1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
2 /*
3 * Copyright 2008 - 2016 Freescale Semiconductor Inc.
4 * Copyright 2020 NXP
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/init.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
14 #include <linux/io.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/platform_device.h>
21 #include <linux/udp.h>
22 #include <linux/tcp.h>
23 #include <linux/net.h>
24 #include <linux/skbuff.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/highmem.h>
28 #include <linux/percpu.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/sort.h>
31 #include <linux/bpf.h>
32 #include <linux/bpf_trace.h>
33 #include <soc/fsl/bman.h>
34 #include <soc/fsl/qman.h>
35 #include "fman.h"
36 #include "fman_port.h"
37 #include "mac.h"
38 #include "dpaa_eth.h"
39
40 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
41 * using trace events only need to #include <trace/events/sched.h>
42 */
43 #define CREATE_TRACE_POINTS
44 #include "dpaa_eth_trace.h"
45
46 static int debug = -1;
47 module_param(debug, int, 0444);
48 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
49
50 static u16 tx_timeout = 1000;
51 module_param(tx_timeout, ushort, 0444);
52 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
53
54 #define FM_FD_STAT_RX_ERRORS \
55 (FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL | \
56 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
57 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME | \
58 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
59 FM_FD_ERR_PRS_HDR_ERR)
60
61 #define FM_FD_STAT_TX_ERRORS \
62 (FM_FD_ERR_UNSUPPORTED_FORMAT | \
63 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
64
65 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
66 NETIF_MSG_LINK | NETIF_MSG_IFUP | \
67 NETIF_MSG_IFDOWN | NETIF_MSG_HW)
68
69 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
70 /* Ingress congestion threshold on FMan ports
71 * The size in bytes of the ingress tail-drop threshold on FMan ports.
72 * Traffic piling up above this value will be rejected by QMan and discarded
73 * by FMan.
74 */
75
76 /* Size in bytes of the FQ taildrop threshold */
77 #define DPAA_FQ_TD 0x200000
78
79 #define DPAA_CS_THRESHOLD_1G 0x06000000
80 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
81 * The size in bytes of the egress Congestion State notification threshold on
82 * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
83 * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
84 * and the larger the frame size, the more acute the problem.
85 * So we have to find a balance between these factors:
86 * - avoiding the device staying congested for a prolonged time (risking
87 * the netdev watchdog to fire - see also the tx_timeout module param);
88 * - affecting performance of protocols such as TCP, which otherwise
89 * behave well under the congestion notification mechanism;
90 * - preventing the Tx cores from tightly-looping (as if the congestion
91 * threshold was too low to be effective);
92 * - running out of memory if the CS threshold is set too high.
93 */
94
95 #define DPAA_CS_THRESHOLD_10G 0x10000000
96 /* The size in bytes of the egress Congestion State notification threshold on
97 * 10G ports, range 0x1000 .. 0x10000000
98 */
99
100 /* Largest value that the FQD's OAL field can hold */
101 #define FSL_QMAN_MAX_OAL 127
102
103 /* Default alignment for start of data in an Rx FD */
104 #ifdef CONFIG_DPAA_ERRATUM_A050385
105 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
106 * is crossing a 4k page boundary
107 */
108 #define DPAA_FD_DATA_ALIGNMENT (fman_has_errata_a050385() ? 64 : 16)
109 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
110 * crossings; also, all SG fragments except the last must have a size multiple
111 * of 256 to avoid DMA transaction splits
112 */
113 #define DPAA_A050385_ALIGN 256
114 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
115 DPAA_A050385_ALIGN : 16)
116 #else
117 #define DPAA_FD_DATA_ALIGNMENT 16
118 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
119 #endif
120
121 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
122 #define DPAA_SGT_SIZE 256
123
124 /* Values for the L3R field of the FM Parse Results
125 */
126 /* L3 Type field: First IP Present IPv4 */
127 #define FM_L3_PARSE_RESULT_IPV4 0x8000
128 /* L3 Type field: First IP Present IPv6 */
129 #define FM_L3_PARSE_RESULT_IPV6 0x4000
130 /* Values for the L4R field of the FM Parse Results */
131 /* L4 Type field: UDP */
132 #define FM_L4_PARSE_RESULT_UDP 0x40
133 /* L4 Type field: TCP */
134 #define FM_L4_PARSE_RESULT_TCP 0x20
135
136 /* FD status field indicating whether the FM Parser has attempted to validate
137 * the L4 csum of the frame.
138 * Note that having this bit set doesn't necessarily imply that the checksum
139 * is valid. One would have to check the parse results to find that out.
140 */
141 #define FM_FD_STAT_L4CV 0x00000004
142
143 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
144 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
145
146 #define FSL_DPAA_BPID_INV 0xff
147 #define FSL_DPAA_ETH_MAX_BUF_COUNT 128
148 #define FSL_DPAA_ETH_REFILL_THRESHOLD 80
149
150 #define DPAA_TX_PRIV_DATA_SIZE 16
151 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
152 #define DPAA_TIME_STAMP_SIZE 8
153 #define DPAA_HASH_RESULTS_SIZE 8
154 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
155 + DPAA_HASH_RESULTS_SIZE)
156 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
157 XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
158 #ifdef CONFIG_DPAA_ERRATUM_A050385
159 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
160 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
161 DPAA_RX_PRIV_DATA_A050385_SIZE : \
162 DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
163 #else
164 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
165 #endif
166
167 #define DPAA_ETH_PCD_RXQ_NUM 128
168
169 #define DPAA_ENQUEUE_RETRIES 100000
170
171 enum port_type {RX, TX};
172
173 struct fm_port_fqs {
174 struct dpaa_fq *tx_defq;
175 struct dpaa_fq *tx_errq;
176 struct dpaa_fq *rx_defq;
177 struct dpaa_fq *rx_errq;
178 struct dpaa_fq *rx_pcdq;
179 };
180
181 /* All the dpa bps in use at any moment */
182 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
183
184 #define DPAA_BP_RAW_SIZE 4096
185
186 #ifdef CONFIG_DPAA_ERRATUM_A050385
187 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
188 ~(DPAA_A050385_ALIGN - 1))
189 #else
190 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
191 #endif
192
193 static int dpaa_max_frm;
194
195 static int dpaa_rx_extra_headroom;
196
197 #define dpaa_get_max_mtu() \
198 (dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
199
200 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
201
dpaa_netdev_init(struct net_device * net_dev,const struct net_device_ops * dpaa_ops,u16 tx_timeout)202 static int dpaa_netdev_init(struct net_device *net_dev,
203 const struct net_device_ops *dpaa_ops,
204 u16 tx_timeout)
205 {
206 struct dpaa_priv *priv = netdev_priv(net_dev);
207 struct device *dev = net_dev->dev.parent;
208 struct mac_device *mac_dev = priv->mac_dev;
209 struct dpaa_percpu_priv *percpu_priv;
210 const u8 *mac_addr;
211 int i, err;
212
213 /* Although we access another CPU's private data here
214 * we do it at initialization so it is safe
215 */
216 for_each_possible_cpu(i) {
217 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
218 percpu_priv->net_dev = net_dev;
219 }
220
221 net_dev->netdev_ops = dpaa_ops;
222 mac_addr = mac_dev->addr;
223
224 net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
225 net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
226
227 net_dev->min_mtu = ETH_MIN_MTU;
228 net_dev->max_mtu = dpaa_get_max_mtu();
229
230 net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
231 NETIF_F_RXHASH);
232
233 net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
234 /* The kernels enables GSO automatically, if we declare NETIF_F_SG.
235 * For conformity, we'll still declare GSO explicitly.
236 */
237 net_dev->features |= NETIF_F_GSO;
238 net_dev->features |= NETIF_F_RXCSUM;
239
240 net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
241 net_dev->lltx = true;
242 /* we do not want shared skbs on TX */
243 net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
244
245 net_dev->features |= net_dev->hw_features;
246 net_dev->vlan_features = net_dev->features;
247
248 net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
249 NETDEV_XDP_ACT_REDIRECT |
250 NETDEV_XDP_ACT_NDO_XMIT;
251
252 if (is_valid_ether_addr(mac_addr)) {
253 memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
254 eth_hw_addr_set(net_dev, mac_addr);
255 } else {
256 eth_hw_addr_random(net_dev);
257 err = mac_dev->change_addr(mac_dev->fman_mac,
258 (const enet_addr_t *)net_dev->dev_addr);
259 if (err) {
260 dev_err(dev, "Failed to set random MAC address\n");
261 return -EINVAL;
262 }
263 dev_info(dev, "Using random MAC address: %pM\n",
264 net_dev->dev_addr);
265 }
266
267 net_dev->ethtool_ops = &dpaa_ethtool_ops;
268
269 net_dev->needed_headroom = priv->tx_headroom;
270 net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
271
272 /* The rest of the config is filled in by the mac device already */
273 mac_dev->phylink_config.dev = &net_dev->dev;
274 mac_dev->phylink_config.type = PHYLINK_NETDEV;
275 mac_dev->update_speed = dpaa_eth_cgr_set_speed;
276 mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
277 dev_fwnode(mac_dev->dev),
278 mac_dev->phy_if,
279 mac_dev->phylink_ops);
280 if (IS_ERR(mac_dev->phylink)) {
281 err = PTR_ERR(mac_dev->phylink);
282 dev_err_probe(dev, err, "Could not create phylink\n");
283 return err;
284 }
285
286 /* start without the RUNNING flag, phylib controls it later */
287 netif_carrier_off(net_dev);
288
289 err = register_netdev(net_dev);
290 if (err < 0) {
291 dev_err(dev, "register_netdev() = %d\n", err);
292 phylink_destroy(mac_dev->phylink);
293 return err;
294 }
295
296 return 0;
297 }
298
dpaa_stop(struct net_device * net_dev)299 static int dpaa_stop(struct net_device *net_dev)
300 {
301 struct mac_device *mac_dev;
302 struct dpaa_priv *priv;
303 int i, error;
304 int err = 0;
305
306 priv = netdev_priv(net_dev);
307 mac_dev = priv->mac_dev;
308
309 netif_tx_stop_all_queues(net_dev);
310 /* Allow the Fman (Tx) port to process in-flight frames before we
311 * try switching it off.
312 */
313 msleep(200);
314
315 phylink_stop(mac_dev->phylink);
316 mac_dev->disable(mac_dev->fman_mac);
317
318 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
319 error = fman_port_disable(mac_dev->port[i]);
320 if (error)
321 err = error;
322 }
323
324 phylink_disconnect_phy(mac_dev->phylink);
325 net_dev->phydev = NULL;
326
327 msleep(200);
328
329 return err;
330 }
331
dpaa_tx_timeout(struct net_device * net_dev,unsigned int txqueue)332 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
333 {
334 struct dpaa_percpu_priv *percpu_priv;
335 const struct dpaa_priv *priv;
336
337 priv = netdev_priv(net_dev);
338 percpu_priv = this_cpu_ptr(priv->percpu_priv);
339
340 netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
341 jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
342
343 percpu_priv->stats.tx_errors++;
344 }
345
346 /* Calculates the statistics for the given device by adding the statistics
347 * collected by each CPU.
348 */
dpaa_get_stats64(struct net_device * net_dev,struct rtnl_link_stats64 * s)349 static void dpaa_get_stats64(struct net_device *net_dev,
350 struct rtnl_link_stats64 *s)
351 {
352 int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
353 struct dpaa_priv *priv = netdev_priv(net_dev);
354 struct dpaa_percpu_priv *percpu_priv;
355 u64 *netstats = (u64 *)s;
356 u64 *cpustats;
357 int i, j;
358
359 for_each_possible_cpu(i) {
360 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
361
362 cpustats = (u64 *)&percpu_priv->stats;
363
364 /* add stats from all CPUs */
365 for (j = 0; j < numstats; j++)
366 netstats[j] += cpustats[j];
367 }
368 }
369
dpaa_setup_tc(struct net_device * net_dev,enum tc_setup_type type,void * type_data)370 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
371 void *type_data)
372 {
373 struct dpaa_priv *priv = netdev_priv(net_dev);
374 int num_txqs_per_tc = dpaa_num_txqs_per_tc();
375 struct tc_mqprio_qopt *mqprio = type_data;
376 u8 num_tc;
377 int i;
378
379 if (type != TC_SETUP_QDISC_MQPRIO)
380 return -EOPNOTSUPP;
381
382 mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
383 num_tc = mqprio->num_tc;
384
385 if (num_tc == priv->num_tc)
386 return 0;
387
388 if (!num_tc) {
389 netdev_reset_tc(net_dev);
390 goto out;
391 }
392
393 if (num_tc > DPAA_TC_NUM) {
394 netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
395 DPAA_TC_NUM);
396 return -EINVAL;
397 }
398
399 netdev_set_num_tc(net_dev, num_tc);
400
401 for (i = 0; i < num_tc; i++)
402 netdev_set_tc_queue(net_dev, i, num_txqs_per_tc,
403 i * num_txqs_per_tc);
404
405 out:
406 priv->num_tc = num_tc ? : 1;
407 netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc);
408 return 0;
409 }
410
dpaa_mac_dev_get(struct platform_device * pdev)411 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
412 {
413 struct dpaa_eth_data *eth_data;
414 struct device *dpaa_dev;
415 struct mac_device *mac_dev;
416
417 dpaa_dev = &pdev->dev;
418 eth_data = dpaa_dev->platform_data;
419 if (!eth_data) {
420 dev_err(dpaa_dev, "eth_data missing\n");
421 return ERR_PTR(-ENODEV);
422 }
423 mac_dev = eth_data->mac_dev;
424 if (!mac_dev) {
425 dev_err(dpaa_dev, "mac_dev missing\n");
426 return ERR_PTR(-EINVAL);
427 }
428
429 return mac_dev;
430 }
431
dpaa_set_mac_address(struct net_device * net_dev,void * addr)432 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
433 {
434 const struct dpaa_priv *priv;
435 struct mac_device *mac_dev;
436 struct sockaddr old_addr;
437 int err;
438
439 priv = netdev_priv(net_dev);
440
441 memcpy(old_addr.sa_data, net_dev->dev_addr, ETH_ALEN);
442
443 err = eth_mac_addr(net_dev, addr);
444 if (err < 0) {
445 netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
446 return err;
447 }
448
449 mac_dev = priv->mac_dev;
450
451 err = mac_dev->change_addr(mac_dev->fman_mac,
452 (const enet_addr_t *)net_dev->dev_addr);
453 if (err < 0) {
454 netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
455 err);
456 /* reverting to previous address */
457 eth_mac_addr(net_dev, &old_addr);
458
459 return err;
460 }
461
462 return 0;
463 }
464
dpaa_addr_sync(struct net_device * net_dev,const u8 * addr)465 static int dpaa_addr_sync(struct net_device *net_dev, const u8 *addr)
466 {
467 const struct dpaa_priv *priv = netdev_priv(net_dev);
468
469 return priv->mac_dev->add_hash_mac_addr(priv->mac_dev->fman_mac,
470 (enet_addr_t *)addr);
471 }
472
dpaa_addr_unsync(struct net_device * net_dev,const u8 * addr)473 static int dpaa_addr_unsync(struct net_device *net_dev, const u8 *addr)
474 {
475 const struct dpaa_priv *priv = netdev_priv(net_dev);
476
477 return priv->mac_dev->remove_hash_mac_addr(priv->mac_dev->fman_mac,
478 (enet_addr_t *)addr);
479 }
480
dpaa_set_rx_mode(struct net_device * net_dev)481 static void dpaa_set_rx_mode(struct net_device *net_dev)
482 {
483 const struct dpaa_priv *priv;
484 int err;
485
486 priv = netdev_priv(net_dev);
487
488 if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
489 priv->mac_dev->promisc = !priv->mac_dev->promisc;
490 err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
491 priv->mac_dev->promisc);
492 if (err < 0)
493 netif_err(priv, drv, net_dev,
494 "mac_dev->set_promisc() = %d\n",
495 err);
496 }
497
498 if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
499 priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
500 err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
501 priv->mac_dev->allmulti);
502 if (err < 0)
503 netif_err(priv, drv, net_dev,
504 "mac_dev->set_allmulti() = %d\n",
505 err);
506 }
507
508 err = __dev_mc_sync(net_dev, dpaa_addr_sync, dpaa_addr_unsync);
509 if (err < 0)
510 netif_err(priv, drv, net_dev, "dpaa_addr_sync() = %d\n",
511 err);
512 }
513
dpaa_bpid2pool(int bpid)514 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
515 {
516 if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
517 return NULL;
518
519 return dpaa_bp_array[bpid];
520 }
521
522 /* checks if this bpool is already allocated */
dpaa_bpid2pool_use(int bpid)523 static bool dpaa_bpid2pool_use(int bpid)
524 {
525 if (dpaa_bpid2pool(bpid)) {
526 refcount_inc(&dpaa_bp_array[bpid]->refs);
527 return true;
528 }
529
530 return false;
531 }
532
533 /* called only once per bpid by dpaa_bp_alloc_pool() */
dpaa_bpid2pool_map(int bpid,struct dpaa_bp * dpaa_bp)534 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
535 {
536 dpaa_bp_array[bpid] = dpaa_bp;
537 refcount_set(&dpaa_bp->refs, 1);
538 }
539
dpaa_bp_alloc_pool(struct dpaa_bp * dpaa_bp)540 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
541 {
542 int err;
543
544 if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
545 pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
546 __func__);
547 return -EINVAL;
548 }
549
550 /* If the pool is already specified, we only create one per bpid */
551 if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
552 dpaa_bpid2pool_use(dpaa_bp->bpid))
553 return 0;
554
555 if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
556 dpaa_bp->pool = bman_new_pool();
557 if (!dpaa_bp->pool) {
558 pr_err("%s: bman_new_pool() failed\n",
559 __func__);
560 return -ENODEV;
561 }
562
563 dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
564 }
565
566 if (dpaa_bp->seed_cb) {
567 err = dpaa_bp->seed_cb(dpaa_bp);
568 if (err)
569 goto pool_seed_failed;
570 }
571
572 dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
573
574 return 0;
575
576 pool_seed_failed:
577 pr_err("%s: pool seeding failed\n", __func__);
578 bman_free_pool(dpaa_bp->pool);
579
580 return err;
581 }
582
583 /* remove and free all the buffers from the given buffer pool */
dpaa_bp_drain(struct dpaa_bp * bp)584 static void dpaa_bp_drain(struct dpaa_bp *bp)
585 {
586 u8 num = 8;
587 int ret;
588
589 do {
590 struct bm_buffer bmb[8];
591 int i;
592
593 ret = bman_acquire(bp->pool, bmb, num);
594 if (ret < 0) {
595 if (num == 8) {
596 /* we have less than 8 buffers left;
597 * drain them one by one
598 */
599 num = 1;
600 ret = 1;
601 continue;
602 } else {
603 /* Pool is fully drained */
604 break;
605 }
606 }
607
608 if (bp->free_buf_cb)
609 for (i = 0; i < num; i++)
610 bp->free_buf_cb(bp, &bmb[i]);
611 } while (ret > 0);
612 }
613
dpaa_bp_free(struct dpaa_bp * dpaa_bp)614 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
615 {
616 struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
617
618 /* the mapping between bpid and dpaa_bp is done very late in the
619 * allocation procedure; if something failed before the mapping, the bp
620 * was not configured, therefore we don't need the below instructions
621 */
622 if (!bp)
623 return;
624
625 if (!refcount_dec_and_test(&bp->refs))
626 return;
627
628 if (bp->free_buf_cb)
629 dpaa_bp_drain(bp);
630
631 dpaa_bp_array[bp->bpid] = NULL;
632 bman_free_pool(bp->pool);
633 }
634
dpaa_bps_free(struct dpaa_priv * priv)635 static void dpaa_bps_free(struct dpaa_priv *priv)
636 {
637 dpaa_bp_free(priv->dpaa_bp);
638 }
639
640 /* Use multiple WQs for FQ assignment:
641 * - Tx Confirmation queues go to WQ1.
642 * - Rx Error and Tx Error queues go to WQ5 (giving them a better chance
643 * to be scheduled, in case there are many more FQs in WQ6).
644 * - Rx Default goes to WQ6.
645 * - Tx queues go to different WQs depending on their priority. Equal
646 * chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
647 * WQ0 (highest priority).
648 * This ensures that Tx-confirmed buffers are timely released. In particular,
649 * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
650 * are greatly outnumbered by other FQs in the system, while
651 * dequeue scheduling is round-robin.
652 */
dpaa_assign_wq(struct dpaa_fq * fq,int idx)653 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
654 {
655 switch (fq->fq_type) {
656 case FQ_TYPE_TX_CONFIRM:
657 case FQ_TYPE_TX_CONF_MQ:
658 fq->wq = 1;
659 break;
660 case FQ_TYPE_RX_ERROR:
661 case FQ_TYPE_TX_ERROR:
662 fq->wq = 5;
663 break;
664 case FQ_TYPE_RX_DEFAULT:
665 case FQ_TYPE_RX_PCD:
666 fq->wq = 6;
667 break;
668 case FQ_TYPE_TX:
669 switch (idx / dpaa_num_txqs_per_tc()) {
670 case 0:
671 /* Low priority (best effort) */
672 fq->wq = 6;
673 break;
674 case 1:
675 /* Medium priority */
676 fq->wq = 2;
677 break;
678 case 2:
679 /* High priority */
680 fq->wq = 1;
681 break;
682 case 3:
683 /* Very high priority */
684 fq->wq = 0;
685 break;
686 default:
687 WARN(1, "Too many TX FQs: more than %zu!\n",
688 dpaa_max_num_txqs());
689 }
690 break;
691 default:
692 WARN(1, "Invalid FQ type %d for FQID %d!\n",
693 fq->fq_type, fq->fqid);
694 }
695 }
696
dpaa_fq_alloc(struct device * dev,u32 start,u32 count,struct list_head * list,enum dpaa_fq_type fq_type)697 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
698 u32 start, u32 count,
699 struct list_head *list,
700 enum dpaa_fq_type fq_type)
701 {
702 struct dpaa_fq *dpaa_fq;
703 int i;
704
705 dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
706 GFP_KERNEL);
707 if (!dpaa_fq)
708 return NULL;
709
710 for (i = 0; i < count; i++) {
711 dpaa_fq[i].fq_type = fq_type;
712 dpaa_fq[i].fqid = start ? start + i : 0;
713 list_add_tail(&dpaa_fq[i].list, list);
714 }
715
716 for (i = 0; i < count; i++)
717 dpaa_assign_wq(dpaa_fq + i, i);
718
719 return dpaa_fq;
720 }
721
dpaa_alloc_all_fqs(struct device * dev,struct list_head * list,struct fm_port_fqs * port_fqs)722 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
723 struct fm_port_fqs *port_fqs)
724 {
725 struct dpaa_fq *dpaa_fq;
726 u32 fq_base, fq_base_aligned, i;
727
728 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
729 if (!dpaa_fq)
730 goto fq_alloc_failed;
731
732 port_fqs->rx_errq = &dpaa_fq[0];
733
734 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
735 if (!dpaa_fq)
736 goto fq_alloc_failed;
737
738 port_fqs->rx_defq = &dpaa_fq[0];
739
740 /* the PCD FQIDs range needs to be aligned for correct operation */
741 if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
742 goto fq_alloc_failed;
743
744 fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
745
746 for (i = fq_base; i < fq_base_aligned; i++)
747 qman_release_fqid(i);
748
749 for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
750 i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
751 qman_release_fqid(i);
752
753 dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
754 list, FQ_TYPE_RX_PCD);
755 if (!dpaa_fq)
756 goto fq_alloc_failed;
757
758 port_fqs->rx_pcdq = &dpaa_fq[0];
759
760 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list,
761 FQ_TYPE_TX_CONF_MQ))
762 goto fq_alloc_failed;
763
764 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
765 if (!dpaa_fq)
766 goto fq_alloc_failed;
767
768 port_fqs->tx_errq = &dpaa_fq[0];
769
770 dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
771 if (!dpaa_fq)
772 goto fq_alloc_failed;
773
774 port_fqs->tx_defq = &dpaa_fq[0];
775
776 if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX))
777 goto fq_alloc_failed;
778
779 return 0;
780
781 fq_alloc_failed:
782 dev_err(dev, "dpaa_fq_alloc() failed\n");
783 return -ENOMEM;
784 }
785
786 static u32 rx_pool_channel;
787 static DEFINE_SPINLOCK(rx_pool_channel_init);
788
dpaa_get_channel(void)789 static int dpaa_get_channel(void)
790 {
791 spin_lock(&rx_pool_channel_init);
792 if (!rx_pool_channel) {
793 u32 pool;
794 int ret;
795
796 ret = qman_alloc_pool(&pool);
797
798 if (!ret)
799 rx_pool_channel = pool;
800 }
801 spin_unlock(&rx_pool_channel_init);
802 if (!rx_pool_channel)
803 return -ENOMEM;
804 return rx_pool_channel;
805 }
806
dpaa_release_channel(void)807 static void dpaa_release_channel(void)
808 {
809 qman_release_pool(rx_pool_channel);
810 }
811
dpaa_eth_add_channel(u16 channel,struct device * dev)812 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
813 {
814 u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
815 const cpumask_t *cpus = qman_affine_cpus();
816 struct qman_portal *portal;
817 int cpu;
818
819 for_each_cpu_and(cpu, cpus, cpu_online_mask) {
820 portal = qman_get_affine_portal(cpu);
821 qman_p_static_dequeue_add(portal, pool);
822 qman_start_using_portal(portal, dev);
823 }
824 }
825
826 /* Congestion group state change notification callback.
827 * Stops the device's egress queues while they are congested and
828 * wakes them upon exiting congested state.
829 * Also updates some CGR-related stats.
830 */
dpaa_eth_cgscn(struct qman_portal * qm,struct qman_cgr * cgr,int congested)831 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
832 int congested)
833 {
834 struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
835 struct dpaa_priv, cgr_data.cgr);
836
837 if (congested) {
838 priv->cgr_data.congestion_start_jiffies = jiffies;
839 netif_tx_stop_all_queues(priv->net_dev);
840 priv->cgr_data.cgr_congested_count++;
841 } else {
842 priv->cgr_data.congested_jiffies +=
843 (jiffies - priv->cgr_data.congestion_start_jiffies);
844 netif_tx_wake_all_queues(priv->net_dev);
845 }
846 }
847
dpaa_eth_cgr_init(struct dpaa_priv * priv)848 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
849 {
850 struct qm_mcc_initcgr initcgr;
851 u32 cs_th;
852 int err;
853
854 err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
855 if (err < 0) {
856 if (netif_msg_drv(priv))
857 pr_err("%s: Error %d allocating CGR ID\n",
858 __func__, err);
859 goto out_error;
860 }
861 priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
862
863 /* Enable Congestion State Change Notifications and CS taildrop */
864 memset(&initcgr, 0, sizeof(initcgr));
865 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
866 initcgr.cgr.cscn_en = QM_CGR_EN;
867
868 /* Set different thresholds based on the configured MAC speed.
869 * This may turn suboptimal if the MAC is reconfigured at another
870 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
871 * callback.
872 */
873 if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
874 cs_th = DPAA_CS_THRESHOLD_10G;
875 else
876 cs_th = DPAA_CS_THRESHOLD_1G;
877 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
878
879 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
880 initcgr.cgr.cstd_en = QM_CGR_EN;
881
882 err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
883 &initcgr);
884 if (err < 0) {
885 if (netif_msg_drv(priv))
886 pr_err("%s: Error %d creating CGR with ID %d\n",
887 __func__, err, priv->cgr_data.cgr.cgrid);
888 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
889 goto out_error;
890 }
891 if (netif_msg_drv(priv))
892 pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
893 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
894 priv->cgr_data.cgr.chan);
895
896 out_error:
897 return err;
898 }
899
dpaa_eth_cgr_set_speed(struct mac_device * mac_dev,int speed)900 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
901 {
902 struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
903 struct dpaa_priv *priv = netdev_priv(net_dev);
904 struct qm_mcc_initcgr opts = { };
905 u32 cs_th;
906 int err;
907
908 opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
909 switch (speed) {
910 case SPEED_10000:
911 cs_th = DPAA_CS_THRESHOLD_10G;
912 break;
913 case SPEED_1000:
914 default:
915 cs_th = DPAA_CS_THRESHOLD_1G;
916 break;
917 }
918 qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
919
920 err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
921 if (err)
922 netdev_err(net_dev, "could not update speed: %d\n", err);
923 }
924
dpaa_setup_ingress(const struct dpaa_priv * priv,struct dpaa_fq * fq,const struct qman_fq * template)925 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
926 struct dpaa_fq *fq,
927 const struct qman_fq *template)
928 {
929 fq->fq_base = *template;
930 fq->net_dev = priv->net_dev;
931
932 fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
933 fq->channel = priv->channel;
934 }
935
dpaa_setup_egress(const struct dpaa_priv * priv,struct dpaa_fq * fq,struct fman_port * port,const struct qman_fq * template)936 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
937 struct dpaa_fq *fq,
938 struct fman_port *port,
939 const struct qman_fq *template)
940 {
941 fq->fq_base = *template;
942 fq->net_dev = priv->net_dev;
943
944 if (port) {
945 fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
946 fq->channel = (u16)fman_port_get_qman_channel_id(port);
947 } else {
948 fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
949 }
950 }
951
dpaa_fq_setup(struct dpaa_priv * priv,const struct dpaa_fq_cbs * fq_cbs,struct fman_port * tx_port)952 static int dpaa_fq_setup(struct dpaa_priv *priv,
953 const struct dpaa_fq_cbs *fq_cbs,
954 struct fman_port *tx_port)
955 {
956 int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
957 const cpumask_t *affine_cpus = qman_affine_cpus();
958 struct dpaa_fq *fq;
959 u16 *channels;
960
961 channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL);
962 if (!channels)
963 return -ENOMEM;
964
965 for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
966 channels[num_portals++] = qman_affine_channel(cpu);
967
968 if (num_portals == 0)
969 dev_err(priv->net_dev->dev.parent,
970 "No Qman software (affine) channels found\n");
971
972 /* Initialize each FQ in the list */
973 list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
974 switch (fq->fq_type) {
975 case FQ_TYPE_RX_DEFAULT:
976 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
977 break;
978 case FQ_TYPE_RX_ERROR:
979 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
980 break;
981 case FQ_TYPE_RX_PCD:
982 if (!num_portals)
983 continue;
984 dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
985 fq->channel = channels[portal_cnt++ % num_portals];
986 break;
987 case FQ_TYPE_TX:
988 dpaa_setup_egress(priv, fq, tx_port,
989 &fq_cbs->egress_ern);
990 priv->egress_fqs[egress_cnt++] = &fq->fq_base;
991 break;
992 case FQ_TYPE_TX_CONF_MQ:
993 priv->conf_fqs[conf_cnt++] = &fq->fq_base;
994 fallthrough;
995 case FQ_TYPE_TX_CONFIRM:
996 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
997 break;
998 case FQ_TYPE_TX_ERROR:
999 dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
1000 break;
1001 default:
1002 dev_warn(priv->net_dev->dev.parent,
1003 "Unknown FQ type detected!\n");
1004 break;
1005 }
1006 }
1007
1008 kfree(channels);
1009
1010 return 0;
1011 }
1012
dpaa_tx_fq_to_id(const struct dpaa_priv * priv,struct qman_fq * tx_fq)1013 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
1014 struct qman_fq *tx_fq)
1015 {
1016 int i;
1017
1018 for (i = 0; i < dpaa_max_num_txqs(); i++)
1019 if (priv->egress_fqs[i] == tx_fq)
1020 return i;
1021
1022 return -EINVAL;
1023 }
1024
dpaa_fq_init(struct dpaa_fq * dpaa_fq,bool td_enable)1025 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1026 {
1027 const struct dpaa_priv *priv;
1028 struct qman_fq *confq = NULL;
1029 struct qm_mcc_initfq initfq;
1030 struct device *dev;
1031 struct qman_fq *fq;
1032 int queue_id;
1033 int err;
1034
1035 priv = netdev_priv(dpaa_fq->net_dev);
1036 dev = dpaa_fq->net_dev->dev.parent;
1037
1038 if (dpaa_fq->fqid == 0)
1039 dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1040
1041 dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1042
1043 err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1044 if (err) {
1045 dev_err(dev, "qman_create_fq() failed\n");
1046 return err;
1047 }
1048 fq = &dpaa_fq->fq_base;
1049
1050 if (dpaa_fq->init) {
1051 memset(&initfq, 0, sizeof(initfq));
1052
1053 initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1054 /* Note: we may get to keep an empty FQ in cache */
1055 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1056
1057 /* Try to reduce the number of portal interrupts for
1058 * Tx Confirmation FQs.
1059 */
1060 if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1061 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1062
1063 /* FQ placement */
1064 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1065
1066 qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1067
1068 /* Put all egress queues in a congestion group of their own.
1069 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1070 * rather than Tx - but they nonetheless account for the
1071 * memory footprint on behalf of egress traffic. We therefore
1072 * place them in the netdev's CGR, along with the Tx FQs.
1073 */
1074 if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1075 dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1076 dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1077 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1078 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1079 initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1080 /* Set a fixed overhead accounting, in an attempt to
1081 * reduce the impact of fixed-size skb shells and the
1082 * driver's needed headroom on system memory. This is
1083 * especially the case when the egress traffic is
1084 * composed of small datagrams.
1085 * Unfortunately, QMan's OAL value is capped to an
1086 * insufficient value, but even that is better than
1087 * no overhead accounting at all.
1088 */
1089 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1090 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1091 qm_fqd_set_oal(&initfq.fqd,
1092 min(sizeof(struct sk_buff) +
1093 priv->tx_headroom,
1094 (size_t)FSL_QMAN_MAX_OAL));
1095 }
1096
1097 if (td_enable) {
1098 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1099 qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1100 initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1101 }
1102
1103 if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1104 queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1105 if (queue_id >= 0)
1106 confq = priv->conf_fqs[queue_id];
1107 if (confq) {
1108 initfq.we_mask |=
1109 cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1110 /* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1111 * A2V=1 (contextA A2 field is valid)
1112 * A0V=1 (contextA A0 field is valid)
1113 * B0V=1 (contextB field is valid)
1114 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1115 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1116 */
1117 qm_fqd_context_a_set64(&initfq.fqd,
1118 0x1e00000080000000ULL);
1119 }
1120 }
1121
1122 /* Put all the ingress queues in our "ingress CGR". */
1123 if (priv->use_ingress_cgr &&
1124 (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1125 dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1126 dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1127 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1128 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1129 initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1130 /* Set a fixed overhead accounting, just like for the
1131 * egress CGR.
1132 */
1133 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1134 qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1135 qm_fqd_set_oal(&initfq.fqd,
1136 min(sizeof(struct sk_buff) +
1137 priv->tx_headroom,
1138 (size_t)FSL_QMAN_MAX_OAL));
1139 }
1140
1141 /* Initialization common to all ingress queues */
1142 if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1143 initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1144 initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1145 QM_FQCTRL_CTXASTASHING);
1146 initfq.fqd.context_a.stashing.exclusive =
1147 QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1148 QM_STASHING_EXCL_ANNOTATION;
1149 qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1150 DIV_ROUND_UP(sizeof(struct qman_fq),
1151 64));
1152 }
1153
1154 err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1155 if (err < 0) {
1156 dev_err(dev, "qman_init_fq(%u) = %d\n",
1157 qman_fq_fqid(fq), err);
1158 qman_destroy_fq(fq);
1159 return err;
1160 }
1161 }
1162
1163 dpaa_fq->fqid = qman_fq_fqid(fq);
1164
1165 if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1166 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1167 err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1168 dpaa_fq->fqid, 0);
1169 if (err) {
1170 dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1171 return err;
1172 }
1173
1174 err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1175 MEM_TYPE_PAGE_ORDER0, NULL);
1176 if (err) {
1177 dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1178 err);
1179 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1180 return err;
1181 }
1182 }
1183
1184 return 0;
1185 }
1186
dpaa_fq_free_entry(struct device * dev,struct qman_fq * fq)1187 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1188 {
1189 const struct dpaa_priv *priv;
1190 struct dpaa_fq *dpaa_fq;
1191 int err, error;
1192
1193 err = 0;
1194
1195 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1196 priv = netdev_priv(dpaa_fq->net_dev);
1197
1198 if (dpaa_fq->init) {
1199 err = qman_retire_fq(fq, NULL);
1200 if (err < 0 && netif_msg_drv(priv))
1201 dev_err(dev, "qman_retire_fq(%u) = %d\n",
1202 qman_fq_fqid(fq), err);
1203
1204 error = qman_oos_fq(fq);
1205 if (error < 0 && netif_msg_drv(priv)) {
1206 dev_err(dev, "qman_oos_fq(%u) = %d\n",
1207 qman_fq_fqid(fq), error);
1208 if (err >= 0)
1209 err = error;
1210 }
1211 }
1212
1213 if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1214 dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1215 xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1216 xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1217
1218 qman_destroy_fq(fq);
1219 list_del(&dpaa_fq->list);
1220
1221 return err;
1222 }
1223
dpaa_fq_free(struct device * dev,struct list_head * list)1224 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1225 {
1226 struct dpaa_fq *dpaa_fq, *tmp;
1227 int err, error;
1228
1229 err = 0;
1230 list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1231 error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1232 if (error < 0 && err >= 0)
1233 err = error;
1234 }
1235
1236 return err;
1237 }
1238
dpaa_eth_init_tx_port(struct fman_port * port,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_buffer_layout * buf_layout)1239 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1240 struct dpaa_fq *defq,
1241 struct dpaa_buffer_layout *buf_layout)
1242 {
1243 struct fman_buffer_prefix_content buf_prefix_content;
1244 struct fman_port_params params;
1245 int err;
1246
1247 memset(¶ms, 0, sizeof(params));
1248 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1249
1250 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1251 buf_prefix_content.pass_prs_result = true;
1252 buf_prefix_content.pass_hash_result = true;
1253 buf_prefix_content.pass_time_stamp = true;
1254 buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1255
1256 params.specific_params.non_rx_params.err_fqid = errq->fqid;
1257 params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1258
1259 err = fman_port_config(port, ¶ms);
1260 if (err) {
1261 pr_err("%s: fman_port_config failed\n", __func__);
1262 return err;
1263 }
1264
1265 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1266 if (err) {
1267 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1268 __func__);
1269 return err;
1270 }
1271
1272 err = fman_port_init(port);
1273 if (err)
1274 pr_err("%s: fm_port_init failed\n", __func__);
1275
1276 return err;
1277 }
1278
dpaa_eth_init_rx_port(struct fman_port * port,struct dpaa_bp * bp,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_fq * pcdq,struct dpaa_buffer_layout * buf_layout)1279 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1280 struct dpaa_fq *errq,
1281 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1282 struct dpaa_buffer_layout *buf_layout)
1283 {
1284 struct fman_buffer_prefix_content buf_prefix_content;
1285 struct fman_port_rx_params *rx_p;
1286 struct fman_port_params params;
1287 int err;
1288
1289 memset(¶ms, 0, sizeof(params));
1290 memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1291
1292 buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1293 buf_prefix_content.pass_prs_result = true;
1294 buf_prefix_content.pass_hash_result = true;
1295 buf_prefix_content.pass_time_stamp = true;
1296 buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1297
1298 rx_p = ¶ms.specific_params.rx_params;
1299 rx_p->err_fqid = errq->fqid;
1300 rx_p->dflt_fqid = defq->fqid;
1301 if (pcdq) {
1302 rx_p->pcd_base_fqid = pcdq->fqid;
1303 rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1304 }
1305
1306 rx_p->ext_buf_pools.num_of_pools_used = 1;
1307 rx_p->ext_buf_pools.ext_buf_pool[0].id = bp->bpid;
1308 rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1309
1310 err = fman_port_config(port, ¶ms);
1311 if (err) {
1312 pr_err("%s: fman_port_config failed\n", __func__);
1313 return err;
1314 }
1315
1316 err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1317 if (err) {
1318 pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1319 __func__);
1320 return err;
1321 }
1322
1323 err = fman_port_init(port);
1324 if (err)
1325 pr_err("%s: fm_port_init failed\n", __func__);
1326
1327 return err;
1328 }
1329
dpaa_eth_init_ports(struct mac_device * mac_dev,struct dpaa_bp * bp,struct fm_port_fqs * port_fqs,struct dpaa_buffer_layout * buf_layout,struct device * dev)1330 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1331 struct dpaa_bp *bp,
1332 struct fm_port_fqs *port_fqs,
1333 struct dpaa_buffer_layout *buf_layout,
1334 struct device *dev)
1335 {
1336 struct fman_port *rxport = mac_dev->port[RX];
1337 struct fman_port *txport = mac_dev->port[TX];
1338 int err;
1339
1340 err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1341 port_fqs->tx_defq, &buf_layout[TX]);
1342 if (err)
1343 return err;
1344
1345 err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1346 port_fqs->rx_defq, port_fqs->rx_pcdq,
1347 &buf_layout[RX]);
1348
1349 return err;
1350 }
1351
dpaa_bman_release(const struct dpaa_bp * dpaa_bp,struct bm_buffer * bmb,int cnt)1352 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1353 struct bm_buffer *bmb, int cnt)
1354 {
1355 int err;
1356
1357 err = bman_release(dpaa_bp->pool, bmb, cnt);
1358 /* Should never occur, address anyway to avoid leaking the buffers */
1359 if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1360 while (cnt-- > 0)
1361 dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1362
1363 return cnt;
1364 }
1365
dpaa_release_sgt_members(struct qm_sg_entry * sgt)1366 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1367 {
1368 struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1369 struct dpaa_bp *dpaa_bp;
1370 int i = 0, j;
1371
1372 memset(bmb, 0, sizeof(bmb));
1373
1374 do {
1375 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1376 if (!dpaa_bp)
1377 return;
1378
1379 j = 0;
1380 do {
1381 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1382
1383 bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1384
1385 j++; i++;
1386 } while (j < ARRAY_SIZE(bmb) &&
1387 !qm_sg_entry_is_final(&sgt[i - 1]) &&
1388 sgt[i - 1].bpid == sgt[i].bpid);
1389
1390 dpaa_bman_release(dpaa_bp, bmb, j);
1391 } while (!qm_sg_entry_is_final(&sgt[i - 1]));
1392 }
1393
dpaa_fd_release(const struct net_device * net_dev,const struct qm_fd * fd)1394 static void dpaa_fd_release(const struct net_device *net_dev,
1395 const struct qm_fd *fd)
1396 {
1397 struct qm_sg_entry *sgt;
1398 struct dpaa_bp *dpaa_bp;
1399 struct bm_buffer bmb;
1400 dma_addr_t addr;
1401 void *vaddr;
1402
1403 bmb.data = 0;
1404 bm_buffer_set64(&bmb, qm_fd_addr(fd));
1405
1406 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1407 if (!dpaa_bp)
1408 return;
1409
1410 if (qm_fd_get_format(fd) == qm_fd_sg) {
1411 vaddr = phys_to_virt(qm_fd_addr(fd));
1412 sgt = vaddr + qm_fd_get_offset(fd);
1413
1414 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1415 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1416
1417 dpaa_release_sgt_members(sgt);
1418
1419 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1420 virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1421 DMA_FROM_DEVICE);
1422 if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1423 netdev_err(net_dev, "DMA mapping failed\n");
1424 return;
1425 }
1426 bm_buffer_set64(&bmb, addr);
1427 }
1428
1429 dpaa_bman_release(dpaa_bp, &bmb, 1);
1430 }
1431
count_ern(struct dpaa_percpu_priv * percpu_priv,const union qm_mr_entry * msg)1432 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1433 const union qm_mr_entry *msg)
1434 {
1435 switch (msg->ern.rc & QM_MR_RC_MASK) {
1436 case QM_MR_RC_CGR_TAILDROP:
1437 percpu_priv->ern_cnt.cg_tdrop++;
1438 break;
1439 case QM_MR_RC_WRED:
1440 percpu_priv->ern_cnt.wred++;
1441 break;
1442 case QM_MR_RC_ERROR:
1443 percpu_priv->ern_cnt.err_cond++;
1444 break;
1445 case QM_MR_RC_ORPWINDOW_EARLY:
1446 percpu_priv->ern_cnt.early_window++;
1447 break;
1448 case QM_MR_RC_ORPWINDOW_LATE:
1449 percpu_priv->ern_cnt.late_window++;
1450 break;
1451 case QM_MR_RC_FQ_TAILDROP:
1452 percpu_priv->ern_cnt.fq_tdrop++;
1453 break;
1454 case QM_MR_RC_ORPWINDOW_RETIRED:
1455 percpu_priv->ern_cnt.fq_retired++;
1456 break;
1457 case QM_MR_RC_ORP_ZERO:
1458 percpu_priv->ern_cnt.orp_zero++;
1459 break;
1460 }
1461 }
1462
1463 /* Turn on HW checksum computation for this outgoing frame.
1464 * If the current protocol is not something we support in this regard
1465 * (or if the stack has already computed the SW checksum), we do nothing.
1466 *
1467 * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1468 * otherwise.
1469 *
1470 * Note that this function may modify the fd->cmd field and the skb data buffer
1471 * (the Parse Results area).
1472 */
dpaa_enable_tx_csum(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,void * parse_results)1473 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1474 struct sk_buff *skb,
1475 struct qm_fd *fd,
1476 void *parse_results)
1477 {
1478 struct fman_prs_result *parse_result;
1479 u16 ethertype = ntohs(skb->protocol);
1480 struct ipv6hdr *ipv6h = NULL;
1481 struct iphdr *iph;
1482 int retval = 0;
1483 u8 l4_proto;
1484
1485 if (skb->ip_summed != CHECKSUM_PARTIAL)
1486 return 0;
1487
1488 /* Note: L3 csum seems to be already computed in sw, but we can't choose
1489 * L4 alone from the FM configuration anyway.
1490 */
1491
1492 /* Fill in some fields of the Parse Results array, so the FMan
1493 * can find them as if they came from the FMan Parser.
1494 */
1495 parse_result = (struct fman_prs_result *)parse_results;
1496
1497 /* If we're dealing with VLAN, get the real Ethernet type */
1498 if (ethertype == ETH_P_8021Q)
1499 ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1500
1501 /* Fill in the relevant L3 parse result fields
1502 * and read the L4 protocol type
1503 */
1504 switch (ethertype) {
1505 case ETH_P_IP:
1506 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1507 iph = ip_hdr(skb);
1508 WARN_ON(!iph);
1509 l4_proto = iph->protocol;
1510 break;
1511 case ETH_P_IPV6:
1512 parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1513 ipv6h = ipv6_hdr(skb);
1514 WARN_ON(!ipv6h);
1515 l4_proto = ipv6h->nexthdr;
1516 break;
1517 default:
1518 /* We shouldn't even be here */
1519 if (net_ratelimit())
1520 netif_alert(priv, tx_err, priv->net_dev,
1521 "Can't compute HW csum for L3 proto 0x%x\n",
1522 ntohs(skb->protocol));
1523 retval = -EIO;
1524 goto return_error;
1525 }
1526
1527 /* Fill in the relevant L4 parse result fields */
1528 switch (l4_proto) {
1529 case IPPROTO_UDP:
1530 parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1531 break;
1532 case IPPROTO_TCP:
1533 parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1534 break;
1535 default:
1536 if (net_ratelimit())
1537 netif_alert(priv, tx_err, priv->net_dev,
1538 "Can't compute HW csum for L4 proto 0x%x\n",
1539 l4_proto);
1540 retval = -EIO;
1541 goto return_error;
1542 }
1543
1544 /* At index 0 is IPOffset_1 as defined in the Parse Results */
1545 parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1546 parse_result->l4_off = (u8)skb_transport_offset(skb);
1547
1548 /* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1549 fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1550
1551 /* On P1023 and similar platforms fd->cmd interpretation could
1552 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1553 * is not set so we do not need to check; in the future, if/when
1554 * using context_a we need to check this bit
1555 */
1556
1557 return_error:
1558 return retval;
1559 }
1560
dpaa_bp_add_8_bufs(const struct dpaa_bp * dpaa_bp)1561 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1562 {
1563 struct net_device *net_dev = dpaa_bp->priv->net_dev;
1564 struct bm_buffer bmb[8];
1565 dma_addr_t addr;
1566 struct page *p;
1567 u8 i;
1568
1569 for (i = 0; i < 8; i++) {
1570 p = dev_alloc_pages(0);
1571 if (unlikely(!p)) {
1572 netdev_err(net_dev, "dev_alloc_pages() failed\n");
1573 goto release_previous_buffs;
1574 }
1575
1576 addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1577 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1578 if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1579 addr))) {
1580 netdev_err(net_dev, "DMA map failed\n");
1581 goto release_previous_buffs;
1582 }
1583
1584 bmb[i].data = 0;
1585 bm_buffer_set64(&bmb[i], addr);
1586 }
1587
1588 release_bufs:
1589 return dpaa_bman_release(dpaa_bp, bmb, i);
1590
1591 release_previous_buffs:
1592 WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1593
1594 bm_buffer_set64(&bmb[i], 0);
1595 /* Avoid releasing a completely null buffer; bman_release() requires
1596 * at least one buffer.
1597 */
1598 if (likely(i))
1599 goto release_bufs;
1600
1601 return 0;
1602 }
1603
dpaa_bp_seed(struct dpaa_bp * dpaa_bp)1604 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1605 {
1606 int i;
1607
1608 /* Give each CPU an allotment of "config_count" buffers */
1609 for_each_possible_cpu(i) {
1610 int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1611 int j;
1612
1613 /* Although we access another CPU's counters here
1614 * we do it at boot time so it is safe
1615 */
1616 for (j = 0; j < dpaa_bp->config_count; j += 8)
1617 *count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1618 }
1619 return 0;
1620 }
1621
1622 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1623 * REFILL_THRESHOLD.
1624 */
dpaa_eth_refill_bpool(struct dpaa_bp * dpaa_bp,int * countptr)1625 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1626 {
1627 int count = *countptr;
1628 int new_bufs;
1629
1630 if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1631 do {
1632 new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1633 if (unlikely(!new_bufs)) {
1634 /* Avoid looping forever if we've temporarily
1635 * run out of memory. We'll try again at the
1636 * next NAPI cycle.
1637 */
1638 break;
1639 }
1640 count += new_bufs;
1641 } while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1642
1643 *countptr = count;
1644 if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1645 return -ENOMEM;
1646 }
1647
1648 return 0;
1649 }
1650
dpaa_eth_refill_bpools(struct dpaa_priv * priv)1651 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1652 {
1653 struct dpaa_bp *dpaa_bp;
1654 int *countptr;
1655
1656 dpaa_bp = priv->dpaa_bp;
1657 if (!dpaa_bp)
1658 return -EINVAL;
1659 countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1660
1661 return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1662 }
1663
1664 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1665 * either contiguous frames or scatter/gather ones.
1666 * Skb freeing is not handled here.
1667 *
1668 * This function may be called on error paths in the Tx function, so guard
1669 * against cases when not all fd relevant fields were filled in. To avoid
1670 * reading the invalid transmission timestamp for the error paths set ts to
1671 * false.
1672 *
1673 * Return the skb backpointer, since for S/G frames the buffer containing it
1674 * gets freed here.
1675 *
1676 * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1677 * and return NULL in this case.
1678 */
dpaa_cleanup_tx_fd(const struct dpaa_priv * priv,const struct qm_fd * fd,bool ts)1679 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1680 const struct qm_fd *fd, bool ts)
1681 {
1682 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1683 struct device *dev = priv->net_dev->dev.parent;
1684 struct skb_shared_hwtstamps shhwtstamps;
1685 dma_addr_t addr = qm_fd_addr(fd);
1686 void *vaddr = phys_to_virt(addr);
1687 const struct qm_sg_entry *sgt;
1688 struct dpaa_eth_swbp *swbp;
1689 struct sk_buff *skb;
1690 u64 ns;
1691 int i;
1692
1693 if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1694 dma_unmap_page(priv->tx_dma_dev, addr,
1695 qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1696 dma_dir);
1697
1698 /* The sgt buffer has been allocated with netdev_alloc_frag(),
1699 * it's from lowmem.
1700 */
1701 sgt = vaddr + qm_fd_get_offset(fd);
1702
1703 /* sgt[0] is from lowmem, was dma_map_single()-ed */
1704 dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1705 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1706
1707 /* remaining pages were mapped with skb_frag_dma_map() */
1708 for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1709 !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1710 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1711
1712 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1713 qm_sg_entry_get_len(&sgt[i]), dma_dir);
1714 }
1715 } else {
1716 dma_unmap_single(priv->tx_dma_dev, addr,
1717 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1718 dma_dir);
1719 }
1720
1721 swbp = (struct dpaa_eth_swbp *)vaddr;
1722 skb = swbp->skb;
1723
1724 /* No skb backpointer is set when running XDP. An xdp_frame
1725 * backpointer is saved instead.
1726 */
1727 if (!skb) {
1728 xdp_return_frame(swbp->xdpf);
1729 return NULL;
1730 }
1731
1732 /* DMA unmapping is required before accessing the HW provided info */
1733 if (ts && priv->tx_tstamp &&
1734 skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1735 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1736
1737 if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1738 &ns)) {
1739 shhwtstamps.hwtstamp = ns_to_ktime(ns);
1740 skb_tstamp_tx(skb, &shhwtstamps);
1741 } else {
1742 dev_warn(dev, "fman_port_get_tstamp failed!\n");
1743 }
1744 }
1745
1746 if (qm_fd_get_format(fd) == qm_fd_sg)
1747 /* Free the page that we allocated on Tx for the SGT */
1748 free_pages((unsigned long)vaddr, 0);
1749
1750 return skb;
1751 }
1752
rx_csum_offload(const struct dpaa_priv * priv,const struct qm_fd * fd)1753 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1754 {
1755 /* The parser has run and performed L4 checksum validation.
1756 * We know there were no parser errors (and implicitly no
1757 * L4 csum error), otherwise we wouldn't be here.
1758 */
1759 if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1760 (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1761 return CHECKSUM_UNNECESSARY;
1762
1763 /* We're here because either the parser didn't run or the L4 checksum
1764 * was not verified. This may include the case of a UDP frame with
1765 * checksum zero or an L4 proto other than TCP/UDP
1766 */
1767 return CHECKSUM_NONE;
1768 }
1769
1770 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1771
1772 /* Build a linear skb around the received buffer.
1773 * We are guaranteed there is enough room at the end of the data buffer to
1774 * accommodate the shared info area of the skb.
1775 */
contig_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1776 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1777 const struct qm_fd *fd)
1778 {
1779 ssize_t fd_off = qm_fd_get_offset(fd);
1780 dma_addr_t addr = qm_fd_addr(fd);
1781 struct dpaa_bp *dpaa_bp;
1782 struct sk_buff *skb;
1783 void *vaddr;
1784
1785 vaddr = phys_to_virt(addr);
1786 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1787
1788 dpaa_bp = dpaa_bpid2pool(fd->bpid);
1789 if (!dpaa_bp)
1790 goto free_buffer;
1791
1792 skb = build_skb(vaddr, dpaa_bp->size +
1793 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1794 if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1795 goto free_buffer;
1796 skb_reserve(skb, fd_off);
1797 skb_put(skb, qm_fd_get_length(fd));
1798
1799 skb->ip_summed = rx_csum_offload(priv, fd);
1800
1801 return skb;
1802
1803 free_buffer:
1804 free_pages((unsigned long)vaddr, 0);
1805 return NULL;
1806 }
1807
1808 /* Build an skb with the data of the first S/G entry in the linear portion and
1809 * the rest of the frame as skb fragments.
1810 *
1811 * The page fragment holding the S/G Table is recycled here.
1812 */
sg_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1813 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1814 const struct qm_fd *fd)
1815 {
1816 ssize_t fd_off = qm_fd_get_offset(fd);
1817 dma_addr_t addr = qm_fd_addr(fd);
1818 const struct qm_sg_entry *sgt;
1819 struct page *page, *head_page;
1820 struct dpaa_bp *dpaa_bp;
1821 void *vaddr, *sg_vaddr;
1822 struct sk_buff *skb;
1823 dma_addr_t sg_addr;
1824 int page_offset;
1825 unsigned int sz;
1826 int *count_ptr;
1827 int i, j;
1828
1829 vaddr = phys_to_virt(addr);
1830 WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1831
1832 /* Iterate through the SGT entries and add data buffers to the skb */
1833 sgt = vaddr + fd_off;
1834 skb = NULL;
1835 for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1836 /* Extension bit is not supported */
1837 WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1838
1839 sg_addr = qm_sg_addr(&sgt[i]);
1840 sg_vaddr = phys_to_virt(sg_addr);
1841 WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1842
1843 dma_unmap_page(priv->rx_dma_dev, sg_addr,
1844 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1845
1846 /* We may use multiple Rx pools */
1847 dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1848 if (!dpaa_bp)
1849 goto free_buffers;
1850
1851 if (!skb) {
1852 sz = dpaa_bp->size +
1853 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1854 skb = build_skb(sg_vaddr, sz);
1855 if (WARN_ON(!skb))
1856 goto free_buffers;
1857
1858 skb->ip_summed = rx_csum_offload(priv, fd);
1859
1860 /* Make sure forwarded skbs will have enough space
1861 * on Tx, if extra headers are added.
1862 */
1863 WARN_ON(fd_off != priv->rx_headroom);
1864 /* The offset to data start within the buffer holding
1865 * the SGT should always be equal to the offset to data
1866 * start within the first buffer holding the frame.
1867 */
1868 WARN_ON_ONCE(fd_off != qm_sg_entry_get_off(&sgt[i]));
1869 skb_reserve(skb, fd_off);
1870 skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1871 } else {
1872 /* Not the first S/G entry; all data from buffer will
1873 * be added in an skb fragment; fragment index is offset
1874 * by one since first S/G entry was incorporated in the
1875 * linear part of the skb.
1876 *
1877 * Caution: 'page' may be a tail page.
1878 */
1879 page = virt_to_page(sg_vaddr);
1880 head_page = virt_to_head_page(sg_vaddr);
1881
1882 /* Compute offset of sg_vaddr in (possibly tail) page */
1883 page_offset = ((unsigned long)sg_vaddr &
1884 (PAGE_SIZE - 1)) +
1885 (page_address(page) - page_address(head_page));
1886
1887 /* Non-initial SGT entries should not have a buffer
1888 * offset.
1889 */
1890 WARN_ON_ONCE(qm_sg_entry_get_off(&sgt[i]));
1891
1892 /* skb_add_rx_frag() does no checking on the page; if
1893 * we pass it a tail page, we'll end up with
1894 * bad page accounting and eventually with segfaults.
1895 */
1896 skb_add_rx_frag(skb, i - 1, head_page, page_offset,
1897 qm_sg_entry_get_len(&sgt[i]),
1898 dpaa_bp->size);
1899 }
1900
1901 /* Update the pool count for the current {cpu x bpool} */
1902 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1903 (*count_ptr)--;
1904
1905 if (qm_sg_entry_is_final(&sgt[i]))
1906 break;
1907 }
1908 WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1909
1910 /* free the SG table buffer */
1911 free_pages((unsigned long)vaddr, 0);
1912
1913 return skb;
1914
1915 free_buffers:
1916 /* free all the SG entries */
1917 for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1918 sg_addr = qm_sg_addr(&sgt[j]);
1919 sg_vaddr = phys_to_virt(sg_addr);
1920 /* all pages 0..i were unmaped */
1921 if (j > i)
1922 dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1923 DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1924 free_pages((unsigned long)sg_vaddr, 0);
1925 /* counters 0..i-1 were decremented */
1926 if (j >= i) {
1927 dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1928 if (dpaa_bp) {
1929 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1930 (*count_ptr)--;
1931 }
1932 }
1933
1934 if (qm_sg_entry_is_final(&sgt[j]))
1935 break;
1936 }
1937 /* free the SGT fragment */
1938 free_pages((unsigned long)vaddr, 0);
1939
1940 return NULL;
1941 }
1942
skb_to_contig_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,int * offset)1943 static int skb_to_contig_fd(struct dpaa_priv *priv,
1944 struct sk_buff *skb, struct qm_fd *fd,
1945 int *offset)
1946 {
1947 struct net_device *net_dev = priv->net_dev;
1948 enum dma_data_direction dma_dir;
1949 struct dpaa_eth_swbp *swbp;
1950 unsigned char *buff_start;
1951 dma_addr_t addr;
1952 int err;
1953
1954 /* We are guaranteed to have at least tx_headroom bytes
1955 * available, so just use that for offset.
1956 */
1957 fd->bpid = FSL_DPAA_BPID_INV;
1958 buff_start = skb->data - priv->tx_headroom;
1959 dma_dir = DMA_TO_DEVICE;
1960
1961 swbp = (struct dpaa_eth_swbp *)buff_start;
1962 swbp->skb = skb;
1963
1964 /* Enable L3/L4 hardware checksum computation.
1965 *
1966 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1967 * need to write into the skb.
1968 */
1969 err = dpaa_enable_tx_csum(priv, skb, fd,
1970 buff_start + DPAA_TX_PRIV_DATA_SIZE);
1971 if (unlikely(err < 0)) {
1972 if (net_ratelimit())
1973 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1974 err);
1975 return err;
1976 }
1977
1978 /* Fill in the rest of the FD fields */
1979 qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1980 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1981
1982 /* Map the entire buffer size that may be seen by FMan, but no more */
1983 addr = dma_map_single(priv->tx_dma_dev, buff_start,
1984 priv->tx_headroom + skb->len, dma_dir);
1985 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1986 if (net_ratelimit())
1987 netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1988 return -EINVAL;
1989 }
1990 qm_fd_addr_set64(fd, addr);
1991
1992 return 0;
1993 }
1994
skb_to_sg_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd)1995 static int skb_to_sg_fd(struct dpaa_priv *priv,
1996 struct sk_buff *skb, struct qm_fd *fd)
1997 {
1998 const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1999 const int nr_frags = skb_shinfo(skb)->nr_frags;
2000 struct net_device *net_dev = priv->net_dev;
2001 struct dpaa_eth_swbp *swbp;
2002 struct qm_sg_entry *sgt;
2003 void *buff_start;
2004 skb_frag_t *frag;
2005 dma_addr_t addr;
2006 size_t frag_len;
2007 struct page *p;
2008 int i, j, err;
2009
2010 /* get a page to store the SGTable */
2011 p = dev_alloc_pages(0);
2012 if (unlikely(!p)) {
2013 netdev_err(net_dev, "dev_alloc_pages() failed\n");
2014 return -ENOMEM;
2015 }
2016 buff_start = page_address(p);
2017
2018 /* Enable L3/L4 hardware checksum computation.
2019 *
2020 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
2021 * need to write into the skb.
2022 */
2023 err = dpaa_enable_tx_csum(priv, skb, fd,
2024 buff_start + DPAA_TX_PRIV_DATA_SIZE);
2025 if (unlikely(err < 0)) {
2026 if (net_ratelimit())
2027 netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2028 err);
2029 goto csum_failed;
2030 }
2031
2032 /* SGT[0] is used by the linear part */
2033 sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2034 frag_len = skb_headlen(skb);
2035 qm_sg_entry_set_len(&sgt[0], frag_len);
2036 sgt[0].bpid = FSL_DPAA_BPID_INV;
2037 sgt[0].offset = 0;
2038 addr = dma_map_single(priv->tx_dma_dev, skb->data,
2039 skb_headlen(skb), dma_dir);
2040 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2041 netdev_err(priv->net_dev, "DMA mapping failed\n");
2042 err = -EINVAL;
2043 goto sg0_map_failed;
2044 }
2045 qm_sg_entry_set64(&sgt[0], addr);
2046
2047 /* populate the rest of SGT entries */
2048 for (i = 0; i < nr_frags; i++) {
2049 frag = &skb_shinfo(skb)->frags[i];
2050 frag_len = skb_frag_size(frag);
2051 WARN_ON(!skb_frag_page(frag));
2052 addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2053 frag_len, dma_dir);
2054 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2055 netdev_err(priv->net_dev, "DMA mapping failed\n");
2056 err = -EINVAL;
2057 goto sg_map_failed;
2058 }
2059
2060 qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2061 sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2062 sgt[i + 1].offset = 0;
2063
2064 /* keep the offset in the address */
2065 qm_sg_entry_set64(&sgt[i + 1], addr);
2066 }
2067
2068 /* Set the final bit in the last used entry of the SGT */
2069 qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2070
2071 /* set fd offset to priv->tx_headroom */
2072 qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2073
2074 /* DMA map the SGT page */
2075 swbp = (struct dpaa_eth_swbp *)buff_start;
2076 swbp->skb = skb;
2077
2078 addr = dma_map_page(priv->tx_dma_dev, p, 0,
2079 priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2080 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2081 netdev_err(priv->net_dev, "DMA mapping failed\n");
2082 err = -EINVAL;
2083 goto sgt_map_failed;
2084 }
2085
2086 fd->bpid = FSL_DPAA_BPID_INV;
2087 fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2088 qm_fd_addr_set64(fd, addr);
2089
2090 return 0;
2091
2092 sgt_map_failed:
2093 sg_map_failed:
2094 for (j = 0; j < i; j++)
2095 dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2096 qm_sg_entry_get_len(&sgt[j]), dma_dir);
2097 sg0_map_failed:
2098 csum_failed:
2099 free_pages((unsigned long)buff_start, 0);
2100
2101 return err;
2102 }
2103
dpaa_xmit(struct dpaa_priv * priv,struct rtnl_link_stats64 * percpu_stats,int queue,struct qm_fd * fd)2104 static inline int dpaa_xmit(struct dpaa_priv *priv,
2105 struct rtnl_link_stats64 *percpu_stats,
2106 int queue,
2107 struct qm_fd *fd)
2108 {
2109 struct qman_fq *egress_fq;
2110 int err, i;
2111
2112 egress_fq = priv->egress_fqs[queue];
2113 if (fd->bpid == FSL_DPAA_BPID_INV)
2114 fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2115
2116 /* Trace this Tx fd */
2117 trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2118
2119 for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2120 err = qman_enqueue(egress_fq, fd);
2121 if (err != -EBUSY)
2122 break;
2123 }
2124
2125 if (unlikely(err < 0)) {
2126 percpu_stats->tx_fifo_errors++;
2127 return err;
2128 }
2129
2130 percpu_stats->tx_packets++;
2131 percpu_stats->tx_bytes += qm_fd_get_length(fd);
2132
2133 return 0;
2134 }
2135
2136 #ifdef CONFIG_DPAA_ERRATUM_A050385
dpaa_a050385_wa_skb(struct net_device * net_dev,struct sk_buff ** s)2137 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2138 {
2139 struct dpaa_priv *priv = netdev_priv(net_dev);
2140 struct sk_buff *new_skb, *skb = *s;
2141 unsigned char *start, i;
2142
2143 /* check linear buffer alignment */
2144 if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2145 goto workaround;
2146
2147 /* linear buffers just need to have an aligned start */
2148 if (!skb_is_nonlinear(skb))
2149 return 0;
2150
2151 /* linear data size for nonlinear skbs needs to be aligned */
2152 if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2153 goto workaround;
2154
2155 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2156 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2157
2158 /* all fragments need to have aligned start addresses */
2159 if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2160 goto workaround;
2161
2162 /* all but last fragment need to have aligned sizes */
2163 if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2164 (i < skb_shinfo(skb)->nr_frags - 1))
2165 goto workaround;
2166 }
2167
2168 return 0;
2169
2170 workaround:
2171 /* copy all the skb content into a new linear buffer */
2172 new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2173 priv->tx_headroom);
2174 if (!new_skb)
2175 return -ENOMEM;
2176
2177 /* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2178 skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2179
2180 /* Workaround for DPAA_A050385 requires data start to be aligned */
2181 start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2182 if (start - new_skb->data)
2183 skb_reserve(new_skb, start - new_skb->data);
2184
2185 skb_put(new_skb, skb->len);
2186 skb_copy_bits(skb, 0, new_skb->data, skb->len);
2187 skb_copy_header(new_skb, skb);
2188 new_skb->dev = skb->dev;
2189
2190 /* Copy relevant timestamp info from the old skb to the new */
2191 if (priv->tx_tstamp) {
2192 skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2193 skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2194 skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2195 if (skb->sk)
2196 skb_set_owner_w(new_skb, skb->sk);
2197 }
2198
2199 /* We move the headroom when we align it so we have to reset the
2200 * network and transport header offsets relative to the new data
2201 * pointer. The checksum offload relies on these offsets.
2202 */
2203 skb_set_network_header(new_skb, skb_network_offset(skb));
2204 skb_set_transport_header(new_skb, skb_transport_offset(skb));
2205
2206 dev_kfree_skb(skb);
2207 *s = new_skb;
2208
2209 return 0;
2210 }
2211
dpaa_a050385_wa_xdpf(struct dpaa_priv * priv,struct xdp_frame ** init_xdpf)2212 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2213 struct xdp_frame **init_xdpf)
2214 {
2215 struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2216 void *new_buff, *aligned_data;
2217 struct page *p;
2218 u32 data_shift;
2219 int headroom;
2220
2221 /* Check the data alignment and make sure the headroom is large
2222 * enough to store the xdpf backpointer. Use an aligned headroom
2223 * value.
2224 *
2225 * Due to alignment constraints, we give XDP access to the full 256
2226 * byte frame headroom. If the XDP program uses all of it, copy the
2227 * data to a new buffer and make room for storing the backpointer.
2228 */
2229 if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2230 xdpf->headroom >= priv->tx_headroom) {
2231 xdpf->headroom = priv->tx_headroom;
2232 return 0;
2233 }
2234
2235 /* Try to move the data inside the buffer just enough to align it and
2236 * store the xdpf backpointer. If the available headroom isn't large
2237 * enough, resort to allocating a new buffer and copying the data.
2238 */
2239 aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2240 data_shift = xdpf->data - aligned_data;
2241
2242 /* The XDP frame's headroom needs to be large enough to accommodate
2243 * shifting the data as well as storing the xdpf backpointer.
2244 */
2245 if (xdpf->headroom >= data_shift + priv->tx_headroom) {
2246 memmove(aligned_data, xdpf->data, xdpf->len);
2247 xdpf->data = aligned_data;
2248 xdpf->headroom = priv->tx_headroom;
2249 return 0;
2250 }
2251
2252 /* The new xdp_frame is stored in the new buffer. Reserve enough space
2253 * in the headroom for storing it along with the driver's private
2254 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2255 * guarantee the data's alignment in the buffer.
2256 */
2257 headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2258 DPAA_FD_DATA_ALIGNMENT);
2259
2260 /* Assure the extended headroom and data don't overflow the buffer,
2261 * while maintaining the mandatory tailroom.
2262 */
2263 if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2265 return -ENOMEM;
2266
2267 p = dev_alloc_pages(0);
2268 if (unlikely(!p))
2269 return -ENOMEM;
2270
2271 /* Copy the data to the new buffer at a properly aligned offset */
2272 new_buff = page_address(p);
2273 memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2274
2275 /* Create an XDP frame around the new buffer in a similar fashion
2276 * to xdp_convert_buff_to_frame.
2277 */
2278 new_xdpf = new_buff;
2279 new_xdpf->data = new_buff + headroom;
2280 new_xdpf->len = xdpf->len;
2281 new_xdpf->headroom = priv->tx_headroom;
2282 new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2283 new_xdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
2284
2285 /* Release the initial buffer */
2286 xdp_return_frame_rx_napi(xdpf);
2287
2288 *init_xdpf = new_xdpf;
2289 return 0;
2290 }
2291 #endif
2292
2293 static netdev_tx_t
dpaa_start_xmit(struct sk_buff * skb,struct net_device * net_dev)2294 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2295 {
2296 const int queue_mapping = skb_get_queue_mapping(skb);
2297 struct rtnl_link_stats64 *percpu_stats;
2298 struct dpaa_percpu_priv *percpu_priv;
2299 struct netdev_queue *txq;
2300 struct dpaa_priv *priv;
2301 struct qm_fd fd;
2302 bool nonlinear;
2303 int offset = 0;
2304 int err = 0;
2305
2306 priv = netdev_priv(net_dev);
2307 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2308 percpu_stats = &percpu_priv->stats;
2309
2310 qm_fd_clear_fd(&fd);
2311
2312 /* Packet data is always read as 32-bit words, so zero out any part of
2313 * the skb which might be sent if we have to pad the packet
2314 */
2315 if (__skb_put_padto(skb, ETH_ZLEN, false))
2316 goto enomem;
2317
2318 nonlinear = skb_is_nonlinear(skb);
2319 if (!nonlinear) {
2320 /* We're going to store the skb backpointer at the beginning
2321 * of the data buffer, so we need a privately owned skb
2322 *
2323 * We've made sure skb is not shared in dev->priv_flags,
2324 * we need to verify the skb head is not cloned
2325 */
2326 if (skb_cow_head(skb, priv->tx_headroom))
2327 goto enomem;
2328
2329 WARN_ON(skb_is_nonlinear(skb));
2330 }
2331
2332 /* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2333 * make sure we don't feed FMan with more fragments than it supports.
2334 */
2335 if (unlikely(nonlinear &&
2336 (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2337 /* If the egress skb contains more fragments than we support
2338 * we have no choice but to linearize it ourselves.
2339 */
2340 if (__skb_linearize(skb))
2341 goto enomem;
2342
2343 nonlinear = skb_is_nonlinear(skb);
2344 }
2345
2346 #ifdef CONFIG_DPAA_ERRATUM_A050385
2347 if (unlikely(fman_has_errata_a050385())) {
2348 if (dpaa_a050385_wa_skb(net_dev, &skb))
2349 goto enomem;
2350 nonlinear = skb_is_nonlinear(skb);
2351 }
2352 #endif
2353
2354 if (nonlinear) {
2355 /* Just create a S/G fd based on the skb */
2356 err = skb_to_sg_fd(priv, skb, &fd);
2357 percpu_priv->tx_frag_skbuffs++;
2358 } else {
2359 /* Create a contig FD from this skb */
2360 err = skb_to_contig_fd(priv, skb, &fd, &offset);
2361 }
2362 if (unlikely(err < 0))
2363 goto skb_to_fd_failed;
2364
2365 txq = netdev_get_tx_queue(net_dev, queue_mapping);
2366
2367 /* LLTX requires to do our own update of trans_start */
2368 txq_trans_cond_update(txq);
2369
2370 if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2371 fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2372 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2373 }
2374
2375 if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2376 return NETDEV_TX_OK;
2377
2378 dpaa_cleanup_tx_fd(priv, &fd, false);
2379 skb_to_fd_failed:
2380 enomem:
2381 percpu_stats->tx_errors++;
2382 dev_kfree_skb(skb);
2383 return NETDEV_TX_OK;
2384 }
2385
dpaa_rx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2386 static void dpaa_rx_error(struct net_device *net_dev,
2387 const struct dpaa_priv *priv,
2388 struct dpaa_percpu_priv *percpu_priv,
2389 const struct qm_fd *fd,
2390 u32 fqid)
2391 {
2392 if (net_ratelimit())
2393 netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2394 be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2395
2396 percpu_priv->stats.rx_errors++;
2397
2398 if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2399 percpu_priv->rx_errors.dme++;
2400 if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2401 percpu_priv->rx_errors.fpe++;
2402 if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2403 percpu_priv->rx_errors.fse++;
2404 if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2405 percpu_priv->rx_errors.phe++;
2406
2407 dpaa_fd_release(net_dev, fd);
2408 }
2409
dpaa_tx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2410 static void dpaa_tx_error(struct net_device *net_dev,
2411 const struct dpaa_priv *priv,
2412 struct dpaa_percpu_priv *percpu_priv,
2413 const struct qm_fd *fd,
2414 u32 fqid)
2415 {
2416 struct sk_buff *skb;
2417
2418 if (net_ratelimit())
2419 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2420 be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2421
2422 percpu_priv->stats.tx_errors++;
2423
2424 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2425 dev_kfree_skb(skb);
2426 }
2427
dpaa_eth_poll(struct napi_struct * napi,int budget)2428 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2429 {
2430 struct dpaa_napi_portal *np =
2431 container_of(napi, struct dpaa_napi_portal, napi);
2432 int cleaned;
2433
2434 np->xdp_act = 0;
2435
2436 cleaned = qman_p_poll_dqrr(np->p, budget);
2437
2438 if (np->xdp_act & XDP_REDIRECT)
2439 xdp_do_flush();
2440
2441 if (cleaned < budget) {
2442 napi_complete_done(napi, cleaned);
2443 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2444 } else if (np->down) {
2445 qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2446 }
2447
2448 return cleaned;
2449 }
2450
dpaa_tx_conf(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2451 static void dpaa_tx_conf(struct net_device *net_dev,
2452 const struct dpaa_priv *priv,
2453 struct dpaa_percpu_priv *percpu_priv,
2454 const struct qm_fd *fd,
2455 u32 fqid)
2456 {
2457 struct sk_buff *skb;
2458
2459 if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2460 if (net_ratelimit())
2461 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2462 be32_to_cpu(fd->status) &
2463 FM_FD_STAT_TX_ERRORS);
2464
2465 percpu_priv->stats.tx_errors++;
2466 }
2467
2468 percpu_priv->tx_confirm++;
2469
2470 skb = dpaa_cleanup_tx_fd(priv, fd, true);
2471
2472 consume_skb(skb);
2473 }
2474
dpaa_eth_napi_schedule(struct dpaa_percpu_priv * percpu_priv,struct qman_portal * portal,bool sched_napi)2475 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2476 struct qman_portal *portal, bool sched_napi)
2477 {
2478 if (sched_napi) {
2479 /* Disable QMan IRQ and invoke NAPI */
2480 qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2481
2482 percpu_priv->np.p = portal;
2483 napi_schedule(&percpu_priv->np.napi);
2484 percpu_priv->in_interrupt++;
2485 return 1;
2486 }
2487 return 0;
2488 }
2489
rx_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2490 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2491 struct qman_fq *fq,
2492 const struct qm_dqrr_entry *dq,
2493 bool sched_napi)
2494 {
2495 struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2496 struct dpaa_percpu_priv *percpu_priv;
2497 struct net_device *net_dev;
2498 struct dpaa_bp *dpaa_bp;
2499 struct dpaa_priv *priv;
2500
2501 net_dev = dpaa_fq->net_dev;
2502 priv = netdev_priv(net_dev);
2503 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2504 if (!dpaa_bp)
2505 return qman_cb_dqrr_consume;
2506
2507 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2508
2509 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2510 return qman_cb_dqrr_stop;
2511
2512 dpaa_eth_refill_bpools(priv);
2513 dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2514
2515 return qman_cb_dqrr_consume;
2516 }
2517
dpaa_xdp_xmit_frame(struct net_device * net_dev,struct xdp_frame * xdpf)2518 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2519 struct xdp_frame *xdpf)
2520 {
2521 struct dpaa_priv *priv = netdev_priv(net_dev);
2522 struct rtnl_link_stats64 *percpu_stats;
2523 struct dpaa_percpu_priv *percpu_priv;
2524 struct dpaa_eth_swbp *swbp;
2525 struct netdev_queue *txq;
2526 void *buff_start;
2527 struct qm_fd fd;
2528 dma_addr_t addr;
2529 int err;
2530
2531 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2532 percpu_stats = &percpu_priv->stats;
2533
2534 #ifdef CONFIG_DPAA_ERRATUM_A050385
2535 if (unlikely(fman_has_errata_a050385())) {
2536 if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2537 err = -ENOMEM;
2538 goto out_error;
2539 }
2540 }
2541 #endif
2542
2543 if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2544 err = -EINVAL;
2545 goto out_error;
2546 }
2547
2548 buff_start = xdpf->data - xdpf->headroom;
2549
2550 /* Leave empty the skb backpointer at the start of the buffer.
2551 * Save the XDP frame for easy cleanup on confirmation.
2552 */
2553 swbp = (struct dpaa_eth_swbp *)buff_start;
2554 swbp->skb = NULL;
2555 swbp->xdpf = xdpf;
2556
2557 qm_fd_clear_fd(&fd);
2558 fd.bpid = FSL_DPAA_BPID_INV;
2559 fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2560 qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2561
2562 addr = dma_map_single(priv->tx_dma_dev, buff_start,
2563 xdpf->headroom + xdpf->len,
2564 DMA_TO_DEVICE);
2565 if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2566 err = -EINVAL;
2567 goto out_error;
2568 }
2569
2570 qm_fd_addr_set64(&fd, addr);
2571
2572 /* Bump the trans_start */
2573 txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2574 txq_trans_cond_update(txq);
2575
2576 err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2577 if (err) {
2578 dma_unmap_single(priv->tx_dma_dev, addr,
2579 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2580 DMA_TO_DEVICE);
2581 goto out_error;
2582 }
2583
2584 return 0;
2585
2586 out_error:
2587 percpu_stats->tx_errors++;
2588 return err;
2589 }
2590
dpaa_run_xdp(struct dpaa_priv * priv,struct qm_fd * fd,void * vaddr,struct dpaa_fq * dpaa_fq,unsigned int * xdp_meta_len)2591 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2592 struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2593 {
2594 ssize_t fd_off = qm_fd_get_offset(fd);
2595 struct bpf_prog *xdp_prog;
2596 struct xdp_frame *xdpf;
2597 struct xdp_buff xdp;
2598 u32 xdp_act;
2599 int err;
2600
2601 xdp_prog = READ_ONCE(priv->xdp_prog);
2602 if (!xdp_prog)
2603 return XDP_PASS;
2604
2605 xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2606 &dpaa_fq->xdp_rxq);
2607 xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2608 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2609
2610 /* We reserve a fixed headroom of 256 bytes under the erratum and we
2611 * offer it all to XDP programs to use. If no room is left for the
2612 * xdpf backpointer on TX, we will need to copy the data.
2613 * Disable metadata support since data realignments might be required
2614 * and the information can be lost.
2615 */
2616 #ifdef CONFIG_DPAA_ERRATUM_A050385
2617 if (unlikely(fman_has_errata_a050385())) {
2618 xdp_set_data_meta_invalid(&xdp);
2619 xdp.data_hard_start = vaddr;
2620 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2621 }
2622 #endif
2623
2624 xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2625
2626 /* Update the length and the offset of the FD */
2627 qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2628
2629 switch (xdp_act) {
2630 case XDP_PASS:
2631 #ifdef CONFIG_DPAA_ERRATUM_A050385
2632 *xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2633 xdp.data - xdp.data_meta;
2634 #else
2635 *xdp_meta_len = xdp.data - xdp.data_meta;
2636 #endif
2637 break;
2638 case XDP_TX:
2639 /* We can access the full headroom when sending the frame
2640 * back out
2641 */
2642 xdp.data_hard_start = vaddr;
2643 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2644 xdpf = xdp_convert_buff_to_frame(&xdp);
2645 if (unlikely(!xdpf)) {
2646 free_pages((unsigned long)vaddr, 0);
2647 break;
2648 }
2649
2650 if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2651 xdp_return_frame_rx_napi(xdpf);
2652
2653 break;
2654 case XDP_REDIRECT:
2655 /* Allow redirect to use the full headroom */
2656 xdp.data_hard_start = vaddr;
2657 xdp.frame_sz = DPAA_BP_RAW_SIZE;
2658
2659 err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2660 if (err) {
2661 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2662 free_pages((unsigned long)vaddr, 0);
2663 }
2664 break;
2665 default:
2666 bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2667 fallthrough;
2668 case XDP_ABORTED:
2669 trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2670 fallthrough;
2671 case XDP_DROP:
2672 /* Free the buffer */
2673 free_pages((unsigned long)vaddr, 0);
2674 break;
2675 }
2676
2677 return xdp_act;
2678 }
2679
rx_default_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2680 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2681 struct qman_fq *fq,
2682 const struct qm_dqrr_entry *dq,
2683 bool sched_napi)
2684 {
2685 bool ts_valid = false, hash_valid = false;
2686 struct skb_shared_hwtstamps *shhwtstamps;
2687 unsigned int skb_len, xdp_meta_len = 0;
2688 struct rtnl_link_stats64 *percpu_stats;
2689 struct dpaa_percpu_priv *percpu_priv;
2690 const struct qm_fd *fd = &dq->fd;
2691 dma_addr_t addr = qm_fd_addr(fd);
2692 struct dpaa_napi_portal *np;
2693 enum qm_fd_format fd_format;
2694 struct net_device *net_dev;
2695 u32 fd_status, hash_offset;
2696 struct qm_sg_entry *sgt;
2697 struct dpaa_bp *dpaa_bp;
2698 struct dpaa_fq *dpaa_fq;
2699 struct dpaa_priv *priv;
2700 struct sk_buff *skb;
2701 int *count_ptr;
2702 u32 xdp_act;
2703 void *vaddr;
2704 u32 hash;
2705 u64 ns;
2706
2707 dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2708 fd_status = be32_to_cpu(fd->status);
2709 fd_format = qm_fd_get_format(fd);
2710 net_dev = dpaa_fq->net_dev;
2711 priv = netdev_priv(net_dev);
2712 dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2713 if (!dpaa_bp)
2714 return qman_cb_dqrr_consume;
2715
2716 /* Trace the Rx fd */
2717 trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2718
2719 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2720 percpu_stats = &percpu_priv->stats;
2721 np = &percpu_priv->np;
2722
2723 if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2724 return qman_cb_dqrr_stop;
2725
2726 /* Make sure we didn't run out of buffers */
2727 if (unlikely(dpaa_eth_refill_bpools(priv))) {
2728 /* Unable to refill the buffer pool due to insufficient
2729 * system memory. Just release the frame back into the pool,
2730 * otherwise we'll soon end up with an empty buffer pool.
2731 */
2732 dpaa_fd_release(net_dev, &dq->fd);
2733 return qman_cb_dqrr_consume;
2734 }
2735
2736 if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2737 if (net_ratelimit())
2738 netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2739 fd_status & FM_FD_STAT_RX_ERRORS);
2740
2741 percpu_stats->rx_errors++;
2742 dpaa_fd_release(net_dev, fd);
2743 return qman_cb_dqrr_consume;
2744 }
2745
2746 dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2747 DMA_FROM_DEVICE);
2748
2749 /* prefetch the first 64 bytes of the frame or the SGT start */
2750 vaddr = phys_to_virt(addr);
2751 prefetch(vaddr + qm_fd_get_offset(fd));
2752
2753 /* The only FD types that we may receive are contig and S/G */
2754 WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2755
2756 /* Account for either the contig buffer or the SGT buffer (depending on
2757 * which case we were in) having been removed from the pool.
2758 */
2759 count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2760 (*count_ptr)--;
2761
2762 /* Extract the timestamp stored in the headroom before running XDP */
2763 if (priv->rx_tstamp) {
2764 if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2765 ts_valid = true;
2766 else
2767 WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2768 }
2769
2770 /* Extract the hash stored in the headroom before running XDP */
2771 if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2772 !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2773 &hash_offset)) {
2774 hash = be32_to_cpu(*(__be32 *)(vaddr + hash_offset));
2775 hash_valid = true;
2776 }
2777
2778 if (likely(fd_format == qm_fd_contig)) {
2779 xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2780 dpaa_fq, &xdp_meta_len);
2781 np->xdp_act |= xdp_act;
2782 if (xdp_act != XDP_PASS) {
2783 percpu_stats->rx_packets++;
2784 percpu_stats->rx_bytes += qm_fd_get_length(fd);
2785 return qman_cb_dqrr_consume;
2786 }
2787 skb = contig_fd_to_skb(priv, fd);
2788 } else {
2789 /* XDP doesn't support S/G frames. Return the fragments to the
2790 * buffer pool and release the SGT.
2791 */
2792 if (READ_ONCE(priv->xdp_prog)) {
2793 WARN_ONCE(1, "S/G frames not supported under XDP\n");
2794 sgt = vaddr + qm_fd_get_offset(fd);
2795 dpaa_release_sgt_members(sgt);
2796 free_pages((unsigned long)vaddr, 0);
2797 return qman_cb_dqrr_consume;
2798 }
2799 skb = sg_fd_to_skb(priv, fd);
2800 }
2801 if (!skb)
2802 return qman_cb_dqrr_consume;
2803
2804 if (xdp_meta_len)
2805 skb_metadata_set(skb, xdp_meta_len);
2806
2807 /* Set the previously extracted timestamp */
2808 if (ts_valid) {
2809 shhwtstamps = skb_hwtstamps(skb);
2810 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2811 shhwtstamps->hwtstamp = ns_to_ktime(ns);
2812 }
2813
2814 skb->protocol = eth_type_trans(skb, net_dev);
2815
2816 /* Set the previously extracted hash */
2817 if (hash_valid) {
2818 enum pkt_hash_types type;
2819
2820 /* if L4 exists, it was used in the hash generation */
2821 type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2822 PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2823 skb_set_hash(skb, hash, type);
2824 }
2825
2826 skb_len = skb->len;
2827
2828 if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2829 percpu_stats->rx_dropped++;
2830 return qman_cb_dqrr_consume;
2831 }
2832
2833 percpu_stats->rx_packets++;
2834 percpu_stats->rx_bytes += skb_len;
2835
2836 return qman_cb_dqrr_consume;
2837 }
2838
conf_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2839 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2840 struct qman_fq *fq,
2841 const struct qm_dqrr_entry *dq,
2842 bool sched_napi)
2843 {
2844 struct dpaa_percpu_priv *percpu_priv;
2845 struct net_device *net_dev;
2846 struct dpaa_priv *priv;
2847
2848 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2849 priv = netdev_priv(net_dev);
2850
2851 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2852
2853 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2854 return qman_cb_dqrr_stop;
2855
2856 dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2857
2858 return qman_cb_dqrr_consume;
2859 }
2860
conf_dflt_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2861 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2862 struct qman_fq *fq,
2863 const struct qm_dqrr_entry *dq,
2864 bool sched_napi)
2865 {
2866 struct dpaa_percpu_priv *percpu_priv;
2867 struct net_device *net_dev;
2868 struct dpaa_priv *priv;
2869
2870 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2871 priv = netdev_priv(net_dev);
2872
2873 /* Trace the fd */
2874 trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2875
2876 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2877
2878 if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2879 return qman_cb_dqrr_stop;
2880
2881 dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2882
2883 return qman_cb_dqrr_consume;
2884 }
2885
egress_ern(struct qman_portal * portal,struct qman_fq * fq,const union qm_mr_entry * msg)2886 static void egress_ern(struct qman_portal *portal,
2887 struct qman_fq *fq,
2888 const union qm_mr_entry *msg)
2889 {
2890 const struct qm_fd *fd = &msg->ern.fd;
2891 struct dpaa_percpu_priv *percpu_priv;
2892 const struct dpaa_priv *priv;
2893 struct net_device *net_dev;
2894 struct sk_buff *skb;
2895
2896 net_dev = ((struct dpaa_fq *)fq)->net_dev;
2897 priv = netdev_priv(net_dev);
2898 percpu_priv = this_cpu_ptr(priv->percpu_priv);
2899
2900 percpu_priv->stats.tx_dropped++;
2901 percpu_priv->stats.tx_fifo_errors++;
2902 count_ern(percpu_priv, msg);
2903
2904 skb = dpaa_cleanup_tx_fd(priv, fd, false);
2905 dev_kfree_skb_any(skb);
2906 }
2907
2908 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2909 .rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2910 .tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2911 .rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2912 .tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2913 .egress_ern = { .cb = { .ern = egress_ern } }
2914 };
2915
dpaa_eth_napi_enable(struct dpaa_priv * priv)2916 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2917 {
2918 struct dpaa_percpu_priv *percpu_priv;
2919 int i;
2920
2921 for_each_online_cpu(i) {
2922 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2923
2924 percpu_priv->np.down = false;
2925 napi_enable(&percpu_priv->np.napi);
2926 }
2927 }
2928
dpaa_eth_napi_disable(struct dpaa_priv * priv)2929 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2930 {
2931 struct dpaa_percpu_priv *percpu_priv;
2932 int i;
2933
2934 for_each_online_cpu(i) {
2935 percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2936
2937 percpu_priv->np.down = true;
2938 napi_disable(&percpu_priv->np.napi);
2939 }
2940 }
2941
dpaa_open(struct net_device * net_dev)2942 static int dpaa_open(struct net_device *net_dev)
2943 {
2944 struct mac_device *mac_dev;
2945 struct dpaa_priv *priv;
2946 int err, i;
2947
2948 priv = netdev_priv(net_dev);
2949 mac_dev = priv->mac_dev;
2950 dpaa_eth_napi_enable(priv);
2951
2952 err = phylink_of_phy_connect(mac_dev->phylink,
2953 mac_dev->dev->of_node, 0);
2954 if (err)
2955 goto phy_init_failed;
2956
2957 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2958 err = fman_port_enable(mac_dev->port[i]);
2959 if (err)
2960 goto mac_start_failed;
2961 }
2962
2963 err = priv->mac_dev->enable(mac_dev->fman_mac);
2964 if (err < 0) {
2965 netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2966 goto mac_start_failed;
2967 }
2968 phylink_start(mac_dev->phylink);
2969
2970 netif_tx_start_all_queues(net_dev);
2971
2972 return 0;
2973
2974 mac_start_failed:
2975 for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2976 fman_port_disable(mac_dev->port[i]);
2977 phylink_disconnect_phy(mac_dev->phylink);
2978
2979 phy_init_failed:
2980 dpaa_eth_napi_disable(priv);
2981
2982 return err;
2983 }
2984
dpaa_eth_stop(struct net_device * net_dev)2985 static int dpaa_eth_stop(struct net_device *net_dev)
2986 {
2987 struct dpaa_priv *priv;
2988 int err;
2989
2990 err = dpaa_stop(net_dev);
2991
2992 priv = netdev_priv(net_dev);
2993 dpaa_eth_napi_disable(priv);
2994
2995 return err;
2996 }
2997
xdp_validate_mtu(struct dpaa_priv * priv,int mtu)2998 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
2999 {
3000 int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
3001
3002 /* We do not support S/G fragments when XDP is enabled.
3003 * Limit the MTU in relation to the buffer size.
3004 */
3005 if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
3006 dev_warn(priv->net_dev->dev.parent,
3007 "The maximum MTU for XDP is %d\n",
3008 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
3009 return false;
3010 }
3011
3012 return true;
3013 }
3014
dpaa_change_mtu(struct net_device * net_dev,int new_mtu)3015 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
3016 {
3017 struct dpaa_priv *priv = netdev_priv(net_dev);
3018
3019 if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
3020 return -EINVAL;
3021
3022 WRITE_ONCE(net_dev->mtu, new_mtu);
3023 return 0;
3024 }
3025
dpaa_setup_xdp(struct net_device * net_dev,struct netdev_bpf * bpf)3026 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3027 {
3028 struct dpaa_priv *priv = netdev_priv(net_dev);
3029 struct bpf_prog *old_prog;
3030 int err;
3031 bool up;
3032
3033 /* S/G fragments are not supported in XDP-mode */
3034 if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3035 NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3036 return -EINVAL;
3037 }
3038
3039 up = netif_running(net_dev);
3040
3041 if (up)
3042 dpaa_eth_stop(net_dev);
3043
3044 old_prog = xchg(&priv->xdp_prog, bpf->prog);
3045 if (old_prog)
3046 bpf_prog_put(old_prog);
3047
3048 if (up) {
3049 err = dpaa_open(net_dev);
3050 if (err) {
3051 NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3052 return err;
3053 }
3054 }
3055
3056 return 0;
3057 }
3058
dpaa_xdp(struct net_device * net_dev,struct netdev_bpf * xdp)3059 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3060 {
3061 switch (xdp->command) {
3062 case XDP_SETUP_PROG:
3063 return dpaa_setup_xdp(net_dev, xdp);
3064 default:
3065 return -EINVAL;
3066 }
3067 }
3068
dpaa_xdp_xmit(struct net_device * net_dev,int n,struct xdp_frame ** frames,u32 flags)3069 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3070 struct xdp_frame **frames, u32 flags)
3071 {
3072 struct xdp_frame *xdpf;
3073 int i, nxmit = 0;
3074
3075 if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3076 return -EINVAL;
3077
3078 if (!netif_running(net_dev))
3079 return -ENETDOWN;
3080
3081 for (i = 0; i < n; i++) {
3082 xdpf = frames[i];
3083 if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3084 break;
3085 nxmit++;
3086 }
3087
3088 return nxmit;
3089 }
3090
dpaa_hwtstamp_get(struct net_device * dev,struct kernel_hwtstamp_config * config)3091 static int dpaa_hwtstamp_get(struct net_device *dev,
3092 struct kernel_hwtstamp_config *config)
3093 {
3094 struct dpaa_priv *priv = netdev_priv(dev);
3095
3096 config->tx_type = priv->tx_tstamp ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
3097 config->rx_filter = priv->rx_tstamp ? HWTSTAMP_FILTER_ALL :
3098 HWTSTAMP_FILTER_NONE;
3099
3100 return 0;
3101 }
3102
dpaa_hwtstamp_set(struct net_device * dev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)3103 static int dpaa_hwtstamp_set(struct net_device *dev,
3104 struct kernel_hwtstamp_config *config,
3105 struct netlink_ext_ack *extack)
3106 {
3107 struct dpaa_priv *priv = netdev_priv(dev);
3108
3109 switch (config->tx_type) {
3110 case HWTSTAMP_TX_OFF:
3111 /* Couldn't disable rx/tx timestamping separately.
3112 * Do nothing here.
3113 */
3114 priv->tx_tstamp = false;
3115 break;
3116 case HWTSTAMP_TX_ON:
3117 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3118 priv->tx_tstamp = true;
3119 break;
3120 default:
3121 return -ERANGE;
3122 }
3123
3124 if (config->rx_filter == HWTSTAMP_FILTER_NONE) {
3125 /* Couldn't disable rx/tx timestamping separately.
3126 * Do nothing here.
3127 */
3128 priv->rx_tstamp = false;
3129 } else {
3130 priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3131 priv->rx_tstamp = true;
3132 /* TS is set for all frame types, not only those requested */
3133 config->rx_filter = HWTSTAMP_FILTER_ALL;
3134 }
3135
3136 return 0;
3137 }
3138
dpaa_ioctl(struct net_device * net_dev,struct ifreq * rq,int cmd)3139 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3140 {
3141 struct dpaa_priv *priv = netdev_priv(net_dev);
3142
3143 return phylink_mii_ioctl(priv->mac_dev->phylink, rq, cmd);
3144 }
3145
3146 static const struct net_device_ops dpaa_ops = {
3147 .ndo_open = dpaa_open,
3148 .ndo_start_xmit = dpaa_start_xmit,
3149 .ndo_stop = dpaa_eth_stop,
3150 .ndo_tx_timeout = dpaa_tx_timeout,
3151 .ndo_get_stats64 = dpaa_get_stats64,
3152 .ndo_set_mac_address = dpaa_set_mac_address,
3153 .ndo_validate_addr = eth_validate_addr,
3154 .ndo_set_rx_mode = dpaa_set_rx_mode,
3155 .ndo_eth_ioctl = dpaa_ioctl,
3156 .ndo_setup_tc = dpaa_setup_tc,
3157 .ndo_change_mtu = dpaa_change_mtu,
3158 .ndo_bpf = dpaa_xdp,
3159 .ndo_xdp_xmit = dpaa_xdp_xmit,
3160 .ndo_hwtstamp_get = dpaa_hwtstamp_get,
3161 .ndo_hwtstamp_set = dpaa_hwtstamp_set,
3162 };
3163
dpaa_napi_add(struct net_device * net_dev)3164 static int dpaa_napi_add(struct net_device *net_dev)
3165 {
3166 struct dpaa_priv *priv = netdev_priv(net_dev);
3167 struct dpaa_percpu_priv *percpu_priv;
3168 int cpu;
3169
3170 for_each_possible_cpu(cpu) {
3171 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3172
3173 netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3174 }
3175
3176 return 0;
3177 }
3178
dpaa_napi_del(struct net_device * net_dev)3179 static void dpaa_napi_del(struct net_device *net_dev)
3180 {
3181 struct dpaa_priv *priv = netdev_priv(net_dev);
3182 struct dpaa_percpu_priv *percpu_priv;
3183 int cpu;
3184
3185 for_each_possible_cpu(cpu) {
3186 percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3187
3188 __netif_napi_del(&percpu_priv->np.napi);
3189 }
3190 synchronize_net();
3191 }
3192
dpaa_bp_free_pf(const struct dpaa_bp * bp,struct bm_buffer * bmb)3193 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3194 struct bm_buffer *bmb)
3195 {
3196 dma_addr_t addr = bm_buf_addr(bmb);
3197
3198 dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3199 DMA_FROM_DEVICE);
3200
3201 skb_free_frag(phys_to_virt(addr));
3202 }
3203
3204 /* Alloc the dpaa_bp struct and configure default values */
dpaa_bp_alloc(struct device * dev)3205 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3206 {
3207 struct dpaa_bp *dpaa_bp;
3208
3209 dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3210 if (!dpaa_bp)
3211 return ERR_PTR(-ENOMEM);
3212
3213 dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3214 dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3215 if (!dpaa_bp->percpu_count)
3216 return ERR_PTR(-ENOMEM);
3217
3218 dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3219
3220 dpaa_bp->seed_cb = dpaa_bp_seed;
3221 dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3222
3223 return dpaa_bp;
3224 }
3225
3226 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3227 * We won't be sending congestion notifications to FMan; for now, we just use
3228 * this CGR to generate enqueue rejections to FMan in order to drop the frames
3229 * before they reach our ingress queues and eat up memory.
3230 */
dpaa_ingress_cgr_init(struct dpaa_priv * priv)3231 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3232 {
3233 struct qm_mcc_initcgr initcgr;
3234 u32 cs_th;
3235 int err;
3236
3237 err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3238 if (err < 0) {
3239 if (netif_msg_drv(priv))
3240 pr_err("Error %d allocating CGR ID\n", err);
3241 goto out_error;
3242 }
3243
3244 /* Enable CS TD, but disable Congestion State Change Notifications. */
3245 memset(&initcgr, 0, sizeof(initcgr));
3246 initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3247 initcgr.cgr.cscn_en = QM_CGR_EN;
3248 cs_th = DPAA_INGRESS_CS_THRESHOLD;
3249 qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3250
3251 initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3252 initcgr.cgr.cstd_en = QM_CGR_EN;
3253
3254 /* This CGR will be associated with the SWP affined to the current CPU.
3255 * However, we'll place all our ingress FQs in it.
3256 */
3257 err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3258 &initcgr);
3259 if (err < 0) {
3260 if (netif_msg_drv(priv))
3261 pr_err("Error %d creating ingress CGR with ID %d\n",
3262 err, priv->ingress_cgr.cgrid);
3263 qman_release_cgrid(priv->ingress_cgr.cgrid);
3264 goto out_error;
3265 }
3266 if (netif_msg_drv(priv))
3267 pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3268 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3269
3270 priv->use_ingress_cgr = true;
3271
3272 out_error:
3273 return err;
3274 }
3275
dpaa_get_headroom(struct dpaa_buffer_layout * bl,enum port_type port)3276 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3277 enum port_type port)
3278 {
3279 u16 headroom;
3280
3281 /* The frame headroom must accommodate:
3282 * - the driver private data area
3283 * - parse results, hash results, timestamp if selected
3284 * If either hash results or time stamp are selected, both will
3285 * be copied to/from the frame headroom, as TS is located between PR and
3286 * HR in the IC and IC copy size has a granularity of 16bytes
3287 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3288 *
3289 * Also make sure the headroom is a multiple of data_align bytes
3290 */
3291 headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3292
3293 if (port == RX) {
3294 #ifdef CONFIG_DPAA_ERRATUM_A050385
3295 if (unlikely(fman_has_errata_a050385()))
3296 headroom = XDP_PACKET_HEADROOM;
3297 #endif
3298
3299 return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3300 } else {
3301 return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3302 }
3303 }
3304
dpaa_eth_probe(struct platform_device * pdev)3305 static int dpaa_eth_probe(struct platform_device *pdev)
3306 {
3307 struct net_device *net_dev = NULL;
3308 struct dpaa_bp *dpaa_bp = NULL;
3309 struct dpaa_fq *dpaa_fq, *tmp;
3310 struct dpaa_priv *priv = NULL;
3311 struct fm_port_fqs port_fqs;
3312 struct mac_device *mac_dev;
3313 int err = 0, channel;
3314 struct device *dev;
3315
3316 dev = &pdev->dev;
3317
3318 err = bman_is_probed();
3319 if (!err)
3320 return -EPROBE_DEFER;
3321 if (err < 0) {
3322 dev_err(dev, "failing probe due to bman probe error\n");
3323 return -ENODEV;
3324 }
3325 err = qman_is_probed();
3326 if (!err)
3327 return -EPROBE_DEFER;
3328 if (err < 0) {
3329 dev_err(dev, "failing probe due to qman probe error\n");
3330 return -ENODEV;
3331 }
3332 err = bman_portals_probed();
3333 if (!err)
3334 return -EPROBE_DEFER;
3335 if (err < 0) {
3336 dev_err(dev,
3337 "failing probe due to bman portals probe error\n");
3338 return -ENODEV;
3339 }
3340 err = qman_portals_probed();
3341 if (!err)
3342 return -EPROBE_DEFER;
3343 if (err < 0) {
3344 dev_err(dev,
3345 "failing probe due to qman portals probe error\n");
3346 return -ENODEV;
3347 }
3348
3349 /* Allocate this early, so we can store relevant information in
3350 * the private area
3351 */
3352 net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs());
3353 if (!net_dev) {
3354 dev_err(dev, "alloc_etherdev_mq() failed\n");
3355 return -ENOMEM;
3356 }
3357
3358 /* Do this here, so we can be verbose early */
3359 SET_NETDEV_DEV(net_dev, dev->parent);
3360 dev_set_drvdata(dev, net_dev);
3361
3362 priv = netdev_priv(net_dev);
3363 priv->net_dev = net_dev;
3364
3365 priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3366
3367 priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3368 sizeof(*priv->egress_fqs),
3369 GFP_KERNEL);
3370 if (!priv->egress_fqs) {
3371 err = -ENOMEM;
3372 goto free_netdev;
3373 }
3374
3375 priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3376 sizeof(*priv->conf_fqs),
3377 GFP_KERNEL);
3378 if (!priv->conf_fqs) {
3379 err = -ENOMEM;
3380 goto free_netdev;
3381 }
3382
3383 mac_dev = dpaa_mac_dev_get(pdev);
3384 if (IS_ERR(mac_dev)) {
3385 netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3386 err = PTR_ERR(mac_dev);
3387 goto free_netdev;
3388 }
3389
3390 /* Devices used for DMA mapping */
3391 priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3392 priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3393 err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3394 if (!err)
3395 err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3396 DMA_BIT_MASK(40));
3397 if (err) {
3398 netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3399 goto free_netdev;
3400 }
3401
3402 /* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3403 * we choose conservatively and let the user explicitly set a higher
3404 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3405 * in the same LAN.
3406 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3407 * start with the maximum allowed.
3408 */
3409 net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3410
3411 netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3412 net_dev->mtu);
3413
3414 priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3415 priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3416
3417 /* bp init */
3418 dpaa_bp = dpaa_bp_alloc(dev);
3419 if (IS_ERR(dpaa_bp)) {
3420 err = PTR_ERR(dpaa_bp);
3421 goto free_dpaa_bps;
3422 }
3423 /* the raw size of the buffers used for reception */
3424 dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3425 /* avoid runtime computations by keeping the usable size here */
3426 dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3427 dpaa_bp->priv = priv;
3428
3429 err = dpaa_bp_alloc_pool(dpaa_bp);
3430 if (err < 0)
3431 goto free_dpaa_bps;
3432 priv->dpaa_bp = dpaa_bp;
3433
3434 INIT_LIST_HEAD(&priv->dpaa_fq_list);
3435
3436 memset(&port_fqs, 0, sizeof(port_fqs));
3437
3438 err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3439 if (err < 0) {
3440 dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3441 goto free_dpaa_bps;
3442 }
3443
3444 priv->mac_dev = mac_dev;
3445
3446 channel = dpaa_get_channel();
3447 if (channel < 0) {
3448 dev_err(dev, "dpaa_get_channel() failed\n");
3449 err = channel;
3450 goto free_dpaa_bps;
3451 }
3452
3453 priv->channel = (u16)channel;
3454
3455 /* Walk the CPUs with affine portals
3456 * and add this pool channel to each's dequeue mask.
3457 */
3458 dpaa_eth_add_channel(priv->channel, &pdev->dev);
3459
3460 err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3461 if (err)
3462 goto free_dpaa_bps;
3463
3464 /* Create a congestion group for this netdev, with
3465 * dynamically-allocated CGR ID.
3466 * Must be executed after probing the MAC, but before
3467 * assigning the egress FQs to the CGRs.
3468 */
3469 err = dpaa_eth_cgr_init(priv);
3470 if (err < 0) {
3471 dev_err(dev, "Error initializing CGR\n");
3472 goto free_dpaa_bps;
3473 }
3474
3475 err = dpaa_ingress_cgr_init(priv);
3476 if (err < 0) {
3477 dev_err(dev, "Error initializing ingress CGR\n");
3478 goto delete_egress_cgr;
3479 }
3480
3481 /* Add the FQs to the interface, and make them active */
3482 list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3483 err = dpaa_fq_init(dpaa_fq, false);
3484 if (err < 0)
3485 goto free_dpaa_fqs;
3486 }
3487
3488 priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3489 priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3490
3491 /* All real interfaces need their ports initialized */
3492 err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3493 &priv->buf_layout[0], dev);
3494 if (err)
3495 goto free_dpaa_fqs;
3496
3497 /* Rx traffic distribution based on keygen hashing defaults to on */
3498 priv->keygen_in_use = true;
3499
3500 priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3501 if (!priv->percpu_priv) {
3502 dev_err(dev, "devm_alloc_percpu() failed\n");
3503 err = -ENOMEM;
3504 goto free_dpaa_fqs;
3505 }
3506
3507 priv->num_tc = 1;
3508 netif_set_real_num_tx_queues(net_dev,
3509 priv->num_tc * dpaa_num_txqs_per_tc());
3510
3511 /* Initialize NAPI */
3512 err = dpaa_napi_add(net_dev);
3513 if (err < 0)
3514 goto delete_dpaa_napi;
3515
3516 err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3517 if (err < 0)
3518 goto delete_dpaa_napi;
3519
3520 dpaa_eth_sysfs_init(&net_dev->dev);
3521
3522 netif_info(priv, probe, net_dev, "Probed interface %s\n",
3523 net_dev->name);
3524
3525 return 0;
3526
3527 delete_dpaa_napi:
3528 dpaa_napi_del(net_dev);
3529 free_dpaa_fqs:
3530 dpaa_fq_free(dev, &priv->dpaa_fq_list);
3531 qman_delete_cgr_safe(&priv->ingress_cgr);
3532 qman_release_cgrid(priv->ingress_cgr.cgrid);
3533 delete_egress_cgr:
3534 qman_delete_cgr_safe(&priv->cgr_data.cgr);
3535 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3536 free_dpaa_bps:
3537 dpaa_bps_free(priv);
3538 free_netdev:
3539 dev_set_drvdata(dev, NULL);
3540 free_netdev(net_dev);
3541
3542 return err;
3543 }
3544
dpaa_remove(struct platform_device * pdev)3545 static void dpaa_remove(struct platform_device *pdev)
3546 {
3547 struct net_device *net_dev;
3548 struct dpaa_priv *priv;
3549 struct device *dev;
3550 int err;
3551
3552 dev = &pdev->dev;
3553 net_dev = dev_get_drvdata(dev);
3554
3555 priv = netdev_priv(net_dev);
3556
3557 dpaa_eth_sysfs_remove(dev);
3558
3559 dev_set_drvdata(dev, NULL);
3560 unregister_netdev(net_dev);
3561 phylink_destroy(priv->mac_dev->phylink);
3562
3563 err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3564 if (err)
3565 dev_err(dev, "Failed to free FQs on remove (%pE)\n",
3566 ERR_PTR(err));
3567
3568 qman_delete_cgr_safe(&priv->ingress_cgr);
3569 qman_release_cgrid(priv->ingress_cgr.cgrid);
3570 qman_delete_cgr_safe(&priv->cgr_data.cgr);
3571 qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3572
3573 dpaa_napi_del(net_dev);
3574
3575 dpaa_bps_free(priv);
3576
3577 free_netdev(net_dev);
3578 }
3579
3580 static const struct platform_device_id dpaa_devtype[] = {
3581 {
3582 .name = "dpaa-ethernet",
3583 .driver_data = 0,
3584 }, {
3585 }
3586 };
3587 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3588
3589 static struct platform_driver dpaa_driver = {
3590 .driver = {
3591 .name = KBUILD_MODNAME,
3592 },
3593 .id_table = dpaa_devtype,
3594 .probe = dpaa_eth_probe,
3595 .remove = dpaa_remove
3596 };
3597
dpaa_load(void)3598 static int __init dpaa_load(void)
3599 {
3600 int err;
3601
3602 pr_debug("FSL DPAA Ethernet driver\n");
3603
3604 /* initialize dpaa_eth mirror values */
3605 dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3606 dpaa_max_frm = fman_get_max_frm();
3607
3608 err = platform_driver_register(&dpaa_driver);
3609 if (err < 0)
3610 pr_err("Error, platform_driver_register() = %d\n", err);
3611
3612 return err;
3613 }
3614 module_init(dpaa_load);
3615
dpaa_unload(void)3616 static void __exit dpaa_unload(void)
3617 {
3618 platform_driver_unregister(&dpaa_driver);
3619
3620 /* Only one channel is used and needs to be released after all
3621 * interfaces are removed
3622 */
3623 dpaa_release_channel();
3624 }
3625 module_exit(dpaa_unload);
3626
3627 MODULE_LICENSE("Dual BSD/GPL");
3628 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3629