xref: /linux/drivers/gpu/drm/amd/display/dc/dpp/dcn10/dcn10_dpp_cm.c (revision de848da12f752170c2ebe114804a985314fd5a6a)
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25 
26 #include "dm_services.h"
27 
28 #include "core_types.h"
29 
30 #include "reg_helper.h"
31 #include "dcn10/dcn10_dpp.h"
32 #include "basics/conversion.h"
33 #include "dcn10/dcn10_cm_common.h"
34 
35 #define NUM_PHASES    64
36 #define HORZ_MAX_TAPS 8
37 #define VERT_MAX_TAPS 8
38 
39 #define BLACK_OFFSET_RGB_Y 0x0
40 #define BLACK_OFFSET_CBCR  0x8000
41 
42 #define REG(reg)\
43 	dpp->tf_regs->reg
44 
45 #define CTX \
46 	dpp->base.ctx
47 
48 #undef FN
49 #define FN(reg_name, field_name) \
50 	dpp->tf_shift->field_name, dpp->tf_mask->field_name
51 
52 #define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))
53 
54 
55 enum dcn10_coef_filter_type_sel {
56 	SCL_COEF_LUMA_VERT_FILTER = 0,
57 	SCL_COEF_LUMA_HORZ_FILTER = 1,
58 	SCL_COEF_CHROMA_VERT_FILTER = 2,
59 	SCL_COEF_CHROMA_HORZ_FILTER = 3,
60 	SCL_COEF_ALPHA_VERT_FILTER = 4,
61 	SCL_COEF_ALPHA_HORZ_FILTER = 5
62 };
63 
64 enum dscl_autocal_mode {
65 	AUTOCAL_MODE_OFF = 0,
66 
67 	/* Autocal calculate the scaling ratio and initial phase and the
68 	 * DSCL_MODE_SEL must be set to 1
69 	 */
70 	AUTOCAL_MODE_AUTOSCALE = 1,
71 	/* Autocal perform auto centering without replication and the
72 	 * DSCL_MODE_SEL must be set to 0
73 	 */
74 	AUTOCAL_MODE_AUTOCENTER = 2,
75 	/* Autocal perform auto centering and auto replication and the
76 	 * DSCL_MODE_SEL must be set to 0
77 	 */
78 	AUTOCAL_MODE_AUTOREPLICATE = 3
79 };
80 
81 enum dscl_mode_sel {
82 	DSCL_MODE_SCALING_444_BYPASS = 0,
83 	DSCL_MODE_SCALING_444_RGB_ENABLE = 1,
84 	DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2,
85 	DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3,
86 	DSCL_MODE_SCALING_420_LUMA_BYPASS = 4,
87 	DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5,
88 	DSCL_MODE_DSCL_BYPASS = 6
89 };
90 
91 static void program_gamut_remap(
92 		struct dcn10_dpp *dpp,
93 		const uint16_t *regval,
94 		enum gamut_remap_select select)
95 {
96 	uint16_t selection = 0;
97 	struct color_matrices_reg gam_regs;
98 
99 	if (regval == NULL || select == GAMUT_REMAP_BYPASS) {
100 		REG_SET(CM_GAMUT_REMAP_CONTROL, 0,
101 			CM_GAMUT_REMAP_MODE, 0);
102 		return;
103 	}
104 	switch (select) {
105 	case GAMUT_REMAP_COEFF:
106 		selection = 1;
107 		break;
108 	case GAMUT_REMAP_COMA_COEFF:
109 		selection = 2;
110 		break;
111 	case GAMUT_REMAP_COMB_COEFF:
112 		selection = 3;
113 		break;
114 	default:
115 		break;
116 	}
117 
118 	gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11;
119 	gam_regs.masks.csc_c11  = dpp->tf_mask->CM_GAMUT_REMAP_C11;
120 	gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12;
121 	gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12;
122 
123 
124 	if (select == GAMUT_REMAP_COEFF) {
125 		gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12);
126 		gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34);
127 
128 		cm_helper_program_color_matrices(
129 				dpp->base.ctx,
130 				regval,
131 				&gam_regs);
132 
133 	} else  if (select == GAMUT_REMAP_COMA_COEFF) {
134 
135 		gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
136 		gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
137 
138 		cm_helper_program_color_matrices(
139 				dpp->base.ctx,
140 				regval,
141 				&gam_regs);
142 
143 	} else {
144 
145 		gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
146 		gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
147 
148 		cm_helper_program_color_matrices(
149 				dpp->base.ctx,
150 				regval,
151 				&gam_regs);
152 	}
153 
154 	REG_SET(
155 			CM_GAMUT_REMAP_CONTROL, 0,
156 			CM_GAMUT_REMAP_MODE, selection);
157 
158 }
159 
160 void dpp1_cm_set_gamut_remap(
161 	struct dpp *dpp_base,
162 	const struct dpp_grph_csc_adjustment *adjust)
163 {
164 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
165 	int i = 0;
166 
167 	if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
168 		/* Bypass if type is bypass or hw */
169 		program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS);
170 	else {
171 		struct fixed31_32 arr_matrix[12];
172 		uint16_t arr_reg_val[12];
173 
174 		for (i = 0; i < 12; i++)
175 			arr_matrix[i] = adjust->temperature_matrix[i];
176 
177 		convert_float_matrix(
178 			arr_reg_val, arr_matrix, 12);
179 
180 		program_gamut_remap(dpp, arr_reg_val, GAMUT_REMAP_COEFF);
181 	}
182 }
183 
184 static void read_gamut_remap(struct dcn10_dpp *dpp,
185 			     uint16_t *regval,
186 			     enum gamut_remap_select *select)
187 {
188 	struct color_matrices_reg gam_regs;
189 	uint32_t selection;
190 
191 	REG_GET(CM_GAMUT_REMAP_CONTROL,
192 					CM_GAMUT_REMAP_MODE, &selection);
193 
194 	*select = selection;
195 
196 	gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11;
197 	gam_regs.masks.csc_c11  = dpp->tf_mask->CM_GAMUT_REMAP_C11;
198 	gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12;
199 	gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12;
200 
201 	if (*select == GAMUT_REMAP_COEFF) {
202 
203 		gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12);
204 		gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34);
205 
206 		cm_helper_read_color_matrices(
207 				dpp->base.ctx,
208 				regval,
209 				&gam_regs);
210 
211 	} else if (*select == GAMUT_REMAP_COMA_COEFF) {
212 
213 		gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
214 		gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
215 
216 		cm_helper_read_color_matrices(
217 				dpp->base.ctx,
218 				regval,
219 				&gam_regs);
220 
221 	} else if (*select == GAMUT_REMAP_COMB_COEFF) {
222 
223 		gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
224 		gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
225 
226 		cm_helper_read_color_matrices(
227 				dpp->base.ctx,
228 				regval,
229 				&gam_regs);
230 	}
231 }
232 
233 void dpp1_cm_get_gamut_remap(struct dpp *dpp_base,
234 			     struct dpp_grph_csc_adjustment *adjust)
235 {
236 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
237 	uint16_t arr_reg_val[12] = {0};
238 	enum gamut_remap_select select;
239 
240 	read_gamut_remap(dpp, arr_reg_val, &select);
241 
242 	if (select == GAMUT_REMAP_BYPASS) {
243 		adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS;
244 		return;
245 	}
246 
247 	adjust->gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW;
248 	convert_hw_matrix(adjust->temperature_matrix,
249 			  arr_reg_val, ARRAY_SIZE(arr_reg_val));
250 }
251 
252 static void dpp1_cm_program_color_matrix(
253 		struct dcn10_dpp *dpp,
254 		const uint16_t *regval)
255 {
256 	uint32_t ocsc_mode;
257 	uint32_t cur_mode;
258 	struct color_matrices_reg gam_regs;
259 
260 	if (regval == NULL) {
261 		BREAK_TO_DEBUGGER();
262 		return;
263 	}
264 
265 	/* determine which CSC matrix (ocsc or comb) we are using
266 	 * currently.  select the alternate set to double buffer
267 	 * the CSC update so CSC is updated on frame boundary
268 	 */
269 	REG_SET(CM_TEST_DEBUG_INDEX, 0,
270 			CM_TEST_DEBUG_INDEX, 9);
271 
272 	REG_GET(CM_TEST_DEBUG_DATA,
273 			CM_TEST_DEBUG_DATA_ID9_OCSC_MODE, &cur_mode);
274 
275 	if (cur_mode != 4)
276 		ocsc_mode = 4;
277 	else
278 		ocsc_mode = 5;
279 
280 
281 	gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_OCSC_C11;
282 	gam_regs.masks.csc_c11  = dpp->tf_mask->CM_OCSC_C11;
283 	gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_OCSC_C12;
284 	gam_regs.masks.csc_c12 = dpp->tf_mask->CM_OCSC_C12;
285 
286 	if (ocsc_mode == 4) {
287 
288 		gam_regs.csc_c11_c12 = REG(CM_OCSC_C11_C12);
289 		gam_regs.csc_c33_c34 = REG(CM_OCSC_C33_C34);
290 
291 	} else {
292 
293 		gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
294 		gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
295 
296 	}
297 
298 	cm_helper_program_color_matrices(
299 			dpp->base.ctx,
300 			regval,
301 			&gam_regs);
302 
303 	REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode);
304 
305 }
306 
307 void dpp1_cm_set_output_csc_default(
308 		struct dpp *dpp_base,
309 		enum dc_color_space colorspace)
310 {
311 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
312 	const uint16_t *regval = NULL;
313 	int arr_size;
314 
315 	regval = find_color_matrix(colorspace, &arr_size);
316 	if (regval == NULL) {
317 		BREAK_TO_DEBUGGER();
318 		return;
319 	}
320 
321 	dpp1_cm_program_color_matrix(dpp, regval);
322 }
323 
324 static void dpp1_cm_get_reg_field(
325 		struct dcn10_dpp *dpp,
326 		struct xfer_func_reg *reg)
327 {
328 	reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
329 	reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
330 	reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
331 	reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
332 	reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
333 	reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
334 	reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
335 	reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
336 
337 	reg->shifts.field_region_end = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_B;
338 	reg->masks.field_region_end = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_B;
339 	reg->shifts.field_region_end_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
340 	reg->masks.field_region_end_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
341 	reg->shifts.field_region_end_base = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
342 	reg->masks.field_region_end_base = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
343 	reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
344 	reg->masks.field_region_linear_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
345 	reg->shifts.exp_region_start = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_B;
346 	reg->masks.exp_region_start = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_B;
347 	reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
348 	reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
349 }
350 
351 static void dpp1_cm_get_degamma_reg_field(
352 		struct dcn10_dpp *dpp,
353 		struct xfer_func_reg *reg)
354 {
355 	reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET;
356 	reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET;
357 	reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
358 	reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
359 	reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET;
360 	reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET;
361 	reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
362 	reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
363 
364 	reg->shifts.field_region_end = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_B;
365 	reg->masks.field_region_end = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_B;
366 	reg->shifts.field_region_end_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B;
367 	reg->masks.field_region_end_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B;
368 	reg->shifts.field_region_end_base = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_BASE_B;
369 	reg->masks.field_region_end_base = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_BASE_B;
370 	reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
371 	reg->masks.field_region_linear_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
372 	reg->shifts.exp_region_start = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_B;
373 	reg->masks.exp_region_start = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_B;
374 	reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B;
375 	reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B;
376 }
377 void dpp1_cm_set_output_csc_adjustment(
378 		struct dpp *dpp_base,
379 		const uint16_t *regval)
380 {
381 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
382 
383 	dpp1_cm_program_color_matrix(dpp, regval);
384 }
385 
386 void dpp1_cm_power_on_regamma_lut(struct dpp *dpp_base,
387 				  bool power_on)
388 {
389 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
390 
391 	REG_SET(CM_MEM_PWR_CTRL, 0,
392 		RGAM_MEM_PWR_FORCE, power_on == true ? 0:1);
393 
394 }
395 
396 void dpp1_cm_program_regamma_lut(struct dpp *dpp_base,
397 				 const struct pwl_result_data *rgb,
398 				 uint32_t num)
399 {
400 	uint32_t i;
401 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
402 
403 	REG_SEQ_START();
404 
405 	for (i = 0 ; i < num; i++) {
406 		REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].red_reg);
407 		REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].green_reg);
408 		REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].blue_reg);
409 
410 		REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_red_reg);
411 		REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_green_reg);
412 		REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_blue_reg);
413 	}
414 
415 	REG_SEQ_SUBMIT();
416 	REG_SEQ_WAIT_DONE();
417 }
418 
419 void dpp1_cm_configure_regamma_lut(
420 		struct dpp *dpp_base,
421 		bool is_ram_a)
422 {
423 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
424 
425 	REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
426 			CM_RGAM_LUT_WRITE_EN_MASK, 7);
427 	REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
428 			CM_RGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
429 	REG_SET(CM_RGAM_LUT_INDEX, 0, CM_RGAM_LUT_INDEX, 0);
430 }
431 
432 /*program re gamma RAM A*/
433 void dpp1_cm_program_regamma_luta_settings(
434 		struct dpp *dpp_base,
435 		const struct pwl_params *params)
436 {
437 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
438 	struct xfer_func_reg gam_regs;
439 
440 	dpp1_cm_get_reg_field(dpp, &gam_regs);
441 
442 	gam_regs.start_cntl_b = REG(CM_RGAM_RAMA_START_CNTL_B);
443 	gam_regs.start_cntl_g = REG(CM_RGAM_RAMA_START_CNTL_G);
444 	gam_regs.start_cntl_r = REG(CM_RGAM_RAMA_START_CNTL_R);
445 	gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMA_SLOPE_CNTL_B);
446 	gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMA_SLOPE_CNTL_G);
447 	gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMA_SLOPE_CNTL_R);
448 	gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMA_END_CNTL1_B);
449 	gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMA_END_CNTL2_B);
450 	gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMA_END_CNTL1_G);
451 	gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMA_END_CNTL2_G);
452 	gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMA_END_CNTL1_R);
453 	gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMA_END_CNTL2_R);
454 	gam_regs.region_start = REG(CM_RGAM_RAMA_REGION_0_1);
455 	gam_regs.region_end = REG(CM_RGAM_RAMA_REGION_32_33);
456 
457 	cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
458 
459 }
460 
461 /*program re gamma RAM B*/
462 void dpp1_cm_program_regamma_lutb_settings(
463 		struct dpp *dpp_base,
464 		const struct pwl_params *params)
465 {
466 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
467 	struct xfer_func_reg gam_regs;
468 
469 	dpp1_cm_get_reg_field(dpp, &gam_regs);
470 
471 	gam_regs.start_cntl_b = REG(CM_RGAM_RAMB_START_CNTL_B);
472 	gam_regs.start_cntl_g = REG(CM_RGAM_RAMB_START_CNTL_G);
473 	gam_regs.start_cntl_r = REG(CM_RGAM_RAMB_START_CNTL_R);
474 	gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMB_SLOPE_CNTL_B);
475 	gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMB_SLOPE_CNTL_G);
476 	gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMB_SLOPE_CNTL_R);
477 	gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMB_END_CNTL1_B);
478 	gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMB_END_CNTL2_B);
479 	gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMB_END_CNTL1_G);
480 	gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMB_END_CNTL2_G);
481 	gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMB_END_CNTL1_R);
482 	gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMB_END_CNTL2_R);
483 	gam_regs.region_start = REG(CM_RGAM_RAMB_REGION_0_1);
484 	gam_regs.region_end = REG(CM_RGAM_RAMB_REGION_32_33);
485 
486 	cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
487 }
488 
489 void dpp1_program_input_csc(
490 		struct dpp *dpp_base,
491 		enum dc_color_space color_space,
492 		enum dcn10_input_csc_select input_select,
493 		const struct out_csc_color_matrix *tbl_entry)
494 {
495 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
496 	int i;
497 	int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix);
498 	const uint16_t *regval = NULL;
499 	uint32_t cur_select = 0;
500 	enum dcn10_input_csc_select select;
501 	struct color_matrices_reg gam_regs;
502 
503 	if (input_select == INPUT_CSC_SELECT_BYPASS) {
504 		REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0);
505 		return;
506 	}
507 
508 	if (tbl_entry == NULL) {
509 		for (i = 0; i < arr_size; i++)
510 			if (dpp_input_csc_matrix[i].color_space == color_space) {
511 				regval = dpp_input_csc_matrix[i].regval;
512 				break;
513 			}
514 
515 		if (regval == NULL) {
516 			BREAK_TO_DEBUGGER();
517 			return;
518 		}
519 	} else {
520 		regval = tbl_entry->regval;
521 	}
522 
523 	/* determine which CSC matrix (icsc or coma) we are using
524 	 * currently.  select the alternate set to double buffer
525 	 * the CSC update so CSC is updated on frame boundary
526 	 */
527 	REG_SET(CM_TEST_DEBUG_INDEX, 0,
528 			CM_TEST_DEBUG_INDEX, 9);
529 
530 	REG_GET(CM_TEST_DEBUG_DATA,
531 			CM_TEST_DEBUG_DATA_ID9_ICSC_MODE, &cur_select);
532 
533 	if (cur_select != INPUT_CSC_SELECT_ICSC)
534 		select = INPUT_CSC_SELECT_ICSC;
535 	else
536 		select = INPUT_CSC_SELECT_COMA;
537 
538 	gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11;
539 	gam_regs.masks.csc_c11  = dpp->tf_mask->CM_ICSC_C11;
540 	gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12;
541 	gam_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12;
542 
543 	if (select == INPUT_CSC_SELECT_ICSC) {
544 
545 		gam_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12);
546 		gam_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34);
547 
548 	} else {
549 
550 		gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
551 		gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
552 
553 	}
554 
555 	cm_helper_program_color_matrices(
556 			dpp->base.ctx,
557 			regval,
558 			&gam_regs);
559 
560 	REG_SET(CM_ICSC_CONTROL, 0,
561 				CM_ICSC_MODE, select);
562 }
563 
564 //keep here for now, decide multi dce support later
565 void dpp1_program_bias_and_scale(
566 	struct dpp *dpp_base,
567 	struct dc_bias_and_scale *params)
568 {
569 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
570 
571 	REG_SET_2(CM_BNS_VALUES_R, 0,
572 		CM_BNS_SCALE_R, params->scale_red,
573 		CM_BNS_BIAS_R, params->bias_red);
574 
575 	REG_SET_2(CM_BNS_VALUES_G, 0,
576 		CM_BNS_SCALE_G, params->scale_green,
577 		CM_BNS_BIAS_G, params->bias_green);
578 
579 	REG_SET_2(CM_BNS_VALUES_B, 0,
580 		CM_BNS_SCALE_B, params->scale_blue,
581 		CM_BNS_BIAS_B, params->bias_blue);
582 
583 }
584 
585 /*program de gamma RAM B*/
586 void dpp1_program_degamma_lutb_settings(
587 		struct dpp *dpp_base,
588 		const struct pwl_params *params)
589 {
590 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
591 	struct xfer_func_reg gam_regs;
592 
593 	dpp1_cm_get_degamma_reg_field(dpp, &gam_regs);
594 
595 	gam_regs.start_cntl_b = REG(CM_DGAM_RAMB_START_CNTL_B);
596 	gam_regs.start_cntl_g = REG(CM_DGAM_RAMB_START_CNTL_G);
597 	gam_regs.start_cntl_r = REG(CM_DGAM_RAMB_START_CNTL_R);
598 	gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMB_SLOPE_CNTL_B);
599 	gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMB_SLOPE_CNTL_G);
600 	gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMB_SLOPE_CNTL_R);
601 	gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMB_END_CNTL1_B);
602 	gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMB_END_CNTL2_B);
603 	gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMB_END_CNTL1_G);
604 	gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMB_END_CNTL2_G);
605 	gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMB_END_CNTL1_R);
606 	gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMB_END_CNTL2_R);
607 	gam_regs.region_start = REG(CM_DGAM_RAMB_REGION_0_1);
608 	gam_regs.region_end = REG(CM_DGAM_RAMB_REGION_14_15);
609 
610 
611 	cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
612 }
613 
614 /*program de gamma RAM A*/
615 void dpp1_program_degamma_luta_settings(
616 		struct dpp *dpp_base,
617 		const struct pwl_params *params)
618 {
619 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
620 	struct xfer_func_reg gam_regs;
621 
622 	dpp1_cm_get_degamma_reg_field(dpp, &gam_regs);
623 
624 	gam_regs.start_cntl_b = REG(CM_DGAM_RAMA_START_CNTL_B);
625 	gam_regs.start_cntl_g = REG(CM_DGAM_RAMA_START_CNTL_G);
626 	gam_regs.start_cntl_r = REG(CM_DGAM_RAMA_START_CNTL_R);
627 	gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMA_SLOPE_CNTL_B);
628 	gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMA_SLOPE_CNTL_G);
629 	gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMA_SLOPE_CNTL_R);
630 	gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMA_END_CNTL1_B);
631 	gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMA_END_CNTL2_B);
632 	gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMA_END_CNTL1_G);
633 	gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMA_END_CNTL2_G);
634 	gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMA_END_CNTL1_R);
635 	gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMA_END_CNTL2_R);
636 	gam_regs.region_start = REG(CM_DGAM_RAMA_REGION_0_1);
637 	gam_regs.region_end = REG(CM_DGAM_RAMA_REGION_14_15);
638 
639 	cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
640 }
641 
642 void dpp1_power_on_degamma_lut(
643 		struct dpp *dpp_base,
644 	bool power_on)
645 {
646 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
647 
648 	REG_SET(CM_MEM_PWR_CTRL, 0,
649 			SHARED_MEM_PWR_DIS, power_on ? 0:1);
650 
651 }
652 
653 static void dpp1_enable_cm_block(
654 		struct dpp *dpp_base)
655 {
656 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
657 
658 	REG_UPDATE(CM_CMOUT_CONTROL, CM_CMOUT_ROUND_TRUNC_MODE, 8);
659 	REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0);
660 }
661 
662 void dpp1_set_degamma(
663 		struct dpp *dpp_base,
664 		enum ipp_degamma_mode mode)
665 {
666 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
667 	dpp1_enable_cm_block(dpp_base);
668 
669 	switch (mode) {
670 	case IPP_DEGAMMA_MODE_BYPASS:
671 		/* Setting de gamma bypass for now */
672 		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0);
673 		break;
674 	case IPP_DEGAMMA_MODE_HW_sRGB:
675 		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1);
676 		break;
677 	case IPP_DEGAMMA_MODE_HW_xvYCC:
678 		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2);
679 			break;
680 	case IPP_DEGAMMA_MODE_USER_PWL:
681 		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
682 		break;
683 	default:
684 		BREAK_TO_DEBUGGER();
685 		break;
686 	}
687 }
688 
689 void dpp1_degamma_ram_select(
690 		struct dpp *dpp_base,
691 							bool use_ram_a)
692 {
693 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
694 
695 	if (use_ram_a)
696 		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
697 	else
698 		REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4);
699 
700 }
701 
702 static bool dpp1_degamma_ram_inuse(
703 		struct dpp *dpp_base,
704 							bool *ram_a_inuse)
705 {
706 	bool ret = false;
707 	uint32_t status_reg = 0;
708 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
709 
710 	REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
711 			&status_reg);
712 
713 	if (status_reg == 9) {
714 		*ram_a_inuse = true;
715 		ret = true;
716 	} else if (status_reg == 10) {
717 		*ram_a_inuse = false;
718 		ret = true;
719 	}
720 	return ret;
721 }
722 
723 void dpp1_program_degamma_lut(
724 		struct dpp *dpp_base,
725 		const struct pwl_result_data *rgb,
726 		uint32_t num,
727 		bool is_ram_a)
728 {
729 	uint32_t i;
730 
731 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
732 	REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0);
733 	REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK,
734 				   CM_DGAM_LUT_WRITE_EN_MASK, 7);
735 	REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL,
736 					is_ram_a == true ? 0:1);
737 
738 	REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0);
739 	for (i = 0 ; i < num; i++) {
740 		REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg);
741 		REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg);
742 		REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg);
743 
744 		REG_SET(CM_DGAM_LUT_DATA, 0,
745 				CM_DGAM_LUT_DATA, rgb[i].delta_red_reg);
746 		REG_SET(CM_DGAM_LUT_DATA, 0,
747 				CM_DGAM_LUT_DATA, rgb[i].delta_green_reg);
748 		REG_SET(CM_DGAM_LUT_DATA, 0,
749 				CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg);
750 	}
751 }
752 
753 void dpp1_set_degamma_pwl(struct dpp *dpp_base,
754 								 const struct pwl_params *params)
755 {
756 	bool is_ram_a = true;
757 
758 	dpp1_power_on_degamma_lut(dpp_base, true);
759 	dpp1_enable_cm_block(dpp_base);
760 	dpp1_degamma_ram_inuse(dpp_base, &is_ram_a);
761 	if (is_ram_a == true)
762 		dpp1_program_degamma_lutb_settings(dpp_base, params);
763 	else
764 		dpp1_program_degamma_luta_settings(dpp_base, params);
765 
766 	dpp1_program_degamma_lut(dpp_base, params->rgb_resulted,
767 							params->hw_points_num, !is_ram_a);
768 	dpp1_degamma_ram_select(dpp_base, !is_ram_a);
769 }
770 
771 void dpp1_full_bypass(struct dpp *dpp_base)
772 {
773 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
774 
775 	/* Input pixel format: ARGB8888 */
776 	REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0,
777 			CNVC_SURFACE_PIXEL_FORMAT, 0x8);
778 
779 	/* Zero expansion */
780 	REG_SET_3(FORMAT_CONTROL, 0,
781 			CNVC_BYPASS, 0,
782 			FORMAT_CONTROL__ALPHA_EN, 0,
783 			FORMAT_EXPANSION_MODE, 0);
784 
785 	/* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */
786 	if (dpp->tf_mask->CM_BYPASS_EN)
787 		REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1);
788 	else
789 		REG_SET(CM_CONTROL, 0, CM_BYPASS, 1);
790 
791 	/* Setting degamma bypass for now */
792 	REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0);
793 }
794 
795 static bool dpp1_ingamma_ram_inuse(struct dpp *dpp_base,
796 							bool *ram_a_inuse)
797 {
798 	bool in_use = false;
799 	uint32_t status_reg = 0;
800 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
801 
802 	REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
803 				&status_reg);
804 
805 	// 1 => IGAM_RAMA, 3 => IGAM_RAMA & DGAM_ROMA, 4 => IGAM_RAMA & DGAM_ROMB
806 	if (status_reg == 1 || status_reg == 3 || status_reg == 4) {
807 		*ram_a_inuse = true;
808 		in_use = true;
809 	// 2 => IGAM_RAMB, 5 => IGAM_RAMB & DGAM_ROMA, 6 => IGAM_RAMB & DGAM_ROMB
810 	} else if (status_reg == 2 || status_reg == 5 || status_reg == 6) {
811 		*ram_a_inuse = false;
812 		in_use = true;
813 	}
814 	return in_use;
815 }
816 
817 /*
818  * Input gamma LUT currently supports 256 values only. This means input color
819  * can have a maximum of 8 bits per channel (= 256 possible values) in order to
820  * have a one-to-one mapping with the LUT. Truncation will occur with color
821  * values greater than 8 bits.
822  *
823  * In the future, this function should support additional input gamma methods,
824  * such as piecewise linear mapping, and input gamma bypass.
825  */
826 void dpp1_program_input_lut(
827 		struct dpp *dpp_base,
828 		const struct dc_gamma *gamma)
829 {
830 	int i;
831 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
832 	bool rama_occupied = false;
833 	uint32_t ram_num;
834 	// Power on LUT memory.
835 	REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 1);
836 	dpp1_enable_cm_block(dpp_base);
837 	// Determine whether to use RAM A or RAM B
838 	dpp1_ingamma_ram_inuse(dpp_base, &rama_occupied);
839 	if (!rama_occupied)
840 		REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 0);
841 	else
842 		REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 1);
843 	// RW mode is 256-entry LUT
844 	REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_RW_MODE, 0);
845 	// IGAM Input format should be 8 bits per channel.
846 	REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 0);
847 	// Do not mask any R,G,B values
848 	REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_WRITE_EN_MASK, 7);
849 	// LUT-256, unsigned, integer, new u0.12 format
850 	REG_UPDATE_3(
851 		CM_IGAM_CONTROL,
852 		CM_IGAM_LUT_FORMAT_R, 3,
853 		CM_IGAM_LUT_FORMAT_G, 3,
854 		CM_IGAM_LUT_FORMAT_B, 3);
855 	// Start at index 0 of IGAM LUT
856 	REG_UPDATE(CM_IGAM_LUT_RW_INDEX, CM_IGAM_LUT_RW_INDEX, 0);
857 	for (i = 0; i < gamma->num_entries; i++) {
858 		REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
859 				dc_fixpt_round(
860 					gamma->entries.red[i]));
861 		REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
862 				dc_fixpt_round(
863 					gamma->entries.green[i]));
864 		REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
865 				dc_fixpt_round(
866 					gamma->entries.blue[i]));
867 	}
868 	// Power off LUT memory
869 	REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 0);
870 	// Enable IGAM LUT on ram we just wrote to. 2 => RAMA, 3 => RAMB
871 	REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, rama_occupied ? 3 : 2);
872 	REG_GET(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, &ram_num);
873 }
874 
875 void dpp1_set_hdr_multiplier(
876 		struct dpp *dpp_base,
877 		uint32_t multiplier)
878 {
879 	struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
880 
881 	REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier);
882 }
883