1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/userfaultfd.c
4 *
5 * Copyright (C) 2015 Red Hat, Inc.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched/signal.h>
10 #include <linux/pagemap.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/hugetlb.h>
17 #include <linux/shmem_fs.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include "internal.h"
21 #include "swap.h"
22
23 static __always_inline
validate_dst_vma(struct vm_area_struct * dst_vma,unsigned long dst_end)24 bool validate_dst_vma(struct vm_area_struct *dst_vma, unsigned long dst_end)
25 {
26 /* Make sure that the dst range is fully within dst_vma. */
27 if (dst_end > dst_vma->vm_end)
28 return false;
29
30 /*
31 * Check the vma is registered in uffd, this is required to
32 * enforce the VM_MAYWRITE check done at uffd registration
33 * time.
34 */
35 if (!dst_vma->vm_userfaultfd_ctx.ctx)
36 return false;
37
38 return true;
39 }
40
41 static __always_inline
find_vma_and_prepare_anon(struct mm_struct * mm,unsigned long addr)42 struct vm_area_struct *find_vma_and_prepare_anon(struct mm_struct *mm,
43 unsigned long addr)
44 {
45 struct vm_area_struct *vma;
46
47 mmap_assert_locked(mm);
48 vma = vma_lookup(mm, addr);
49 if (!vma)
50 vma = ERR_PTR(-ENOENT);
51 else if (!(vma->vm_flags & VM_SHARED) &&
52 unlikely(anon_vma_prepare(vma)))
53 vma = ERR_PTR(-ENOMEM);
54
55 return vma;
56 }
57
58 #ifdef CONFIG_PER_VMA_LOCK
59 /*
60 * uffd_lock_vma() - Lookup and lock vma corresponding to @address.
61 * @mm: mm to search vma in.
62 * @address: address that the vma should contain.
63 *
64 * Should be called without holding mmap_lock.
65 *
66 * Return: A locked vma containing @address, -ENOENT if no vma is found, or
67 * -ENOMEM if anon_vma couldn't be allocated.
68 */
uffd_lock_vma(struct mm_struct * mm,unsigned long address)69 static struct vm_area_struct *uffd_lock_vma(struct mm_struct *mm,
70 unsigned long address)
71 {
72 struct vm_area_struct *vma;
73
74 vma = lock_vma_under_rcu(mm, address);
75 if (vma) {
76 /*
77 * We know we're going to need to use anon_vma, so check
78 * that early.
79 */
80 if (!(vma->vm_flags & VM_SHARED) && unlikely(!vma->anon_vma))
81 vma_end_read(vma);
82 else
83 return vma;
84 }
85
86 mmap_read_lock(mm);
87 vma = find_vma_and_prepare_anon(mm, address);
88 if (!IS_ERR(vma)) {
89 bool locked = vma_start_read_locked(vma);
90
91 if (!locked)
92 vma = ERR_PTR(-EAGAIN);
93 }
94
95 mmap_read_unlock(mm);
96 return vma;
97 }
98
uffd_mfill_lock(struct mm_struct * dst_mm,unsigned long dst_start,unsigned long len)99 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm,
100 unsigned long dst_start,
101 unsigned long len)
102 {
103 struct vm_area_struct *dst_vma;
104
105 dst_vma = uffd_lock_vma(dst_mm, dst_start);
106 if (IS_ERR(dst_vma) || validate_dst_vma(dst_vma, dst_start + len))
107 return dst_vma;
108
109 vma_end_read(dst_vma);
110 return ERR_PTR(-ENOENT);
111 }
112
uffd_mfill_unlock(struct vm_area_struct * vma)113 static void uffd_mfill_unlock(struct vm_area_struct *vma)
114 {
115 vma_end_read(vma);
116 }
117
118 #else
119
uffd_mfill_lock(struct mm_struct * dst_mm,unsigned long dst_start,unsigned long len)120 static struct vm_area_struct *uffd_mfill_lock(struct mm_struct *dst_mm,
121 unsigned long dst_start,
122 unsigned long len)
123 {
124 struct vm_area_struct *dst_vma;
125
126 mmap_read_lock(dst_mm);
127 dst_vma = find_vma_and_prepare_anon(dst_mm, dst_start);
128 if (IS_ERR(dst_vma))
129 goto out_unlock;
130
131 if (validate_dst_vma(dst_vma, dst_start + len))
132 return dst_vma;
133
134 dst_vma = ERR_PTR(-ENOENT);
135 out_unlock:
136 mmap_read_unlock(dst_mm);
137 return dst_vma;
138 }
139
uffd_mfill_unlock(struct vm_area_struct * vma)140 static void uffd_mfill_unlock(struct vm_area_struct *vma)
141 {
142 mmap_read_unlock(vma->vm_mm);
143 }
144 #endif
145
146 /* Check if dst_addr is outside of file's size. Must be called with ptl held. */
mfill_file_over_size(struct vm_area_struct * dst_vma,unsigned long dst_addr)147 static bool mfill_file_over_size(struct vm_area_struct *dst_vma,
148 unsigned long dst_addr)
149 {
150 struct inode *inode;
151 pgoff_t offset, max_off;
152
153 if (!dst_vma->vm_file)
154 return false;
155
156 inode = dst_vma->vm_file->f_inode;
157 offset = linear_page_index(dst_vma, dst_addr);
158 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
159 return offset >= max_off;
160 }
161
162 /*
163 * Install PTEs, to map dst_addr (within dst_vma) to page.
164 *
165 * This function handles both MCOPY_ATOMIC_NORMAL and _CONTINUE for both shmem
166 * and anon, and for both shared and private VMAs.
167 */
mfill_atomic_install_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,struct page * page,bool newly_allocated,uffd_flags_t flags)168 int mfill_atomic_install_pte(pmd_t *dst_pmd,
169 struct vm_area_struct *dst_vma,
170 unsigned long dst_addr, struct page *page,
171 bool newly_allocated, uffd_flags_t flags)
172 {
173 int ret;
174 struct mm_struct *dst_mm = dst_vma->vm_mm;
175 pte_t _dst_pte, *dst_pte;
176 bool writable = dst_vma->vm_flags & VM_WRITE;
177 bool vm_shared = dst_vma->vm_flags & VM_SHARED;
178 spinlock_t *ptl;
179 struct folio *folio = page_folio(page);
180 bool page_in_cache = folio_mapping(folio);
181
182 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
183 _dst_pte = pte_mkdirty(_dst_pte);
184 if (page_in_cache && !vm_shared)
185 writable = false;
186 if (writable)
187 _dst_pte = pte_mkwrite(_dst_pte, dst_vma);
188 if (flags & MFILL_ATOMIC_WP)
189 _dst_pte = pte_mkuffd_wp(_dst_pte);
190
191 ret = -EAGAIN;
192 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
193 if (!dst_pte)
194 goto out;
195
196 if (mfill_file_over_size(dst_vma, dst_addr)) {
197 ret = -EFAULT;
198 goto out_unlock;
199 }
200
201 ret = -EEXIST;
202 /*
203 * We allow to overwrite a pte marker: consider when both MISSING|WP
204 * registered, we firstly wr-protect a none pte which has no page cache
205 * page backing it, then access the page.
206 */
207 if (!pte_none_mostly(ptep_get(dst_pte)))
208 goto out_unlock;
209
210 if (page_in_cache) {
211 /* Usually, cache pages are already added to LRU */
212 if (newly_allocated)
213 folio_add_lru(folio);
214 folio_add_file_rmap_pte(folio, page, dst_vma);
215 } else {
216 folio_add_new_anon_rmap(folio, dst_vma, dst_addr, RMAP_EXCLUSIVE);
217 folio_add_lru_vma(folio, dst_vma);
218 }
219
220 /*
221 * Must happen after rmap, as mm_counter() checks mapping (via
222 * PageAnon()), which is set by __page_set_anon_rmap().
223 */
224 inc_mm_counter(dst_mm, mm_counter(folio));
225
226 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
227
228 /* No need to invalidate - it was non-present before */
229 update_mmu_cache(dst_vma, dst_addr, dst_pte);
230 ret = 0;
231 out_unlock:
232 pte_unmap_unlock(dst_pte, ptl);
233 out:
234 return ret;
235 }
236
mfill_atomic_pte_copy(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)237 static int mfill_atomic_pte_copy(pmd_t *dst_pmd,
238 struct vm_area_struct *dst_vma,
239 unsigned long dst_addr,
240 unsigned long src_addr,
241 uffd_flags_t flags,
242 struct folio **foliop)
243 {
244 void *kaddr;
245 int ret;
246 struct folio *folio;
247
248 if (!*foliop) {
249 ret = -ENOMEM;
250 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, dst_vma,
251 dst_addr);
252 if (!folio)
253 goto out;
254
255 kaddr = kmap_local_folio(folio, 0);
256 /*
257 * The read mmap_lock is held here. Despite the
258 * mmap_lock being read recursive a deadlock is still
259 * possible if a writer has taken a lock. For example:
260 *
261 * process A thread 1 takes read lock on own mmap_lock
262 * process A thread 2 calls mmap, blocks taking write lock
263 * process B thread 1 takes page fault, read lock on own mmap lock
264 * process B thread 2 calls mmap, blocks taking write lock
265 * process A thread 1 blocks taking read lock on process B
266 * process B thread 1 blocks taking read lock on process A
267 *
268 * Disable page faults to prevent potential deadlock
269 * and retry the copy outside the mmap_lock.
270 */
271 pagefault_disable();
272 ret = copy_from_user(kaddr, (const void __user *) src_addr,
273 PAGE_SIZE);
274 pagefault_enable();
275 kunmap_local(kaddr);
276
277 /* fallback to copy_from_user outside mmap_lock */
278 if (unlikely(ret)) {
279 ret = -ENOENT;
280 *foliop = folio;
281 /* don't free the page */
282 goto out;
283 }
284
285 flush_dcache_folio(folio);
286 } else {
287 folio = *foliop;
288 *foliop = NULL;
289 }
290
291 /*
292 * The memory barrier inside __folio_mark_uptodate makes sure that
293 * preceding stores to the page contents become visible before
294 * the set_pte_at() write.
295 */
296 __folio_mark_uptodate(folio);
297
298 ret = -ENOMEM;
299 if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL))
300 goto out_release;
301
302 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
303 &folio->page, true, flags);
304 if (ret)
305 goto out_release;
306 out:
307 return ret;
308 out_release:
309 folio_put(folio);
310 goto out;
311 }
312
mfill_atomic_pte_zeroed_folio(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)313 static int mfill_atomic_pte_zeroed_folio(pmd_t *dst_pmd,
314 struct vm_area_struct *dst_vma,
315 unsigned long dst_addr)
316 {
317 struct folio *folio;
318 int ret = -ENOMEM;
319
320 folio = vma_alloc_zeroed_movable_folio(dst_vma, dst_addr);
321 if (!folio)
322 return ret;
323
324 if (mem_cgroup_charge(folio, dst_vma->vm_mm, GFP_KERNEL))
325 goto out_put;
326
327 /*
328 * The memory barrier inside __folio_mark_uptodate makes sure that
329 * zeroing out the folio become visible before mapping the page
330 * using set_pte_at(). See do_anonymous_page().
331 */
332 __folio_mark_uptodate(folio);
333
334 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
335 &folio->page, true, 0);
336 if (ret)
337 goto out_put;
338
339 return 0;
340 out_put:
341 folio_put(folio);
342 return ret;
343 }
344
mfill_atomic_pte_zeropage(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr)345 static int mfill_atomic_pte_zeropage(pmd_t *dst_pmd,
346 struct vm_area_struct *dst_vma,
347 unsigned long dst_addr)
348 {
349 pte_t _dst_pte, *dst_pte;
350 spinlock_t *ptl;
351 int ret;
352
353 if (mm_forbids_zeropage(dst_vma->vm_mm))
354 return mfill_atomic_pte_zeroed_folio(dst_pmd, dst_vma, dst_addr);
355
356 _dst_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
357 dst_vma->vm_page_prot));
358 ret = -EAGAIN;
359 dst_pte = pte_offset_map_lock(dst_vma->vm_mm, dst_pmd, dst_addr, &ptl);
360 if (!dst_pte)
361 goto out;
362 if (mfill_file_over_size(dst_vma, dst_addr)) {
363 ret = -EFAULT;
364 goto out_unlock;
365 }
366 ret = -EEXIST;
367 if (!pte_none(ptep_get(dst_pte)))
368 goto out_unlock;
369 set_pte_at(dst_vma->vm_mm, dst_addr, dst_pte, _dst_pte);
370 /* No need to invalidate - it was non-present before */
371 update_mmu_cache(dst_vma, dst_addr, dst_pte);
372 ret = 0;
373 out_unlock:
374 pte_unmap_unlock(dst_pte, ptl);
375 out:
376 return ret;
377 }
378
379 /* Handles UFFDIO_CONTINUE for all shmem VMAs (shared or private). */
mfill_atomic_pte_continue(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,uffd_flags_t flags)380 static int mfill_atomic_pte_continue(pmd_t *dst_pmd,
381 struct vm_area_struct *dst_vma,
382 unsigned long dst_addr,
383 uffd_flags_t flags)
384 {
385 struct inode *inode = file_inode(dst_vma->vm_file);
386 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
387 struct folio *folio;
388 struct page *page;
389 int ret;
390
391 ret = shmem_get_folio(inode, pgoff, 0, &folio, SGP_NOALLOC);
392 /* Our caller expects us to return -EFAULT if we failed to find folio */
393 if (ret == -ENOENT)
394 ret = -EFAULT;
395 if (ret)
396 goto out;
397 if (!folio) {
398 ret = -EFAULT;
399 goto out;
400 }
401
402 page = folio_file_page(folio, pgoff);
403 if (PageHWPoison(page)) {
404 ret = -EIO;
405 goto out_release;
406 }
407
408 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
409 page, false, flags);
410 if (ret)
411 goto out_release;
412
413 folio_unlock(folio);
414 ret = 0;
415 out:
416 return ret;
417 out_release:
418 folio_unlock(folio);
419 folio_put(folio);
420 goto out;
421 }
422
423 /* Handles UFFDIO_POISON for all non-hugetlb VMAs. */
mfill_atomic_pte_poison(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,uffd_flags_t flags)424 static int mfill_atomic_pte_poison(pmd_t *dst_pmd,
425 struct vm_area_struct *dst_vma,
426 unsigned long dst_addr,
427 uffd_flags_t flags)
428 {
429 int ret;
430 struct mm_struct *dst_mm = dst_vma->vm_mm;
431 pte_t _dst_pte, *dst_pte;
432 spinlock_t *ptl;
433
434 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
435 ret = -EAGAIN;
436 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
437 if (!dst_pte)
438 goto out;
439
440 if (mfill_file_over_size(dst_vma, dst_addr)) {
441 ret = -EFAULT;
442 goto out_unlock;
443 }
444
445 ret = -EEXIST;
446 /* Refuse to overwrite any PTE, even a PTE marker (e.g. UFFD WP). */
447 if (!pte_none(ptep_get(dst_pte)))
448 goto out_unlock;
449
450 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
451
452 /* No need to invalidate - it was non-present before */
453 update_mmu_cache(dst_vma, dst_addr, dst_pte);
454 ret = 0;
455 out_unlock:
456 pte_unmap_unlock(dst_pte, ptl);
457 out:
458 return ret;
459 }
460
mm_alloc_pmd(struct mm_struct * mm,unsigned long address)461 static pmd_t *mm_alloc_pmd(struct mm_struct *mm, unsigned long address)
462 {
463 pgd_t *pgd;
464 p4d_t *p4d;
465 pud_t *pud;
466
467 pgd = pgd_offset(mm, address);
468 p4d = p4d_alloc(mm, pgd, address);
469 if (!p4d)
470 return NULL;
471 pud = pud_alloc(mm, p4d, address);
472 if (!pud)
473 return NULL;
474 /*
475 * Note that we didn't run this because the pmd was
476 * missing, the *pmd may be already established and in
477 * turn it may also be a trans_huge_pmd.
478 */
479 return pmd_alloc(mm, pud, address);
480 }
481
482 #ifdef CONFIG_HUGETLB_PAGE
483 /*
484 * mfill_atomic processing for HUGETLB vmas. Note that this routine is
485 * called with either vma-lock or mmap_lock held, it will release the lock
486 * before returning.
487 */
mfill_atomic_hugetlb(struct userfaultfd_ctx * ctx,struct vm_area_struct * dst_vma,unsigned long dst_start,unsigned long src_start,unsigned long len,uffd_flags_t flags)488 static __always_inline ssize_t mfill_atomic_hugetlb(
489 struct userfaultfd_ctx *ctx,
490 struct vm_area_struct *dst_vma,
491 unsigned long dst_start,
492 unsigned long src_start,
493 unsigned long len,
494 uffd_flags_t flags)
495 {
496 struct mm_struct *dst_mm = dst_vma->vm_mm;
497 ssize_t err;
498 pte_t *dst_pte;
499 unsigned long src_addr, dst_addr;
500 long copied;
501 struct folio *folio;
502 unsigned long vma_hpagesize;
503 pgoff_t idx;
504 u32 hash;
505 struct address_space *mapping;
506
507 /*
508 * There is no default zero huge page for all huge page sizes as
509 * supported by hugetlb. A PMD_SIZE huge pages may exist as used
510 * by THP. Since we can not reliably insert a zero page, this
511 * feature is not supported.
512 */
513 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_ZEROPAGE)) {
514 up_read(&ctx->map_changing_lock);
515 uffd_mfill_unlock(dst_vma);
516 return -EINVAL;
517 }
518
519 src_addr = src_start;
520 dst_addr = dst_start;
521 copied = 0;
522 folio = NULL;
523 vma_hpagesize = vma_kernel_pagesize(dst_vma);
524
525 /*
526 * Validate alignment based on huge page size
527 */
528 err = -EINVAL;
529 if (dst_start & (vma_hpagesize - 1) || len & (vma_hpagesize - 1))
530 goto out_unlock;
531
532 retry:
533 /*
534 * On routine entry dst_vma is set. If we had to drop mmap_lock and
535 * retry, dst_vma will be set to NULL and we must lookup again.
536 */
537 if (!dst_vma) {
538 dst_vma = uffd_mfill_lock(dst_mm, dst_start, len);
539 if (IS_ERR(dst_vma)) {
540 err = PTR_ERR(dst_vma);
541 goto out;
542 }
543
544 err = -ENOENT;
545 if (!is_vm_hugetlb_page(dst_vma))
546 goto out_unlock_vma;
547
548 err = -EINVAL;
549 if (vma_hpagesize != vma_kernel_pagesize(dst_vma))
550 goto out_unlock_vma;
551
552 /*
553 * If memory mappings are changing because of non-cooperative
554 * operation (e.g. mremap) running in parallel, bail out and
555 * request the user to retry later
556 */
557 down_read(&ctx->map_changing_lock);
558 err = -EAGAIN;
559 if (atomic_read(&ctx->mmap_changing))
560 goto out_unlock;
561 }
562
563 while (src_addr < src_start + len) {
564 VM_WARN_ON_ONCE(dst_addr >= dst_start + len);
565
566 /*
567 * Serialize via vma_lock and hugetlb_fault_mutex.
568 * vma_lock ensures the dst_pte remains valid even
569 * in the case of shared pmds. fault mutex prevents
570 * races with other faulting threads.
571 */
572 idx = linear_page_index(dst_vma, dst_addr);
573 mapping = dst_vma->vm_file->f_mapping;
574 hash = hugetlb_fault_mutex_hash(mapping, idx);
575 mutex_lock(&hugetlb_fault_mutex_table[hash]);
576 hugetlb_vma_lock_read(dst_vma);
577
578 err = -ENOMEM;
579 dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize);
580 if (!dst_pte) {
581 hugetlb_vma_unlock_read(dst_vma);
582 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
583 goto out_unlock;
584 }
585
586 if (!uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE) &&
587 !huge_pte_none_mostly(huge_ptep_get(dst_mm, dst_addr, dst_pte))) {
588 err = -EEXIST;
589 hugetlb_vma_unlock_read(dst_vma);
590 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
591 goto out_unlock;
592 }
593
594 err = hugetlb_mfill_atomic_pte(dst_pte, dst_vma, dst_addr,
595 src_addr, flags, &folio);
596
597 hugetlb_vma_unlock_read(dst_vma);
598 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
599
600 cond_resched();
601
602 if (unlikely(err == -ENOENT)) {
603 up_read(&ctx->map_changing_lock);
604 uffd_mfill_unlock(dst_vma);
605 VM_WARN_ON_ONCE(!folio);
606
607 err = copy_folio_from_user(folio,
608 (const void __user *)src_addr, true);
609 if (unlikely(err)) {
610 err = -EFAULT;
611 goto out;
612 }
613
614 dst_vma = NULL;
615 goto retry;
616 } else
617 VM_WARN_ON_ONCE(folio);
618
619 if (!err) {
620 dst_addr += vma_hpagesize;
621 src_addr += vma_hpagesize;
622 copied += vma_hpagesize;
623
624 if (fatal_signal_pending(current))
625 err = -EINTR;
626 }
627 if (err)
628 break;
629 }
630
631 out_unlock:
632 up_read(&ctx->map_changing_lock);
633 out_unlock_vma:
634 uffd_mfill_unlock(dst_vma);
635 out:
636 if (folio)
637 folio_put(folio);
638 VM_WARN_ON_ONCE(copied < 0);
639 VM_WARN_ON_ONCE(err > 0);
640 VM_WARN_ON_ONCE(!copied && !err);
641 return copied ? copied : err;
642 }
643 #else /* !CONFIG_HUGETLB_PAGE */
644 /* fail at build time if gcc attempts to use this */
645 extern ssize_t mfill_atomic_hugetlb(struct userfaultfd_ctx *ctx,
646 struct vm_area_struct *dst_vma,
647 unsigned long dst_start,
648 unsigned long src_start,
649 unsigned long len,
650 uffd_flags_t flags);
651 #endif /* CONFIG_HUGETLB_PAGE */
652
mfill_atomic_pte(pmd_t * dst_pmd,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,uffd_flags_t flags,struct folio ** foliop)653 static __always_inline ssize_t mfill_atomic_pte(pmd_t *dst_pmd,
654 struct vm_area_struct *dst_vma,
655 unsigned long dst_addr,
656 unsigned long src_addr,
657 uffd_flags_t flags,
658 struct folio **foliop)
659 {
660 ssize_t err;
661
662 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE)) {
663 return mfill_atomic_pte_continue(dst_pmd, dst_vma,
664 dst_addr, flags);
665 } else if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
666 return mfill_atomic_pte_poison(dst_pmd, dst_vma,
667 dst_addr, flags);
668 }
669
670 /*
671 * The normal page fault path for a shmem will invoke the
672 * fault, fill the hole in the file and COW it right away. The
673 * result generates plain anonymous memory. So when we are
674 * asked to fill an hole in a MAP_PRIVATE shmem mapping, we'll
675 * generate anonymous memory directly without actually filling
676 * the hole. For the MAP_PRIVATE case the robustness check
677 * only happens in the pagetable (to verify it's still none)
678 * and not in the radix tree.
679 */
680 if (!(dst_vma->vm_flags & VM_SHARED)) {
681 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY))
682 err = mfill_atomic_pte_copy(dst_pmd, dst_vma,
683 dst_addr, src_addr,
684 flags, foliop);
685 else
686 err = mfill_atomic_pte_zeropage(dst_pmd,
687 dst_vma, dst_addr);
688 } else {
689 err = shmem_mfill_atomic_pte(dst_pmd, dst_vma,
690 dst_addr, src_addr,
691 flags, foliop);
692 }
693
694 return err;
695 }
696
mfill_atomic(struct userfaultfd_ctx * ctx,unsigned long dst_start,unsigned long src_start,unsigned long len,uffd_flags_t flags)697 static __always_inline ssize_t mfill_atomic(struct userfaultfd_ctx *ctx,
698 unsigned long dst_start,
699 unsigned long src_start,
700 unsigned long len,
701 uffd_flags_t flags)
702 {
703 struct mm_struct *dst_mm = ctx->mm;
704 struct vm_area_struct *dst_vma;
705 ssize_t err;
706 pmd_t *dst_pmd;
707 unsigned long src_addr, dst_addr;
708 long copied;
709 struct folio *folio;
710
711 /*
712 * Sanitize the command parameters:
713 */
714 VM_WARN_ON_ONCE(dst_start & ~PAGE_MASK);
715 VM_WARN_ON_ONCE(len & ~PAGE_MASK);
716
717 /* Does the address range wrap, or is the span zero-sized? */
718 VM_WARN_ON_ONCE(src_start + len <= src_start);
719 VM_WARN_ON_ONCE(dst_start + len <= dst_start);
720
721 src_addr = src_start;
722 dst_addr = dst_start;
723 copied = 0;
724 folio = NULL;
725 retry:
726 /*
727 * Make sure the vma is not shared, that the dst range is
728 * both valid and fully within a single existing vma.
729 */
730 dst_vma = uffd_mfill_lock(dst_mm, dst_start, len);
731 if (IS_ERR(dst_vma)) {
732 err = PTR_ERR(dst_vma);
733 goto out;
734 }
735
736 /*
737 * If memory mappings are changing because of non-cooperative
738 * operation (e.g. mremap) running in parallel, bail out and
739 * request the user to retry later
740 */
741 down_read(&ctx->map_changing_lock);
742 err = -EAGAIN;
743 if (atomic_read(&ctx->mmap_changing))
744 goto out_unlock;
745
746 err = -EINVAL;
747 /*
748 * shmem_zero_setup is invoked in mmap for MAP_ANONYMOUS|MAP_SHARED but
749 * it will overwrite vm_ops, so vma_is_anonymous must return false.
750 */
751 if (WARN_ON_ONCE(vma_is_anonymous(dst_vma) &&
752 dst_vma->vm_flags & VM_SHARED))
753 goto out_unlock;
754
755 /*
756 * validate 'mode' now that we know the dst_vma: don't allow
757 * a wrprotect copy if the userfaultfd didn't register as WP.
758 */
759 if ((flags & MFILL_ATOMIC_WP) && !(dst_vma->vm_flags & VM_UFFD_WP))
760 goto out_unlock;
761
762 /*
763 * If this is a HUGETLB vma, pass off to appropriate routine
764 */
765 if (is_vm_hugetlb_page(dst_vma))
766 return mfill_atomic_hugetlb(ctx, dst_vma, dst_start,
767 src_start, len, flags);
768
769 if (!vma_is_anonymous(dst_vma) && !vma_is_shmem(dst_vma))
770 goto out_unlock;
771 if (!vma_is_shmem(dst_vma) &&
772 uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE))
773 goto out_unlock;
774
775 while (src_addr < src_start + len) {
776 pmd_t dst_pmdval;
777
778 VM_WARN_ON_ONCE(dst_addr >= dst_start + len);
779
780 dst_pmd = mm_alloc_pmd(dst_mm, dst_addr);
781 if (unlikely(!dst_pmd)) {
782 err = -ENOMEM;
783 break;
784 }
785
786 dst_pmdval = pmdp_get_lockless(dst_pmd);
787 if (unlikely(pmd_none(dst_pmdval)) &&
788 unlikely(__pte_alloc(dst_mm, dst_pmd))) {
789 err = -ENOMEM;
790 break;
791 }
792 dst_pmdval = pmdp_get_lockless(dst_pmd);
793 /*
794 * If the dst_pmd is THP don't override it and just be strict.
795 * (This includes the case where the PMD used to be THP and
796 * changed back to none after __pte_alloc().)
797 */
798 if (unlikely(!pmd_present(dst_pmdval) ||
799 pmd_trans_huge(dst_pmdval))) {
800 err = -EEXIST;
801 break;
802 }
803 if (unlikely(pmd_bad(dst_pmdval))) {
804 err = -EFAULT;
805 break;
806 }
807 /*
808 * For shmem mappings, khugepaged is allowed to remove page
809 * tables under us; pte_offset_map_lock() will deal with that.
810 */
811
812 err = mfill_atomic_pte(dst_pmd, dst_vma, dst_addr,
813 src_addr, flags, &folio);
814 cond_resched();
815
816 if (unlikely(err == -ENOENT)) {
817 void *kaddr;
818
819 up_read(&ctx->map_changing_lock);
820 uffd_mfill_unlock(dst_vma);
821 VM_WARN_ON_ONCE(!folio);
822
823 kaddr = kmap_local_folio(folio, 0);
824 err = copy_from_user(kaddr,
825 (const void __user *) src_addr,
826 PAGE_SIZE);
827 kunmap_local(kaddr);
828 if (unlikely(err)) {
829 err = -EFAULT;
830 goto out;
831 }
832 flush_dcache_folio(folio);
833 goto retry;
834 } else
835 VM_WARN_ON_ONCE(folio);
836
837 if (!err) {
838 dst_addr += PAGE_SIZE;
839 src_addr += PAGE_SIZE;
840 copied += PAGE_SIZE;
841
842 if (fatal_signal_pending(current))
843 err = -EINTR;
844 }
845 if (err)
846 break;
847 }
848
849 out_unlock:
850 up_read(&ctx->map_changing_lock);
851 uffd_mfill_unlock(dst_vma);
852 out:
853 if (folio)
854 folio_put(folio);
855 VM_WARN_ON_ONCE(copied < 0);
856 VM_WARN_ON_ONCE(err > 0);
857 VM_WARN_ON_ONCE(!copied && !err);
858 return copied ? copied : err;
859 }
860
mfill_atomic_copy(struct userfaultfd_ctx * ctx,unsigned long dst_start,unsigned long src_start,unsigned long len,uffd_flags_t flags)861 ssize_t mfill_atomic_copy(struct userfaultfd_ctx *ctx, unsigned long dst_start,
862 unsigned long src_start, unsigned long len,
863 uffd_flags_t flags)
864 {
865 return mfill_atomic(ctx, dst_start, src_start, len,
866 uffd_flags_set_mode(flags, MFILL_ATOMIC_COPY));
867 }
868
mfill_atomic_zeropage(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len)869 ssize_t mfill_atomic_zeropage(struct userfaultfd_ctx *ctx,
870 unsigned long start,
871 unsigned long len)
872 {
873 return mfill_atomic(ctx, start, 0, len,
874 uffd_flags_set_mode(0, MFILL_ATOMIC_ZEROPAGE));
875 }
876
mfill_atomic_continue(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len,uffd_flags_t flags)877 ssize_t mfill_atomic_continue(struct userfaultfd_ctx *ctx, unsigned long start,
878 unsigned long len, uffd_flags_t flags)
879 {
880
881 /*
882 * A caller might reasonably assume that UFFDIO_CONTINUE contains an
883 * smp_wmb() to ensure that any writes to the about-to-be-mapped page by
884 * the thread doing the UFFDIO_CONTINUE are guaranteed to be visible to
885 * subsequent loads from the page through the newly mapped address range.
886 */
887 smp_wmb();
888
889 return mfill_atomic(ctx, start, 0, len,
890 uffd_flags_set_mode(flags, MFILL_ATOMIC_CONTINUE));
891 }
892
mfill_atomic_poison(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len,uffd_flags_t flags)893 ssize_t mfill_atomic_poison(struct userfaultfd_ctx *ctx, unsigned long start,
894 unsigned long len, uffd_flags_t flags)
895 {
896 return mfill_atomic(ctx, start, 0, len,
897 uffd_flags_set_mode(flags, MFILL_ATOMIC_POISON));
898 }
899
uffd_wp_range(struct vm_area_struct * dst_vma,unsigned long start,unsigned long len,bool enable_wp)900 long uffd_wp_range(struct vm_area_struct *dst_vma,
901 unsigned long start, unsigned long len, bool enable_wp)
902 {
903 unsigned int mm_cp_flags;
904 struct mmu_gather tlb;
905 long ret;
906
907 VM_WARN_ONCE(start < dst_vma->vm_start || start + len > dst_vma->vm_end,
908 "The address range exceeds VMA boundary.\n");
909 if (enable_wp)
910 mm_cp_flags = MM_CP_UFFD_WP;
911 else
912 mm_cp_flags = MM_CP_UFFD_WP_RESOLVE;
913
914 /*
915 * vma->vm_page_prot already reflects that uffd-wp is enabled for this
916 * VMA (see userfaultfd_set_vm_flags()) and that all PTEs are supposed
917 * to be write-protected as default whenever protection changes.
918 * Try upgrading write permissions manually.
919 */
920 if (!enable_wp && vma_wants_manual_pte_write_upgrade(dst_vma))
921 mm_cp_flags |= MM_CP_TRY_CHANGE_WRITABLE;
922 tlb_gather_mmu(&tlb, dst_vma->vm_mm);
923 ret = change_protection(&tlb, dst_vma, start, start + len, mm_cp_flags);
924 tlb_finish_mmu(&tlb);
925
926 return ret;
927 }
928
mwriteprotect_range(struct userfaultfd_ctx * ctx,unsigned long start,unsigned long len,bool enable_wp)929 int mwriteprotect_range(struct userfaultfd_ctx *ctx, unsigned long start,
930 unsigned long len, bool enable_wp)
931 {
932 struct mm_struct *dst_mm = ctx->mm;
933 unsigned long end = start + len;
934 unsigned long _start, _end;
935 struct vm_area_struct *dst_vma;
936 unsigned long page_mask;
937 long err;
938 VMA_ITERATOR(vmi, dst_mm, start);
939
940 /*
941 * Sanitize the command parameters:
942 */
943 VM_WARN_ON_ONCE(start & ~PAGE_MASK);
944 VM_WARN_ON_ONCE(len & ~PAGE_MASK);
945
946 /* Does the address range wrap, or is the span zero-sized? */
947 VM_WARN_ON_ONCE(start + len <= start);
948
949 mmap_read_lock(dst_mm);
950
951 /*
952 * If memory mappings are changing because of non-cooperative
953 * operation (e.g. mremap) running in parallel, bail out and
954 * request the user to retry later
955 */
956 down_read(&ctx->map_changing_lock);
957 err = -EAGAIN;
958 if (atomic_read(&ctx->mmap_changing))
959 goto out_unlock;
960
961 err = -ENOENT;
962 for_each_vma_range(vmi, dst_vma, end) {
963
964 if (!userfaultfd_wp(dst_vma)) {
965 err = -ENOENT;
966 break;
967 }
968
969 if (is_vm_hugetlb_page(dst_vma)) {
970 err = -EINVAL;
971 page_mask = vma_kernel_pagesize(dst_vma) - 1;
972 if ((start & page_mask) || (len & page_mask))
973 break;
974 }
975
976 _start = max(dst_vma->vm_start, start);
977 _end = min(dst_vma->vm_end, end);
978
979 err = uffd_wp_range(dst_vma, _start, _end - _start, enable_wp);
980
981 /* Return 0 on success, <0 on failures */
982 if (err < 0)
983 break;
984 err = 0;
985 }
986 out_unlock:
987 up_read(&ctx->map_changing_lock);
988 mmap_read_unlock(dst_mm);
989 return err;
990 }
991
992
double_pt_lock(spinlock_t * ptl1,spinlock_t * ptl2)993 void double_pt_lock(spinlock_t *ptl1,
994 spinlock_t *ptl2)
995 __acquires(ptl1)
996 __acquires(ptl2)
997 {
998 if (ptl1 > ptl2)
999 swap(ptl1, ptl2);
1000 /* lock in virtual address order to avoid lock inversion */
1001 spin_lock(ptl1);
1002 if (ptl1 != ptl2)
1003 spin_lock_nested(ptl2, SINGLE_DEPTH_NESTING);
1004 else
1005 __acquire(ptl2);
1006 }
1007
double_pt_unlock(spinlock_t * ptl1,spinlock_t * ptl2)1008 void double_pt_unlock(spinlock_t *ptl1,
1009 spinlock_t *ptl2)
1010 __releases(ptl1)
1011 __releases(ptl2)
1012 {
1013 spin_unlock(ptl1);
1014 if (ptl1 != ptl2)
1015 spin_unlock(ptl2);
1016 else
1017 __release(ptl2);
1018 }
1019
is_pte_pages_stable(pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval)1020 static inline bool is_pte_pages_stable(pte_t *dst_pte, pte_t *src_pte,
1021 pte_t orig_dst_pte, pte_t orig_src_pte,
1022 pmd_t *dst_pmd, pmd_t dst_pmdval)
1023 {
1024 return pte_same(ptep_get(src_pte), orig_src_pte) &&
1025 pte_same(ptep_get(dst_pte), orig_dst_pte) &&
1026 pmd_same(dst_pmdval, pmdp_get_lockless(dst_pmd));
1027 }
1028
move_present_pte(struct mm_struct * mm,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr,pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval,spinlock_t * dst_ptl,spinlock_t * src_ptl,struct folio * src_folio)1029 static int move_present_pte(struct mm_struct *mm,
1030 struct vm_area_struct *dst_vma,
1031 struct vm_area_struct *src_vma,
1032 unsigned long dst_addr, unsigned long src_addr,
1033 pte_t *dst_pte, pte_t *src_pte,
1034 pte_t orig_dst_pte, pte_t orig_src_pte,
1035 pmd_t *dst_pmd, pmd_t dst_pmdval,
1036 spinlock_t *dst_ptl, spinlock_t *src_ptl,
1037 struct folio *src_folio)
1038 {
1039 int err = 0;
1040
1041 double_pt_lock(dst_ptl, src_ptl);
1042
1043 if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1044 dst_pmd, dst_pmdval)) {
1045 err = -EAGAIN;
1046 goto out;
1047 }
1048 if (folio_test_large(src_folio) ||
1049 folio_maybe_dma_pinned(src_folio) ||
1050 !PageAnonExclusive(&src_folio->page)) {
1051 err = -EBUSY;
1052 goto out;
1053 }
1054
1055 orig_src_pte = ptep_clear_flush(src_vma, src_addr, src_pte);
1056 /* Folio got pinned from under us. Put it back and fail the move. */
1057 if (folio_maybe_dma_pinned(src_folio)) {
1058 set_pte_at(mm, src_addr, src_pte, orig_src_pte);
1059 err = -EBUSY;
1060 goto out;
1061 }
1062
1063 folio_move_anon_rmap(src_folio, dst_vma);
1064 src_folio->index = linear_page_index(dst_vma, dst_addr);
1065
1066 orig_dst_pte = folio_mk_pte(src_folio, dst_vma->vm_page_prot);
1067 /* Set soft dirty bit so userspace can notice the pte was moved */
1068 #ifdef CONFIG_MEM_SOFT_DIRTY
1069 orig_dst_pte = pte_mksoft_dirty(orig_dst_pte);
1070 #endif
1071 if (pte_dirty(orig_src_pte))
1072 orig_dst_pte = pte_mkdirty(orig_dst_pte);
1073 orig_dst_pte = pte_mkwrite(orig_dst_pte, dst_vma);
1074
1075 set_pte_at(mm, dst_addr, dst_pte, orig_dst_pte);
1076 out:
1077 double_pt_unlock(dst_ptl, src_ptl);
1078 return err;
1079 }
1080
move_swap_pte(struct mm_struct * mm,struct vm_area_struct * dst_vma,unsigned long dst_addr,unsigned long src_addr,pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval,spinlock_t * dst_ptl,spinlock_t * src_ptl,struct folio * src_folio,struct swap_info_struct * si,swp_entry_t entry)1081 static int move_swap_pte(struct mm_struct *mm, struct vm_area_struct *dst_vma,
1082 unsigned long dst_addr, unsigned long src_addr,
1083 pte_t *dst_pte, pte_t *src_pte,
1084 pte_t orig_dst_pte, pte_t orig_src_pte,
1085 pmd_t *dst_pmd, pmd_t dst_pmdval,
1086 spinlock_t *dst_ptl, spinlock_t *src_ptl,
1087 struct folio *src_folio,
1088 struct swap_info_struct *si, swp_entry_t entry)
1089 {
1090 /*
1091 * Check if the folio still belongs to the target swap entry after
1092 * acquiring the lock. Folio can be freed in the swap cache while
1093 * not locked.
1094 */
1095 if (src_folio && unlikely(!folio_test_swapcache(src_folio) ||
1096 entry.val != src_folio->swap.val))
1097 return -EAGAIN;
1098
1099 double_pt_lock(dst_ptl, src_ptl);
1100
1101 if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1102 dst_pmd, dst_pmdval)) {
1103 double_pt_unlock(dst_ptl, src_ptl);
1104 return -EAGAIN;
1105 }
1106
1107 /*
1108 * The src_folio resides in the swapcache, requiring an update to its
1109 * index and mapping to align with the dst_vma, where a swap-in may
1110 * occur and hit the swapcache after moving the PTE.
1111 */
1112 if (src_folio) {
1113 folio_move_anon_rmap(src_folio, dst_vma);
1114 src_folio->index = linear_page_index(dst_vma, dst_addr);
1115 } else {
1116 /*
1117 * Check if the swap entry is cached after acquiring the src_pte
1118 * lock. Otherwise, we might miss a newly loaded swap cache folio.
1119 *
1120 * Check swap_map directly to minimize overhead, READ_ONCE is sufficient.
1121 * We are trying to catch newly added swap cache, the only possible case is
1122 * when a folio is swapped in and out again staying in swap cache, using the
1123 * same entry before the PTE check above. The PTL is acquired and released
1124 * twice, each time after updating the swap_map's flag. So holding
1125 * the PTL here ensures we see the updated value. False positive is possible,
1126 * e.g. SWP_SYNCHRONOUS_IO swapin may set the flag without touching the
1127 * cache, or during the tiny synchronization window between swap cache and
1128 * swap_map, but it will be gone very quickly, worst result is retry jitters.
1129 */
1130 if (READ_ONCE(si->swap_map[swp_offset(entry)]) & SWAP_HAS_CACHE) {
1131 double_pt_unlock(dst_ptl, src_ptl);
1132 return -EAGAIN;
1133 }
1134 }
1135
1136 orig_src_pte = ptep_get_and_clear(mm, src_addr, src_pte);
1137 #ifdef CONFIG_MEM_SOFT_DIRTY
1138 orig_src_pte = pte_swp_mksoft_dirty(orig_src_pte);
1139 #endif
1140 set_pte_at(mm, dst_addr, dst_pte, orig_src_pte);
1141 double_pt_unlock(dst_ptl, src_ptl);
1142
1143 return 0;
1144 }
1145
move_zeropage_pte(struct mm_struct * mm,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr,pte_t * dst_pte,pte_t * src_pte,pte_t orig_dst_pte,pte_t orig_src_pte,pmd_t * dst_pmd,pmd_t dst_pmdval,spinlock_t * dst_ptl,spinlock_t * src_ptl)1146 static int move_zeropage_pte(struct mm_struct *mm,
1147 struct vm_area_struct *dst_vma,
1148 struct vm_area_struct *src_vma,
1149 unsigned long dst_addr, unsigned long src_addr,
1150 pte_t *dst_pte, pte_t *src_pte,
1151 pte_t orig_dst_pte, pte_t orig_src_pte,
1152 pmd_t *dst_pmd, pmd_t dst_pmdval,
1153 spinlock_t *dst_ptl, spinlock_t *src_ptl)
1154 {
1155 pte_t zero_pte;
1156
1157 double_pt_lock(dst_ptl, src_ptl);
1158 if (!is_pte_pages_stable(dst_pte, src_pte, orig_dst_pte, orig_src_pte,
1159 dst_pmd, dst_pmdval)) {
1160 double_pt_unlock(dst_ptl, src_ptl);
1161 return -EAGAIN;
1162 }
1163
1164 zero_pte = pte_mkspecial(pfn_pte(my_zero_pfn(dst_addr),
1165 dst_vma->vm_page_prot));
1166 ptep_clear_flush(src_vma, src_addr, src_pte);
1167 set_pte_at(mm, dst_addr, dst_pte, zero_pte);
1168 double_pt_unlock(dst_ptl, src_ptl);
1169
1170 return 0;
1171 }
1172
1173
1174 /*
1175 * The mmap_lock for reading is held by the caller. Just move the page
1176 * from src_pmd to dst_pmd if possible, and return true if succeeded
1177 * in moving the page.
1178 */
move_pages_pte(struct mm_struct * mm,pmd_t * dst_pmd,pmd_t * src_pmd,struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long dst_addr,unsigned long src_addr,__u64 mode)1179 static int move_pages_pte(struct mm_struct *mm, pmd_t *dst_pmd, pmd_t *src_pmd,
1180 struct vm_area_struct *dst_vma,
1181 struct vm_area_struct *src_vma,
1182 unsigned long dst_addr, unsigned long src_addr,
1183 __u64 mode)
1184 {
1185 swp_entry_t entry;
1186 struct swap_info_struct *si = NULL;
1187 pte_t orig_src_pte, orig_dst_pte;
1188 pte_t src_folio_pte;
1189 spinlock_t *src_ptl, *dst_ptl;
1190 pte_t *src_pte = NULL;
1191 pte_t *dst_pte = NULL;
1192 pmd_t dummy_pmdval;
1193 pmd_t dst_pmdval;
1194 struct folio *src_folio = NULL;
1195 struct anon_vma *src_anon_vma = NULL;
1196 struct mmu_notifier_range range;
1197 int err = 0;
1198
1199 flush_cache_range(src_vma, src_addr, src_addr + PAGE_SIZE);
1200 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1201 src_addr, src_addr + PAGE_SIZE);
1202 mmu_notifier_invalidate_range_start(&range);
1203 retry:
1204 /*
1205 * Use the maywrite version to indicate that dst_pte will be modified,
1206 * since dst_pte needs to be none, the subsequent pte_same() check
1207 * cannot prevent the dst_pte page from being freed concurrently, so we
1208 * also need to abtain dst_pmdval and recheck pmd_same() later.
1209 */
1210 dst_pte = pte_offset_map_rw_nolock(mm, dst_pmd, dst_addr, &dst_pmdval,
1211 &dst_ptl);
1212
1213 /* Retry if a huge pmd materialized from under us */
1214 if (unlikely(!dst_pte)) {
1215 err = -EAGAIN;
1216 goto out;
1217 }
1218
1219 /*
1220 * Unlike dst_pte, the subsequent pte_same() check can ensure the
1221 * stability of the src_pte page, so there is no need to get pmdval,
1222 * just pass a dummy variable to it.
1223 */
1224 src_pte = pte_offset_map_rw_nolock(mm, src_pmd, src_addr, &dummy_pmdval,
1225 &src_ptl);
1226
1227 /*
1228 * We held the mmap_lock for reading so MADV_DONTNEED
1229 * can zap transparent huge pages under us, or the
1230 * transparent huge page fault can establish new
1231 * transparent huge pages under us.
1232 */
1233 if (unlikely(!src_pte)) {
1234 err = -EAGAIN;
1235 goto out;
1236 }
1237
1238 /* Sanity checks before the operation */
1239 if (pmd_none(*dst_pmd) || pmd_none(*src_pmd) ||
1240 pmd_trans_huge(*dst_pmd) || pmd_trans_huge(*src_pmd)) {
1241 err = -EINVAL;
1242 goto out;
1243 }
1244
1245 spin_lock(dst_ptl);
1246 orig_dst_pte = ptep_get(dst_pte);
1247 spin_unlock(dst_ptl);
1248 if (!pte_none(orig_dst_pte)) {
1249 err = -EEXIST;
1250 goto out;
1251 }
1252
1253 spin_lock(src_ptl);
1254 orig_src_pte = ptep_get(src_pte);
1255 spin_unlock(src_ptl);
1256 if (pte_none(orig_src_pte)) {
1257 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES))
1258 err = -ENOENT;
1259 else /* nothing to do to move a hole */
1260 err = 0;
1261 goto out;
1262 }
1263
1264 /* If PTE changed after we locked the folio them start over */
1265 if (src_folio && unlikely(!pte_same(src_folio_pte, orig_src_pte))) {
1266 err = -EAGAIN;
1267 goto out;
1268 }
1269
1270 if (pte_present(orig_src_pte)) {
1271 if (is_zero_pfn(pte_pfn(orig_src_pte))) {
1272 err = move_zeropage_pte(mm, dst_vma, src_vma,
1273 dst_addr, src_addr, dst_pte, src_pte,
1274 orig_dst_pte, orig_src_pte,
1275 dst_pmd, dst_pmdval, dst_ptl, src_ptl);
1276 goto out;
1277 }
1278
1279 /*
1280 * Pin and lock both source folio and anon_vma. Since we are in
1281 * RCU read section, we can't block, so on contention have to
1282 * unmap the ptes, obtain the lock and retry.
1283 */
1284 if (!src_folio) {
1285 struct folio *folio;
1286 bool locked;
1287
1288 /*
1289 * Pin the page while holding the lock to be sure the
1290 * page isn't freed under us
1291 */
1292 spin_lock(src_ptl);
1293 if (!pte_same(orig_src_pte, ptep_get(src_pte))) {
1294 spin_unlock(src_ptl);
1295 err = -EAGAIN;
1296 goto out;
1297 }
1298
1299 folio = vm_normal_folio(src_vma, src_addr, orig_src_pte);
1300 if (!folio || !PageAnonExclusive(&folio->page)) {
1301 spin_unlock(src_ptl);
1302 err = -EBUSY;
1303 goto out;
1304 }
1305
1306 locked = folio_trylock(folio);
1307 /*
1308 * We avoid waiting for folio lock with a raised
1309 * refcount for large folios because extra refcounts
1310 * will result in split_folio() failing later and
1311 * retrying. If multiple tasks are trying to move a
1312 * large folio we can end up livelocking.
1313 */
1314 if (!locked && folio_test_large(folio)) {
1315 spin_unlock(src_ptl);
1316 err = -EAGAIN;
1317 goto out;
1318 }
1319
1320 folio_get(folio);
1321 src_folio = folio;
1322 src_folio_pte = orig_src_pte;
1323 spin_unlock(src_ptl);
1324
1325 if (!locked) {
1326 pte_unmap(src_pte);
1327 pte_unmap(dst_pte);
1328 src_pte = dst_pte = NULL;
1329 /* now we can block and wait */
1330 folio_lock(src_folio);
1331 goto retry;
1332 }
1333
1334 if (WARN_ON_ONCE(!folio_test_anon(src_folio))) {
1335 err = -EBUSY;
1336 goto out;
1337 }
1338 }
1339
1340 /* at this point we have src_folio locked */
1341 if (folio_test_large(src_folio)) {
1342 /* split_folio() can block */
1343 pte_unmap(src_pte);
1344 pte_unmap(dst_pte);
1345 src_pte = dst_pte = NULL;
1346 err = split_folio(src_folio);
1347 if (err)
1348 goto out;
1349 /* have to reacquire the folio after it got split */
1350 folio_unlock(src_folio);
1351 folio_put(src_folio);
1352 src_folio = NULL;
1353 goto retry;
1354 }
1355
1356 if (!src_anon_vma) {
1357 /*
1358 * folio_referenced walks the anon_vma chain
1359 * without the folio lock. Serialize against it with
1360 * the anon_vma lock, the folio lock is not enough.
1361 */
1362 src_anon_vma = folio_get_anon_vma(src_folio);
1363 if (!src_anon_vma) {
1364 /* page was unmapped from under us */
1365 err = -EAGAIN;
1366 goto out;
1367 }
1368 if (!anon_vma_trylock_write(src_anon_vma)) {
1369 pte_unmap(src_pte);
1370 pte_unmap(dst_pte);
1371 src_pte = dst_pte = NULL;
1372 /* now we can block and wait */
1373 anon_vma_lock_write(src_anon_vma);
1374 goto retry;
1375 }
1376 }
1377
1378 err = move_present_pte(mm, dst_vma, src_vma,
1379 dst_addr, src_addr, dst_pte, src_pte,
1380 orig_dst_pte, orig_src_pte, dst_pmd,
1381 dst_pmdval, dst_ptl, src_ptl, src_folio);
1382 } else {
1383 struct folio *folio = NULL;
1384
1385 entry = pte_to_swp_entry(orig_src_pte);
1386 if (non_swap_entry(entry)) {
1387 if (is_migration_entry(entry)) {
1388 pte_unmap(src_pte);
1389 pte_unmap(dst_pte);
1390 src_pte = dst_pte = NULL;
1391 migration_entry_wait(mm, src_pmd, src_addr);
1392 err = -EAGAIN;
1393 } else
1394 err = -EFAULT;
1395 goto out;
1396 }
1397
1398 if (!pte_swp_exclusive(orig_src_pte)) {
1399 err = -EBUSY;
1400 goto out;
1401 }
1402
1403 si = get_swap_device(entry);
1404 if (unlikely(!si)) {
1405 err = -EAGAIN;
1406 goto out;
1407 }
1408 /*
1409 * Verify the existence of the swapcache. If present, the folio's
1410 * index and mapping must be updated even when the PTE is a swap
1411 * entry. The anon_vma lock is not taken during this process since
1412 * the folio has already been unmapped, and the swap entry is
1413 * exclusive, preventing rmap walks.
1414 *
1415 * For large folios, return -EBUSY immediately, as split_folio()
1416 * also returns -EBUSY when attempting to split unmapped large
1417 * folios in the swapcache. This issue needs to be resolved
1418 * separately to allow proper handling.
1419 */
1420 if (!src_folio)
1421 folio = filemap_get_folio(swap_address_space(entry),
1422 swap_cache_index(entry));
1423 if (!IS_ERR_OR_NULL(folio)) {
1424 if (folio_test_large(folio)) {
1425 err = -EBUSY;
1426 folio_put(folio);
1427 goto out;
1428 }
1429 src_folio = folio;
1430 src_folio_pte = orig_src_pte;
1431 if (!folio_trylock(src_folio)) {
1432 pte_unmap(src_pte);
1433 pte_unmap(dst_pte);
1434 src_pte = dst_pte = NULL;
1435 put_swap_device(si);
1436 si = NULL;
1437 /* now we can block and wait */
1438 folio_lock(src_folio);
1439 goto retry;
1440 }
1441 }
1442 err = move_swap_pte(mm, dst_vma, dst_addr, src_addr, dst_pte, src_pte,
1443 orig_dst_pte, orig_src_pte, dst_pmd, dst_pmdval,
1444 dst_ptl, src_ptl, src_folio, si, entry);
1445 }
1446
1447 out:
1448 if (src_anon_vma) {
1449 anon_vma_unlock_write(src_anon_vma);
1450 put_anon_vma(src_anon_vma);
1451 }
1452 if (src_folio) {
1453 folio_unlock(src_folio);
1454 folio_put(src_folio);
1455 }
1456 /*
1457 * Unmap in reverse order (LIFO) to maintain proper kmap_local
1458 * index ordering when CONFIG_HIGHPTE is enabled. We mapped dst_pte
1459 * first, then src_pte, so we must unmap src_pte first, then dst_pte.
1460 */
1461 if (src_pte)
1462 pte_unmap(src_pte);
1463 if (dst_pte)
1464 pte_unmap(dst_pte);
1465 mmu_notifier_invalidate_range_end(&range);
1466 if (si)
1467 put_swap_device(si);
1468
1469 return err;
1470 }
1471
1472 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
move_splits_huge_pmd(unsigned long dst_addr,unsigned long src_addr,unsigned long src_end)1473 static inline bool move_splits_huge_pmd(unsigned long dst_addr,
1474 unsigned long src_addr,
1475 unsigned long src_end)
1476 {
1477 return (src_addr & ~HPAGE_PMD_MASK) || (dst_addr & ~HPAGE_PMD_MASK) ||
1478 src_end - src_addr < HPAGE_PMD_SIZE;
1479 }
1480 #else
move_splits_huge_pmd(unsigned long dst_addr,unsigned long src_addr,unsigned long src_end)1481 static inline bool move_splits_huge_pmd(unsigned long dst_addr,
1482 unsigned long src_addr,
1483 unsigned long src_end)
1484 {
1485 /* This is unreachable anyway, just to avoid warnings when HPAGE_PMD_SIZE==0 */
1486 return false;
1487 }
1488 #endif
1489
vma_move_compatible(struct vm_area_struct * vma)1490 static inline bool vma_move_compatible(struct vm_area_struct *vma)
1491 {
1492 return !(vma->vm_flags & (VM_PFNMAP | VM_IO | VM_HUGETLB |
1493 VM_MIXEDMAP | VM_SHADOW_STACK));
1494 }
1495
validate_move_areas(struct userfaultfd_ctx * ctx,struct vm_area_struct * src_vma,struct vm_area_struct * dst_vma)1496 static int validate_move_areas(struct userfaultfd_ctx *ctx,
1497 struct vm_area_struct *src_vma,
1498 struct vm_area_struct *dst_vma)
1499 {
1500 /* Only allow moving if both have the same access and protection */
1501 if ((src_vma->vm_flags & VM_ACCESS_FLAGS) != (dst_vma->vm_flags & VM_ACCESS_FLAGS) ||
1502 pgprot_val(src_vma->vm_page_prot) != pgprot_val(dst_vma->vm_page_prot))
1503 return -EINVAL;
1504
1505 /* Only allow moving if both are mlocked or both aren't */
1506 if ((src_vma->vm_flags & VM_LOCKED) != (dst_vma->vm_flags & VM_LOCKED))
1507 return -EINVAL;
1508
1509 /*
1510 * For now, we keep it simple and only move between writable VMAs.
1511 * Access flags are equal, therefore cheching only the source is enough.
1512 */
1513 if (!(src_vma->vm_flags & VM_WRITE))
1514 return -EINVAL;
1515
1516 /* Check if vma flags indicate content which can be moved */
1517 if (!vma_move_compatible(src_vma) || !vma_move_compatible(dst_vma))
1518 return -EINVAL;
1519
1520 /* Ensure dst_vma is registered in uffd we are operating on */
1521 if (!dst_vma->vm_userfaultfd_ctx.ctx ||
1522 dst_vma->vm_userfaultfd_ctx.ctx != ctx)
1523 return -EINVAL;
1524
1525 /* Only allow moving across anonymous vmas */
1526 if (!vma_is_anonymous(src_vma) || !vma_is_anonymous(dst_vma))
1527 return -EINVAL;
1528
1529 return 0;
1530 }
1531
1532 static __always_inline
find_vmas_mm_locked(struct mm_struct * mm,unsigned long dst_start,unsigned long src_start,struct vm_area_struct ** dst_vmap,struct vm_area_struct ** src_vmap)1533 int find_vmas_mm_locked(struct mm_struct *mm,
1534 unsigned long dst_start,
1535 unsigned long src_start,
1536 struct vm_area_struct **dst_vmap,
1537 struct vm_area_struct **src_vmap)
1538 {
1539 struct vm_area_struct *vma;
1540
1541 mmap_assert_locked(mm);
1542 vma = find_vma_and_prepare_anon(mm, dst_start);
1543 if (IS_ERR(vma))
1544 return PTR_ERR(vma);
1545
1546 *dst_vmap = vma;
1547 /* Skip finding src_vma if src_start is in dst_vma */
1548 if (src_start >= vma->vm_start && src_start < vma->vm_end)
1549 goto out_success;
1550
1551 vma = vma_lookup(mm, src_start);
1552 if (!vma)
1553 return -ENOENT;
1554 out_success:
1555 *src_vmap = vma;
1556 return 0;
1557 }
1558
1559 #ifdef CONFIG_PER_VMA_LOCK
uffd_move_lock(struct mm_struct * mm,unsigned long dst_start,unsigned long src_start,struct vm_area_struct ** dst_vmap,struct vm_area_struct ** src_vmap)1560 static int uffd_move_lock(struct mm_struct *mm,
1561 unsigned long dst_start,
1562 unsigned long src_start,
1563 struct vm_area_struct **dst_vmap,
1564 struct vm_area_struct **src_vmap)
1565 {
1566 struct vm_area_struct *vma;
1567 int err;
1568
1569 vma = uffd_lock_vma(mm, dst_start);
1570 if (IS_ERR(vma))
1571 return PTR_ERR(vma);
1572
1573 *dst_vmap = vma;
1574 /*
1575 * Skip finding src_vma if src_start is in dst_vma. This also ensures
1576 * that we don't lock the same vma twice.
1577 */
1578 if (src_start >= vma->vm_start && src_start < vma->vm_end) {
1579 *src_vmap = vma;
1580 return 0;
1581 }
1582
1583 /*
1584 * Using uffd_lock_vma() to get src_vma can lead to following deadlock:
1585 *
1586 * Thread1 Thread2
1587 * ------- -------
1588 * vma_start_read(dst_vma)
1589 * mmap_write_lock(mm)
1590 * vma_start_write(src_vma)
1591 * vma_start_read(src_vma)
1592 * mmap_read_lock(mm)
1593 * vma_start_write(dst_vma)
1594 */
1595 *src_vmap = lock_vma_under_rcu(mm, src_start);
1596 if (likely(*src_vmap))
1597 return 0;
1598
1599 /* Undo any locking and retry in mmap_lock critical section */
1600 vma_end_read(*dst_vmap);
1601
1602 mmap_read_lock(mm);
1603 err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap);
1604 if (err)
1605 goto out;
1606
1607 if (!vma_start_read_locked(*dst_vmap)) {
1608 err = -EAGAIN;
1609 goto out;
1610 }
1611
1612 /* Nothing further to do if both vmas are locked. */
1613 if (*dst_vmap == *src_vmap)
1614 goto out;
1615
1616 if (!vma_start_read_locked_nested(*src_vmap, SINGLE_DEPTH_NESTING)) {
1617 /* Undo dst_vmap locking if src_vmap failed to lock */
1618 vma_end_read(*dst_vmap);
1619 err = -EAGAIN;
1620 }
1621 out:
1622 mmap_read_unlock(mm);
1623 return err;
1624 }
1625
uffd_move_unlock(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1626 static void uffd_move_unlock(struct vm_area_struct *dst_vma,
1627 struct vm_area_struct *src_vma)
1628 {
1629 vma_end_read(src_vma);
1630 if (src_vma != dst_vma)
1631 vma_end_read(dst_vma);
1632 }
1633
1634 #else
1635
uffd_move_lock(struct mm_struct * mm,unsigned long dst_start,unsigned long src_start,struct vm_area_struct ** dst_vmap,struct vm_area_struct ** src_vmap)1636 static int uffd_move_lock(struct mm_struct *mm,
1637 unsigned long dst_start,
1638 unsigned long src_start,
1639 struct vm_area_struct **dst_vmap,
1640 struct vm_area_struct **src_vmap)
1641 {
1642 int err;
1643
1644 mmap_read_lock(mm);
1645 err = find_vmas_mm_locked(mm, dst_start, src_start, dst_vmap, src_vmap);
1646 if (err)
1647 mmap_read_unlock(mm);
1648 return err;
1649 }
1650
uffd_move_unlock(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma)1651 static void uffd_move_unlock(struct vm_area_struct *dst_vma,
1652 struct vm_area_struct *src_vma)
1653 {
1654 mmap_assert_locked(src_vma->vm_mm);
1655 mmap_read_unlock(dst_vma->vm_mm);
1656 }
1657 #endif
1658
1659 /**
1660 * move_pages - move arbitrary anonymous pages of an existing vma
1661 * @ctx: pointer to the userfaultfd context
1662 * @dst_start: start of the destination virtual memory range
1663 * @src_start: start of the source virtual memory range
1664 * @len: length of the virtual memory range
1665 * @mode: flags from uffdio_move.mode
1666 *
1667 * It will either use the mmap_lock in read mode or per-vma locks
1668 *
1669 * move_pages() remaps arbitrary anonymous pages atomically in zero
1670 * copy. It only works on non shared anonymous pages because those can
1671 * be relocated without generating non linear anon_vmas in the rmap
1672 * code.
1673 *
1674 * It provides a zero copy mechanism to handle userspace page faults.
1675 * The source vma pages should have mapcount == 1, which can be
1676 * enforced by using madvise(MADV_DONTFORK) on src vma.
1677 *
1678 * The thread receiving the page during the userland page fault
1679 * will receive the faulting page in the source vma through the network,
1680 * storage or any other I/O device (MADV_DONTFORK in the source vma
1681 * avoids move_pages() to fail with -EBUSY if the process forks before
1682 * move_pages() is called), then it will call move_pages() to map the
1683 * page in the faulting address in the destination vma.
1684 *
1685 * This userfaultfd command works purely via pagetables, so it's the
1686 * most efficient way to move physical non shared anonymous pages
1687 * across different virtual addresses. Unlike mremap()/mmap()/munmap()
1688 * it does not create any new vmas. The mapping in the destination
1689 * address is atomic.
1690 *
1691 * It only works if the vma protection bits are identical from the
1692 * source and destination vma.
1693 *
1694 * It can remap non shared anonymous pages within the same vma too.
1695 *
1696 * If the source virtual memory range has any unmapped holes, or if
1697 * the destination virtual memory range is not a whole unmapped hole,
1698 * move_pages() will fail respectively with -ENOENT or -EEXIST. This
1699 * provides a very strict behavior to avoid any chance of memory
1700 * corruption going unnoticed if there are userland race conditions.
1701 * Only one thread should resolve the userland page fault at any given
1702 * time for any given faulting address. This means that if two threads
1703 * try to both call move_pages() on the same destination address at the
1704 * same time, the second thread will get an explicit error from this
1705 * command.
1706 *
1707 * The command retval will return "len" is successful. The command
1708 * however can be interrupted by fatal signals or errors. If
1709 * interrupted it will return the number of bytes successfully
1710 * remapped before the interruption if any, or the negative error if
1711 * none. It will never return zero. Either it will return an error or
1712 * an amount of bytes successfully moved. If the retval reports a
1713 * "short" remap, the move_pages() command should be repeated by
1714 * userland with src+retval, dst+reval, len-retval if it wants to know
1715 * about the error that interrupted it.
1716 *
1717 * The UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES flag can be specified to
1718 * prevent -ENOENT errors to materialize if there are holes in the
1719 * source virtual range that is being remapped. The holes will be
1720 * accounted as successfully remapped in the retval of the
1721 * command. This is mostly useful to remap hugepage naturally aligned
1722 * virtual regions without knowing if there are transparent hugepage
1723 * in the regions or not, but preventing the risk of having to split
1724 * the hugepmd during the remap.
1725 *
1726 * If there's any rmap walk that is taking the anon_vma locks without
1727 * first obtaining the folio lock (the only current instance is
1728 * folio_referenced), they will have to verify if the folio->mapping
1729 * has changed after taking the anon_vma lock. If it changed they
1730 * should release the lock and retry obtaining a new anon_vma, because
1731 * it means the anon_vma was changed by move_pages() before the lock
1732 * could be obtained. This is the only additional complexity added to
1733 * the rmap code to provide this anonymous page remapping functionality.
1734 */
move_pages(struct userfaultfd_ctx * ctx,unsigned long dst_start,unsigned long src_start,unsigned long len,__u64 mode)1735 ssize_t move_pages(struct userfaultfd_ctx *ctx, unsigned long dst_start,
1736 unsigned long src_start, unsigned long len, __u64 mode)
1737 {
1738 struct mm_struct *mm = ctx->mm;
1739 struct vm_area_struct *src_vma, *dst_vma;
1740 unsigned long src_addr, dst_addr;
1741 pmd_t *src_pmd, *dst_pmd;
1742 long err = -EINVAL;
1743 ssize_t moved = 0;
1744
1745 /* Sanitize the command parameters. */
1746 VM_WARN_ON_ONCE(src_start & ~PAGE_MASK);
1747 VM_WARN_ON_ONCE(dst_start & ~PAGE_MASK);
1748 VM_WARN_ON_ONCE(len & ~PAGE_MASK);
1749
1750 /* Does the address range wrap, or is the span zero-sized? */
1751 VM_WARN_ON_ONCE(src_start + len < src_start);
1752 VM_WARN_ON_ONCE(dst_start + len < dst_start);
1753
1754 err = uffd_move_lock(mm, dst_start, src_start, &dst_vma, &src_vma);
1755 if (err)
1756 goto out;
1757
1758 /* Re-check after taking map_changing_lock */
1759 err = -EAGAIN;
1760 down_read(&ctx->map_changing_lock);
1761 if (likely(atomic_read(&ctx->mmap_changing)))
1762 goto out_unlock;
1763 /*
1764 * Make sure the vma is not shared, that the src and dst remap
1765 * ranges are both valid and fully within a single existing
1766 * vma.
1767 */
1768 err = -EINVAL;
1769 if (src_vma->vm_flags & VM_SHARED)
1770 goto out_unlock;
1771 if (src_start + len > src_vma->vm_end)
1772 goto out_unlock;
1773
1774 if (dst_vma->vm_flags & VM_SHARED)
1775 goto out_unlock;
1776 if (dst_start + len > dst_vma->vm_end)
1777 goto out_unlock;
1778
1779 err = validate_move_areas(ctx, src_vma, dst_vma);
1780 if (err)
1781 goto out_unlock;
1782
1783 for (src_addr = src_start, dst_addr = dst_start;
1784 src_addr < src_start + len;) {
1785 spinlock_t *ptl;
1786 pmd_t dst_pmdval;
1787 unsigned long step_size;
1788
1789 /*
1790 * Below works because anonymous area would not have a
1791 * transparent huge PUD. If file-backed support is added,
1792 * that case would need to be handled here.
1793 */
1794 src_pmd = mm_find_pmd(mm, src_addr);
1795 if (unlikely(!src_pmd)) {
1796 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) {
1797 err = -ENOENT;
1798 break;
1799 }
1800 src_pmd = mm_alloc_pmd(mm, src_addr);
1801 if (unlikely(!src_pmd)) {
1802 err = -ENOMEM;
1803 break;
1804 }
1805 }
1806 dst_pmd = mm_alloc_pmd(mm, dst_addr);
1807 if (unlikely(!dst_pmd)) {
1808 err = -ENOMEM;
1809 break;
1810 }
1811
1812 dst_pmdval = pmdp_get_lockless(dst_pmd);
1813 /*
1814 * If the dst_pmd is mapped as THP don't override it and just
1815 * be strict. If dst_pmd changes into TPH after this check, the
1816 * move_pages_huge_pmd() will detect the change and retry
1817 * while move_pages_pte() will detect the change and fail.
1818 */
1819 if (unlikely(pmd_trans_huge(dst_pmdval))) {
1820 err = -EEXIST;
1821 break;
1822 }
1823
1824 ptl = pmd_trans_huge_lock(src_pmd, src_vma);
1825 if (ptl) {
1826 /* Check if we can move the pmd without splitting it. */
1827 if (move_splits_huge_pmd(dst_addr, src_addr, src_start + len) ||
1828 !pmd_none(dst_pmdval)) {
1829 /* Can be a migration entry */
1830 if (pmd_present(*src_pmd)) {
1831 struct folio *folio = pmd_folio(*src_pmd);
1832
1833 if (!is_huge_zero_folio(folio) &&
1834 !PageAnonExclusive(&folio->page)) {
1835 spin_unlock(ptl);
1836 err = -EBUSY;
1837 break;
1838 }
1839 }
1840
1841 spin_unlock(ptl);
1842 split_huge_pmd(src_vma, src_pmd, src_addr);
1843 /* The folio will be split by move_pages_pte() */
1844 continue;
1845 }
1846
1847 err = move_pages_huge_pmd(mm, dst_pmd, src_pmd,
1848 dst_pmdval, dst_vma, src_vma,
1849 dst_addr, src_addr);
1850 step_size = HPAGE_PMD_SIZE;
1851 } else {
1852 if (pmd_none(*src_pmd)) {
1853 if (!(mode & UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES)) {
1854 err = -ENOENT;
1855 break;
1856 }
1857 if (unlikely(__pte_alloc(mm, src_pmd))) {
1858 err = -ENOMEM;
1859 break;
1860 }
1861 }
1862
1863 if (unlikely(pte_alloc(mm, dst_pmd))) {
1864 err = -ENOMEM;
1865 break;
1866 }
1867
1868 err = move_pages_pte(mm, dst_pmd, src_pmd,
1869 dst_vma, src_vma,
1870 dst_addr, src_addr, mode);
1871 step_size = PAGE_SIZE;
1872 }
1873
1874 cond_resched();
1875
1876 if (fatal_signal_pending(current)) {
1877 /* Do not override an error */
1878 if (!err || err == -EAGAIN)
1879 err = -EINTR;
1880 break;
1881 }
1882
1883 if (err) {
1884 if (err == -EAGAIN)
1885 continue;
1886 break;
1887 }
1888
1889 /* Proceed to the next page */
1890 dst_addr += step_size;
1891 src_addr += step_size;
1892 moved += step_size;
1893 }
1894
1895 out_unlock:
1896 up_read(&ctx->map_changing_lock);
1897 uffd_move_unlock(dst_vma, src_vma);
1898 out:
1899 VM_WARN_ON_ONCE(moved < 0);
1900 VM_WARN_ON_ONCE(err > 0);
1901 VM_WARN_ON_ONCE(!moved && !err);
1902 return moved ? moved : err;
1903 }
1904
userfaultfd_set_vm_flags(struct vm_area_struct * vma,vm_flags_t vm_flags)1905 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
1906 vm_flags_t vm_flags)
1907 {
1908 const bool uffd_wp_changed = (vma->vm_flags ^ vm_flags) & VM_UFFD_WP;
1909
1910 vm_flags_reset(vma, vm_flags);
1911 /*
1912 * For shared mappings, we want to enable writenotify while
1913 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
1914 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
1915 */
1916 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
1917 vma_set_page_prot(vma);
1918 }
1919
userfaultfd_set_ctx(struct vm_area_struct * vma,struct userfaultfd_ctx * ctx,vm_flags_t vm_flags)1920 static void userfaultfd_set_ctx(struct vm_area_struct *vma,
1921 struct userfaultfd_ctx *ctx,
1922 vm_flags_t vm_flags)
1923 {
1924 vma_start_write(vma);
1925 vma->vm_userfaultfd_ctx = (struct vm_userfaultfd_ctx){ctx};
1926 userfaultfd_set_vm_flags(vma,
1927 (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags);
1928 }
1929
userfaultfd_reset_ctx(struct vm_area_struct * vma)1930 void userfaultfd_reset_ctx(struct vm_area_struct *vma)
1931 {
1932 userfaultfd_set_ctx(vma, NULL, 0);
1933 }
1934
userfaultfd_clear_vma(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end)1935 struct vm_area_struct *userfaultfd_clear_vma(struct vma_iterator *vmi,
1936 struct vm_area_struct *prev,
1937 struct vm_area_struct *vma,
1938 unsigned long start,
1939 unsigned long end)
1940 {
1941 struct vm_area_struct *ret;
1942 bool give_up_on_oom = false;
1943
1944 /*
1945 * If we are modifying only and not splitting, just give up on the merge
1946 * if OOM prevents us from merging successfully.
1947 */
1948 if (start == vma->vm_start && end == vma->vm_end)
1949 give_up_on_oom = true;
1950
1951 /* Reset ptes for the whole vma range if wr-protected */
1952 if (userfaultfd_wp(vma))
1953 uffd_wp_range(vma, start, end - start, false);
1954
1955 ret = vma_modify_flags_uffd(vmi, prev, vma, start, end,
1956 vma->vm_flags & ~__VM_UFFD_FLAGS,
1957 NULL_VM_UFFD_CTX, give_up_on_oom);
1958
1959 /*
1960 * In the vma_merge() successful mprotect-like case 8:
1961 * the next vma was merged into the current one and
1962 * the current one has not been updated yet.
1963 */
1964 if (!IS_ERR(ret))
1965 userfaultfd_reset_ctx(ret);
1966
1967 return ret;
1968 }
1969
1970 /* Assumes mmap write lock taken, and mm_struct pinned. */
userfaultfd_register_range(struct userfaultfd_ctx * ctx,struct vm_area_struct * vma,vm_flags_t vm_flags,unsigned long start,unsigned long end,bool wp_async)1971 int userfaultfd_register_range(struct userfaultfd_ctx *ctx,
1972 struct vm_area_struct *vma,
1973 vm_flags_t vm_flags,
1974 unsigned long start, unsigned long end,
1975 bool wp_async)
1976 {
1977 VMA_ITERATOR(vmi, ctx->mm, start);
1978 struct vm_area_struct *prev = vma_prev(&vmi);
1979 unsigned long vma_end;
1980 vm_flags_t new_flags;
1981
1982 if (vma->vm_start < start)
1983 prev = vma;
1984
1985 for_each_vma_range(vmi, vma, end) {
1986 cond_resched();
1987
1988 VM_WARN_ON_ONCE(!vma_can_userfault(vma, vm_flags, wp_async));
1989 VM_WARN_ON_ONCE(vma->vm_userfaultfd_ctx.ctx &&
1990 vma->vm_userfaultfd_ctx.ctx != ctx);
1991 VM_WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE));
1992
1993 /*
1994 * Nothing to do: this vma is already registered into this
1995 * userfaultfd and with the right tracking mode too.
1996 */
1997 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1998 (vma->vm_flags & vm_flags) == vm_flags)
1999 goto skip;
2000
2001 if (vma->vm_start > start)
2002 start = vma->vm_start;
2003 vma_end = min(end, vma->vm_end);
2004
2005 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
2006 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
2007 new_flags,
2008 (struct vm_userfaultfd_ctx){ctx},
2009 /* give_up_on_oom = */false);
2010 if (IS_ERR(vma))
2011 return PTR_ERR(vma);
2012
2013 /*
2014 * In the vma_merge() successful mprotect-like case 8:
2015 * the next vma was merged into the current one and
2016 * the current one has not been updated yet.
2017 */
2018 userfaultfd_set_ctx(vma, ctx, vm_flags);
2019
2020 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
2021 hugetlb_unshare_all_pmds(vma);
2022
2023 skip:
2024 prev = vma;
2025 start = vma->vm_end;
2026 }
2027
2028 return 0;
2029 }
2030
userfaultfd_release_new(struct userfaultfd_ctx * ctx)2031 void userfaultfd_release_new(struct userfaultfd_ctx *ctx)
2032 {
2033 struct mm_struct *mm = ctx->mm;
2034 struct vm_area_struct *vma;
2035 VMA_ITERATOR(vmi, mm, 0);
2036
2037 /* the various vma->vm_userfaultfd_ctx still points to it */
2038 mmap_write_lock(mm);
2039 for_each_vma(vmi, vma) {
2040 if (vma->vm_userfaultfd_ctx.ctx == ctx)
2041 userfaultfd_reset_ctx(vma);
2042 }
2043 mmap_write_unlock(mm);
2044 }
2045
userfaultfd_release_all(struct mm_struct * mm,struct userfaultfd_ctx * ctx)2046 void userfaultfd_release_all(struct mm_struct *mm,
2047 struct userfaultfd_ctx *ctx)
2048 {
2049 struct vm_area_struct *vma, *prev;
2050 VMA_ITERATOR(vmi, mm, 0);
2051
2052 if (!mmget_not_zero(mm))
2053 return;
2054
2055 /*
2056 * Flush page faults out of all CPUs. NOTE: all page faults
2057 * must be retried without returning VM_FAULT_SIGBUS if
2058 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
2059 * changes while handle_userfault released the mmap_lock. So
2060 * it's critical that released is set to true (above), before
2061 * taking the mmap_lock for writing.
2062 */
2063 mmap_write_lock(mm);
2064 prev = NULL;
2065 for_each_vma(vmi, vma) {
2066 cond_resched();
2067 VM_WARN_ON_ONCE(!!vma->vm_userfaultfd_ctx.ctx ^
2068 !!(vma->vm_flags & __VM_UFFD_FLAGS));
2069 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
2070 prev = vma;
2071 continue;
2072 }
2073
2074 vma = userfaultfd_clear_vma(&vmi, prev, vma,
2075 vma->vm_start, vma->vm_end);
2076 prev = vma;
2077 }
2078 mmap_write_unlock(mm);
2079 mmput(mm);
2080 }
2081