xref: /linux/kernel/locking/rwsem.c (revision ec03de73b1e11e5b0c30d3c35e09dffe7496bb06)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31 
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34 
35 /*
36  * The least significant 2 bits of the owner value has the following
37  * meanings when set.
38  *  - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint)
39  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40  *
41  * When the rwsem is reader-owned and a spinning writer has timed out,
42  * the nonspinnable bit will be set to disable optimistic spinning.
43 
44  * When a writer acquires a rwsem, it puts its task_struct pointer
45  * into the owner field. It is cleared after an unlock.
46  *
47  * When a reader acquires a rwsem, it will also puts its task_struct
48  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49  * On unlock, the owner field will largely be left untouched. So
50  * for a free or reader-owned rwsem, the owner value may contain
51  * information about the last reader that acquires the rwsem.
52  *
53  * That information may be helpful in debugging cases where the system
54  * seems to hang on a reader owned rwsem especially if only one reader
55  * is involved. Ideally we would like to track all the readers that own
56  * a rwsem, but the overhead is simply too big.
57  *
58  * A fast path reader optimistic lock stealing is supported when the rwsem
59  * is previously owned by a writer and the following conditions are met:
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED	(1UL << 0)
64 #define RWSEM_NONSPINNABLE	(1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66 
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
69 	if (!debug_locks_silent &&				\
70 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71 		#c, atomic_long_read(&(sem)->count),		\
72 		(unsigned long) sem->magic,			\
73 		atomic_long_read(&(sem)->owner), (long)current,	\
74 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
75 			debug_locks_off();			\
76 	} while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80 
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers		-- set, clear
110  * 2) rwsem_try_write_lock() for writers	-- set, clear
111  * 3) rwsem_del_waiter()			-- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED	(1UL << 0)
118 #define RWSEM_FLAG_WAITERS	(1UL << 1)
119 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
120 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
121 
122 #define RWSEM_READER_SHIFT	8
123 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129 
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  *
137  * Both rwsem_{set,clear}_owner() functions should be in the same
138  * preempt disable section as the atomic op that changes sem->count.
139  */
rwsem_set_owner(struct rw_semaphore * sem)140 static inline void rwsem_set_owner(struct rw_semaphore *sem)
141 {
142 	lockdep_assert_preemption_disabled();
143 	atomic_long_set(&sem->owner, (long)current);
144 }
145 
rwsem_clear_owner(struct rw_semaphore * sem)146 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
147 {
148 	lockdep_assert_preemption_disabled();
149 	atomic_long_set(&sem->owner, 0);
150 }
151 
152 /*
153  * Test the flags in the owner field.
154  */
rwsem_test_oflags(struct rw_semaphore * sem,long flags)155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
156 {
157 	return atomic_long_read(&sem->owner) & flags;
158 }
159 
160 /*
161  * The task_struct pointer of the last owning reader will be left in
162  * the owner field.
163  *
164  * Note that the owner value just indicates the task has owned the rwsem
165  * previously, it may not be the real owner or one of the real owners
166  * anymore when that field is examined, so take it with a grain of salt.
167  *
168  * The reader non-spinnable bit is preserved.
169  */
__rwsem_set_reader_owned(struct rw_semaphore * sem,struct task_struct * owner)170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
171 					    struct task_struct *owner)
172 {
173 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
174 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
175 
176 	atomic_long_set(&sem->owner, val);
177 }
178 
rwsem_set_reader_owned(struct rw_semaphore * sem)179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
180 {
181 	__rwsem_set_reader_owned(sem, current);
182 }
183 
184 #ifdef CONFIG_DEBUG_RWSEMS
185 /*
186  * Return just the real task structure pointer of the owner
187  */
rwsem_owner(struct rw_semaphore * sem)188 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
189 {
190 	return (struct task_struct *)
191 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
192 }
193 
194 /*
195  * Return true if the rwsem is owned by a reader.
196  */
is_rwsem_reader_owned(struct rw_semaphore * sem)197 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
198 {
199 	/*
200 	 * Check the count to see if it is write-locked.
201 	 */
202 	long count = atomic_long_read(&sem->count);
203 
204 	if (count & RWSEM_WRITER_MASK)
205 		return false;
206 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
207 }
208 
209 /*
210  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
211  * is a task pointer in owner of a reader-owned rwsem, it will be the
212  * real owner or one of the real owners. The only exception is when the
213  * unlock is done by up_read_non_owner().
214  */
rwsem_clear_reader_owned(struct rw_semaphore * sem)215 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
216 {
217 	unsigned long val = atomic_long_read(&sem->owner);
218 
219 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
220 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
221 					    val & RWSEM_OWNER_FLAGS_MASK))
222 			return;
223 	}
224 }
225 #else
rwsem_clear_reader_owned(struct rw_semaphore * sem)226 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
227 {
228 }
229 #endif
230 
231 /*
232  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
233  * remains set. Otherwise, the operation will be aborted.
234  */
rwsem_set_nonspinnable(struct rw_semaphore * sem)235 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
236 {
237 	unsigned long owner = atomic_long_read(&sem->owner);
238 
239 	do {
240 		if (!(owner & RWSEM_READER_OWNED))
241 			break;
242 		if (owner & RWSEM_NONSPINNABLE)
243 			break;
244 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
245 					  owner | RWSEM_NONSPINNABLE));
246 }
247 
rwsem_read_trylock(struct rw_semaphore * sem,long * cntp)248 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
249 {
250 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
251 
252 	if (WARN_ON_ONCE(*cntp < 0))
253 		rwsem_set_nonspinnable(sem);
254 
255 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
256 		rwsem_set_reader_owned(sem);
257 		return true;
258 	}
259 
260 	return false;
261 }
262 
rwsem_write_trylock(struct rw_semaphore * sem)263 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
264 {
265 	long tmp = RWSEM_UNLOCKED_VALUE;
266 
267 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
268 		rwsem_set_owner(sem);
269 		return true;
270 	}
271 
272 	return false;
273 }
274 
275 /*
276  * Return the real task structure pointer of the owner and the embedded
277  * flags in the owner. pflags must be non-NULL.
278  */
279 static inline struct task_struct *
rwsem_owner_flags(struct rw_semaphore * sem,unsigned long * pflags)280 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
281 {
282 	unsigned long owner = atomic_long_read(&sem->owner);
283 
284 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
285 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
286 }
287 
288 /*
289  * Guide to the rw_semaphore's count field.
290  *
291  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
292  * by a writer.
293  *
294  * The lock is owned by readers when
295  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
296  * (2) some of the reader bits are set in count, and
297  * (3) the owner field has RWSEM_READ_OWNED bit set.
298  *
299  * Having some reader bits set is not enough to guarantee a readers owned
300  * lock as the readers may be in the process of backing out from the count
301  * and a writer has just released the lock. So another writer may steal
302  * the lock immediately after that.
303  */
304 
305 /*
306  * Initialize an rwsem:
307  */
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)308 void __init_rwsem(struct rw_semaphore *sem, const char *name,
309 		  struct lock_class_key *key)
310 {
311 #ifdef CONFIG_DEBUG_LOCK_ALLOC
312 	/*
313 	 * Make sure we are not reinitializing a held semaphore:
314 	 */
315 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
316 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
317 #endif
318 #ifdef CONFIG_DEBUG_RWSEMS
319 	sem->magic = sem;
320 #endif
321 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
322 	raw_spin_lock_init(&sem->wait_lock);
323 	INIT_LIST_HEAD(&sem->wait_list);
324 	atomic_long_set(&sem->owner, 0L);
325 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
326 	osq_lock_init(&sem->osq);
327 #endif
328 }
329 EXPORT_SYMBOL(__init_rwsem);
330 
331 enum rwsem_waiter_type {
332 	RWSEM_WAITING_FOR_WRITE,
333 	RWSEM_WAITING_FOR_READ
334 };
335 
336 struct rwsem_waiter {
337 	struct list_head list;
338 	struct task_struct *task;
339 	enum rwsem_waiter_type type;
340 	unsigned long timeout;
341 	bool handoff_set;
342 };
343 #define rwsem_first_waiter(sem) \
344 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
345 
346 enum rwsem_wake_type {
347 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
348 	RWSEM_WAKE_READERS,	/* Wake readers only */
349 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
350 };
351 
352 /*
353  * The typical HZ value is either 250 or 1000. So set the minimum waiting
354  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
355  * queue before initiating the handoff protocol.
356  */
357 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
358 
359 /*
360  * Magic number to batch-wakeup waiting readers, even when writers are
361  * also present in the queue. This both limits the amount of work the
362  * waking thread must do and also prevents any potential counter overflow,
363  * however unlikely.
364  */
365 #define MAX_READERS_WAKEUP	0x100
366 
367 static inline void
rwsem_add_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter)368 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
369 {
370 	lockdep_assert_held(&sem->wait_lock);
371 	list_add_tail(&waiter->list, &sem->wait_list);
372 	/* caller will set RWSEM_FLAG_WAITERS */
373 }
374 
375 /*
376  * Remove a waiter from the wait_list and clear flags.
377  *
378  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
379  * this function. Modify with care.
380  *
381  * Return: true if wait_list isn't empty and false otherwise
382  */
383 static inline bool
rwsem_del_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter)384 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
385 {
386 	lockdep_assert_held(&sem->wait_lock);
387 	list_del(&waiter->list);
388 	if (likely(!list_empty(&sem->wait_list)))
389 		return true;
390 
391 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
392 	return false;
393 }
394 
395 /*
396  * handle the lock release when processes blocked on it that can now run
397  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
398  *   have been set.
399  * - there must be someone on the queue
400  * - the wait_lock must be held by the caller
401  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
402  *   to actually wakeup the blocked task(s) and drop the reference count,
403  *   preferably when the wait_lock is released
404  * - woken process blocks are discarded from the list after having task zeroed
405  * - writers are only marked woken if downgrading is false
406  *
407  * Implies rwsem_del_waiter() for all woken readers.
408  */
rwsem_mark_wake(struct rw_semaphore * sem,enum rwsem_wake_type wake_type,struct wake_q_head * wake_q)409 static void rwsem_mark_wake(struct rw_semaphore *sem,
410 			    enum rwsem_wake_type wake_type,
411 			    struct wake_q_head *wake_q)
412 {
413 	struct rwsem_waiter *waiter, *tmp;
414 	long oldcount, woken = 0, adjustment = 0;
415 	struct list_head wlist;
416 
417 	lockdep_assert_held(&sem->wait_lock);
418 
419 	/*
420 	 * Take a peek at the queue head waiter such that we can determine
421 	 * the wakeup(s) to perform.
422 	 */
423 	waiter = rwsem_first_waiter(sem);
424 
425 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
426 		if (wake_type == RWSEM_WAKE_ANY) {
427 			/*
428 			 * Mark writer at the front of the queue for wakeup.
429 			 * Until the task is actually later awoken later by
430 			 * the caller, other writers are able to steal it.
431 			 * Readers, on the other hand, will block as they
432 			 * will notice the queued writer.
433 			 */
434 			wake_q_add(wake_q, waiter->task);
435 			lockevent_inc(rwsem_wake_writer);
436 		}
437 
438 		return;
439 	}
440 
441 	/*
442 	 * No reader wakeup if there are too many of them already.
443 	 */
444 	if (unlikely(atomic_long_read(&sem->count) < 0))
445 		return;
446 
447 	/*
448 	 * Writers might steal the lock before we grant it to the next reader.
449 	 * We prefer to do the first reader grant before counting readers
450 	 * so we can bail out early if a writer stole the lock.
451 	 */
452 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
453 		struct task_struct *owner;
454 
455 		adjustment = RWSEM_READER_BIAS;
456 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
457 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
458 			/*
459 			 * When we've been waiting "too" long (for writers
460 			 * to give up the lock), request a HANDOFF to
461 			 * force the issue.
462 			 */
463 			if (time_after(jiffies, waiter->timeout)) {
464 				if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
465 					adjustment -= RWSEM_FLAG_HANDOFF;
466 					lockevent_inc(rwsem_rlock_handoff);
467 				}
468 				waiter->handoff_set = true;
469 			}
470 
471 			atomic_long_add(-adjustment, &sem->count);
472 			return;
473 		}
474 		/*
475 		 * Set it to reader-owned to give spinners an early
476 		 * indication that readers now have the lock.
477 		 * The reader nonspinnable bit seen at slowpath entry of
478 		 * the reader is copied over.
479 		 */
480 		owner = waiter->task;
481 		__rwsem_set_reader_owned(sem, owner);
482 	}
483 
484 	/*
485 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
486 	 * queue. We know that the woken will be at least 1 as we accounted
487 	 * for above. Note we increment the 'active part' of the count by the
488 	 * number of readers before waking any processes up.
489 	 *
490 	 * This is an adaptation of the phase-fair R/W locks where at the
491 	 * reader phase (first waiter is a reader), all readers are eligible
492 	 * to acquire the lock at the same time irrespective of their order
493 	 * in the queue. The writers acquire the lock according to their
494 	 * order in the queue.
495 	 *
496 	 * We have to do wakeup in 2 passes to prevent the possibility that
497 	 * the reader count may be decremented before it is incremented. It
498 	 * is because the to-be-woken waiter may not have slept yet. So it
499 	 * may see waiter->task got cleared, finish its critical section and
500 	 * do an unlock before the reader count increment.
501 	 *
502 	 * 1) Collect the read-waiters in a separate list, count them and
503 	 *    fully increment the reader count in rwsem.
504 	 * 2) For each waiters in the new list, clear waiter->task and
505 	 *    put them into wake_q to be woken up later.
506 	 */
507 	INIT_LIST_HEAD(&wlist);
508 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
509 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
510 			continue;
511 
512 		woken++;
513 		list_move_tail(&waiter->list, &wlist);
514 
515 		/*
516 		 * Limit # of readers that can be woken up per wakeup call.
517 		 */
518 		if (unlikely(woken >= MAX_READERS_WAKEUP))
519 			break;
520 	}
521 
522 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
523 	lockevent_cond_inc(rwsem_wake_reader, woken);
524 
525 	oldcount = atomic_long_read(&sem->count);
526 	if (list_empty(&sem->wait_list)) {
527 		/*
528 		 * Combined with list_move_tail() above, this implies
529 		 * rwsem_del_waiter().
530 		 */
531 		adjustment -= RWSEM_FLAG_WAITERS;
532 		if (oldcount & RWSEM_FLAG_HANDOFF)
533 			adjustment -= RWSEM_FLAG_HANDOFF;
534 	} else if (woken) {
535 		/*
536 		 * When we've woken a reader, we no longer need to force
537 		 * writers to give up the lock and we can clear HANDOFF.
538 		 */
539 		if (oldcount & RWSEM_FLAG_HANDOFF)
540 			adjustment -= RWSEM_FLAG_HANDOFF;
541 	}
542 
543 	if (adjustment)
544 		atomic_long_add(adjustment, &sem->count);
545 
546 	/* 2nd pass */
547 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
548 		struct task_struct *tsk;
549 
550 		tsk = waiter->task;
551 		get_task_struct(tsk);
552 
553 		/*
554 		 * Ensure calling get_task_struct() before setting the reader
555 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
556 		 * race with do_exit() by always holding a reference count
557 		 * to the task to wakeup.
558 		 */
559 		smp_store_release(&waiter->task, NULL);
560 		/*
561 		 * Ensure issuing the wakeup (either by us or someone else)
562 		 * after setting the reader waiter to nil.
563 		 */
564 		wake_q_add_safe(wake_q, tsk);
565 	}
566 }
567 
568 /*
569  * Remove a waiter and try to wake up other waiters in the wait queue
570  * This function is called from the out_nolock path of both the reader and
571  * writer slowpaths with wait_lock held. It releases the wait_lock and
572  * optionally wake up waiters before it returns.
573  */
574 static inline void
rwsem_del_wake_waiter(struct rw_semaphore * sem,struct rwsem_waiter * waiter,struct wake_q_head * wake_q)575 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
576 		      struct wake_q_head *wake_q)
577 		      __releases(&sem->wait_lock)
578 {
579 	bool first = rwsem_first_waiter(sem) == waiter;
580 
581 	wake_q_init(wake_q);
582 
583 	/*
584 	 * If the wait_list isn't empty and the waiter to be deleted is
585 	 * the first waiter, we wake up the remaining waiters as they may
586 	 * be eligible to acquire or spin on the lock.
587 	 */
588 	if (rwsem_del_waiter(sem, waiter) && first)
589 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
590 	raw_spin_unlock_irq(&sem->wait_lock);
591 	if (!wake_q_empty(wake_q))
592 		wake_up_q(wake_q);
593 }
594 
595 /*
596  * This function must be called with the sem->wait_lock held to prevent
597  * race conditions between checking the rwsem wait list and setting the
598  * sem->count accordingly.
599  *
600  * Implies rwsem_del_waiter() on success.
601  */
rwsem_try_write_lock(struct rw_semaphore * sem,struct rwsem_waiter * waiter)602 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
603 					struct rwsem_waiter *waiter)
604 {
605 	struct rwsem_waiter *first = rwsem_first_waiter(sem);
606 	long count, new;
607 
608 	lockdep_assert_held(&sem->wait_lock);
609 
610 	count = atomic_long_read(&sem->count);
611 	do {
612 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
613 
614 		if (has_handoff) {
615 			/*
616 			 * Honor handoff bit and yield only when the first
617 			 * waiter is the one that set it. Otherwisee, we
618 			 * still try to acquire the rwsem.
619 			 */
620 			if (first->handoff_set && (waiter != first))
621 				return false;
622 		}
623 
624 		new = count;
625 
626 		if (count & RWSEM_LOCK_MASK) {
627 			/*
628 			 * A waiter (first or not) can set the handoff bit
629 			 * if it is an RT task or wait in the wait queue
630 			 * for too long.
631 			 */
632 			if (has_handoff || (!rt_or_dl_task(waiter->task) &&
633 					    !time_after(jiffies, waiter->timeout)))
634 				return false;
635 
636 			new |= RWSEM_FLAG_HANDOFF;
637 		} else {
638 			new |= RWSEM_WRITER_LOCKED;
639 			new &= ~RWSEM_FLAG_HANDOFF;
640 
641 			if (list_is_singular(&sem->wait_list))
642 				new &= ~RWSEM_FLAG_WAITERS;
643 		}
644 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
645 
646 	/*
647 	 * We have either acquired the lock with handoff bit cleared or set
648 	 * the handoff bit. Only the first waiter can have its handoff_set
649 	 * set here to enable optimistic spinning in slowpath loop.
650 	 */
651 	if (new & RWSEM_FLAG_HANDOFF) {
652 		first->handoff_set = true;
653 		lockevent_inc(rwsem_wlock_handoff);
654 		return false;
655 	}
656 
657 	/*
658 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
659 	 * success.
660 	 */
661 	list_del(&waiter->list);
662 	rwsem_set_owner(sem);
663 	return true;
664 }
665 
666 /*
667  * The rwsem_spin_on_owner() function returns the following 4 values
668  * depending on the lock owner state.
669  *   OWNER_NULL  : owner is currently NULL
670  *   OWNER_WRITER: when owner changes and is a writer
671  *   OWNER_READER: when owner changes and the new owner may be a reader.
672  *   OWNER_NONSPINNABLE:
673  *		   when optimistic spinning has to stop because either the
674  *		   owner stops running, is unknown, or its timeslice has
675  *		   been used up.
676  */
677 enum owner_state {
678 	OWNER_NULL		= 1 << 0,
679 	OWNER_WRITER		= 1 << 1,
680 	OWNER_READER		= 1 << 2,
681 	OWNER_NONSPINNABLE	= 1 << 3,
682 };
683 
684 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
685 /*
686  * Try to acquire write lock before the writer has been put on wait queue.
687  */
rwsem_try_write_lock_unqueued(struct rw_semaphore * sem)688 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
689 {
690 	long count = atomic_long_read(&sem->count);
691 
692 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
693 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
694 					count | RWSEM_WRITER_LOCKED)) {
695 			rwsem_set_owner(sem);
696 			lockevent_inc(rwsem_opt_lock);
697 			return true;
698 		}
699 	}
700 	return false;
701 }
702 
rwsem_can_spin_on_owner(struct rw_semaphore * sem)703 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
704 {
705 	struct task_struct *owner;
706 	unsigned long flags;
707 	bool ret = true;
708 
709 	if (need_resched()) {
710 		lockevent_inc(rwsem_opt_fail);
711 		return false;
712 	}
713 
714 	/*
715 	 * Disable preemption is equal to the RCU read-side crital section,
716 	 * thus the task_strcut structure won't go away.
717 	 */
718 	owner = rwsem_owner_flags(sem, &flags);
719 	/*
720 	 * Don't check the read-owner as the entry may be stale.
721 	 */
722 	if ((flags & RWSEM_NONSPINNABLE) ||
723 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
724 		ret = false;
725 
726 	lockevent_cond_inc(rwsem_opt_fail, !ret);
727 	return ret;
728 }
729 
730 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
731 
732 static inline enum owner_state
rwsem_owner_state(struct task_struct * owner,unsigned long flags)733 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
734 {
735 	if (flags & RWSEM_NONSPINNABLE)
736 		return OWNER_NONSPINNABLE;
737 
738 	if (flags & RWSEM_READER_OWNED)
739 		return OWNER_READER;
740 
741 	return owner ? OWNER_WRITER : OWNER_NULL;
742 }
743 
744 static noinline enum owner_state
rwsem_spin_on_owner(struct rw_semaphore * sem)745 rwsem_spin_on_owner(struct rw_semaphore *sem)
746 {
747 	struct task_struct *new, *owner;
748 	unsigned long flags, new_flags;
749 	enum owner_state state;
750 
751 	lockdep_assert_preemption_disabled();
752 
753 	owner = rwsem_owner_flags(sem, &flags);
754 	state = rwsem_owner_state(owner, flags);
755 	if (state != OWNER_WRITER)
756 		return state;
757 
758 	for (;;) {
759 		/*
760 		 * When a waiting writer set the handoff flag, it may spin
761 		 * on the owner as well. Once that writer acquires the lock,
762 		 * we can spin on it. So we don't need to quit even when the
763 		 * handoff bit is set.
764 		 */
765 		new = rwsem_owner_flags(sem, &new_flags);
766 		if ((new != owner) || (new_flags != flags)) {
767 			state = rwsem_owner_state(new, new_flags);
768 			break;
769 		}
770 
771 		/*
772 		 * Ensure we emit the owner->on_cpu, dereference _after_
773 		 * checking sem->owner still matches owner, if that fails,
774 		 * owner might point to free()d memory, if it still matches,
775 		 * our spinning context already disabled preemption which is
776 		 * equal to RCU read-side crital section ensures the memory
777 		 * stays valid.
778 		 */
779 		barrier();
780 
781 		if (need_resched() || !owner_on_cpu(owner)) {
782 			state = OWNER_NONSPINNABLE;
783 			break;
784 		}
785 
786 		cpu_relax();
787 	}
788 
789 	return state;
790 }
791 
792 /*
793  * Calculate reader-owned rwsem spinning threshold for writer
794  *
795  * The more readers own the rwsem, the longer it will take for them to
796  * wind down and free the rwsem. So the empirical formula used to
797  * determine the actual spinning time limit here is:
798  *
799  *   Spinning threshold = (10 + nr_readers/2)us
800  *
801  * The limit is capped to a maximum of 25us (30 readers). This is just
802  * a heuristic and is subjected to change in the future.
803  */
rwsem_rspin_threshold(struct rw_semaphore * sem)804 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
805 {
806 	long count = atomic_long_read(&sem->count);
807 	int readers = count >> RWSEM_READER_SHIFT;
808 	u64 delta;
809 
810 	if (readers > 30)
811 		readers = 30;
812 	delta = (20 + readers) * NSEC_PER_USEC / 2;
813 
814 	return sched_clock() + delta;
815 }
816 
rwsem_optimistic_spin(struct rw_semaphore * sem)817 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
818 {
819 	bool taken = false;
820 	int prev_owner_state = OWNER_NULL;
821 	int loop = 0;
822 	u64 rspin_threshold = 0;
823 
824 	/* sem->wait_lock should not be held when doing optimistic spinning */
825 	if (!osq_lock(&sem->osq))
826 		goto done;
827 
828 	/*
829 	 * Optimistically spin on the owner field and attempt to acquire the
830 	 * lock whenever the owner changes. Spinning will be stopped when:
831 	 *  1) the owning writer isn't running; or
832 	 *  2) readers own the lock and spinning time has exceeded limit.
833 	 */
834 	for (;;) {
835 		enum owner_state owner_state;
836 
837 		owner_state = rwsem_spin_on_owner(sem);
838 		if (!(owner_state & OWNER_SPINNABLE))
839 			break;
840 
841 		/*
842 		 * Try to acquire the lock
843 		 */
844 		taken = rwsem_try_write_lock_unqueued(sem);
845 
846 		if (taken)
847 			break;
848 
849 		/*
850 		 * Time-based reader-owned rwsem optimistic spinning
851 		 */
852 		if (owner_state == OWNER_READER) {
853 			/*
854 			 * Re-initialize rspin_threshold every time when
855 			 * the owner state changes from non-reader to reader.
856 			 * This allows a writer to steal the lock in between
857 			 * 2 reader phases and have the threshold reset at
858 			 * the beginning of the 2nd reader phase.
859 			 */
860 			if (prev_owner_state != OWNER_READER) {
861 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
862 					break;
863 				rspin_threshold = rwsem_rspin_threshold(sem);
864 				loop = 0;
865 			}
866 
867 			/*
868 			 * Check time threshold once every 16 iterations to
869 			 * avoid calling sched_clock() too frequently so
870 			 * as to reduce the average latency between the times
871 			 * when the lock becomes free and when the spinner
872 			 * is ready to do a trylock.
873 			 */
874 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
875 				rwsem_set_nonspinnable(sem);
876 				lockevent_inc(rwsem_opt_nospin);
877 				break;
878 			}
879 		}
880 
881 		/*
882 		 * An RT task cannot do optimistic spinning if it cannot
883 		 * be sure the lock holder is running or live-lock may
884 		 * happen if the current task and the lock holder happen
885 		 * to run in the same CPU. However, aborting optimistic
886 		 * spinning while a NULL owner is detected may miss some
887 		 * opportunity where spinning can continue without causing
888 		 * problem.
889 		 *
890 		 * There are 2 possible cases where an RT task may be able
891 		 * to continue spinning.
892 		 *
893 		 * 1) The lock owner is in the process of releasing the
894 		 *    lock, sem->owner is cleared but the lock has not
895 		 *    been released yet.
896 		 * 2) The lock was free and owner cleared, but another
897 		 *    task just comes in and acquire the lock before
898 		 *    we try to get it. The new owner may be a spinnable
899 		 *    writer.
900 		 *
901 		 * To take advantage of two scenarios listed above, the RT
902 		 * task is made to retry one more time to see if it can
903 		 * acquire the lock or continue spinning on the new owning
904 		 * writer. Of course, if the time lag is long enough or the
905 		 * new owner is not a writer or spinnable, the RT task will
906 		 * quit spinning.
907 		 *
908 		 * If the owner is a writer, the need_resched() check is
909 		 * done inside rwsem_spin_on_owner(). If the owner is not
910 		 * a writer, need_resched() check needs to be done here.
911 		 */
912 		if (owner_state != OWNER_WRITER) {
913 			if (need_resched())
914 				break;
915 			if (rt_or_dl_task(current) &&
916 			   (prev_owner_state != OWNER_WRITER))
917 				break;
918 		}
919 		prev_owner_state = owner_state;
920 
921 		/*
922 		 * The cpu_relax() call is a compiler barrier which forces
923 		 * everything in this loop to be re-loaded. We don't need
924 		 * memory barriers as we'll eventually observe the right
925 		 * values at the cost of a few extra spins.
926 		 */
927 		cpu_relax();
928 	}
929 	osq_unlock(&sem->osq);
930 done:
931 	lockevent_cond_inc(rwsem_opt_fail, !taken);
932 	return taken;
933 }
934 
935 /*
936  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
937  * only be called when the reader count reaches 0.
938  */
clear_nonspinnable(struct rw_semaphore * sem)939 static inline void clear_nonspinnable(struct rw_semaphore *sem)
940 {
941 	if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
942 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
943 }
944 
945 #else
rwsem_can_spin_on_owner(struct rw_semaphore * sem)946 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
947 {
948 	return false;
949 }
950 
rwsem_optimistic_spin(struct rw_semaphore * sem)951 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
952 {
953 	return false;
954 }
955 
clear_nonspinnable(struct rw_semaphore * sem)956 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
957 
958 static inline enum owner_state
rwsem_spin_on_owner(struct rw_semaphore * sem)959 rwsem_spin_on_owner(struct rw_semaphore *sem)
960 {
961 	return OWNER_NONSPINNABLE;
962 }
963 #endif
964 
965 /*
966  * Prepare to wake up waiter(s) in the wait queue by putting them into the
967  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
968  * reader-owned, wake up read lock waiters in queue front or wake up any
969  * front waiter otherwise.
970 
971  * This is being called from both reader and writer slow paths.
972  */
rwsem_cond_wake_waiter(struct rw_semaphore * sem,long count,struct wake_q_head * wake_q)973 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
974 					  struct wake_q_head *wake_q)
975 {
976 	enum rwsem_wake_type wake_type;
977 
978 	if (count & RWSEM_WRITER_MASK)
979 		return;
980 
981 	if (count & RWSEM_READER_MASK) {
982 		wake_type = RWSEM_WAKE_READERS;
983 	} else {
984 		wake_type = RWSEM_WAKE_ANY;
985 		clear_nonspinnable(sem);
986 	}
987 	rwsem_mark_wake(sem, wake_type, wake_q);
988 }
989 
990 /*
991  * Wait for the read lock to be granted
992  */
993 static struct rw_semaphore __sched *
rwsem_down_read_slowpath(struct rw_semaphore * sem,long count,unsigned int state)994 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
995 {
996 	long adjustment = -RWSEM_READER_BIAS;
997 	long rcnt = (count >> RWSEM_READER_SHIFT);
998 	struct rwsem_waiter waiter;
999 	DEFINE_WAKE_Q(wake_q);
1000 
1001 	/*
1002 	 * To prevent a constant stream of readers from starving a sleeping
1003 	 * writer, don't attempt optimistic lock stealing if the lock is
1004 	 * very likely owned by readers.
1005 	 */
1006 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1007 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1008 		goto queue;
1009 
1010 	/*
1011 	 * Reader optimistic lock stealing.
1012 	 */
1013 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1014 		rwsem_set_reader_owned(sem);
1015 		lockevent_inc(rwsem_rlock_steal);
1016 
1017 		/*
1018 		 * Wake up other readers in the wait queue if it is
1019 		 * the first reader.
1020 		 */
1021 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1022 			raw_spin_lock_irq(&sem->wait_lock);
1023 			if (!list_empty(&sem->wait_list))
1024 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1025 						&wake_q);
1026 			raw_spin_unlock_irq(&sem->wait_lock);
1027 			wake_up_q(&wake_q);
1028 		}
1029 		return sem;
1030 	}
1031 
1032 queue:
1033 	waiter.task = current;
1034 	waiter.type = RWSEM_WAITING_FOR_READ;
1035 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1036 	waiter.handoff_set = false;
1037 
1038 	raw_spin_lock_irq(&sem->wait_lock);
1039 	if (list_empty(&sem->wait_list)) {
1040 		/*
1041 		 * In case the wait queue is empty and the lock isn't owned
1042 		 * by a writer, this reader can exit the slowpath and return
1043 		 * immediately as its RWSEM_READER_BIAS has already been set
1044 		 * in the count.
1045 		 */
1046 		if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1047 			/* Provide lock ACQUIRE */
1048 			smp_acquire__after_ctrl_dep();
1049 			raw_spin_unlock_irq(&sem->wait_lock);
1050 			rwsem_set_reader_owned(sem);
1051 			lockevent_inc(rwsem_rlock_fast);
1052 			return sem;
1053 		}
1054 		adjustment += RWSEM_FLAG_WAITERS;
1055 	}
1056 	rwsem_add_waiter(sem, &waiter);
1057 
1058 	/* we're now waiting on the lock, but no longer actively locking */
1059 	count = atomic_long_add_return(adjustment, &sem->count);
1060 
1061 	rwsem_cond_wake_waiter(sem, count, &wake_q);
1062 	raw_spin_unlock_irq(&sem->wait_lock);
1063 
1064 	if (!wake_q_empty(&wake_q))
1065 		wake_up_q(&wake_q);
1066 
1067 	trace_contention_begin(sem, LCB_F_READ);
1068 
1069 	/* wait to be given the lock */
1070 	for (;;) {
1071 		set_current_state(state);
1072 		if (!smp_load_acquire(&waiter.task)) {
1073 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1074 			break;
1075 		}
1076 		if (signal_pending_state(state, current)) {
1077 			raw_spin_lock_irq(&sem->wait_lock);
1078 			if (waiter.task)
1079 				goto out_nolock;
1080 			raw_spin_unlock_irq(&sem->wait_lock);
1081 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1082 			break;
1083 		}
1084 		schedule_preempt_disabled();
1085 		lockevent_inc(rwsem_sleep_reader);
1086 	}
1087 
1088 	__set_current_state(TASK_RUNNING);
1089 	lockevent_inc(rwsem_rlock);
1090 	trace_contention_end(sem, 0);
1091 	return sem;
1092 
1093 out_nolock:
1094 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1095 	__set_current_state(TASK_RUNNING);
1096 	lockevent_inc(rwsem_rlock_fail);
1097 	trace_contention_end(sem, -EINTR);
1098 	return ERR_PTR(-EINTR);
1099 }
1100 
1101 /*
1102  * Wait until we successfully acquire the write lock
1103  */
1104 static struct rw_semaphore __sched *
rwsem_down_write_slowpath(struct rw_semaphore * sem,int state)1105 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1106 {
1107 	struct rwsem_waiter waiter;
1108 	DEFINE_WAKE_Q(wake_q);
1109 
1110 	/* do optimistic spinning and steal lock if possible */
1111 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1112 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1113 		return sem;
1114 	}
1115 
1116 	/*
1117 	 * Optimistic spinning failed, proceed to the slowpath
1118 	 * and block until we can acquire the sem.
1119 	 */
1120 	waiter.task = current;
1121 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1122 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1123 	waiter.handoff_set = false;
1124 
1125 	raw_spin_lock_irq(&sem->wait_lock);
1126 	rwsem_add_waiter(sem, &waiter);
1127 
1128 	/* we're now waiting on the lock */
1129 	if (rwsem_first_waiter(sem) != &waiter) {
1130 		rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1131 				       &wake_q);
1132 		if (!wake_q_empty(&wake_q)) {
1133 			/*
1134 			 * We want to minimize wait_lock hold time especially
1135 			 * when a large number of readers are to be woken up.
1136 			 */
1137 			raw_spin_unlock_irq(&sem->wait_lock);
1138 			wake_up_q(&wake_q);
1139 			raw_spin_lock_irq(&sem->wait_lock);
1140 		}
1141 	} else {
1142 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1143 	}
1144 
1145 	/* wait until we successfully acquire the lock */
1146 	set_current_state(state);
1147 	trace_contention_begin(sem, LCB_F_WRITE);
1148 
1149 	for (;;) {
1150 		if (rwsem_try_write_lock(sem, &waiter)) {
1151 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1152 			break;
1153 		}
1154 
1155 		raw_spin_unlock_irq(&sem->wait_lock);
1156 
1157 		if (signal_pending_state(state, current))
1158 			goto out_nolock;
1159 
1160 		/*
1161 		 * After setting the handoff bit and failing to acquire
1162 		 * the lock, attempt to spin on owner to accelerate lock
1163 		 * transfer. If the previous owner is a on-cpu writer and it
1164 		 * has just released the lock, OWNER_NULL will be returned.
1165 		 * In this case, we attempt to acquire the lock again
1166 		 * without sleeping.
1167 		 */
1168 		if (waiter.handoff_set) {
1169 			enum owner_state owner_state;
1170 
1171 			owner_state = rwsem_spin_on_owner(sem);
1172 			if (owner_state == OWNER_NULL)
1173 				goto trylock_again;
1174 		}
1175 
1176 		schedule_preempt_disabled();
1177 		lockevent_inc(rwsem_sleep_writer);
1178 		set_current_state(state);
1179 trylock_again:
1180 		raw_spin_lock_irq(&sem->wait_lock);
1181 	}
1182 	__set_current_state(TASK_RUNNING);
1183 	raw_spin_unlock_irq(&sem->wait_lock);
1184 	lockevent_inc(rwsem_wlock);
1185 	trace_contention_end(sem, 0);
1186 	return sem;
1187 
1188 out_nolock:
1189 	__set_current_state(TASK_RUNNING);
1190 	raw_spin_lock_irq(&sem->wait_lock);
1191 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1192 	lockevent_inc(rwsem_wlock_fail);
1193 	trace_contention_end(sem, -EINTR);
1194 	return ERR_PTR(-EINTR);
1195 }
1196 
1197 /*
1198  * handle waking up a waiter on the semaphore
1199  * - up_read/up_write has decremented the active part of count if we come here
1200  */
rwsem_wake(struct rw_semaphore * sem)1201 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1202 {
1203 	unsigned long flags;
1204 	DEFINE_WAKE_Q(wake_q);
1205 
1206 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1207 
1208 	if (!list_empty(&sem->wait_list))
1209 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1210 
1211 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1212 	wake_up_q(&wake_q);
1213 
1214 	return sem;
1215 }
1216 
1217 /*
1218  * downgrade a write lock into a read lock
1219  * - caller incremented waiting part of count and discovered it still negative
1220  * - just wake up any readers at the front of the queue
1221  */
rwsem_downgrade_wake(struct rw_semaphore * sem)1222 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1223 {
1224 	unsigned long flags;
1225 	DEFINE_WAKE_Q(wake_q);
1226 
1227 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1228 
1229 	if (!list_empty(&sem->wait_list))
1230 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1231 
1232 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1233 	wake_up_q(&wake_q);
1234 
1235 	return sem;
1236 }
1237 
1238 /*
1239  * lock for reading
1240  */
__down_read_common(struct rw_semaphore * sem,int state)1241 static __always_inline int __down_read_common(struct rw_semaphore *sem, int state)
1242 {
1243 	int ret = 0;
1244 	long count;
1245 
1246 	preempt_disable();
1247 	if (!rwsem_read_trylock(sem, &count)) {
1248 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) {
1249 			ret = -EINTR;
1250 			goto out;
1251 		}
1252 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1253 	}
1254 out:
1255 	preempt_enable();
1256 	return ret;
1257 }
1258 
__down_read(struct rw_semaphore * sem)1259 static __always_inline void __down_read(struct rw_semaphore *sem)
1260 {
1261 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1262 }
1263 
__down_read_interruptible(struct rw_semaphore * sem)1264 static __always_inline int __down_read_interruptible(struct rw_semaphore *sem)
1265 {
1266 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1267 }
1268 
__down_read_killable(struct rw_semaphore * sem)1269 static __always_inline int __down_read_killable(struct rw_semaphore *sem)
1270 {
1271 	return __down_read_common(sem, TASK_KILLABLE);
1272 }
1273 
__down_read_trylock(struct rw_semaphore * sem)1274 static inline int __down_read_trylock(struct rw_semaphore *sem)
1275 {
1276 	int ret = 0;
1277 	long tmp;
1278 
1279 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1280 
1281 	preempt_disable();
1282 	tmp = atomic_long_read(&sem->count);
1283 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1284 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1285 						    tmp + RWSEM_READER_BIAS)) {
1286 			rwsem_set_reader_owned(sem);
1287 			ret = 1;
1288 			break;
1289 		}
1290 	}
1291 	preempt_enable();
1292 	return ret;
1293 }
1294 
1295 /*
1296  * lock for writing
1297  */
__down_write_common(struct rw_semaphore * sem,int state)1298 static __always_inline int __down_write_common(struct rw_semaphore *sem, int state)
1299 {
1300 	int ret = 0;
1301 
1302 	preempt_disable();
1303 	if (unlikely(!rwsem_write_trylock(sem))) {
1304 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1305 			ret = -EINTR;
1306 	}
1307 	preempt_enable();
1308 	return ret;
1309 }
1310 
__down_write(struct rw_semaphore * sem)1311 static __always_inline void __down_write(struct rw_semaphore *sem)
1312 {
1313 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1314 }
1315 
__down_write_killable(struct rw_semaphore * sem)1316 static __always_inline int __down_write_killable(struct rw_semaphore *sem)
1317 {
1318 	return __down_write_common(sem, TASK_KILLABLE);
1319 }
1320 
__down_write_trylock(struct rw_semaphore * sem)1321 static inline int __down_write_trylock(struct rw_semaphore *sem)
1322 {
1323 	int ret;
1324 
1325 	preempt_disable();
1326 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1327 	ret = rwsem_write_trylock(sem);
1328 	preempt_enable();
1329 
1330 	return ret;
1331 }
1332 
1333 /*
1334  * unlock after reading
1335  */
__up_read(struct rw_semaphore * sem)1336 static inline void __up_read(struct rw_semaphore *sem)
1337 {
1338 	long tmp;
1339 
1340 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1341 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1342 
1343 	preempt_disable();
1344 	rwsem_clear_reader_owned(sem);
1345 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1346 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1347 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1348 		      RWSEM_FLAG_WAITERS)) {
1349 		clear_nonspinnable(sem);
1350 		rwsem_wake(sem);
1351 	}
1352 	preempt_enable();
1353 }
1354 
1355 /*
1356  * unlock after writing
1357  */
__up_write(struct rw_semaphore * sem)1358 static inline void __up_write(struct rw_semaphore *sem)
1359 {
1360 	long tmp;
1361 
1362 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1363 	/*
1364 	 * sem->owner may differ from current if the ownership is transferred
1365 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1366 	 */
1367 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1368 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1369 
1370 	preempt_disable();
1371 	rwsem_clear_owner(sem);
1372 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1373 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1374 		rwsem_wake(sem);
1375 	preempt_enable();
1376 }
1377 
1378 /*
1379  * downgrade write lock to read lock
1380  */
__downgrade_write(struct rw_semaphore * sem)1381 static inline void __downgrade_write(struct rw_semaphore *sem)
1382 {
1383 	long tmp;
1384 
1385 	/*
1386 	 * When downgrading from exclusive to shared ownership,
1387 	 * anything inside the write-locked region cannot leak
1388 	 * into the read side. In contrast, anything in the
1389 	 * read-locked region is ok to be re-ordered into the
1390 	 * write side. As such, rely on RELEASE semantics.
1391 	 */
1392 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1393 	preempt_disable();
1394 	tmp = atomic_long_fetch_add_release(
1395 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1396 	rwsem_set_reader_owned(sem);
1397 	if (tmp & RWSEM_FLAG_WAITERS)
1398 		rwsem_downgrade_wake(sem);
1399 	preempt_enable();
1400 }
1401 
1402 #else /* !CONFIG_PREEMPT_RT */
1403 
1404 #define RT_MUTEX_BUILD_MUTEX
1405 #include "rtmutex.c"
1406 
1407 #define rwbase_set_and_save_current_state(state)	\
1408 	set_current_state(state)
1409 
1410 #define rwbase_restore_current_state()			\
1411 	__set_current_state(TASK_RUNNING)
1412 
1413 #define rwbase_rtmutex_lock_state(rtm, state)		\
1414 	__rt_mutex_lock(rtm, state)
1415 
1416 #define rwbase_rtmutex_slowlock_locked(rtm, state)	\
1417 	__rt_mutex_slowlock_locked(rtm, NULL, state)
1418 
1419 #define rwbase_rtmutex_unlock(rtm)			\
1420 	__rt_mutex_unlock(rtm)
1421 
1422 #define rwbase_rtmutex_trylock(rtm)			\
1423 	__rt_mutex_trylock(rtm)
1424 
1425 #define rwbase_signal_pending_state(state, current)	\
1426 	signal_pending_state(state, current)
1427 
1428 #define rwbase_pre_schedule()				\
1429 	rt_mutex_pre_schedule()
1430 
1431 #define rwbase_schedule()				\
1432 	rt_mutex_schedule()
1433 
1434 #define rwbase_post_schedule()				\
1435 	rt_mutex_post_schedule()
1436 
1437 #include "rwbase_rt.c"
1438 
__init_rwsem(struct rw_semaphore * sem,const char * name,struct lock_class_key * key)1439 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1440 		  struct lock_class_key *key)
1441 {
1442 	init_rwbase_rt(&(sem)->rwbase);
1443 
1444 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1445 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1446 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1447 #endif
1448 }
1449 EXPORT_SYMBOL(__init_rwsem);
1450 
__down_read(struct rw_semaphore * sem)1451 static inline void __down_read(struct rw_semaphore *sem)
1452 {
1453 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1454 }
1455 
__down_read_interruptible(struct rw_semaphore * sem)1456 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1457 {
1458 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1459 }
1460 
__down_read_killable(struct rw_semaphore * sem)1461 static inline int __down_read_killable(struct rw_semaphore *sem)
1462 {
1463 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1464 }
1465 
__down_read_trylock(struct rw_semaphore * sem)1466 static inline int __down_read_trylock(struct rw_semaphore *sem)
1467 {
1468 	return rwbase_read_trylock(&sem->rwbase);
1469 }
1470 
__up_read(struct rw_semaphore * sem)1471 static inline void __up_read(struct rw_semaphore *sem)
1472 {
1473 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1474 }
1475 
__down_write(struct rw_semaphore * sem)1476 static inline void __sched __down_write(struct rw_semaphore *sem)
1477 {
1478 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1479 }
1480 
__down_write_killable(struct rw_semaphore * sem)1481 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1482 {
1483 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1484 }
1485 
__down_write_trylock(struct rw_semaphore * sem)1486 static inline int __down_write_trylock(struct rw_semaphore *sem)
1487 {
1488 	return rwbase_write_trylock(&sem->rwbase);
1489 }
1490 
__up_write(struct rw_semaphore * sem)1491 static inline void __up_write(struct rw_semaphore *sem)
1492 {
1493 	rwbase_write_unlock(&sem->rwbase);
1494 }
1495 
__downgrade_write(struct rw_semaphore * sem)1496 static inline void __downgrade_write(struct rw_semaphore *sem)
1497 {
1498 	rwbase_write_downgrade(&sem->rwbase);
1499 }
1500 
1501 /* Debug stubs for the common API */
1502 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1503 
__rwsem_set_reader_owned(struct rw_semaphore * sem,struct task_struct * owner)1504 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1505 					    struct task_struct *owner)
1506 {
1507 }
1508 
is_rwsem_reader_owned(struct rw_semaphore * sem)1509 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1510 {
1511 	int count = atomic_read(&sem->rwbase.readers);
1512 
1513 	return count < 0 && count != READER_BIAS;
1514 }
1515 
1516 #endif /* CONFIG_PREEMPT_RT */
1517 
1518 /*
1519  * lock for reading
1520  */
down_read(struct rw_semaphore * sem)1521 void __sched down_read(struct rw_semaphore *sem)
1522 {
1523 	might_sleep();
1524 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1525 
1526 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1527 }
1528 EXPORT_SYMBOL(down_read);
1529 
down_read_interruptible(struct rw_semaphore * sem)1530 int __sched down_read_interruptible(struct rw_semaphore *sem)
1531 {
1532 	might_sleep();
1533 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1534 
1535 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1536 		rwsem_release(&sem->dep_map, _RET_IP_);
1537 		return -EINTR;
1538 	}
1539 
1540 	return 0;
1541 }
1542 EXPORT_SYMBOL(down_read_interruptible);
1543 
down_read_killable(struct rw_semaphore * sem)1544 int __sched down_read_killable(struct rw_semaphore *sem)
1545 {
1546 	might_sleep();
1547 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1548 
1549 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1550 		rwsem_release(&sem->dep_map, _RET_IP_);
1551 		return -EINTR;
1552 	}
1553 
1554 	return 0;
1555 }
1556 EXPORT_SYMBOL(down_read_killable);
1557 
1558 /*
1559  * trylock for reading -- returns 1 if successful, 0 if contention
1560  */
down_read_trylock(struct rw_semaphore * sem)1561 int down_read_trylock(struct rw_semaphore *sem)
1562 {
1563 	int ret = __down_read_trylock(sem);
1564 
1565 	if (ret == 1)
1566 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1567 	return ret;
1568 }
1569 EXPORT_SYMBOL(down_read_trylock);
1570 
1571 /*
1572  * lock for writing
1573  */
down_write(struct rw_semaphore * sem)1574 void __sched down_write(struct rw_semaphore *sem)
1575 {
1576 	might_sleep();
1577 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1578 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1579 }
1580 EXPORT_SYMBOL(down_write);
1581 
1582 /*
1583  * lock for writing
1584  */
down_write_killable(struct rw_semaphore * sem)1585 int __sched down_write_killable(struct rw_semaphore *sem)
1586 {
1587 	might_sleep();
1588 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1589 
1590 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1591 				  __down_write_killable)) {
1592 		rwsem_release(&sem->dep_map, _RET_IP_);
1593 		return -EINTR;
1594 	}
1595 
1596 	return 0;
1597 }
1598 EXPORT_SYMBOL(down_write_killable);
1599 
1600 /*
1601  * trylock for writing -- returns 1 if successful, 0 if contention
1602  */
down_write_trylock(struct rw_semaphore * sem)1603 int down_write_trylock(struct rw_semaphore *sem)
1604 {
1605 	int ret = __down_write_trylock(sem);
1606 
1607 	if (ret == 1)
1608 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1609 
1610 	return ret;
1611 }
1612 EXPORT_SYMBOL(down_write_trylock);
1613 
1614 /*
1615  * release a read lock
1616  */
up_read(struct rw_semaphore * sem)1617 void up_read(struct rw_semaphore *sem)
1618 {
1619 	rwsem_release(&sem->dep_map, _RET_IP_);
1620 	__up_read(sem);
1621 }
1622 EXPORT_SYMBOL(up_read);
1623 
1624 /*
1625  * release a write lock
1626  */
up_write(struct rw_semaphore * sem)1627 void up_write(struct rw_semaphore *sem)
1628 {
1629 	rwsem_release(&sem->dep_map, _RET_IP_);
1630 	__up_write(sem);
1631 }
1632 EXPORT_SYMBOL(up_write);
1633 
1634 /*
1635  * downgrade write lock to read lock
1636  */
downgrade_write(struct rw_semaphore * sem)1637 void downgrade_write(struct rw_semaphore *sem)
1638 {
1639 	lock_downgrade(&sem->dep_map, _RET_IP_);
1640 	__downgrade_write(sem);
1641 }
1642 EXPORT_SYMBOL(downgrade_write);
1643 
1644 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1645 
down_read_nested(struct rw_semaphore * sem,int subclass)1646 void down_read_nested(struct rw_semaphore *sem, int subclass)
1647 {
1648 	might_sleep();
1649 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1650 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1651 }
1652 EXPORT_SYMBOL(down_read_nested);
1653 
down_read_killable_nested(struct rw_semaphore * sem,int subclass)1654 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1655 {
1656 	might_sleep();
1657 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1658 
1659 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1660 		rwsem_release(&sem->dep_map, _RET_IP_);
1661 		return -EINTR;
1662 	}
1663 
1664 	return 0;
1665 }
1666 EXPORT_SYMBOL(down_read_killable_nested);
1667 
_down_write_nest_lock(struct rw_semaphore * sem,struct lockdep_map * nest)1668 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1669 {
1670 	might_sleep();
1671 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1672 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1673 }
1674 EXPORT_SYMBOL(_down_write_nest_lock);
1675 
down_read_non_owner(struct rw_semaphore * sem)1676 void down_read_non_owner(struct rw_semaphore *sem)
1677 {
1678 	might_sleep();
1679 	__down_read(sem);
1680 	/*
1681 	 * The owner value for a reader-owned lock is mostly for debugging
1682 	 * purpose only and is not critical to the correct functioning of
1683 	 * rwsem. So it is perfectly fine to set it in a preempt-enabled
1684 	 * context here.
1685 	 */
1686 	__rwsem_set_reader_owned(sem, NULL);
1687 }
1688 EXPORT_SYMBOL(down_read_non_owner);
1689 
down_write_nested(struct rw_semaphore * sem,int subclass)1690 void down_write_nested(struct rw_semaphore *sem, int subclass)
1691 {
1692 	might_sleep();
1693 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1694 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1695 }
1696 EXPORT_SYMBOL(down_write_nested);
1697 
down_write_killable_nested(struct rw_semaphore * sem,int subclass)1698 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1699 {
1700 	might_sleep();
1701 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1702 
1703 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1704 				  __down_write_killable)) {
1705 		rwsem_release(&sem->dep_map, _RET_IP_);
1706 		return -EINTR;
1707 	}
1708 
1709 	return 0;
1710 }
1711 EXPORT_SYMBOL(down_write_killable_nested);
1712 
up_read_non_owner(struct rw_semaphore * sem)1713 void up_read_non_owner(struct rw_semaphore *sem)
1714 {
1715 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1716 	__up_read(sem);
1717 }
1718 EXPORT_SYMBOL(up_read_non_owner);
1719 
1720 #endif
1721