xref: /linux/drivers/net/ethernet/freescale/dpaa/dpaa_eth.c (revision 8be4d31cb8aaeea27bde4b7ddb26e28a89062ebf)
1 // SPDX-License-Identifier: BSD-3-Clause OR GPL-2.0-or-later
2 /*
3  * Copyright 2008 - 2016 Freescale Semiconductor Inc.
4  * Copyright 2020 NXP
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/init.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/module.h>
12 #include <linux/of_mdio.h>
13 #include <linux/of_net.h>
14 #include <linux/io.h>
15 #include <linux/if_arp.h>
16 #include <linux/if_vlan.h>
17 #include <linux/icmp.h>
18 #include <linux/ip.h>
19 #include <linux/ipv6.h>
20 #include <linux/platform_device.h>
21 #include <linux/udp.h>
22 #include <linux/tcp.h>
23 #include <linux/net.h>
24 #include <linux/skbuff.h>
25 #include <linux/etherdevice.h>
26 #include <linux/if_ether.h>
27 #include <linux/highmem.h>
28 #include <linux/percpu.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/sort.h>
31 #include <linux/bpf.h>
32 #include <linux/bpf_trace.h>
33 #include <soc/fsl/bman.h>
34 #include <soc/fsl/qman.h>
35 #include "fman.h"
36 #include "fman_port.h"
37 #include "mac.h"
38 #include "dpaa_eth.h"
39 
40 /* CREATE_TRACE_POINTS only needs to be defined once. Other dpaa files
41  * using trace events only need to #include <trace/events/sched.h>
42  */
43 #define CREATE_TRACE_POINTS
44 #include "dpaa_eth_trace.h"
45 
46 static int debug = -1;
47 module_param(debug, int, 0444);
48 MODULE_PARM_DESC(debug, "Module/Driver verbosity level (0=none,...,16=all)");
49 
50 static u16 tx_timeout = 1000;
51 module_param(tx_timeout, ushort, 0444);
52 MODULE_PARM_DESC(tx_timeout, "The Tx timeout in ms");
53 
54 #define FM_FD_STAT_RX_ERRORS						\
55 	(FM_FD_ERR_DMA | FM_FD_ERR_PHYSICAL	| \
56 	 FM_FD_ERR_SIZE | FM_FD_ERR_CLS_DISCARD | \
57 	 FM_FD_ERR_EXTRACTION | FM_FD_ERR_NO_SCHEME	| \
58 	 FM_FD_ERR_PRS_TIMEOUT | FM_FD_ERR_PRS_ILL_INSTRUCT | \
59 	 FM_FD_ERR_PRS_HDR_ERR)
60 
61 #define FM_FD_STAT_TX_ERRORS \
62 	(FM_FD_ERR_UNSUPPORTED_FORMAT | \
63 	 FM_FD_ERR_LENGTH | FM_FD_ERR_DMA)
64 
65 #define DPAA_MSG_DEFAULT (NETIF_MSG_DRV | NETIF_MSG_PROBE | \
66 			  NETIF_MSG_LINK | NETIF_MSG_IFUP | \
67 			  NETIF_MSG_IFDOWN | NETIF_MSG_HW)
68 
69 #define DPAA_INGRESS_CS_THRESHOLD 0x10000000
70 /* Ingress congestion threshold on FMan ports
71  * The size in bytes of the ingress tail-drop threshold on FMan ports.
72  * Traffic piling up above this value will be rejected by QMan and discarded
73  * by FMan.
74  */
75 
76 /* Size in bytes of the FQ taildrop threshold */
77 #define DPAA_FQ_TD 0x200000
78 
79 #define DPAA_CS_THRESHOLD_1G 0x06000000
80 /* Egress congestion threshold on 1G ports, range 0x1000 .. 0x10000000
81  * The size in bytes of the egress Congestion State notification threshold on
82  * 1G ports. The 1G dTSECs can quite easily be flooded by cores doing Tx in a
83  * tight loop (e.g. by sending UDP datagrams at "while(1) speed"),
84  * and the larger the frame size, the more acute the problem.
85  * So we have to find a balance between these factors:
86  * - avoiding the device staying congested for a prolonged time (risking
87  *   the netdev watchdog to fire - see also the tx_timeout module param);
88  * - affecting performance of protocols such as TCP, which otherwise
89  *   behave well under the congestion notification mechanism;
90  * - preventing the Tx cores from tightly-looping (as if the congestion
91  *   threshold was too low to be effective);
92  * - running out of memory if the CS threshold is set too high.
93  */
94 
95 #define DPAA_CS_THRESHOLD_10G 0x10000000
96 /* The size in bytes of the egress Congestion State notification threshold on
97  * 10G ports, range 0x1000 .. 0x10000000
98  */
99 
100 /* Largest value that the FQD's OAL field can hold */
101 #define FSL_QMAN_MAX_OAL	127
102 
103 /* Default alignment for start of data in an Rx FD */
104 #ifdef CONFIG_DPAA_ERRATUM_A050385
105 /* aligning data start to 64 avoids DMA transaction splits, unless the buffer
106  * is crossing a 4k page boundary
107  */
108 #define DPAA_FD_DATA_ALIGNMENT  (fman_has_errata_a050385() ? 64 : 16)
109 /* aligning to 256 avoids DMA transaction splits caused by 4k page boundary
110  * crossings; also, all SG fragments except the last must have a size multiple
111  * of 256 to avoid DMA transaction splits
112  */
113 #define DPAA_A050385_ALIGN 256
114 #define DPAA_FD_RX_DATA_ALIGNMENT (fman_has_errata_a050385() ? \
115 				   DPAA_A050385_ALIGN : 16)
116 #else
117 #define DPAA_FD_DATA_ALIGNMENT  16
118 #define DPAA_FD_RX_DATA_ALIGNMENT DPAA_FD_DATA_ALIGNMENT
119 #endif
120 
121 /* The DPAA requires 256 bytes reserved and mapped for the SGT */
122 #define DPAA_SGT_SIZE 256
123 
124 /* Values for the L3R field of the FM Parse Results
125  */
126 /* L3 Type field: First IP Present IPv4 */
127 #define FM_L3_PARSE_RESULT_IPV4	0x8000
128 /* L3 Type field: First IP Present IPv6 */
129 #define FM_L3_PARSE_RESULT_IPV6	0x4000
130 /* Values for the L4R field of the FM Parse Results */
131 /* L4 Type field: UDP */
132 #define FM_L4_PARSE_RESULT_UDP	0x40
133 /* L4 Type field: TCP */
134 #define FM_L4_PARSE_RESULT_TCP	0x20
135 
136 /* FD status field indicating whether the FM Parser has attempted to validate
137  * the L4 csum of the frame.
138  * Note that having this bit set doesn't necessarily imply that the checksum
139  * is valid. One would have to check the parse results to find that out.
140  */
141 #define FM_FD_STAT_L4CV         0x00000004
142 
143 #define DPAA_SGT_MAX_ENTRIES 16 /* maximum number of entries in SG Table */
144 #define DPAA_BUFF_RELEASE_MAX 8 /* maximum number of buffers released at once */
145 
146 #define FSL_DPAA_BPID_INV		0xff
147 #define FSL_DPAA_ETH_MAX_BUF_COUNT	128
148 #define FSL_DPAA_ETH_REFILL_THRESHOLD	80
149 
150 #define DPAA_TX_PRIV_DATA_SIZE	16
151 #define DPAA_PARSE_RESULTS_SIZE sizeof(struct fman_prs_result)
152 #define DPAA_TIME_STAMP_SIZE 8
153 #define DPAA_HASH_RESULTS_SIZE 8
154 #define DPAA_HWA_SIZE (DPAA_PARSE_RESULTS_SIZE + DPAA_TIME_STAMP_SIZE \
155 		       + DPAA_HASH_RESULTS_SIZE)
156 #define DPAA_RX_PRIV_DATA_DEFAULT_SIZE (DPAA_TX_PRIV_DATA_SIZE + \
157 					XDP_PACKET_HEADROOM - DPAA_HWA_SIZE)
158 #ifdef CONFIG_DPAA_ERRATUM_A050385
159 #define DPAA_RX_PRIV_DATA_A050385_SIZE (DPAA_A050385_ALIGN - DPAA_HWA_SIZE)
160 #define DPAA_RX_PRIV_DATA_SIZE (fman_has_errata_a050385() ? \
161 				DPAA_RX_PRIV_DATA_A050385_SIZE : \
162 				DPAA_RX_PRIV_DATA_DEFAULT_SIZE)
163 #else
164 #define DPAA_RX_PRIV_DATA_SIZE DPAA_RX_PRIV_DATA_DEFAULT_SIZE
165 #endif
166 
167 #define DPAA_ETH_PCD_RXQ_NUM	128
168 
169 #define DPAA_ENQUEUE_RETRIES	100000
170 
171 enum port_type {RX, TX};
172 
173 struct fm_port_fqs {
174 	struct dpaa_fq *tx_defq;
175 	struct dpaa_fq *tx_errq;
176 	struct dpaa_fq *rx_defq;
177 	struct dpaa_fq *rx_errq;
178 	struct dpaa_fq *rx_pcdq;
179 };
180 
181 /* All the dpa bps in use at any moment */
182 static struct dpaa_bp *dpaa_bp_array[BM_MAX_NUM_OF_POOLS];
183 
184 #define DPAA_BP_RAW_SIZE 4096
185 
186 #ifdef CONFIG_DPAA_ERRATUM_A050385
187 #define dpaa_bp_size(raw_size) (SKB_WITH_OVERHEAD(raw_size) & \
188 				~(DPAA_A050385_ALIGN - 1))
189 #else
190 #define dpaa_bp_size(raw_size) SKB_WITH_OVERHEAD(raw_size)
191 #endif
192 
193 static int dpaa_max_frm;
194 
195 static int dpaa_rx_extra_headroom;
196 
197 #define dpaa_get_max_mtu()	\
198 	(dpaa_max_frm - (VLAN_ETH_HLEN + ETH_FCS_LEN))
199 
200 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed);
201 
dpaa_netdev_init(struct net_device * net_dev,const struct net_device_ops * dpaa_ops,u16 tx_timeout)202 static int dpaa_netdev_init(struct net_device *net_dev,
203 			    const struct net_device_ops *dpaa_ops,
204 			    u16 tx_timeout)
205 {
206 	struct dpaa_priv *priv = netdev_priv(net_dev);
207 	struct device *dev = net_dev->dev.parent;
208 	struct mac_device *mac_dev = priv->mac_dev;
209 	struct dpaa_percpu_priv *percpu_priv;
210 	const u8 *mac_addr;
211 	int i, err;
212 
213 	/* Although we access another CPU's private data here
214 	 * we do it at initialization so it is safe
215 	 */
216 	for_each_possible_cpu(i) {
217 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
218 		percpu_priv->net_dev = net_dev;
219 	}
220 
221 	net_dev->netdev_ops = dpaa_ops;
222 	mac_addr = mac_dev->addr;
223 
224 	net_dev->mem_start = (unsigned long)priv->mac_dev->res->start;
225 	net_dev->mem_end = (unsigned long)priv->mac_dev->res->end;
226 
227 	net_dev->min_mtu = ETH_MIN_MTU;
228 	net_dev->max_mtu = dpaa_get_max_mtu();
229 
230 	net_dev->hw_features |= (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
231 				 NETIF_F_RXHASH);
232 
233 	net_dev->hw_features |= NETIF_F_SG | NETIF_F_HIGHDMA;
234 	/* The kernels enables GSO automatically, if we declare NETIF_F_SG.
235 	 * For conformity, we'll still declare GSO explicitly.
236 	 */
237 	net_dev->features |= NETIF_F_GSO;
238 	net_dev->features |= NETIF_F_RXCSUM;
239 
240 	net_dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
241 	net_dev->lltx = true;
242 	/* we do not want shared skbs on TX */
243 	net_dev->priv_flags &= ~IFF_TX_SKB_SHARING;
244 
245 	net_dev->features |= net_dev->hw_features;
246 	net_dev->vlan_features = net_dev->features;
247 
248 	net_dev->xdp_features = NETDEV_XDP_ACT_BASIC |
249 				NETDEV_XDP_ACT_REDIRECT |
250 				NETDEV_XDP_ACT_NDO_XMIT;
251 
252 	if (is_valid_ether_addr(mac_addr)) {
253 		memcpy(net_dev->perm_addr, mac_addr, net_dev->addr_len);
254 		eth_hw_addr_set(net_dev, mac_addr);
255 	} else {
256 		eth_hw_addr_random(net_dev);
257 		err = mac_dev->change_addr(mac_dev->fman_mac,
258 			(const enet_addr_t *)net_dev->dev_addr);
259 		if (err) {
260 			dev_err(dev, "Failed to set random MAC address\n");
261 			return -EINVAL;
262 		}
263 		dev_info(dev, "Using random MAC address: %pM\n",
264 			 net_dev->dev_addr);
265 	}
266 
267 	net_dev->ethtool_ops = &dpaa_ethtool_ops;
268 
269 	net_dev->needed_headroom = priv->tx_headroom;
270 	net_dev->watchdog_timeo = msecs_to_jiffies(tx_timeout);
271 
272 	/* The rest of the config is filled in by the mac device already */
273 	mac_dev->phylink_config.dev = &net_dev->dev;
274 	mac_dev->phylink_config.type = PHYLINK_NETDEV;
275 	mac_dev->update_speed = dpaa_eth_cgr_set_speed;
276 	mac_dev->phylink = phylink_create(&mac_dev->phylink_config,
277 					  dev_fwnode(mac_dev->dev),
278 					  mac_dev->phy_if,
279 					  mac_dev->phylink_ops);
280 	if (IS_ERR(mac_dev->phylink)) {
281 		err = PTR_ERR(mac_dev->phylink);
282 		dev_err_probe(dev, err, "Could not create phylink\n");
283 		return err;
284 	}
285 
286 	/* start without the RUNNING flag, phylib controls it later */
287 	netif_carrier_off(net_dev);
288 
289 	err = register_netdev(net_dev);
290 	if (err < 0) {
291 		dev_err(dev, "register_netdev() = %d\n", err);
292 		phylink_destroy(mac_dev->phylink);
293 		return err;
294 	}
295 
296 	return 0;
297 }
298 
dpaa_stop(struct net_device * net_dev)299 static int dpaa_stop(struct net_device *net_dev)
300 {
301 	struct mac_device *mac_dev;
302 	struct dpaa_priv *priv;
303 	int i, error;
304 	int err = 0;
305 
306 	priv = netdev_priv(net_dev);
307 	mac_dev = priv->mac_dev;
308 
309 	netif_tx_stop_all_queues(net_dev);
310 	/* Allow the Fman (Tx) port to process in-flight frames before we
311 	 * try switching it off.
312 	 */
313 	msleep(200);
314 
315 	phylink_stop(mac_dev->phylink);
316 	mac_dev->disable(mac_dev->fman_mac);
317 
318 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
319 		error = fman_port_disable(mac_dev->port[i]);
320 		if (error)
321 			err = error;
322 	}
323 
324 	phylink_disconnect_phy(mac_dev->phylink);
325 	net_dev->phydev = NULL;
326 
327 	msleep(200);
328 
329 	return err;
330 }
331 
dpaa_tx_timeout(struct net_device * net_dev,unsigned int txqueue)332 static void dpaa_tx_timeout(struct net_device *net_dev, unsigned int txqueue)
333 {
334 	struct dpaa_percpu_priv *percpu_priv;
335 	const struct dpaa_priv	*priv;
336 
337 	priv = netdev_priv(net_dev);
338 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
339 
340 	netif_crit(priv, timer, net_dev, "Transmit timeout latency: %u ms\n",
341 		   jiffies_to_msecs(jiffies - dev_trans_start(net_dev)));
342 
343 	percpu_priv->stats.tx_errors++;
344 }
345 
346 /* Calculates the statistics for the given device by adding the statistics
347  * collected by each CPU.
348  */
dpaa_get_stats64(struct net_device * net_dev,struct rtnl_link_stats64 * s)349 static void dpaa_get_stats64(struct net_device *net_dev,
350 			     struct rtnl_link_stats64 *s)
351 {
352 	int numstats = sizeof(struct rtnl_link_stats64) / sizeof(u64);
353 	struct dpaa_priv *priv = netdev_priv(net_dev);
354 	struct dpaa_percpu_priv *percpu_priv;
355 	u64 *netstats = (u64 *)s;
356 	u64 *cpustats;
357 	int i, j;
358 
359 	for_each_possible_cpu(i) {
360 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
361 
362 		cpustats = (u64 *)&percpu_priv->stats;
363 
364 		/* add stats from all CPUs */
365 		for (j = 0; j < numstats; j++)
366 			netstats[j] += cpustats[j];
367 	}
368 }
369 
dpaa_setup_tc(struct net_device * net_dev,enum tc_setup_type type,void * type_data)370 static int dpaa_setup_tc(struct net_device *net_dev, enum tc_setup_type type,
371 			 void *type_data)
372 {
373 	struct dpaa_priv *priv = netdev_priv(net_dev);
374 	int num_txqs_per_tc = dpaa_num_txqs_per_tc();
375 	struct tc_mqprio_qopt *mqprio = type_data;
376 	u8 num_tc;
377 	int i;
378 
379 	if (type != TC_SETUP_QDISC_MQPRIO)
380 		return -EOPNOTSUPP;
381 
382 	mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
383 	num_tc = mqprio->num_tc;
384 
385 	if (num_tc == priv->num_tc)
386 		return 0;
387 
388 	if (!num_tc) {
389 		netdev_reset_tc(net_dev);
390 		goto out;
391 	}
392 
393 	if (num_tc > DPAA_TC_NUM) {
394 		netdev_err(net_dev, "Too many traffic classes: max %d supported.\n",
395 			   DPAA_TC_NUM);
396 		return -EINVAL;
397 	}
398 
399 	netdev_set_num_tc(net_dev, num_tc);
400 
401 	for (i = 0; i < num_tc; i++)
402 		netdev_set_tc_queue(net_dev, i, num_txqs_per_tc,
403 				    i * num_txqs_per_tc);
404 
405 out:
406 	priv->num_tc = num_tc ? : 1;
407 	netif_set_real_num_tx_queues(net_dev, priv->num_tc * num_txqs_per_tc);
408 	return 0;
409 }
410 
dpaa_mac_dev_get(struct platform_device * pdev)411 static struct mac_device *dpaa_mac_dev_get(struct platform_device *pdev)
412 {
413 	struct dpaa_eth_data *eth_data;
414 	struct device *dpaa_dev;
415 	struct mac_device *mac_dev;
416 
417 	dpaa_dev = &pdev->dev;
418 	eth_data = dpaa_dev->platform_data;
419 	if (!eth_data) {
420 		dev_err(dpaa_dev, "eth_data missing\n");
421 		return ERR_PTR(-ENODEV);
422 	}
423 	mac_dev = eth_data->mac_dev;
424 	if (!mac_dev) {
425 		dev_err(dpaa_dev, "mac_dev missing\n");
426 		return ERR_PTR(-EINVAL);
427 	}
428 
429 	return mac_dev;
430 }
431 
dpaa_set_mac_address(struct net_device * net_dev,void * addr)432 static int dpaa_set_mac_address(struct net_device *net_dev, void *addr)
433 {
434 	const struct dpaa_priv *priv;
435 	struct mac_device *mac_dev;
436 	struct sockaddr old_addr;
437 	int err;
438 
439 	priv = netdev_priv(net_dev);
440 
441 	memcpy(old_addr.sa_data, net_dev->dev_addr,  ETH_ALEN);
442 
443 	err = eth_mac_addr(net_dev, addr);
444 	if (err < 0) {
445 		netif_err(priv, drv, net_dev, "eth_mac_addr() = %d\n", err);
446 		return err;
447 	}
448 
449 	mac_dev = priv->mac_dev;
450 
451 	err = mac_dev->change_addr(mac_dev->fman_mac,
452 				   (const enet_addr_t *)net_dev->dev_addr);
453 	if (err < 0) {
454 		netif_err(priv, drv, net_dev, "mac_dev->change_addr() = %d\n",
455 			  err);
456 		/* reverting to previous address */
457 		eth_mac_addr(net_dev, &old_addr);
458 
459 		return err;
460 	}
461 
462 	return 0;
463 }
464 
dpaa_addr_sync(struct net_device * net_dev,const u8 * addr)465 static int dpaa_addr_sync(struct net_device *net_dev, const u8 *addr)
466 {
467 	const struct dpaa_priv *priv = netdev_priv(net_dev);
468 
469 	return priv->mac_dev->add_hash_mac_addr(priv->mac_dev->fman_mac,
470 						(enet_addr_t *)addr);
471 }
472 
dpaa_addr_unsync(struct net_device * net_dev,const u8 * addr)473 static int dpaa_addr_unsync(struct net_device *net_dev, const u8 *addr)
474 {
475 	const struct dpaa_priv *priv = netdev_priv(net_dev);
476 
477 	return priv->mac_dev->remove_hash_mac_addr(priv->mac_dev->fman_mac,
478 						   (enet_addr_t *)addr);
479 }
480 
dpaa_set_rx_mode(struct net_device * net_dev)481 static void dpaa_set_rx_mode(struct net_device *net_dev)
482 {
483 	const struct dpaa_priv	*priv;
484 	int err;
485 
486 	priv = netdev_priv(net_dev);
487 
488 	if (!!(net_dev->flags & IFF_PROMISC) != priv->mac_dev->promisc) {
489 		priv->mac_dev->promisc = !priv->mac_dev->promisc;
490 		err = priv->mac_dev->set_promisc(priv->mac_dev->fman_mac,
491 						 priv->mac_dev->promisc);
492 		if (err < 0)
493 			netif_err(priv, drv, net_dev,
494 				  "mac_dev->set_promisc() = %d\n",
495 				  err);
496 	}
497 
498 	if (!!(net_dev->flags & IFF_ALLMULTI) != priv->mac_dev->allmulti) {
499 		priv->mac_dev->allmulti = !priv->mac_dev->allmulti;
500 		err = priv->mac_dev->set_allmulti(priv->mac_dev->fman_mac,
501 						  priv->mac_dev->allmulti);
502 		if (err < 0)
503 			netif_err(priv, drv, net_dev,
504 				  "mac_dev->set_allmulti() = %d\n",
505 				  err);
506 	}
507 
508 	err = __dev_mc_sync(net_dev, dpaa_addr_sync, dpaa_addr_unsync);
509 	if (err < 0)
510 		netif_err(priv, drv, net_dev, "dpaa_addr_sync() = %d\n",
511 			  err);
512 }
513 
dpaa_bpid2pool(int bpid)514 static struct dpaa_bp *dpaa_bpid2pool(int bpid)
515 {
516 	if (WARN_ON(bpid < 0 || bpid >= BM_MAX_NUM_OF_POOLS))
517 		return NULL;
518 
519 	return dpaa_bp_array[bpid];
520 }
521 
522 /* checks if this bpool is already allocated */
dpaa_bpid2pool_use(int bpid)523 static bool dpaa_bpid2pool_use(int bpid)
524 {
525 	if (dpaa_bpid2pool(bpid)) {
526 		refcount_inc(&dpaa_bp_array[bpid]->refs);
527 		return true;
528 	}
529 
530 	return false;
531 }
532 
533 /* called only once per bpid by dpaa_bp_alloc_pool() */
dpaa_bpid2pool_map(int bpid,struct dpaa_bp * dpaa_bp)534 static void dpaa_bpid2pool_map(int bpid, struct dpaa_bp *dpaa_bp)
535 {
536 	dpaa_bp_array[bpid] = dpaa_bp;
537 	refcount_set(&dpaa_bp->refs, 1);
538 }
539 
dpaa_bp_alloc_pool(struct dpaa_bp * dpaa_bp)540 static int dpaa_bp_alloc_pool(struct dpaa_bp *dpaa_bp)
541 {
542 	int err;
543 
544 	if (dpaa_bp->size == 0 || dpaa_bp->config_count == 0) {
545 		pr_err("%s: Buffer pool is not properly initialized! Missing size or initial number of buffers\n",
546 		       __func__);
547 		return -EINVAL;
548 	}
549 
550 	/* If the pool is already specified, we only create one per bpid */
551 	if (dpaa_bp->bpid != FSL_DPAA_BPID_INV &&
552 	    dpaa_bpid2pool_use(dpaa_bp->bpid))
553 		return 0;
554 
555 	if (dpaa_bp->bpid == FSL_DPAA_BPID_INV) {
556 		dpaa_bp->pool = bman_new_pool();
557 		if (!dpaa_bp->pool) {
558 			pr_err("%s: bman_new_pool() failed\n",
559 			       __func__);
560 			return -ENODEV;
561 		}
562 
563 		dpaa_bp->bpid = (u8)bman_get_bpid(dpaa_bp->pool);
564 	}
565 
566 	if (dpaa_bp->seed_cb) {
567 		err = dpaa_bp->seed_cb(dpaa_bp);
568 		if (err)
569 			goto pool_seed_failed;
570 	}
571 
572 	dpaa_bpid2pool_map(dpaa_bp->bpid, dpaa_bp);
573 
574 	return 0;
575 
576 pool_seed_failed:
577 	pr_err("%s: pool seeding failed\n", __func__);
578 	bman_free_pool(dpaa_bp->pool);
579 
580 	return err;
581 }
582 
583 /* remove and free all the buffers from the given buffer pool */
dpaa_bp_drain(struct dpaa_bp * bp)584 static void dpaa_bp_drain(struct dpaa_bp *bp)
585 {
586 	u8 num = 8;
587 	int ret;
588 
589 	do {
590 		struct bm_buffer bmb[8];
591 		int i;
592 
593 		ret = bman_acquire(bp->pool, bmb, num);
594 		if (ret < 0) {
595 			if (num == 8) {
596 				/* we have less than 8 buffers left;
597 				 * drain them one by one
598 				 */
599 				num = 1;
600 				ret = 1;
601 				continue;
602 			} else {
603 				/* Pool is fully drained */
604 				break;
605 			}
606 		}
607 
608 		if (bp->free_buf_cb)
609 			for (i = 0; i < num; i++)
610 				bp->free_buf_cb(bp, &bmb[i]);
611 	} while (ret > 0);
612 }
613 
dpaa_bp_free(struct dpaa_bp * dpaa_bp)614 static void dpaa_bp_free(struct dpaa_bp *dpaa_bp)
615 {
616 	struct dpaa_bp *bp = dpaa_bpid2pool(dpaa_bp->bpid);
617 
618 	/* the mapping between bpid and dpaa_bp is done very late in the
619 	 * allocation procedure; if something failed before the mapping, the bp
620 	 * was not configured, therefore we don't need the below instructions
621 	 */
622 	if (!bp)
623 		return;
624 
625 	if (!refcount_dec_and_test(&bp->refs))
626 		return;
627 
628 	if (bp->free_buf_cb)
629 		dpaa_bp_drain(bp);
630 
631 	dpaa_bp_array[bp->bpid] = NULL;
632 	bman_free_pool(bp->pool);
633 }
634 
dpaa_bps_free(struct dpaa_priv * priv)635 static void dpaa_bps_free(struct dpaa_priv *priv)
636 {
637 	dpaa_bp_free(priv->dpaa_bp);
638 }
639 
640 /* Use multiple WQs for FQ assignment:
641  *	- Tx Confirmation queues go to WQ1.
642  *	- Rx Error and Tx Error queues go to WQ5 (giving them a better chance
643  *	  to be scheduled, in case there are many more FQs in WQ6).
644  *	- Rx Default goes to WQ6.
645  *	- Tx queues go to different WQs depending on their priority. Equal
646  *	  chunks of NR_CPUS queues go to WQ6 (lowest priority), WQ2, WQ1 and
647  *	  WQ0 (highest priority).
648  * This ensures that Tx-confirmed buffers are timely released. In particular,
649  * it avoids congestion on the Tx Confirm FQs, which can pile up PFDRs if they
650  * are greatly outnumbered by other FQs in the system, while
651  * dequeue scheduling is round-robin.
652  */
dpaa_assign_wq(struct dpaa_fq * fq,int idx)653 static inline void dpaa_assign_wq(struct dpaa_fq *fq, int idx)
654 {
655 	switch (fq->fq_type) {
656 	case FQ_TYPE_TX_CONFIRM:
657 	case FQ_TYPE_TX_CONF_MQ:
658 		fq->wq = 1;
659 		break;
660 	case FQ_TYPE_RX_ERROR:
661 	case FQ_TYPE_TX_ERROR:
662 		fq->wq = 5;
663 		break;
664 	case FQ_TYPE_RX_DEFAULT:
665 	case FQ_TYPE_RX_PCD:
666 		fq->wq = 6;
667 		break;
668 	case FQ_TYPE_TX:
669 		switch (idx / dpaa_num_txqs_per_tc()) {
670 		case 0:
671 			/* Low priority (best effort) */
672 			fq->wq = 6;
673 			break;
674 		case 1:
675 			/* Medium priority */
676 			fq->wq = 2;
677 			break;
678 		case 2:
679 			/* High priority */
680 			fq->wq = 1;
681 			break;
682 		case 3:
683 			/* Very high priority */
684 			fq->wq = 0;
685 			break;
686 		default:
687 			WARN(1, "Too many TX FQs: more than %zu!\n",
688 			     dpaa_max_num_txqs());
689 		}
690 		break;
691 	default:
692 		WARN(1, "Invalid FQ type %d for FQID %d!\n",
693 		     fq->fq_type, fq->fqid);
694 	}
695 }
696 
dpaa_fq_alloc(struct device * dev,u32 start,u32 count,struct list_head * list,enum dpaa_fq_type fq_type)697 static struct dpaa_fq *dpaa_fq_alloc(struct device *dev,
698 				     u32 start, u32 count,
699 				     struct list_head *list,
700 				     enum dpaa_fq_type fq_type)
701 {
702 	struct dpaa_fq *dpaa_fq;
703 	int i;
704 
705 	dpaa_fq = devm_kcalloc(dev, count, sizeof(*dpaa_fq),
706 			       GFP_KERNEL);
707 	if (!dpaa_fq)
708 		return NULL;
709 
710 	for (i = 0; i < count; i++) {
711 		dpaa_fq[i].fq_type = fq_type;
712 		dpaa_fq[i].fqid = start ? start + i : 0;
713 		list_add_tail(&dpaa_fq[i].list, list);
714 	}
715 
716 	for (i = 0; i < count; i++)
717 		dpaa_assign_wq(dpaa_fq + i, i);
718 
719 	return dpaa_fq;
720 }
721 
dpaa_alloc_all_fqs(struct device * dev,struct list_head * list,struct fm_port_fqs * port_fqs)722 static int dpaa_alloc_all_fqs(struct device *dev, struct list_head *list,
723 			      struct fm_port_fqs *port_fqs)
724 {
725 	struct dpaa_fq *dpaa_fq;
726 	u32 fq_base, fq_base_aligned, i;
727 
728 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_ERROR);
729 	if (!dpaa_fq)
730 		goto fq_alloc_failed;
731 
732 	port_fqs->rx_errq = &dpaa_fq[0];
733 
734 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_RX_DEFAULT);
735 	if (!dpaa_fq)
736 		goto fq_alloc_failed;
737 
738 	port_fqs->rx_defq = &dpaa_fq[0];
739 
740 	/* the PCD FQIDs range needs to be aligned for correct operation */
741 	if (qman_alloc_fqid_range(&fq_base, 2 * DPAA_ETH_PCD_RXQ_NUM))
742 		goto fq_alloc_failed;
743 
744 	fq_base_aligned = ALIGN(fq_base, DPAA_ETH_PCD_RXQ_NUM);
745 
746 	for (i = fq_base; i < fq_base_aligned; i++)
747 		qman_release_fqid(i);
748 
749 	for (i = fq_base_aligned + DPAA_ETH_PCD_RXQ_NUM;
750 	     i < (fq_base + 2 * DPAA_ETH_PCD_RXQ_NUM); i++)
751 		qman_release_fqid(i);
752 
753 	dpaa_fq = dpaa_fq_alloc(dev, fq_base_aligned, DPAA_ETH_PCD_RXQ_NUM,
754 				list, FQ_TYPE_RX_PCD);
755 	if (!dpaa_fq)
756 		goto fq_alloc_failed;
757 
758 	port_fqs->rx_pcdq = &dpaa_fq[0];
759 
760 	if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list,
761 			   FQ_TYPE_TX_CONF_MQ))
762 		goto fq_alloc_failed;
763 
764 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_ERROR);
765 	if (!dpaa_fq)
766 		goto fq_alloc_failed;
767 
768 	port_fqs->tx_errq = &dpaa_fq[0];
769 
770 	dpaa_fq = dpaa_fq_alloc(dev, 0, 1, list, FQ_TYPE_TX_CONFIRM);
771 	if (!dpaa_fq)
772 		goto fq_alloc_failed;
773 
774 	port_fqs->tx_defq = &dpaa_fq[0];
775 
776 	if (!dpaa_fq_alloc(dev, 0, dpaa_max_num_txqs(), list, FQ_TYPE_TX))
777 		goto fq_alloc_failed;
778 
779 	return 0;
780 
781 fq_alloc_failed:
782 	dev_err(dev, "dpaa_fq_alloc() failed\n");
783 	return -ENOMEM;
784 }
785 
786 static u32 rx_pool_channel;
787 static DEFINE_SPINLOCK(rx_pool_channel_init);
788 
dpaa_get_channel(void)789 static int dpaa_get_channel(void)
790 {
791 	spin_lock(&rx_pool_channel_init);
792 	if (!rx_pool_channel) {
793 		u32 pool;
794 		int ret;
795 
796 		ret = qman_alloc_pool(&pool);
797 
798 		if (!ret)
799 			rx_pool_channel = pool;
800 	}
801 	spin_unlock(&rx_pool_channel_init);
802 	if (!rx_pool_channel)
803 		return -ENOMEM;
804 	return rx_pool_channel;
805 }
806 
dpaa_release_channel(void)807 static void dpaa_release_channel(void)
808 {
809 	qman_release_pool(rx_pool_channel);
810 }
811 
dpaa_eth_add_channel(u16 channel,struct device * dev)812 static void dpaa_eth_add_channel(u16 channel, struct device *dev)
813 {
814 	u32 pool = QM_SDQCR_CHANNELS_POOL_CONV(channel);
815 	const cpumask_t *cpus = qman_affine_cpus();
816 	struct qman_portal *portal;
817 	int cpu;
818 
819 	for_each_cpu_and(cpu, cpus, cpu_online_mask) {
820 		portal = qman_get_affine_portal(cpu);
821 		qman_p_static_dequeue_add(portal, pool);
822 		qman_start_using_portal(portal, dev);
823 	}
824 }
825 
826 /* Congestion group state change notification callback.
827  * Stops the device's egress queues while they are congested and
828  * wakes them upon exiting congested state.
829  * Also updates some CGR-related stats.
830  */
dpaa_eth_cgscn(struct qman_portal * qm,struct qman_cgr * cgr,int congested)831 static void dpaa_eth_cgscn(struct qman_portal *qm, struct qman_cgr *cgr,
832 			   int congested)
833 {
834 	struct dpaa_priv *priv = (struct dpaa_priv *)container_of(cgr,
835 		struct dpaa_priv, cgr_data.cgr);
836 
837 	if (congested) {
838 		priv->cgr_data.congestion_start_jiffies = jiffies;
839 		netif_tx_stop_all_queues(priv->net_dev);
840 		priv->cgr_data.cgr_congested_count++;
841 	} else {
842 		priv->cgr_data.congested_jiffies +=
843 			(jiffies - priv->cgr_data.congestion_start_jiffies);
844 		netif_tx_wake_all_queues(priv->net_dev);
845 	}
846 }
847 
dpaa_eth_cgr_init(struct dpaa_priv * priv)848 static int dpaa_eth_cgr_init(struct dpaa_priv *priv)
849 {
850 	struct qm_mcc_initcgr initcgr;
851 	u32 cs_th;
852 	int err;
853 
854 	err = qman_alloc_cgrid(&priv->cgr_data.cgr.cgrid);
855 	if (err < 0) {
856 		if (netif_msg_drv(priv))
857 			pr_err("%s: Error %d allocating CGR ID\n",
858 			       __func__, err);
859 		goto out_error;
860 	}
861 	priv->cgr_data.cgr.cb = dpaa_eth_cgscn;
862 
863 	/* Enable Congestion State Change Notifications and CS taildrop */
864 	memset(&initcgr, 0, sizeof(initcgr));
865 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CSCN_EN | QM_CGR_WE_CS_THRES);
866 	initcgr.cgr.cscn_en = QM_CGR_EN;
867 
868 	/* Set different thresholds based on the configured MAC speed.
869 	 * This may turn suboptimal if the MAC is reconfigured at another
870 	 * speed, so MACs must call dpaa_eth_cgr_set_speed in their link_up
871 	 * callback.
872 	 */
873 	if (priv->mac_dev->phylink_config.mac_capabilities & MAC_10000FD)
874 		cs_th = DPAA_CS_THRESHOLD_10G;
875 	else
876 		cs_th = DPAA_CS_THRESHOLD_1G;
877 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
878 
879 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
880 	initcgr.cgr.cstd_en = QM_CGR_EN;
881 
882 	err = qman_create_cgr(&priv->cgr_data.cgr, QMAN_CGR_FLAG_USE_INIT,
883 			      &initcgr);
884 	if (err < 0) {
885 		if (netif_msg_drv(priv))
886 			pr_err("%s: Error %d creating CGR with ID %d\n",
887 			       __func__, err, priv->cgr_data.cgr.cgrid);
888 		qman_release_cgrid(priv->cgr_data.cgr.cgrid);
889 		goto out_error;
890 	}
891 	if (netif_msg_drv(priv))
892 		pr_debug("Created CGR %d for netdev with hwaddr %pM on QMan channel %d\n",
893 			 priv->cgr_data.cgr.cgrid, priv->mac_dev->addr,
894 			 priv->cgr_data.cgr.chan);
895 
896 out_error:
897 	return err;
898 }
899 
dpaa_eth_cgr_set_speed(struct mac_device * mac_dev,int speed)900 static void dpaa_eth_cgr_set_speed(struct mac_device *mac_dev, int speed)
901 {
902 	struct net_device *net_dev = to_net_dev(mac_dev->phylink_config.dev);
903 	struct dpaa_priv *priv = netdev_priv(net_dev);
904 	struct qm_mcc_initcgr opts = { };
905 	u32 cs_th;
906 	int err;
907 
908 	opts.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
909 	switch (speed) {
910 	case SPEED_10000:
911 		cs_th = DPAA_CS_THRESHOLD_10G;
912 		break;
913 	case SPEED_1000:
914 	default:
915 		cs_th = DPAA_CS_THRESHOLD_1G;
916 		break;
917 	}
918 	qm_cgr_cs_thres_set64(&opts.cgr.cs_thres, cs_th, 1);
919 
920 	err = qman_update_cgr_safe(&priv->cgr_data.cgr, &opts);
921 	if (err)
922 		netdev_err(net_dev, "could not update speed: %d\n", err);
923 }
924 
dpaa_setup_ingress(const struct dpaa_priv * priv,struct dpaa_fq * fq,const struct qman_fq * template)925 static inline void dpaa_setup_ingress(const struct dpaa_priv *priv,
926 				      struct dpaa_fq *fq,
927 				      const struct qman_fq *template)
928 {
929 	fq->fq_base = *template;
930 	fq->net_dev = priv->net_dev;
931 
932 	fq->flags = QMAN_FQ_FLAG_NO_ENQUEUE;
933 	fq->channel = priv->channel;
934 }
935 
dpaa_setup_egress(const struct dpaa_priv * priv,struct dpaa_fq * fq,struct fman_port * port,const struct qman_fq * template)936 static inline void dpaa_setup_egress(const struct dpaa_priv *priv,
937 				     struct dpaa_fq *fq,
938 				     struct fman_port *port,
939 				     const struct qman_fq *template)
940 {
941 	fq->fq_base = *template;
942 	fq->net_dev = priv->net_dev;
943 
944 	if (port) {
945 		fq->flags = QMAN_FQ_FLAG_TO_DCPORTAL;
946 		fq->channel = (u16)fman_port_get_qman_channel_id(port);
947 	} else {
948 		fq->flags = QMAN_FQ_FLAG_NO_MODIFY;
949 	}
950 }
951 
dpaa_fq_setup(struct dpaa_priv * priv,const struct dpaa_fq_cbs * fq_cbs,struct fman_port * tx_port)952 static int dpaa_fq_setup(struct dpaa_priv *priv,
953 			 const struct dpaa_fq_cbs *fq_cbs,
954 			 struct fman_port *tx_port)
955 {
956 	int egress_cnt = 0, conf_cnt = 0, num_portals = 0, portal_cnt = 0, cpu;
957 	const cpumask_t *affine_cpus = qman_affine_cpus();
958 	struct dpaa_fq *fq;
959 	u16 *channels;
960 
961 	channels = kcalloc(num_possible_cpus(), sizeof(u16), GFP_KERNEL);
962 	if (!channels)
963 		return -ENOMEM;
964 
965 	for_each_cpu_and(cpu, affine_cpus, cpu_online_mask)
966 		channels[num_portals++] = qman_affine_channel(cpu);
967 
968 	if (num_portals == 0)
969 		dev_err(priv->net_dev->dev.parent,
970 			"No Qman software (affine) channels found\n");
971 
972 	/* Initialize each FQ in the list */
973 	list_for_each_entry(fq, &priv->dpaa_fq_list, list) {
974 		switch (fq->fq_type) {
975 		case FQ_TYPE_RX_DEFAULT:
976 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
977 			break;
978 		case FQ_TYPE_RX_ERROR:
979 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_errq);
980 			break;
981 		case FQ_TYPE_RX_PCD:
982 			if (!num_portals)
983 				continue;
984 			dpaa_setup_ingress(priv, fq, &fq_cbs->rx_defq);
985 			fq->channel = channels[portal_cnt++ % num_portals];
986 			break;
987 		case FQ_TYPE_TX:
988 			dpaa_setup_egress(priv, fq, tx_port,
989 					  &fq_cbs->egress_ern);
990 			priv->egress_fqs[egress_cnt++] = &fq->fq_base;
991 			break;
992 		case FQ_TYPE_TX_CONF_MQ:
993 			priv->conf_fqs[conf_cnt++] = &fq->fq_base;
994 			fallthrough;
995 		case FQ_TYPE_TX_CONFIRM:
996 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_defq);
997 			break;
998 		case FQ_TYPE_TX_ERROR:
999 			dpaa_setup_ingress(priv, fq, &fq_cbs->tx_errq);
1000 			break;
1001 		default:
1002 			dev_warn(priv->net_dev->dev.parent,
1003 				 "Unknown FQ type detected!\n");
1004 			break;
1005 		}
1006 	}
1007 
1008 	kfree(channels);
1009 
1010 	return 0;
1011 }
1012 
dpaa_tx_fq_to_id(const struct dpaa_priv * priv,struct qman_fq * tx_fq)1013 static inline int dpaa_tx_fq_to_id(const struct dpaa_priv *priv,
1014 				   struct qman_fq *tx_fq)
1015 {
1016 	int i;
1017 
1018 	for (i = 0; i < dpaa_max_num_txqs(); i++)
1019 		if (priv->egress_fqs[i] == tx_fq)
1020 			return i;
1021 
1022 	return -EINVAL;
1023 }
1024 
dpaa_fq_init(struct dpaa_fq * dpaa_fq,bool td_enable)1025 static int dpaa_fq_init(struct dpaa_fq *dpaa_fq, bool td_enable)
1026 {
1027 	const struct dpaa_priv	*priv;
1028 	struct qman_fq *confq = NULL;
1029 	struct qm_mcc_initfq initfq;
1030 	struct device *dev;
1031 	struct qman_fq *fq;
1032 	int queue_id;
1033 	int err;
1034 
1035 	priv = netdev_priv(dpaa_fq->net_dev);
1036 	dev = dpaa_fq->net_dev->dev.parent;
1037 
1038 	if (dpaa_fq->fqid == 0)
1039 		dpaa_fq->flags |= QMAN_FQ_FLAG_DYNAMIC_FQID;
1040 
1041 	dpaa_fq->init = !(dpaa_fq->flags & QMAN_FQ_FLAG_NO_MODIFY);
1042 
1043 	err = qman_create_fq(dpaa_fq->fqid, dpaa_fq->flags, &dpaa_fq->fq_base);
1044 	if (err) {
1045 		dev_err(dev, "qman_create_fq() failed\n");
1046 		return err;
1047 	}
1048 	fq = &dpaa_fq->fq_base;
1049 
1050 	if (dpaa_fq->init) {
1051 		memset(&initfq, 0, sizeof(initfq));
1052 
1053 		initfq.we_mask = cpu_to_be16(QM_INITFQ_WE_FQCTRL);
1054 		/* Note: we may get to keep an empty FQ in cache */
1055 		initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_PREFERINCACHE);
1056 
1057 		/* Try to reduce the number of portal interrupts for
1058 		 * Tx Confirmation FQs.
1059 		 */
1060 		if (dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM)
1061 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_AVOIDBLOCK);
1062 
1063 		/* FQ placement */
1064 		initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_DESTWQ);
1065 
1066 		qm_fqd_set_destwq(&initfq.fqd, dpaa_fq->channel, dpaa_fq->wq);
1067 
1068 		/* Put all egress queues in a congestion group of their own.
1069 		 * Sensu stricto, the Tx confirmation queues are Rx FQs,
1070 		 * rather than Tx - but they nonetheless account for the
1071 		 * memory footprint on behalf of egress traffic. We therefore
1072 		 * place them in the netdev's CGR, along with the Tx FQs.
1073 		 */
1074 		if (dpaa_fq->fq_type == FQ_TYPE_TX ||
1075 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONFIRM ||
1076 		    dpaa_fq->fq_type == FQ_TYPE_TX_CONF_MQ) {
1077 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1078 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1079 			initfq.fqd.cgid = (u8)priv->cgr_data.cgr.cgrid;
1080 			/* Set a fixed overhead accounting, in an attempt to
1081 			 * reduce the impact of fixed-size skb shells and the
1082 			 * driver's needed headroom on system memory. This is
1083 			 * especially the case when the egress traffic is
1084 			 * composed of small datagrams.
1085 			 * Unfortunately, QMan's OAL value is capped to an
1086 			 * insufficient value, but even that is better than
1087 			 * no overhead accounting at all.
1088 			 */
1089 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1090 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1091 			qm_fqd_set_oal(&initfq.fqd,
1092 				       min(sizeof(struct sk_buff) +
1093 				       priv->tx_headroom,
1094 				       (size_t)FSL_QMAN_MAX_OAL));
1095 		}
1096 
1097 		if (td_enable) {
1098 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_TDTHRESH);
1099 			qm_fqd_set_taildrop(&initfq.fqd, DPAA_FQ_TD, 1);
1100 			initfq.fqd.fq_ctrl = cpu_to_be16(QM_FQCTRL_TDE);
1101 		}
1102 
1103 		if (dpaa_fq->fq_type == FQ_TYPE_TX) {
1104 			queue_id = dpaa_tx_fq_to_id(priv, &dpaa_fq->fq_base);
1105 			if (queue_id >= 0)
1106 				confq = priv->conf_fqs[queue_id];
1107 			if (confq) {
1108 				initfq.we_mask |=
1109 					cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1110 			/* ContextA: OVOM=1(use contextA2 bits instead of ICAD)
1111 			 *	     A2V=1 (contextA A2 field is valid)
1112 			 *	     A0V=1 (contextA A0 field is valid)
1113 			 *	     B0V=1 (contextB field is valid)
1114 			 * ContextA A2: EBD=1 (deallocate buffers inside FMan)
1115 			 * ContextB B0(ASPID): 0 (absolute Virtual Storage ID)
1116 			 */
1117 				qm_fqd_context_a_set64(&initfq.fqd,
1118 						       0x1e00000080000000ULL);
1119 			}
1120 		}
1121 
1122 		/* Put all the ingress queues in our "ingress CGR". */
1123 		if (priv->use_ingress_cgr &&
1124 		    (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1125 		     dpaa_fq->fq_type == FQ_TYPE_RX_ERROR ||
1126 		     dpaa_fq->fq_type == FQ_TYPE_RX_PCD)) {
1127 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CGID);
1128 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_CGE);
1129 			initfq.fqd.cgid = (u8)priv->ingress_cgr.cgrid;
1130 			/* Set a fixed overhead accounting, just like for the
1131 			 * egress CGR.
1132 			 */
1133 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_OAC);
1134 			qm_fqd_set_oac(&initfq.fqd, QM_OAC_CG);
1135 			qm_fqd_set_oal(&initfq.fqd,
1136 				       min(sizeof(struct sk_buff) +
1137 				       priv->tx_headroom,
1138 				       (size_t)FSL_QMAN_MAX_OAL));
1139 		}
1140 
1141 		/* Initialization common to all ingress queues */
1142 		if (dpaa_fq->flags & QMAN_FQ_FLAG_NO_ENQUEUE) {
1143 			initfq.we_mask |= cpu_to_be16(QM_INITFQ_WE_CONTEXTA);
1144 			initfq.fqd.fq_ctrl |= cpu_to_be16(QM_FQCTRL_HOLDACTIVE |
1145 						QM_FQCTRL_CTXASTASHING);
1146 			initfq.fqd.context_a.stashing.exclusive =
1147 				QM_STASHING_EXCL_DATA | QM_STASHING_EXCL_CTX |
1148 				QM_STASHING_EXCL_ANNOTATION;
1149 			qm_fqd_set_stashing(&initfq.fqd, 1, 2,
1150 					    DIV_ROUND_UP(sizeof(struct qman_fq),
1151 							 64));
1152 		}
1153 
1154 		err = qman_init_fq(fq, QMAN_INITFQ_FLAG_SCHED, &initfq);
1155 		if (err < 0) {
1156 			dev_err(dev, "qman_init_fq(%u) = %d\n",
1157 				qman_fq_fqid(fq), err);
1158 			qman_destroy_fq(fq);
1159 			return err;
1160 		}
1161 	}
1162 
1163 	dpaa_fq->fqid = qman_fq_fqid(fq);
1164 
1165 	if (dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1166 	    dpaa_fq->fq_type == FQ_TYPE_RX_PCD) {
1167 		err = xdp_rxq_info_reg(&dpaa_fq->xdp_rxq, dpaa_fq->net_dev,
1168 				       dpaa_fq->fqid, 0);
1169 		if (err) {
1170 			dev_err(dev, "xdp_rxq_info_reg() = %d\n", err);
1171 			return err;
1172 		}
1173 
1174 		err = xdp_rxq_info_reg_mem_model(&dpaa_fq->xdp_rxq,
1175 						 MEM_TYPE_PAGE_ORDER0, NULL);
1176 		if (err) {
1177 			dev_err(dev, "xdp_rxq_info_reg_mem_model() = %d\n",
1178 				err);
1179 			xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1180 			return err;
1181 		}
1182 	}
1183 
1184 	return 0;
1185 }
1186 
dpaa_fq_free_entry(struct device * dev,struct qman_fq * fq)1187 static int dpaa_fq_free_entry(struct device *dev, struct qman_fq *fq)
1188 {
1189 	const struct dpaa_priv  *priv;
1190 	struct dpaa_fq *dpaa_fq;
1191 	int err, error;
1192 
1193 	err = 0;
1194 
1195 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
1196 	priv = netdev_priv(dpaa_fq->net_dev);
1197 
1198 	if (dpaa_fq->init) {
1199 		err = qman_retire_fq(fq, NULL);
1200 		if (err < 0 && netif_msg_drv(priv))
1201 			dev_err(dev, "qman_retire_fq(%u) = %d\n",
1202 				qman_fq_fqid(fq), err);
1203 
1204 		error = qman_oos_fq(fq);
1205 		if (error < 0 && netif_msg_drv(priv)) {
1206 			dev_err(dev, "qman_oos_fq(%u) = %d\n",
1207 				qman_fq_fqid(fq), error);
1208 			if (err >= 0)
1209 				err = error;
1210 		}
1211 	}
1212 
1213 	if ((dpaa_fq->fq_type == FQ_TYPE_RX_DEFAULT ||
1214 	     dpaa_fq->fq_type == FQ_TYPE_RX_PCD) &&
1215 	    xdp_rxq_info_is_reg(&dpaa_fq->xdp_rxq))
1216 		xdp_rxq_info_unreg(&dpaa_fq->xdp_rxq);
1217 
1218 	qman_destroy_fq(fq);
1219 	list_del(&dpaa_fq->list);
1220 
1221 	return err;
1222 }
1223 
dpaa_fq_free(struct device * dev,struct list_head * list)1224 static int dpaa_fq_free(struct device *dev, struct list_head *list)
1225 {
1226 	struct dpaa_fq *dpaa_fq, *tmp;
1227 	int err, error;
1228 
1229 	err = 0;
1230 	list_for_each_entry_safe(dpaa_fq, tmp, list, list) {
1231 		error = dpaa_fq_free_entry(dev, (struct qman_fq *)dpaa_fq);
1232 		if (error < 0 && err >= 0)
1233 			err = error;
1234 	}
1235 
1236 	return err;
1237 }
1238 
dpaa_eth_init_tx_port(struct fman_port * port,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_buffer_layout * buf_layout)1239 static int dpaa_eth_init_tx_port(struct fman_port *port, struct dpaa_fq *errq,
1240 				 struct dpaa_fq *defq,
1241 				 struct dpaa_buffer_layout *buf_layout)
1242 {
1243 	struct fman_buffer_prefix_content buf_prefix_content;
1244 	struct fman_port_params params;
1245 	int err;
1246 
1247 	memset(&params, 0, sizeof(params));
1248 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1249 
1250 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1251 	buf_prefix_content.pass_prs_result = true;
1252 	buf_prefix_content.pass_hash_result = true;
1253 	buf_prefix_content.pass_time_stamp = true;
1254 	buf_prefix_content.data_align = DPAA_FD_DATA_ALIGNMENT;
1255 
1256 	params.specific_params.non_rx_params.err_fqid = errq->fqid;
1257 	params.specific_params.non_rx_params.dflt_fqid = defq->fqid;
1258 
1259 	err = fman_port_config(port, &params);
1260 	if (err) {
1261 		pr_err("%s: fman_port_config failed\n", __func__);
1262 		return err;
1263 	}
1264 
1265 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1266 	if (err) {
1267 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1268 		       __func__);
1269 		return err;
1270 	}
1271 
1272 	err = fman_port_init(port);
1273 	if (err)
1274 		pr_err("%s: fm_port_init failed\n", __func__);
1275 
1276 	return err;
1277 }
1278 
dpaa_eth_init_rx_port(struct fman_port * port,struct dpaa_bp * bp,struct dpaa_fq * errq,struct dpaa_fq * defq,struct dpaa_fq * pcdq,struct dpaa_buffer_layout * buf_layout)1279 static int dpaa_eth_init_rx_port(struct fman_port *port, struct dpaa_bp *bp,
1280 				 struct dpaa_fq *errq,
1281 				 struct dpaa_fq *defq, struct dpaa_fq *pcdq,
1282 				 struct dpaa_buffer_layout *buf_layout)
1283 {
1284 	struct fman_buffer_prefix_content buf_prefix_content;
1285 	struct fman_port_rx_params *rx_p;
1286 	struct fman_port_params params;
1287 	int err;
1288 
1289 	memset(&params, 0, sizeof(params));
1290 	memset(&buf_prefix_content, 0, sizeof(buf_prefix_content));
1291 
1292 	buf_prefix_content.priv_data_size = buf_layout->priv_data_size;
1293 	buf_prefix_content.pass_prs_result = true;
1294 	buf_prefix_content.pass_hash_result = true;
1295 	buf_prefix_content.pass_time_stamp = true;
1296 	buf_prefix_content.data_align = DPAA_FD_RX_DATA_ALIGNMENT;
1297 
1298 	rx_p = &params.specific_params.rx_params;
1299 	rx_p->err_fqid = errq->fqid;
1300 	rx_p->dflt_fqid = defq->fqid;
1301 	if (pcdq) {
1302 		rx_p->pcd_base_fqid = pcdq->fqid;
1303 		rx_p->pcd_fqs_count = DPAA_ETH_PCD_RXQ_NUM;
1304 	}
1305 
1306 	rx_p->ext_buf_pools.num_of_pools_used = 1;
1307 	rx_p->ext_buf_pools.ext_buf_pool[0].id =  bp->bpid;
1308 	rx_p->ext_buf_pools.ext_buf_pool[0].size = (u16)bp->size;
1309 
1310 	err = fman_port_config(port, &params);
1311 	if (err) {
1312 		pr_err("%s: fman_port_config failed\n", __func__);
1313 		return err;
1314 	}
1315 
1316 	err = fman_port_cfg_buf_prefix_content(port, &buf_prefix_content);
1317 	if (err) {
1318 		pr_err("%s: fman_port_cfg_buf_prefix_content failed\n",
1319 		       __func__);
1320 		return err;
1321 	}
1322 
1323 	err = fman_port_init(port);
1324 	if (err)
1325 		pr_err("%s: fm_port_init failed\n", __func__);
1326 
1327 	return err;
1328 }
1329 
dpaa_eth_init_ports(struct mac_device * mac_dev,struct dpaa_bp * bp,struct fm_port_fqs * port_fqs,struct dpaa_buffer_layout * buf_layout,struct device * dev)1330 static int dpaa_eth_init_ports(struct mac_device *mac_dev,
1331 			       struct dpaa_bp *bp,
1332 			       struct fm_port_fqs *port_fqs,
1333 			       struct dpaa_buffer_layout *buf_layout,
1334 			       struct device *dev)
1335 {
1336 	struct fman_port *rxport = mac_dev->port[RX];
1337 	struct fman_port *txport = mac_dev->port[TX];
1338 	int err;
1339 
1340 	err = dpaa_eth_init_tx_port(txport, port_fqs->tx_errq,
1341 				    port_fqs->tx_defq, &buf_layout[TX]);
1342 	if (err)
1343 		return err;
1344 
1345 	err = dpaa_eth_init_rx_port(rxport, bp, port_fqs->rx_errq,
1346 				    port_fqs->rx_defq, port_fqs->rx_pcdq,
1347 				    &buf_layout[RX]);
1348 
1349 	return err;
1350 }
1351 
dpaa_bman_release(const struct dpaa_bp * dpaa_bp,struct bm_buffer * bmb,int cnt)1352 static int dpaa_bman_release(const struct dpaa_bp *dpaa_bp,
1353 			     struct bm_buffer *bmb, int cnt)
1354 {
1355 	int err;
1356 
1357 	err = bman_release(dpaa_bp->pool, bmb, cnt);
1358 	/* Should never occur, address anyway to avoid leaking the buffers */
1359 	if (WARN_ON(err) && dpaa_bp->free_buf_cb)
1360 		while (cnt-- > 0)
1361 			dpaa_bp->free_buf_cb(dpaa_bp, &bmb[cnt]);
1362 
1363 	return cnt;
1364 }
1365 
dpaa_release_sgt_members(struct qm_sg_entry * sgt)1366 static void dpaa_release_sgt_members(struct qm_sg_entry *sgt)
1367 {
1368 	struct bm_buffer bmb[DPAA_BUFF_RELEASE_MAX];
1369 	struct dpaa_bp *dpaa_bp;
1370 	int i = 0, j;
1371 
1372 	memset(bmb, 0, sizeof(bmb));
1373 
1374 	do {
1375 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1376 		if (!dpaa_bp)
1377 			return;
1378 
1379 		j = 0;
1380 		do {
1381 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1382 
1383 			bm_buffer_set64(&bmb[j], qm_sg_entry_get64(&sgt[i]));
1384 
1385 			j++; i++;
1386 		} while (j < ARRAY_SIZE(bmb) &&
1387 				!qm_sg_entry_is_final(&sgt[i - 1]) &&
1388 				sgt[i - 1].bpid == sgt[i].bpid);
1389 
1390 		dpaa_bman_release(dpaa_bp, bmb, j);
1391 	} while (!qm_sg_entry_is_final(&sgt[i - 1]));
1392 }
1393 
dpaa_fd_release(const struct net_device * net_dev,const struct qm_fd * fd)1394 static void dpaa_fd_release(const struct net_device *net_dev,
1395 			    const struct qm_fd *fd)
1396 {
1397 	struct qm_sg_entry *sgt;
1398 	struct dpaa_bp *dpaa_bp;
1399 	struct bm_buffer bmb;
1400 	dma_addr_t addr;
1401 	void *vaddr;
1402 
1403 	bmb.data = 0;
1404 	bm_buffer_set64(&bmb, qm_fd_addr(fd));
1405 
1406 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1407 	if (!dpaa_bp)
1408 		return;
1409 
1410 	if (qm_fd_get_format(fd) == qm_fd_sg) {
1411 		vaddr = phys_to_virt(qm_fd_addr(fd));
1412 		sgt = vaddr + qm_fd_get_offset(fd);
1413 
1414 		dma_unmap_page(dpaa_bp->priv->rx_dma_dev, qm_fd_addr(fd),
1415 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1416 
1417 		dpaa_release_sgt_members(sgt);
1418 
1419 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev,
1420 				    virt_to_page(vaddr), 0, DPAA_BP_RAW_SIZE,
1421 				    DMA_FROM_DEVICE);
1422 		if (dma_mapping_error(dpaa_bp->priv->rx_dma_dev, addr)) {
1423 			netdev_err(net_dev, "DMA mapping failed\n");
1424 			return;
1425 		}
1426 		bm_buffer_set64(&bmb, addr);
1427 	}
1428 
1429 	dpaa_bman_release(dpaa_bp, &bmb, 1);
1430 }
1431 
count_ern(struct dpaa_percpu_priv * percpu_priv,const union qm_mr_entry * msg)1432 static void count_ern(struct dpaa_percpu_priv *percpu_priv,
1433 		      const union qm_mr_entry *msg)
1434 {
1435 	switch (msg->ern.rc & QM_MR_RC_MASK) {
1436 	case QM_MR_RC_CGR_TAILDROP:
1437 		percpu_priv->ern_cnt.cg_tdrop++;
1438 		break;
1439 	case QM_MR_RC_WRED:
1440 		percpu_priv->ern_cnt.wred++;
1441 		break;
1442 	case QM_MR_RC_ERROR:
1443 		percpu_priv->ern_cnt.err_cond++;
1444 		break;
1445 	case QM_MR_RC_ORPWINDOW_EARLY:
1446 		percpu_priv->ern_cnt.early_window++;
1447 		break;
1448 	case QM_MR_RC_ORPWINDOW_LATE:
1449 		percpu_priv->ern_cnt.late_window++;
1450 		break;
1451 	case QM_MR_RC_FQ_TAILDROP:
1452 		percpu_priv->ern_cnt.fq_tdrop++;
1453 		break;
1454 	case QM_MR_RC_ORPWINDOW_RETIRED:
1455 		percpu_priv->ern_cnt.fq_retired++;
1456 		break;
1457 	case QM_MR_RC_ORP_ZERO:
1458 		percpu_priv->ern_cnt.orp_zero++;
1459 		break;
1460 	}
1461 }
1462 
1463 /* Turn on HW checksum computation for this outgoing frame.
1464  * If the current protocol is not something we support in this regard
1465  * (or if the stack has already computed the SW checksum), we do nothing.
1466  *
1467  * Returns 0 if all goes well (or HW csum doesn't apply), and a negative value
1468  * otherwise.
1469  *
1470  * Note that this function may modify the fd->cmd field and the skb data buffer
1471  * (the Parse Results area).
1472  */
dpaa_enable_tx_csum(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,void * parse_results)1473 static int dpaa_enable_tx_csum(struct dpaa_priv *priv,
1474 			       struct sk_buff *skb,
1475 			       struct qm_fd *fd,
1476 			       void *parse_results)
1477 {
1478 	struct fman_prs_result *parse_result;
1479 	u16 ethertype = ntohs(skb->protocol);
1480 	struct ipv6hdr *ipv6h = NULL;
1481 	struct iphdr *iph;
1482 	int retval = 0;
1483 	u8 l4_proto;
1484 
1485 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1486 		return 0;
1487 
1488 	/* Note: L3 csum seems to be already computed in sw, but we can't choose
1489 	 * L4 alone from the FM configuration anyway.
1490 	 */
1491 
1492 	/* Fill in some fields of the Parse Results array, so the FMan
1493 	 * can find them as if they came from the FMan Parser.
1494 	 */
1495 	parse_result = (struct fman_prs_result *)parse_results;
1496 
1497 	/* If we're dealing with VLAN, get the real Ethernet type */
1498 	if (ethertype == ETH_P_8021Q)
1499 		ethertype = ntohs(skb_vlan_eth_hdr(skb)->h_vlan_encapsulated_proto);
1500 
1501 	/* Fill in the relevant L3 parse result fields
1502 	 * and read the L4 protocol type
1503 	 */
1504 	switch (ethertype) {
1505 	case ETH_P_IP:
1506 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV4);
1507 		iph = ip_hdr(skb);
1508 		WARN_ON(!iph);
1509 		l4_proto = iph->protocol;
1510 		break;
1511 	case ETH_P_IPV6:
1512 		parse_result->l3r = cpu_to_be16(FM_L3_PARSE_RESULT_IPV6);
1513 		ipv6h = ipv6_hdr(skb);
1514 		WARN_ON(!ipv6h);
1515 		l4_proto = ipv6h->nexthdr;
1516 		break;
1517 	default:
1518 		/* We shouldn't even be here */
1519 		if (net_ratelimit())
1520 			netif_alert(priv, tx_err, priv->net_dev,
1521 				    "Can't compute HW csum for L3 proto 0x%x\n",
1522 				    ntohs(skb->protocol));
1523 		retval = -EIO;
1524 		goto return_error;
1525 	}
1526 
1527 	/* Fill in the relevant L4 parse result fields */
1528 	switch (l4_proto) {
1529 	case IPPROTO_UDP:
1530 		parse_result->l4r = FM_L4_PARSE_RESULT_UDP;
1531 		break;
1532 	case IPPROTO_TCP:
1533 		parse_result->l4r = FM_L4_PARSE_RESULT_TCP;
1534 		break;
1535 	default:
1536 		if (net_ratelimit())
1537 			netif_alert(priv, tx_err, priv->net_dev,
1538 				    "Can't compute HW csum for L4 proto 0x%x\n",
1539 				    l4_proto);
1540 		retval = -EIO;
1541 		goto return_error;
1542 	}
1543 
1544 	/* At index 0 is IPOffset_1 as defined in the Parse Results */
1545 	parse_result->ip_off[0] = (u8)skb_network_offset(skb);
1546 	parse_result->l4_off = (u8)skb_transport_offset(skb);
1547 
1548 	/* Enable L3 (and L4, if TCP or UDP) HW checksum. */
1549 	fd->cmd |= cpu_to_be32(FM_FD_CMD_RPD | FM_FD_CMD_DTC);
1550 
1551 	/* On P1023 and similar platforms fd->cmd interpretation could
1552 	 * be disabled by setting CONTEXT_A bit ICMD; currently this bit
1553 	 * is not set so we do not need to check; in the future, if/when
1554 	 * using context_a we need to check this bit
1555 	 */
1556 
1557 return_error:
1558 	return retval;
1559 }
1560 
dpaa_bp_add_8_bufs(const struct dpaa_bp * dpaa_bp)1561 static int dpaa_bp_add_8_bufs(const struct dpaa_bp *dpaa_bp)
1562 {
1563 	struct net_device *net_dev = dpaa_bp->priv->net_dev;
1564 	struct bm_buffer bmb[8];
1565 	dma_addr_t addr;
1566 	struct page *p;
1567 	u8 i;
1568 
1569 	for (i = 0; i < 8; i++) {
1570 		p = dev_alloc_pages(0);
1571 		if (unlikely(!p)) {
1572 			netdev_err(net_dev, "dev_alloc_pages() failed\n");
1573 			goto release_previous_buffs;
1574 		}
1575 
1576 		addr = dma_map_page(dpaa_bp->priv->rx_dma_dev, p, 0,
1577 				    DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1578 		if (unlikely(dma_mapping_error(dpaa_bp->priv->rx_dma_dev,
1579 					       addr))) {
1580 			netdev_err(net_dev, "DMA map failed\n");
1581 			goto release_previous_buffs;
1582 		}
1583 
1584 		bmb[i].data = 0;
1585 		bm_buffer_set64(&bmb[i], addr);
1586 	}
1587 
1588 release_bufs:
1589 	return dpaa_bman_release(dpaa_bp, bmb, i);
1590 
1591 release_previous_buffs:
1592 	WARN_ONCE(1, "dpaa_eth: failed to add buffers on Rx\n");
1593 
1594 	bm_buffer_set64(&bmb[i], 0);
1595 	/* Avoid releasing a completely null buffer; bman_release() requires
1596 	 * at least one buffer.
1597 	 */
1598 	if (likely(i))
1599 		goto release_bufs;
1600 
1601 	return 0;
1602 }
1603 
dpaa_bp_seed(struct dpaa_bp * dpaa_bp)1604 static int dpaa_bp_seed(struct dpaa_bp *dpaa_bp)
1605 {
1606 	int i;
1607 
1608 	/* Give each CPU an allotment of "config_count" buffers */
1609 	for_each_possible_cpu(i) {
1610 		int *count_ptr = per_cpu_ptr(dpaa_bp->percpu_count, i);
1611 		int j;
1612 
1613 		/* Although we access another CPU's counters here
1614 		 * we do it at boot time so it is safe
1615 		 */
1616 		for (j = 0; j < dpaa_bp->config_count; j += 8)
1617 			*count_ptr += dpaa_bp_add_8_bufs(dpaa_bp);
1618 	}
1619 	return 0;
1620 }
1621 
1622 /* Add buffers/(pages) for Rx processing whenever bpool count falls below
1623  * REFILL_THRESHOLD.
1624  */
dpaa_eth_refill_bpool(struct dpaa_bp * dpaa_bp,int * countptr)1625 static int dpaa_eth_refill_bpool(struct dpaa_bp *dpaa_bp, int *countptr)
1626 {
1627 	int count = *countptr;
1628 	int new_bufs;
1629 
1630 	if (unlikely(count < FSL_DPAA_ETH_REFILL_THRESHOLD)) {
1631 		do {
1632 			new_bufs = dpaa_bp_add_8_bufs(dpaa_bp);
1633 			if (unlikely(!new_bufs)) {
1634 				/* Avoid looping forever if we've temporarily
1635 				 * run out of memory. We'll try again at the
1636 				 * next NAPI cycle.
1637 				 */
1638 				break;
1639 			}
1640 			count += new_bufs;
1641 		} while (count < FSL_DPAA_ETH_MAX_BUF_COUNT);
1642 
1643 		*countptr = count;
1644 		if (unlikely(count < FSL_DPAA_ETH_MAX_BUF_COUNT))
1645 			return -ENOMEM;
1646 	}
1647 
1648 	return 0;
1649 }
1650 
dpaa_eth_refill_bpools(struct dpaa_priv * priv)1651 static int dpaa_eth_refill_bpools(struct dpaa_priv *priv)
1652 {
1653 	struct dpaa_bp *dpaa_bp;
1654 	int *countptr;
1655 
1656 	dpaa_bp = priv->dpaa_bp;
1657 	if (!dpaa_bp)
1658 		return -EINVAL;
1659 	countptr = this_cpu_ptr(dpaa_bp->percpu_count);
1660 
1661 	return dpaa_eth_refill_bpool(dpaa_bp, countptr);
1662 }
1663 
1664 /* Cleanup function for outgoing frame descriptors that were built on Tx path,
1665  * either contiguous frames or scatter/gather ones.
1666  * Skb freeing is not handled here.
1667  *
1668  * This function may be called on error paths in the Tx function, so guard
1669  * against cases when not all fd relevant fields were filled in. To avoid
1670  * reading the invalid transmission timestamp for the error paths set ts to
1671  * false.
1672  *
1673  * Return the skb backpointer, since for S/G frames the buffer containing it
1674  * gets freed here.
1675  *
1676  * No skb backpointer is set when transmitting XDP frames. Cleanup the buffer
1677  * and return NULL in this case.
1678  */
dpaa_cleanup_tx_fd(const struct dpaa_priv * priv,const struct qm_fd * fd,bool ts)1679 static struct sk_buff *dpaa_cleanup_tx_fd(const struct dpaa_priv *priv,
1680 					  const struct qm_fd *fd, bool ts)
1681 {
1682 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1683 	struct device *dev = priv->net_dev->dev.parent;
1684 	struct skb_shared_hwtstamps shhwtstamps;
1685 	dma_addr_t addr = qm_fd_addr(fd);
1686 	void *vaddr = phys_to_virt(addr);
1687 	const struct qm_sg_entry *sgt;
1688 	struct dpaa_eth_swbp *swbp;
1689 	struct sk_buff *skb;
1690 	u64 ns;
1691 	int i;
1692 
1693 	if (unlikely(qm_fd_get_format(fd) == qm_fd_sg)) {
1694 		dma_unmap_page(priv->tx_dma_dev, addr,
1695 			       qm_fd_get_offset(fd) + DPAA_SGT_SIZE,
1696 			       dma_dir);
1697 
1698 		/* The sgt buffer has been allocated with netdev_alloc_frag(),
1699 		 * it's from lowmem.
1700 		 */
1701 		sgt = vaddr + qm_fd_get_offset(fd);
1702 
1703 		/* sgt[0] is from lowmem, was dma_map_single()-ed */
1704 		dma_unmap_single(priv->tx_dma_dev, qm_sg_addr(&sgt[0]),
1705 				 qm_sg_entry_get_len(&sgt[0]), dma_dir);
1706 
1707 		/* remaining pages were mapped with skb_frag_dma_map() */
1708 		for (i = 1; (i < DPAA_SGT_MAX_ENTRIES) &&
1709 		     !qm_sg_entry_is_final(&sgt[i - 1]); i++) {
1710 			WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1711 
1712 			dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[i]),
1713 				       qm_sg_entry_get_len(&sgt[i]), dma_dir);
1714 		}
1715 	} else {
1716 		dma_unmap_single(priv->tx_dma_dev, addr,
1717 				 qm_fd_get_offset(fd) + qm_fd_get_length(fd),
1718 				 dma_dir);
1719 	}
1720 
1721 	swbp = (struct dpaa_eth_swbp *)vaddr;
1722 	skb = swbp->skb;
1723 
1724 	/* No skb backpointer is set when running XDP. An xdp_frame
1725 	 * backpointer is saved instead.
1726 	 */
1727 	if (!skb) {
1728 		xdp_return_frame(swbp->xdpf);
1729 		return NULL;
1730 	}
1731 
1732 	/* DMA unmapping is required before accessing the HW provided info */
1733 	if (ts && priv->tx_tstamp &&
1734 	    skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
1735 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
1736 
1737 		if (!fman_port_get_tstamp(priv->mac_dev->port[TX], vaddr,
1738 					  &ns)) {
1739 			shhwtstamps.hwtstamp = ns_to_ktime(ns);
1740 			skb_tstamp_tx(skb, &shhwtstamps);
1741 		} else {
1742 			dev_warn(dev, "fman_port_get_tstamp failed!\n");
1743 		}
1744 	}
1745 
1746 	if (qm_fd_get_format(fd) == qm_fd_sg)
1747 		/* Free the page that we allocated on Tx for the SGT */
1748 		free_pages((unsigned long)vaddr, 0);
1749 
1750 	return skb;
1751 }
1752 
rx_csum_offload(const struct dpaa_priv * priv,const struct qm_fd * fd)1753 static u8 rx_csum_offload(const struct dpaa_priv *priv, const struct qm_fd *fd)
1754 {
1755 	/* The parser has run and performed L4 checksum validation.
1756 	 * We know there were no parser errors (and implicitly no
1757 	 * L4 csum error), otherwise we wouldn't be here.
1758 	 */
1759 	if ((priv->net_dev->features & NETIF_F_RXCSUM) &&
1760 	    (be32_to_cpu(fd->status) & FM_FD_STAT_L4CV))
1761 		return CHECKSUM_UNNECESSARY;
1762 
1763 	/* We're here because either the parser didn't run or the L4 checksum
1764 	 * was not verified. This may include the case of a UDP frame with
1765 	 * checksum zero or an L4 proto other than TCP/UDP
1766 	 */
1767 	return CHECKSUM_NONE;
1768 }
1769 
1770 #define PTR_IS_ALIGNED(x, a) (IS_ALIGNED((unsigned long)(x), (a)))
1771 
1772 /* Build a linear skb around the received buffer.
1773  * We are guaranteed there is enough room at the end of the data buffer to
1774  * accommodate the shared info area of the skb.
1775  */
contig_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1776 static struct sk_buff *contig_fd_to_skb(const struct dpaa_priv *priv,
1777 					const struct qm_fd *fd)
1778 {
1779 	ssize_t fd_off = qm_fd_get_offset(fd);
1780 	dma_addr_t addr = qm_fd_addr(fd);
1781 	struct dpaa_bp *dpaa_bp;
1782 	struct sk_buff *skb;
1783 	void *vaddr;
1784 
1785 	vaddr = phys_to_virt(addr);
1786 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1787 
1788 	dpaa_bp = dpaa_bpid2pool(fd->bpid);
1789 	if (!dpaa_bp)
1790 		goto free_buffer;
1791 
1792 	skb = build_skb(vaddr, dpaa_bp->size +
1793 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)));
1794 	if (WARN_ONCE(!skb, "Build skb failure on Rx\n"))
1795 		goto free_buffer;
1796 	skb_reserve(skb, fd_off);
1797 	skb_put(skb, qm_fd_get_length(fd));
1798 
1799 	skb->ip_summed = rx_csum_offload(priv, fd);
1800 
1801 	return skb;
1802 
1803 free_buffer:
1804 	free_pages((unsigned long)vaddr, 0);
1805 	return NULL;
1806 }
1807 
1808 /* Build an skb with the data of the first S/G entry in the linear portion and
1809  * the rest of the frame as skb fragments.
1810  *
1811  * The page fragment holding the S/G Table is recycled here.
1812  */
sg_fd_to_skb(const struct dpaa_priv * priv,const struct qm_fd * fd)1813 static struct sk_buff *sg_fd_to_skb(const struct dpaa_priv *priv,
1814 				    const struct qm_fd *fd)
1815 {
1816 	ssize_t fd_off = qm_fd_get_offset(fd);
1817 	dma_addr_t addr = qm_fd_addr(fd);
1818 	const struct qm_sg_entry *sgt;
1819 	struct page *page, *head_page;
1820 	struct dpaa_bp *dpaa_bp;
1821 	void *vaddr, *sg_vaddr;
1822 	struct sk_buff *skb;
1823 	dma_addr_t sg_addr;
1824 	int page_offset;
1825 	unsigned int sz;
1826 	int *count_ptr;
1827 	int i, j;
1828 
1829 	vaddr = phys_to_virt(addr);
1830 	WARN_ON(!IS_ALIGNED((unsigned long)vaddr, SMP_CACHE_BYTES));
1831 
1832 	/* Iterate through the SGT entries and add data buffers to the skb */
1833 	sgt = vaddr + fd_off;
1834 	skb = NULL;
1835 	for (i = 0; i < DPAA_SGT_MAX_ENTRIES; i++) {
1836 		/* Extension bit is not supported */
1837 		WARN_ON(qm_sg_entry_is_ext(&sgt[i]));
1838 
1839 		sg_addr = qm_sg_addr(&sgt[i]);
1840 		sg_vaddr = phys_to_virt(sg_addr);
1841 		WARN_ON(!PTR_IS_ALIGNED(sg_vaddr, SMP_CACHE_BYTES));
1842 
1843 		dma_unmap_page(priv->rx_dma_dev, sg_addr,
1844 			       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1845 
1846 		/* We may use multiple Rx pools */
1847 		dpaa_bp = dpaa_bpid2pool(sgt[i].bpid);
1848 		if (!dpaa_bp)
1849 			goto free_buffers;
1850 
1851 		if (!skb) {
1852 			sz = dpaa_bp->size +
1853 				SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
1854 			skb = build_skb(sg_vaddr, sz);
1855 			if (WARN_ON(!skb))
1856 				goto free_buffers;
1857 
1858 			skb->ip_summed = rx_csum_offload(priv, fd);
1859 
1860 			/* Make sure forwarded skbs will have enough space
1861 			 * on Tx, if extra headers are added.
1862 			 */
1863 			WARN_ON(fd_off != priv->rx_headroom);
1864 			/* The offset to data start within the buffer holding
1865 			 * the SGT should always be equal to the offset to data
1866 			 * start within the first buffer holding the frame.
1867 			 */
1868 			WARN_ON_ONCE(fd_off != qm_sg_entry_get_off(&sgt[i]));
1869 			skb_reserve(skb, fd_off);
1870 			skb_put(skb, qm_sg_entry_get_len(&sgt[i]));
1871 		} else {
1872 			/* Not the first S/G entry; all data from buffer will
1873 			 * be added in an skb fragment; fragment index is offset
1874 			 * by one since first S/G entry was incorporated in the
1875 			 * linear part of the skb.
1876 			 *
1877 			 * Caution: 'page' may be a tail page.
1878 			 */
1879 			page = virt_to_page(sg_vaddr);
1880 			head_page = virt_to_head_page(sg_vaddr);
1881 
1882 			/* Compute offset of sg_vaddr in (possibly tail) page */
1883 			page_offset = ((unsigned long)sg_vaddr &
1884 					(PAGE_SIZE - 1)) +
1885 				(page_address(page) - page_address(head_page));
1886 
1887 			/* Non-initial SGT entries should not have a buffer
1888 			 * offset.
1889 			 */
1890 			WARN_ON_ONCE(qm_sg_entry_get_off(&sgt[i]));
1891 
1892 			/* skb_add_rx_frag() does no checking on the page; if
1893 			 * we pass it a tail page, we'll end up with
1894 			 * bad page accounting and eventually with segfaults.
1895 			 */
1896 			skb_add_rx_frag(skb, i - 1, head_page, page_offset,
1897 					qm_sg_entry_get_len(&sgt[i]),
1898 					dpaa_bp->size);
1899 		}
1900 
1901 		/* Update the pool count for the current {cpu x bpool} */
1902 		count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1903 		(*count_ptr)--;
1904 
1905 		if (qm_sg_entry_is_final(&sgt[i]))
1906 			break;
1907 	}
1908 	WARN_ONCE(i == DPAA_SGT_MAX_ENTRIES, "No final bit on SGT\n");
1909 
1910 	/* free the SG table buffer */
1911 	free_pages((unsigned long)vaddr, 0);
1912 
1913 	return skb;
1914 
1915 free_buffers:
1916 	/* free all the SG entries */
1917 	for (j = 0; j < DPAA_SGT_MAX_ENTRIES ; j++) {
1918 		sg_addr = qm_sg_addr(&sgt[j]);
1919 		sg_vaddr = phys_to_virt(sg_addr);
1920 		/* all pages 0..i were unmaped */
1921 		if (j > i)
1922 			dma_unmap_page(priv->rx_dma_dev, qm_sg_addr(&sgt[j]),
1923 				       DPAA_BP_RAW_SIZE, DMA_FROM_DEVICE);
1924 		free_pages((unsigned long)sg_vaddr, 0);
1925 		/* counters 0..i-1 were decremented */
1926 		if (j >= i) {
1927 			dpaa_bp = dpaa_bpid2pool(sgt[j].bpid);
1928 			if (dpaa_bp) {
1929 				count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
1930 				(*count_ptr)--;
1931 			}
1932 		}
1933 
1934 		if (qm_sg_entry_is_final(&sgt[j]))
1935 			break;
1936 	}
1937 	/* free the SGT fragment */
1938 	free_pages((unsigned long)vaddr, 0);
1939 
1940 	return NULL;
1941 }
1942 
skb_to_contig_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd,int * offset)1943 static int skb_to_contig_fd(struct dpaa_priv *priv,
1944 			    struct sk_buff *skb, struct qm_fd *fd,
1945 			    int *offset)
1946 {
1947 	struct net_device *net_dev = priv->net_dev;
1948 	enum dma_data_direction dma_dir;
1949 	struct dpaa_eth_swbp *swbp;
1950 	unsigned char *buff_start;
1951 	dma_addr_t addr;
1952 	int err;
1953 
1954 	/* We are guaranteed to have at least tx_headroom bytes
1955 	 * available, so just use that for offset.
1956 	 */
1957 	fd->bpid = FSL_DPAA_BPID_INV;
1958 	buff_start = skb->data - priv->tx_headroom;
1959 	dma_dir = DMA_TO_DEVICE;
1960 
1961 	swbp = (struct dpaa_eth_swbp *)buff_start;
1962 	swbp->skb = skb;
1963 
1964 	/* Enable L3/L4 hardware checksum computation.
1965 	 *
1966 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
1967 	 * need to write into the skb.
1968 	 */
1969 	err = dpaa_enable_tx_csum(priv, skb, fd,
1970 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
1971 	if (unlikely(err < 0)) {
1972 		if (net_ratelimit())
1973 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
1974 				  err);
1975 		return err;
1976 	}
1977 
1978 	/* Fill in the rest of the FD fields */
1979 	qm_fd_set_contig(fd, priv->tx_headroom, skb->len);
1980 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
1981 
1982 	/* Map the entire buffer size that may be seen by FMan, but no more */
1983 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
1984 			      priv->tx_headroom + skb->len, dma_dir);
1985 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
1986 		if (net_ratelimit())
1987 			netif_err(priv, tx_err, net_dev, "dma_map_single() failed\n");
1988 		return -EINVAL;
1989 	}
1990 	qm_fd_addr_set64(fd, addr);
1991 
1992 	return 0;
1993 }
1994 
skb_to_sg_fd(struct dpaa_priv * priv,struct sk_buff * skb,struct qm_fd * fd)1995 static int skb_to_sg_fd(struct dpaa_priv *priv,
1996 			struct sk_buff *skb, struct qm_fd *fd)
1997 {
1998 	const enum dma_data_direction dma_dir = DMA_TO_DEVICE;
1999 	const int nr_frags = skb_shinfo(skb)->nr_frags;
2000 	struct net_device *net_dev = priv->net_dev;
2001 	struct dpaa_eth_swbp *swbp;
2002 	struct qm_sg_entry *sgt;
2003 	void *buff_start;
2004 	skb_frag_t *frag;
2005 	dma_addr_t addr;
2006 	size_t frag_len;
2007 	struct page *p;
2008 	int i, j, err;
2009 
2010 	/* get a page to store the SGTable */
2011 	p = dev_alloc_pages(0);
2012 	if (unlikely(!p)) {
2013 		netdev_err(net_dev, "dev_alloc_pages() failed\n");
2014 		return -ENOMEM;
2015 	}
2016 	buff_start = page_address(p);
2017 
2018 	/* Enable L3/L4 hardware checksum computation.
2019 	 *
2020 	 * We must do this before dma_map_single(DMA_TO_DEVICE), because we may
2021 	 * need to write into the skb.
2022 	 */
2023 	err = dpaa_enable_tx_csum(priv, skb, fd,
2024 				  buff_start + DPAA_TX_PRIV_DATA_SIZE);
2025 	if (unlikely(err < 0)) {
2026 		if (net_ratelimit())
2027 			netif_err(priv, tx_err, net_dev, "HW csum error: %d\n",
2028 				  err);
2029 		goto csum_failed;
2030 	}
2031 
2032 	/* SGT[0] is used by the linear part */
2033 	sgt = (struct qm_sg_entry *)(buff_start + priv->tx_headroom);
2034 	frag_len = skb_headlen(skb);
2035 	qm_sg_entry_set_len(&sgt[0], frag_len);
2036 	sgt[0].bpid = FSL_DPAA_BPID_INV;
2037 	sgt[0].offset = 0;
2038 	addr = dma_map_single(priv->tx_dma_dev, skb->data,
2039 			      skb_headlen(skb), dma_dir);
2040 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2041 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2042 		err = -EINVAL;
2043 		goto sg0_map_failed;
2044 	}
2045 	qm_sg_entry_set64(&sgt[0], addr);
2046 
2047 	/* populate the rest of SGT entries */
2048 	for (i = 0; i < nr_frags; i++) {
2049 		frag = &skb_shinfo(skb)->frags[i];
2050 		frag_len = skb_frag_size(frag);
2051 		WARN_ON(!skb_frag_page(frag));
2052 		addr = skb_frag_dma_map(priv->tx_dma_dev, frag, 0,
2053 					frag_len, dma_dir);
2054 		if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2055 			netdev_err(priv->net_dev, "DMA mapping failed\n");
2056 			err = -EINVAL;
2057 			goto sg_map_failed;
2058 		}
2059 
2060 		qm_sg_entry_set_len(&sgt[i + 1], frag_len);
2061 		sgt[i + 1].bpid = FSL_DPAA_BPID_INV;
2062 		sgt[i + 1].offset = 0;
2063 
2064 		/* keep the offset in the address */
2065 		qm_sg_entry_set64(&sgt[i + 1], addr);
2066 	}
2067 
2068 	/* Set the final bit in the last used entry of the SGT */
2069 	qm_sg_entry_set_f(&sgt[nr_frags], frag_len);
2070 
2071 	/* set fd offset to priv->tx_headroom */
2072 	qm_fd_set_sg(fd, priv->tx_headroom, skb->len);
2073 
2074 	/* DMA map the SGT page */
2075 	swbp = (struct dpaa_eth_swbp *)buff_start;
2076 	swbp->skb = skb;
2077 
2078 	addr = dma_map_page(priv->tx_dma_dev, p, 0,
2079 			    priv->tx_headroom + DPAA_SGT_SIZE, dma_dir);
2080 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2081 		netdev_err(priv->net_dev, "DMA mapping failed\n");
2082 		err = -EINVAL;
2083 		goto sgt_map_failed;
2084 	}
2085 
2086 	fd->bpid = FSL_DPAA_BPID_INV;
2087 	fd->cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2088 	qm_fd_addr_set64(fd, addr);
2089 
2090 	return 0;
2091 
2092 sgt_map_failed:
2093 sg_map_failed:
2094 	for (j = 0; j < i; j++)
2095 		dma_unmap_page(priv->tx_dma_dev, qm_sg_addr(&sgt[j]),
2096 			       qm_sg_entry_get_len(&sgt[j]), dma_dir);
2097 sg0_map_failed:
2098 csum_failed:
2099 	free_pages((unsigned long)buff_start, 0);
2100 
2101 	return err;
2102 }
2103 
dpaa_xmit(struct dpaa_priv * priv,struct rtnl_link_stats64 * percpu_stats,int queue,struct qm_fd * fd)2104 static inline int dpaa_xmit(struct dpaa_priv *priv,
2105 			    struct rtnl_link_stats64 *percpu_stats,
2106 			    int queue,
2107 			    struct qm_fd *fd)
2108 {
2109 	struct qman_fq *egress_fq;
2110 	int err, i;
2111 
2112 	egress_fq = priv->egress_fqs[queue];
2113 	if (fd->bpid == FSL_DPAA_BPID_INV)
2114 		fd->cmd |= cpu_to_be32(qman_fq_fqid(priv->conf_fqs[queue]));
2115 
2116 	/* Trace this Tx fd */
2117 	trace_dpaa_tx_fd(priv->net_dev, egress_fq, fd);
2118 
2119 	for (i = 0; i < DPAA_ENQUEUE_RETRIES; i++) {
2120 		err = qman_enqueue(egress_fq, fd);
2121 		if (err != -EBUSY)
2122 			break;
2123 	}
2124 
2125 	if (unlikely(err < 0)) {
2126 		percpu_stats->tx_fifo_errors++;
2127 		return err;
2128 	}
2129 
2130 	percpu_stats->tx_packets++;
2131 	percpu_stats->tx_bytes += qm_fd_get_length(fd);
2132 
2133 	return 0;
2134 }
2135 
2136 #ifdef CONFIG_DPAA_ERRATUM_A050385
dpaa_a050385_wa_skb(struct net_device * net_dev,struct sk_buff ** s)2137 static int dpaa_a050385_wa_skb(struct net_device *net_dev, struct sk_buff **s)
2138 {
2139 	struct dpaa_priv *priv = netdev_priv(net_dev);
2140 	struct sk_buff *new_skb, *skb = *s;
2141 	unsigned char *start, i;
2142 
2143 	/* check linear buffer alignment */
2144 	if (!PTR_IS_ALIGNED(skb->data, DPAA_A050385_ALIGN))
2145 		goto workaround;
2146 
2147 	/* linear buffers just need to have an aligned start */
2148 	if (!skb_is_nonlinear(skb))
2149 		return 0;
2150 
2151 	/* linear data size for nonlinear skbs needs to be aligned */
2152 	if (!IS_ALIGNED(skb_headlen(skb), DPAA_A050385_ALIGN))
2153 		goto workaround;
2154 
2155 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2156 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2157 
2158 		/* all fragments need to have aligned start addresses */
2159 		if (!IS_ALIGNED(skb_frag_off(frag), DPAA_A050385_ALIGN))
2160 			goto workaround;
2161 
2162 		/* all but last fragment need to have aligned sizes */
2163 		if (!IS_ALIGNED(skb_frag_size(frag), DPAA_A050385_ALIGN) &&
2164 		    (i < skb_shinfo(skb)->nr_frags - 1))
2165 			goto workaround;
2166 	}
2167 
2168 	return 0;
2169 
2170 workaround:
2171 	/* copy all the skb content into a new linear buffer */
2172 	new_skb = netdev_alloc_skb(net_dev, skb->len + DPAA_A050385_ALIGN - 1 +
2173 						priv->tx_headroom);
2174 	if (!new_skb)
2175 		return -ENOMEM;
2176 
2177 	/* NET_SKB_PAD bytes already reserved, adding up to tx_headroom */
2178 	skb_reserve(new_skb, priv->tx_headroom - NET_SKB_PAD);
2179 
2180 	/* Workaround for DPAA_A050385 requires data start to be aligned */
2181 	start = PTR_ALIGN(new_skb->data, DPAA_A050385_ALIGN);
2182 	if (start - new_skb->data)
2183 		skb_reserve(new_skb, start - new_skb->data);
2184 
2185 	skb_put(new_skb, skb->len);
2186 	skb_copy_bits(skb, 0, new_skb->data, skb->len);
2187 	skb_copy_header(new_skb, skb);
2188 	new_skb->dev = skb->dev;
2189 
2190 	/* Copy relevant timestamp info from the old skb to the new */
2191 	if (priv->tx_tstamp) {
2192 		skb_shinfo(new_skb)->tx_flags = skb_shinfo(skb)->tx_flags;
2193 		skb_shinfo(new_skb)->hwtstamps = skb_shinfo(skb)->hwtstamps;
2194 		skb_shinfo(new_skb)->tskey = skb_shinfo(skb)->tskey;
2195 		if (skb->sk)
2196 			skb_set_owner_w(new_skb, skb->sk);
2197 	}
2198 
2199 	/* We move the headroom when we align it so we have to reset the
2200 	 * network and transport header offsets relative to the new data
2201 	 * pointer. The checksum offload relies on these offsets.
2202 	 */
2203 	skb_set_network_header(new_skb, skb_network_offset(skb));
2204 	skb_set_transport_header(new_skb, skb_transport_offset(skb));
2205 
2206 	dev_kfree_skb(skb);
2207 	*s = new_skb;
2208 
2209 	return 0;
2210 }
2211 
dpaa_a050385_wa_xdpf(struct dpaa_priv * priv,struct xdp_frame ** init_xdpf)2212 static int dpaa_a050385_wa_xdpf(struct dpaa_priv *priv,
2213 				struct xdp_frame **init_xdpf)
2214 {
2215 	struct xdp_frame *new_xdpf, *xdpf = *init_xdpf;
2216 	void *new_buff, *aligned_data;
2217 	struct page *p;
2218 	u32 data_shift;
2219 	int headroom;
2220 
2221 	/* Check the data alignment and make sure the headroom is large
2222 	 * enough to store the xdpf backpointer. Use an aligned headroom
2223 	 * value.
2224 	 *
2225 	 * Due to alignment constraints, we give XDP access to the full 256
2226 	 * byte frame headroom. If the XDP program uses all of it, copy the
2227 	 * data to a new buffer and make room for storing the backpointer.
2228 	 */
2229 	if (PTR_IS_ALIGNED(xdpf->data, DPAA_FD_DATA_ALIGNMENT) &&
2230 	    xdpf->headroom >= priv->tx_headroom) {
2231 		xdpf->headroom = priv->tx_headroom;
2232 		return 0;
2233 	}
2234 
2235 	/* Try to move the data inside the buffer just enough to align it and
2236 	 * store the xdpf backpointer. If the available headroom isn't large
2237 	 * enough, resort to allocating a new buffer and copying the data.
2238 	 */
2239 	aligned_data = PTR_ALIGN_DOWN(xdpf->data, DPAA_FD_DATA_ALIGNMENT);
2240 	data_shift = xdpf->data - aligned_data;
2241 
2242 	/* The XDP frame's headroom needs to be large enough to accommodate
2243 	 * shifting the data as well as storing the xdpf backpointer.
2244 	 */
2245 	if (xdpf->headroom  >= data_shift + priv->tx_headroom) {
2246 		memmove(aligned_data, xdpf->data, xdpf->len);
2247 		xdpf->data = aligned_data;
2248 		xdpf->headroom = priv->tx_headroom;
2249 		return 0;
2250 	}
2251 
2252 	/* The new xdp_frame is stored in the new buffer. Reserve enough space
2253 	 * in the headroom for storing it along with the driver's private
2254 	 * info. The headroom needs to be aligned to DPAA_FD_DATA_ALIGNMENT to
2255 	 * guarantee the data's alignment in the buffer.
2256 	 */
2257 	headroom = ALIGN(sizeof(*new_xdpf) + priv->tx_headroom,
2258 			 DPAA_FD_DATA_ALIGNMENT);
2259 
2260 	/* Assure the extended headroom and data don't overflow the buffer,
2261 	 * while maintaining the mandatory tailroom.
2262 	 */
2263 	if (headroom + xdpf->len > DPAA_BP_RAW_SIZE -
2264 			SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
2265 		return -ENOMEM;
2266 
2267 	p = dev_alloc_pages(0);
2268 	if (unlikely(!p))
2269 		return -ENOMEM;
2270 
2271 	/* Copy the data to the new buffer at a properly aligned offset */
2272 	new_buff = page_address(p);
2273 	memcpy(new_buff + headroom, xdpf->data, xdpf->len);
2274 
2275 	/* Create an XDP frame around the new buffer in a similar fashion
2276 	 * to xdp_convert_buff_to_frame.
2277 	 */
2278 	new_xdpf = new_buff;
2279 	new_xdpf->data = new_buff + headroom;
2280 	new_xdpf->len = xdpf->len;
2281 	new_xdpf->headroom = priv->tx_headroom;
2282 	new_xdpf->frame_sz = DPAA_BP_RAW_SIZE;
2283 	new_xdpf->mem_type = MEM_TYPE_PAGE_ORDER0;
2284 
2285 	/* Release the initial buffer */
2286 	xdp_return_frame_rx_napi(xdpf);
2287 
2288 	*init_xdpf = new_xdpf;
2289 	return 0;
2290 }
2291 #endif
2292 
2293 static netdev_tx_t
dpaa_start_xmit(struct sk_buff * skb,struct net_device * net_dev)2294 dpaa_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
2295 {
2296 	const int queue_mapping = skb_get_queue_mapping(skb);
2297 	struct rtnl_link_stats64 *percpu_stats;
2298 	struct dpaa_percpu_priv *percpu_priv;
2299 	struct netdev_queue *txq;
2300 	struct dpaa_priv *priv;
2301 	struct qm_fd fd;
2302 	bool nonlinear;
2303 	int offset = 0;
2304 	int err = 0;
2305 
2306 	priv = netdev_priv(net_dev);
2307 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2308 	percpu_stats = &percpu_priv->stats;
2309 
2310 	qm_fd_clear_fd(&fd);
2311 
2312 	/* Packet data is always read as 32-bit words, so zero out any part of
2313 	 * the skb which might be sent if we have to pad the packet
2314 	 */
2315 	if (__skb_put_padto(skb, ETH_ZLEN, false))
2316 		goto enomem;
2317 
2318 	nonlinear = skb_is_nonlinear(skb);
2319 	if (!nonlinear) {
2320 		/* We're going to store the skb backpointer at the beginning
2321 		 * of the data buffer, so we need a privately owned skb
2322 		 *
2323 		 * We've made sure skb is not shared in dev->priv_flags,
2324 		 * we need to verify the skb head is not cloned
2325 		 */
2326 		if (skb_cow_head(skb, priv->tx_headroom))
2327 			goto enomem;
2328 
2329 		WARN_ON(skb_is_nonlinear(skb));
2330 	}
2331 
2332 	/* MAX_SKB_FRAGS is equal or larger than our dpaa_SGT_MAX_ENTRIES;
2333 	 * make sure we don't feed FMan with more fragments than it supports.
2334 	 */
2335 	if (unlikely(nonlinear &&
2336 		     (skb_shinfo(skb)->nr_frags >= DPAA_SGT_MAX_ENTRIES))) {
2337 		/* If the egress skb contains more fragments than we support
2338 		 * we have no choice but to linearize it ourselves.
2339 		 */
2340 		if (__skb_linearize(skb))
2341 			goto enomem;
2342 
2343 		nonlinear = skb_is_nonlinear(skb);
2344 	}
2345 
2346 #ifdef CONFIG_DPAA_ERRATUM_A050385
2347 	if (unlikely(fman_has_errata_a050385())) {
2348 		if (dpaa_a050385_wa_skb(net_dev, &skb))
2349 			goto enomem;
2350 		nonlinear = skb_is_nonlinear(skb);
2351 	}
2352 #endif
2353 
2354 	if (nonlinear) {
2355 		/* Just create a S/G fd based on the skb */
2356 		err = skb_to_sg_fd(priv, skb, &fd);
2357 		percpu_priv->tx_frag_skbuffs++;
2358 	} else {
2359 		/* Create a contig FD from this skb */
2360 		err = skb_to_contig_fd(priv, skb, &fd, &offset);
2361 	}
2362 	if (unlikely(err < 0))
2363 		goto skb_to_fd_failed;
2364 
2365 	txq = netdev_get_tx_queue(net_dev, queue_mapping);
2366 
2367 	/* LLTX requires to do our own update of trans_start */
2368 	txq_trans_cond_update(txq);
2369 
2370 	if (priv->tx_tstamp && skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) {
2371 		fd.cmd |= cpu_to_be32(FM_FD_CMD_UPD);
2372 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2373 	}
2374 
2375 	if (likely(dpaa_xmit(priv, percpu_stats, queue_mapping, &fd) == 0))
2376 		return NETDEV_TX_OK;
2377 
2378 	dpaa_cleanup_tx_fd(priv, &fd, false);
2379 skb_to_fd_failed:
2380 enomem:
2381 	percpu_stats->tx_errors++;
2382 	dev_kfree_skb(skb);
2383 	return NETDEV_TX_OK;
2384 }
2385 
dpaa_rx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2386 static void dpaa_rx_error(struct net_device *net_dev,
2387 			  const struct dpaa_priv *priv,
2388 			  struct dpaa_percpu_priv *percpu_priv,
2389 			  const struct qm_fd *fd,
2390 			  u32 fqid)
2391 {
2392 	if (net_ratelimit())
2393 		netif_err(priv, hw, net_dev, "Err FD status = 0x%08x\n",
2394 			  be32_to_cpu(fd->status) & FM_FD_STAT_RX_ERRORS);
2395 
2396 	percpu_priv->stats.rx_errors++;
2397 
2398 	if (be32_to_cpu(fd->status) & FM_FD_ERR_DMA)
2399 		percpu_priv->rx_errors.dme++;
2400 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PHYSICAL)
2401 		percpu_priv->rx_errors.fpe++;
2402 	if (be32_to_cpu(fd->status) & FM_FD_ERR_SIZE)
2403 		percpu_priv->rx_errors.fse++;
2404 	if (be32_to_cpu(fd->status) & FM_FD_ERR_PRS_HDR_ERR)
2405 		percpu_priv->rx_errors.phe++;
2406 
2407 	dpaa_fd_release(net_dev, fd);
2408 }
2409 
dpaa_tx_error(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2410 static void dpaa_tx_error(struct net_device *net_dev,
2411 			  const struct dpaa_priv *priv,
2412 			  struct dpaa_percpu_priv *percpu_priv,
2413 			  const struct qm_fd *fd,
2414 			  u32 fqid)
2415 {
2416 	struct sk_buff *skb;
2417 
2418 	if (net_ratelimit())
2419 		netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2420 			   be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS);
2421 
2422 	percpu_priv->stats.tx_errors++;
2423 
2424 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2425 	dev_kfree_skb(skb);
2426 }
2427 
dpaa_eth_poll(struct napi_struct * napi,int budget)2428 static int dpaa_eth_poll(struct napi_struct *napi, int budget)
2429 {
2430 	struct dpaa_napi_portal *np =
2431 			container_of(napi, struct dpaa_napi_portal, napi);
2432 	int cleaned;
2433 
2434 	np->xdp_act = 0;
2435 
2436 	cleaned = qman_p_poll_dqrr(np->p, budget);
2437 
2438 	if (np->xdp_act & XDP_REDIRECT)
2439 		xdp_do_flush();
2440 
2441 	if (cleaned < budget) {
2442 		napi_complete_done(napi, cleaned);
2443 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2444 	} else if (np->down) {
2445 		qman_p_irqsource_add(np->p, QM_PIRQ_DQRI);
2446 	}
2447 
2448 	return cleaned;
2449 }
2450 
dpaa_tx_conf(struct net_device * net_dev,const struct dpaa_priv * priv,struct dpaa_percpu_priv * percpu_priv,const struct qm_fd * fd,u32 fqid)2451 static void dpaa_tx_conf(struct net_device *net_dev,
2452 			 const struct dpaa_priv *priv,
2453 			 struct dpaa_percpu_priv *percpu_priv,
2454 			 const struct qm_fd *fd,
2455 			 u32 fqid)
2456 {
2457 	struct sk_buff	*skb;
2458 
2459 	if (unlikely(be32_to_cpu(fd->status) & FM_FD_STAT_TX_ERRORS)) {
2460 		if (net_ratelimit())
2461 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2462 				   be32_to_cpu(fd->status) &
2463 				   FM_FD_STAT_TX_ERRORS);
2464 
2465 		percpu_priv->stats.tx_errors++;
2466 	}
2467 
2468 	percpu_priv->tx_confirm++;
2469 
2470 	skb = dpaa_cleanup_tx_fd(priv, fd, true);
2471 
2472 	consume_skb(skb);
2473 }
2474 
dpaa_eth_napi_schedule(struct dpaa_percpu_priv * percpu_priv,struct qman_portal * portal,bool sched_napi)2475 static inline int dpaa_eth_napi_schedule(struct dpaa_percpu_priv *percpu_priv,
2476 					 struct qman_portal *portal, bool sched_napi)
2477 {
2478 	if (sched_napi) {
2479 		/* Disable QMan IRQ and invoke NAPI */
2480 		qman_p_irqsource_remove(portal, QM_PIRQ_DQRI);
2481 
2482 		percpu_priv->np.p = portal;
2483 		napi_schedule(&percpu_priv->np.napi);
2484 		percpu_priv->in_interrupt++;
2485 		return 1;
2486 	}
2487 	return 0;
2488 }
2489 
rx_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2490 static enum qman_cb_dqrr_result rx_error_dqrr(struct qman_portal *portal,
2491 					      struct qman_fq *fq,
2492 					      const struct qm_dqrr_entry *dq,
2493 					      bool sched_napi)
2494 {
2495 	struct dpaa_fq *dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2496 	struct dpaa_percpu_priv *percpu_priv;
2497 	struct net_device *net_dev;
2498 	struct dpaa_bp *dpaa_bp;
2499 	struct dpaa_priv *priv;
2500 
2501 	net_dev = dpaa_fq->net_dev;
2502 	priv = netdev_priv(net_dev);
2503 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2504 	if (!dpaa_bp)
2505 		return qman_cb_dqrr_consume;
2506 
2507 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2508 
2509 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2510 		return qman_cb_dqrr_stop;
2511 
2512 	dpaa_eth_refill_bpools(priv);
2513 	dpaa_rx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2514 
2515 	return qman_cb_dqrr_consume;
2516 }
2517 
dpaa_xdp_xmit_frame(struct net_device * net_dev,struct xdp_frame * xdpf)2518 static int dpaa_xdp_xmit_frame(struct net_device *net_dev,
2519 			       struct xdp_frame *xdpf)
2520 {
2521 	struct dpaa_priv *priv = netdev_priv(net_dev);
2522 	struct rtnl_link_stats64 *percpu_stats;
2523 	struct dpaa_percpu_priv *percpu_priv;
2524 	struct dpaa_eth_swbp *swbp;
2525 	struct netdev_queue *txq;
2526 	void *buff_start;
2527 	struct qm_fd fd;
2528 	dma_addr_t addr;
2529 	int err;
2530 
2531 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2532 	percpu_stats = &percpu_priv->stats;
2533 
2534 #ifdef CONFIG_DPAA_ERRATUM_A050385
2535 	if (unlikely(fman_has_errata_a050385())) {
2536 		if (dpaa_a050385_wa_xdpf(priv, &xdpf)) {
2537 			err = -ENOMEM;
2538 			goto out_error;
2539 		}
2540 	}
2541 #endif
2542 
2543 	if (xdpf->headroom < DPAA_TX_PRIV_DATA_SIZE) {
2544 		err = -EINVAL;
2545 		goto out_error;
2546 	}
2547 
2548 	buff_start = xdpf->data - xdpf->headroom;
2549 
2550 	/* Leave empty the skb backpointer at the start of the buffer.
2551 	 * Save the XDP frame for easy cleanup on confirmation.
2552 	 */
2553 	swbp = (struct dpaa_eth_swbp *)buff_start;
2554 	swbp->skb = NULL;
2555 	swbp->xdpf = xdpf;
2556 
2557 	qm_fd_clear_fd(&fd);
2558 	fd.bpid = FSL_DPAA_BPID_INV;
2559 	fd.cmd |= cpu_to_be32(FM_FD_CMD_FCO);
2560 	qm_fd_set_contig(&fd, xdpf->headroom, xdpf->len);
2561 
2562 	addr = dma_map_single(priv->tx_dma_dev, buff_start,
2563 			      xdpf->headroom + xdpf->len,
2564 			      DMA_TO_DEVICE);
2565 	if (unlikely(dma_mapping_error(priv->tx_dma_dev, addr))) {
2566 		err = -EINVAL;
2567 		goto out_error;
2568 	}
2569 
2570 	qm_fd_addr_set64(&fd, addr);
2571 
2572 	/* Bump the trans_start */
2573 	txq = netdev_get_tx_queue(net_dev, smp_processor_id());
2574 	txq_trans_cond_update(txq);
2575 
2576 	err = dpaa_xmit(priv, percpu_stats, smp_processor_id(), &fd);
2577 	if (err) {
2578 		dma_unmap_single(priv->tx_dma_dev, addr,
2579 				 qm_fd_get_offset(&fd) + qm_fd_get_length(&fd),
2580 				 DMA_TO_DEVICE);
2581 		goto out_error;
2582 	}
2583 
2584 	return 0;
2585 
2586 out_error:
2587 	percpu_stats->tx_errors++;
2588 	return err;
2589 }
2590 
dpaa_run_xdp(struct dpaa_priv * priv,struct qm_fd * fd,void * vaddr,struct dpaa_fq * dpaa_fq,unsigned int * xdp_meta_len)2591 static u32 dpaa_run_xdp(struct dpaa_priv *priv, struct qm_fd *fd, void *vaddr,
2592 			struct dpaa_fq *dpaa_fq, unsigned int *xdp_meta_len)
2593 {
2594 	ssize_t fd_off = qm_fd_get_offset(fd);
2595 	struct bpf_prog *xdp_prog;
2596 	struct xdp_frame *xdpf;
2597 	struct xdp_buff xdp;
2598 	u32 xdp_act;
2599 	int err;
2600 
2601 	xdp_prog = READ_ONCE(priv->xdp_prog);
2602 	if (!xdp_prog)
2603 		return XDP_PASS;
2604 
2605 	xdp_init_buff(&xdp, DPAA_BP_RAW_SIZE - DPAA_TX_PRIV_DATA_SIZE,
2606 		      &dpaa_fq->xdp_rxq);
2607 	xdp_prepare_buff(&xdp, vaddr + fd_off - XDP_PACKET_HEADROOM,
2608 			 XDP_PACKET_HEADROOM, qm_fd_get_length(fd), true);
2609 
2610 	/* We reserve a fixed headroom of 256 bytes under the erratum and we
2611 	 * offer it all to XDP programs to use. If no room is left for the
2612 	 * xdpf backpointer on TX, we will need to copy the data.
2613 	 * Disable metadata support since data realignments might be required
2614 	 * and the information can be lost.
2615 	 */
2616 #ifdef CONFIG_DPAA_ERRATUM_A050385
2617 	if (unlikely(fman_has_errata_a050385())) {
2618 		xdp_set_data_meta_invalid(&xdp);
2619 		xdp.data_hard_start = vaddr;
2620 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2621 	}
2622 #endif
2623 
2624 	xdp_act = bpf_prog_run_xdp(xdp_prog, &xdp);
2625 
2626 	/* Update the length and the offset of the FD */
2627 	qm_fd_set_contig(fd, xdp.data - vaddr, xdp.data_end - xdp.data);
2628 
2629 	switch (xdp_act) {
2630 	case XDP_PASS:
2631 #ifdef CONFIG_DPAA_ERRATUM_A050385
2632 		*xdp_meta_len = xdp_data_meta_unsupported(&xdp) ? 0 :
2633 				xdp.data - xdp.data_meta;
2634 #else
2635 		*xdp_meta_len = xdp.data - xdp.data_meta;
2636 #endif
2637 		break;
2638 	case XDP_TX:
2639 		/* We can access the full headroom when sending the frame
2640 		 * back out
2641 		 */
2642 		xdp.data_hard_start = vaddr;
2643 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2644 		xdpf = xdp_convert_buff_to_frame(&xdp);
2645 		if (unlikely(!xdpf)) {
2646 			free_pages((unsigned long)vaddr, 0);
2647 			break;
2648 		}
2649 
2650 		if (dpaa_xdp_xmit_frame(priv->net_dev, xdpf))
2651 			xdp_return_frame_rx_napi(xdpf);
2652 
2653 		break;
2654 	case XDP_REDIRECT:
2655 		/* Allow redirect to use the full headroom */
2656 		xdp.data_hard_start = vaddr;
2657 		xdp.frame_sz = DPAA_BP_RAW_SIZE;
2658 
2659 		err = xdp_do_redirect(priv->net_dev, &xdp, xdp_prog);
2660 		if (err) {
2661 			trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2662 			free_pages((unsigned long)vaddr, 0);
2663 		}
2664 		break;
2665 	default:
2666 		bpf_warn_invalid_xdp_action(priv->net_dev, xdp_prog, xdp_act);
2667 		fallthrough;
2668 	case XDP_ABORTED:
2669 		trace_xdp_exception(priv->net_dev, xdp_prog, xdp_act);
2670 		fallthrough;
2671 	case XDP_DROP:
2672 		/* Free the buffer */
2673 		free_pages((unsigned long)vaddr, 0);
2674 		break;
2675 	}
2676 
2677 	return xdp_act;
2678 }
2679 
rx_default_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2680 static enum qman_cb_dqrr_result rx_default_dqrr(struct qman_portal *portal,
2681 						struct qman_fq *fq,
2682 						const struct qm_dqrr_entry *dq,
2683 						bool sched_napi)
2684 {
2685 	bool ts_valid = false, hash_valid = false;
2686 	struct skb_shared_hwtstamps *shhwtstamps;
2687 	unsigned int skb_len, xdp_meta_len = 0;
2688 	struct rtnl_link_stats64 *percpu_stats;
2689 	struct dpaa_percpu_priv *percpu_priv;
2690 	const struct qm_fd *fd = &dq->fd;
2691 	dma_addr_t addr = qm_fd_addr(fd);
2692 	struct dpaa_napi_portal *np;
2693 	enum qm_fd_format fd_format;
2694 	struct net_device *net_dev;
2695 	u32 fd_status, hash_offset;
2696 	struct qm_sg_entry *sgt;
2697 	struct dpaa_bp *dpaa_bp;
2698 	struct dpaa_fq *dpaa_fq;
2699 	struct dpaa_priv *priv;
2700 	struct sk_buff *skb;
2701 	int *count_ptr;
2702 	u32 xdp_act;
2703 	void *vaddr;
2704 	u32 hash;
2705 	u64 ns;
2706 
2707 	dpaa_fq = container_of(fq, struct dpaa_fq, fq_base);
2708 	fd_status = be32_to_cpu(fd->status);
2709 	fd_format = qm_fd_get_format(fd);
2710 	net_dev = dpaa_fq->net_dev;
2711 	priv = netdev_priv(net_dev);
2712 	dpaa_bp = dpaa_bpid2pool(dq->fd.bpid);
2713 	if (!dpaa_bp)
2714 		return qman_cb_dqrr_consume;
2715 
2716 	/* Trace the Rx fd */
2717 	trace_dpaa_rx_fd(net_dev, fq, &dq->fd);
2718 
2719 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2720 	percpu_stats = &percpu_priv->stats;
2721 	np = &percpu_priv->np;
2722 
2723 	if (unlikely(dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi)))
2724 		return qman_cb_dqrr_stop;
2725 
2726 	/* Make sure we didn't run out of buffers */
2727 	if (unlikely(dpaa_eth_refill_bpools(priv))) {
2728 		/* Unable to refill the buffer pool due to insufficient
2729 		 * system memory. Just release the frame back into the pool,
2730 		 * otherwise we'll soon end up with an empty buffer pool.
2731 		 */
2732 		dpaa_fd_release(net_dev, &dq->fd);
2733 		return qman_cb_dqrr_consume;
2734 	}
2735 
2736 	if (unlikely(fd_status & FM_FD_STAT_RX_ERRORS) != 0) {
2737 		if (net_ratelimit())
2738 			netif_warn(priv, hw, net_dev, "FD status = 0x%08x\n",
2739 				   fd_status & FM_FD_STAT_RX_ERRORS);
2740 
2741 		percpu_stats->rx_errors++;
2742 		dpaa_fd_release(net_dev, fd);
2743 		return qman_cb_dqrr_consume;
2744 	}
2745 
2746 	dma_unmap_page(dpaa_bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
2747 		       DMA_FROM_DEVICE);
2748 
2749 	/* prefetch the first 64 bytes of the frame or the SGT start */
2750 	vaddr = phys_to_virt(addr);
2751 	prefetch(vaddr + qm_fd_get_offset(fd));
2752 
2753 	/* The only FD types that we may receive are contig and S/G */
2754 	WARN_ON((fd_format != qm_fd_contig) && (fd_format != qm_fd_sg));
2755 
2756 	/* Account for either the contig buffer or the SGT buffer (depending on
2757 	 * which case we were in) having been removed from the pool.
2758 	 */
2759 	count_ptr = this_cpu_ptr(dpaa_bp->percpu_count);
2760 	(*count_ptr)--;
2761 
2762 	/* Extract the timestamp stored in the headroom before running XDP */
2763 	if (priv->rx_tstamp) {
2764 		if (!fman_port_get_tstamp(priv->mac_dev->port[RX], vaddr, &ns))
2765 			ts_valid = true;
2766 		else
2767 			WARN_ONCE(1, "fman_port_get_tstamp failed!\n");
2768 	}
2769 
2770 	/* Extract the hash stored in the headroom before running XDP */
2771 	if (net_dev->features & NETIF_F_RXHASH && priv->keygen_in_use &&
2772 	    !fman_port_get_hash_result_offset(priv->mac_dev->port[RX],
2773 					      &hash_offset)) {
2774 		hash = be32_to_cpu(*(__be32 *)(vaddr + hash_offset));
2775 		hash_valid = true;
2776 	}
2777 
2778 	if (likely(fd_format == qm_fd_contig)) {
2779 		xdp_act = dpaa_run_xdp(priv, (struct qm_fd *)fd, vaddr,
2780 				       dpaa_fq, &xdp_meta_len);
2781 		np->xdp_act |= xdp_act;
2782 		if (xdp_act != XDP_PASS) {
2783 			percpu_stats->rx_packets++;
2784 			percpu_stats->rx_bytes += qm_fd_get_length(fd);
2785 			return qman_cb_dqrr_consume;
2786 		}
2787 		skb = contig_fd_to_skb(priv, fd);
2788 	} else {
2789 		/* XDP doesn't support S/G frames. Return the fragments to the
2790 		 * buffer pool and release the SGT.
2791 		 */
2792 		if (READ_ONCE(priv->xdp_prog)) {
2793 			WARN_ONCE(1, "S/G frames not supported under XDP\n");
2794 			sgt = vaddr + qm_fd_get_offset(fd);
2795 			dpaa_release_sgt_members(sgt);
2796 			free_pages((unsigned long)vaddr, 0);
2797 			return qman_cb_dqrr_consume;
2798 		}
2799 		skb = sg_fd_to_skb(priv, fd);
2800 	}
2801 	if (!skb)
2802 		return qman_cb_dqrr_consume;
2803 
2804 	if (xdp_meta_len)
2805 		skb_metadata_set(skb, xdp_meta_len);
2806 
2807 	/* Set the previously extracted timestamp */
2808 	if (ts_valid) {
2809 		shhwtstamps = skb_hwtstamps(skb);
2810 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2811 		shhwtstamps->hwtstamp = ns_to_ktime(ns);
2812 	}
2813 
2814 	skb->protocol = eth_type_trans(skb, net_dev);
2815 
2816 	/* Set the previously extracted hash */
2817 	if (hash_valid) {
2818 		enum pkt_hash_types type;
2819 
2820 		/* if L4 exists, it was used in the hash generation */
2821 		type = be32_to_cpu(fd->status) & FM_FD_STAT_L4CV ?
2822 			PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
2823 		skb_set_hash(skb, hash, type);
2824 	}
2825 
2826 	skb_len = skb->len;
2827 
2828 	if (unlikely(netif_receive_skb(skb) == NET_RX_DROP)) {
2829 		percpu_stats->rx_dropped++;
2830 		return qman_cb_dqrr_consume;
2831 	}
2832 
2833 	percpu_stats->rx_packets++;
2834 	percpu_stats->rx_bytes += skb_len;
2835 
2836 	return qman_cb_dqrr_consume;
2837 }
2838 
conf_error_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2839 static enum qman_cb_dqrr_result conf_error_dqrr(struct qman_portal *portal,
2840 						struct qman_fq *fq,
2841 						const struct qm_dqrr_entry *dq,
2842 						bool sched_napi)
2843 {
2844 	struct dpaa_percpu_priv *percpu_priv;
2845 	struct net_device *net_dev;
2846 	struct dpaa_priv *priv;
2847 
2848 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2849 	priv = netdev_priv(net_dev);
2850 
2851 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2852 
2853 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2854 		return qman_cb_dqrr_stop;
2855 
2856 	dpaa_tx_error(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2857 
2858 	return qman_cb_dqrr_consume;
2859 }
2860 
conf_dflt_dqrr(struct qman_portal * portal,struct qman_fq * fq,const struct qm_dqrr_entry * dq,bool sched_napi)2861 static enum qman_cb_dqrr_result conf_dflt_dqrr(struct qman_portal *portal,
2862 					       struct qman_fq *fq,
2863 					       const struct qm_dqrr_entry *dq,
2864 					       bool sched_napi)
2865 {
2866 	struct dpaa_percpu_priv *percpu_priv;
2867 	struct net_device *net_dev;
2868 	struct dpaa_priv *priv;
2869 
2870 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2871 	priv = netdev_priv(net_dev);
2872 
2873 	/* Trace the fd */
2874 	trace_dpaa_tx_conf_fd(net_dev, fq, &dq->fd);
2875 
2876 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2877 
2878 	if (dpaa_eth_napi_schedule(percpu_priv, portal, sched_napi))
2879 		return qman_cb_dqrr_stop;
2880 
2881 	dpaa_tx_conf(net_dev, priv, percpu_priv, &dq->fd, fq->fqid);
2882 
2883 	return qman_cb_dqrr_consume;
2884 }
2885 
egress_ern(struct qman_portal * portal,struct qman_fq * fq,const union qm_mr_entry * msg)2886 static void egress_ern(struct qman_portal *portal,
2887 		       struct qman_fq *fq,
2888 		       const union qm_mr_entry *msg)
2889 {
2890 	const struct qm_fd *fd = &msg->ern.fd;
2891 	struct dpaa_percpu_priv *percpu_priv;
2892 	const struct dpaa_priv *priv;
2893 	struct net_device *net_dev;
2894 	struct sk_buff *skb;
2895 
2896 	net_dev = ((struct dpaa_fq *)fq)->net_dev;
2897 	priv = netdev_priv(net_dev);
2898 	percpu_priv = this_cpu_ptr(priv->percpu_priv);
2899 
2900 	percpu_priv->stats.tx_dropped++;
2901 	percpu_priv->stats.tx_fifo_errors++;
2902 	count_ern(percpu_priv, msg);
2903 
2904 	skb = dpaa_cleanup_tx_fd(priv, fd, false);
2905 	dev_kfree_skb_any(skb);
2906 }
2907 
2908 static const struct dpaa_fq_cbs dpaa_fq_cbs = {
2909 	.rx_defq = { .cb = { .dqrr = rx_default_dqrr } },
2910 	.tx_defq = { .cb = { .dqrr = conf_dflt_dqrr } },
2911 	.rx_errq = { .cb = { .dqrr = rx_error_dqrr } },
2912 	.tx_errq = { .cb = { .dqrr = conf_error_dqrr } },
2913 	.egress_ern = { .cb = { .ern = egress_ern } }
2914 };
2915 
dpaa_eth_napi_enable(struct dpaa_priv * priv)2916 static void dpaa_eth_napi_enable(struct dpaa_priv *priv)
2917 {
2918 	struct dpaa_percpu_priv *percpu_priv;
2919 	int i;
2920 
2921 	for_each_online_cpu(i) {
2922 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2923 
2924 		percpu_priv->np.down = false;
2925 		napi_enable(&percpu_priv->np.napi);
2926 	}
2927 }
2928 
dpaa_eth_napi_disable(struct dpaa_priv * priv)2929 static void dpaa_eth_napi_disable(struct dpaa_priv *priv)
2930 {
2931 	struct dpaa_percpu_priv *percpu_priv;
2932 	int i;
2933 
2934 	for_each_online_cpu(i) {
2935 		percpu_priv = per_cpu_ptr(priv->percpu_priv, i);
2936 
2937 		percpu_priv->np.down = true;
2938 		napi_disable(&percpu_priv->np.napi);
2939 	}
2940 }
2941 
dpaa_open(struct net_device * net_dev)2942 static int dpaa_open(struct net_device *net_dev)
2943 {
2944 	struct mac_device *mac_dev;
2945 	struct dpaa_priv *priv;
2946 	int err, i;
2947 
2948 	priv = netdev_priv(net_dev);
2949 	mac_dev = priv->mac_dev;
2950 	dpaa_eth_napi_enable(priv);
2951 
2952 	err = phylink_of_phy_connect(mac_dev->phylink,
2953 				     mac_dev->dev->of_node, 0);
2954 	if (err)
2955 		goto phy_init_failed;
2956 
2957 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++) {
2958 		err = fman_port_enable(mac_dev->port[i]);
2959 		if (err)
2960 			goto mac_start_failed;
2961 	}
2962 
2963 	err = priv->mac_dev->enable(mac_dev->fman_mac);
2964 	if (err < 0) {
2965 		netif_err(priv, ifup, net_dev, "mac_dev->enable() = %d\n", err);
2966 		goto mac_start_failed;
2967 	}
2968 	phylink_start(mac_dev->phylink);
2969 
2970 	netif_tx_start_all_queues(net_dev);
2971 
2972 	return 0;
2973 
2974 mac_start_failed:
2975 	for (i = 0; i < ARRAY_SIZE(mac_dev->port); i++)
2976 		fman_port_disable(mac_dev->port[i]);
2977 	phylink_disconnect_phy(mac_dev->phylink);
2978 
2979 phy_init_failed:
2980 	dpaa_eth_napi_disable(priv);
2981 
2982 	return err;
2983 }
2984 
dpaa_eth_stop(struct net_device * net_dev)2985 static int dpaa_eth_stop(struct net_device *net_dev)
2986 {
2987 	struct dpaa_priv *priv;
2988 	int err;
2989 
2990 	err = dpaa_stop(net_dev);
2991 
2992 	priv = netdev_priv(net_dev);
2993 	dpaa_eth_napi_disable(priv);
2994 
2995 	return err;
2996 }
2997 
xdp_validate_mtu(struct dpaa_priv * priv,int mtu)2998 static bool xdp_validate_mtu(struct dpaa_priv *priv, int mtu)
2999 {
3000 	int max_contig_data = priv->dpaa_bp->size - priv->rx_headroom;
3001 
3002 	/* We do not support S/G fragments when XDP is enabled.
3003 	 * Limit the MTU in relation to the buffer size.
3004 	 */
3005 	if (mtu + VLAN_ETH_HLEN + ETH_FCS_LEN > max_contig_data) {
3006 		dev_warn(priv->net_dev->dev.parent,
3007 			 "The maximum MTU for XDP is %d\n",
3008 			 max_contig_data - VLAN_ETH_HLEN - ETH_FCS_LEN);
3009 		return false;
3010 	}
3011 
3012 	return true;
3013 }
3014 
dpaa_change_mtu(struct net_device * net_dev,int new_mtu)3015 static int dpaa_change_mtu(struct net_device *net_dev, int new_mtu)
3016 {
3017 	struct dpaa_priv *priv = netdev_priv(net_dev);
3018 
3019 	if (priv->xdp_prog && !xdp_validate_mtu(priv, new_mtu))
3020 		return -EINVAL;
3021 
3022 	WRITE_ONCE(net_dev->mtu, new_mtu);
3023 	return 0;
3024 }
3025 
dpaa_setup_xdp(struct net_device * net_dev,struct netdev_bpf * bpf)3026 static int dpaa_setup_xdp(struct net_device *net_dev, struct netdev_bpf *bpf)
3027 {
3028 	struct dpaa_priv *priv = netdev_priv(net_dev);
3029 	struct bpf_prog *old_prog;
3030 	int err;
3031 	bool up;
3032 
3033 	/* S/G fragments are not supported in XDP-mode */
3034 	if (bpf->prog && !xdp_validate_mtu(priv, net_dev->mtu)) {
3035 		NL_SET_ERR_MSG_MOD(bpf->extack, "MTU too large for XDP");
3036 		return -EINVAL;
3037 	}
3038 
3039 	up = netif_running(net_dev);
3040 
3041 	if (up)
3042 		dpaa_eth_stop(net_dev);
3043 
3044 	old_prog = xchg(&priv->xdp_prog, bpf->prog);
3045 	if (old_prog)
3046 		bpf_prog_put(old_prog);
3047 
3048 	if (up) {
3049 		err = dpaa_open(net_dev);
3050 		if (err) {
3051 			NL_SET_ERR_MSG_MOD(bpf->extack, "dpaa_open() failed");
3052 			return err;
3053 		}
3054 	}
3055 
3056 	return 0;
3057 }
3058 
dpaa_xdp(struct net_device * net_dev,struct netdev_bpf * xdp)3059 static int dpaa_xdp(struct net_device *net_dev, struct netdev_bpf *xdp)
3060 {
3061 	switch (xdp->command) {
3062 	case XDP_SETUP_PROG:
3063 		return dpaa_setup_xdp(net_dev, xdp);
3064 	default:
3065 		return -EINVAL;
3066 	}
3067 }
3068 
dpaa_xdp_xmit(struct net_device * net_dev,int n,struct xdp_frame ** frames,u32 flags)3069 static int dpaa_xdp_xmit(struct net_device *net_dev, int n,
3070 			 struct xdp_frame **frames, u32 flags)
3071 {
3072 	struct xdp_frame *xdpf;
3073 	int i, nxmit = 0;
3074 
3075 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
3076 		return -EINVAL;
3077 
3078 	if (!netif_running(net_dev))
3079 		return -ENETDOWN;
3080 
3081 	for (i = 0; i < n; i++) {
3082 		xdpf = frames[i];
3083 		if (dpaa_xdp_xmit_frame(net_dev, xdpf))
3084 			break;
3085 		nxmit++;
3086 	}
3087 
3088 	return nxmit;
3089 }
3090 
dpaa_hwtstamp_get(struct net_device * dev,struct kernel_hwtstamp_config * config)3091 static int dpaa_hwtstamp_get(struct net_device *dev,
3092 			     struct kernel_hwtstamp_config *config)
3093 {
3094 	struct dpaa_priv *priv = netdev_priv(dev);
3095 
3096 	config->tx_type = priv->tx_tstamp ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
3097 	config->rx_filter = priv->rx_tstamp ? HWTSTAMP_FILTER_ALL :
3098 			    HWTSTAMP_FILTER_NONE;
3099 
3100 	return 0;
3101 }
3102 
dpaa_hwtstamp_set(struct net_device * dev,struct kernel_hwtstamp_config * config,struct netlink_ext_ack * extack)3103 static int dpaa_hwtstamp_set(struct net_device *dev,
3104 			     struct kernel_hwtstamp_config *config,
3105 			     struct netlink_ext_ack *extack)
3106 {
3107 	struct dpaa_priv *priv = netdev_priv(dev);
3108 
3109 	switch (config->tx_type) {
3110 	case HWTSTAMP_TX_OFF:
3111 		/* Couldn't disable rx/tx timestamping separately.
3112 		 * Do nothing here.
3113 		 */
3114 		priv->tx_tstamp = false;
3115 		break;
3116 	case HWTSTAMP_TX_ON:
3117 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3118 		priv->tx_tstamp = true;
3119 		break;
3120 	default:
3121 		return -ERANGE;
3122 	}
3123 
3124 	if (config->rx_filter == HWTSTAMP_FILTER_NONE) {
3125 		/* Couldn't disable rx/tx timestamping separately.
3126 		 * Do nothing here.
3127 		 */
3128 		priv->rx_tstamp = false;
3129 	} else {
3130 		priv->mac_dev->set_tstamp(priv->mac_dev->fman_mac, true);
3131 		priv->rx_tstamp = true;
3132 		/* TS is set for all frame types, not only those requested */
3133 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3134 	}
3135 
3136 	return 0;
3137 }
3138 
dpaa_ioctl(struct net_device * net_dev,struct ifreq * rq,int cmd)3139 static int dpaa_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
3140 {
3141 	struct dpaa_priv *priv = netdev_priv(net_dev);
3142 
3143 	return phylink_mii_ioctl(priv->mac_dev->phylink, rq, cmd);
3144 }
3145 
3146 static const struct net_device_ops dpaa_ops = {
3147 	.ndo_open = dpaa_open,
3148 	.ndo_start_xmit = dpaa_start_xmit,
3149 	.ndo_stop = dpaa_eth_stop,
3150 	.ndo_tx_timeout = dpaa_tx_timeout,
3151 	.ndo_get_stats64 = dpaa_get_stats64,
3152 	.ndo_set_mac_address = dpaa_set_mac_address,
3153 	.ndo_validate_addr = eth_validate_addr,
3154 	.ndo_set_rx_mode = dpaa_set_rx_mode,
3155 	.ndo_eth_ioctl = dpaa_ioctl,
3156 	.ndo_setup_tc = dpaa_setup_tc,
3157 	.ndo_change_mtu = dpaa_change_mtu,
3158 	.ndo_bpf = dpaa_xdp,
3159 	.ndo_xdp_xmit = dpaa_xdp_xmit,
3160 	.ndo_hwtstamp_get = dpaa_hwtstamp_get,
3161 	.ndo_hwtstamp_set = dpaa_hwtstamp_set,
3162 };
3163 
dpaa_napi_add(struct net_device * net_dev)3164 static int dpaa_napi_add(struct net_device *net_dev)
3165 {
3166 	struct dpaa_priv *priv = netdev_priv(net_dev);
3167 	struct dpaa_percpu_priv *percpu_priv;
3168 	int cpu;
3169 
3170 	for_each_possible_cpu(cpu) {
3171 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3172 
3173 		netif_napi_add(net_dev, &percpu_priv->np.napi, dpaa_eth_poll);
3174 	}
3175 
3176 	return 0;
3177 }
3178 
dpaa_napi_del(struct net_device * net_dev)3179 static void dpaa_napi_del(struct net_device *net_dev)
3180 {
3181 	struct dpaa_priv *priv = netdev_priv(net_dev);
3182 	struct dpaa_percpu_priv *percpu_priv;
3183 	int cpu;
3184 
3185 	for_each_possible_cpu(cpu) {
3186 		percpu_priv = per_cpu_ptr(priv->percpu_priv, cpu);
3187 
3188 		__netif_napi_del(&percpu_priv->np.napi);
3189 	}
3190 	synchronize_net();
3191 }
3192 
dpaa_bp_free_pf(const struct dpaa_bp * bp,struct bm_buffer * bmb)3193 static inline void dpaa_bp_free_pf(const struct dpaa_bp *bp,
3194 				   struct bm_buffer *bmb)
3195 {
3196 	dma_addr_t addr = bm_buf_addr(bmb);
3197 
3198 	dma_unmap_page(bp->priv->rx_dma_dev, addr, DPAA_BP_RAW_SIZE,
3199 		       DMA_FROM_DEVICE);
3200 
3201 	skb_free_frag(phys_to_virt(addr));
3202 }
3203 
3204 /* Alloc the dpaa_bp struct and configure default values */
dpaa_bp_alloc(struct device * dev)3205 static struct dpaa_bp *dpaa_bp_alloc(struct device *dev)
3206 {
3207 	struct dpaa_bp *dpaa_bp;
3208 
3209 	dpaa_bp = devm_kzalloc(dev, sizeof(*dpaa_bp), GFP_KERNEL);
3210 	if (!dpaa_bp)
3211 		return ERR_PTR(-ENOMEM);
3212 
3213 	dpaa_bp->bpid = FSL_DPAA_BPID_INV;
3214 	dpaa_bp->percpu_count = devm_alloc_percpu(dev, *dpaa_bp->percpu_count);
3215 	if (!dpaa_bp->percpu_count)
3216 		return ERR_PTR(-ENOMEM);
3217 
3218 	dpaa_bp->config_count = FSL_DPAA_ETH_MAX_BUF_COUNT;
3219 
3220 	dpaa_bp->seed_cb = dpaa_bp_seed;
3221 	dpaa_bp->free_buf_cb = dpaa_bp_free_pf;
3222 
3223 	return dpaa_bp;
3224 }
3225 
3226 /* Place all ingress FQs (Rx Default, Rx Error) in a dedicated CGR.
3227  * We won't be sending congestion notifications to FMan; for now, we just use
3228  * this CGR to generate enqueue rejections to FMan in order to drop the frames
3229  * before they reach our ingress queues and eat up memory.
3230  */
dpaa_ingress_cgr_init(struct dpaa_priv * priv)3231 static int dpaa_ingress_cgr_init(struct dpaa_priv *priv)
3232 {
3233 	struct qm_mcc_initcgr initcgr;
3234 	u32 cs_th;
3235 	int err;
3236 
3237 	err = qman_alloc_cgrid(&priv->ingress_cgr.cgrid);
3238 	if (err < 0) {
3239 		if (netif_msg_drv(priv))
3240 			pr_err("Error %d allocating CGR ID\n", err);
3241 		goto out_error;
3242 	}
3243 
3244 	/* Enable CS TD, but disable Congestion State Change Notifications. */
3245 	memset(&initcgr, 0, sizeof(initcgr));
3246 	initcgr.we_mask = cpu_to_be16(QM_CGR_WE_CS_THRES);
3247 	initcgr.cgr.cscn_en = QM_CGR_EN;
3248 	cs_th = DPAA_INGRESS_CS_THRESHOLD;
3249 	qm_cgr_cs_thres_set64(&initcgr.cgr.cs_thres, cs_th, 1);
3250 
3251 	initcgr.we_mask |= cpu_to_be16(QM_CGR_WE_CSTD_EN);
3252 	initcgr.cgr.cstd_en = QM_CGR_EN;
3253 
3254 	/* This CGR will be associated with the SWP affined to the current CPU.
3255 	 * However, we'll place all our ingress FQs in it.
3256 	 */
3257 	err = qman_create_cgr(&priv->ingress_cgr, QMAN_CGR_FLAG_USE_INIT,
3258 			      &initcgr);
3259 	if (err < 0) {
3260 		if (netif_msg_drv(priv))
3261 			pr_err("Error %d creating ingress CGR with ID %d\n",
3262 			       err, priv->ingress_cgr.cgrid);
3263 		qman_release_cgrid(priv->ingress_cgr.cgrid);
3264 		goto out_error;
3265 	}
3266 	if (netif_msg_drv(priv))
3267 		pr_debug("Created ingress CGR %d for netdev with hwaddr %pM\n",
3268 			 priv->ingress_cgr.cgrid, priv->mac_dev->addr);
3269 
3270 	priv->use_ingress_cgr = true;
3271 
3272 out_error:
3273 	return err;
3274 }
3275 
dpaa_get_headroom(struct dpaa_buffer_layout * bl,enum port_type port)3276 static u16 dpaa_get_headroom(struct dpaa_buffer_layout *bl,
3277 			     enum port_type port)
3278 {
3279 	u16 headroom;
3280 
3281 	/* The frame headroom must accommodate:
3282 	 * - the driver private data area
3283 	 * - parse results, hash results, timestamp if selected
3284 	 * If either hash results or time stamp are selected, both will
3285 	 * be copied to/from the frame headroom, as TS is located between PR and
3286 	 * HR in the IC and IC copy size has a granularity of 16bytes
3287 	 * (see description of FMBM_RICP and FMBM_TICP registers in DPAARM)
3288 	 *
3289 	 * Also make sure the headroom is a multiple of data_align bytes
3290 	 */
3291 	headroom = (u16)(bl[port].priv_data_size + DPAA_HWA_SIZE);
3292 
3293 	if (port == RX) {
3294 #ifdef CONFIG_DPAA_ERRATUM_A050385
3295 		if (unlikely(fman_has_errata_a050385()))
3296 			headroom = XDP_PACKET_HEADROOM;
3297 #endif
3298 
3299 		return ALIGN(headroom, DPAA_FD_RX_DATA_ALIGNMENT);
3300 	} else {
3301 		return ALIGN(headroom, DPAA_FD_DATA_ALIGNMENT);
3302 	}
3303 }
3304 
dpaa_eth_probe(struct platform_device * pdev)3305 static int dpaa_eth_probe(struct platform_device *pdev)
3306 {
3307 	struct net_device *net_dev = NULL;
3308 	struct dpaa_bp *dpaa_bp = NULL;
3309 	struct dpaa_fq *dpaa_fq, *tmp;
3310 	struct dpaa_priv *priv = NULL;
3311 	struct fm_port_fqs port_fqs;
3312 	struct mac_device *mac_dev;
3313 	int err = 0, channel;
3314 	struct device *dev;
3315 
3316 	dev = &pdev->dev;
3317 
3318 	err = bman_is_probed();
3319 	if (!err)
3320 		return -EPROBE_DEFER;
3321 	if (err < 0) {
3322 		dev_err(dev, "failing probe due to bman probe error\n");
3323 		return -ENODEV;
3324 	}
3325 	err = qman_is_probed();
3326 	if (!err)
3327 		return -EPROBE_DEFER;
3328 	if (err < 0) {
3329 		dev_err(dev, "failing probe due to qman probe error\n");
3330 		return -ENODEV;
3331 	}
3332 	err = bman_portals_probed();
3333 	if (!err)
3334 		return -EPROBE_DEFER;
3335 	if (err < 0) {
3336 		dev_err(dev,
3337 			"failing probe due to bman portals probe error\n");
3338 		return -ENODEV;
3339 	}
3340 	err = qman_portals_probed();
3341 	if (!err)
3342 		return -EPROBE_DEFER;
3343 	if (err < 0) {
3344 		dev_err(dev,
3345 			"failing probe due to qman portals probe error\n");
3346 		return -ENODEV;
3347 	}
3348 
3349 	/* Allocate this early, so we can store relevant information in
3350 	 * the private area
3351 	 */
3352 	net_dev = alloc_etherdev_mq(sizeof(*priv), dpaa_max_num_txqs());
3353 	if (!net_dev) {
3354 		dev_err(dev, "alloc_etherdev_mq() failed\n");
3355 		return -ENOMEM;
3356 	}
3357 
3358 	/* Do this here, so we can be verbose early */
3359 	SET_NETDEV_DEV(net_dev, dev->parent);
3360 	dev_set_drvdata(dev, net_dev);
3361 
3362 	priv = netdev_priv(net_dev);
3363 	priv->net_dev = net_dev;
3364 
3365 	priv->msg_enable = netif_msg_init(debug, DPAA_MSG_DEFAULT);
3366 
3367 	priv->egress_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3368 					sizeof(*priv->egress_fqs),
3369 					GFP_KERNEL);
3370 	if (!priv->egress_fqs) {
3371 		err = -ENOMEM;
3372 		goto free_netdev;
3373 	}
3374 
3375 	priv->conf_fqs = devm_kcalloc(dev, dpaa_max_num_txqs(),
3376 				      sizeof(*priv->conf_fqs),
3377 				      GFP_KERNEL);
3378 	if (!priv->conf_fqs) {
3379 		err = -ENOMEM;
3380 		goto free_netdev;
3381 	}
3382 
3383 	mac_dev = dpaa_mac_dev_get(pdev);
3384 	if (IS_ERR(mac_dev)) {
3385 		netdev_err(net_dev, "dpaa_mac_dev_get() failed\n");
3386 		err = PTR_ERR(mac_dev);
3387 		goto free_netdev;
3388 	}
3389 
3390 	/* Devices used for DMA mapping */
3391 	priv->rx_dma_dev = fman_port_get_device(mac_dev->port[RX]);
3392 	priv->tx_dma_dev = fman_port_get_device(mac_dev->port[TX]);
3393 	err = dma_coerce_mask_and_coherent(priv->rx_dma_dev, DMA_BIT_MASK(40));
3394 	if (!err)
3395 		err = dma_coerce_mask_and_coherent(priv->tx_dma_dev,
3396 						   DMA_BIT_MASK(40));
3397 	if (err) {
3398 		netdev_err(net_dev, "dma_coerce_mask_and_coherent() failed\n");
3399 		goto free_netdev;
3400 	}
3401 
3402 	/* If fsl_fm_max_frm is set to a higher value than the all-common 1500,
3403 	 * we choose conservatively and let the user explicitly set a higher
3404 	 * MTU via ifconfig. Otherwise, the user may end up with different MTUs
3405 	 * in the same LAN.
3406 	 * If on the other hand fsl_fm_max_frm has been chosen below 1500,
3407 	 * start with the maximum allowed.
3408 	 */
3409 	net_dev->mtu = min(dpaa_get_max_mtu(), ETH_DATA_LEN);
3410 
3411 	netdev_dbg(net_dev, "Setting initial MTU on net device: %d\n",
3412 		   net_dev->mtu);
3413 
3414 	priv->buf_layout[RX].priv_data_size = DPAA_RX_PRIV_DATA_SIZE; /* Rx */
3415 	priv->buf_layout[TX].priv_data_size = DPAA_TX_PRIV_DATA_SIZE; /* Tx */
3416 
3417 	/* bp init */
3418 	dpaa_bp = dpaa_bp_alloc(dev);
3419 	if (IS_ERR(dpaa_bp)) {
3420 		err = PTR_ERR(dpaa_bp);
3421 		goto free_dpaa_bps;
3422 	}
3423 	/* the raw size of the buffers used for reception */
3424 	dpaa_bp->raw_size = DPAA_BP_RAW_SIZE;
3425 	/* avoid runtime computations by keeping the usable size here */
3426 	dpaa_bp->size = dpaa_bp_size(dpaa_bp->raw_size);
3427 	dpaa_bp->priv = priv;
3428 
3429 	err = dpaa_bp_alloc_pool(dpaa_bp);
3430 	if (err < 0)
3431 		goto free_dpaa_bps;
3432 	priv->dpaa_bp = dpaa_bp;
3433 
3434 	INIT_LIST_HEAD(&priv->dpaa_fq_list);
3435 
3436 	memset(&port_fqs, 0, sizeof(port_fqs));
3437 
3438 	err = dpaa_alloc_all_fqs(dev, &priv->dpaa_fq_list, &port_fqs);
3439 	if (err < 0) {
3440 		dev_err(dev, "dpaa_alloc_all_fqs() failed\n");
3441 		goto free_dpaa_bps;
3442 	}
3443 
3444 	priv->mac_dev = mac_dev;
3445 
3446 	channel = dpaa_get_channel();
3447 	if (channel < 0) {
3448 		dev_err(dev, "dpaa_get_channel() failed\n");
3449 		err = channel;
3450 		goto free_dpaa_bps;
3451 	}
3452 
3453 	priv->channel = (u16)channel;
3454 
3455 	/* Walk the CPUs with affine portals
3456 	 * and add this pool channel to each's dequeue mask.
3457 	 */
3458 	dpaa_eth_add_channel(priv->channel, &pdev->dev);
3459 
3460 	err = dpaa_fq_setup(priv, &dpaa_fq_cbs, priv->mac_dev->port[TX]);
3461 	if (err)
3462 		goto free_dpaa_bps;
3463 
3464 	/* Create a congestion group for this netdev, with
3465 	 * dynamically-allocated CGR ID.
3466 	 * Must be executed after probing the MAC, but before
3467 	 * assigning the egress FQs to the CGRs.
3468 	 */
3469 	err = dpaa_eth_cgr_init(priv);
3470 	if (err < 0) {
3471 		dev_err(dev, "Error initializing CGR\n");
3472 		goto free_dpaa_bps;
3473 	}
3474 
3475 	err = dpaa_ingress_cgr_init(priv);
3476 	if (err < 0) {
3477 		dev_err(dev, "Error initializing ingress CGR\n");
3478 		goto delete_egress_cgr;
3479 	}
3480 
3481 	/* Add the FQs to the interface, and make them active */
3482 	list_for_each_entry_safe(dpaa_fq, tmp, &priv->dpaa_fq_list, list) {
3483 		err = dpaa_fq_init(dpaa_fq, false);
3484 		if (err < 0)
3485 			goto free_dpaa_fqs;
3486 	}
3487 
3488 	priv->tx_headroom = dpaa_get_headroom(priv->buf_layout, TX);
3489 	priv->rx_headroom = dpaa_get_headroom(priv->buf_layout, RX);
3490 
3491 	/* All real interfaces need their ports initialized */
3492 	err = dpaa_eth_init_ports(mac_dev, dpaa_bp, &port_fqs,
3493 				  &priv->buf_layout[0], dev);
3494 	if (err)
3495 		goto free_dpaa_fqs;
3496 
3497 	/* Rx traffic distribution based on keygen hashing defaults to on */
3498 	priv->keygen_in_use = true;
3499 
3500 	priv->percpu_priv = devm_alloc_percpu(dev, *priv->percpu_priv);
3501 	if (!priv->percpu_priv) {
3502 		dev_err(dev, "devm_alloc_percpu() failed\n");
3503 		err = -ENOMEM;
3504 		goto free_dpaa_fqs;
3505 	}
3506 
3507 	priv->num_tc = 1;
3508 	netif_set_real_num_tx_queues(net_dev,
3509 				     priv->num_tc * dpaa_num_txqs_per_tc());
3510 
3511 	/* Initialize NAPI */
3512 	err = dpaa_napi_add(net_dev);
3513 	if (err < 0)
3514 		goto delete_dpaa_napi;
3515 
3516 	err = dpaa_netdev_init(net_dev, &dpaa_ops, tx_timeout);
3517 	if (err < 0)
3518 		goto delete_dpaa_napi;
3519 
3520 	dpaa_eth_sysfs_init(&net_dev->dev);
3521 
3522 	netif_info(priv, probe, net_dev, "Probed interface %s\n",
3523 		   net_dev->name);
3524 
3525 	return 0;
3526 
3527 delete_dpaa_napi:
3528 	dpaa_napi_del(net_dev);
3529 free_dpaa_fqs:
3530 	dpaa_fq_free(dev, &priv->dpaa_fq_list);
3531 	qman_delete_cgr_safe(&priv->ingress_cgr);
3532 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3533 delete_egress_cgr:
3534 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3535 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3536 free_dpaa_bps:
3537 	dpaa_bps_free(priv);
3538 free_netdev:
3539 	dev_set_drvdata(dev, NULL);
3540 	free_netdev(net_dev);
3541 
3542 	return err;
3543 }
3544 
dpaa_remove(struct platform_device * pdev)3545 static void dpaa_remove(struct platform_device *pdev)
3546 {
3547 	struct net_device *net_dev;
3548 	struct dpaa_priv *priv;
3549 	struct device *dev;
3550 	int err;
3551 
3552 	dev = &pdev->dev;
3553 	net_dev = dev_get_drvdata(dev);
3554 
3555 	priv = netdev_priv(net_dev);
3556 
3557 	dpaa_eth_sysfs_remove(dev);
3558 
3559 	dev_set_drvdata(dev, NULL);
3560 	unregister_netdev(net_dev);
3561 	phylink_destroy(priv->mac_dev->phylink);
3562 
3563 	err = dpaa_fq_free(dev, &priv->dpaa_fq_list);
3564 	if (err)
3565 		dev_err(dev, "Failed to free FQs on remove (%pE)\n",
3566 			ERR_PTR(err));
3567 
3568 	qman_delete_cgr_safe(&priv->ingress_cgr);
3569 	qman_release_cgrid(priv->ingress_cgr.cgrid);
3570 	qman_delete_cgr_safe(&priv->cgr_data.cgr);
3571 	qman_release_cgrid(priv->cgr_data.cgr.cgrid);
3572 
3573 	dpaa_napi_del(net_dev);
3574 
3575 	dpaa_bps_free(priv);
3576 
3577 	free_netdev(net_dev);
3578 }
3579 
3580 static const struct platform_device_id dpaa_devtype[] = {
3581 	{
3582 		.name = "dpaa-ethernet",
3583 		.driver_data = 0,
3584 	}, {
3585 	}
3586 };
3587 MODULE_DEVICE_TABLE(platform, dpaa_devtype);
3588 
3589 static struct platform_driver dpaa_driver = {
3590 	.driver = {
3591 		.name = KBUILD_MODNAME,
3592 	},
3593 	.id_table = dpaa_devtype,
3594 	.probe = dpaa_eth_probe,
3595 	.remove = dpaa_remove
3596 };
3597 
dpaa_load(void)3598 static int __init dpaa_load(void)
3599 {
3600 	int err;
3601 
3602 	pr_debug("FSL DPAA Ethernet driver\n");
3603 
3604 	/* initialize dpaa_eth mirror values */
3605 	dpaa_rx_extra_headroom = fman_get_rx_extra_headroom();
3606 	dpaa_max_frm = fman_get_max_frm();
3607 
3608 	err = platform_driver_register(&dpaa_driver);
3609 	if (err < 0)
3610 		pr_err("Error, platform_driver_register() = %d\n", err);
3611 
3612 	return err;
3613 }
3614 module_init(dpaa_load);
3615 
dpaa_unload(void)3616 static void __exit dpaa_unload(void)
3617 {
3618 	platform_driver_unregister(&dpaa_driver);
3619 
3620 	/* Only one channel is used and needs to be released after all
3621 	 * interfaces are removed
3622 	 */
3623 	dpaa_release_channel();
3624 }
3625 module_exit(dpaa_unload);
3626 
3627 MODULE_LICENSE("Dual BSD/GPL");
3628 MODULE_DESCRIPTION("FSL DPAA Ethernet driver");
3629