1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5 * Copyright (c) 2022-2023 Qualcomm Innovation Center, Inc. All rights reserved.
6 *
7 * Author: Rob Clark <robdclark@gmail.com>
8 */
9
10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_dspp.h"
28 #include "dpu_hw_dsc.h"
29 #include "dpu_hw_merge3d.h"
30 #include "dpu_hw_cdm.h"
31 #include "dpu_formats.h"
32 #include "dpu_encoder_phys.h"
33 #include "dpu_crtc.h"
34 #include "dpu_trace.h"
35 #include "dpu_core_irq.h"
36 #include "disp/msm_disp_snapshot.h"
37
38 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
39 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
40
41 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
42 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
43
44 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
45 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
46
47 /*
48 * Two to anticipate panels that can do cmd/vid dynamic switching
49 * plan is to create all possible physical encoder types, and switch between
50 * them at runtime
51 */
52 #define NUM_PHYS_ENCODER_TYPES 2
53
54 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
55 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
56
57 #define MAX_CHANNELS_PER_ENC 2
58
59 #define IDLE_SHORT_TIMEOUT 1
60
61 #define MAX_HDISPLAY_SPLIT 1080
62
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65
66 /**
67 * enum dpu_enc_rc_events - events for resource control state machine
68 * @DPU_ENC_RC_EVENT_KICKOFF:
69 * This event happens at NORMAL priority.
70 * Event that signals the start of the transfer. When this event is
71 * received, enable MDP/DSI core clocks. Regardless of the previous
72 * state, the resource should be in ON state at the end of this event.
73 * @DPU_ENC_RC_EVENT_FRAME_DONE:
74 * This event happens at INTERRUPT level.
75 * Event signals the end of the data transfer after the PP FRAME_DONE
76 * event. At the end of this event, a delayed work is scheduled to go to
77 * IDLE_PC state after IDLE_TIMEOUT time.
78 * @DPU_ENC_RC_EVENT_PRE_STOP:
79 * This event happens at NORMAL priority.
80 * This event, when received during the ON state, leave the RC STATE
81 * in the PRE_OFF state. It should be followed by the STOP event as
82 * part of encoder disable.
83 * If received during IDLE or OFF states, it will do nothing.
84 * @DPU_ENC_RC_EVENT_STOP:
85 * This event happens at NORMAL priority.
86 * When this event is received, disable all the MDP/DSI core clocks, and
87 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
88 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
90 * Resource state should be in OFF at the end of the event.
91 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92 * This event happens at NORMAL priority from a work item.
93 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
94 * This would disable MDP/DSI core clocks and change the resource state
95 * to IDLE.
96 */
97 enum dpu_enc_rc_events {
98 DPU_ENC_RC_EVENT_KICKOFF = 1,
99 DPU_ENC_RC_EVENT_FRAME_DONE,
100 DPU_ENC_RC_EVENT_PRE_STOP,
101 DPU_ENC_RC_EVENT_STOP,
102 DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104
105 /*
106 * enum dpu_enc_rc_states - states that the resource control maintains
107 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112 */
113 enum dpu_enc_rc_states {
114 DPU_ENC_RC_STATE_OFF,
115 DPU_ENC_RC_STATE_PRE_OFF,
116 DPU_ENC_RC_STATE_ON,
117 DPU_ENC_RC_STATE_IDLE
118 };
119
120 /**
121 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122 * encoders. Virtual encoder manages one "logical" display. Physical
123 * encoders manage one intf block, tied to a specific panel/sub-panel.
124 * Virtual encoder defers as much as possible to the physical encoders.
125 * Virtual encoder registers itself with the DRM Framework as the encoder.
126 * @base: drm_encoder base class for registration with DRM
127 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
128 * @enabled: True if the encoder is active, protected by enc_lock
129 * @commit_done_timedout: True if there has been a timeout on commit after
130 * enabling the encoder.
131 * @num_phys_encs: Actual number of physical encoders contained.
132 * @phys_encs: Container of physical encoders managed.
133 * @cur_master: Pointer to the current master in this mode. Optimization
134 * Only valid after enable. Cleared as disable.
135 * @cur_slave: As above but for the slave encoder.
136 * @hw_pp: Handle to the pingpong blocks used for the display. No.
137 * pingpong blocks can be different than num_phys_encs.
138 * @hw_dsc: Handle to the DSC blocks used for the display.
139 * @dsc_mask: Bitmask of used DSC blocks.
140 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped
141 * for partial update right-only cases, such as pingpong
142 * split where virtual pingpong does not generate IRQs
143 * @crtc: Pointer to the currently assigned crtc. Normally you
144 * would use crtc->state->encoder_mask to determine the
145 * link between encoder/crtc. However in this case we need
146 * to track crtc in the disable() hook which is called
147 * _after_ encoder_mask is cleared.
148 * @connector: If a mode is set, cached pointer to the active connector
149 * @enc_lock: Lock around physical encoder
150 * create/destroy/enable/disable
151 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
152 * busy processing current command.
153 * Bit0 = phys_encs[0] etc.
154 * @frame_done_timeout_ms: frame done timeout in ms
155 * @frame_done_timeout_cnt: atomic counter tracking the number of frame
156 * done timeouts
157 * @frame_done_timer: watchdog timer for frame done event
158 * @disp_info: local copy of msm_display_info struct
159 * @idle_pc_supported: indicate if idle power collaps is supported
160 * @rc_lock: resource control mutex lock to protect
161 * virt encoder over various state changes
162 * @rc_state: resource controller state
163 * @delayed_off_work: delayed worker to schedule disabling of
164 * clks and resources after IDLE_TIMEOUT time.
165 * @topology: topology of the display
166 * @idle_timeout: idle timeout duration in milliseconds
167 * @wide_bus_en: wide bus is enabled on this interface
168 * @dsc: drm_dsc_config pointer, for DSC-enabled encoders
169 */
170 struct dpu_encoder_virt {
171 struct drm_encoder base;
172 spinlock_t enc_spinlock;
173
174 bool enabled;
175 bool commit_done_timedout;
176
177 unsigned int num_phys_encs;
178 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
179 struct dpu_encoder_phys *cur_master;
180 struct dpu_encoder_phys *cur_slave;
181 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
182 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
183
184 unsigned int dsc_mask;
185
186 bool intfs_swapped;
187
188 struct drm_crtc *crtc;
189 struct drm_connector *connector;
190
191 struct mutex enc_lock;
192 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
193
194 atomic_t frame_done_timeout_ms;
195 atomic_t frame_done_timeout_cnt;
196 struct timer_list frame_done_timer;
197
198 struct msm_display_info disp_info;
199
200 bool idle_pc_supported;
201 struct mutex rc_lock;
202 enum dpu_enc_rc_states rc_state;
203 struct delayed_work delayed_off_work;
204 struct msm_display_topology topology;
205
206 u32 idle_timeout;
207
208 bool wide_bus_en;
209
210 /* DSC configuration */
211 struct drm_dsc_config *dsc;
212 };
213
214 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
215
216 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
217 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
218 };
219
dpu_encoder_get_drm_fmt(struct dpu_encoder_phys * phys_enc)220 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
221 {
222 struct drm_encoder *drm_enc;
223 struct dpu_encoder_virt *dpu_enc;
224 struct drm_display_info *info;
225 struct drm_display_mode *mode;
226
227 drm_enc = phys_enc->parent;
228 dpu_enc = to_dpu_encoder_virt(drm_enc);
229 info = &dpu_enc->connector->display_info;
230 mode = &phys_enc->cached_mode;
231
232 if (drm_mode_is_420_only(info, mode))
233 return DRM_FORMAT_YUV420;
234
235 return DRM_FORMAT_RGB888;
236 }
237
dpu_encoder_needs_periph_flush(struct dpu_encoder_phys * phys_enc)238 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
239 {
240 struct drm_encoder *drm_enc;
241 struct dpu_encoder_virt *dpu_enc;
242 struct msm_display_info *disp_info;
243 struct msm_drm_private *priv;
244 struct drm_display_mode *mode;
245
246 drm_enc = phys_enc->parent;
247 dpu_enc = to_dpu_encoder_virt(drm_enc);
248 disp_info = &dpu_enc->disp_info;
249 priv = drm_enc->dev->dev_private;
250 mode = &phys_enc->cached_mode;
251
252 return phys_enc->hw_intf->cap->type == INTF_DP &&
253 msm_dp_needs_periph_flush(priv->dp[disp_info->h_tile_instance[0]], mode);
254 }
255
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)256 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
257 {
258 const struct dpu_encoder_virt *dpu_enc;
259 struct msm_drm_private *priv = drm_enc->dev->dev_private;
260 const struct msm_display_info *disp_info;
261 int index;
262
263 dpu_enc = to_dpu_encoder_virt(drm_enc);
264 disp_info = &dpu_enc->disp_info;
265 index = disp_info->h_tile_instance[0];
266
267 if (disp_info->intf_type == INTF_DP)
268 return msm_dp_wide_bus_available(priv->dp[index]);
269 else if (disp_info->intf_type == INTF_DSI)
270 return msm_dsi_wide_bus_enabled(priv->dsi[index]);
271
272 return false;
273 }
274
dpu_encoder_is_dsc_enabled(const struct drm_encoder * drm_enc)275 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
276 {
277 const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
278
279 return dpu_enc->dsc ? true : false;
280 }
281
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)282 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
283 {
284 struct dpu_encoder_virt *dpu_enc;
285 int i, num_intf = 0;
286
287 dpu_enc = to_dpu_encoder_virt(drm_enc);
288
289 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
290 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
291
292 if (phys->hw_intf && phys->hw_intf->ops.setup_misr
293 && phys->hw_intf->ops.collect_misr)
294 num_intf++;
295 }
296
297 return num_intf;
298 }
299
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)300 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
301 {
302 struct dpu_encoder_virt *dpu_enc;
303
304 int i;
305
306 dpu_enc = to_dpu_encoder_virt(drm_enc);
307
308 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
309 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
310
311 if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
312 continue;
313
314 phys->hw_intf->ops.setup_misr(phys->hw_intf);
315 }
316 }
317
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)318 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
319 {
320 struct dpu_encoder_virt *dpu_enc;
321
322 int i, rc = 0, entries_added = 0;
323
324 if (!drm_enc->crtc) {
325 DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
326 return -EINVAL;
327 }
328
329 dpu_enc = to_dpu_encoder_virt(drm_enc);
330
331 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
332 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
333
334 if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
335 continue;
336
337 rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
338 if (rc)
339 return rc;
340 entries_added++;
341 }
342
343 return entries_added;
344 }
345
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)346 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
347 {
348 struct dpu_hw_dither_cfg dither_cfg = { 0 };
349
350 if (!hw_pp->ops.setup_dither)
351 return;
352
353 switch (bpc) {
354 case 6:
355 dither_cfg.c0_bitdepth = 6;
356 dither_cfg.c1_bitdepth = 6;
357 dither_cfg.c2_bitdepth = 6;
358 dither_cfg.c3_bitdepth = 6;
359 dither_cfg.temporal_en = 0;
360 break;
361 default:
362 hw_pp->ops.setup_dither(hw_pp, NULL);
363 return;
364 }
365
366 memcpy(&dither_cfg.matrix, dither_matrix,
367 sizeof(u32) * DITHER_MATRIX_SZ);
368
369 hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
370 }
371
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)372 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
373 {
374 switch (intf_mode) {
375 case INTF_MODE_VIDEO:
376 return "INTF_MODE_VIDEO";
377 case INTF_MODE_CMD:
378 return "INTF_MODE_CMD";
379 case INTF_MODE_WB_BLOCK:
380 return "INTF_MODE_WB_BLOCK";
381 case INTF_MODE_WB_LINE:
382 return "INTF_MODE_WB_LINE";
383 default:
384 return "INTF_MODE_UNKNOWN";
385 }
386 }
387
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)388 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
389 enum dpu_intr_idx intr_idx)
390 {
391 DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
392 DRMID(phys_enc->parent),
393 dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
394 phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
395 phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
396 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
397
398 dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
399 DPU_ENCODER_FRAME_EVENT_ERROR);
400 }
401
402 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
403 u32 irq_idx, struct dpu_encoder_wait_info *info);
404
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,unsigned int irq_idx,void (* func)(void * arg),struct dpu_encoder_wait_info * wait_info)405 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
406 unsigned int irq_idx,
407 void (*func)(void *arg),
408 struct dpu_encoder_wait_info *wait_info)
409 {
410 u32 irq_status;
411 int ret;
412
413 if (!wait_info) {
414 DPU_ERROR("invalid params\n");
415 return -EINVAL;
416 }
417 /* note: do master / slave checking outside */
418
419 /* return EWOULDBLOCK since we know the wait isn't necessary */
420 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
421 DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
422 DRMID(phys_enc->parent), func,
423 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
424 return -EWOULDBLOCK;
425 }
426
427 if (irq_idx == 0) {
428 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
429 DRMID(phys_enc->parent), func);
430 return 0;
431 }
432
433 DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
434 DRMID(phys_enc->parent), func,
435 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
436 atomic_read(wait_info->atomic_cnt));
437
438 ret = dpu_encoder_helper_wait_event_timeout(
439 DRMID(phys_enc->parent),
440 irq_idx,
441 wait_info);
442
443 if (ret <= 0) {
444 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
445 if (irq_status) {
446 unsigned long flags;
447
448 DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
449 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
450 DRMID(phys_enc->parent), func,
451 phys_enc->hw_pp->idx - PINGPONG_0,
452 atomic_read(wait_info->atomic_cnt));
453 local_irq_save(flags);
454 func(phys_enc);
455 local_irq_restore(flags);
456 ret = 0;
457 } else {
458 ret = -ETIMEDOUT;
459 DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
460 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
461 DRMID(phys_enc->parent), func,
462 phys_enc->hw_pp->idx - PINGPONG_0,
463 atomic_read(wait_info->atomic_cnt));
464 }
465 } else {
466 ret = 0;
467 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
468 func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
469 phys_enc->hw_pp->idx - PINGPONG_0,
470 atomic_read(wait_info->atomic_cnt));
471 }
472
473 return ret;
474 }
475
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)476 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
477 {
478 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
479 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
480 return phys ? atomic_read(&phys->vsync_cnt) : 0;
481 }
482
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)483 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
484 {
485 struct dpu_encoder_virt *dpu_enc;
486 struct dpu_encoder_phys *phys;
487 int linecount = 0;
488
489 dpu_enc = to_dpu_encoder_virt(drm_enc);
490 phys = dpu_enc ? dpu_enc->cur_master : NULL;
491
492 if (phys && phys->ops.get_line_count)
493 linecount = phys->ops.get_line_count(phys);
494
495 return linecount;
496 }
497
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)498 void dpu_encoder_helper_split_config(
499 struct dpu_encoder_phys *phys_enc,
500 enum dpu_intf interface)
501 {
502 struct dpu_encoder_virt *dpu_enc;
503 struct split_pipe_cfg cfg = { 0 };
504 struct dpu_hw_mdp *hw_mdptop;
505 struct msm_display_info *disp_info;
506
507 if (!phys_enc->hw_mdptop || !phys_enc->parent) {
508 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
509 return;
510 }
511
512 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
513 hw_mdptop = phys_enc->hw_mdptop;
514 disp_info = &dpu_enc->disp_info;
515
516 if (disp_info->intf_type != INTF_DSI)
517 return;
518
519 /**
520 * disable split modes since encoder will be operating in as the only
521 * encoder, either for the entire use case in the case of, for example,
522 * single DSI, or for this frame in the case of left/right only partial
523 * update.
524 */
525 if (phys_enc->split_role == ENC_ROLE_SOLO) {
526 if (hw_mdptop->ops.setup_split_pipe)
527 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
528 return;
529 }
530
531 cfg.en = true;
532 cfg.mode = phys_enc->intf_mode;
533 cfg.intf = interface;
534
535 if (cfg.en && phys_enc->ops.needs_single_flush &&
536 phys_enc->ops.needs_single_flush(phys_enc))
537 cfg.split_flush_en = true;
538
539 if (phys_enc->split_role == ENC_ROLE_MASTER) {
540 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
541
542 if (hw_mdptop->ops.setup_split_pipe)
543 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
544 }
545 }
546
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)547 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
548 {
549 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
550 int i, intf_count = 0, num_dsc = 0;
551
552 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
553 if (dpu_enc->phys_encs[i])
554 intf_count++;
555
556 /* See dpu_encoder_get_topology, we only support 2:2:1 topology */
557 if (dpu_enc->dsc)
558 num_dsc = 2;
559
560 return (num_dsc > 0) && (num_dsc > intf_count);
561 }
562
dpu_encoder_get_dsc_config(struct drm_encoder * drm_enc)563 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
564 {
565 struct msm_drm_private *priv = drm_enc->dev->dev_private;
566 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
567 int index = dpu_enc->disp_info.h_tile_instance[0];
568
569 if (dpu_enc->disp_info.intf_type == INTF_DSI)
570 return msm_dsi_get_dsc_config(priv->dsi[index]);
571
572 return NULL;
573 }
574
dpu_encoder_get_topology(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct drm_display_mode * mode,struct drm_crtc_state * crtc_state,struct drm_dsc_config * dsc)575 static struct msm_display_topology dpu_encoder_get_topology(
576 struct dpu_encoder_virt *dpu_enc,
577 struct dpu_kms *dpu_kms,
578 struct drm_display_mode *mode,
579 struct drm_crtc_state *crtc_state,
580 struct drm_dsc_config *dsc)
581 {
582 struct msm_display_topology topology = {0};
583 int i, intf_count = 0;
584
585 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
586 if (dpu_enc->phys_encs[i])
587 intf_count++;
588
589 /* Datapath topology selection
590 *
591 * Dual display
592 * 2 LM, 2 INTF ( Split display using 2 interfaces)
593 *
594 * Single display
595 * 1 LM, 1 INTF
596 * 2 LM, 1 INTF (stream merge to support high resolution interfaces)
597 *
598 * Add dspps to the reservation requirements if ctm is requested
599 */
600 if (intf_count == 2)
601 topology.num_lm = 2;
602 else if (!dpu_kms->catalog->caps->has_3d_merge)
603 topology.num_lm = 1;
604 else
605 topology.num_lm = (mode->hdisplay > MAX_HDISPLAY_SPLIT) ? 2 : 1;
606
607 if (crtc_state->ctm)
608 topology.num_dspp = topology.num_lm;
609
610 topology.num_intf = intf_count;
611
612 if (dsc) {
613 /*
614 * In case of Display Stream Compression (DSC), we would use
615 * 2 DSC encoders, 2 layer mixers and 1 interface
616 * this is power optimal and can drive up to (including) 4k
617 * screens
618 */
619 topology.num_dsc = 2;
620 topology.num_lm = 2;
621 topology.num_intf = 1;
622 }
623
624 return topology;
625 }
626
dpu_encoder_assign_crtc_resources(struct dpu_kms * dpu_kms,struct drm_encoder * drm_enc,struct dpu_global_state * global_state,struct drm_crtc_state * crtc_state)627 static void dpu_encoder_assign_crtc_resources(struct dpu_kms *dpu_kms,
628 struct drm_encoder *drm_enc,
629 struct dpu_global_state *global_state,
630 struct drm_crtc_state *crtc_state)
631 {
632 struct dpu_crtc_state *cstate;
633 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
634 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
635 struct dpu_hw_blk *hw_dspp[MAX_CHANNELS_PER_ENC];
636 int num_lm, num_ctl, num_dspp, i;
637
638 cstate = to_dpu_crtc_state(crtc_state);
639
640 memset(cstate->mixers, 0, sizeof(cstate->mixers));
641
642 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
643 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
644 num_lm = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
645 drm_enc->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
646 num_dspp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
647 drm_enc->base.id, DPU_HW_BLK_DSPP, hw_dspp,
648 ARRAY_SIZE(hw_dspp));
649
650 for (i = 0; i < num_lm; i++) {
651 int ctl_idx = (i < num_ctl) ? i : (num_ctl-1);
652
653 cstate->mixers[i].hw_lm = to_dpu_hw_mixer(hw_lm[i]);
654 cstate->mixers[i].lm_ctl = to_dpu_hw_ctl(hw_ctl[ctl_idx]);
655 cstate->mixers[i].hw_dspp = i < num_dspp ? to_dpu_hw_dspp(hw_dspp[i]) : NULL;
656 }
657
658 cstate->num_mixers = num_lm;
659 }
660
dpu_encoder_virt_atomic_check(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)661 static int dpu_encoder_virt_atomic_check(
662 struct drm_encoder *drm_enc,
663 struct drm_crtc_state *crtc_state,
664 struct drm_connector_state *conn_state)
665 {
666 struct dpu_encoder_virt *dpu_enc;
667 struct msm_drm_private *priv;
668 struct dpu_kms *dpu_kms;
669 struct drm_display_mode *adj_mode;
670 struct msm_display_topology topology;
671 struct msm_display_info *disp_info;
672 struct dpu_global_state *global_state;
673 struct drm_framebuffer *fb;
674 struct drm_dsc_config *dsc;
675 int ret = 0;
676
677 if (!drm_enc || !crtc_state || !conn_state) {
678 DPU_ERROR("invalid arg(s), drm_enc %d, crtc/conn state %d/%d\n",
679 drm_enc != NULL, crtc_state != NULL, conn_state != NULL);
680 return -EINVAL;
681 }
682
683 dpu_enc = to_dpu_encoder_virt(drm_enc);
684 DPU_DEBUG_ENC(dpu_enc, "\n");
685
686 priv = drm_enc->dev->dev_private;
687 disp_info = &dpu_enc->disp_info;
688 dpu_kms = to_dpu_kms(priv->kms);
689 adj_mode = &crtc_state->adjusted_mode;
690 global_state = dpu_kms_get_global_state(crtc_state->state);
691 if (IS_ERR(global_state))
692 return PTR_ERR(global_state);
693
694 trace_dpu_enc_atomic_check(DRMID(drm_enc));
695
696 dsc = dpu_encoder_get_dsc_config(drm_enc);
697
698 topology = dpu_encoder_get_topology(dpu_enc, dpu_kms, adj_mode, crtc_state, dsc);
699
700 /*
701 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
702 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
703 * earlier.
704 */
705 if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
706 fb = conn_state->writeback_job->fb;
707
708 if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
709 topology.needs_cdm = true;
710 } else if (disp_info->intf_type == INTF_DP) {
711 if (msm_dp_is_yuv_420_enabled(priv->dp[disp_info->h_tile_instance[0]], adj_mode))
712 topology.needs_cdm = true;
713 }
714
715 if (topology.needs_cdm && !dpu_enc->cur_master->hw_cdm)
716 crtc_state->mode_changed = true;
717 else if (!topology.needs_cdm && dpu_enc->cur_master->hw_cdm)
718 crtc_state->mode_changed = true;
719 /*
720 * Release and Allocate resources on every modeset
721 * Dont allocate when active is false.
722 */
723 if (drm_atomic_crtc_needs_modeset(crtc_state)) {
724 dpu_rm_release(global_state, drm_enc);
725
726 if (!crtc_state->active_changed || crtc_state->enable)
727 ret = dpu_rm_reserve(&dpu_kms->rm, global_state,
728 drm_enc, crtc_state, topology);
729 if (!ret)
730 dpu_encoder_assign_crtc_resources(dpu_kms, drm_enc,
731 global_state, crtc_state);
732 }
733
734 trace_dpu_enc_atomic_check_flags(DRMID(drm_enc), adj_mode->flags);
735
736 return ret;
737 }
738
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)739 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
740 struct msm_display_info *disp_info)
741 {
742 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
743 struct msm_drm_private *priv;
744 struct dpu_kms *dpu_kms;
745 struct dpu_hw_mdp *hw_mdptop;
746 struct drm_encoder *drm_enc;
747 struct dpu_encoder_phys *phys_enc;
748 int i;
749
750 if (!dpu_enc || !disp_info) {
751 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
752 dpu_enc != NULL, disp_info != NULL);
753 return;
754 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
755 DPU_ERROR("invalid num phys enc %d/%d\n",
756 dpu_enc->num_phys_encs,
757 (int) ARRAY_SIZE(dpu_enc->hw_pp));
758 return;
759 }
760
761 drm_enc = &dpu_enc->base;
762 /* this pointers are checked in virt_enable_helper */
763 priv = drm_enc->dev->dev_private;
764
765 dpu_kms = to_dpu_kms(priv->kms);
766 hw_mdptop = dpu_kms->hw_mdp;
767 if (!hw_mdptop) {
768 DPU_ERROR("invalid mdptop\n");
769 return;
770 }
771
772 if (hw_mdptop->ops.setup_vsync_source) {
773 for (i = 0; i < dpu_enc->num_phys_encs; i++)
774 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
775
776 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
777 vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
778
779 vsync_cfg.vsync_source = disp_info->vsync_source;
780
781 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
782
783 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
784 phys_enc = dpu_enc->phys_encs[i];
785
786 if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
787 phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
788 vsync_cfg.vsync_source);
789 }
790 }
791 }
792
_dpu_encoder_irq_enable(struct drm_encoder * drm_enc)793 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
794 {
795 struct dpu_encoder_virt *dpu_enc;
796 int i;
797
798 if (!drm_enc) {
799 DPU_ERROR("invalid encoder\n");
800 return;
801 }
802
803 dpu_enc = to_dpu_encoder_virt(drm_enc);
804
805 DPU_DEBUG_ENC(dpu_enc, "\n");
806 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
807 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
808
809 phys->ops.irq_enable(phys);
810 }
811 }
812
_dpu_encoder_irq_disable(struct drm_encoder * drm_enc)813 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
814 {
815 struct dpu_encoder_virt *dpu_enc;
816 int i;
817
818 if (!drm_enc) {
819 DPU_ERROR("invalid encoder\n");
820 return;
821 }
822
823 dpu_enc = to_dpu_encoder_virt(drm_enc);
824
825 DPU_DEBUG_ENC(dpu_enc, "\n");
826 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
827 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
828
829 phys->ops.irq_disable(phys);
830 }
831 }
832
_dpu_encoder_resource_enable(struct drm_encoder * drm_enc)833 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
834 {
835 struct msm_drm_private *priv;
836 struct dpu_kms *dpu_kms;
837 struct dpu_encoder_virt *dpu_enc;
838
839 dpu_enc = to_dpu_encoder_virt(drm_enc);
840 priv = drm_enc->dev->dev_private;
841 dpu_kms = to_dpu_kms(priv->kms);
842
843 trace_dpu_enc_rc_enable(DRMID(drm_enc));
844
845 if (!dpu_enc->cur_master) {
846 DPU_ERROR("encoder master not set\n");
847 return;
848 }
849
850 /* enable DPU core clks */
851 pm_runtime_get_sync(&dpu_kms->pdev->dev);
852
853 /* enable all the irq */
854 _dpu_encoder_irq_enable(drm_enc);
855 }
856
_dpu_encoder_resource_disable(struct drm_encoder * drm_enc)857 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
858 {
859 struct msm_drm_private *priv;
860 struct dpu_kms *dpu_kms;
861 struct dpu_encoder_virt *dpu_enc;
862
863 dpu_enc = to_dpu_encoder_virt(drm_enc);
864 priv = drm_enc->dev->dev_private;
865 dpu_kms = to_dpu_kms(priv->kms);
866
867 trace_dpu_enc_rc_disable(DRMID(drm_enc));
868
869 if (!dpu_enc->cur_master) {
870 DPU_ERROR("encoder master not set\n");
871 return;
872 }
873
874 /* disable all the irq */
875 _dpu_encoder_irq_disable(drm_enc);
876
877 /* disable DPU core clks */
878 pm_runtime_put_sync(&dpu_kms->pdev->dev);
879 }
880
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)881 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
882 u32 sw_event)
883 {
884 struct dpu_encoder_virt *dpu_enc;
885 struct msm_drm_private *priv;
886 bool is_vid_mode = false;
887
888 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
889 DPU_ERROR("invalid parameters\n");
890 return -EINVAL;
891 }
892 dpu_enc = to_dpu_encoder_virt(drm_enc);
893 priv = drm_enc->dev->dev_private;
894 is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
895
896 /*
897 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
898 * events and return early for other events (ie wb display).
899 */
900 if (!dpu_enc->idle_pc_supported &&
901 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
902 sw_event != DPU_ENC_RC_EVENT_STOP &&
903 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
904 return 0;
905
906 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
907 dpu_enc->rc_state, "begin");
908
909 switch (sw_event) {
910 case DPU_ENC_RC_EVENT_KICKOFF:
911 /* cancel delayed off work, if any */
912 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
913 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
914 sw_event);
915
916 mutex_lock(&dpu_enc->rc_lock);
917
918 /* return if the resource control is already in ON state */
919 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
920 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
921 DRMID(drm_enc), sw_event);
922 mutex_unlock(&dpu_enc->rc_lock);
923 return 0;
924 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
925 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
926 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
927 DRMID(drm_enc), sw_event,
928 dpu_enc->rc_state);
929 mutex_unlock(&dpu_enc->rc_lock);
930 return -EINVAL;
931 }
932
933 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
934 _dpu_encoder_irq_enable(drm_enc);
935 else
936 _dpu_encoder_resource_enable(drm_enc);
937
938 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
939
940 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
941 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
942 "kickoff");
943
944 mutex_unlock(&dpu_enc->rc_lock);
945 break;
946
947 case DPU_ENC_RC_EVENT_FRAME_DONE:
948 /*
949 * mutex lock is not used as this event happens at interrupt
950 * context. And locking is not required as, the other events
951 * like KICKOFF and STOP does a wait-for-idle before executing
952 * the resource_control
953 */
954 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
955 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
956 DRMID(drm_enc), sw_event,
957 dpu_enc->rc_state);
958 return -EINVAL;
959 }
960
961 /*
962 * schedule off work item only when there are no
963 * frames pending
964 */
965 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
966 DRM_DEBUG_KMS("id:%d skip schedule work\n",
967 DRMID(drm_enc));
968 return 0;
969 }
970
971 queue_delayed_work(priv->wq, &dpu_enc->delayed_off_work,
972 msecs_to_jiffies(dpu_enc->idle_timeout));
973
974 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
975 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
976 "frame done");
977 break;
978
979 case DPU_ENC_RC_EVENT_PRE_STOP:
980 /* cancel delayed off work, if any */
981 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
982 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
983 sw_event);
984
985 mutex_lock(&dpu_enc->rc_lock);
986
987 if (is_vid_mode &&
988 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
989 _dpu_encoder_irq_enable(drm_enc);
990 }
991 /* skip if is already OFF or IDLE, resources are off already */
992 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
993 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
994 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
995 DRMID(drm_enc), sw_event,
996 dpu_enc->rc_state);
997 mutex_unlock(&dpu_enc->rc_lock);
998 return 0;
999 }
1000
1001 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
1002
1003 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1004 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1005 "pre stop");
1006
1007 mutex_unlock(&dpu_enc->rc_lock);
1008 break;
1009
1010 case DPU_ENC_RC_EVENT_STOP:
1011 mutex_lock(&dpu_enc->rc_lock);
1012
1013 /* return if the resource control is already in OFF state */
1014 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
1015 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
1016 DRMID(drm_enc), sw_event);
1017 mutex_unlock(&dpu_enc->rc_lock);
1018 return 0;
1019 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
1020 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
1021 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1022 mutex_unlock(&dpu_enc->rc_lock);
1023 return -EINVAL;
1024 }
1025
1026 /**
1027 * expect to arrive here only if in either idle state or pre-off
1028 * and in IDLE state the resources are already disabled
1029 */
1030 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1031 _dpu_encoder_resource_disable(drm_enc);
1032
1033 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1034
1035 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1036 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1037 "stop");
1038
1039 mutex_unlock(&dpu_enc->rc_lock);
1040 break;
1041
1042 case DPU_ENC_RC_EVENT_ENTER_IDLE:
1043 mutex_lock(&dpu_enc->rc_lock);
1044
1045 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1046 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1047 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1048 mutex_unlock(&dpu_enc->rc_lock);
1049 return 0;
1050 }
1051
1052 /*
1053 * if we are in ON but a frame was just kicked off,
1054 * ignore the IDLE event, it's probably a stale timer event
1055 */
1056 if (dpu_enc->frame_busy_mask[0]) {
1057 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1058 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1059 mutex_unlock(&dpu_enc->rc_lock);
1060 return 0;
1061 }
1062
1063 if (is_vid_mode)
1064 _dpu_encoder_irq_disable(drm_enc);
1065 else
1066 _dpu_encoder_resource_disable(drm_enc);
1067
1068 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1069
1070 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1071 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1072 "idle");
1073
1074 mutex_unlock(&dpu_enc->rc_lock);
1075 break;
1076
1077 default:
1078 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1079 sw_event);
1080 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1081 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1082 "error");
1083 break;
1084 }
1085
1086 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1087 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1088 "end");
1089 return 0;
1090 }
1091
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1092 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1093 struct drm_writeback_job *job)
1094 {
1095 struct dpu_encoder_virt *dpu_enc;
1096 int i;
1097
1098 dpu_enc = to_dpu_encoder_virt(drm_enc);
1099
1100 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1101 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1102
1103 if (phys->ops.prepare_wb_job)
1104 phys->ops.prepare_wb_job(phys, job);
1105
1106 }
1107 }
1108
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1109 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1110 struct drm_writeback_job *job)
1111 {
1112 struct dpu_encoder_virt *dpu_enc;
1113 int i;
1114
1115 dpu_enc = to_dpu_encoder_virt(drm_enc);
1116
1117 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1118 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1119
1120 if (phys->ops.cleanup_wb_job)
1121 phys->ops.cleanup_wb_job(phys, job);
1122
1123 }
1124 }
1125
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1126 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1127 struct drm_crtc_state *crtc_state,
1128 struct drm_connector_state *conn_state)
1129 {
1130 struct dpu_encoder_virt *dpu_enc;
1131 struct msm_drm_private *priv;
1132 struct dpu_kms *dpu_kms;
1133 struct dpu_global_state *global_state;
1134 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1135 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1136 struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1137 int num_ctl, num_pp, num_dsc;
1138 unsigned int dsc_mask = 0;
1139 int i;
1140
1141 if (!drm_enc) {
1142 DPU_ERROR("invalid encoder\n");
1143 return;
1144 }
1145
1146 dpu_enc = to_dpu_encoder_virt(drm_enc);
1147 DPU_DEBUG_ENC(dpu_enc, "\n");
1148
1149 priv = drm_enc->dev->dev_private;
1150 dpu_kms = to_dpu_kms(priv->kms);
1151
1152 global_state = dpu_kms_get_existing_global_state(dpu_kms);
1153 if (IS_ERR_OR_NULL(global_state)) {
1154 DPU_ERROR("Failed to get global state");
1155 return;
1156 }
1157
1158 trace_dpu_enc_mode_set(DRMID(drm_enc));
1159
1160 /* Query resource that have been reserved in atomic check step. */
1161 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1162 drm_enc->base.id, DPU_HW_BLK_PINGPONG, hw_pp,
1163 ARRAY_SIZE(hw_pp));
1164 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1165 drm_enc->base.id, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1166
1167 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1168 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1169 : NULL;
1170
1171 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1172 drm_enc->base.id, DPU_HW_BLK_DSC,
1173 hw_dsc, ARRAY_SIZE(hw_dsc));
1174 for (i = 0; i < num_dsc; i++) {
1175 dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1176 dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1177 }
1178
1179 dpu_enc->dsc_mask = dsc_mask;
1180
1181 if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1182 dpu_enc->disp_info.intf_type == INTF_DP) {
1183 struct dpu_hw_blk *hw_cdm = NULL;
1184
1185 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1186 drm_enc->base.id, DPU_HW_BLK_CDM,
1187 &hw_cdm, 1);
1188 dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1189 }
1190
1191 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1192 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1193
1194 phys->hw_pp = dpu_enc->hw_pp[i];
1195 if (!phys->hw_pp) {
1196 DPU_ERROR_ENC(dpu_enc,
1197 "no pp block assigned at idx: %d\n", i);
1198 return;
1199 }
1200
1201 phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1202 if (!phys->hw_ctl) {
1203 DPU_ERROR_ENC(dpu_enc,
1204 "no ctl block assigned at idx: %d\n", i);
1205 return;
1206 }
1207
1208 phys->cached_mode = crtc_state->adjusted_mode;
1209 if (phys->ops.atomic_mode_set)
1210 phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1211 }
1212 }
1213
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1214 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1215 {
1216 struct dpu_encoder_virt *dpu_enc = NULL;
1217 int i;
1218
1219 if (!drm_enc || !drm_enc->dev) {
1220 DPU_ERROR("invalid parameters\n");
1221 return;
1222 }
1223
1224 dpu_enc = to_dpu_encoder_virt(drm_enc);
1225 if (!dpu_enc || !dpu_enc->cur_master) {
1226 DPU_ERROR("invalid dpu encoder/master\n");
1227 return;
1228 }
1229
1230
1231 if (dpu_enc->disp_info.intf_type == INTF_DP &&
1232 dpu_enc->cur_master->hw_mdptop &&
1233 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1234 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1235 dpu_enc->cur_master->hw_mdptop);
1236
1237 if (dpu_enc->disp_info.is_cmd_mode)
1238 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1239
1240 if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1241 !WARN_ON(dpu_enc->num_phys_encs == 0)) {
1242 unsigned bpc = dpu_enc->connector->display_info.bpc;
1243 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1244 if (!dpu_enc->hw_pp[i])
1245 continue;
1246 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1247 }
1248 }
1249 }
1250
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1251 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1252 {
1253 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1254
1255 mutex_lock(&dpu_enc->enc_lock);
1256
1257 if (!dpu_enc->enabled)
1258 goto out;
1259
1260 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1261 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1262 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1263 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1264
1265 _dpu_encoder_virt_enable_helper(drm_enc);
1266
1267 out:
1268 mutex_unlock(&dpu_enc->enc_lock);
1269 }
1270
dpu_encoder_virt_atomic_enable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1271 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1272 struct drm_atomic_state *state)
1273 {
1274 struct dpu_encoder_virt *dpu_enc = NULL;
1275 int ret = 0;
1276 struct drm_display_mode *cur_mode = NULL;
1277
1278 dpu_enc = to_dpu_encoder_virt(drm_enc);
1279 dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1280
1281 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1282
1283 mutex_lock(&dpu_enc->enc_lock);
1284
1285 dpu_enc->commit_done_timedout = false;
1286
1287 dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1288
1289 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1290
1291 dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1292
1293 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1294 cur_mode->vdisplay);
1295
1296 /* always enable slave encoder before master */
1297 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1298 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1299
1300 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1301 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1302
1303 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1304 if (ret) {
1305 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1306 ret);
1307 goto out;
1308 }
1309
1310 _dpu_encoder_virt_enable_helper(drm_enc);
1311
1312 dpu_enc->enabled = true;
1313
1314 out:
1315 mutex_unlock(&dpu_enc->enc_lock);
1316 }
1317
dpu_encoder_virt_atomic_disable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1318 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1319 struct drm_atomic_state *state)
1320 {
1321 struct dpu_encoder_virt *dpu_enc = NULL;
1322 struct drm_crtc *crtc;
1323 struct drm_crtc_state *old_state = NULL;
1324 int i = 0;
1325
1326 dpu_enc = to_dpu_encoder_virt(drm_enc);
1327 DPU_DEBUG_ENC(dpu_enc, "\n");
1328
1329 crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1330 if (crtc)
1331 old_state = drm_atomic_get_old_crtc_state(state, crtc);
1332
1333 /*
1334 * The encoder is already disabled if self refresh mode was set earlier,
1335 * in the old_state for the corresponding crtc.
1336 */
1337 if (old_state && old_state->self_refresh_active)
1338 return;
1339
1340 mutex_lock(&dpu_enc->enc_lock);
1341 dpu_enc->enabled = false;
1342
1343 trace_dpu_enc_disable(DRMID(drm_enc));
1344
1345 /* wait for idle */
1346 dpu_encoder_wait_for_tx_complete(drm_enc);
1347
1348 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1349
1350 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1351 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1352
1353 if (phys->ops.disable)
1354 phys->ops.disable(phys);
1355 }
1356
1357
1358 /* after phys waits for frame-done, should be no more frames pending */
1359 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1360 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1361 del_timer_sync(&dpu_enc->frame_done_timer);
1362 }
1363
1364 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1365
1366 dpu_enc->connector = NULL;
1367
1368 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1369
1370 mutex_unlock(&dpu_enc->enc_lock);
1371 }
1372
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,struct dpu_rm * dpu_rm,enum dpu_intf_type type,u32 controller_id)1373 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1374 struct dpu_rm *dpu_rm,
1375 enum dpu_intf_type type, u32 controller_id)
1376 {
1377 int i = 0;
1378
1379 if (type == INTF_WB)
1380 return NULL;
1381
1382 for (i = 0; i < catalog->intf_count; i++) {
1383 if (catalog->intf[i].type == type
1384 && catalog->intf[i].controller_id == controller_id) {
1385 return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1386 }
1387 }
1388
1389 return NULL;
1390 }
1391
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1392 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1393 struct dpu_encoder_phys *phy_enc)
1394 {
1395 struct dpu_encoder_virt *dpu_enc = NULL;
1396 unsigned long lock_flags;
1397
1398 if (!drm_enc || !phy_enc)
1399 return;
1400
1401 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1402 dpu_enc = to_dpu_encoder_virt(drm_enc);
1403
1404 atomic_inc(&phy_enc->vsync_cnt);
1405
1406 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1407 if (dpu_enc->crtc)
1408 dpu_crtc_vblank_callback(dpu_enc->crtc);
1409 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1410
1411 DPU_ATRACE_END("encoder_vblank_callback");
1412 }
1413
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1414 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1415 struct dpu_encoder_phys *phy_enc)
1416 {
1417 if (!phy_enc)
1418 return;
1419
1420 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1421 atomic_inc(&phy_enc->underrun_cnt);
1422
1423 /* trigger dump only on the first underrun */
1424 if (atomic_read(&phy_enc->underrun_cnt) == 1)
1425 msm_disp_snapshot_state(drm_enc->dev);
1426
1427 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1428 atomic_read(&phy_enc->underrun_cnt));
1429 DPU_ATRACE_END("encoder_underrun_callback");
1430 }
1431
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1432 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1433 {
1434 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1435 unsigned long lock_flags;
1436
1437 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1438 /* crtc should always be cleared before re-assigning */
1439 WARN_ON(crtc && dpu_enc->crtc);
1440 dpu_enc->crtc = crtc;
1441 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1442 }
1443
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1444 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1445 struct drm_crtc *crtc, bool enable)
1446 {
1447 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1448 unsigned long lock_flags;
1449 int i;
1450
1451 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1452
1453 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1454 if (dpu_enc->crtc != crtc) {
1455 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1456 return;
1457 }
1458 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1459
1460 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1461 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1462
1463 if (phys->ops.control_vblank_irq)
1464 phys->ops.control_vblank_irq(phys, enable);
1465 }
1466 }
1467
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1468 void dpu_encoder_frame_done_callback(
1469 struct drm_encoder *drm_enc,
1470 struct dpu_encoder_phys *ready_phys, u32 event)
1471 {
1472 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1473 unsigned int i;
1474
1475 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1476 | DPU_ENCODER_FRAME_EVENT_ERROR
1477 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1478
1479 if (!dpu_enc->frame_busy_mask[0]) {
1480 /**
1481 * suppress frame_done without waiter,
1482 * likely autorefresh
1483 */
1484 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1485 dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1486 ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1487 ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1488 return;
1489 }
1490
1491 /* One of the physical encoders has become idle */
1492 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1493 if (dpu_enc->phys_encs[i] == ready_phys) {
1494 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1495 dpu_enc->frame_busy_mask[0]);
1496 clear_bit(i, dpu_enc->frame_busy_mask);
1497 }
1498 }
1499
1500 if (!dpu_enc->frame_busy_mask[0]) {
1501 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1502 del_timer(&dpu_enc->frame_done_timer);
1503
1504 dpu_encoder_resource_control(drm_enc,
1505 DPU_ENC_RC_EVENT_FRAME_DONE);
1506
1507 if (dpu_enc->crtc)
1508 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1509 }
1510 } else {
1511 if (dpu_enc->crtc)
1512 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1513 }
1514 }
1515
dpu_encoder_off_work(struct work_struct * work)1516 static void dpu_encoder_off_work(struct work_struct *work)
1517 {
1518 struct dpu_encoder_virt *dpu_enc = container_of(work,
1519 struct dpu_encoder_virt, delayed_off_work.work);
1520
1521 dpu_encoder_resource_control(&dpu_enc->base,
1522 DPU_ENC_RC_EVENT_ENTER_IDLE);
1523
1524 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1525 DPU_ENCODER_FRAME_EVENT_IDLE);
1526 }
1527
1528 /**
1529 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1530 * @drm_enc: Pointer to drm encoder structure
1531 * @phys: Pointer to physical encoder structure
1532 * @extra_flush_bits: Additional bit mask to include in flush trigger
1533 */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1534 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1535 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1536 {
1537 struct dpu_hw_ctl *ctl;
1538 int pending_kickoff_cnt;
1539 u32 ret = UINT_MAX;
1540
1541 if (!phys->hw_pp) {
1542 DPU_ERROR("invalid pingpong hw\n");
1543 return;
1544 }
1545
1546 ctl = phys->hw_ctl;
1547 if (!ctl->ops.trigger_flush) {
1548 DPU_ERROR("missing trigger cb\n");
1549 return;
1550 }
1551
1552 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1553
1554 if (extra_flush_bits && ctl->ops.update_pending_flush)
1555 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1556
1557 ctl->ops.trigger_flush(ctl);
1558
1559 if (ctl->ops.get_pending_flush)
1560 ret = ctl->ops.get_pending_flush(ctl);
1561
1562 trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1563 dpu_encoder_helper_get_intf_type(phys->intf_mode),
1564 phys->hw_intf ? phys->hw_intf->idx : -1,
1565 phys->hw_wb ? phys->hw_wb->idx : -1,
1566 pending_kickoff_cnt, ctl->idx,
1567 extra_flush_bits, ret);
1568 }
1569
1570 /**
1571 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1572 * @phys: Pointer to physical encoder structure
1573 */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1574 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1575 {
1576 if (!phys) {
1577 DPU_ERROR("invalid argument(s)\n");
1578 return;
1579 }
1580
1581 if (!phys->hw_pp) {
1582 DPU_ERROR("invalid pingpong hw\n");
1583 return;
1584 }
1585
1586 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1587 phys->ops.trigger_start(phys);
1588 }
1589
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1590 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1591 {
1592 struct dpu_hw_ctl *ctl;
1593
1594 ctl = phys_enc->hw_ctl;
1595 if (ctl->ops.trigger_start) {
1596 ctl->ops.trigger_start(ctl);
1597 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1598 }
1599 }
1600
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,unsigned int irq_idx,struct dpu_encoder_wait_info * info)1601 static int dpu_encoder_helper_wait_event_timeout(
1602 int32_t drm_id,
1603 unsigned int irq_idx,
1604 struct dpu_encoder_wait_info *info)
1605 {
1606 int rc = 0;
1607 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1608 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1609 s64 time;
1610
1611 do {
1612 rc = wait_event_timeout(*(info->wq),
1613 atomic_read(info->atomic_cnt) == 0, jiffies);
1614 time = ktime_to_ms(ktime_get());
1615
1616 trace_dpu_enc_wait_event_timeout(drm_id,
1617 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1618 rc, time,
1619 expected_time,
1620 atomic_read(info->atomic_cnt));
1621 /* If we timed out, counter is valid and time is less, wait again */
1622 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1623 (time < expected_time));
1624
1625 return rc;
1626 }
1627
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1628 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1629 {
1630 struct dpu_encoder_virt *dpu_enc;
1631 struct dpu_hw_ctl *ctl;
1632 int rc;
1633 struct drm_encoder *drm_enc;
1634
1635 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1636 ctl = phys_enc->hw_ctl;
1637 drm_enc = phys_enc->parent;
1638
1639 if (!ctl->ops.reset)
1640 return;
1641
1642 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1643 ctl->idx);
1644
1645 rc = ctl->ops.reset(ctl);
1646 if (rc) {
1647 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1648 msm_disp_snapshot_state(drm_enc->dev);
1649 }
1650
1651 phys_enc->enable_state = DPU_ENC_ENABLED;
1652 }
1653
1654 /**
1655 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1656 * Iterate through the physical encoders and perform consolidated flush
1657 * and/or control start triggering as needed. This is done in the virtual
1658 * encoder rather than the individual physical ones in order to handle
1659 * use cases that require visibility into multiple physical encoders at
1660 * a time.
1661 * @dpu_enc: Pointer to virtual encoder structure
1662 */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1663 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1664 {
1665 struct dpu_hw_ctl *ctl;
1666 uint32_t i, pending_flush;
1667 unsigned long lock_flags;
1668
1669 pending_flush = 0x0;
1670
1671 /* update pending counts and trigger kickoff ctl flush atomically */
1672 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1673
1674 /* don't perform flush/start operations for slave encoders */
1675 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1676 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1677
1678 if (phys->enable_state == DPU_ENC_DISABLED)
1679 continue;
1680
1681 ctl = phys->hw_ctl;
1682
1683 /*
1684 * This is cleared in frame_done worker, which isn't invoked
1685 * for async commits. So don't set this for async, since it'll
1686 * roll over to the next commit.
1687 */
1688 if (phys->split_role != ENC_ROLE_SLAVE)
1689 set_bit(i, dpu_enc->frame_busy_mask);
1690
1691 if (!phys->ops.needs_single_flush ||
1692 !phys->ops.needs_single_flush(phys))
1693 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1694 else if (ctl->ops.get_pending_flush)
1695 pending_flush |= ctl->ops.get_pending_flush(ctl);
1696 }
1697
1698 /* for split flush, combine pending flush masks and send to master */
1699 if (pending_flush && dpu_enc->cur_master) {
1700 _dpu_encoder_trigger_flush(
1701 &dpu_enc->base,
1702 dpu_enc->cur_master,
1703 pending_flush);
1704 }
1705
1706 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1707
1708 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1709 }
1710
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1711 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1712 {
1713 struct dpu_encoder_virt *dpu_enc;
1714 struct dpu_encoder_phys *phys;
1715 unsigned int i;
1716 struct dpu_hw_ctl *ctl;
1717 struct msm_display_info *disp_info;
1718
1719 if (!drm_enc) {
1720 DPU_ERROR("invalid encoder\n");
1721 return;
1722 }
1723 dpu_enc = to_dpu_encoder_virt(drm_enc);
1724 disp_info = &dpu_enc->disp_info;
1725
1726 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1727 phys = dpu_enc->phys_encs[i];
1728
1729 ctl = phys->hw_ctl;
1730 ctl->ops.clear_pending_flush(ctl);
1731
1732 /* update only for command mode primary ctl */
1733 if ((phys == dpu_enc->cur_master) &&
1734 disp_info->is_cmd_mode
1735 && ctl->ops.trigger_pending)
1736 ctl->ops.trigger_pending(ctl);
1737 }
1738 }
1739
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1740 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1741 struct drm_display_mode *mode)
1742 {
1743 u64 pclk_rate;
1744 u32 pclk_period;
1745 u32 line_time;
1746
1747 /*
1748 * For linetime calculation, only operate on master encoder.
1749 */
1750 if (!dpu_enc->cur_master)
1751 return 0;
1752
1753 if (!dpu_enc->cur_master->ops.get_line_count) {
1754 DPU_ERROR("get_line_count function not defined\n");
1755 return 0;
1756 }
1757
1758 pclk_rate = mode->clock; /* pixel clock in kHz */
1759 if (pclk_rate == 0) {
1760 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1761 return 0;
1762 }
1763
1764 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1765 if (pclk_period == 0) {
1766 DPU_ERROR("pclk period is 0\n");
1767 return 0;
1768 }
1769
1770 /*
1771 * Line time calculation based on Pixel clock and HTOTAL.
1772 * Final unit is in ns.
1773 */
1774 line_time = (pclk_period * mode->htotal) / 1000;
1775 if (line_time == 0) {
1776 DPU_ERROR("line time calculation is 0\n");
1777 return 0;
1778 }
1779
1780 DPU_DEBUG_ENC(dpu_enc,
1781 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1782 pclk_rate, pclk_period, line_time);
1783
1784 return line_time;
1785 }
1786
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1787 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1788 {
1789 struct drm_display_mode *mode;
1790 struct dpu_encoder_virt *dpu_enc;
1791 u32 cur_line;
1792 u32 line_time;
1793 u32 vtotal, time_to_vsync;
1794 ktime_t cur_time;
1795
1796 dpu_enc = to_dpu_encoder_virt(drm_enc);
1797
1798 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1799 DPU_ERROR("crtc/crtc state object is NULL\n");
1800 return -EINVAL;
1801 }
1802 mode = &drm_enc->crtc->state->adjusted_mode;
1803
1804 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1805 if (!line_time)
1806 return -EINVAL;
1807
1808 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1809
1810 vtotal = mode->vtotal;
1811 if (cur_line >= vtotal)
1812 time_to_vsync = line_time * vtotal;
1813 else
1814 time_to_vsync = line_time * (vtotal - cur_line);
1815
1816 if (time_to_vsync == 0) {
1817 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1818 vtotal);
1819 return -EINVAL;
1820 }
1821
1822 cur_time = ktime_get();
1823 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1824
1825 DPU_DEBUG_ENC(dpu_enc,
1826 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1827 cur_line, vtotal, time_to_vsync,
1828 ktime_to_ms(cur_time),
1829 ktime_to_ms(*wakeup_time));
1830 return 0;
1831 }
1832
1833 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1834 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1835 u32 enc_ip_width)
1836 {
1837 int ssm_delay, total_pixels, soft_slice_per_enc;
1838
1839 soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1840
1841 /*
1842 * minimum number of initial line pixels is a sum of:
1843 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1844 * 91 for 10 bpc) * 3
1845 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1846 * 3. the initial xmit delay
1847 * 4. total pipeline delay through the "lock step" of encoder (47)
1848 * 5. 6 additional pixels as the output of the rate buffer is
1849 * 48 bits wide
1850 */
1851 ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1852 total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1853 if (soft_slice_per_enc > 1)
1854 total_pixels += (ssm_delay * 3);
1855 return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1856 }
1857
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1858 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1859 struct dpu_hw_dsc *hw_dsc,
1860 struct dpu_hw_pingpong *hw_pp,
1861 struct drm_dsc_config *dsc,
1862 u32 common_mode,
1863 u32 initial_lines)
1864 {
1865 if (hw_dsc->ops.dsc_config)
1866 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1867
1868 if (hw_dsc->ops.dsc_config_thresh)
1869 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1870
1871 if (hw_pp->ops.setup_dsc)
1872 hw_pp->ops.setup_dsc(hw_pp);
1873
1874 if (hw_dsc->ops.dsc_bind_pingpong_blk)
1875 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1876
1877 if (hw_pp->ops.enable_dsc)
1878 hw_pp->ops.enable_dsc(hw_pp);
1879
1880 if (ctl->ops.update_pending_flush_dsc)
1881 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
1882 }
1883
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)1884 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
1885 struct drm_dsc_config *dsc)
1886 {
1887 /* coding only for 2LM, 2enc, 1 dsc config */
1888 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
1889 struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
1890 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
1891 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
1892 int this_frame_slices;
1893 int intf_ip_w, enc_ip_w;
1894 int dsc_common_mode;
1895 int pic_width;
1896 u32 initial_lines;
1897 int i;
1898
1899 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1900 hw_pp[i] = dpu_enc->hw_pp[i];
1901 hw_dsc[i] = dpu_enc->hw_dsc[i];
1902
1903 if (!hw_pp[i] || !hw_dsc[i]) {
1904 DPU_ERROR_ENC(dpu_enc, "invalid params for DSC\n");
1905 return;
1906 }
1907 }
1908
1909 dsc_common_mode = 0;
1910 pic_width = dsc->pic_width;
1911
1912 dsc_common_mode = DSC_MODE_SPLIT_PANEL;
1913 if (dpu_encoder_use_dsc_merge(enc_master->parent))
1914 dsc_common_mode |= DSC_MODE_MULTIPLEX;
1915 if (enc_master->intf_mode == INTF_MODE_VIDEO)
1916 dsc_common_mode |= DSC_MODE_VIDEO;
1917
1918 this_frame_slices = pic_width / dsc->slice_width;
1919 intf_ip_w = this_frame_slices * dsc->slice_width;
1920
1921 /*
1922 * dsc merge case: when using 2 encoders for the same stream,
1923 * no. of slices need to be same on both the encoders.
1924 */
1925 enc_ip_w = intf_ip_w / 2;
1926 initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
1927
1928 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1929 dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
1930 dsc, dsc_common_mode, initial_lines);
1931 }
1932
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)1933 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
1934 {
1935 struct dpu_encoder_virt *dpu_enc;
1936 struct dpu_encoder_phys *phys;
1937 bool needs_hw_reset = false;
1938 unsigned int i;
1939
1940 dpu_enc = to_dpu_encoder_virt(drm_enc);
1941
1942 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
1943
1944 /* prepare for next kickoff, may include waiting on previous kickoff */
1945 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
1946 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1947 phys = dpu_enc->phys_encs[i];
1948 if (phys->ops.prepare_for_kickoff)
1949 phys->ops.prepare_for_kickoff(phys);
1950 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
1951 needs_hw_reset = true;
1952 }
1953 DPU_ATRACE_END("enc_prepare_for_kickoff");
1954
1955 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1956
1957 /* if any phys needs reset, reset all phys, in-order */
1958 if (needs_hw_reset) {
1959 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
1960 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1961 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
1962 }
1963 }
1964
1965 if (dpu_enc->dsc)
1966 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
1967 }
1968
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)1969 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
1970 {
1971 struct dpu_encoder_virt *dpu_enc;
1972 unsigned int i;
1973 struct dpu_encoder_phys *phys;
1974
1975 dpu_enc = to_dpu_encoder_virt(drm_enc);
1976
1977 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
1978 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1979 phys = dpu_enc->phys_encs[i];
1980 if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
1981 DPU_DEBUG("invalid FB not kicking off\n");
1982 return false;
1983 }
1984 }
1985 }
1986
1987 return true;
1988 }
1989
dpu_encoder_kickoff(struct drm_encoder * drm_enc)1990 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
1991 {
1992 struct dpu_encoder_virt *dpu_enc;
1993 struct dpu_encoder_phys *phys;
1994 unsigned long timeout_ms;
1995 unsigned int i;
1996
1997 DPU_ATRACE_BEGIN("encoder_kickoff");
1998 dpu_enc = to_dpu_encoder_virt(drm_enc);
1999
2000 trace_dpu_enc_kickoff(DRMID(drm_enc));
2001
2002 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2003 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2004
2005 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2006 mod_timer(&dpu_enc->frame_done_timer,
2007 jiffies + msecs_to_jiffies(timeout_ms));
2008
2009 /* All phys encs are ready to go, trigger the kickoff */
2010 _dpu_encoder_kickoff_phys(dpu_enc);
2011
2012 /* allow phys encs to handle any post-kickoff business */
2013 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2014 phys = dpu_enc->phys_encs[i];
2015 if (phys->ops.handle_post_kickoff)
2016 phys->ops.handle_post_kickoff(phys);
2017 }
2018
2019 DPU_ATRACE_END("encoder_kickoff");
2020 }
2021
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)2022 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2023 {
2024 struct dpu_hw_mixer_cfg mixer;
2025 int i, num_lm;
2026 struct dpu_global_state *global_state;
2027 struct dpu_hw_blk *hw_lm[2];
2028 struct dpu_hw_mixer *hw_mixer[2];
2029 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2030
2031 memset(&mixer, 0, sizeof(mixer));
2032
2033 /* reset all mixers for this encoder */
2034 if (phys_enc->hw_ctl->ops.clear_all_blendstages)
2035 phys_enc->hw_ctl->ops.clear_all_blendstages(phys_enc->hw_ctl);
2036
2037 global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2038
2039 num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2040 phys_enc->parent->base.id, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2041
2042 for (i = 0; i < num_lm; i++) {
2043 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2044 if (phys_enc->hw_ctl->ops.update_pending_flush_mixer)
2045 phys_enc->hw_ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2046
2047 /* clear all blendstages */
2048 if (phys_enc->hw_ctl->ops.setup_blendstage)
2049 phys_enc->hw_ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2050 }
2051 }
2052
dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp)2053 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2054 struct dpu_hw_dsc *hw_dsc,
2055 struct dpu_hw_pingpong *hw_pp)
2056 {
2057 if (hw_dsc->ops.dsc_disable)
2058 hw_dsc->ops.dsc_disable(hw_dsc);
2059
2060 if (hw_pp->ops.disable_dsc)
2061 hw_pp->ops.disable_dsc(hw_pp);
2062
2063 if (hw_dsc->ops.dsc_bind_pingpong_blk)
2064 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2065
2066 if (ctl->ops.update_pending_flush_dsc)
2067 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2068 }
2069
dpu_encoder_unprep_dsc(struct dpu_encoder_virt * dpu_enc)2070 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2071 {
2072 /* coding only for 2LM, 2enc, 1 dsc config */
2073 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2074 struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2075 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2076 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2077 int i;
2078
2079 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2080 hw_pp[i] = dpu_enc->hw_pp[i];
2081 hw_dsc[i] = dpu_enc->hw_dsc[i];
2082
2083 if (hw_pp[i] && hw_dsc[i])
2084 dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2085 }
2086 }
2087
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2088 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2089 {
2090 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2091 struct dpu_hw_intf_cfg intf_cfg = { 0 };
2092 int i;
2093 struct dpu_encoder_virt *dpu_enc;
2094
2095 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2096
2097 phys_enc->hw_ctl->ops.reset(ctl);
2098
2099 dpu_encoder_helper_reset_mixers(phys_enc);
2100
2101 /*
2102 * TODO: move the once-only operation like CTL flush/trigger
2103 * into dpu_encoder_virt_disable() and all operations which need
2104 * to be done per phys encoder into the phys_disable() op.
2105 */
2106 if (phys_enc->hw_wb) {
2107 /* disable the PP block */
2108 if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2109 phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2110
2111 /* mark WB flush as pending */
2112 if (phys_enc->hw_ctl->ops.update_pending_flush_wb)
2113 phys_enc->hw_ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2114 } else {
2115 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2116 if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2117 phys_enc->hw_intf->ops.bind_pingpong_blk(
2118 dpu_enc->phys_encs[i]->hw_intf,
2119 PINGPONG_NONE);
2120
2121 /* mark INTF flush as pending */
2122 if (phys_enc->hw_ctl->ops.update_pending_flush_intf)
2123 phys_enc->hw_ctl->ops.update_pending_flush_intf(phys_enc->hw_ctl,
2124 dpu_enc->phys_encs[i]->hw_intf->idx);
2125 }
2126 }
2127
2128 /* reset the merge 3D HW block */
2129 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2130 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2131 BLEND_3D_NONE);
2132 if (phys_enc->hw_ctl->ops.update_pending_flush_merge_3d)
2133 phys_enc->hw_ctl->ops.update_pending_flush_merge_3d(ctl,
2134 phys_enc->hw_pp->merge_3d->idx);
2135 }
2136
2137 if (phys_enc->hw_cdm) {
2138 if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2139 phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2140 PINGPONG_NONE);
2141 if (phys_enc->hw_ctl->ops.update_pending_flush_cdm)
2142 phys_enc->hw_ctl->ops.update_pending_flush_cdm(phys_enc->hw_ctl,
2143 phys_enc->hw_cdm->idx);
2144 }
2145
2146 if (dpu_enc->dsc) {
2147 dpu_encoder_unprep_dsc(dpu_enc);
2148 dpu_enc->dsc = NULL;
2149 }
2150
2151 intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2152 intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2153 intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2154
2155 if (phys_enc->hw_intf)
2156 intf_cfg.intf = phys_enc->hw_intf->idx;
2157 if (phys_enc->hw_wb)
2158 intf_cfg.wb = phys_enc->hw_wb->idx;
2159
2160 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2161 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2162
2163 if (ctl->ops.reset_intf_cfg)
2164 ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2165
2166 ctl->ops.trigger_flush(ctl);
2167 ctl->ops.trigger_start(ctl);
2168 ctl->ops.clear_pending_flush(ctl);
2169 }
2170
dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys * phys_enc,const struct msm_format * dpu_fmt,u32 output_type)2171 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2172 const struct msm_format *dpu_fmt,
2173 u32 output_type)
2174 {
2175 struct dpu_hw_cdm *hw_cdm;
2176 struct dpu_hw_cdm_cfg *cdm_cfg;
2177 struct dpu_hw_pingpong *hw_pp;
2178 int ret;
2179
2180 if (!phys_enc)
2181 return;
2182
2183 cdm_cfg = &phys_enc->cdm_cfg;
2184 hw_pp = phys_enc->hw_pp;
2185 hw_cdm = phys_enc->hw_cdm;
2186
2187 if (!hw_cdm)
2188 return;
2189
2190 if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2191 DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2192 &dpu_fmt->pixel_format);
2193 if (hw_cdm->ops.bind_pingpong_blk)
2194 hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2195
2196 return;
2197 }
2198
2199 memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2200
2201 cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2202 cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2203 cdm_cfg->output_fmt = dpu_fmt;
2204 cdm_cfg->output_type = output_type;
2205 cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2206 CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2207 cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2208
2209 /* enable 10 bit logic */
2210 switch (cdm_cfg->output_fmt->chroma_sample) {
2211 case CHROMA_FULL:
2212 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2213 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2214 break;
2215 case CHROMA_H2V1:
2216 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2217 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2218 break;
2219 case CHROMA_420:
2220 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2221 cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2222 break;
2223 case CHROMA_H1V2:
2224 default:
2225 DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2226 DRMID(phys_enc->parent));
2227 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2228 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2229 break;
2230 }
2231
2232 DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2233 DRMID(phys_enc->parent), cdm_cfg->output_width,
2234 cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2235 cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2236 cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2237
2238 if (hw_cdm->ops.enable) {
2239 cdm_cfg->pp_id = hw_pp->idx;
2240 ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2241 if (ret < 0) {
2242 DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2243 DRMID(phys_enc->parent), ret);
2244 return;
2245 }
2246 }
2247 }
2248
2249 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2250 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2251 {
2252 struct drm_encoder *drm_enc = s->private;
2253 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2254 int i;
2255
2256 mutex_lock(&dpu_enc->enc_lock);
2257 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2258 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2259
2260 seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d frame_done_cnt:%d",
2261 phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2262 phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2263 atomic_read(&phys->vsync_cnt),
2264 atomic_read(&phys->underrun_cnt),
2265 atomic_read(&dpu_enc->frame_done_timeout_cnt));
2266
2267 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2268 }
2269 mutex_unlock(&dpu_enc->enc_lock);
2270
2271 return 0;
2272 }
2273
2274 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2275
dpu_encoder_debugfs_init(struct drm_encoder * drm_enc,struct dentry * root)2276 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2277 {
2278 /* don't error check these */
2279 debugfs_create_file("status", 0600,
2280 root, drm_enc, &_dpu_encoder_status_fops);
2281 }
2282 #else
2283 #define dpu_encoder_debugfs_init NULL
2284 #endif
2285
dpu_encoder_virt_add_phys_encs(struct drm_device * dev,struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2286 static int dpu_encoder_virt_add_phys_encs(
2287 struct drm_device *dev,
2288 struct msm_display_info *disp_info,
2289 struct dpu_encoder_virt *dpu_enc,
2290 struct dpu_enc_phys_init_params *params)
2291 {
2292 struct dpu_encoder_phys *enc = NULL;
2293
2294 DPU_DEBUG_ENC(dpu_enc, "\n");
2295
2296 /*
2297 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2298 * in this function, check up-front.
2299 */
2300 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2301 ARRAY_SIZE(dpu_enc->phys_encs)) {
2302 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2303 dpu_enc->num_phys_encs);
2304 return -EINVAL;
2305 }
2306
2307
2308 if (disp_info->intf_type == INTF_WB) {
2309 enc = dpu_encoder_phys_wb_init(dev, params);
2310
2311 if (IS_ERR(enc)) {
2312 DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2313 PTR_ERR(enc));
2314 return PTR_ERR(enc);
2315 }
2316
2317 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2318 ++dpu_enc->num_phys_encs;
2319 } else if (disp_info->is_cmd_mode) {
2320 enc = dpu_encoder_phys_cmd_init(dev, params);
2321
2322 if (IS_ERR(enc)) {
2323 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2324 PTR_ERR(enc));
2325 return PTR_ERR(enc);
2326 }
2327
2328 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2329 ++dpu_enc->num_phys_encs;
2330 } else {
2331 enc = dpu_encoder_phys_vid_init(dev, params);
2332
2333 if (IS_ERR(enc)) {
2334 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2335 PTR_ERR(enc));
2336 return PTR_ERR(enc);
2337 }
2338
2339 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2340 ++dpu_enc->num_phys_encs;
2341 }
2342
2343 if (params->split_role == ENC_ROLE_SLAVE)
2344 dpu_enc->cur_slave = enc;
2345 else
2346 dpu_enc->cur_master = enc;
2347
2348 return 0;
2349 }
2350
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2351 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2352 struct dpu_kms *dpu_kms,
2353 struct msm_display_info *disp_info)
2354 {
2355 int ret = 0;
2356 int i = 0;
2357 struct dpu_enc_phys_init_params phys_params;
2358
2359 if (!dpu_enc) {
2360 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2361 return -EINVAL;
2362 }
2363
2364 dpu_enc->cur_master = NULL;
2365
2366 memset(&phys_params, 0, sizeof(phys_params));
2367 phys_params.dpu_kms = dpu_kms;
2368 phys_params.parent = &dpu_enc->base;
2369 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2370
2371 WARN_ON(disp_info->num_of_h_tiles < 1);
2372
2373 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2374
2375 if (disp_info->intf_type != INTF_WB)
2376 dpu_enc->idle_pc_supported =
2377 dpu_kms->catalog->caps->has_idle_pc;
2378
2379 mutex_lock(&dpu_enc->enc_lock);
2380 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2381 /*
2382 * Left-most tile is at index 0, content is controller id
2383 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2384 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2385 */
2386 u32 controller_id = disp_info->h_tile_instance[i];
2387
2388 if (disp_info->num_of_h_tiles > 1) {
2389 if (i == 0)
2390 phys_params.split_role = ENC_ROLE_MASTER;
2391 else
2392 phys_params.split_role = ENC_ROLE_SLAVE;
2393 } else {
2394 phys_params.split_role = ENC_ROLE_SOLO;
2395 }
2396
2397 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2398 i, controller_id, phys_params.split_role);
2399
2400 phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2401 disp_info->intf_type,
2402 controller_id);
2403
2404 if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2405 phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2406
2407 if (!phys_params.hw_intf && !phys_params.hw_wb) {
2408 DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2409 ret = -EINVAL;
2410 break;
2411 }
2412
2413 if (phys_params.hw_intf && phys_params.hw_wb) {
2414 DPU_ERROR_ENC(dpu_enc,
2415 "invalid phys both intf and wb block at idx: %d\n", i);
2416 ret = -EINVAL;
2417 break;
2418 }
2419
2420 ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2421 dpu_enc, &phys_params);
2422 if (ret) {
2423 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2424 break;
2425 }
2426 }
2427
2428 mutex_unlock(&dpu_enc->enc_lock);
2429
2430 return ret;
2431 }
2432
dpu_encoder_frame_done_timeout(struct timer_list * t)2433 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2434 {
2435 struct dpu_encoder_virt *dpu_enc = from_timer(dpu_enc, t,
2436 frame_done_timer);
2437 struct drm_encoder *drm_enc = &dpu_enc->base;
2438 u32 event;
2439
2440 if (!drm_enc->dev) {
2441 DPU_ERROR("invalid parameters\n");
2442 return;
2443 }
2444
2445 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2446 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2447 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2448 return;
2449 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2450 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2451 return;
2452 }
2453
2454 DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2455
2456 if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2457 msm_disp_snapshot_state(drm_enc->dev);
2458
2459 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2460 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2461 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2462 }
2463
2464 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2465 .atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2466 .atomic_disable = dpu_encoder_virt_atomic_disable,
2467 .atomic_enable = dpu_encoder_virt_atomic_enable,
2468 .atomic_check = dpu_encoder_virt_atomic_check,
2469 };
2470
2471 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2472 .debugfs_init = dpu_encoder_debugfs_init,
2473 };
2474
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode,struct msm_display_info * disp_info)2475 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2476 int drm_enc_mode,
2477 struct msm_display_info *disp_info)
2478 {
2479 struct msm_drm_private *priv = dev->dev_private;
2480 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2481 struct dpu_encoder_virt *dpu_enc;
2482 int ret;
2483
2484 dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2485 &dpu_encoder_funcs, drm_enc_mode, NULL);
2486 if (IS_ERR(dpu_enc))
2487 return ERR_CAST(dpu_enc);
2488
2489 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2490
2491 spin_lock_init(&dpu_enc->enc_spinlock);
2492 dpu_enc->enabled = false;
2493 mutex_init(&dpu_enc->enc_lock);
2494 mutex_init(&dpu_enc->rc_lock);
2495
2496 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2497 if (ret) {
2498 DPU_ERROR("failed to setup encoder\n");
2499 return ERR_PTR(-ENOMEM);
2500 }
2501
2502 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2503 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2504 timer_setup(&dpu_enc->frame_done_timer,
2505 dpu_encoder_frame_done_timeout, 0);
2506
2507 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2508 dpu_encoder_off_work);
2509 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2510
2511 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2512
2513 DPU_DEBUG_ENC(dpu_enc, "created\n");
2514
2515 return &dpu_enc->base;
2516 }
2517
2518 /**
2519 * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2520 * @drm_enc: encoder pointer
2521 *
2522 * Wait for hardware to have flushed the current pending changes to hardware at
2523 * a vblank or CTL_START. Physical encoders will map this differently depending
2524 * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2525 *
2526 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2527 */
dpu_encoder_wait_for_commit_done(struct drm_encoder * drm_enc)2528 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2529 {
2530 struct dpu_encoder_virt *dpu_enc = NULL;
2531 int i, ret = 0;
2532
2533 if (!drm_enc) {
2534 DPU_ERROR("invalid encoder\n");
2535 return -EINVAL;
2536 }
2537 dpu_enc = to_dpu_encoder_virt(drm_enc);
2538 DPU_DEBUG_ENC(dpu_enc, "\n");
2539
2540 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2541 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2542
2543 if (phys->ops.wait_for_commit_done) {
2544 DPU_ATRACE_BEGIN("wait_for_commit_done");
2545 ret = phys->ops.wait_for_commit_done(phys);
2546 DPU_ATRACE_END("wait_for_commit_done");
2547 if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2548 dpu_enc->commit_done_timedout = true;
2549 msm_disp_snapshot_state(drm_enc->dev);
2550 }
2551 if (ret)
2552 return ret;
2553 }
2554 }
2555
2556 return ret;
2557 }
2558
2559 /**
2560 * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2561 * @drm_enc: encoder pointer
2562 *
2563 * Wait for the hardware to transfer all the pixels to the panel. Physical
2564 * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2565 * cmd mode -> pp_done.
2566 *
2567 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2568 */
dpu_encoder_wait_for_tx_complete(struct drm_encoder * drm_enc)2569 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2570 {
2571 struct dpu_encoder_virt *dpu_enc = NULL;
2572 int i, ret = 0;
2573
2574 if (!drm_enc) {
2575 DPU_ERROR("invalid encoder\n");
2576 return -EINVAL;
2577 }
2578 dpu_enc = to_dpu_encoder_virt(drm_enc);
2579 DPU_DEBUG_ENC(dpu_enc, "\n");
2580
2581 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2582 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2583
2584 if (phys->ops.wait_for_tx_complete) {
2585 DPU_ATRACE_BEGIN("wait_for_tx_complete");
2586 ret = phys->ops.wait_for_tx_complete(phys);
2587 DPU_ATRACE_END("wait_for_tx_complete");
2588 if (ret)
2589 return ret;
2590 }
2591 }
2592
2593 return ret;
2594 }
2595
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2596 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2597 {
2598 struct dpu_encoder_virt *dpu_enc = NULL;
2599
2600 if (!encoder) {
2601 DPU_ERROR("invalid encoder\n");
2602 return INTF_MODE_NONE;
2603 }
2604 dpu_enc = to_dpu_encoder_virt(encoder);
2605
2606 if (dpu_enc->cur_master)
2607 return dpu_enc->cur_master->intf_mode;
2608
2609 if (dpu_enc->num_phys_encs)
2610 return dpu_enc->phys_encs[0]->intf_mode;
2611
2612 return INTF_MODE_NONE;
2613 }
2614
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2615 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2616 {
2617 struct drm_encoder *encoder = phys_enc->parent;
2618 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2619
2620 return dpu_enc->dsc_mask;
2621 }
2622
dpu_encoder_phys_init(struct dpu_encoder_phys * phys_enc,struct dpu_enc_phys_init_params * p)2623 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2624 struct dpu_enc_phys_init_params *p)
2625 {
2626 phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2627 phys_enc->hw_intf = p->hw_intf;
2628 phys_enc->hw_wb = p->hw_wb;
2629 phys_enc->parent = p->parent;
2630 phys_enc->dpu_kms = p->dpu_kms;
2631 phys_enc->split_role = p->split_role;
2632 phys_enc->enc_spinlock = p->enc_spinlock;
2633 phys_enc->enable_state = DPU_ENC_DISABLED;
2634
2635 atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2636 atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2637
2638 atomic_set(&phys_enc->vsync_cnt, 0);
2639 atomic_set(&phys_enc->underrun_cnt, 0);
2640
2641 init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2642 }
2643