VIRTUAL))
2597 			clone_mask |= drm_encoder_mask(curr);
2598 	}
2599 
2600 	return clone_mask;
2601 }
2602 
2603 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2604 				 struct dpu_kms *dpu_kms,
2605 				 struct msm_display_info *disp_info)
2606 {
2607 	int ret = 0;
2608 	int i = 0;
2609 	struct dpu_enc_phys_init_params phys_params;
2610 
2611 	if (!dpu_enc) {
2612 		DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2613 		return -EINVAL;
2614 	}
2615 
2616 	dpu_enc->cur_master = NULL;
2617 
2618 	memset(&phys_params, 0, sizeof(phys_params));
2619 	phys_params.dpu_kms = dpu_kms;
2620 	phys_params.parent = &dpu_enc->base;
2621 	phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2622 
2623 	WARN_ON(disp_info->num_of_h_tiles < 1);
2624 
2625 	DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2626 
2627 	if (disp_info->intf_type != INTF_WB)
2628 		dpu_enc->idle_pc_supported =
2629 				dpu_kms->catalog->caps->has_idle_pc;
2630 
2631 	mutex_lock(&dpu_enc->enc_lock);
2632 	for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2633 		/*
2634 		 * Left-most tile is at index 0, content is controller id
2635 		 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2636 		 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2637 		 */
2638 		u32 controller_id = disp_info->h_tile_instance[i];
2639 
2640 		if (disp_info->num_of_h_tiles > 1) {
2641 			if (i == 0)
2642 				phys_params.split_role = ENC_ROLE_MASTER;
2643 			else
2644 				phys_params.split_role = ENC_ROLE_SLAVE;
2645 		} else {
2646 			phys_params.split_role = ENC_ROLE_SOLO;
2647 		}
2648 
2649 		DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2650 				i, controller_id, phys_params.split_role);
2651 
2652 		phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2653 							   disp_info->intf_type,
2654 							   controller_id);
2655 
2656 		if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2657 			phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2658 
2659 		if (!phys_params.hw_intf && !phys_params.hw_wb) {
2660 			DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2661 			ret = -EINVAL;
2662 			break;
2663 		}
2664 
2665 		if (phys_params.hw_intf && phys_params.hw_wb) {
2666 			DPU_ERROR_ENC(dpu_enc,
2667 					"invalid phys both intf and wb block at idx: %d\n", i);
2668 			ret = -EINVAL;
2669 			break;
2670 		}
2671 
2672 		ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2673 				dpu_enc, &phys_params);
2674 		if (ret) {
2675 			DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2676 			break;
2677 		}
2678 	}
2679 
2680 	mutex_unlock(&dpu_enc->enc_lock);
2681 
2682 	return ret;
2683 }
2684 
2685 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2686 {
2687 	struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2688 			frame_done_timer);
2689 	struct drm_encoder *drm_enc = &dpu_enc->base;
2690 	u32 event;
2691 
2692 	if (!drm_enc->dev) {
2693 		DPU_ERROR("invalid parameters\n");
2694 		return;
2695 	}
2696 
2697 	if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2698 		DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2699 			      DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2700 		return;
2701 	} else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2702 		DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2703 		return;
2704 	}
2705 
2706 	DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2707 
2708 	if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2709 		msm_disp_snapshot_state(drm_enc->dev);
2710 
2711 	event = DPU_ENCODER_FRAME_EVENT_ERROR;
2712 	trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2713 	dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2714 }
2715 
2716 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2717 	.atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2718 	.atomic_disable = dpu_encoder_virt_atomic_disable,
2719 	.atomic_enable = dpu_encoder_virt_atomic_enable,
2720 };
2721 
2722 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2723 	.debugfs_init = dpu_encoder_debugfs_init,
2724 };
2725 
2726 /**
2727  * dpu_encoder_init - initialize virtual encoder object
2728  * @dev:        Pointer to drm device structure
2729  * @drm_enc_mode: corresponding DRM_MODE_ENCODER_* constant
2730  * @disp_info:  Pointer to display information structure
2731  * Returns:     Pointer to newly created drm encoder
2732  */
2733 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2734 		int drm_enc_mode,
2735 		struct msm_display_info *disp_info)
2736 {
2737 	struct msm_drm_private *priv = dev->dev_private;
2738 	struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2739 	struct dpu_encoder_virt *dpu_enc;
2740 	int ret;
2741 
2742 	dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2743 				     &dpu_encoder_funcs, drm_enc_mode, NULL);
2744 	if (IS_ERR(dpu_enc))
2745 		return ERR_CAST(dpu_enc);
2746 
2747 	drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2748 
2749 	spin_lock_init(&dpu_enc->enc_spinlock);
2750 	dpu_enc->enabled = false;
2751 	mutex_init(&dpu_enc->enc_lock);
2752 	mutex_init(&dpu_enc->rc_lock);
2753 
2754 	ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2755 	if (ret) {
2756 		DPU_ERROR("failed to setup encoder\n");
2757 		return ERR_PTR(-ENOMEM);
2758 	}
2759 
2760 	atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2761 	atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2762 	timer_setup(&dpu_enc->frame_done_timer,
2763 			dpu_encoder_frame_done_timeout, 0);
2764 
2765 	INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2766 			dpu_encoder_off_work);
2767 	dpu_enc->idle_timeout = IDLE_TIMEOUT;
2768 
2769 	memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2770 
2771 	DPU_DEBUG_ENC(dpu_enc, "created\n");
2772 
2773 	return &dpu_enc->base;
2774 }
2775 
2776 /**
2777  * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2778  * @drm_enc:	encoder pointer
2779  *
2780  * Wait for hardware to have flushed the current pending changes to hardware at
2781  * a vblank or CTL_START. Physical encoders will map this differently depending
2782  * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2783  *
2784  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2785  */
2786 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2787 {
2788 	struct dpu_encoder_virt *dpu_enc = NULL;
2789 	int i, ret = 0;
2790 
2791 	if (!drm_enc) {
2792 		DPU_ERROR("invalid encoder\n");
2793 		return -EINVAL;
2794 	}
2795 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2796 	DPU_DEBUG_ENC(dpu_enc, "\n");
2797 
2798 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2799 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2800 
2801 		if (phys->ops.wait_for_commit_done) {
2802 			DPU_ATRACE_BEGIN("wait_for_commit_done");
2803 			ret = phys->ops.wait_for_commit_done(phys);
2804 			DPU_ATRACE_END("wait_for_commit_done");
2805 			if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2806 				dpu_enc->commit_done_timedout = true;
2807 				msm_disp_snapshot_state(drm_enc->dev);
2808 			}
2809 			if (ret)
2810 				return ret;
2811 		}
2812 	}
2813 
2814 	return ret;
2815 }
2816 
2817 /**
2818  * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2819  * @drm_enc:	encoder pointer
2820  *
2821  * Wait for the hardware to transfer all the pixels to the panel. Physical
2822  * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2823  * cmd mode -> pp_done.
2824  *
2825  * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2826  */
2827 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2828 {
2829 	struct dpu_encoder_virt *dpu_enc = NULL;
2830 	int i, ret = 0;
2831 
2832 	if (!drm_enc) {
2833 		DPU_ERROR("invalid encoder\n");
2834 		return -EINVAL;
2835 	}
2836 	dpu_enc = to_dpu_encoder_virt(drm_enc);
2837 	DPU_DEBUG_ENC(dpu_enc, "\n");
2838 
2839 	for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2840 		struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2841 
2842 		if (phys->ops.wait_for_tx_complete) {
2843 			DPU_ATRACE_BEGIN("wait_for_tx_complete");
2844 			ret = phys->ops.wait_for_tx_complete(phys);
2845 			DPU_ATRACE_END("wait_for_tx_complete");
2846 			if (ret)
2847 				return ret;
2848 		}
2849 	}
2850 
2851 	return ret;
2852 }
2853 
2854 /**
2855  * dpu_encoder_get_intf_mode - get interface mode of the given encoder
2856  * @encoder: Pointer to drm encoder object
2857  */
2858 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2859 {
2860 	struct dpu_encoder_virt *dpu_enc = NULL;
2861 
2862 	if (!encoder) {
2863 		DPU_ERROR("invalid encoder\n");
2864 		return INTF_MODE_NONE;
2865 	}
2866 	dpu_enc = to_dpu_encoder_virt(encoder);
2867 
2868 	if (dpu_enc->cur_master)
2869 		return dpu_enc->cur_master->intf_mode;
2870 
2871 	if (dpu_enc->num_phys_encs)
2872 		return dpu_enc->phys_encs[0]->intf_mode;
2873 
2874 	return INTF_MODE_NONE;
2875 }
2876 
2877 /**
2878  * dpu_encoder_helper_get_cwb_mask - get CWB blocks mask for the DPU encoder
2879  * @phys_enc: Pointer to physical encoder structure
2880  */
2881 unsigned int dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys *phys_enc)
2882 {
2883 	struct drm_encoder *encoder = phys_enc->parent;
2884 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2885 
2886 	return dpu_enc->cwb_mask;
2887 }
2888 
2889 /**
2890  * dpu_encoder_helper_get_dsc - get DSC blocks mask for the DPU encoder
2891  *   This helper function is used by physical encoder to get DSC blocks mask
2892  *   used for this encoder.
2893  * @phys_enc: Pointer to physical encoder structure
2894  */
2895 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2896 {
2897 	struct drm_encoder *encoder = phys_enc->parent;
2898 	struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2899 
2900 	return dpu_enc->dsc_mask;
2901 }
2902 
2903 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2904 			  struct dpu_enc_phys_init_params *p)
2905 {
2906 	phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2907 	phys_enc->hw_intf = p->hw_intf;
2908 	phys_enc->hw_wb = p->hw_wb;
2909 	phys_enc->parent = p->parent;
2910 	phys_enc->dpu_kms = p->dpu_kms;
2911 	phys_enc->split_role = p->split_role;
2912 	phys_enc->enc_spinlock = p->enc_spinlock;
2913 	phys_enc->enable_state = DPU_ENC_DISABLED;
2914 
2915 	atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2916 	atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2917 
2918 	atomic_set(&phys_enc->vsync_cnt, 0);
2919 	atomic_set(&phys_enc->underrun_cnt, 0);
2920 
2921 	init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2922 }
2923