1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Copyright (c) 2014-2018, 2020-2021 The Linux Foundation. All rights reserved.
5 * Copyright (c) 2022-2024 Qualcomm Innovation Center, Inc. All rights reserved.
6 *
7 * Author: Rob Clark <robdclark@gmail.com>
8 */
9
10 #define pr_fmt(fmt) "[drm:%s:%d] " fmt, __func__, __LINE__
11 #include <linux/debugfs.h>
12 #include <linux/kthread.h>
13 #include <linux/seq_file.h>
14
15 #include <drm/drm_atomic.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_file.h>
18 #include <drm/drm_probe_helper.h>
19 #include <drm/drm_framebuffer.h>
20
21 #include "msm_drv.h"
22 #include "dpu_kms.h"
23 #include "dpu_hwio.h"
24 #include "dpu_hw_catalog.h"
25 #include "dpu_hw_intf.h"
26 #include "dpu_hw_ctl.h"
27 #include "dpu_hw_cwb.h"
28 #include "dpu_hw_dspp.h"
29 #include "dpu_hw_dsc.h"
30 #include "dpu_hw_merge3d.h"
31 #include "dpu_hw_cdm.h"
32 #include "dpu_formats.h"
33 #include "dpu_encoder_phys.h"
34 #include "dpu_crtc.h"
35 #include "dpu_trace.h"
36 #include "dpu_core_irq.h"
37 #include "disp/msm_disp_snapshot.h"
38
39 #define DPU_DEBUG_ENC(e, fmt, ...) DRM_DEBUG_ATOMIC("enc%d " fmt,\
40 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
41
42 #define DPU_ERROR_ENC(e, fmt, ...) DPU_ERROR("enc%d " fmt,\
43 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
44
45 #define DPU_ERROR_ENC_RATELIMITED(e, fmt, ...) DPU_ERROR_RATELIMITED("enc%d " fmt,\
46 (e) ? (e)->base.base.id : -1, ##__VA_ARGS__)
47
48 /*
49 * Two to anticipate panels that can do cmd/vid dynamic switching
50 * plan is to create all possible physical encoder types, and switch between
51 * them at runtime
52 */
53 #define NUM_PHYS_ENCODER_TYPES 2
54
55 #define MAX_PHYS_ENCODERS_PER_VIRTUAL \
56 (MAX_H_TILES_PER_DISPLAY * NUM_PHYS_ENCODER_TYPES)
57
58 #define MAX_CHANNELS_PER_ENC 4
59 #define MAX_CWB_PER_ENC 2
60
61 #define IDLE_SHORT_TIMEOUT 1
62
63 /* timeout in frames waiting for frame done */
64 #define DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES 5
65
66 /**
67 * enum dpu_enc_rc_events - events for resource control state machine
68 * @DPU_ENC_RC_EVENT_KICKOFF:
69 * This event happens at NORMAL priority.
70 * Event that signals the start of the transfer. When this event is
71 * received, enable MDP/DSI core clocks. Regardless of the previous
72 * state, the resource should be in ON state at the end of this event.
73 * @DPU_ENC_RC_EVENT_FRAME_DONE:
74 * This event happens at INTERRUPT level.
75 * Event signals the end of the data transfer after the PP FRAME_DONE
76 * event. At the end of this event, a delayed work is scheduled to go to
77 * IDLE_PC state after IDLE_TIMEOUT time.
78 * @DPU_ENC_RC_EVENT_PRE_STOP:
79 * This event happens at NORMAL priority.
80 * This event, when received during the ON state, leave the RC STATE
81 * in the PRE_OFF state. It should be followed by the STOP event as
82 * part of encoder disable.
83 * If received during IDLE or OFF states, it will do nothing.
84 * @DPU_ENC_RC_EVENT_STOP:
85 * This event happens at NORMAL priority.
86 * When this event is received, disable all the MDP/DSI core clocks, and
87 * disable IRQs. It should be called from the PRE_OFF or IDLE states.
88 * IDLE is expected when IDLE_PC has run, and PRE_OFF did nothing.
89 * PRE_OFF is expected when PRE_STOP was executed during the ON state.
90 * Resource state should be in OFF at the end of the event.
91 * @DPU_ENC_RC_EVENT_ENTER_IDLE:
92 * This event happens at NORMAL priority from a work item.
93 * Event signals that there were no frame updates for IDLE_TIMEOUT time.
94 * This would disable MDP/DSI core clocks and change the resource state
95 * to IDLE.
96 */
97 enum dpu_enc_rc_events {
98 DPU_ENC_RC_EVENT_KICKOFF = 1,
99 DPU_ENC_RC_EVENT_FRAME_DONE,
100 DPU_ENC_RC_EVENT_PRE_STOP,
101 DPU_ENC_RC_EVENT_STOP,
102 DPU_ENC_RC_EVENT_ENTER_IDLE
103 };
104
105 /*
106 * enum dpu_enc_rc_states - states that the resource control maintains
107 * @DPU_ENC_RC_STATE_OFF: Resource is in OFF state
108 * @DPU_ENC_RC_STATE_PRE_OFF: Resource is transitioning to OFF state
109 * @DPU_ENC_RC_STATE_ON: Resource is in ON state
110 * @DPU_ENC_RC_STATE_MODESET: Resource is in modeset state
111 * @DPU_ENC_RC_STATE_IDLE: Resource is in IDLE state
112 */
113 enum dpu_enc_rc_states {
114 DPU_ENC_RC_STATE_OFF,
115 DPU_ENC_RC_STATE_PRE_OFF,
116 DPU_ENC_RC_STATE_ON,
117 DPU_ENC_RC_STATE_IDLE
118 };
119
120 /**
121 * struct dpu_encoder_virt - virtual encoder. Container of one or more physical
122 * encoders. Virtual encoder manages one "logical" display. Physical
123 * encoders manage one intf block, tied to a specific panel/sub-panel.
124 * Virtual encoder defers as much as possible to the physical encoders.
125 * Virtual encoder registers itself with the DRM Framework as the encoder.
126 * @base: drm_encoder base class for registration with DRM
127 * @enc_spinlock: Virtual-Encoder-Wide Spin Lock for IRQ purposes
128 * @enabled: True if the encoder is active, protected by enc_lock
129 * @commit_done_timedout: True if there has been a timeout on commit after
130 * enabling the encoder.
131 * @num_phys_encs: Actual number of physical encoders contained.
132 * @phys_encs: Container of physical encoders managed.
133 * @cur_master: Pointer to the current master in this mode. Optimization
134 * Only valid after enable. Cleared as disable.
135 * @cur_slave: As above but for the slave encoder.
136 * @hw_pp: Handle to the pingpong blocks used for the display. No.
137 * pingpong blocks can be different than num_phys_encs.
138 * @hw_cwb: Handle to the CWB muxes used for concurrent writeback
139 * display. Number of CWB muxes can be different than
140 * num_phys_encs.
141 * @hw_dsc: Handle to the DSC blocks used for the display.
142 * @dsc_mask: Bitmask of used DSC blocks.
143 * @cwb_mask: Bitmask of used CWB muxes
144 * @intfs_swapped: Whether or not the phys_enc interfaces have been swapped
145 * for partial update right-only cases, such as pingpong
146 * split where virtual pingpong does not generate IRQs
147 * @crtc: Pointer to the currently assigned crtc. Normally you
148 * would use crtc->state->encoder_mask to determine the
149 * link between encoder/crtc. However in this case we need
150 * to track crtc in the disable() hook which is called
151 * _after_ encoder_mask is cleared.
152 * @connector: If a mode is set, cached pointer to the active connector
153 * @enc_lock: Lock around physical encoder
154 * create/destroy/enable/disable
155 * @frame_busy_mask: Bitmask tracking which phys_enc we are still
156 * busy processing current command.
157 * Bit0 = phys_encs[0] etc.
158 * @frame_done_timeout_ms: frame done timeout in ms
159 * @frame_done_timeout_cnt: atomic counter tracking the number of frame
160 * done timeouts
161 * @frame_done_timer: watchdog timer for frame done event
162 * @disp_info: local copy of msm_display_info struct
163 * @idle_pc_supported: indicate if idle power collaps is supported
164 * @rc_lock: resource control mutex lock to protect
165 * virt encoder over various state changes
166 * @rc_state: resource controller state
167 * @delayed_off_work: delayed worker to schedule disabling of
168 * clks and resources after IDLE_TIMEOUT time.
169 * @topology: topology of the display
170 * @idle_timeout: idle timeout duration in milliseconds
171 * @wide_bus_en: wide bus is enabled on this interface
172 * @dsc: drm_dsc_config pointer, for DSC-enabled encoders
173 */
174 struct dpu_encoder_virt {
175 struct drm_encoder base;
176 spinlock_t enc_spinlock;
177
178 bool enabled;
179 bool commit_done_timedout;
180
181 unsigned int num_phys_encs;
182 struct dpu_encoder_phys *phys_encs[MAX_PHYS_ENCODERS_PER_VIRTUAL];
183 struct dpu_encoder_phys *cur_master;
184 struct dpu_encoder_phys *cur_slave;
185 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
186 struct dpu_hw_cwb *hw_cwb[MAX_CWB_PER_ENC];
187 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
188
189 unsigned int dsc_mask;
190 unsigned int cwb_mask;
191
192 bool intfs_swapped;
193
194 struct drm_crtc *crtc;
195 struct drm_connector *connector;
196
197 struct mutex enc_lock;
198 DECLARE_BITMAP(frame_busy_mask, MAX_PHYS_ENCODERS_PER_VIRTUAL);
199
200 atomic_t frame_done_timeout_ms;
201 atomic_t frame_done_timeout_cnt;
202 struct timer_list frame_done_timer;
203
204 struct msm_display_info disp_info;
205
206 bool idle_pc_supported;
207 struct mutex rc_lock;
208 enum dpu_enc_rc_states rc_state;
209 struct delayed_work delayed_off_work;
210 struct msm_display_topology topology;
211
212 u32 idle_timeout;
213
214 bool wide_bus_en;
215
216 /* DSC configuration */
217 struct drm_dsc_config *dsc;
218 };
219
220 #define to_dpu_encoder_virt(x) container_of(x, struct dpu_encoder_virt, base)
221
222 static u32 dither_matrix[DITHER_MATRIX_SZ] = {
223 15, 7, 13, 5, 3, 11, 1, 9, 12, 4, 14, 6, 0, 8, 2, 10
224 };
225
226 /**
227 * dpu_encoder_get_drm_fmt - return DRM fourcc format
228 * @phys_enc: Pointer to physical encoder structure
229 */
dpu_encoder_get_drm_fmt(struct dpu_encoder_phys * phys_enc)230 u32 dpu_encoder_get_drm_fmt(struct dpu_encoder_phys *phys_enc)
231 {
232 struct drm_encoder *drm_enc;
233 struct dpu_encoder_virt *dpu_enc;
234 struct drm_display_info *info;
235 struct drm_display_mode *mode;
236
237 drm_enc = phys_enc->parent;
238 dpu_enc = to_dpu_encoder_virt(drm_enc);
239 info = &dpu_enc->connector->display_info;
240 mode = &phys_enc->cached_mode;
241
242 if (drm_mode_is_420_only(info, mode))
243 return DRM_FORMAT_YUV420;
244
245 return DRM_FORMAT_RGB888;
246 }
247
248 /**
249 * dpu_encoder_needs_periph_flush - return true if physical encoder requires
250 * peripheral flush
251 * @phys_enc: Pointer to physical encoder structure
252 */
dpu_encoder_needs_periph_flush(struct dpu_encoder_phys * phys_enc)253 bool dpu_encoder_needs_periph_flush(struct dpu_encoder_phys *phys_enc)
254 {
255 struct drm_encoder *drm_enc;
256 struct dpu_encoder_virt *dpu_enc;
257 struct msm_display_info *disp_info;
258 struct msm_drm_private *priv;
259 struct drm_display_mode *mode;
260
261 drm_enc = phys_enc->parent;
262 dpu_enc = to_dpu_encoder_virt(drm_enc);
263 disp_info = &dpu_enc->disp_info;
264 priv = drm_enc->dev->dev_private;
265 mode = &phys_enc->cached_mode;
266
267 return phys_enc->hw_intf->cap->type == INTF_DP &&
268 msm_dp_needs_periph_flush(priv->kms->dp[disp_info->h_tile_instance[0]], mode);
269 }
270
271 /**
272 * dpu_encoder_is_widebus_enabled - return bool value if widebus is enabled
273 * @drm_enc: Pointer to previously created drm encoder structure
274 */
dpu_encoder_is_widebus_enabled(const struct drm_encoder * drm_enc)275 bool dpu_encoder_is_widebus_enabled(const struct drm_encoder *drm_enc)
276 {
277 const struct dpu_encoder_virt *dpu_enc;
278 struct msm_drm_private *priv = drm_enc->dev->dev_private;
279 const struct msm_display_info *disp_info;
280 int index;
281
282 dpu_enc = to_dpu_encoder_virt(drm_enc);
283 disp_info = &dpu_enc->disp_info;
284 index = disp_info->h_tile_instance[0];
285
286 if (disp_info->intf_type == INTF_DP)
287 return msm_dp_wide_bus_available(priv->kms->dp[index]);
288 else if (disp_info->intf_type == INTF_DSI)
289 return msm_dsi_wide_bus_enabled(priv->kms->dsi[index]);
290
291 return false;
292 }
293
294 /**
295 * dpu_encoder_is_dsc_enabled - indicate whether dsc is enabled
296 * for the encoder.
297 * @drm_enc: Pointer to previously created drm encoder structure
298 */
dpu_encoder_is_dsc_enabled(const struct drm_encoder * drm_enc)299 bool dpu_encoder_is_dsc_enabled(const struct drm_encoder *drm_enc)
300 {
301 const struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
302
303 return dpu_enc->dsc ? true : false;
304 }
305
306 /**
307 * dpu_encoder_get_crc_values_cnt - get number of physical encoders contained
308 * in virtual encoder that can collect CRC values
309 * @drm_enc: Pointer to previously created drm encoder structure
310 * Returns: Number of physical encoders for given drm encoder
311 */
dpu_encoder_get_crc_values_cnt(const struct drm_encoder * drm_enc)312 int dpu_encoder_get_crc_values_cnt(const struct drm_encoder *drm_enc)
313 {
314 struct dpu_encoder_virt *dpu_enc;
315 int i, num_intf = 0;
316
317 dpu_enc = to_dpu_encoder_virt(drm_enc);
318
319 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
320 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
321
322 if (phys->hw_intf && phys->hw_intf->ops.setup_misr
323 && phys->hw_intf->ops.collect_misr)
324 num_intf++;
325 }
326
327 return num_intf;
328 }
329
330 /**
331 * dpu_encoder_setup_misr - enable misr calculations
332 * @drm_enc: Pointer to previously created drm encoder structure
333 */
dpu_encoder_setup_misr(const struct drm_encoder * drm_enc)334 void dpu_encoder_setup_misr(const struct drm_encoder *drm_enc)
335 {
336 struct dpu_encoder_virt *dpu_enc;
337
338 int i;
339
340 dpu_enc = to_dpu_encoder_virt(drm_enc);
341
342 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
343 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
344
345 if (!phys->hw_intf || !phys->hw_intf->ops.setup_misr)
346 continue;
347
348 phys->hw_intf->ops.setup_misr(phys->hw_intf);
349 }
350 }
351
352 /**
353 * dpu_encoder_get_crc - get the crc value from interface blocks
354 * @drm_enc: Pointer to previously created drm encoder structure
355 * @crcs: array to fill with CRC data
356 * @pos: offset into the @crcs array
357 * Returns: 0 on success, error otherwise
358 */
dpu_encoder_get_crc(const struct drm_encoder * drm_enc,u32 * crcs,int pos)359 int dpu_encoder_get_crc(const struct drm_encoder *drm_enc, u32 *crcs, int pos)
360 {
361 struct dpu_encoder_virt *dpu_enc;
362
363 int i, rc = 0, entries_added = 0;
364
365 if (!drm_enc->crtc) {
366 DRM_ERROR("no crtc found for encoder %d\n", drm_enc->index);
367 return -EINVAL;
368 }
369
370 dpu_enc = to_dpu_encoder_virt(drm_enc);
371
372 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
373 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
374
375 if (!phys->hw_intf || !phys->hw_intf->ops.collect_misr)
376 continue;
377
378 rc = phys->hw_intf->ops.collect_misr(phys->hw_intf, &crcs[pos + entries_added]);
379 if (rc)
380 return rc;
381 entries_added++;
382 }
383
384 return entries_added;
385 }
386
_dpu_encoder_setup_dither(struct dpu_hw_pingpong * hw_pp,unsigned bpc)387 static void _dpu_encoder_setup_dither(struct dpu_hw_pingpong *hw_pp, unsigned bpc)
388 {
389 struct dpu_hw_dither_cfg dither_cfg = { 0 };
390
391 if (!hw_pp->ops.setup_dither)
392 return;
393
394 switch (bpc) {
395 case 6:
396 dither_cfg.c0_bitdepth = 6;
397 dither_cfg.c1_bitdepth = 6;
398 dither_cfg.c2_bitdepth = 6;
399 dither_cfg.c3_bitdepth = 6;
400 dither_cfg.temporal_en = 0;
401 break;
402 default:
403 hw_pp->ops.setup_dither(hw_pp, NULL);
404 return;
405 }
406
407 memcpy(&dither_cfg.matrix, dither_matrix,
408 sizeof(u32) * DITHER_MATRIX_SZ);
409
410 hw_pp->ops.setup_dither(hw_pp, &dither_cfg);
411 }
412
dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)413 static char *dpu_encoder_helper_get_intf_type(enum dpu_intf_mode intf_mode)
414 {
415 switch (intf_mode) {
416 case INTF_MODE_VIDEO:
417 return "INTF_MODE_VIDEO";
418 case INTF_MODE_CMD:
419 return "INTF_MODE_CMD";
420 case INTF_MODE_WB_BLOCK:
421 return "INTF_MODE_WB_BLOCK";
422 case INTF_MODE_WB_LINE:
423 return "INTF_MODE_WB_LINE";
424 default:
425 return "INTF_MODE_UNKNOWN";
426 }
427 }
428
429 /**
430 * dpu_encoder_helper_report_irq_timeout - utility to report error that irq has
431 * timed out, including reporting frame error event to crtc and debug dump
432 * @phys_enc: Pointer to physical encoder structure
433 * @intr_idx: Failing interrupt index
434 */
dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys * phys_enc,enum dpu_intr_idx intr_idx)435 void dpu_encoder_helper_report_irq_timeout(struct dpu_encoder_phys *phys_enc,
436 enum dpu_intr_idx intr_idx)
437 {
438 DRM_ERROR("irq timeout id=%u, intf_mode=%s intf=%d wb=%d, pp=%d, intr=%d\n",
439 DRMID(phys_enc->parent),
440 dpu_encoder_helper_get_intf_type(phys_enc->intf_mode),
441 phys_enc->hw_intf ? phys_enc->hw_intf->idx - INTF_0 : -1,
442 phys_enc->hw_wb ? phys_enc->hw_wb->idx - WB_0 : -1,
443 phys_enc->hw_pp->idx - PINGPONG_0, intr_idx);
444
445 dpu_encoder_frame_done_callback(phys_enc->parent, phys_enc,
446 DPU_ENCODER_FRAME_EVENT_ERROR);
447 }
448
449 static int dpu_encoder_helper_wait_event_timeout(int32_t drm_id,
450 u32 irq_idx, struct dpu_encoder_wait_info *info);
451
452 /**
453 * dpu_encoder_helper_wait_for_irq - utility to wait on an irq.
454 * note: will call dpu_encoder_helper_wait_for_irq on timeout
455 * @phys_enc: Pointer to physical encoder structure
456 * @irq_idx: IRQ index
457 * @func: IRQ callback to be called in case of timeout
458 * @wait_info: wait info struct
459 * @return: 0 or -ERROR
460 */
dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys * phys_enc,unsigned int irq_idx,void (* func)(void * arg),struct dpu_encoder_wait_info * wait_info)461 int dpu_encoder_helper_wait_for_irq(struct dpu_encoder_phys *phys_enc,
462 unsigned int irq_idx,
463 void (*func)(void *arg),
464 struct dpu_encoder_wait_info *wait_info)
465 {
466 u32 irq_status;
467 int ret;
468
469 if (!wait_info) {
470 DPU_ERROR("invalid params\n");
471 return -EINVAL;
472 }
473 /* note: do master / slave checking outside */
474
475 /* return EWOULDBLOCK since we know the wait isn't necessary */
476 if (phys_enc->enable_state == DPU_ENC_DISABLED) {
477 DRM_ERROR("encoder is disabled id=%u, callback=%ps, IRQ=[%d, %d]\n",
478 DRMID(phys_enc->parent), func,
479 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx));
480 return -EWOULDBLOCK;
481 }
482
483 if (irq_idx == 0) {
484 DRM_DEBUG_KMS("skip irq wait id=%u, callback=%ps\n",
485 DRMID(phys_enc->parent), func);
486 return 0;
487 }
488
489 DRM_DEBUG_KMS("id=%u, callback=%ps, IRQ=[%d, %d], pp=%d, pending_cnt=%d\n",
490 DRMID(phys_enc->parent), func,
491 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx), phys_enc->hw_pp->idx - PINGPONG_0,
492 atomic_read(wait_info->atomic_cnt));
493
494 ret = dpu_encoder_helper_wait_event_timeout(
495 DRMID(phys_enc->parent),
496 irq_idx,
497 wait_info);
498
499 if (ret <= 0) {
500 irq_status = dpu_core_irq_read(phys_enc->dpu_kms, irq_idx);
501 if (irq_status) {
502 unsigned long flags;
503
504 DRM_DEBUG_KMS("IRQ=[%d, %d] not triggered id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
505 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
506 DRMID(phys_enc->parent), func,
507 phys_enc->hw_pp->idx - PINGPONG_0,
508 atomic_read(wait_info->atomic_cnt));
509 local_irq_save(flags);
510 func(phys_enc);
511 local_irq_restore(flags);
512 ret = 0;
513 } else {
514 ret = -ETIMEDOUT;
515 DRM_DEBUG_KMS("IRQ=[%d, %d] timeout id=%u, callback=%ps, pp=%d, atomic_cnt=%d\n",
516 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
517 DRMID(phys_enc->parent), func,
518 phys_enc->hw_pp->idx - PINGPONG_0,
519 atomic_read(wait_info->atomic_cnt));
520 }
521 } else {
522 ret = 0;
523 trace_dpu_enc_irq_wait_success(DRMID(phys_enc->parent),
524 func, DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
525 phys_enc->hw_pp->idx - PINGPONG_0,
526 atomic_read(wait_info->atomic_cnt));
527 }
528
529 return ret;
530 }
531
532 /**
533 * dpu_encoder_get_vsync_count - get vsync count for the encoder.
534 * @drm_enc: Pointer to previously created drm encoder structure
535 */
dpu_encoder_get_vsync_count(struct drm_encoder * drm_enc)536 int dpu_encoder_get_vsync_count(struct drm_encoder *drm_enc)
537 {
538 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
539 struct dpu_encoder_phys *phys = dpu_enc ? dpu_enc->cur_master : NULL;
540 return phys ? atomic_read(&phys->vsync_cnt) : 0;
541 }
542
543 /**
544 * dpu_encoder_get_linecount - get interface line count for the encoder.
545 * @drm_enc: Pointer to previously created drm encoder structure
546 */
dpu_encoder_get_linecount(struct drm_encoder * drm_enc)547 int dpu_encoder_get_linecount(struct drm_encoder *drm_enc)
548 {
549 struct dpu_encoder_virt *dpu_enc;
550 struct dpu_encoder_phys *phys;
551 int linecount = 0;
552
553 dpu_enc = to_dpu_encoder_virt(drm_enc);
554 phys = dpu_enc ? dpu_enc->cur_master : NULL;
555
556 if (phys && phys->ops.get_line_count)
557 linecount = phys->ops.get_line_count(phys);
558
559 return linecount;
560 }
561
562 /**
563 * dpu_encoder_helper_split_config - split display configuration helper function
564 * This helper function may be used by physical encoders to configure
565 * the split display related registers.
566 * @phys_enc: Pointer to physical encoder structure
567 * @interface: enum dpu_intf setting
568 */
dpu_encoder_helper_split_config(struct dpu_encoder_phys * phys_enc,enum dpu_intf interface)569 void dpu_encoder_helper_split_config(
570 struct dpu_encoder_phys *phys_enc,
571 enum dpu_intf interface)
572 {
573 struct dpu_encoder_virt *dpu_enc;
574 struct split_pipe_cfg cfg = { 0 };
575 struct dpu_hw_mdp *hw_mdptop;
576 struct msm_display_info *disp_info;
577
578 if (!phys_enc->hw_mdptop || !phys_enc->parent) {
579 DPU_ERROR("invalid arg(s), encoder %d\n", phys_enc != NULL);
580 return;
581 }
582
583 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
584 hw_mdptop = phys_enc->hw_mdptop;
585 disp_info = &dpu_enc->disp_info;
586
587 if (disp_info->intf_type != INTF_DSI)
588 return;
589
590 /**
591 * disable split modes since encoder will be operating in as the only
592 * encoder, either for the entire use case in the case of, for example,
593 * single DSI, or for this frame in the case of left/right only partial
594 * update.
595 */
596 if (phys_enc->split_role == ENC_ROLE_SOLO) {
597 if (hw_mdptop->ops.setup_split_pipe)
598 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
599 return;
600 }
601
602 cfg.en = true;
603 cfg.mode = phys_enc->intf_mode;
604 cfg.intf = interface;
605
606 if (cfg.en && phys_enc->ops.needs_single_flush &&
607 phys_enc->ops.needs_single_flush(phys_enc))
608 cfg.split_flush_en = true;
609
610 if (phys_enc->split_role == ENC_ROLE_MASTER) {
611 DPU_DEBUG_ENC(dpu_enc, "enable %d\n", cfg.en);
612
613 if (hw_mdptop->ops.setup_split_pipe)
614 hw_mdptop->ops.setup_split_pipe(hw_mdptop, &cfg);
615 }
616 }
617
618 /**
619 * dpu_encoder_use_dsc_merge - returns true if the encoder uses DSC merge topology.
620 * @drm_enc: Pointer to previously created drm encoder structure
621 */
dpu_encoder_use_dsc_merge(struct drm_encoder * drm_enc)622 bool dpu_encoder_use_dsc_merge(struct drm_encoder *drm_enc)
623 {
624 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
625 int i, intf_count = 0, num_dsc = 0;
626
627 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
628 if (dpu_enc->phys_encs[i])
629 intf_count++;
630
631 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
632 if (dpu_enc->hw_dsc[i])
633 num_dsc++;
634
635 return (num_dsc > 0) && (num_dsc > intf_count);
636 }
637
638 /**
639 * dpu_encoder_get_dsc_config - get DSC config for the DPU encoder
640 * This helper function is used by physical encoder to get DSC config
641 * used for this encoder.
642 * @drm_enc: Pointer to encoder structure
643 */
dpu_encoder_get_dsc_config(struct drm_encoder * drm_enc)644 struct drm_dsc_config *dpu_encoder_get_dsc_config(struct drm_encoder *drm_enc)
645 {
646 struct msm_drm_private *priv = drm_enc->dev->dev_private;
647 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
648 int index = dpu_enc->disp_info.h_tile_instance[0];
649
650 if (dpu_enc->disp_info.intf_type == INTF_DSI)
651 return msm_dsi_get_dsc_config(priv->kms->dsi[index]);
652
653 return NULL;
654 }
655
dpu_encoder_update_topology(struct drm_encoder * drm_enc,struct msm_display_topology * topology,struct drm_atomic_state * state,const struct drm_display_mode * adj_mode)656 void dpu_encoder_update_topology(struct drm_encoder *drm_enc,
657 struct msm_display_topology *topology,
658 struct drm_atomic_state *state,
659 const struct drm_display_mode *adj_mode)
660 {
661 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
662 struct msm_drm_private *priv = dpu_enc->base.dev->dev_private;
663 struct msm_display_info *disp_info = &dpu_enc->disp_info;
664 struct drm_connector *connector;
665 struct drm_connector_state *conn_state;
666 struct drm_framebuffer *fb;
667 struct drm_dsc_config *dsc;
668
669 int i;
670
671 for (i = 0; i < MAX_PHYS_ENCODERS_PER_VIRTUAL; i++)
672 if (dpu_enc->phys_encs[i])
673 topology->num_intf++;
674
675 dsc = dpu_encoder_get_dsc_config(drm_enc);
676
677 /*
678 * Set DSC number as 1 to mark the enabled status, will be adjusted
679 * in dpu_crtc_get_topology()
680 */
681 if (dsc)
682 topology->num_dsc = 1;
683
684 connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
685 if (!connector)
686 return;
687 conn_state = drm_atomic_get_new_connector_state(state, connector);
688 if (!conn_state)
689 return;
690
691 /*
692 * Use CDM only for writeback or DP at the moment as other interfaces cannot handle it.
693 * If writeback itself cannot handle cdm for some reason it will fail in its atomic_check()
694 * earlier.
695 */
696 if (disp_info->intf_type == INTF_WB && conn_state->writeback_job) {
697 fb = conn_state->writeback_job->fb;
698
699 if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb)))
700 topology->num_cdm++;
701 } else if (disp_info->intf_type == INTF_DP) {
702 if (msm_dp_is_yuv_420_enabled(priv->kms->dp[disp_info->h_tile_instance[0]],
703 adj_mode))
704 topology->num_cdm++;
705 }
706 }
707
dpu_encoder_needs_modeset(struct drm_encoder * drm_enc,struct drm_atomic_state * state)708 bool dpu_encoder_needs_modeset(struct drm_encoder *drm_enc, struct drm_atomic_state *state)
709 {
710 struct drm_connector *connector;
711 struct drm_connector_state *conn_state;
712 struct drm_framebuffer *fb;
713 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
714
715 if (!drm_enc || !state)
716 return false;
717
718 connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
719 if (!connector)
720 return false;
721
722 conn_state = drm_atomic_get_new_connector_state(state, connector);
723 if (!conn_state)
724 return false;
725
726 /**
727 * These checks are duplicated from dpu_encoder_update_topology() since
728 * CRTC and encoder don't hold topology information
729 */
730 if (dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) {
731 fb = conn_state->writeback_job->fb;
732 if (fb && MSM_FORMAT_IS_YUV(msm_framebuffer_format(fb))) {
733 if (!dpu_enc->cur_master->hw_cdm)
734 return true;
735 } else {
736 if (dpu_enc->cur_master->hw_cdm)
737 return true;
738 }
739 }
740
741 return false;
742 }
743
_dpu_encoder_update_vsync_source(struct dpu_encoder_virt * dpu_enc,struct msm_display_info * disp_info)744 static void _dpu_encoder_update_vsync_source(struct dpu_encoder_virt *dpu_enc,
745 struct msm_display_info *disp_info)
746 {
747 struct dpu_vsync_source_cfg vsync_cfg = { 0 };
748 struct msm_drm_private *priv;
749 struct dpu_kms *dpu_kms;
750 struct dpu_hw_mdp *hw_mdptop;
751 struct drm_encoder *drm_enc;
752 struct dpu_encoder_phys *phys_enc;
753 int i;
754
755 if (!dpu_enc || !disp_info) {
756 DPU_ERROR("invalid param dpu_enc:%d or disp_info:%d\n",
757 dpu_enc != NULL, disp_info != NULL);
758 return;
759 } else if (dpu_enc->num_phys_encs > ARRAY_SIZE(dpu_enc->hw_pp)) {
760 DPU_ERROR("invalid num phys enc %d/%d\n",
761 dpu_enc->num_phys_encs,
762 (int) ARRAY_SIZE(dpu_enc->hw_pp));
763 return;
764 }
765
766 drm_enc = &dpu_enc->base;
767 /* this pointers are checked in virt_enable_helper */
768 priv = drm_enc->dev->dev_private;
769
770 dpu_kms = to_dpu_kms(priv->kms);
771 hw_mdptop = dpu_kms->hw_mdp;
772 if (!hw_mdptop) {
773 DPU_ERROR("invalid mdptop\n");
774 return;
775 }
776
777 if (hw_mdptop->ops.setup_vsync_source) {
778 for (i = 0; i < dpu_enc->num_phys_encs; i++)
779 vsync_cfg.ppnumber[i] = dpu_enc->hw_pp[i]->idx;
780
781 vsync_cfg.pp_count = dpu_enc->num_phys_encs;
782 vsync_cfg.frame_rate = drm_mode_vrefresh(&dpu_enc->base.crtc->state->adjusted_mode);
783
784 vsync_cfg.vsync_source = disp_info->vsync_source;
785
786 hw_mdptop->ops.setup_vsync_source(hw_mdptop, &vsync_cfg);
787
788 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
789 phys_enc = dpu_enc->phys_encs[i];
790
791 if (phys_enc->has_intf_te && phys_enc->hw_intf->ops.vsync_sel)
792 phys_enc->hw_intf->ops.vsync_sel(phys_enc->hw_intf,
793 vsync_cfg.vsync_source);
794 }
795 }
796 }
797
_dpu_encoder_irq_enable(struct drm_encoder * drm_enc)798 static void _dpu_encoder_irq_enable(struct drm_encoder *drm_enc)
799 {
800 struct dpu_encoder_virt *dpu_enc;
801 int i;
802
803 if (!drm_enc) {
804 DPU_ERROR("invalid encoder\n");
805 return;
806 }
807
808 dpu_enc = to_dpu_encoder_virt(drm_enc);
809
810 DPU_DEBUG_ENC(dpu_enc, "\n");
811 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
812 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
813
814 phys->ops.irq_enable(phys);
815 }
816 }
817
_dpu_encoder_irq_disable(struct drm_encoder * drm_enc)818 static void _dpu_encoder_irq_disable(struct drm_encoder *drm_enc)
819 {
820 struct dpu_encoder_virt *dpu_enc;
821 int i;
822
823 if (!drm_enc) {
824 DPU_ERROR("invalid encoder\n");
825 return;
826 }
827
828 dpu_enc = to_dpu_encoder_virt(drm_enc);
829
830 DPU_DEBUG_ENC(dpu_enc, "\n");
831 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
832 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
833
834 phys->ops.irq_disable(phys);
835 }
836 }
837
_dpu_encoder_resource_enable(struct drm_encoder * drm_enc)838 static void _dpu_encoder_resource_enable(struct drm_encoder *drm_enc)
839 {
840 struct msm_drm_private *priv;
841 struct dpu_kms *dpu_kms;
842 struct dpu_encoder_virt *dpu_enc;
843
844 dpu_enc = to_dpu_encoder_virt(drm_enc);
845 priv = drm_enc->dev->dev_private;
846 dpu_kms = to_dpu_kms(priv->kms);
847
848 trace_dpu_enc_rc_enable(DRMID(drm_enc));
849
850 if (!dpu_enc->cur_master) {
851 DPU_ERROR("encoder master not set\n");
852 return;
853 }
854
855 /* enable DPU core clks */
856 pm_runtime_get_sync(&dpu_kms->pdev->dev);
857
858 /* enable all the irq */
859 _dpu_encoder_irq_enable(drm_enc);
860 }
861
_dpu_encoder_resource_disable(struct drm_encoder * drm_enc)862 static void _dpu_encoder_resource_disable(struct drm_encoder *drm_enc)
863 {
864 struct msm_drm_private *priv;
865 struct dpu_kms *dpu_kms;
866 struct dpu_encoder_virt *dpu_enc;
867
868 dpu_enc = to_dpu_encoder_virt(drm_enc);
869 priv = drm_enc->dev->dev_private;
870 dpu_kms = to_dpu_kms(priv->kms);
871
872 trace_dpu_enc_rc_disable(DRMID(drm_enc));
873
874 if (!dpu_enc->cur_master) {
875 DPU_ERROR("encoder master not set\n");
876 return;
877 }
878
879 /* disable all the irq */
880 _dpu_encoder_irq_disable(drm_enc);
881
882 /* disable DPU core clks */
883 pm_runtime_put_sync(&dpu_kms->pdev->dev);
884 }
885
dpu_encoder_resource_control(struct drm_encoder * drm_enc,u32 sw_event)886 static int dpu_encoder_resource_control(struct drm_encoder *drm_enc,
887 u32 sw_event)
888 {
889 struct dpu_encoder_virt *dpu_enc;
890 struct msm_drm_private *priv;
891 bool is_vid_mode = false;
892
893 if (!drm_enc || !drm_enc->dev || !drm_enc->crtc) {
894 DPU_ERROR("invalid parameters\n");
895 return -EINVAL;
896 }
897 dpu_enc = to_dpu_encoder_virt(drm_enc);
898 priv = drm_enc->dev->dev_private;
899 is_vid_mode = !dpu_enc->disp_info.is_cmd_mode;
900
901 /*
902 * when idle_pc is not supported, process only KICKOFF, STOP and MODESET
903 * events and return early for other events (ie wb display).
904 */
905 if (!dpu_enc->idle_pc_supported &&
906 (sw_event != DPU_ENC_RC_EVENT_KICKOFF &&
907 sw_event != DPU_ENC_RC_EVENT_STOP &&
908 sw_event != DPU_ENC_RC_EVENT_PRE_STOP))
909 return 0;
910
911 trace_dpu_enc_rc(DRMID(drm_enc), sw_event, dpu_enc->idle_pc_supported,
912 dpu_enc->rc_state, "begin");
913
914 switch (sw_event) {
915 case DPU_ENC_RC_EVENT_KICKOFF:
916 /* cancel delayed off work, if any */
917 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
918 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
919 sw_event);
920
921 mutex_lock(&dpu_enc->rc_lock);
922
923 /* return if the resource control is already in ON state */
924 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
925 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in ON state\n",
926 DRMID(drm_enc), sw_event);
927 mutex_unlock(&dpu_enc->rc_lock);
928 return 0;
929 } else if (dpu_enc->rc_state != DPU_ENC_RC_STATE_OFF &&
930 dpu_enc->rc_state != DPU_ENC_RC_STATE_IDLE) {
931 DRM_DEBUG_ATOMIC("id;%u, sw_event:%d, rc in state %d\n",
932 DRMID(drm_enc), sw_event,
933 dpu_enc->rc_state);
934 mutex_unlock(&dpu_enc->rc_lock);
935 return -EINVAL;
936 }
937
938 if (is_vid_mode && dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE)
939 _dpu_encoder_irq_enable(drm_enc);
940 else
941 _dpu_encoder_resource_enable(drm_enc);
942
943 dpu_enc->rc_state = DPU_ENC_RC_STATE_ON;
944
945 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
946 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
947 "kickoff");
948
949 mutex_unlock(&dpu_enc->rc_lock);
950 break;
951
952 case DPU_ENC_RC_EVENT_FRAME_DONE:
953 /*
954 * mutex lock is not used as this event happens at interrupt
955 * context. And locking is not required as, the other events
956 * like KICKOFF and STOP does a wait-for-idle before executing
957 * the resource_control
958 */
959 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
960 DRM_DEBUG_KMS("id:%d, sw_event:%d,rc:%d-unexpected\n",
961 DRMID(drm_enc), sw_event,
962 dpu_enc->rc_state);
963 return -EINVAL;
964 }
965
966 /*
967 * schedule off work item only when there are no
968 * frames pending
969 */
970 if (dpu_crtc_frame_pending(drm_enc->crtc) > 1) {
971 DRM_DEBUG_KMS("id:%d skip schedule work\n",
972 DRMID(drm_enc));
973 return 0;
974 }
975
976 queue_delayed_work(priv->kms->wq, &dpu_enc->delayed_off_work,
977 msecs_to_jiffies(dpu_enc->idle_timeout));
978
979 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
980 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
981 "frame done");
982 break;
983
984 case DPU_ENC_RC_EVENT_PRE_STOP:
985 /* cancel delayed off work, if any */
986 if (cancel_delayed_work_sync(&dpu_enc->delayed_off_work))
987 DPU_DEBUG_ENC(dpu_enc, "sw_event:%d, work cancelled\n",
988 sw_event);
989
990 mutex_lock(&dpu_enc->rc_lock);
991
992 if (is_vid_mode &&
993 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
994 _dpu_encoder_irq_enable(drm_enc);
995 }
996 /* skip if is already OFF or IDLE, resources are off already */
997 else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF ||
998 dpu_enc->rc_state == DPU_ENC_RC_STATE_IDLE) {
999 DRM_DEBUG_KMS("id:%u, sw_event:%d, rc in %d state\n",
1000 DRMID(drm_enc), sw_event,
1001 dpu_enc->rc_state);
1002 mutex_unlock(&dpu_enc->rc_lock);
1003 return 0;
1004 }
1005
1006 dpu_enc->rc_state = DPU_ENC_RC_STATE_PRE_OFF;
1007
1008 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1009 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1010 "pre stop");
1011
1012 mutex_unlock(&dpu_enc->rc_lock);
1013 break;
1014
1015 case DPU_ENC_RC_EVENT_STOP:
1016 mutex_lock(&dpu_enc->rc_lock);
1017
1018 /* return if the resource control is already in OFF state */
1019 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_OFF) {
1020 DRM_DEBUG_KMS("id: %u, sw_event:%d, rc in OFF state\n",
1021 DRMID(drm_enc), sw_event);
1022 mutex_unlock(&dpu_enc->rc_lock);
1023 return 0;
1024 } else if (dpu_enc->rc_state == DPU_ENC_RC_STATE_ON) {
1025 DRM_ERROR("id: %u, sw_event:%d, rc in state %d\n",
1026 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1027 mutex_unlock(&dpu_enc->rc_lock);
1028 return -EINVAL;
1029 }
1030
1031 /**
1032 * expect to arrive here only if in either idle state or pre-off
1033 * and in IDLE state the resources are already disabled
1034 */
1035 if (dpu_enc->rc_state == DPU_ENC_RC_STATE_PRE_OFF)
1036 _dpu_encoder_resource_disable(drm_enc);
1037
1038 dpu_enc->rc_state = DPU_ENC_RC_STATE_OFF;
1039
1040 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1041 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1042 "stop");
1043
1044 mutex_unlock(&dpu_enc->rc_lock);
1045 break;
1046
1047 case DPU_ENC_RC_EVENT_ENTER_IDLE:
1048 mutex_lock(&dpu_enc->rc_lock);
1049
1050 if (dpu_enc->rc_state != DPU_ENC_RC_STATE_ON) {
1051 DRM_ERROR("id: %u, sw_event:%d, rc:%d !ON state\n",
1052 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1053 mutex_unlock(&dpu_enc->rc_lock);
1054 return 0;
1055 }
1056
1057 /*
1058 * if we are in ON but a frame was just kicked off,
1059 * ignore the IDLE event, it's probably a stale timer event
1060 */
1061 if (dpu_enc->frame_busy_mask[0]) {
1062 DRM_ERROR("id:%u, sw_event:%d, rc:%d frame pending\n",
1063 DRMID(drm_enc), sw_event, dpu_enc->rc_state);
1064 mutex_unlock(&dpu_enc->rc_lock);
1065 return 0;
1066 }
1067
1068 if (is_vid_mode)
1069 _dpu_encoder_irq_disable(drm_enc);
1070 else
1071 _dpu_encoder_resource_disable(drm_enc);
1072
1073 dpu_enc->rc_state = DPU_ENC_RC_STATE_IDLE;
1074
1075 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1076 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1077 "idle");
1078
1079 mutex_unlock(&dpu_enc->rc_lock);
1080 break;
1081
1082 default:
1083 DRM_ERROR("id:%u, unexpected sw_event: %d\n", DRMID(drm_enc),
1084 sw_event);
1085 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1086 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1087 "error");
1088 break;
1089 }
1090
1091 trace_dpu_enc_rc(DRMID(drm_enc), sw_event,
1092 dpu_enc->idle_pc_supported, dpu_enc->rc_state,
1093 "end");
1094 return 0;
1095 }
1096
1097 /**
1098 * dpu_encoder_prepare_wb_job - prepare writeback job for the encoder.
1099 * @drm_enc: Pointer to previously created drm encoder structure
1100 * @job: Pointer to the current drm writeback job
1101 */
dpu_encoder_prepare_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1102 void dpu_encoder_prepare_wb_job(struct drm_encoder *drm_enc,
1103 struct drm_writeback_job *job)
1104 {
1105 struct dpu_encoder_virt *dpu_enc;
1106 int i;
1107
1108 dpu_enc = to_dpu_encoder_virt(drm_enc);
1109
1110 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1111 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1112
1113 if (phys->ops.prepare_wb_job)
1114 phys->ops.prepare_wb_job(phys, job);
1115
1116 }
1117 }
1118
1119 /**
1120 * dpu_encoder_cleanup_wb_job - cleanup writeback job for the encoder.
1121 * @drm_enc: Pointer to previously created drm encoder structure
1122 * @job: Pointer to the current drm writeback job
1123 */
dpu_encoder_cleanup_wb_job(struct drm_encoder * drm_enc,struct drm_writeback_job * job)1124 void dpu_encoder_cleanup_wb_job(struct drm_encoder *drm_enc,
1125 struct drm_writeback_job *job)
1126 {
1127 struct dpu_encoder_virt *dpu_enc;
1128 int i;
1129
1130 dpu_enc = to_dpu_encoder_virt(drm_enc);
1131
1132 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1133 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1134
1135 if (phys->ops.cleanup_wb_job)
1136 phys->ops.cleanup_wb_job(phys, job);
1137
1138 }
1139 }
1140
dpu_encoder_virt_atomic_mode_set(struct drm_encoder * drm_enc,struct drm_crtc_state * crtc_state,struct drm_connector_state * conn_state)1141 static void dpu_encoder_virt_atomic_mode_set(struct drm_encoder *drm_enc,
1142 struct drm_crtc_state *crtc_state,
1143 struct drm_connector_state *conn_state)
1144 {
1145 struct dpu_encoder_virt *dpu_enc;
1146 struct msm_drm_private *priv;
1147 struct dpu_kms *dpu_kms;
1148 struct dpu_global_state *global_state;
1149 struct dpu_hw_blk *hw_pp[MAX_CHANNELS_PER_ENC];
1150 struct dpu_hw_blk *hw_ctl[MAX_CHANNELS_PER_ENC];
1151 struct dpu_hw_blk *hw_dsc[MAX_CHANNELS_PER_ENC];
1152 struct dpu_hw_blk *hw_cwb[MAX_CHANNELS_PER_ENC];
1153 int num_ctl, num_pp, num_dsc, num_pp_per_intf;
1154 int num_cwb = 0;
1155 bool is_cwb_encoder;
1156 unsigned int dsc_mask = 0;
1157 unsigned int cwb_mask = 0;
1158 int i;
1159
1160 if (!drm_enc) {
1161 DPU_ERROR("invalid encoder\n");
1162 return;
1163 }
1164
1165 dpu_enc = to_dpu_encoder_virt(drm_enc);
1166 DPU_DEBUG_ENC(dpu_enc, "\n");
1167
1168 priv = drm_enc->dev->dev_private;
1169 dpu_kms = to_dpu_kms(priv->kms);
1170 is_cwb_encoder = drm_crtc_in_clone_mode(crtc_state) &&
1171 dpu_enc->disp_info.intf_type == INTF_WB;
1172
1173 global_state = dpu_kms_get_existing_global_state(dpu_kms);
1174 if (IS_ERR_OR_NULL(global_state)) {
1175 DPU_ERROR("Failed to get global state");
1176 return;
1177 }
1178
1179 trace_dpu_enc_mode_set(DRMID(drm_enc));
1180
1181 /* Query resource that have been reserved in atomic check step. */
1182 if (is_cwb_encoder) {
1183 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1184 drm_enc->crtc,
1185 DPU_HW_BLK_DCWB_PINGPONG,
1186 hw_pp, ARRAY_SIZE(hw_pp));
1187 num_cwb = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1188 drm_enc->crtc,
1189 DPU_HW_BLK_CWB,
1190 hw_cwb, ARRAY_SIZE(hw_cwb));
1191 } else {
1192 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1193 drm_enc->crtc,
1194 DPU_HW_BLK_PINGPONG, hw_pp,
1195 ARRAY_SIZE(hw_pp));
1196 }
1197
1198 for (i = 0; i < num_cwb; i++) {
1199 dpu_enc->hw_cwb[i] = to_dpu_hw_cwb(hw_cwb[i]);
1200 cwb_mask |= BIT(dpu_enc->hw_cwb[i]->idx - CWB_0);
1201 }
1202
1203 dpu_enc->cwb_mask = cwb_mask;
1204
1205 num_ctl = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1206 drm_enc->crtc, DPU_HW_BLK_CTL, hw_ctl, ARRAY_SIZE(hw_ctl));
1207
1208 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++)
1209 dpu_enc->hw_pp[i] = i < num_pp ? to_dpu_hw_pingpong(hw_pp[i])
1210 : NULL;
1211
1212 num_dsc = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1213 drm_enc->crtc, DPU_HW_BLK_DSC,
1214 hw_dsc, ARRAY_SIZE(hw_dsc));
1215 for (i = 0; i < num_dsc; i++) {
1216 dpu_enc->hw_dsc[i] = to_dpu_hw_dsc(hw_dsc[i]);
1217 dsc_mask |= BIT(dpu_enc->hw_dsc[i]->idx - DSC_0);
1218 }
1219
1220 dpu_enc->dsc_mask = dsc_mask;
1221
1222 if ((dpu_enc->disp_info.intf_type == INTF_WB && conn_state->writeback_job) ||
1223 dpu_enc->disp_info.intf_type == INTF_DP) {
1224 struct dpu_hw_blk *hw_cdm = NULL;
1225
1226 dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
1227 drm_enc->crtc, DPU_HW_BLK_CDM,
1228 &hw_cdm, 1);
1229 dpu_enc->cur_master->hw_cdm = hw_cdm ? to_dpu_hw_cdm(hw_cdm) : NULL;
1230 }
1231
1232 /*
1233 * There may be 4 PP and 2 INTF for quad pipe case, so INTF is not
1234 * mapped to PP 1:1. Let's calculate the stride with pipe/INTF
1235 */
1236 num_pp_per_intf = num_pp / dpu_enc->num_phys_encs;
1237
1238 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1239 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1240
1241 phys->hw_pp = dpu_enc->hw_pp[num_pp_per_intf * i];
1242 if (!phys->hw_pp) {
1243 DPU_ERROR_ENC(dpu_enc,
1244 "no pp block assigned at idx: %d\n", i);
1245 return;
1246 }
1247
1248 /* Use first (and only) CTL if active CTLs are supported */
1249 if (num_ctl == 1)
1250 phys->hw_ctl = to_dpu_hw_ctl(hw_ctl[0]);
1251 else
1252 phys->hw_ctl = i < num_ctl ? to_dpu_hw_ctl(hw_ctl[i]) : NULL;
1253 if (!phys->hw_ctl) {
1254 DPU_ERROR_ENC(dpu_enc,
1255 "no ctl block assigned at idx: %d\n", i);
1256 return;
1257 }
1258
1259 phys->cached_mode = crtc_state->adjusted_mode;
1260 if (phys->ops.atomic_mode_set)
1261 phys->ops.atomic_mode_set(phys, crtc_state, conn_state);
1262 }
1263 }
1264
_dpu_encoder_virt_enable_helper(struct drm_encoder * drm_enc)1265 static void _dpu_encoder_virt_enable_helper(struct drm_encoder *drm_enc)
1266 {
1267 struct dpu_encoder_virt *dpu_enc = NULL;
1268 int i;
1269
1270 if (!drm_enc || !drm_enc->dev) {
1271 DPU_ERROR("invalid parameters\n");
1272 return;
1273 }
1274
1275 dpu_enc = to_dpu_encoder_virt(drm_enc);
1276 if (!dpu_enc || !dpu_enc->cur_master) {
1277 DPU_ERROR("invalid dpu encoder/master\n");
1278 return;
1279 }
1280
1281
1282 if (dpu_enc->disp_info.intf_type == INTF_DP &&
1283 dpu_enc->cur_master->hw_mdptop &&
1284 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select)
1285 dpu_enc->cur_master->hw_mdptop->ops.intf_audio_select(
1286 dpu_enc->cur_master->hw_mdptop);
1287
1288 if (dpu_enc->disp_info.is_cmd_mode)
1289 _dpu_encoder_update_vsync_source(dpu_enc, &dpu_enc->disp_info);
1290
1291 if (dpu_enc->disp_info.intf_type == INTF_DSI &&
1292 !WARN_ON(dpu_enc->num_phys_encs == 0)) {
1293 unsigned bpc = dpu_enc->connector->display_info.bpc;
1294 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
1295 if (!dpu_enc->hw_pp[i])
1296 continue;
1297 _dpu_encoder_setup_dither(dpu_enc->hw_pp[i], bpc);
1298 }
1299 }
1300 }
1301
1302 /**
1303 * dpu_encoder_virt_runtime_resume - pm runtime resume the encoder configs
1304 * @drm_enc: encoder pointer
1305 */
dpu_encoder_virt_runtime_resume(struct drm_encoder * drm_enc)1306 void dpu_encoder_virt_runtime_resume(struct drm_encoder *drm_enc)
1307 {
1308 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1309
1310 mutex_lock(&dpu_enc->enc_lock);
1311
1312 if (!dpu_enc->enabled)
1313 goto out;
1314
1315 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.restore)
1316 dpu_enc->cur_slave->ops.restore(dpu_enc->cur_slave);
1317 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.restore)
1318 dpu_enc->cur_master->ops.restore(dpu_enc->cur_master);
1319
1320 _dpu_encoder_virt_enable_helper(drm_enc);
1321
1322 out:
1323 mutex_unlock(&dpu_enc->enc_lock);
1324 }
1325
dpu_encoder_virt_atomic_enable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1326 static void dpu_encoder_virt_atomic_enable(struct drm_encoder *drm_enc,
1327 struct drm_atomic_state *state)
1328 {
1329 struct dpu_encoder_virt *dpu_enc = NULL;
1330 int ret = 0;
1331 struct drm_display_mode *cur_mode = NULL;
1332
1333 dpu_enc = to_dpu_encoder_virt(drm_enc);
1334 dpu_enc->dsc = dpu_encoder_get_dsc_config(drm_enc);
1335
1336 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
1337
1338 mutex_lock(&dpu_enc->enc_lock);
1339
1340 dpu_enc->commit_done_timedout = false;
1341
1342 dpu_enc->connector = drm_atomic_get_new_connector_for_encoder(state, drm_enc);
1343
1344 cur_mode = &dpu_enc->base.crtc->state->adjusted_mode;
1345
1346 dpu_enc->wide_bus_en = dpu_encoder_is_widebus_enabled(drm_enc);
1347
1348 trace_dpu_enc_enable(DRMID(drm_enc), cur_mode->hdisplay,
1349 cur_mode->vdisplay);
1350
1351 /* always enable slave encoder before master */
1352 if (dpu_enc->cur_slave && dpu_enc->cur_slave->ops.enable)
1353 dpu_enc->cur_slave->ops.enable(dpu_enc->cur_slave);
1354
1355 if (dpu_enc->cur_master && dpu_enc->cur_master->ops.enable)
1356 dpu_enc->cur_master->ops.enable(dpu_enc->cur_master);
1357
1358 ret = dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
1359 if (ret) {
1360 DPU_ERROR_ENC(dpu_enc, "dpu resource control failed: %d\n",
1361 ret);
1362 goto out;
1363 }
1364
1365 _dpu_encoder_virt_enable_helper(drm_enc);
1366
1367 dpu_enc->enabled = true;
1368
1369 out:
1370 mutex_unlock(&dpu_enc->enc_lock);
1371 }
1372
dpu_encoder_virt_atomic_disable(struct drm_encoder * drm_enc,struct drm_atomic_state * state)1373 static void dpu_encoder_virt_atomic_disable(struct drm_encoder *drm_enc,
1374 struct drm_atomic_state *state)
1375 {
1376 struct dpu_encoder_virt *dpu_enc = NULL;
1377 struct drm_crtc *crtc;
1378 struct drm_crtc_state *old_state = NULL;
1379 int i = 0;
1380
1381 dpu_enc = to_dpu_encoder_virt(drm_enc);
1382 DPU_DEBUG_ENC(dpu_enc, "\n");
1383
1384 crtc = drm_atomic_get_old_crtc_for_encoder(state, drm_enc);
1385 if (crtc)
1386 old_state = drm_atomic_get_old_crtc_state(state, crtc);
1387
1388 /*
1389 * The encoder is already disabled if self refresh mode was set earlier,
1390 * in the old_state for the corresponding crtc.
1391 */
1392 if (old_state && old_state->self_refresh_active)
1393 return;
1394
1395 mutex_lock(&dpu_enc->enc_lock);
1396 dpu_enc->enabled = false;
1397
1398 trace_dpu_enc_disable(DRMID(drm_enc));
1399
1400 /* wait for idle */
1401 dpu_encoder_wait_for_tx_complete(drm_enc);
1402
1403 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_PRE_STOP);
1404
1405 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1406 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1407
1408 if (phys->ops.disable)
1409 phys->ops.disable(phys);
1410 }
1411
1412
1413 /* after phys waits for frame-done, should be no more frames pending */
1414 if (atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
1415 DPU_ERROR("enc%d timeout pending\n", drm_enc->base.id);
1416 timer_delete_sync(&dpu_enc->frame_done_timer);
1417 }
1418
1419 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_STOP);
1420
1421 dpu_enc->connector = NULL;
1422
1423 DPU_DEBUG_ENC(dpu_enc, "encoder disabled\n");
1424
1425 mutex_unlock(&dpu_enc->enc_lock);
1426 }
1427
dpu_encoder_get_intf(const struct dpu_mdss_cfg * catalog,struct dpu_rm * dpu_rm,enum dpu_intf_type type,u32 controller_id)1428 static struct dpu_hw_intf *dpu_encoder_get_intf(const struct dpu_mdss_cfg *catalog,
1429 struct dpu_rm *dpu_rm,
1430 enum dpu_intf_type type, u32 controller_id)
1431 {
1432 int i = 0;
1433
1434 if (type == INTF_WB)
1435 return NULL;
1436
1437 for (i = 0; i < catalog->intf_count; i++) {
1438 if (catalog->intf[i].type == type
1439 && catalog->intf[i].controller_id == controller_id) {
1440 return dpu_rm_get_intf(dpu_rm, catalog->intf[i].id);
1441 }
1442 }
1443
1444 return NULL;
1445 }
1446
1447 /**
1448 * dpu_encoder_vblank_callback - Notify virtual encoder of vblank IRQ reception
1449 * @drm_enc: Pointer to drm encoder structure
1450 * @phy_enc: Pointer to physical encoder
1451 * Note: This is called from IRQ handler context.
1452 */
dpu_encoder_vblank_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1453 void dpu_encoder_vblank_callback(struct drm_encoder *drm_enc,
1454 struct dpu_encoder_phys *phy_enc)
1455 {
1456 struct dpu_encoder_virt *dpu_enc = NULL;
1457 unsigned long lock_flags;
1458
1459 if (!drm_enc || !phy_enc)
1460 return;
1461
1462 DPU_ATRACE_BEGIN("encoder_vblank_callback");
1463 dpu_enc = to_dpu_encoder_virt(drm_enc);
1464
1465 atomic_inc(&phy_enc->vsync_cnt);
1466
1467 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1468 if (dpu_enc->crtc)
1469 dpu_crtc_vblank_callback(dpu_enc->crtc);
1470 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1471
1472 DPU_ATRACE_END("encoder_vblank_callback");
1473 }
1474
1475 /**
1476 * dpu_encoder_underrun_callback - Notify virtual encoder of underrun IRQ reception
1477 * @drm_enc: Pointer to drm encoder structure
1478 * @phy_enc: Pointer to physical encoder
1479 * Note: This is called from IRQ handler context.
1480 */
dpu_encoder_underrun_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phy_enc)1481 void dpu_encoder_underrun_callback(struct drm_encoder *drm_enc,
1482 struct dpu_encoder_phys *phy_enc)
1483 {
1484 if (!phy_enc)
1485 return;
1486
1487 DPU_ATRACE_BEGIN("encoder_underrun_callback");
1488 atomic_inc(&phy_enc->underrun_cnt);
1489
1490 /* trigger dump only on the first underrun */
1491 if (atomic_read(&phy_enc->underrun_cnt) == 1)
1492 msm_disp_snapshot_state(drm_enc->dev);
1493
1494 trace_dpu_enc_underrun_cb(DRMID(drm_enc),
1495 atomic_read(&phy_enc->underrun_cnt));
1496 DPU_ATRACE_END("encoder_underrun_callback");
1497 }
1498
1499 /**
1500 * dpu_encoder_assign_crtc - Link the encoder to the crtc it's assigned to
1501 * @drm_enc: encoder pointer
1502 * @crtc: crtc pointer
1503 */
dpu_encoder_assign_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc)1504 void dpu_encoder_assign_crtc(struct drm_encoder *drm_enc, struct drm_crtc *crtc)
1505 {
1506 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1507 unsigned long lock_flags;
1508
1509 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1510 /* crtc should always be cleared before re-assigning */
1511 WARN_ON(crtc && dpu_enc->crtc);
1512 dpu_enc->crtc = crtc;
1513 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1514 }
1515
1516 /**
1517 * dpu_encoder_toggle_vblank_for_crtc - Toggles vblank interrupts on or off if
1518 * the encoder is assigned to the given crtc
1519 * @drm_enc: encoder pointer
1520 * @crtc: crtc pointer
1521 * @enable: true if vblank should be enabled
1522 */
dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder * drm_enc,struct drm_crtc * crtc,bool enable)1523 void dpu_encoder_toggle_vblank_for_crtc(struct drm_encoder *drm_enc,
1524 struct drm_crtc *crtc, bool enable)
1525 {
1526 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1527 unsigned long lock_flags;
1528 int i;
1529
1530 trace_dpu_enc_vblank_cb(DRMID(drm_enc), enable);
1531
1532 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1533 if (dpu_enc->crtc != crtc) {
1534 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1535 return;
1536 }
1537 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1538
1539 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1540 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1541
1542 if (phys->ops.control_vblank_irq)
1543 phys->ops.control_vblank_irq(phys, enable);
1544 }
1545 }
1546
1547 /**
1548 * dpu_encoder_frame_done_callback - Notify virtual encoder that this phys
1549 * encoder completes last request frame
1550 * @drm_enc: Pointer to drm encoder structure
1551 * @ready_phys: Pointer to physical encoder
1552 * @event: Event to process
1553 */
dpu_encoder_frame_done_callback(struct drm_encoder * drm_enc,struct dpu_encoder_phys * ready_phys,u32 event)1554 void dpu_encoder_frame_done_callback(
1555 struct drm_encoder *drm_enc,
1556 struct dpu_encoder_phys *ready_phys, u32 event)
1557 {
1558 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1559 unsigned int i;
1560
1561 if (event & (DPU_ENCODER_FRAME_EVENT_DONE
1562 | DPU_ENCODER_FRAME_EVENT_ERROR
1563 | DPU_ENCODER_FRAME_EVENT_PANEL_DEAD)) {
1564
1565 if (!dpu_enc->frame_busy_mask[0]) {
1566 /**
1567 * suppress frame_done without waiter,
1568 * likely autorefresh
1569 */
1570 trace_dpu_enc_frame_done_cb_not_busy(DRMID(drm_enc), event,
1571 dpu_encoder_helper_get_intf_type(ready_phys->intf_mode),
1572 ready_phys->hw_intf ? ready_phys->hw_intf->idx : -1,
1573 ready_phys->hw_wb ? ready_phys->hw_wb->idx : -1);
1574 return;
1575 }
1576
1577 /* One of the physical encoders has become idle */
1578 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1579 if (dpu_enc->phys_encs[i] == ready_phys) {
1580 trace_dpu_enc_frame_done_cb(DRMID(drm_enc), i,
1581 dpu_enc->frame_busy_mask[0]);
1582 clear_bit(i, dpu_enc->frame_busy_mask);
1583 }
1584 }
1585
1586 if (!dpu_enc->frame_busy_mask[0]) {
1587 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
1588 timer_delete(&dpu_enc->frame_done_timer);
1589
1590 dpu_encoder_resource_control(drm_enc,
1591 DPU_ENC_RC_EVENT_FRAME_DONE);
1592
1593 if (dpu_enc->crtc)
1594 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1595 }
1596 } else {
1597 if (dpu_enc->crtc)
1598 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
1599 }
1600 }
1601
dpu_encoder_off_work(struct work_struct * work)1602 static void dpu_encoder_off_work(struct work_struct *work)
1603 {
1604 struct dpu_encoder_virt *dpu_enc = container_of(work,
1605 struct dpu_encoder_virt, delayed_off_work.work);
1606
1607 dpu_encoder_resource_control(&dpu_enc->base,
1608 DPU_ENC_RC_EVENT_ENTER_IDLE);
1609
1610 dpu_encoder_frame_done_callback(&dpu_enc->base, NULL,
1611 DPU_ENCODER_FRAME_EVENT_IDLE);
1612 }
1613
1614 /**
1615 * _dpu_encoder_trigger_flush - trigger flush for a physical encoder
1616 * @drm_enc: Pointer to drm encoder structure
1617 * @phys: Pointer to physical encoder structure
1618 * @extra_flush_bits: Additional bit mask to include in flush trigger
1619 */
_dpu_encoder_trigger_flush(struct drm_encoder * drm_enc,struct dpu_encoder_phys * phys,uint32_t extra_flush_bits)1620 static void _dpu_encoder_trigger_flush(struct drm_encoder *drm_enc,
1621 struct dpu_encoder_phys *phys, uint32_t extra_flush_bits)
1622 {
1623 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
1624 struct dpu_hw_ctl *ctl;
1625 int pending_kickoff_cnt;
1626 u32 ret = UINT_MAX;
1627
1628 if (!phys->hw_pp) {
1629 DPU_ERROR("invalid pingpong hw\n");
1630 return;
1631 }
1632
1633 ctl = phys->hw_ctl;
1634 if (!ctl->ops.trigger_flush) {
1635 DPU_ERROR("missing trigger cb\n");
1636 return;
1637 }
1638
1639 pending_kickoff_cnt = dpu_encoder_phys_inc_pending(phys);
1640
1641 /* Return early if encoder is writeback and in clone mode */
1642 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1643 dpu_enc->cwb_mask) {
1644 DPU_DEBUG("encoder %d skip flush for concurrent writeback encoder\n",
1645 DRMID(drm_enc));
1646 return;
1647 }
1648
1649
1650 if (extra_flush_bits && ctl->ops.update_pending_flush)
1651 ctl->ops.update_pending_flush(ctl, extra_flush_bits);
1652
1653 ctl->ops.trigger_flush(ctl);
1654
1655 if (ctl->ops.get_pending_flush)
1656 ret = ctl->ops.get_pending_flush(ctl);
1657
1658 trace_dpu_enc_trigger_flush(DRMID(drm_enc),
1659 dpu_encoder_helper_get_intf_type(phys->intf_mode),
1660 phys->hw_intf ? phys->hw_intf->idx : -1,
1661 phys->hw_wb ? phys->hw_wb->idx : -1,
1662 pending_kickoff_cnt, ctl->idx,
1663 extra_flush_bits, ret);
1664 }
1665
1666 /**
1667 * _dpu_encoder_trigger_start - trigger start for a physical encoder
1668 * @phys: Pointer to physical encoder structure
1669 */
_dpu_encoder_trigger_start(struct dpu_encoder_phys * phys)1670 static void _dpu_encoder_trigger_start(struct dpu_encoder_phys *phys)
1671 {
1672 struct dpu_encoder_virt *dpu_enc;
1673
1674 if (!phys) {
1675 DPU_ERROR("invalid argument(s)\n");
1676 return;
1677 }
1678
1679 if (!phys->hw_pp) {
1680 DPU_ERROR("invalid pingpong hw\n");
1681 return;
1682 }
1683
1684 dpu_enc = to_dpu_encoder_virt(phys->parent);
1685
1686 if (phys->parent->encoder_type == DRM_MODE_ENCODER_VIRTUAL &&
1687 dpu_enc->cwb_mask) {
1688 DPU_DEBUG("encoder %d CWB enabled, skipping\n", DRMID(phys->parent));
1689 return;
1690 }
1691
1692 if (phys->ops.trigger_start && phys->enable_state != DPU_ENC_DISABLED)
1693 phys->ops.trigger_start(phys);
1694 }
1695
1696 /**
1697 * dpu_encoder_helper_trigger_start - control start helper function
1698 * This helper function may be optionally specified by physical
1699 * encoders if they require ctl_start triggering.
1700 * @phys_enc: Pointer to physical encoder structure
1701 */
dpu_encoder_helper_trigger_start(struct dpu_encoder_phys * phys_enc)1702 void dpu_encoder_helper_trigger_start(struct dpu_encoder_phys *phys_enc)
1703 {
1704 struct dpu_hw_ctl *ctl;
1705
1706 ctl = phys_enc->hw_ctl;
1707 if (ctl->ops.trigger_start) {
1708 ctl->ops.trigger_start(ctl);
1709 trace_dpu_enc_trigger_start(DRMID(phys_enc->parent), ctl->idx);
1710 }
1711 }
1712
dpu_encoder_helper_wait_event_timeout(int32_t drm_id,unsigned int irq_idx,struct dpu_encoder_wait_info * info)1713 static int dpu_encoder_helper_wait_event_timeout(
1714 int32_t drm_id,
1715 unsigned int irq_idx,
1716 struct dpu_encoder_wait_info *info)
1717 {
1718 int rc = 0;
1719 s64 expected_time = ktime_to_ms(ktime_get()) + info->timeout_ms;
1720 s64 jiffies = msecs_to_jiffies(info->timeout_ms);
1721 s64 time;
1722
1723 do {
1724 rc = wait_event_timeout(*(info->wq),
1725 atomic_read(info->atomic_cnt) == 0, jiffies);
1726 time = ktime_to_ms(ktime_get());
1727
1728 trace_dpu_enc_wait_event_timeout(drm_id,
1729 DPU_IRQ_REG(irq_idx), DPU_IRQ_BIT(irq_idx),
1730 rc, time,
1731 expected_time,
1732 atomic_read(info->atomic_cnt));
1733 /* If we timed out, counter is valid and time is less, wait again */
1734 } while (atomic_read(info->atomic_cnt) && (rc == 0) &&
1735 (time < expected_time));
1736
1737 return rc;
1738 }
1739
dpu_encoder_helper_hw_reset(struct dpu_encoder_phys * phys_enc)1740 static void dpu_encoder_helper_hw_reset(struct dpu_encoder_phys *phys_enc)
1741 {
1742 struct dpu_encoder_virt *dpu_enc;
1743 struct dpu_hw_ctl *ctl;
1744 int rc;
1745 struct drm_encoder *drm_enc;
1746
1747 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
1748 ctl = phys_enc->hw_ctl;
1749 drm_enc = phys_enc->parent;
1750
1751 if (!ctl->ops.reset)
1752 return;
1753
1754 DRM_DEBUG_KMS("id:%u ctl %d reset\n", DRMID(drm_enc),
1755 ctl->idx);
1756
1757 rc = ctl->ops.reset(ctl);
1758 if (rc) {
1759 DPU_ERROR_ENC(dpu_enc, "ctl %d reset failure\n", ctl->idx);
1760 msm_disp_snapshot_state(drm_enc->dev);
1761 }
1762
1763 phys_enc->enable_state = DPU_ENC_ENABLED;
1764 }
1765
1766 /**
1767 * _dpu_encoder_kickoff_phys - handle physical encoder kickoff
1768 * Iterate through the physical encoders and perform consolidated flush
1769 * and/or control start triggering as needed. This is done in the virtual
1770 * encoder rather than the individual physical ones in order to handle
1771 * use cases that require visibility into multiple physical encoders at
1772 * a time.
1773 * @dpu_enc: Pointer to virtual encoder structure
1774 */
_dpu_encoder_kickoff_phys(struct dpu_encoder_virt * dpu_enc)1775 static void _dpu_encoder_kickoff_phys(struct dpu_encoder_virt *dpu_enc)
1776 {
1777 struct dpu_hw_ctl *ctl;
1778 uint32_t i, pending_flush;
1779 unsigned long lock_flags;
1780
1781 pending_flush = 0x0;
1782
1783 /* update pending counts and trigger kickoff ctl flush atomically */
1784 spin_lock_irqsave(&dpu_enc->enc_spinlock, lock_flags);
1785
1786 /* don't perform flush/start operations for slave encoders */
1787 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1788 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
1789
1790 if (phys->enable_state == DPU_ENC_DISABLED)
1791 continue;
1792
1793 ctl = phys->hw_ctl;
1794
1795 /*
1796 * This is cleared in frame_done worker, which isn't invoked
1797 * for async commits. So don't set this for async, since it'll
1798 * roll over to the next commit.
1799 */
1800 if (phys->split_role != ENC_ROLE_SLAVE)
1801 set_bit(i, dpu_enc->frame_busy_mask);
1802
1803 if (!phys->ops.needs_single_flush ||
1804 !phys->ops.needs_single_flush(phys))
1805 _dpu_encoder_trigger_flush(&dpu_enc->base, phys, 0x0);
1806 else if (ctl->ops.get_pending_flush)
1807 pending_flush |= ctl->ops.get_pending_flush(ctl);
1808 }
1809
1810 /* for split flush, combine pending flush masks and send to master */
1811 if (pending_flush && dpu_enc->cur_master) {
1812 _dpu_encoder_trigger_flush(
1813 &dpu_enc->base,
1814 dpu_enc->cur_master,
1815 pending_flush);
1816 }
1817
1818 _dpu_encoder_trigger_start(dpu_enc->cur_master);
1819
1820 spin_unlock_irqrestore(&dpu_enc->enc_spinlock, lock_flags);
1821 }
1822
1823 /**
1824 * dpu_encoder_trigger_kickoff_pending - Clear the flush bits from previous
1825 * kickoff and trigger the ctl prepare progress for command mode display.
1826 * @drm_enc: encoder pointer
1827 */
dpu_encoder_trigger_kickoff_pending(struct drm_encoder * drm_enc)1828 void dpu_encoder_trigger_kickoff_pending(struct drm_encoder *drm_enc)
1829 {
1830 struct dpu_encoder_virt *dpu_enc;
1831 struct dpu_encoder_phys *phys;
1832 unsigned int i;
1833 struct dpu_hw_ctl *ctl;
1834 struct msm_display_info *disp_info;
1835
1836 if (!drm_enc) {
1837 DPU_ERROR("invalid encoder\n");
1838 return;
1839 }
1840 dpu_enc = to_dpu_encoder_virt(drm_enc);
1841 disp_info = &dpu_enc->disp_info;
1842
1843 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
1844 phys = dpu_enc->phys_encs[i];
1845
1846 ctl = phys->hw_ctl;
1847 ctl->ops.clear_pending_flush(ctl);
1848
1849 /* update only for command mode primary ctl */
1850 if ((phys == dpu_enc->cur_master) &&
1851 disp_info->is_cmd_mode
1852 && ctl->ops.trigger_pending)
1853 ctl->ops.trigger_pending(ctl);
1854 }
1855 }
1856
_dpu_encoder_calculate_linetime(struct dpu_encoder_virt * dpu_enc,struct drm_display_mode * mode)1857 static u32 _dpu_encoder_calculate_linetime(struct dpu_encoder_virt *dpu_enc,
1858 struct drm_display_mode *mode)
1859 {
1860 u64 pclk_rate;
1861 u32 pclk_period;
1862 u32 line_time;
1863
1864 /*
1865 * For linetime calculation, only operate on master encoder.
1866 */
1867 if (!dpu_enc->cur_master)
1868 return 0;
1869
1870 if (!dpu_enc->cur_master->ops.get_line_count) {
1871 DPU_ERROR("get_line_count function not defined\n");
1872 return 0;
1873 }
1874
1875 pclk_rate = mode->clock; /* pixel clock in kHz */
1876 if (pclk_rate == 0) {
1877 DPU_ERROR("pclk is 0, cannot calculate line time\n");
1878 return 0;
1879 }
1880
1881 pclk_period = DIV_ROUND_UP_ULL(1000000000ull, pclk_rate);
1882 if (pclk_period == 0) {
1883 DPU_ERROR("pclk period is 0\n");
1884 return 0;
1885 }
1886
1887 /*
1888 * Line time calculation based on Pixel clock and HTOTAL.
1889 * Final unit is in ns.
1890 */
1891 line_time = (pclk_period * mode->htotal) / 1000;
1892 if (line_time == 0) {
1893 DPU_ERROR("line time calculation is 0\n");
1894 return 0;
1895 }
1896
1897 DPU_DEBUG_ENC(dpu_enc,
1898 "clk_rate=%lldkHz, clk_period=%d, linetime=%dns\n",
1899 pclk_rate, pclk_period, line_time);
1900
1901 return line_time;
1902 }
1903
1904 /**
1905 * dpu_encoder_vsync_time - get the time of the next vsync
1906 * @drm_enc: encoder pointer
1907 * @wakeup_time: pointer to ktime_t to write the vsync time to
1908 */
dpu_encoder_vsync_time(struct drm_encoder * drm_enc,ktime_t * wakeup_time)1909 int dpu_encoder_vsync_time(struct drm_encoder *drm_enc, ktime_t *wakeup_time)
1910 {
1911 struct drm_display_mode *mode;
1912 struct dpu_encoder_virt *dpu_enc;
1913 u32 cur_line;
1914 u32 line_time;
1915 u32 vtotal, time_to_vsync;
1916 ktime_t cur_time;
1917
1918 dpu_enc = to_dpu_encoder_virt(drm_enc);
1919
1920 if (!drm_enc->crtc || !drm_enc->crtc->state) {
1921 DPU_ERROR("crtc/crtc state object is NULL\n");
1922 return -EINVAL;
1923 }
1924 mode = &drm_enc->crtc->state->adjusted_mode;
1925
1926 line_time = _dpu_encoder_calculate_linetime(dpu_enc, mode);
1927 if (!line_time)
1928 return -EINVAL;
1929
1930 cur_line = dpu_enc->cur_master->ops.get_line_count(dpu_enc->cur_master);
1931
1932 vtotal = mode->vtotal;
1933 if (cur_line >= vtotal)
1934 time_to_vsync = line_time * vtotal;
1935 else
1936 time_to_vsync = line_time * (vtotal - cur_line);
1937
1938 if (time_to_vsync == 0) {
1939 DPU_ERROR("time to vsync should not be zero, vtotal=%d\n",
1940 vtotal);
1941 return -EINVAL;
1942 }
1943
1944 cur_time = ktime_get();
1945 *wakeup_time = ktime_add_ns(cur_time, time_to_vsync);
1946
1947 DPU_DEBUG_ENC(dpu_enc,
1948 "cur_line=%u vtotal=%u time_to_vsync=%u, cur_time=%lld, wakeup_time=%lld\n",
1949 cur_line, vtotal, time_to_vsync,
1950 ktime_to_ms(cur_time),
1951 ktime_to_ms(*wakeup_time));
1952 return 0;
1953 }
1954
1955 static u32
dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config * dsc,u32 enc_ip_width)1956 dpu_encoder_dsc_initial_line_calc(struct drm_dsc_config *dsc,
1957 u32 enc_ip_width)
1958 {
1959 int ssm_delay, total_pixels, soft_slice_per_enc;
1960
1961 soft_slice_per_enc = enc_ip_width / dsc->slice_width;
1962
1963 /*
1964 * minimum number of initial line pixels is a sum of:
1965 * 1. sub-stream multiplexer delay (83 groups for 8bpc,
1966 * 91 for 10 bpc) * 3
1967 * 2. for two soft slice cases, add extra sub-stream multiplexer * 3
1968 * 3. the initial xmit delay
1969 * 4. total pipeline delay through the "lock step" of encoder (47)
1970 * 5. 6 additional pixels as the output of the rate buffer is
1971 * 48 bits wide
1972 */
1973 ssm_delay = ((dsc->bits_per_component < 10) ? 84 : 92);
1974 total_pixels = ssm_delay * 3 + dsc->initial_xmit_delay + 47;
1975 if (soft_slice_per_enc > 1)
1976 total_pixels += (ssm_delay * 3);
1977 return DIV_ROUND_UP(total_pixels, dsc->slice_width);
1978 }
1979
dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp,struct drm_dsc_config * dsc,u32 common_mode,u32 initial_lines)1980 static void dpu_encoder_dsc_pipe_cfg(struct dpu_hw_ctl *ctl,
1981 struct dpu_hw_dsc *hw_dsc,
1982 struct dpu_hw_pingpong *hw_pp,
1983 struct drm_dsc_config *dsc,
1984 u32 common_mode,
1985 u32 initial_lines)
1986 {
1987 if (hw_dsc->ops.dsc_config)
1988 hw_dsc->ops.dsc_config(hw_dsc, dsc, common_mode, initial_lines);
1989
1990 if (hw_dsc->ops.dsc_config_thresh)
1991 hw_dsc->ops.dsc_config_thresh(hw_dsc, dsc);
1992
1993 if (hw_pp->ops.setup_dsc)
1994 hw_pp->ops.setup_dsc(hw_pp);
1995
1996 if (hw_dsc->ops.dsc_bind_pingpong_blk)
1997 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, hw_pp->idx);
1998
1999 if (hw_pp->ops.enable_dsc)
2000 hw_pp->ops.enable_dsc(hw_pp);
2001
2002 if (ctl->ops.update_pending_flush_dsc)
2003 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2004 }
2005
dpu_encoder_prep_dsc(struct dpu_encoder_virt * dpu_enc,struct drm_dsc_config * dsc)2006 static void dpu_encoder_prep_dsc(struct dpu_encoder_virt *dpu_enc,
2007 struct drm_dsc_config *dsc)
2008 {
2009 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2010 struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2011 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2012 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2013 int this_frame_slices;
2014 int intf_ip_w, enc_ip_w;
2015 int dsc_common_mode;
2016 int pic_width;
2017 u32 initial_lines;
2018 int num_dsc = 0;
2019 int i;
2020
2021 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2022 hw_pp[i] = dpu_enc->hw_pp[i];
2023 hw_dsc[i] = dpu_enc->hw_dsc[i];
2024
2025 if (!hw_pp[i] || !hw_dsc[i])
2026 break;
2027
2028 num_dsc++;
2029 }
2030
2031 pic_width = dsc->pic_width;
2032
2033 dsc_common_mode = 0;
2034 if (num_dsc > 1)
2035 dsc_common_mode |= DSC_MODE_SPLIT_PANEL;
2036 if (dpu_encoder_use_dsc_merge(enc_master->parent))
2037 dsc_common_mode |= DSC_MODE_MULTIPLEX;
2038 if (enc_master->intf_mode == INTF_MODE_VIDEO)
2039 dsc_common_mode |= DSC_MODE_VIDEO;
2040
2041 this_frame_slices = pic_width / dsc->slice_width;
2042 intf_ip_w = this_frame_slices * dsc->slice_width;
2043
2044 enc_ip_w = intf_ip_w / num_dsc;
2045 initial_lines = dpu_encoder_dsc_initial_line_calc(dsc, enc_ip_w);
2046
2047 for (i = 0; i < num_dsc; i++)
2048 dpu_encoder_dsc_pipe_cfg(ctl, hw_dsc[i], hw_pp[i],
2049 dsc, dsc_common_mode, initial_lines);
2050 }
2051
2052 /**
2053 * dpu_encoder_prepare_for_kickoff - schedule double buffer flip of the ctl
2054 * path (i.e. ctl flush and start) at next appropriate time.
2055 * Immediately: if no previous commit is outstanding.
2056 * Delayed: Block until next trigger can be issued.
2057 * @drm_enc: encoder pointer
2058 */
dpu_encoder_prepare_for_kickoff(struct drm_encoder * drm_enc)2059 void dpu_encoder_prepare_for_kickoff(struct drm_encoder *drm_enc)
2060 {
2061 struct dpu_encoder_virt *dpu_enc;
2062 struct dpu_encoder_phys *phys;
2063 bool needs_hw_reset = false;
2064 unsigned int i;
2065
2066 dpu_enc = to_dpu_encoder_virt(drm_enc);
2067
2068 trace_dpu_enc_prepare_kickoff(DRMID(drm_enc));
2069
2070 /* prepare for next kickoff, may include waiting on previous kickoff */
2071 DPU_ATRACE_BEGIN("enc_prepare_for_kickoff");
2072 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2073 phys = dpu_enc->phys_encs[i];
2074 if (phys->ops.prepare_for_kickoff)
2075 phys->ops.prepare_for_kickoff(phys);
2076 if (phys->enable_state == DPU_ENC_ERR_NEEDS_HW_RESET)
2077 needs_hw_reset = true;
2078 }
2079 DPU_ATRACE_END("enc_prepare_for_kickoff");
2080
2081 dpu_encoder_resource_control(drm_enc, DPU_ENC_RC_EVENT_KICKOFF);
2082
2083 /* if any phys needs reset, reset all phys, in-order */
2084 if (needs_hw_reset) {
2085 trace_dpu_enc_prepare_kickoff_reset(DRMID(drm_enc));
2086 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2087 dpu_encoder_helper_hw_reset(dpu_enc->phys_encs[i]);
2088 }
2089 }
2090
2091 if (dpu_enc->dsc)
2092 dpu_encoder_prep_dsc(dpu_enc, dpu_enc->dsc);
2093 }
2094
2095 /**
2096 * dpu_encoder_is_valid_for_commit - check if encode has valid parameters for commit.
2097 * @drm_enc: Pointer to drm encoder structure
2098 */
dpu_encoder_is_valid_for_commit(struct drm_encoder * drm_enc)2099 bool dpu_encoder_is_valid_for_commit(struct drm_encoder *drm_enc)
2100 {
2101 struct dpu_encoder_virt *dpu_enc;
2102 unsigned int i;
2103 struct dpu_encoder_phys *phys;
2104
2105 dpu_enc = to_dpu_encoder_virt(drm_enc);
2106
2107 if (drm_enc->encoder_type == DRM_MODE_ENCODER_VIRTUAL) {
2108 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2109 phys = dpu_enc->phys_encs[i];
2110 if (phys->ops.is_valid_for_commit && !phys->ops.is_valid_for_commit(phys)) {
2111 DPU_DEBUG("invalid FB not kicking off\n");
2112 return false;
2113 }
2114 }
2115 }
2116
2117 return true;
2118 }
2119
2120 /**
2121 * dpu_encoder_start_frame_done_timer - Start the encoder frame done timer
2122 * @drm_enc: Pointer to drm encoder structure
2123 */
dpu_encoder_start_frame_done_timer(struct drm_encoder * drm_enc)2124 void dpu_encoder_start_frame_done_timer(struct drm_encoder *drm_enc)
2125 {
2126 struct dpu_encoder_virt *dpu_enc;
2127 unsigned long timeout_ms;
2128
2129 dpu_enc = to_dpu_encoder_virt(drm_enc);
2130 timeout_ms = DPU_ENCODER_FRAME_DONE_TIMEOUT_FRAMES * 1000 /
2131 drm_mode_vrefresh(&drm_enc->crtc->state->adjusted_mode);
2132
2133 atomic_set(&dpu_enc->frame_done_timeout_ms, timeout_ms);
2134 mod_timer(&dpu_enc->frame_done_timer,
2135 jiffies + msecs_to_jiffies(timeout_ms));
2136
2137 }
2138
2139 /**
2140 * dpu_encoder_kickoff - trigger a double buffer flip of the ctl path
2141 * (i.e. ctl flush and start) immediately.
2142 * @drm_enc: encoder pointer
2143 */
dpu_encoder_kickoff(struct drm_encoder * drm_enc)2144 void dpu_encoder_kickoff(struct drm_encoder *drm_enc)
2145 {
2146 struct dpu_encoder_virt *dpu_enc;
2147 struct dpu_encoder_phys *phys;
2148 unsigned int i;
2149
2150 DPU_ATRACE_BEGIN("encoder_kickoff");
2151 dpu_enc = to_dpu_encoder_virt(drm_enc);
2152
2153 trace_dpu_enc_kickoff(DRMID(drm_enc));
2154
2155 /* All phys encs are ready to go, trigger the kickoff */
2156 _dpu_encoder_kickoff_phys(dpu_enc);
2157
2158 /* allow phys encs to handle any post-kickoff business */
2159 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2160 phys = dpu_enc->phys_encs[i];
2161 if (phys->ops.handle_post_kickoff)
2162 phys->ops.handle_post_kickoff(phys);
2163 }
2164
2165 DPU_ATRACE_END("encoder_kickoff");
2166 }
2167
dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys * phys_enc)2168 static void dpu_encoder_helper_reset_mixers(struct dpu_encoder_phys *phys_enc)
2169 {
2170 int i, num_lm;
2171 struct dpu_global_state *global_state;
2172 struct dpu_hw_blk *hw_lm[MAX_CHANNELS_PER_ENC];
2173 struct dpu_hw_mixer *hw_mixer[MAX_CHANNELS_PER_ENC];
2174 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2175
2176 /* reset all mixers for this encoder */
2177 if (ctl->ops.clear_all_blendstages)
2178 ctl->ops.clear_all_blendstages(ctl);
2179
2180 global_state = dpu_kms_get_existing_global_state(phys_enc->dpu_kms);
2181
2182 num_lm = dpu_rm_get_assigned_resources(&phys_enc->dpu_kms->rm, global_state,
2183 phys_enc->parent->crtc, DPU_HW_BLK_LM, hw_lm, ARRAY_SIZE(hw_lm));
2184
2185 for (i = 0; i < num_lm; i++) {
2186 hw_mixer[i] = to_dpu_hw_mixer(hw_lm[i]);
2187 if (ctl->ops.update_pending_flush_mixer)
2188 ctl->ops.update_pending_flush_mixer(ctl, hw_mixer[i]->idx);
2189
2190 /* clear all blendstages */
2191 if (ctl->ops.setup_blendstage)
2192 ctl->ops.setup_blendstage(ctl, hw_mixer[i]->idx, NULL);
2193
2194 if (hw_mixer[i]->ops.clear_all_blendstages)
2195 hw_mixer[i]->ops.clear_all_blendstages(hw_mixer[i]);
2196
2197 if (ctl->ops.set_active_lms)
2198 ctl->ops.set_active_lms(ctl, NULL);
2199
2200 if (ctl->ops.set_active_fetch_pipes)
2201 ctl->ops.set_active_fetch_pipes(ctl, NULL);
2202
2203 if (ctl->ops.set_active_pipes)
2204 ctl->ops.set_active_pipes(ctl, NULL);
2205 }
2206 }
2207
dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl * ctl,struct dpu_hw_dsc * hw_dsc,struct dpu_hw_pingpong * hw_pp)2208 static void dpu_encoder_dsc_pipe_clr(struct dpu_hw_ctl *ctl,
2209 struct dpu_hw_dsc *hw_dsc,
2210 struct dpu_hw_pingpong *hw_pp)
2211 {
2212 if (hw_dsc->ops.dsc_disable)
2213 hw_dsc->ops.dsc_disable(hw_dsc);
2214
2215 if (hw_pp->ops.disable_dsc)
2216 hw_pp->ops.disable_dsc(hw_pp);
2217
2218 if (hw_dsc->ops.dsc_bind_pingpong_blk)
2219 hw_dsc->ops.dsc_bind_pingpong_blk(hw_dsc, PINGPONG_NONE);
2220
2221 if (ctl->ops.update_pending_flush_dsc)
2222 ctl->ops.update_pending_flush_dsc(ctl, hw_dsc->idx);
2223 }
2224
dpu_encoder_unprep_dsc(struct dpu_encoder_virt * dpu_enc)2225 static void dpu_encoder_unprep_dsc(struct dpu_encoder_virt *dpu_enc)
2226 {
2227 /* coding only for 2LM, 2enc, 1 dsc config */
2228 struct dpu_encoder_phys *enc_master = dpu_enc->cur_master;
2229 struct dpu_hw_ctl *ctl = enc_master->hw_ctl;
2230 struct dpu_hw_dsc *hw_dsc[MAX_CHANNELS_PER_ENC];
2231 struct dpu_hw_pingpong *hw_pp[MAX_CHANNELS_PER_ENC];
2232 int i;
2233
2234 for (i = 0; i < MAX_CHANNELS_PER_ENC; i++) {
2235 hw_pp[i] = dpu_enc->hw_pp[i];
2236 hw_dsc[i] = dpu_enc->hw_dsc[i];
2237
2238 if (hw_pp[i] && hw_dsc[i])
2239 dpu_encoder_dsc_pipe_clr(ctl, hw_dsc[i], hw_pp[i]);
2240 }
2241 }
2242
2243 /**
2244 * dpu_encoder_helper_phys_cleanup - helper to cleanup dpu pipeline
2245 * @phys_enc: Pointer to physical encoder structure
2246 */
dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys * phys_enc)2247 void dpu_encoder_helper_phys_cleanup(struct dpu_encoder_phys *phys_enc)
2248 {
2249 struct dpu_hw_ctl *ctl = phys_enc->hw_ctl;
2250 struct dpu_hw_intf_cfg intf_cfg = { 0 };
2251 int i;
2252 struct dpu_encoder_virt *dpu_enc;
2253
2254 dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2255
2256 ctl->ops.reset(ctl);
2257
2258 dpu_encoder_helper_reset_mixers(phys_enc);
2259
2260 /*
2261 * TODO: move the once-only operation like CTL flush/trigger
2262 * into dpu_encoder_virt_disable() and all operations which need
2263 * to be done per phys encoder into the phys_disable() op.
2264 */
2265 if (phys_enc->hw_wb) {
2266 /* disable the PP block */
2267 if (phys_enc->hw_wb->ops.bind_pingpong_blk)
2268 phys_enc->hw_wb->ops.bind_pingpong_blk(phys_enc->hw_wb, PINGPONG_NONE);
2269
2270 /* mark WB flush as pending */
2271 if (ctl->ops.update_pending_flush_wb)
2272 ctl->ops.update_pending_flush_wb(ctl, phys_enc->hw_wb->idx);
2273 } else {
2274 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2275 if (dpu_enc->phys_encs[i] && phys_enc->hw_intf->ops.bind_pingpong_blk)
2276 phys_enc->hw_intf->ops.bind_pingpong_blk(
2277 dpu_enc->phys_encs[i]->hw_intf,
2278 PINGPONG_NONE);
2279
2280 /* mark INTF flush as pending */
2281 if (ctl->ops.update_pending_flush_intf)
2282 ctl->ops.update_pending_flush_intf(ctl,
2283 dpu_enc->phys_encs[i]->hw_intf->idx);
2284 }
2285 }
2286
2287 if (phys_enc->hw_pp && phys_enc->hw_pp->ops.setup_dither)
2288 phys_enc->hw_pp->ops.setup_dither(phys_enc->hw_pp, NULL);
2289
2290 if (dpu_enc->cwb_mask)
2291 dpu_encoder_helper_phys_setup_cwb(phys_enc, false);
2292
2293 /* reset the merge 3D HW block */
2294 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d) {
2295 phys_enc->hw_pp->merge_3d->ops.setup_3d_mode(phys_enc->hw_pp->merge_3d,
2296 BLEND_3D_NONE);
2297 if (ctl->ops.update_pending_flush_merge_3d)
2298 ctl->ops.update_pending_flush_merge_3d(ctl,
2299 phys_enc->hw_pp->merge_3d->idx);
2300 }
2301
2302 if (phys_enc->hw_cdm) {
2303 if (phys_enc->hw_cdm->ops.bind_pingpong_blk && phys_enc->hw_pp)
2304 phys_enc->hw_cdm->ops.bind_pingpong_blk(phys_enc->hw_cdm,
2305 PINGPONG_NONE);
2306 if (ctl->ops.update_pending_flush_cdm)
2307 ctl->ops.update_pending_flush_cdm(ctl,
2308 phys_enc->hw_cdm->idx);
2309 }
2310
2311 if (dpu_enc->dsc) {
2312 dpu_encoder_unprep_dsc(dpu_enc);
2313 dpu_enc->dsc = NULL;
2314 }
2315
2316 intf_cfg.stream_sel = 0; /* Don't care value for video mode */
2317 intf_cfg.mode_3d = dpu_encoder_helper_get_3d_blend_mode(phys_enc);
2318 intf_cfg.dsc = dpu_encoder_helper_get_dsc(phys_enc);
2319 intf_cfg.cwb = dpu_enc->cwb_mask;
2320
2321 if (phys_enc->hw_intf)
2322 intf_cfg.intf = phys_enc->hw_intf->idx;
2323 if (phys_enc->hw_wb)
2324 intf_cfg.wb = phys_enc->hw_wb->idx;
2325
2326 if (phys_enc->hw_pp && phys_enc->hw_pp->merge_3d)
2327 intf_cfg.merge_3d = phys_enc->hw_pp->merge_3d->idx;
2328
2329 if (ctl->ops.reset_intf_cfg)
2330 ctl->ops.reset_intf_cfg(ctl, &intf_cfg);
2331
2332 ctl->ops.trigger_flush(ctl);
2333 ctl->ops.trigger_start(ctl);
2334 ctl->ops.clear_pending_flush(ctl);
2335 }
2336
dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys * phys_enc,bool enable)2337 void dpu_encoder_helper_phys_setup_cwb(struct dpu_encoder_phys *phys_enc,
2338 bool enable)
2339 {
2340 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(phys_enc->parent);
2341 struct dpu_hw_cwb *hw_cwb;
2342 struct dpu_hw_ctl *hw_ctl;
2343 struct dpu_hw_cwb_setup_cfg cwb_cfg;
2344
2345 struct dpu_kms *dpu_kms;
2346 struct dpu_global_state *global_state;
2347 struct dpu_hw_blk *rt_pp_list[MAX_CHANNELS_PER_ENC];
2348 int num_pp;
2349
2350 if (!phys_enc->hw_wb)
2351 return;
2352
2353 hw_ctl = phys_enc->hw_ctl;
2354
2355 if (!phys_enc->hw_ctl) {
2356 DPU_DEBUG("[wb:%d] no ctl assigned\n",
2357 phys_enc->hw_wb->idx - WB_0);
2358 return;
2359 }
2360
2361 dpu_kms = phys_enc->dpu_kms;
2362 global_state = dpu_kms_get_existing_global_state(dpu_kms);
2363 num_pp = dpu_rm_get_assigned_resources(&dpu_kms->rm, global_state,
2364 phys_enc->parent->crtc,
2365 DPU_HW_BLK_PINGPONG, rt_pp_list,
2366 ARRAY_SIZE(rt_pp_list));
2367
2368 if (num_pp == 0 || num_pp > MAX_CHANNELS_PER_ENC) {
2369 DPU_DEBUG_ENC(dpu_enc, "invalid num_pp %d\n", num_pp);
2370 return;
2371 }
2372
2373 /*
2374 * The CWB mux supports using LM or DSPP as tap points. For now,
2375 * always use LM tap point
2376 */
2377 cwb_cfg.input = INPUT_MODE_LM_OUT;
2378
2379 for (int i = 0; i < MAX_CWB_PER_ENC; i++) {
2380 hw_cwb = dpu_enc->hw_cwb[i];
2381 if (!hw_cwb)
2382 continue;
2383
2384 if (enable) {
2385 struct dpu_hw_pingpong *hw_pp =
2386 to_dpu_hw_pingpong(rt_pp_list[i]);
2387 cwb_cfg.pp_idx = hw_pp->idx;
2388 } else {
2389 cwb_cfg.pp_idx = PINGPONG_NONE;
2390 }
2391
2392 hw_cwb->ops.config_cwb(hw_cwb, &cwb_cfg);
2393
2394 if (hw_ctl->ops.update_pending_flush_cwb)
2395 hw_ctl->ops.update_pending_flush_cwb(hw_ctl, hw_cwb->idx);
2396 }
2397 }
2398
2399 /**
2400 * dpu_encoder_helper_phys_setup_cdm - setup chroma down sampling block
2401 * @phys_enc: Pointer to physical encoder
2402 * @dpu_fmt: Pinter to the format description
2403 * @output_type: HDMI/WB
2404 */
dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys * phys_enc,const struct msm_format * dpu_fmt,u32 output_type)2405 void dpu_encoder_helper_phys_setup_cdm(struct dpu_encoder_phys *phys_enc,
2406 const struct msm_format *dpu_fmt,
2407 u32 output_type)
2408 {
2409 struct dpu_hw_cdm *hw_cdm;
2410 struct dpu_hw_cdm_cfg *cdm_cfg;
2411 struct dpu_hw_pingpong *hw_pp;
2412 int ret;
2413
2414 if (!phys_enc)
2415 return;
2416
2417 cdm_cfg = &phys_enc->cdm_cfg;
2418 hw_pp = phys_enc->hw_pp;
2419 hw_cdm = phys_enc->hw_cdm;
2420
2421 if (!hw_cdm)
2422 return;
2423
2424 if (!MSM_FORMAT_IS_YUV(dpu_fmt)) {
2425 DPU_DEBUG("[enc:%d] cdm_disable fmt:%p4cc\n", DRMID(phys_enc->parent),
2426 &dpu_fmt->pixel_format);
2427 if (hw_cdm->ops.bind_pingpong_blk)
2428 hw_cdm->ops.bind_pingpong_blk(hw_cdm, PINGPONG_NONE);
2429
2430 return;
2431 }
2432
2433 memset(cdm_cfg, 0, sizeof(struct dpu_hw_cdm_cfg));
2434
2435 cdm_cfg->output_width = phys_enc->cached_mode.hdisplay;
2436 cdm_cfg->output_height = phys_enc->cached_mode.vdisplay;
2437 cdm_cfg->output_fmt = dpu_fmt;
2438 cdm_cfg->output_type = output_type;
2439 cdm_cfg->output_bit_depth = MSM_FORMAT_IS_DX(dpu_fmt) ?
2440 CDM_CDWN_OUTPUT_10BIT : CDM_CDWN_OUTPUT_8BIT;
2441 cdm_cfg->csc_cfg = &dpu_csc10_rgb2yuv_601l;
2442
2443 /* enable 10 bit logic */
2444 switch (cdm_cfg->output_fmt->chroma_sample) {
2445 case CHROMA_FULL:
2446 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2447 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2448 break;
2449 case CHROMA_H2V1:
2450 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2451 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2452 break;
2453 case CHROMA_420:
2454 cdm_cfg->h_cdwn_type = CDM_CDWN_COSITE;
2455 cdm_cfg->v_cdwn_type = CDM_CDWN_OFFSITE;
2456 break;
2457 case CHROMA_H1V2:
2458 default:
2459 DPU_ERROR("[enc:%d] unsupported chroma sampling type\n",
2460 DRMID(phys_enc->parent));
2461 cdm_cfg->h_cdwn_type = CDM_CDWN_DISABLE;
2462 cdm_cfg->v_cdwn_type = CDM_CDWN_DISABLE;
2463 break;
2464 }
2465
2466 DPU_DEBUG("[enc:%d] cdm_enable:%d,%d,%p4cc,%d,%d,%d,%d]\n",
2467 DRMID(phys_enc->parent), cdm_cfg->output_width,
2468 cdm_cfg->output_height, &cdm_cfg->output_fmt->pixel_format,
2469 cdm_cfg->output_type, cdm_cfg->output_bit_depth,
2470 cdm_cfg->h_cdwn_type, cdm_cfg->v_cdwn_type);
2471
2472 if (hw_cdm->ops.enable) {
2473 cdm_cfg->pp_id = hw_pp->idx;
2474 ret = hw_cdm->ops.enable(hw_cdm, cdm_cfg);
2475 if (ret < 0) {
2476 DPU_ERROR("[enc:%d] failed to enable CDM; ret:%d\n",
2477 DRMID(phys_enc->parent), ret);
2478 return;
2479 }
2480 }
2481 }
2482
2483 #ifdef CONFIG_DEBUG_FS
_dpu_encoder_status_show(struct seq_file * s,void * data)2484 static int _dpu_encoder_status_show(struct seq_file *s, void *data)
2485 {
2486 struct drm_encoder *drm_enc = s->private;
2487 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(drm_enc);
2488 int i;
2489
2490 mutex_lock(&dpu_enc->enc_lock);
2491 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2492 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2493
2494 seq_printf(s, "intf:%d wb:%d vsync:%8d underrun:%8d frame_done_cnt:%d",
2495 phys->hw_intf ? phys->hw_intf->idx - INTF_0 : -1,
2496 phys->hw_wb ? phys->hw_wb->idx - WB_0 : -1,
2497 atomic_read(&phys->vsync_cnt),
2498 atomic_read(&phys->underrun_cnt),
2499 atomic_read(&dpu_enc->frame_done_timeout_cnt));
2500
2501 seq_printf(s, "mode: %s\n", dpu_encoder_helper_get_intf_type(phys->intf_mode));
2502 }
2503 mutex_unlock(&dpu_enc->enc_lock);
2504
2505 return 0;
2506 }
2507
2508 DEFINE_SHOW_ATTRIBUTE(_dpu_encoder_status);
2509
dpu_encoder_debugfs_init(struct drm_encoder * drm_enc,struct dentry * root)2510 static void dpu_encoder_debugfs_init(struct drm_encoder *drm_enc, struct dentry *root)
2511 {
2512 /* don't error check these */
2513 debugfs_create_file("status", 0600,
2514 root, drm_enc, &_dpu_encoder_status_fops);
2515 }
2516 #else
2517 #define dpu_encoder_debugfs_init NULL
2518 #endif
2519
dpu_encoder_virt_add_phys_encs(struct drm_device * dev,struct msm_display_info * disp_info,struct dpu_encoder_virt * dpu_enc,struct dpu_enc_phys_init_params * params)2520 static int dpu_encoder_virt_add_phys_encs(
2521 struct drm_device *dev,
2522 struct msm_display_info *disp_info,
2523 struct dpu_encoder_virt *dpu_enc,
2524 struct dpu_enc_phys_init_params *params)
2525 {
2526 struct dpu_encoder_phys *enc = NULL;
2527
2528 DPU_DEBUG_ENC(dpu_enc, "\n");
2529
2530 /*
2531 * We may create up to NUM_PHYS_ENCODER_TYPES physical encoder types
2532 * in this function, check up-front.
2533 */
2534 if (dpu_enc->num_phys_encs + NUM_PHYS_ENCODER_TYPES >=
2535 ARRAY_SIZE(dpu_enc->phys_encs)) {
2536 DPU_ERROR_ENC(dpu_enc, "too many physical encoders %d\n",
2537 dpu_enc->num_phys_encs);
2538 return -EINVAL;
2539 }
2540
2541
2542 if (disp_info->intf_type == INTF_WB) {
2543 enc = dpu_encoder_phys_wb_init(dev, params);
2544
2545 if (IS_ERR(enc)) {
2546 DPU_ERROR_ENC(dpu_enc, "failed to init wb enc: %ld\n",
2547 PTR_ERR(enc));
2548 return PTR_ERR(enc);
2549 }
2550
2551 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2552 ++dpu_enc->num_phys_encs;
2553 } else if (disp_info->is_cmd_mode) {
2554 enc = dpu_encoder_phys_cmd_init(dev, params);
2555
2556 if (IS_ERR(enc)) {
2557 DPU_ERROR_ENC(dpu_enc, "failed to init cmd enc: %ld\n",
2558 PTR_ERR(enc));
2559 return PTR_ERR(enc);
2560 }
2561
2562 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2563 ++dpu_enc->num_phys_encs;
2564 } else {
2565 enc = dpu_encoder_phys_vid_init(dev, params);
2566
2567 if (IS_ERR(enc)) {
2568 DPU_ERROR_ENC(dpu_enc, "failed to init vid enc: %ld\n",
2569 PTR_ERR(enc));
2570 return PTR_ERR(enc);
2571 }
2572
2573 dpu_enc->phys_encs[dpu_enc->num_phys_encs] = enc;
2574 ++dpu_enc->num_phys_encs;
2575 }
2576
2577 if (params->split_role == ENC_ROLE_SLAVE)
2578 dpu_enc->cur_slave = enc;
2579 else
2580 dpu_enc->cur_master = enc;
2581
2582 return 0;
2583 }
2584
2585 /**
2586 * dpu_encoder_get_clones - Calculate the possible_clones for DPU encoder
2587 * @drm_enc: DRM encoder pointer
2588 * Returns: possible_clones mask
2589 */
dpu_encoder_get_clones(struct drm_encoder * drm_enc)2590 uint32_t dpu_encoder_get_clones(struct drm_encoder *drm_enc)
2591 {
2592 struct drm_encoder *curr;
2593 int type = drm_enc->encoder_type;
2594 uint32_t clone_mask = drm_encoder_mask(drm_enc);
2595
2596 /*
2597 * Set writeback as possible clones of real-time DSI encoders and vice
2598 * versa
2599 *
2600 * Writeback encoders can't be clones of each other and DSI
2601 * encoders can't be clones of each other.
2602 *
2603 * TODO: Add DP encoders as valid possible clones for writeback encoders
2604 * (and vice versa) once concurrent writeback has been validated for DP
2605 */
2606 drm_for_each_encoder(curr, drm_enc->dev) {
2607 if ((type == DRM_MODE_ENCODER_VIRTUAL &&
2608 curr->encoder_type == DRM_MODE_ENCODER_DSI) ||
2609 (type == DRM_MODE_ENCODER_DSI &&
2610 curr->encoder_type == DRM_MODE_ENCODER_VIRTUAL))
2611 clone_mask |= drm_encoder_mask(curr);
2612 }
2613
2614 return clone_mask;
2615 }
2616
dpu_encoder_setup_display(struct dpu_encoder_virt * dpu_enc,struct dpu_kms * dpu_kms,struct msm_display_info * disp_info)2617 static int dpu_encoder_setup_display(struct dpu_encoder_virt *dpu_enc,
2618 struct dpu_kms *dpu_kms,
2619 struct msm_display_info *disp_info)
2620 {
2621 int ret = 0;
2622 int i = 0;
2623 struct dpu_enc_phys_init_params phys_params;
2624
2625 if (!dpu_enc) {
2626 DPU_ERROR("invalid arg(s), enc %d\n", dpu_enc != NULL);
2627 return -EINVAL;
2628 }
2629
2630 dpu_enc->cur_master = NULL;
2631
2632 memset(&phys_params, 0, sizeof(phys_params));
2633 phys_params.dpu_kms = dpu_kms;
2634 phys_params.parent = &dpu_enc->base;
2635 phys_params.enc_spinlock = &dpu_enc->enc_spinlock;
2636
2637 WARN_ON(disp_info->num_of_h_tiles < 1);
2638
2639 DPU_DEBUG("dsi_info->num_of_h_tiles %d\n", disp_info->num_of_h_tiles);
2640
2641 if (disp_info->intf_type != INTF_WB)
2642 dpu_enc->idle_pc_supported =
2643 dpu_kms->catalog->caps->has_idle_pc;
2644
2645 mutex_lock(&dpu_enc->enc_lock);
2646 for (i = 0; i < disp_info->num_of_h_tiles && !ret; i++) {
2647 /*
2648 * Left-most tile is at index 0, content is controller id
2649 * h_tile_instance_ids[2] = {0, 1}; DSI0 = left, DSI1 = right
2650 * h_tile_instance_ids[2] = {1, 0}; DSI1 = left, DSI0 = right
2651 */
2652 u32 controller_id = disp_info->h_tile_instance[i];
2653
2654 if (disp_info->num_of_h_tiles > 1) {
2655 if (i == 0)
2656 phys_params.split_role = ENC_ROLE_MASTER;
2657 else
2658 phys_params.split_role = ENC_ROLE_SLAVE;
2659 } else {
2660 phys_params.split_role = ENC_ROLE_SOLO;
2661 }
2662
2663 DPU_DEBUG("h_tile_instance %d = %d, split_role %d\n",
2664 i, controller_id, phys_params.split_role);
2665
2666 phys_params.hw_intf = dpu_encoder_get_intf(dpu_kms->catalog, &dpu_kms->rm,
2667 disp_info->intf_type,
2668 controller_id);
2669
2670 if (disp_info->intf_type == INTF_WB && controller_id < WB_MAX)
2671 phys_params.hw_wb = dpu_rm_get_wb(&dpu_kms->rm, controller_id);
2672
2673 if (!phys_params.hw_intf && !phys_params.hw_wb) {
2674 DPU_ERROR_ENC(dpu_enc, "no intf or wb block assigned at idx: %d\n", i);
2675 ret = -EINVAL;
2676 break;
2677 }
2678
2679 if (phys_params.hw_intf && phys_params.hw_wb) {
2680 DPU_ERROR_ENC(dpu_enc,
2681 "invalid phys both intf and wb block at idx: %d\n", i);
2682 ret = -EINVAL;
2683 break;
2684 }
2685
2686 ret = dpu_encoder_virt_add_phys_encs(dpu_kms->dev, disp_info,
2687 dpu_enc, &phys_params);
2688 if (ret) {
2689 DPU_ERROR_ENC(dpu_enc, "failed to add phys encs\n");
2690 break;
2691 }
2692 }
2693
2694 mutex_unlock(&dpu_enc->enc_lock);
2695
2696 return ret;
2697 }
2698
dpu_encoder_frame_done_timeout(struct timer_list * t)2699 static void dpu_encoder_frame_done_timeout(struct timer_list *t)
2700 {
2701 struct dpu_encoder_virt *dpu_enc = timer_container_of(dpu_enc, t,
2702 frame_done_timer);
2703 struct drm_encoder *drm_enc = &dpu_enc->base;
2704 u32 event;
2705
2706 if (!drm_enc->dev) {
2707 DPU_ERROR("invalid parameters\n");
2708 return;
2709 }
2710
2711 if (!dpu_enc->frame_busy_mask[0] || !dpu_enc->crtc) {
2712 DRM_DEBUG_KMS("id:%u invalid timeout frame_busy_mask=%lu\n",
2713 DRMID(drm_enc), dpu_enc->frame_busy_mask[0]);
2714 return;
2715 } else if (!atomic_xchg(&dpu_enc->frame_done_timeout_ms, 0)) {
2716 DRM_DEBUG_KMS("id:%u invalid timeout\n", DRMID(drm_enc));
2717 return;
2718 }
2719
2720 DPU_ERROR_ENC_RATELIMITED(dpu_enc, "frame done timeout\n");
2721
2722 if (atomic_inc_return(&dpu_enc->frame_done_timeout_cnt) == 1)
2723 msm_disp_snapshot_state(drm_enc->dev);
2724
2725 event = DPU_ENCODER_FRAME_EVENT_ERROR;
2726 trace_dpu_enc_frame_done_timeout(DRMID(drm_enc), event);
2727 dpu_crtc_frame_event_cb(dpu_enc->crtc, event);
2728 }
2729
2730 static const struct drm_encoder_helper_funcs dpu_encoder_helper_funcs = {
2731 .atomic_mode_set = dpu_encoder_virt_atomic_mode_set,
2732 .atomic_disable = dpu_encoder_virt_atomic_disable,
2733 .atomic_enable = dpu_encoder_virt_atomic_enable,
2734 };
2735
2736 static const struct drm_encoder_funcs dpu_encoder_funcs = {
2737 .debugfs_init = dpu_encoder_debugfs_init,
2738 };
2739
2740 /**
2741 * dpu_encoder_init - initialize virtual encoder object
2742 * @dev: Pointer to drm device structure
2743 * @drm_enc_mode: corresponding DRM_MODE_ENCODER_* constant
2744 * @disp_info: Pointer to display information structure
2745 * Returns: Pointer to newly created drm encoder
2746 */
dpu_encoder_init(struct drm_device * dev,int drm_enc_mode,struct msm_display_info * disp_info)2747 struct drm_encoder *dpu_encoder_init(struct drm_device *dev,
2748 int drm_enc_mode,
2749 struct msm_display_info *disp_info)
2750 {
2751 struct msm_drm_private *priv = dev->dev_private;
2752 struct dpu_kms *dpu_kms = to_dpu_kms(priv->kms);
2753 struct dpu_encoder_virt *dpu_enc;
2754 int ret;
2755
2756 dpu_enc = drmm_encoder_alloc(dev, struct dpu_encoder_virt, base,
2757 &dpu_encoder_funcs, drm_enc_mode, NULL);
2758 if (IS_ERR(dpu_enc))
2759 return ERR_CAST(dpu_enc);
2760
2761 drm_encoder_helper_add(&dpu_enc->base, &dpu_encoder_helper_funcs);
2762
2763 spin_lock_init(&dpu_enc->enc_spinlock);
2764 dpu_enc->enabled = false;
2765 mutex_init(&dpu_enc->enc_lock);
2766 mutex_init(&dpu_enc->rc_lock);
2767
2768 ret = dpu_encoder_setup_display(dpu_enc, dpu_kms, disp_info);
2769 if (ret) {
2770 DPU_ERROR("failed to setup encoder\n");
2771 return ERR_PTR(-ENOMEM);
2772 }
2773
2774 atomic_set(&dpu_enc->frame_done_timeout_ms, 0);
2775 atomic_set(&dpu_enc->frame_done_timeout_cnt, 0);
2776 timer_setup(&dpu_enc->frame_done_timer,
2777 dpu_encoder_frame_done_timeout, 0);
2778
2779 INIT_DELAYED_WORK(&dpu_enc->delayed_off_work,
2780 dpu_encoder_off_work);
2781 dpu_enc->idle_timeout = IDLE_TIMEOUT;
2782
2783 memcpy(&dpu_enc->disp_info, disp_info, sizeof(*disp_info));
2784
2785 DPU_DEBUG_ENC(dpu_enc, "created\n");
2786
2787 return &dpu_enc->base;
2788 }
2789
2790 /**
2791 * dpu_encoder_wait_for_commit_done() - Wait for encoder to flush pending state
2792 * @drm_enc: encoder pointer
2793 *
2794 * Wait for hardware to have flushed the current pending changes to hardware at
2795 * a vblank or CTL_START. Physical encoders will map this differently depending
2796 * on the type: vid mode -> vsync_irq, cmd mode -> CTL_START.
2797 *
2798 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2799 */
dpu_encoder_wait_for_commit_done(struct drm_encoder * drm_enc)2800 int dpu_encoder_wait_for_commit_done(struct drm_encoder *drm_enc)
2801 {
2802 struct dpu_encoder_virt *dpu_enc = NULL;
2803 int i, ret = 0;
2804
2805 if (!drm_enc) {
2806 DPU_ERROR("invalid encoder\n");
2807 return -EINVAL;
2808 }
2809 dpu_enc = to_dpu_encoder_virt(drm_enc);
2810 DPU_DEBUG_ENC(dpu_enc, "\n");
2811
2812 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2813 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2814
2815 if (phys->ops.wait_for_commit_done) {
2816 DPU_ATRACE_BEGIN("wait_for_commit_done");
2817 ret = phys->ops.wait_for_commit_done(phys);
2818 DPU_ATRACE_END("wait_for_commit_done");
2819 if (ret == -ETIMEDOUT && !dpu_enc->commit_done_timedout) {
2820 dpu_enc->commit_done_timedout = true;
2821 msm_disp_snapshot_state(drm_enc->dev);
2822 }
2823 if (ret)
2824 return ret;
2825 }
2826 }
2827
2828 return ret;
2829 }
2830
2831 /**
2832 * dpu_encoder_wait_for_tx_complete() - Wait for encoder to transfer pixels to panel
2833 * @drm_enc: encoder pointer
2834 *
2835 * Wait for the hardware to transfer all the pixels to the panel. Physical
2836 * encoders will map this differently depending on the type: vid mode -> vsync_irq,
2837 * cmd mode -> pp_done.
2838 *
2839 * Return: 0 on success, -EWOULDBLOCK if already signaled, error otherwise
2840 */
dpu_encoder_wait_for_tx_complete(struct drm_encoder * drm_enc)2841 int dpu_encoder_wait_for_tx_complete(struct drm_encoder *drm_enc)
2842 {
2843 struct dpu_encoder_virt *dpu_enc = NULL;
2844 int i, ret = 0;
2845
2846 if (!drm_enc) {
2847 DPU_ERROR("invalid encoder\n");
2848 return -EINVAL;
2849 }
2850 dpu_enc = to_dpu_encoder_virt(drm_enc);
2851 DPU_DEBUG_ENC(dpu_enc, "\n");
2852
2853 for (i = 0; i < dpu_enc->num_phys_encs; i++) {
2854 struct dpu_encoder_phys *phys = dpu_enc->phys_encs[i];
2855
2856 if (phys->ops.wait_for_tx_complete) {
2857 DPU_ATRACE_BEGIN("wait_for_tx_complete");
2858 ret = phys->ops.wait_for_tx_complete(phys);
2859 DPU_ATRACE_END("wait_for_tx_complete");
2860 if (ret)
2861 return ret;
2862 }
2863 }
2864
2865 return ret;
2866 }
2867
2868 /**
2869 * dpu_encoder_get_intf_mode - get interface mode of the given encoder
2870 * @encoder: Pointer to drm encoder object
2871 */
dpu_encoder_get_intf_mode(struct drm_encoder * encoder)2872 enum dpu_intf_mode dpu_encoder_get_intf_mode(struct drm_encoder *encoder)
2873 {
2874 struct dpu_encoder_virt *dpu_enc = NULL;
2875
2876 if (!encoder) {
2877 DPU_ERROR("invalid encoder\n");
2878 return INTF_MODE_NONE;
2879 }
2880 dpu_enc = to_dpu_encoder_virt(encoder);
2881
2882 if (dpu_enc->cur_master)
2883 return dpu_enc->cur_master->intf_mode;
2884
2885 if (dpu_enc->num_phys_encs)
2886 return dpu_enc->phys_encs[0]->intf_mode;
2887
2888 return INTF_MODE_NONE;
2889 }
2890
2891 /**
2892 * dpu_encoder_helper_get_cwb_mask - get CWB blocks mask for the DPU encoder
2893 * @phys_enc: Pointer to physical encoder structure
2894 */
dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys * phys_enc)2895 unsigned int dpu_encoder_helper_get_cwb_mask(struct dpu_encoder_phys *phys_enc)
2896 {
2897 struct drm_encoder *encoder = phys_enc->parent;
2898 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2899
2900 return dpu_enc->cwb_mask;
2901 }
2902
2903 /**
2904 * dpu_encoder_helper_get_dsc - get DSC blocks mask for the DPU encoder
2905 * This helper function is used by physical encoder to get DSC blocks mask
2906 * used for this encoder.
2907 * @phys_enc: Pointer to physical encoder structure
2908 */
dpu_encoder_helper_get_dsc(struct dpu_encoder_phys * phys_enc)2909 unsigned int dpu_encoder_helper_get_dsc(struct dpu_encoder_phys *phys_enc)
2910 {
2911 struct drm_encoder *encoder = phys_enc->parent;
2912 struct dpu_encoder_virt *dpu_enc = to_dpu_encoder_virt(encoder);
2913
2914 return dpu_enc->dsc_mask;
2915 }
2916
dpu_encoder_phys_init(struct dpu_encoder_phys * phys_enc,struct dpu_enc_phys_init_params * p)2917 void dpu_encoder_phys_init(struct dpu_encoder_phys *phys_enc,
2918 struct dpu_enc_phys_init_params *p)
2919 {
2920 phys_enc->hw_mdptop = p->dpu_kms->hw_mdp;
2921 phys_enc->hw_intf = p->hw_intf;
2922 phys_enc->hw_wb = p->hw_wb;
2923 phys_enc->parent = p->parent;
2924 phys_enc->dpu_kms = p->dpu_kms;
2925 phys_enc->split_role = p->split_role;
2926 phys_enc->enc_spinlock = p->enc_spinlock;
2927 phys_enc->enable_state = DPU_ENC_DISABLED;
2928
2929 atomic_set(&phys_enc->pending_kickoff_cnt, 0);
2930 atomic_set(&phys_enc->pending_ctlstart_cnt, 0);
2931
2932 atomic_set(&phys_enc->vsync_cnt, 0);
2933 atomic_set(&phys_enc->underrun_cnt, 0);
2934
2935 init_waitqueue_head(&phys_enc->pending_kickoff_wq);
2936 }
2937