1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * The ARCv2 backend of Just-In-Time compiler for eBPF bytecode.
4 *
5 * Copyright (c) 2024 Synopsys Inc.
6 * Author: Shahab Vahedi <shahab@synopsys.com>
7 */
8 #include <linux/bug.h>
9 #include "bpf_jit.h"
10
11 /* ARC core registers. */
12 enum {
13 ARC_R_0, ARC_R_1, ARC_R_2, ARC_R_3, ARC_R_4, ARC_R_5,
14 ARC_R_6, ARC_R_7, ARC_R_8, ARC_R_9, ARC_R_10, ARC_R_11,
15 ARC_R_12, ARC_R_13, ARC_R_14, ARC_R_15, ARC_R_16, ARC_R_17,
16 ARC_R_18, ARC_R_19, ARC_R_20, ARC_R_21, ARC_R_22, ARC_R_23,
17 ARC_R_24, ARC_R_25, ARC_R_26, ARC_R_FP, ARC_R_SP, ARC_R_ILINK,
18 ARC_R_30, ARC_R_BLINK,
19 /*
20 * Having ARC_R_IMM encoded as source register means there is an
21 * immediate that must be interpreted from the next 4 bytes. If
22 * encoded as the destination register though, it implies that the
23 * output of the operation is not assigned to any register. The
24 * latter is helpful if we only care about updating the CPU status
25 * flags.
26 */
27 ARC_R_IMM = 62
28 };
29
30 /*
31 * Remarks about the rationale behind the chosen mapping:
32 *
33 * - BPF_REG_{1,2,3,4} are the argument registers and must be mapped to
34 * argument registers in ARCv2 ABI: r0-r7. The r7 registers is the last
35 * argument register in the ABI. Therefore BPF_REG_5, as the fifth
36 * argument, must be pushed onto the stack. This is a must for calling
37 * in-kernel functions.
38 *
39 * - In ARCv2 ABI, the return value is in r0 for 32-bit results and (r1,r0)
40 * for 64-bit results. However, because they're already used for BPF_REG_1,
41 * the next available scratch registers, r8 and r9, are the best candidates
42 * for BPF_REG_0. After a "call" to a(n) (in-kernel) function, the result
43 * is "mov"ed to these registers. At a BPF_EXIT, their value is "mov"ed to
44 * (r1,r0).
45 * It is worth mentioning that scratch registers are the best choice for
46 * BPF_REG_0, because it is very popular in BPF instruction encoding.
47 *
48 * - JIT_REG_TMP is an artifact needed to translate some BPF instructions.
49 * Its life span is one single BPF instruction. Since during the
50 * analyze_reg_usage(), it is not known if temporary registers are used,
51 * it is mapped to ARC's scratch registers: r10 and r11. Therefore, they
52 * don't matter in analysing phase and don't need saving. This temporary
53 * register is added as yet another index in the bpf2arc array, so it will
54 * unfold like the rest of registers during the code generation process.
55 *
56 * - Mapping of callee-saved BPF registers, BPF_REG_{6,7,8,9}, starts from
57 * (r15,r14) register pair. The (r13,r12) is not a good choice, because
58 * in ARCv2 ABI, r12 is not a callee-saved register and this can cause
59 * problem when calling an in-kernel function. Theoretically, the mapping
60 * could start from (r14,r13), but it is not a conventional ARCv2 register
61 * pair. To have a future proof design, I opted for this arrangement.
62 * If/when we decide to add ARCv2 instructions that do use register pairs,
63 * the mapping, hopefully, doesn't need to be revisited.
64 */
65 static const u8 bpf2arc[][2] = {
66 /* Return value from in-kernel function, and exit value from eBPF */
67 [BPF_REG_0] = {ARC_R_8, ARC_R_9},
68 /* Arguments from eBPF program to in-kernel function */
69 [BPF_REG_1] = {ARC_R_0, ARC_R_1},
70 [BPF_REG_2] = {ARC_R_2, ARC_R_3},
71 [BPF_REG_3] = {ARC_R_4, ARC_R_5},
72 [BPF_REG_4] = {ARC_R_6, ARC_R_7},
73 /* Remaining arguments, to be passed on the stack per 32-bit ABI */
74 [BPF_REG_5] = {ARC_R_22, ARC_R_23},
75 /* Callee-saved registers that in-kernel function will preserve */
76 [BPF_REG_6] = {ARC_R_14, ARC_R_15},
77 [BPF_REG_7] = {ARC_R_16, ARC_R_17},
78 [BPF_REG_8] = {ARC_R_18, ARC_R_19},
79 [BPF_REG_9] = {ARC_R_20, ARC_R_21},
80 /* Read-only frame pointer to access the eBPF stack. 32-bit only. */
81 [BPF_REG_FP] = {ARC_R_FP, },
82 /* Register for blinding constants */
83 [BPF_REG_AX] = {ARC_R_24, ARC_R_25},
84 /* Temporary registers for internal use */
85 [JIT_REG_TMP] = {ARC_R_10, ARC_R_11}
86 };
87
88 #define ARC_CALLEE_SAVED_REG_FIRST ARC_R_13
89 #define ARC_CALLEE_SAVED_REG_LAST ARC_R_25
90
91 #define REG_LO(r) (bpf2arc[(r)][0])
92 #define REG_HI(r) (bpf2arc[(r)][1])
93
94 /*
95 * To comply with ARCv2 ABI, BPF's arg5 must be put on stack. After which,
96 * the stack needs to be restored by ARG5_SIZE.
97 */
98 #define ARG5_SIZE 8
99
100 /* Instruction lengths in bytes. */
101 enum {
102 INSN_len_normal = 4, /* Normal instructions length. */
103 INSN_len_imm = 4 /* Length of an extra 32-bit immediate. */
104 };
105
106 /* ZZ defines the size of operation in encodings that it is used. */
107 enum {
108 ZZ_1_byte = 1,
109 ZZ_2_byte = 2,
110 ZZ_4_byte = 0,
111 ZZ_8_byte = 3
112 };
113
114 /*
115 * AA is mostly about address write back mode. It determines if the
116 * address in question should be updated before usage or after:
117 * addr += offset; data = *addr;
118 * data = *addr; addr += offset;
119 *
120 * In "scaling" mode, the effective address will become the sum
121 * of "address" + "index"*"size". The "size" is specified by the
122 * "ZZ" field. There is no write back when AA is set for scaling:
123 * data = *(addr + offset<<zz)
124 */
125 enum {
126 AA_none = 0,
127 AA_pre = 1, /* in assembly known as "a/aw". */
128 AA_post = 2, /* in assembly known as "ab". */
129 AA_scale = 3 /* in assembly known as "as". */
130 };
131
132 /* X flag determines the mode of extension. */
133 enum {
134 X_zero = 0,
135 X_sign = 1
136 };
137
138 /* Condition codes. */
139 enum {
140 CC_always = 0, /* condition is true all the time */
141 CC_equal = 1, /* if status32.z flag is set */
142 CC_unequal = 2, /* if status32.z flag is clear */
143 CC_positive = 3, /* if status32.n flag is clear */
144 CC_negative = 4, /* if status32.n flag is set */
145 CC_less_u = 5, /* less than (unsigned) */
146 CC_less_eq_u = 14, /* less than or equal (unsigned) */
147 CC_great_eq_u = 6, /* greater than or equal (unsigned) */
148 CC_great_u = 13, /* greater than (unsigned) */
149 CC_less_s = 11, /* less than (signed) */
150 CC_less_eq_s = 12, /* less than or equal (signed) */
151 CC_great_eq_s = 10, /* greater than or equal (signed) */
152 CC_great_s = 9 /* greater than (signed) */
153 };
154
155 #define IN_U6_RANGE(x) ((x) <= (0x40 - 1) && (x) >= 0)
156 #define IN_S9_RANGE(x) ((x) <= (0x100 - 1) && (x) >= -0x100)
157 #define IN_S12_RANGE(x) ((x) <= (0x800 - 1) && (x) >= -0x800)
158 #define IN_S21_RANGE(x) ((x) <= (0x100000 - 1) && (x) >= -0x100000)
159 #define IN_S25_RANGE(x) ((x) <= (0x1000000 - 1) && (x) >= -0x1000000)
160
161 /* Operands in most of the encodings. */
162 #define OP_A(x) ((x) & 0x03f)
163 #define OP_B(x) ((((x) & 0x07) << 24) | (((x) & 0x38) << 9))
164 #define OP_C(x) (((x) & 0x03f) << 6)
165 #define OP_IMM (OP_C(ARC_R_IMM))
166 #define COND(x) (OP_A((x) & 31))
167 #define FLAG(x) (((x) & 1) << 15)
168
169 /*
170 * The 4-byte encoding of "mov b,c":
171 *
172 * 0010_0bbb 0000_1010 0BBB_cccc cc00_0000
173 *
174 * b: BBBbbb destination register
175 * c: cccccc source register
176 */
177 #define OPC_MOV 0x200a0000
178
179 /*
180 * The 4-byte encoding of "mov b,s12" (used for moving small immediates):
181 *
182 * 0010_0bbb 1000_1010 0BBB_ssss ssSS_SSSS
183 *
184 * b: BBBbbb destination register
185 * s: SSSSSSssssss source immediate (signed)
186 */
187 #define OPC_MOVI 0x208a0000
188 #define MOVI_S12(x) ((((x) & 0xfc0) >> 6) | (((x) & 0x3f) << 6))
189
190 /*
191 * The 4-byte encoding of "mov[.qq] b,u6", used for conditional
192 * moving of even smaller immediates:
193 *
194 * 0010_0bbb 1100_1010 0BBB_cccc cciq_qqqq
195 *
196 * qq: qqqqq condition code
197 * i: If set, c is considered a 6-bit immediate, else a reg.
198 *
199 * b: BBBbbb destination register
200 * c: cccccc source
201 */
202 #define OPC_MOV_CC 0x20ca0000
203 #define MOV_CC_I BIT(5)
204 #define OPC_MOVU_CC (OPC_MOV_CC | MOV_CC_I)
205
206 /*
207 * The 4-byte encoding of "sexb b,c" (8-bit sign extension):
208 *
209 * 0010_0bbb 0010_1111 0BBB_cccc cc00_0101
210 *
211 * b: BBBbbb destination register
212 * c: cccccc source register
213 */
214 #define OPC_SEXB 0x202f0005
215
216 /*
217 * The 4-byte encoding of "sexh b,c" (16-bit sign extension):
218 *
219 * 0010_0bbb 0010_1111 0BBB_cccc cc00_0110
220 *
221 * b: BBBbbb destination register
222 * c: cccccc source register
223 */
224 #define OPC_SEXH 0x202f0006
225
226 /*
227 * The 4-byte encoding of "ld[zz][.x][.aa] c,[b,s9]":
228 *
229 * 0001_0bbb ssss_ssss SBBB_0aaz zxcc_cccc
230 *
231 * zz: size mode
232 * aa: address write back mode
233 * x: extension mode
234 *
235 * s9: S_ssss_ssss 9-bit signed number
236 * b: BBBbbb source reg for address
237 * c: cccccc destination register
238 */
239 #define OPC_LOAD 0x10000000
240 #define LOAD_X(x) ((x) << 6)
241 #define LOAD_ZZ(x) ((x) << 7)
242 #define LOAD_AA(x) ((x) << 9)
243 #define LOAD_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
244 #define LOAD_C(x) ((x) & 0x03f)
245 /* Unsigned and signed loads. */
246 #define OPC_LDU (OPC_LOAD | LOAD_X(X_zero))
247 #define OPC_LDS (OPC_LOAD | LOAD_X(X_sign))
248 /* 32-bit load. */
249 #define OPC_LD32 (OPC_LDU | LOAD_ZZ(ZZ_4_byte))
250 /* "pop reg" is merely a "ld.ab reg,[sp,4]". */
251 #define OPC_POP \
252 (OPC_LD32 | LOAD_AA(AA_post) | LOAD_S9(4) | OP_B(ARC_R_SP))
253
254 /*
255 * The 4-byte encoding of "st[zz][.aa] c,[b,s9]":
256 *
257 * 0001_1bbb ssss_ssss SBBB_cccc cc0a_azz0
258 *
259 * zz: zz size mode
260 * aa: aa address write back mode
261 *
262 * s9: S_ssss_ssss 9-bit signed number
263 * b: BBBbbb source reg for address
264 * c: cccccc source reg to be stored
265 */
266 #define OPC_STORE 0x18000000
267 #define STORE_ZZ(x) ((x) << 1)
268 #define STORE_AA(x) ((x) << 3)
269 #define STORE_S9(x) ((((x) & 0x0ff) << 16) | (((x) & 0x100) << 7))
270 /* 32-bit store. */
271 #define OPC_ST32 (OPC_STORE | STORE_ZZ(ZZ_4_byte))
272 /* "push reg" is merely a "st.aw reg,[sp,-4]". */
273 #define OPC_PUSH \
274 (OPC_ST32 | STORE_AA(AA_pre) | STORE_S9(-4) | OP_B(ARC_R_SP))
275
276 /*
277 * The 4-byte encoding of "add a,b,c":
278 *
279 * 0010_0bbb 0i00_0000 fBBB_cccc ccaa_aaaa
280 *
281 * f: indicates if flags (carry, etc.) should be updated
282 * i: If set, c is considered a 6-bit immediate, else a reg.
283 *
284 * a: aaaaaa result
285 * b: BBBbbb the 1st input operand
286 * c: cccccc the 2nd input operand
287 */
288 #define OPC_ADD 0x20000000
289 /* Addition with updating the pertinent flags in "status32" register. */
290 #define OPC_ADDF (OPC_ADD | FLAG(1))
291 #define ADDI BIT(22)
292 #define ADDI_U6(x) OP_C(x)
293 #define OPC_ADDI (OPC_ADD | ADDI)
294 #define OPC_ADDIF (OPC_ADDI | FLAG(1))
295 #define OPC_ADD_I (OPC_ADD | OP_IMM)
296
297 /*
298 * The 4-byte encoding of "adc a,b,c" (addition with carry):
299 *
300 * 0010_0bbb 0i00_0001 0BBB_cccc ccaa_aaaa
301 *
302 * i: if set, c is considered a 6-bit immediate, else a reg.
303 *
304 * a: aaaaaa result
305 * b: BBBbbb the 1st input operand
306 * c: cccccc the 2nd input operand
307 */
308 #define OPC_ADC 0x20010000
309 #define ADCI BIT(22)
310 #define ADCI_U6(x) OP_C(x)
311 #define OPC_ADCI (OPC_ADC | ADCI)
312
313 /*
314 * The 4-byte encoding of "sub a,b,c":
315 *
316 * 0010_0bbb 0i00_0010 fBBB_cccc ccaa_aaaa
317 *
318 * f: indicates if flags (carry, etc.) should be updated
319 * i: if set, c is considered a 6-bit immediate, else a reg.
320 *
321 * a: aaaaaa result
322 * b: BBBbbb the 1st input operand
323 * c: cccccc the 2nd input operand
324 */
325 #define OPC_SUB 0x20020000
326 /* Subtraction with updating the pertinent flags in "status32" register. */
327 #define OPC_SUBF (OPC_SUB | FLAG(1))
328 #define SUBI BIT(22)
329 #define SUBI_U6(x) OP_C(x)
330 #define OPC_SUBI (OPC_SUB | SUBI)
331 #define OPC_SUB_I (OPC_SUB | OP_IMM)
332
333 /*
334 * The 4-byte encoding of "sbc a,b,c" (subtraction with carry):
335 *
336 * 0010_0bbb 0000_0011 fBBB_cccc ccaa_aaaa
337 *
338 * f: indicates if flags (carry, etc.) should be updated
339 *
340 * a: aaaaaa result
341 * b: BBBbbb the 1st input operand
342 * c: cccccc the 2nd input operand
343 */
344 #define OPC_SBC 0x20030000
345
346 /*
347 * The 4-byte encoding of "cmp[.qq] b,c":
348 *
349 * 0010_0bbb 1100_1100 1BBB_cccc cc0q_qqqq
350 *
351 * qq: qqqqq condition code
352 *
353 * b: BBBbbb the 1st operand
354 * c: cccccc the 2nd operand
355 */
356 #define OPC_CMP 0x20cc8000
357
358 /*
359 * The 4-byte encoding of "neg a,b":
360 *
361 * 0010_0bbb 0100_1110 0BBB_0000 00aa_aaaa
362 *
363 * a: aaaaaa result
364 * b: BBBbbb input
365 */
366 #define OPC_NEG 0x204e0000
367
368 /*
369 * The 4-byte encoding of "mpy a,b,c".
370 * mpy is the signed 32-bit multiplication with the lower 32-bit
371 * of the product as the result.
372 *
373 * 0010_0bbb 0001_1010 0BBB_cccc ccaa_aaaa
374 *
375 * a: aaaaaa result
376 * b: BBBbbb the 1st input operand
377 * c: cccccc the 2nd input operand
378 */
379 #define OPC_MPY 0x201a0000
380 #define OPC_MPYI (OPC_MPY | OP_IMM)
381
382 /*
383 * The 4-byte encoding of "mpydu a,b,c".
384 * mpydu is the unsigned 32-bit multiplication with the lower 32-bit of
385 * the product in register "a" and the higher 32-bit in register "a+1".
386 *
387 * 0010_1bbb 0001_1001 0BBB_cccc ccaa_aaaa
388 *
389 * a: aaaaaa 64-bit result in registers (R_a+1,R_a)
390 * b: BBBbbb the 1st input operand
391 * c: cccccc the 2nd input operand
392 */
393 #define OPC_MPYDU 0x28190000
394 #define OPC_MPYDUI (OPC_MPYDU | OP_IMM)
395
396 /*
397 * The 4-byte encoding of "divu a,b,c" (unsigned division):
398 *
399 * 0010_1bbb 0000_0101 0BBB_cccc ccaa_aaaa
400 *
401 * a: aaaaaa result (quotient)
402 * b: BBBbbb the 1st input operand
403 * c: cccccc the 2nd input operand (divisor)
404 */
405 #define OPC_DIVU 0x28050000
406 #define OPC_DIVUI (OPC_DIVU | OP_IMM)
407
408 /*
409 * The 4-byte encoding of "div a,b,c" (signed division):
410 *
411 * 0010_1bbb 0000_0100 0BBB_cccc ccaa_aaaa
412 *
413 * a: aaaaaa result (quotient)
414 * b: BBBbbb the 1st input operand
415 * c: cccccc the 2nd input operand (divisor)
416 */
417 #define OPC_DIVS 0x28040000
418 #define OPC_DIVSI (OPC_DIVS | OP_IMM)
419
420 /*
421 * The 4-byte encoding of "remu a,b,c" (unsigned remainder):
422 *
423 * 0010_1bbb 0000_1001 0BBB_cccc ccaa_aaaa
424 *
425 * a: aaaaaa result (remainder)
426 * b: BBBbbb the 1st input operand
427 * c: cccccc the 2nd input operand (divisor)
428 */
429 #define OPC_REMU 0x28090000
430 #define OPC_REMUI (OPC_REMU | OP_IMM)
431
432 /*
433 * The 4-byte encoding of "rem a,b,c" (signed remainder):
434 *
435 * 0010_1bbb 0000_1000 0BBB_cccc ccaa_aaaa
436 *
437 * a: aaaaaa result (remainder)
438 * b: BBBbbb the 1st input operand
439 * c: cccccc the 2nd input operand (divisor)
440 */
441 #define OPC_REMS 0x28080000
442 #define OPC_REMSI (OPC_REMS | OP_IMM)
443
444 /*
445 * The 4-byte encoding of "and a,b,c":
446 *
447 * 0010_0bbb 0000_0100 fBBB_cccc ccaa_aaaa
448 *
449 * f: indicates if zero and negative flags should be updated
450 *
451 * a: aaaaaa result
452 * b: BBBbbb the 1st input operand
453 * c: cccccc the 2nd input operand
454 */
455 #define OPC_AND 0x20040000
456 #define OPC_ANDI (OPC_AND | OP_IMM)
457
458 /*
459 * The 4-byte encoding of "tst[.qq] b,c".
460 * Checks if the two input operands have any bit set at the same
461 * position.
462 *
463 * 0010_0bbb 1100_1011 1BBB_cccc cc0q_qqqq
464 *
465 * qq: qqqqq condition code
466 *
467 * b: BBBbbb the 1st input operand
468 * c: cccccc the 2nd input operand
469 */
470 #define OPC_TST 0x20cb8000
471
472 /*
473 * The 4-byte encoding of "or a,b,c":
474 *
475 * 0010_0bbb 0000_0101 0BBB_cccc ccaa_aaaa
476 *
477 * a: aaaaaa result
478 * b: BBBbbb the 1st input operand
479 * c: cccccc the 2nd input operand
480 */
481 #define OPC_OR 0x20050000
482 #define OPC_ORI (OPC_OR | OP_IMM)
483
484 /*
485 * The 4-byte encoding of "xor a,b,c":
486 *
487 * 0010_0bbb 0000_0111 0BBB_cccc ccaa_aaaa
488 *
489 * a: aaaaaa result
490 * b: BBBbbb the 1st input operand
491 * c: cccccc the 2nd input operand
492 */
493 #define OPC_XOR 0x20070000
494 #define OPC_XORI (OPC_XOR | OP_IMM)
495
496 /*
497 * The 4-byte encoding of "not b,c":
498 *
499 * 0010_0bbb 0010_1111 0BBB_cccc cc00_1010
500 *
501 * b: BBBbbb result
502 * c: cccccc input
503 */
504 #define OPC_NOT 0x202f000a
505
506 /*
507 * The 4-byte encoding of "btst b,u6":
508 *
509 * 0010_0bbb 0101_0001 1BBB_uuuu uu00_0000
510 *
511 * b: BBBbbb input number to check
512 * u6: uuuuuu 6-bit unsigned number specifying bit position to check
513 */
514 #define OPC_BTSTU6 0x20518000
515 #define BTST_U6(x) (OP_C((x) & 63))
516
517 /*
518 * The 4-byte encoding of "asl[.qq] b,b,c" (arithmetic shift left):
519 *
520 * 0010_1bbb 0i00_0000 0BBB_cccc ccaa_aaaa
521 *
522 * i: if set, c is considered a 5-bit immediate, else a reg.
523 *
524 * b: BBBbbb result and the first operand (number to be shifted)
525 * c: cccccc amount to be shifted
526 */
527 #define OPC_ASL 0x28000000
528 #define ASL_I BIT(22)
529 #define ASLI_U6(x) OP_C((x) & 31)
530 #define OPC_ASLI (OPC_ASL | ASL_I)
531
532 /*
533 * The 4-byte encoding of "asr a,b,c" (arithmetic shift right):
534 *
535 * 0010_1bbb 0i00_0010 0BBB_cccc ccaa_aaaa
536 *
537 * i: if set, c is considered a 6-bit immediate, else a reg.
538 *
539 * a: aaaaaa result
540 * b: BBBbbb first input: number to be shifted
541 * c: cccccc second input: amount to be shifted
542 */
543 #define OPC_ASR 0x28020000
544 #define ASR_I ASL_I
545 #define ASRI_U6(x) ASLI_U6(x)
546 #define OPC_ASRI (OPC_ASR | ASR_I)
547
548 /*
549 * The 4-byte encoding of "lsr a,b,c" (logical shift right):
550 *
551 * 0010_1bbb 0i00_0001 0BBB_cccc ccaa_aaaa
552 *
553 * i: if set, c is considered a 6-bit immediate, else a reg.
554 *
555 * a: aaaaaa result
556 * b: BBBbbb first input: number to be shifted
557 * c: cccccc second input: amount to be shifted
558 */
559 #define OPC_LSR 0x28010000
560 #define LSR_I ASL_I
561 #define LSRI_U6(x) ASLI_U6(x)
562 #define OPC_LSRI (OPC_LSR | LSR_I)
563
564 /*
565 * The 4-byte encoding of "swape b,c":
566 *
567 * 0010_1bbb 0010_1111 0bbb_cccc cc00_1001
568 *
569 * b: BBBbbb destination register
570 * c: cccccc source register
571 */
572 #define OPC_SWAPE 0x282f0009
573
574 /*
575 * Encoding for jump to an address in register:
576 * j reg_c
577 *
578 * 0010_0000 1110_0000 0000_cccc cc00_0000
579 *
580 * c: cccccc register holding the destination address
581 */
582 #define OPC_JMP 0x20e00000
583 /* Jump to "branch-and-link" register, which effectively is a "return". */
584 #define OPC_J_BLINK (OPC_JMP | OP_C(ARC_R_BLINK))
585
586 /*
587 * Encoding for jump-and-link to an address in register:
588 * jl reg_c
589 *
590 * 0010_0000 0010_0010 0000_cccc cc00_0000
591 *
592 * c: cccccc register holding the destination address
593 */
594 #define OPC_JL 0x20220000
595
596 /*
597 * Encoding for (conditional) branch to an offset from the current location
598 * that is word aligned: (PC & 0xffff_fffc) + s21
599 * B[qq] s21
600 *
601 * 0000_0sss ssss_sss0 SSSS_SSSS SS0q_qqqq
602 *
603 * qq: qqqqq condition code
604 * s21: SSSS SSSS_SSss ssss_ssss The displacement (21-bit signed)
605 *
606 * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
607 * it should be a multiple of 2. Hence, there is an implied '0' bit at its
608 * LSB: S_SSSS SSSS_Ssss ssss_sss0
609 */
610 #define OPC_BCC 0x00000000
611 #define BCC_S21(d) ((((d) & 0x7fe) << 16) | (((d) & 0x1ff800) >> 5))
612
613 /*
614 * Encoding for unconditional branch to an offset from the current location
615 * that is word aligned: (PC & 0xffff_fffc) + s25
616 * B s25
617 *
618 * 0000_0sss ssss_sss1 SSSS_SSSS SS00_TTTT
619 *
620 * s25: TTTT SSSS SSSS_SSss ssss_ssss The displacement (25-bit signed)
621 *
622 * The displacement is supposed to be 16-bit (2-byte) aligned. Therefore,
623 * it should be a multiple of 2. Hence, there is an implied '0' bit at its
624 * LSB: T TTTS_SSSS SSSS_Ssss ssss_sss0
625 */
626 #define OPC_B 0x00010000
627 #define B_S25(d) ((((d) & 0x1e00000) >> 21) | BCC_S21(d))
628
emit_2_bytes(u8 * buf,u16 bytes)629 static inline void emit_2_bytes(u8 *buf, u16 bytes)
630 {
631 *((u16 *)buf) = bytes;
632 }
633
emit_4_bytes(u8 * buf,u32 bytes)634 static inline void emit_4_bytes(u8 *buf, u32 bytes)
635 {
636 emit_2_bytes(buf, bytes >> 16);
637 emit_2_bytes(buf + 2, bytes & 0xffff);
638 }
639
bpf_to_arc_size(u8 size)640 static inline u8 bpf_to_arc_size(u8 size)
641 {
642 switch (size) {
643 case BPF_B:
644 return ZZ_1_byte;
645 case BPF_H:
646 return ZZ_2_byte;
647 case BPF_W:
648 return ZZ_4_byte;
649 case BPF_DW:
650 return ZZ_8_byte;
651 default:
652 return ZZ_4_byte;
653 }
654 }
655
656 /************** Encoders (Deal with ARC regs) ************/
657
658 /* Move an immediate to register with a 4-byte instruction. */
arc_movi_r(u8 * buf,u8 reg,s16 imm)659 static u8 arc_movi_r(u8 *buf, u8 reg, s16 imm)
660 {
661 const u32 insn = OPC_MOVI | OP_B(reg) | MOVI_S12(imm);
662
663 if (buf)
664 emit_4_bytes(buf, insn);
665 return INSN_len_normal;
666 }
667
668 /* rd <- rs */
arc_mov_r(u8 * buf,u8 rd,u8 rs)669 static u8 arc_mov_r(u8 *buf, u8 rd, u8 rs)
670 {
671 const u32 insn = OPC_MOV | OP_B(rd) | OP_C(rs);
672
673 if (buf)
674 emit_4_bytes(buf, insn);
675 return INSN_len_normal;
676 }
677
678 /* The emitted code may have different sizes based on "imm". */
arc_mov_i(u8 * buf,u8 rd,s32 imm)679 static u8 arc_mov_i(u8 *buf, u8 rd, s32 imm)
680 {
681 const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
682
683 if (IN_S12_RANGE(imm))
684 return arc_movi_r(buf, rd, imm);
685
686 if (buf) {
687 emit_4_bytes(buf, insn);
688 emit_4_bytes(buf + INSN_len_normal, imm);
689 }
690 return INSN_len_normal + INSN_len_imm;
691 }
692
693 /* The emitted code will always have the same size (8). */
arc_mov_i_fixed(u8 * buf,u8 rd,s32 imm)694 static u8 arc_mov_i_fixed(u8 *buf, u8 rd, s32 imm)
695 {
696 const u32 insn = OPC_MOV | OP_B(rd) | OP_IMM;
697
698 if (buf) {
699 emit_4_bytes(buf, insn);
700 emit_4_bytes(buf + INSN_len_normal, imm);
701 }
702 return INSN_len_normal + INSN_len_imm;
703 }
704
705 /* Conditional move. */
arc_mov_cc_r(u8 * buf,u8 cc,u8 rd,u8 rs)706 static u8 arc_mov_cc_r(u8 *buf, u8 cc, u8 rd, u8 rs)
707 {
708 const u32 insn = OPC_MOV_CC | OP_B(rd) | OP_C(rs) | COND(cc);
709
710 if (buf)
711 emit_4_bytes(buf, insn);
712 return INSN_len_normal;
713 }
714
715 /* Conditional move of a small immediate to rd. */
arc_movu_cc_r(u8 * buf,u8 cc,u8 rd,u8 imm)716 static u8 arc_movu_cc_r(u8 *buf, u8 cc, u8 rd, u8 imm)
717 {
718 const u32 insn = OPC_MOVU_CC | OP_B(rd) | OP_C(imm) | COND(cc);
719
720 if (buf)
721 emit_4_bytes(buf, insn);
722 return INSN_len_normal;
723 }
724
725 /* Sign extension from a byte. */
arc_sexb_r(u8 * buf,u8 rd,u8 rs)726 static u8 arc_sexb_r(u8 *buf, u8 rd, u8 rs)
727 {
728 const u32 insn = OPC_SEXB | OP_B(rd) | OP_C(rs);
729
730 if (buf)
731 emit_4_bytes(buf, insn);
732 return INSN_len_normal;
733 }
734
735 /* Sign extension from two bytes. */
arc_sexh_r(u8 * buf,u8 rd,u8 rs)736 static u8 arc_sexh_r(u8 *buf, u8 rd, u8 rs)
737 {
738 const u32 insn = OPC_SEXH | OP_B(rd) | OP_C(rs);
739
740 if (buf)
741 emit_4_bytes(buf, insn);
742 return INSN_len_normal;
743 }
744
745 /* st reg, [reg_mem, off] */
arc_st_r(u8 * buf,u8 reg,u8 reg_mem,s16 off,u8 zz)746 static u8 arc_st_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
747 {
748 const u32 insn = OPC_STORE | STORE_ZZ(zz) | OP_C(reg) |
749 OP_B(reg_mem) | STORE_S9(off);
750
751 if (buf)
752 emit_4_bytes(buf, insn);
753 return INSN_len_normal;
754 }
755
756 /* st.aw reg, [sp, -4] */
arc_push_r(u8 * buf,u8 reg)757 static u8 arc_push_r(u8 *buf, u8 reg)
758 {
759 const u32 insn = OPC_PUSH | OP_C(reg);
760
761 if (buf)
762 emit_4_bytes(buf, insn);
763 return INSN_len_normal;
764 }
765
766 /* ld reg, [reg_mem, off] (unsigned) */
arc_ld_r(u8 * buf,u8 reg,u8 reg_mem,s16 off,u8 zz)767 static u8 arc_ld_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
768 {
769 const u32 insn = OPC_LDU | LOAD_ZZ(zz) | LOAD_C(reg) |
770 OP_B(reg_mem) | LOAD_S9(off);
771
772 if (buf)
773 emit_4_bytes(buf, insn);
774 return INSN_len_normal;
775 }
776
777 /* ld.x reg, [reg_mem, off] (sign extend) */
arc_ldx_r(u8 * buf,u8 reg,u8 reg_mem,s16 off,u8 zz)778 static u8 arc_ldx_r(u8 *buf, u8 reg, u8 reg_mem, s16 off, u8 zz)
779 {
780 const u32 insn = OPC_LDS | LOAD_ZZ(zz) | LOAD_C(reg) |
781 OP_B(reg_mem) | LOAD_S9(off);
782
783 if (buf)
784 emit_4_bytes(buf, insn);
785 return INSN_len_normal;
786 }
787
788 /* ld.ab reg,[sp,4] */
arc_pop_r(u8 * buf,u8 reg)789 static u8 arc_pop_r(u8 *buf, u8 reg)
790 {
791 const u32 insn = OPC_POP | LOAD_C(reg);
792
793 if (buf)
794 emit_4_bytes(buf, insn);
795 return INSN_len_normal;
796 }
797
798 /* add Ra,Ra,Rc */
arc_add_r(u8 * buf,u8 ra,u8 rc)799 static u8 arc_add_r(u8 *buf, u8 ra, u8 rc)
800 {
801 const u32 insn = OPC_ADD | OP_A(ra) | OP_B(ra) | OP_C(rc);
802
803 if (buf)
804 emit_4_bytes(buf, insn);
805 return INSN_len_normal;
806 }
807
808 /* add.f Ra,Ra,Rc */
arc_addf_r(u8 * buf,u8 ra,u8 rc)809 static u8 arc_addf_r(u8 *buf, u8 ra, u8 rc)
810 {
811 const u32 insn = OPC_ADDF | OP_A(ra) | OP_B(ra) | OP_C(rc);
812
813 if (buf)
814 emit_4_bytes(buf, insn);
815 return INSN_len_normal;
816 }
817
818 /* add.f Ra,Ra,u6 */
arc_addif_r(u8 * buf,u8 ra,u8 u6)819 static u8 arc_addif_r(u8 *buf, u8 ra, u8 u6)
820 {
821 const u32 insn = OPC_ADDIF | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
822
823 if (buf)
824 emit_4_bytes(buf, insn);
825 return INSN_len_normal;
826 }
827
828 /* add Ra,Ra,u6 */
arc_addi_r(u8 * buf,u8 ra,u8 u6)829 static u8 arc_addi_r(u8 *buf, u8 ra, u8 u6)
830 {
831 const u32 insn = OPC_ADDI | OP_A(ra) | OP_B(ra) | ADDI_U6(u6);
832
833 if (buf)
834 emit_4_bytes(buf, insn);
835 return INSN_len_normal;
836 }
837
838 /* add Ra,Rb,imm */
arc_add_i(u8 * buf,u8 ra,u8 rb,s32 imm)839 static u8 arc_add_i(u8 *buf, u8 ra, u8 rb, s32 imm)
840 {
841 const u32 insn = OPC_ADD_I | OP_A(ra) | OP_B(rb);
842
843 if (buf) {
844 emit_4_bytes(buf, insn);
845 emit_4_bytes(buf + INSN_len_normal, imm);
846 }
847 return INSN_len_normal + INSN_len_imm;
848 }
849
850 /* adc Ra,Ra,Rc */
arc_adc_r(u8 * buf,u8 ra,u8 rc)851 static u8 arc_adc_r(u8 *buf, u8 ra, u8 rc)
852 {
853 const u32 insn = OPC_ADC | OP_A(ra) | OP_B(ra) | OP_C(rc);
854
855 if (buf)
856 emit_4_bytes(buf, insn);
857 return INSN_len_normal;
858 }
859
860 /* adc Ra,Ra,u6 */
arc_adci_r(u8 * buf,u8 ra,u8 u6)861 static u8 arc_adci_r(u8 *buf, u8 ra, u8 u6)
862 {
863 const u32 insn = OPC_ADCI | OP_A(ra) | OP_B(ra) | ADCI_U6(u6);
864
865 if (buf)
866 emit_4_bytes(buf, insn);
867 return INSN_len_normal;
868 }
869
870 /* sub Ra,Ra,Rc */
arc_sub_r(u8 * buf,u8 ra,u8 rc)871 static u8 arc_sub_r(u8 *buf, u8 ra, u8 rc)
872 {
873 const u32 insn = OPC_SUB | OP_A(ra) | OP_B(ra) | OP_C(rc);
874
875 if (buf)
876 emit_4_bytes(buf, insn);
877 return INSN_len_normal;
878 }
879
880 /* sub.f Ra,Ra,Rc */
arc_subf_r(u8 * buf,u8 ra,u8 rc)881 static u8 arc_subf_r(u8 *buf, u8 ra, u8 rc)
882 {
883 const u32 insn = OPC_SUBF | OP_A(ra) | OP_B(ra) | OP_C(rc);
884
885 if (buf)
886 emit_4_bytes(buf, insn);
887 return INSN_len_normal;
888 }
889
890 /* sub Ra,Ra,u6 */
arc_subi_r(u8 * buf,u8 ra,u8 u6)891 static u8 arc_subi_r(u8 *buf, u8 ra, u8 u6)
892 {
893 const u32 insn = OPC_SUBI | OP_A(ra) | OP_B(ra) | SUBI_U6(u6);
894
895 if (buf)
896 emit_4_bytes(buf, insn);
897 return INSN_len_normal;
898 }
899
900 /* sub Ra,Ra,imm */
arc_sub_i(u8 * buf,u8 ra,s32 imm)901 static u8 arc_sub_i(u8 *buf, u8 ra, s32 imm)
902 {
903 const u32 insn = OPC_SUB_I | OP_A(ra) | OP_B(ra);
904
905 if (buf) {
906 emit_4_bytes(buf, insn);
907 emit_4_bytes(buf + INSN_len_normal, imm);
908 }
909 return INSN_len_normal + INSN_len_imm;
910 }
911
912 /* sbc Ra,Ra,Rc */
arc_sbc_r(u8 * buf,u8 ra,u8 rc)913 static u8 arc_sbc_r(u8 *buf, u8 ra, u8 rc)
914 {
915 const u32 insn = OPC_SBC | OP_A(ra) | OP_B(ra) | OP_C(rc);
916
917 if (buf)
918 emit_4_bytes(buf, insn);
919 return INSN_len_normal;
920 }
921
922 /* cmp Rb,Rc */
arc_cmp_r(u8 * buf,u8 rb,u8 rc)923 static u8 arc_cmp_r(u8 *buf, u8 rb, u8 rc)
924 {
925 const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc);
926
927 if (buf)
928 emit_4_bytes(buf, insn);
929 return INSN_len_normal;
930 }
931
932 /*
933 * cmp.z Rb,Rc
934 *
935 * This "cmp.z" variant of compare instruction is used on lower
936 * 32-bits of register pairs after "cmp"ing their upper parts. If the
937 * upper parts are equal (z), then this one will proceed to check the
938 * rest.
939 */
arc_cmpz_r(u8 * buf,u8 rb,u8 rc)940 static u8 arc_cmpz_r(u8 *buf, u8 rb, u8 rc)
941 {
942 const u32 insn = OPC_CMP | OP_B(rb) | OP_C(rc) | CC_equal;
943
944 if (buf)
945 emit_4_bytes(buf, insn);
946 return INSN_len_normal;
947 }
948
949 /* neg Ra,Rb */
arc_neg_r(u8 * buf,u8 ra,u8 rb)950 static u8 arc_neg_r(u8 *buf, u8 ra, u8 rb)
951 {
952 const u32 insn = OPC_NEG | OP_A(ra) | OP_B(rb);
953
954 if (buf)
955 emit_4_bytes(buf, insn);
956 return INSN_len_normal;
957 }
958
959 /* mpy Ra,Rb,Rc */
arc_mpy_r(u8 * buf,u8 ra,u8 rb,u8 rc)960 static u8 arc_mpy_r(u8 *buf, u8 ra, u8 rb, u8 rc)
961 {
962 const u32 insn = OPC_MPY | OP_A(ra) | OP_B(rb) | OP_C(rc);
963
964 if (buf)
965 emit_4_bytes(buf, insn);
966 return INSN_len_normal;
967 }
968
969 /* mpy Ra,Rb,imm */
arc_mpy_i(u8 * buf,u8 ra,u8 rb,s32 imm)970 static u8 arc_mpy_i(u8 *buf, u8 ra, u8 rb, s32 imm)
971 {
972 const u32 insn = OPC_MPYI | OP_A(ra) | OP_B(rb);
973
974 if (buf) {
975 emit_4_bytes(buf, insn);
976 emit_4_bytes(buf + INSN_len_normal, imm);
977 }
978 return INSN_len_normal + INSN_len_imm;
979 }
980
981 /* mpydu Ra,Ra,Rc */
arc_mpydu_r(u8 * buf,u8 ra,u8 rc)982 static u8 arc_mpydu_r(u8 *buf, u8 ra, u8 rc)
983 {
984 const u32 insn = OPC_MPYDU | OP_A(ra) | OP_B(ra) | OP_C(rc);
985
986 if (buf)
987 emit_4_bytes(buf, insn);
988 return INSN_len_normal;
989 }
990
991 /* mpydu Ra,Ra,imm */
arc_mpydu_i(u8 * buf,u8 ra,s32 imm)992 static u8 arc_mpydu_i(u8 *buf, u8 ra, s32 imm)
993 {
994 const u32 insn = OPC_MPYDUI | OP_A(ra) | OP_B(ra);
995
996 if (buf) {
997 emit_4_bytes(buf, insn);
998 emit_4_bytes(buf + INSN_len_normal, imm);
999 }
1000 return INSN_len_normal + INSN_len_imm;
1001 }
1002
1003 /* divu Rd,Rd,Rs */
arc_divu_r(u8 * buf,u8 rd,u8 rs)1004 static u8 arc_divu_r(u8 *buf, u8 rd, u8 rs)
1005 {
1006 const u32 insn = OPC_DIVU | OP_A(rd) | OP_B(rd) | OP_C(rs);
1007
1008 if (buf)
1009 emit_4_bytes(buf, insn);
1010 return INSN_len_normal;
1011 }
1012
1013 /* divu Rd,Rd,imm */
arc_divu_i(u8 * buf,u8 rd,s32 imm)1014 static u8 arc_divu_i(u8 *buf, u8 rd, s32 imm)
1015 {
1016 const u32 insn = OPC_DIVUI | OP_A(rd) | OP_B(rd);
1017
1018 if (buf) {
1019 emit_4_bytes(buf, insn);
1020 emit_4_bytes(buf + INSN_len_normal, imm);
1021 }
1022 return INSN_len_normal + INSN_len_imm;
1023 }
1024
1025 /* div Rd,Rd,Rs */
arc_divs_r(u8 * buf,u8 rd,u8 rs)1026 static u8 arc_divs_r(u8 *buf, u8 rd, u8 rs)
1027 {
1028 const u32 insn = OPC_DIVS | OP_A(rd) | OP_B(rd) | OP_C(rs);
1029
1030 if (buf)
1031 emit_4_bytes(buf, insn);
1032 return INSN_len_normal;
1033 }
1034
1035 /* div Rd,Rd,imm */
arc_divs_i(u8 * buf,u8 rd,s32 imm)1036 static u8 arc_divs_i(u8 *buf, u8 rd, s32 imm)
1037 {
1038 const u32 insn = OPC_DIVSI | OP_A(rd) | OP_B(rd);
1039
1040 if (buf) {
1041 emit_4_bytes(buf, insn);
1042 emit_4_bytes(buf + INSN_len_normal, imm);
1043 }
1044 return INSN_len_normal + INSN_len_imm;
1045 }
1046
1047 /* remu Rd,Rd,Rs */
arc_remu_r(u8 * buf,u8 rd,u8 rs)1048 static u8 arc_remu_r(u8 *buf, u8 rd, u8 rs)
1049 {
1050 const u32 insn = OPC_REMU | OP_A(rd) | OP_B(rd) | OP_C(rs);
1051
1052 if (buf)
1053 emit_4_bytes(buf, insn);
1054 return INSN_len_normal;
1055 }
1056
1057 /* remu Rd,Rd,imm */
arc_remu_i(u8 * buf,u8 rd,s32 imm)1058 static u8 arc_remu_i(u8 *buf, u8 rd, s32 imm)
1059 {
1060 const u32 insn = OPC_REMUI | OP_A(rd) | OP_B(rd);
1061
1062 if (buf) {
1063 emit_4_bytes(buf, insn);
1064 emit_4_bytes(buf + INSN_len_normal, imm);
1065 }
1066 return INSN_len_normal + INSN_len_imm;
1067 }
1068
1069 /* rem Rd,Rd,Rs */
arc_rems_r(u8 * buf,u8 rd,u8 rs)1070 static u8 arc_rems_r(u8 *buf, u8 rd, u8 rs)
1071 {
1072 const u32 insn = OPC_REMS | OP_A(rd) | OP_B(rd) | OP_C(rs);
1073
1074 if (buf)
1075 emit_4_bytes(buf, insn);
1076 return INSN_len_normal;
1077 }
1078
1079 /* rem Rd,Rd,imm */
arc_rems_i(u8 * buf,u8 rd,s32 imm)1080 static u8 arc_rems_i(u8 *buf, u8 rd, s32 imm)
1081 {
1082 const u32 insn = OPC_REMSI | OP_A(rd) | OP_B(rd);
1083
1084 if (buf) {
1085 emit_4_bytes(buf, insn);
1086 emit_4_bytes(buf + INSN_len_normal, imm);
1087 }
1088 return INSN_len_normal + INSN_len_imm;
1089 }
1090
1091 /* and Rd,Rd,Rs */
arc_and_r(u8 * buf,u8 rd,u8 rs)1092 static u8 arc_and_r(u8 *buf, u8 rd, u8 rs)
1093 {
1094 const u32 insn = OPC_AND | OP_A(rd) | OP_B(rd) | OP_C(rs);
1095
1096 if (buf)
1097 emit_4_bytes(buf, insn);
1098 return INSN_len_normal;
1099 }
1100
1101 /* and Rd,Rd,limm */
arc_and_i(u8 * buf,u8 rd,s32 imm)1102 static u8 arc_and_i(u8 *buf, u8 rd, s32 imm)
1103 {
1104 const u32 insn = OPC_ANDI | OP_A(rd) | OP_B(rd);
1105
1106 if (buf) {
1107 emit_4_bytes(buf, insn);
1108 emit_4_bytes(buf + INSN_len_normal, imm);
1109 }
1110 return INSN_len_normal + INSN_len_imm;
1111 }
1112
1113 /* tst Rd,Rs */
arc_tst_r(u8 * buf,u8 rd,u8 rs)1114 static u8 arc_tst_r(u8 *buf, u8 rd, u8 rs)
1115 {
1116 const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs);
1117
1118 if (buf)
1119 emit_4_bytes(buf, insn);
1120 return INSN_len_normal;
1121 }
1122
1123 /*
1124 * This particular version, "tst.z ...", is meant to be used after a
1125 * "tst" on the low 32-bit of register pairs. If that "tst" is not
1126 * zero, then we don't need to test the upper 32-bits lest it sets
1127 * the zero flag.
1128 */
arc_tstz_r(u8 * buf,u8 rd,u8 rs)1129 static u8 arc_tstz_r(u8 *buf, u8 rd, u8 rs)
1130 {
1131 const u32 insn = OPC_TST | OP_B(rd) | OP_C(rs) | CC_equal;
1132
1133 if (buf)
1134 emit_4_bytes(buf, insn);
1135 return INSN_len_normal;
1136 }
1137
arc_or_r(u8 * buf,u8 rd,u8 rs1,u8 rs2)1138 static u8 arc_or_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1139 {
1140 const u32 insn = OPC_OR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1141
1142 if (buf)
1143 emit_4_bytes(buf, insn);
1144 return INSN_len_normal;
1145 }
1146
arc_or_i(u8 * buf,u8 rd,s32 imm)1147 static u8 arc_or_i(u8 *buf, u8 rd, s32 imm)
1148 {
1149 const u32 insn = OPC_ORI | OP_A(rd) | OP_B(rd);
1150
1151 if (buf) {
1152 emit_4_bytes(buf, insn);
1153 emit_4_bytes(buf + INSN_len_normal, imm);
1154 }
1155 return INSN_len_normal + INSN_len_imm;
1156 }
1157
arc_xor_r(u8 * buf,u8 rd,u8 rs)1158 static u8 arc_xor_r(u8 *buf, u8 rd, u8 rs)
1159 {
1160 const u32 insn = OPC_XOR | OP_A(rd) | OP_B(rd) | OP_C(rs);
1161
1162 if (buf)
1163 emit_4_bytes(buf, insn);
1164 return INSN_len_normal;
1165 }
1166
arc_xor_i(u8 * buf,u8 rd,s32 imm)1167 static u8 arc_xor_i(u8 *buf, u8 rd, s32 imm)
1168 {
1169 const u32 insn = OPC_XORI | OP_A(rd) | OP_B(rd);
1170
1171 if (buf) {
1172 emit_4_bytes(buf, insn);
1173 emit_4_bytes(buf + INSN_len_normal, imm);
1174 }
1175 return INSN_len_normal + INSN_len_imm;
1176 }
1177
arc_not_r(u8 * buf,u8 rd,u8 rs)1178 static u8 arc_not_r(u8 *buf, u8 rd, u8 rs)
1179 {
1180 const u32 insn = OPC_NOT | OP_B(rd) | OP_C(rs);
1181
1182 if (buf)
1183 emit_4_bytes(buf, insn);
1184 return INSN_len_normal;
1185 }
1186
arc_btst_i(u8 * buf,u8 rs,u8 imm)1187 static u8 arc_btst_i(u8 *buf, u8 rs, u8 imm)
1188 {
1189 const u32 insn = OPC_BTSTU6 | OP_B(rs) | BTST_U6(imm);
1190
1191 if (buf)
1192 emit_4_bytes(buf, insn);
1193 return INSN_len_normal;
1194 }
1195
arc_asl_r(u8 * buf,u8 rd,u8 rs1,u8 rs2)1196 static u8 arc_asl_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1197 {
1198 const u32 insn = OPC_ASL | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1199
1200 if (buf)
1201 emit_4_bytes(buf, insn);
1202 return INSN_len_normal;
1203 }
1204
arc_asli_r(u8 * buf,u8 rd,u8 rs,u8 imm)1205 static u8 arc_asli_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1206 {
1207 const u32 insn = OPC_ASLI | OP_A(rd) | OP_B(rs) | ASLI_U6(imm);
1208
1209 if (buf)
1210 emit_4_bytes(buf, insn);
1211 return INSN_len_normal;
1212 }
1213
arc_asr_r(u8 * buf,u8 rd,u8 rs1,u8 rs2)1214 static u8 arc_asr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1215 {
1216 const u32 insn = OPC_ASR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1217
1218 if (buf)
1219 emit_4_bytes(buf, insn);
1220 return INSN_len_normal;
1221 }
1222
arc_asri_r(u8 * buf,u8 rd,u8 rs,u8 imm)1223 static u8 arc_asri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1224 {
1225 const u32 insn = OPC_ASRI | OP_A(rd) | OP_B(rs) | ASRI_U6(imm);
1226
1227 if (buf)
1228 emit_4_bytes(buf, insn);
1229 return INSN_len_normal;
1230 }
1231
arc_lsr_r(u8 * buf,u8 rd,u8 rs1,u8 rs2)1232 static u8 arc_lsr_r(u8 *buf, u8 rd, u8 rs1, u8 rs2)
1233 {
1234 const u32 insn = OPC_LSR | OP_A(rd) | OP_B(rs1) | OP_C(rs2);
1235
1236 if (buf)
1237 emit_4_bytes(buf, insn);
1238 return INSN_len_normal;
1239 }
1240
arc_lsri_r(u8 * buf,u8 rd,u8 rs,u8 imm)1241 static u8 arc_lsri_r(u8 *buf, u8 rd, u8 rs, u8 imm)
1242 {
1243 const u32 insn = OPC_LSRI | OP_A(rd) | OP_B(rs) | LSRI_U6(imm);
1244
1245 if (buf)
1246 emit_4_bytes(buf, insn);
1247 return INSN_len_normal;
1248 }
1249
arc_swape_r(u8 * buf,u8 r)1250 static u8 arc_swape_r(u8 *buf, u8 r)
1251 {
1252 const u32 insn = OPC_SWAPE | OP_B(r) | OP_C(r);
1253
1254 if (buf)
1255 emit_4_bytes(buf, insn);
1256 return INSN_len_normal;
1257 }
1258
arc_jmp_return(u8 * buf)1259 static u8 arc_jmp_return(u8 *buf)
1260 {
1261 if (buf)
1262 emit_4_bytes(buf, OPC_J_BLINK);
1263 return INSN_len_normal;
1264 }
1265
arc_jl(u8 * buf,u8 reg)1266 static u8 arc_jl(u8 *buf, u8 reg)
1267 {
1268 const u32 insn = OPC_JL | OP_C(reg);
1269
1270 if (buf)
1271 emit_4_bytes(buf, insn);
1272 return INSN_len_normal;
1273 }
1274
1275 /*
1276 * Conditional jump to an address that is max 21 bits away (signed).
1277 *
1278 * b<cc> s21
1279 */
arc_bcc(u8 * buf,u8 cc,int offset)1280 static u8 arc_bcc(u8 *buf, u8 cc, int offset)
1281 {
1282 const u32 insn = OPC_BCC | BCC_S21(offset) | COND(cc);
1283
1284 if (buf)
1285 emit_4_bytes(buf, insn);
1286 return INSN_len_normal;
1287 }
1288
1289 /*
1290 * Unconditional jump to an address that is max 25 bits away (signed).
1291 *
1292 * b s25
1293 */
arc_b(u8 * buf,s32 offset)1294 static u8 arc_b(u8 *buf, s32 offset)
1295 {
1296 const u32 insn = OPC_B | B_S25(offset);
1297
1298 if (buf)
1299 emit_4_bytes(buf, insn);
1300 return INSN_len_normal;
1301 }
1302
1303 /************* Packers (Deal with BPF_REGs) **************/
1304
zext(u8 * buf,u8 rd)1305 u8 zext(u8 *buf, u8 rd)
1306 {
1307 if (rd != BPF_REG_FP)
1308 return arc_movi_r(buf, REG_HI(rd), 0);
1309 else
1310 return 0;
1311 }
1312
mov_r32(u8 * buf,u8 rd,u8 rs,u8 sign_ext)1313 u8 mov_r32(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
1314 {
1315 u8 len = 0;
1316
1317 if (sign_ext) {
1318 if (sign_ext == 8)
1319 len = arc_sexb_r(buf, REG_LO(rd), REG_LO(rs));
1320 else if (sign_ext == 16)
1321 len = arc_sexh_r(buf, REG_LO(rd), REG_LO(rs));
1322 else if (sign_ext == 32 && rd != rs)
1323 len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1324
1325 return len;
1326 }
1327
1328 /* Unsigned move. */
1329
1330 if (rd != rs)
1331 len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1332
1333 return len;
1334 }
1335
mov_r32_i32(u8 * buf,u8 reg,s32 imm)1336 u8 mov_r32_i32(u8 *buf, u8 reg, s32 imm)
1337 {
1338 return arc_mov_i(buf, REG_LO(reg), imm);
1339 }
1340
mov_r64(u8 * buf,u8 rd,u8 rs,u8 sign_ext)1341 u8 mov_r64(u8 *buf, u8 rd, u8 rs, u8 sign_ext)
1342 {
1343 u8 len = 0;
1344
1345 if (sign_ext) {
1346 /* First handle the low 32-bit part. */
1347 len = mov_r32(buf, rd, rs, sign_ext);
1348
1349 /* Now propagate the sign bit of LO to HI. */
1350 if (sign_ext == 8 || sign_ext == 16 || sign_ext == 32) {
1351 len += arc_asri_r(BUF(buf, len),
1352 REG_HI(rd), REG_LO(rd), 31);
1353 }
1354
1355 return len;
1356 }
1357
1358 /* Unsigned move. */
1359
1360 if (rd == rs)
1361 return 0;
1362
1363 len = arc_mov_r(buf, REG_LO(rd), REG_LO(rs));
1364
1365 if (rs != BPF_REG_FP)
1366 len += arc_mov_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1367 /* BPF_REG_FP is mapped to 32-bit "fp" register. */
1368 else
1369 len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
1370
1371 return len;
1372 }
1373
1374 /* Sign extend the 32-bit immediate into 64-bit register pair. */
mov_r64_i32(u8 * buf,u8 reg,s32 imm)1375 u8 mov_r64_i32(u8 *buf, u8 reg, s32 imm)
1376 {
1377 u8 len = 0;
1378
1379 len = arc_mov_i(buf, REG_LO(reg), imm);
1380
1381 /* BPF_REG_FP is mapped to 32-bit "fp" register. */
1382 if (reg != BPF_REG_FP) {
1383 if (imm >= 0)
1384 len += arc_movi_r(BUF(buf, len), REG_HI(reg), 0);
1385 else
1386 len += arc_movi_r(BUF(buf, len), REG_HI(reg), -1);
1387 }
1388
1389 return len;
1390 }
1391
1392 /*
1393 * This is merely used for translation of "LD R, IMM64" instructions
1394 * of the BPF. These sort of instructions are sometimes used for
1395 * relocations. If during the normal pass, the relocation value is
1396 * not known, the BPF instruction may look something like:
1397 *
1398 * LD R <- 0x0000_0001_0000_0001
1399 *
1400 * Which will nicely translate to two 4-byte ARC instructions:
1401 *
1402 * mov R_lo, 1 # imm is small enough to be s12
1403 * mov R_hi, 1 # same
1404 *
1405 * However, during the extra pass, the IMM64 will have changed
1406 * to the resolved address and looks something like:
1407 *
1408 * LD R <- 0x0000_0000_1234_5678
1409 *
1410 * Now, the translated code will require 12 bytes:
1411 *
1412 * mov R_lo, 0x12345678 # this is an 8-byte instruction
1413 * mov R_hi, 0 # still 4 bytes
1414 *
1415 * Which in practice will result in overwriting the following
1416 * instruction. To avoid such cases, we will always emit codes
1417 * with fixed sizes.
1418 */
mov_r64_i64(u8 * buf,u8 reg,u32 lo,u32 hi)1419 u8 mov_r64_i64(u8 *buf, u8 reg, u32 lo, u32 hi)
1420 {
1421 u8 len;
1422
1423 len = arc_mov_i_fixed(buf, REG_LO(reg), lo);
1424 len += arc_mov_i_fixed(BUF(buf, len), REG_HI(reg), hi);
1425
1426 return len;
1427 }
1428
1429 /*
1430 * If the "off"set is too big (doesn't encode as S9) for:
1431 *
1432 * {ld,st} r, [rm, off]
1433 *
1434 * Then emit:
1435 *
1436 * add r10, REG_LO(rm), off
1437 *
1438 * and make sure that r10 becomes the effective address:
1439 *
1440 * {ld,st} r, [r10, 0]
1441 */
adjust_mem_access(u8 * buf,s16 * off,u8 size,u8 rm,u8 * arc_reg_mem)1442 static u8 adjust_mem_access(u8 *buf, s16 *off, u8 size,
1443 u8 rm, u8 *arc_reg_mem)
1444 {
1445 u8 len = 0;
1446 *arc_reg_mem = REG_LO(rm);
1447
1448 if (!IN_S9_RANGE(*off) ||
1449 (size == BPF_DW && !IN_S9_RANGE(*off + 4))) {
1450 len += arc_add_i(BUF(buf, len),
1451 REG_LO(JIT_REG_TMP), REG_LO(rm), (u32)(*off));
1452 *arc_reg_mem = REG_LO(JIT_REG_TMP);
1453 *off = 0;
1454 }
1455
1456 return len;
1457 }
1458
1459 /* store rs, [rd, off] */
store_r(u8 * buf,u8 rs,u8 rd,s16 off,u8 size)1460 u8 store_r(u8 *buf, u8 rs, u8 rd, s16 off, u8 size)
1461 {
1462 u8 len, arc_reg_mem;
1463
1464 len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
1465
1466 if (size == BPF_DW) {
1467 len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
1468 off, ZZ_4_byte);
1469 len += arc_st_r(BUF(buf, len), REG_HI(rs), arc_reg_mem,
1470 off + 4, ZZ_4_byte);
1471 } else {
1472 u8 zz = bpf_to_arc_size(size);
1473
1474 len += arc_st_r(BUF(buf, len), REG_LO(rs), arc_reg_mem,
1475 off, zz);
1476 }
1477
1478 return len;
1479 }
1480
1481 /*
1482 * For {8,16,32}-bit stores:
1483 * mov r21, imm
1484 * st r21, [...]
1485 * For 64-bit stores:
1486 * mov r21, imm
1487 * st r21, [...]
1488 * mov r21, {0,-1}
1489 * st r21, [...+4]
1490 */
store_i(u8 * buf,s32 imm,u8 rd,s16 off,u8 size)1491 u8 store_i(u8 *buf, s32 imm, u8 rd, s16 off, u8 size)
1492 {
1493 u8 len, arc_reg_mem;
1494 /* REG_LO(JIT_REG_TMP) might be used by "adjust_mem_access()". */
1495 const u8 arc_rs = REG_HI(JIT_REG_TMP);
1496
1497 len = adjust_mem_access(buf, &off, size, rd, &arc_reg_mem);
1498
1499 if (size == BPF_DW) {
1500 len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1501 len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
1502 off, ZZ_4_byte);
1503 imm = (imm >= 0 ? 0 : -1);
1504 len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1505 len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem,
1506 off + 4, ZZ_4_byte);
1507 } else {
1508 u8 zz = bpf_to_arc_size(size);
1509
1510 len += arc_mov_i(BUF(buf, len), arc_rs, imm);
1511 len += arc_st_r(BUF(buf, len), arc_rs, arc_reg_mem, off, zz);
1512 }
1513
1514 return len;
1515 }
1516
1517 /*
1518 * For the calling convention of a little endian machine, the LO part
1519 * must be on top of the stack.
1520 */
push_r64(u8 * buf,u8 reg)1521 static u8 push_r64(u8 *buf, u8 reg)
1522 {
1523 u8 len = 0;
1524
1525 #ifdef __LITTLE_ENDIAN
1526 /* BPF_REG_FP is mapped to 32-bit "fp" register. */
1527 if (reg != BPF_REG_FP)
1528 len += arc_push_r(BUF(buf, len), REG_HI(reg));
1529 len += arc_push_r(BUF(buf, len), REG_LO(reg));
1530 #else
1531 len += arc_push_r(BUF(buf, len), REG_LO(reg));
1532 if (reg != BPF_REG_FP)
1533 len += arc_push_r(BUF(buf, len), REG_HI(reg));
1534 #endif
1535
1536 return len;
1537 }
1538
1539 /* load rd, [rs, off] */
load_r(u8 * buf,u8 rd,u8 rs,s16 off,u8 size,bool sign_ext)1540 u8 load_r(u8 *buf, u8 rd, u8 rs, s16 off, u8 size, bool sign_ext)
1541 {
1542 u8 len, arc_reg_mem;
1543
1544 len = adjust_mem_access(buf, &off, size, rs, &arc_reg_mem);
1545
1546 if (size == BPF_B || size == BPF_H || size == BPF_W) {
1547 const u8 zz = bpf_to_arc_size(size);
1548
1549 /* Use LD.X only if the data size is less than 32-bit. */
1550 if (sign_ext && (zz == ZZ_1_byte || zz == ZZ_2_byte)) {
1551 len += arc_ldx_r(BUF(buf, len), REG_LO(rd),
1552 arc_reg_mem, off, zz);
1553 } else {
1554 len += arc_ld_r(BUF(buf, len), REG_LO(rd),
1555 arc_reg_mem, off, zz);
1556 }
1557
1558 if (sign_ext) {
1559 /* Propagate the sign bit to the higher reg. */
1560 len += arc_asri_r(BUF(buf, len),
1561 REG_HI(rd), REG_LO(rd), 31);
1562 } else {
1563 len += arc_movi_r(BUF(buf, len), REG_HI(rd), 0);
1564 }
1565 } else if (size == BPF_DW) {
1566 /*
1567 * We are about to issue 2 consecutive loads:
1568 *
1569 * ld rx, [rb, off+0]
1570 * ld ry, [rb, off+4]
1571 *
1572 * If "rx" and "rb" are the same registers, then the order
1573 * should change to guarantee that "rb" remains intact
1574 * during these 2 operations:
1575 *
1576 * ld ry, [rb, off+4]
1577 * ld rx, [rb, off+0]
1578 */
1579 if (REG_LO(rd) != arc_reg_mem) {
1580 len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
1581 off, ZZ_4_byte);
1582 len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
1583 off + 4, ZZ_4_byte);
1584 } else {
1585 len += arc_ld_r(BUF(buf, len), REG_HI(rd), arc_reg_mem,
1586 off + 4, ZZ_4_byte);
1587 len += arc_ld_r(BUF(buf, len), REG_LO(rd), arc_reg_mem,
1588 off, ZZ_4_byte);
1589 }
1590 }
1591
1592 return len;
1593 }
1594
add_r32(u8 * buf,u8 rd,u8 rs)1595 u8 add_r32(u8 *buf, u8 rd, u8 rs)
1596 {
1597 return arc_add_r(buf, REG_LO(rd), REG_LO(rs));
1598 }
1599
add_r32_i32(u8 * buf,u8 rd,s32 imm)1600 u8 add_r32_i32(u8 *buf, u8 rd, s32 imm)
1601 {
1602 if (IN_U6_RANGE(imm))
1603 return arc_addi_r(buf, REG_LO(rd), imm);
1604 else
1605 return arc_add_i(buf, REG_LO(rd), REG_LO(rd), imm);
1606 }
1607
add_r64(u8 * buf,u8 rd,u8 rs)1608 u8 add_r64(u8 *buf, u8 rd, u8 rs)
1609 {
1610 u8 len;
1611
1612 len = arc_addf_r(buf, REG_LO(rd), REG_LO(rs));
1613 len += arc_adc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1614 return len;
1615 }
1616
add_r64_i32(u8 * buf,u8 rd,s32 imm)1617 u8 add_r64_i32(u8 *buf, u8 rd, s32 imm)
1618 {
1619 u8 len;
1620
1621 if (IN_U6_RANGE(imm)) {
1622 len = arc_addif_r(buf, REG_LO(rd), imm);
1623 len += arc_adci_r(BUF(buf, len), REG_HI(rd), 0);
1624 } else {
1625 len = mov_r64_i32(buf, JIT_REG_TMP, imm);
1626 len += add_r64(BUF(buf, len), rd, JIT_REG_TMP);
1627 }
1628 return len;
1629 }
1630
sub_r32(u8 * buf,u8 rd,u8 rs)1631 u8 sub_r32(u8 *buf, u8 rd, u8 rs)
1632 {
1633 return arc_sub_r(buf, REG_LO(rd), REG_LO(rs));
1634 }
1635
sub_r32_i32(u8 * buf,u8 rd,s32 imm)1636 u8 sub_r32_i32(u8 *buf, u8 rd, s32 imm)
1637 {
1638 if (IN_U6_RANGE(imm))
1639 return arc_subi_r(buf, REG_LO(rd), imm);
1640 else
1641 return arc_sub_i(buf, REG_LO(rd), imm);
1642 }
1643
sub_r64(u8 * buf,u8 rd,u8 rs)1644 u8 sub_r64(u8 *buf, u8 rd, u8 rs)
1645 {
1646 u8 len;
1647
1648 len = arc_subf_r(buf, REG_LO(rd), REG_LO(rs));
1649 len += arc_sbc_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1650 return len;
1651 }
1652
sub_r64_i32(u8 * buf,u8 rd,s32 imm)1653 u8 sub_r64_i32(u8 *buf, u8 rd, s32 imm)
1654 {
1655 u8 len;
1656
1657 len = mov_r64_i32(buf, JIT_REG_TMP, imm);
1658 len += sub_r64(BUF(buf, len), rd, JIT_REG_TMP);
1659 return len;
1660 }
1661
cmp_r32(u8 * buf,u8 rd,u8 rs)1662 static u8 cmp_r32(u8 *buf, u8 rd, u8 rs)
1663 {
1664 return arc_cmp_r(buf, REG_LO(rd), REG_LO(rs));
1665 }
1666
neg_r32(u8 * buf,u8 r)1667 u8 neg_r32(u8 *buf, u8 r)
1668 {
1669 return arc_neg_r(buf, REG_LO(r), REG_LO(r));
1670 }
1671
1672 /* In a two's complement system, -r is (~r + 1). */
neg_r64(u8 * buf,u8 r)1673 u8 neg_r64(u8 *buf, u8 r)
1674 {
1675 u8 len;
1676
1677 len = arc_not_r(buf, REG_LO(r), REG_LO(r));
1678 len += arc_not_r(BUF(buf, len), REG_HI(r), REG_HI(r));
1679 len += add_r64_i32(BUF(buf, len), r, 1);
1680 return len;
1681 }
1682
mul_r32(u8 * buf,u8 rd,u8 rs)1683 u8 mul_r32(u8 *buf, u8 rd, u8 rs)
1684 {
1685 return arc_mpy_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1686 }
1687
mul_r32_i32(u8 * buf,u8 rd,s32 imm)1688 u8 mul_r32_i32(u8 *buf, u8 rd, s32 imm)
1689 {
1690 return arc_mpy_i(buf, REG_LO(rd), REG_LO(rd), imm);
1691 }
1692
1693 /*
1694 * MUL B, C
1695 * --------
1696 * mpy t0, B_hi, C_lo
1697 * mpy t1, B_lo, C_hi
1698 * mpydu B_lo, B_lo, C_lo
1699 * add B_hi, B_hi, t0
1700 * add B_hi, B_hi, t1
1701 */
mul_r64(u8 * buf,u8 rd,u8 rs)1702 u8 mul_r64(u8 *buf, u8 rd, u8 rs)
1703 {
1704 const u8 t0 = REG_LO(JIT_REG_TMP);
1705 const u8 t1 = REG_HI(JIT_REG_TMP);
1706 const u8 C_lo = REG_LO(rs);
1707 const u8 C_hi = REG_HI(rs);
1708 const u8 B_lo = REG_LO(rd);
1709 const u8 B_hi = REG_HI(rd);
1710 u8 len;
1711
1712 len = arc_mpy_r(buf, t0, B_hi, C_lo);
1713 len += arc_mpy_r(BUF(buf, len), t1, B_lo, C_hi);
1714 len += arc_mpydu_r(BUF(buf, len), B_lo, C_lo);
1715 len += arc_add_r(BUF(buf, len), B_hi, t0);
1716 len += arc_add_r(BUF(buf, len), B_hi, t1);
1717
1718 return len;
1719 }
1720
1721 /*
1722 * MUL B, imm
1723 * ----------
1724 *
1725 * To get a 64-bit result from a signed 64x32 multiplication:
1726 *
1727 * B_hi B_lo *
1728 * sign imm
1729 * -----------------------------
1730 * HI(B_lo*imm) LO(B_lo*imm) +
1731 * B_hi*imm +
1732 * B_lo*sign
1733 * -----------------------------
1734 * res_hi res_lo
1735 *
1736 * mpy t1, B_lo, sign(imm)
1737 * mpy t0, B_hi, imm
1738 * mpydu B_lo, B_lo, imm
1739 * add B_hi, B_hi, t0
1740 * add B_hi, B_hi, t1
1741 *
1742 * Note: We can't use signed double multiplication, "mpyd", instead of an
1743 * unsigned version, "mpydu", and then get rid of the sign adjustments
1744 * calculated in "t1". The signed multiplication, "mpyd", will consider
1745 * both operands, "B_lo" and "imm", as signed inputs. However, for this
1746 * 64x32 multiplication, "B_lo" must be treated as an unsigned number.
1747 */
mul_r64_i32(u8 * buf,u8 rd,s32 imm)1748 u8 mul_r64_i32(u8 *buf, u8 rd, s32 imm)
1749 {
1750 const u8 t0 = REG_LO(JIT_REG_TMP);
1751 const u8 t1 = REG_HI(JIT_REG_TMP);
1752 const u8 B_lo = REG_LO(rd);
1753 const u8 B_hi = REG_HI(rd);
1754 u8 len = 0;
1755
1756 if (imm == 1)
1757 return 0;
1758
1759 /* Is the sign-extension of the immediate "-1"? */
1760 if (imm < 0)
1761 len += arc_neg_r(BUF(buf, len), t1, B_lo);
1762
1763 len += arc_mpy_i(BUF(buf, len), t0, B_hi, imm);
1764 len += arc_mpydu_i(BUF(buf, len), B_lo, imm);
1765 len += arc_add_r(BUF(buf, len), B_hi, t0);
1766
1767 /* Add the "sign*B_lo" part, if necessary. */
1768 if (imm < 0)
1769 len += arc_add_r(BUF(buf, len), B_hi, t1);
1770
1771 return len;
1772 }
1773
div_r32(u8 * buf,u8 rd,u8 rs,bool sign_ext)1774 u8 div_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
1775 {
1776 if (sign_ext)
1777 return arc_divs_r(buf, REG_LO(rd), REG_LO(rs));
1778 else
1779 return arc_divu_r(buf, REG_LO(rd), REG_LO(rs));
1780 }
1781
div_r32_i32(u8 * buf,u8 rd,s32 imm,bool sign_ext)1782 u8 div_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
1783 {
1784 if (imm == 0)
1785 return 0;
1786
1787 if (sign_ext)
1788 return arc_divs_i(buf, REG_LO(rd), imm);
1789 else
1790 return arc_divu_i(buf, REG_LO(rd), imm);
1791 }
1792
mod_r32(u8 * buf,u8 rd,u8 rs,bool sign_ext)1793 u8 mod_r32(u8 *buf, u8 rd, u8 rs, bool sign_ext)
1794 {
1795 if (sign_ext)
1796 return arc_rems_r(buf, REG_LO(rd), REG_LO(rs));
1797 else
1798 return arc_remu_r(buf, REG_LO(rd), REG_LO(rs));
1799 }
1800
mod_r32_i32(u8 * buf,u8 rd,s32 imm,bool sign_ext)1801 u8 mod_r32_i32(u8 *buf, u8 rd, s32 imm, bool sign_ext)
1802 {
1803 if (imm == 0)
1804 return 0;
1805
1806 if (sign_ext)
1807 return arc_rems_i(buf, REG_LO(rd), imm);
1808 else
1809 return arc_remu_i(buf, REG_LO(rd), imm);
1810 }
1811
and_r32(u8 * buf,u8 rd,u8 rs)1812 u8 and_r32(u8 *buf, u8 rd, u8 rs)
1813 {
1814 return arc_and_r(buf, REG_LO(rd), REG_LO(rs));
1815 }
1816
and_r32_i32(u8 * buf,u8 rd,s32 imm)1817 u8 and_r32_i32(u8 *buf, u8 rd, s32 imm)
1818 {
1819 return arc_and_i(buf, REG_LO(rd), imm);
1820 }
1821
and_r64(u8 * buf,u8 rd,u8 rs)1822 u8 and_r64(u8 *buf, u8 rd, u8 rs)
1823 {
1824 u8 len;
1825
1826 len = arc_and_r(buf, REG_LO(rd), REG_LO(rs));
1827 len += arc_and_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1828 return len;
1829 }
1830
and_r64_i32(u8 * buf,u8 rd,s32 imm)1831 u8 and_r64_i32(u8 *buf, u8 rd, s32 imm)
1832 {
1833 u8 len;
1834
1835 len = mov_r64_i32(buf, JIT_REG_TMP, imm);
1836 len += and_r64(BUF(buf, len), rd, JIT_REG_TMP);
1837 return len;
1838 }
1839
tst_r32(u8 * buf,u8 rd,u8 rs)1840 static u8 tst_r32(u8 *buf, u8 rd, u8 rs)
1841 {
1842 return arc_tst_r(buf, REG_LO(rd), REG_LO(rs));
1843 }
1844
or_r32(u8 * buf,u8 rd,u8 rs)1845 u8 or_r32(u8 *buf, u8 rd, u8 rs)
1846 {
1847 return arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1848 }
1849
or_r32_i32(u8 * buf,u8 rd,s32 imm)1850 u8 or_r32_i32(u8 *buf, u8 rd, s32 imm)
1851 {
1852 return arc_or_i(buf, REG_LO(rd), imm);
1853 }
1854
or_r64(u8 * buf,u8 rd,u8 rs)1855 u8 or_r64(u8 *buf, u8 rd, u8 rs)
1856 {
1857 u8 len;
1858
1859 len = arc_or_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1860 len += arc_or_r(BUF(buf, len), REG_HI(rd), REG_HI(rd), REG_HI(rs));
1861 return len;
1862 }
1863
or_r64_i32(u8 * buf,u8 rd,s32 imm)1864 u8 or_r64_i32(u8 *buf, u8 rd, s32 imm)
1865 {
1866 u8 len;
1867
1868 len = mov_r64_i32(buf, JIT_REG_TMP, imm);
1869 len += or_r64(BUF(buf, len), rd, JIT_REG_TMP);
1870 return len;
1871 }
1872
xor_r32(u8 * buf,u8 rd,u8 rs)1873 u8 xor_r32(u8 *buf, u8 rd, u8 rs)
1874 {
1875 return arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
1876 }
1877
xor_r32_i32(u8 * buf,u8 rd,s32 imm)1878 u8 xor_r32_i32(u8 *buf, u8 rd, s32 imm)
1879 {
1880 return arc_xor_i(buf, REG_LO(rd), imm);
1881 }
1882
xor_r64(u8 * buf,u8 rd,u8 rs)1883 u8 xor_r64(u8 *buf, u8 rd, u8 rs)
1884 {
1885 u8 len;
1886
1887 len = arc_xor_r(buf, REG_LO(rd), REG_LO(rs));
1888 len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
1889 return len;
1890 }
1891
xor_r64_i32(u8 * buf,u8 rd,s32 imm)1892 u8 xor_r64_i32(u8 *buf, u8 rd, s32 imm)
1893 {
1894 u8 len;
1895
1896 len = mov_r64_i32(buf, JIT_REG_TMP, imm);
1897 len += xor_r64(BUF(buf, len), rd, JIT_REG_TMP);
1898 return len;
1899 }
1900
1901 /* "asl a,b,c" --> "a = (b << (c & 31))". */
lsh_r32(u8 * buf,u8 rd,u8 rs)1902 u8 lsh_r32(u8 *buf, u8 rd, u8 rs)
1903 {
1904 return arc_asl_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
1905 }
1906
lsh_r32_i32(u8 * buf,u8 rd,u8 imm)1907 u8 lsh_r32_i32(u8 *buf, u8 rd, u8 imm)
1908 {
1909 return arc_asli_r(buf, REG_LO(rd), REG_LO(rd), imm);
1910 }
1911
1912 /*
1913 * algorithm
1914 * ---------
1915 * if (n <= 32)
1916 * to_hi = lo >> (32-n) # (32-n) is the negate of "n" in a 5-bit width.
1917 * lo <<= n
1918 * hi <<= n
1919 * hi |= to_hi
1920 * else
1921 * hi = lo << (n-32)
1922 * lo = 0
1923 *
1924 * assembly translation for "LSH B, C"
1925 * (heavily influenced by ARC gcc)
1926 * -----------------------------------
1927 * not t0, C_lo # The first 3 lines are almost the same as:
1928 * lsr t1, B_lo, 1 # neg t0, C_lo
1929 * lsr t1, t1, t0 # lsr t1, B_lo, t0 --> t1 is "to_hi"
1930 * mov t0, C_lo* # with one important difference. In "neg"
1931 * asl B_lo, B_lo, t0 # version, when C_lo=0, t1 becomes B_lo while
1932 * asl B_hi, B_hi, t0 # it should be 0. The "not" approach instead,
1933 * or B_hi, B_hi, t1 # "shift"s t1 once and 31 times, practically
1934 * btst t0, 5 # setting it to 0 when C_lo=0.
1935 * mov.ne B_hi, B_lo**
1936 * mov.ne B_lo, 0
1937 *
1938 * *The "mov t0, C_lo" is necessary to cover the cases that C is the same
1939 * register as B.
1940 *
1941 * **ARC performs a shift in this manner: B <<= (C & 31)
1942 * For 32<=n<64, "n-32" and "n&31" are the same. Therefore, "B << n" and
1943 * "B << (n-32)" yield the same results. e.g. the results of "B << 35" and
1944 * "B << 3" are the same.
1945 *
1946 * The behaviour is undefined for n >= 64.
1947 */
lsh_r64(u8 * buf,u8 rd,u8 rs)1948 u8 lsh_r64(u8 *buf, u8 rd, u8 rs)
1949 {
1950 const u8 t0 = REG_LO(JIT_REG_TMP);
1951 const u8 t1 = REG_HI(JIT_REG_TMP);
1952 const u8 C_lo = REG_LO(rs);
1953 const u8 B_lo = REG_LO(rd);
1954 const u8 B_hi = REG_HI(rd);
1955 u8 len;
1956
1957 len = arc_not_r(buf, t0, C_lo);
1958 len += arc_lsri_r(BUF(buf, len), t1, B_lo, 1);
1959 len += arc_lsr_r(BUF(buf, len), t1, t1, t0);
1960 len += arc_mov_r(BUF(buf, len), t0, C_lo);
1961 len += arc_asl_r(BUF(buf, len), B_lo, B_lo, t0);
1962 len += arc_asl_r(BUF(buf, len), B_hi, B_hi, t0);
1963 len += arc_or_r(BUF(buf, len), B_hi, B_hi, t1);
1964 len += arc_btst_i(BUF(buf, len), t0, 5);
1965 len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, B_lo);
1966 len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_lo, 0);
1967
1968 return len;
1969 }
1970
1971 /*
1972 * if (n < 32)
1973 * to_hi = B_lo >> 32-n # extract upper n bits
1974 * lo <<= n
1975 * hi <<=n
1976 * hi |= to_hi
1977 * else if (n < 64)
1978 * hi = lo << n-32
1979 * lo = 0
1980 */
lsh_r64_i32(u8 * buf,u8 rd,s32 imm)1981 u8 lsh_r64_i32(u8 *buf, u8 rd, s32 imm)
1982 {
1983 const u8 t0 = REG_LO(JIT_REG_TMP);
1984 const u8 B_lo = REG_LO(rd);
1985 const u8 B_hi = REG_HI(rd);
1986 const u8 n = (u8)imm;
1987 u8 len = 0;
1988
1989 if (n == 0) {
1990 return 0;
1991 } else if (n <= 31) {
1992 len = arc_lsri_r(buf, t0, B_lo, 32 - n);
1993 len += arc_asli_r(BUF(buf, len), B_lo, B_lo, n);
1994 len += arc_asli_r(BUF(buf, len), B_hi, B_hi, n);
1995 len += arc_or_r(BUF(buf, len), B_hi, B_hi, t0);
1996 } else if (n <= 63) {
1997 len = arc_asli_r(buf, B_hi, B_lo, n - 32);
1998 len += arc_movi_r(BUF(buf, len), B_lo, 0);
1999 }
2000 /* n >= 64 is undefined behaviour. */
2001
2002 return len;
2003 }
2004
2005 /* "lsr a,b,c" --> "a = (b >> (c & 31))". */
rsh_r32(u8 * buf,u8 rd,u8 rs)2006 u8 rsh_r32(u8 *buf, u8 rd, u8 rs)
2007 {
2008 return arc_lsr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
2009 }
2010
rsh_r32_i32(u8 * buf,u8 rd,u8 imm)2011 u8 rsh_r32_i32(u8 *buf, u8 rd, u8 imm)
2012 {
2013 return arc_lsri_r(buf, REG_LO(rd), REG_LO(rd), imm);
2014 }
2015
2016 /*
2017 * For better commentary, see lsh_r64().
2018 *
2019 * algorithm
2020 * ---------
2021 * if (n <= 32)
2022 * to_lo = hi << (32-n)
2023 * hi >>= n
2024 * lo >>= n
2025 * lo |= to_lo
2026 * else
2027 * lo = hi >> (n-32)
2028 * hi = 0
2029 *
2030 * RSH B,C
2031 * ----------
2032 * not t0, C_lo
2033 * asl t1, B_hi, 1
2034 * asl t1, t1, t0
2035 * mov t0, C_lo
2036 * lsr B_hi, B_hi, t0
2037 * lsr B_lo, B_lo, t0
2038 * or B_lo, B_lo, t1
2039 * btst t0, 5
2040 * mov.ne B_lo, B_hi
2041 * mov.ne B_hi, 0
2042 */
rsh_r64(u8 * buf,u8 rd,u8 rs)2043 u8 rsh_r64(u8 *buf, u8 rd, u8 rs)
2044 {
2045 const u8 t0 = REG_LO(JIT_REG_TMP);
2046 const u8 t1 = REG_HI(JIT_REG_TMP);
2047 const u8 C_lo = REG_LO(rs);
2048 const u8 B_lo = REG_LO(rd);
2049 const u8 B_hi = REG_HI(rd);
2050 u8 len;
2051
2052 len = arc_not_r(buf, t0, C_lo);
2053 len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
2054 len += arc_asl_r(BUF(buf, len), t1, t1, t0);
2055 len += arc_mov_r(BUF(buf, len), t0, C_lo);
2056 len += arc_lsr_r(BUF(buf, len), B_hi, B_hi, t0);
2057 len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
2058 len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
2059 len += arc_btst_i(BUF(buf, len), t0, 5);
2060 len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
2061 len += arc_movu_cc_r(BUF(buf, len), CC_unequal, B_hi, 0);
2062
2063 return len;
2064 }
2065
2066 /*
2067 * if (n < 32)
2068 * to_lo = B_lo << 32-n # extract lower n bits, right-padded with 32-n 0s
2069 * lo >>=n
2070 * hi >>=n
2071 * hi |= to_lo
2072 * else if (n < 64)
2073 * lo = hi >> n-32
2074 * hi = 0
2075 */
rsh_r64_i32(u8 * buf,u8 rd,s32 imm)2076 u8 rsh_r64_i32(u8 *buf, u8 rd, s32 imm)
2077 {
2078 const u8 t0 = REG_LO(JIT_REG_TMP);
2079 const u8 B_lo = REG_LO(rd);
2080 const u8 B_hi = REG_HI(rd);
2081 const u8 n = (u8)imm;
2082 u8 len = 0;
2083
2084 if (n == 0) {
2085 return 0;
2086 } else if (n <= 31) {
2087 len = arc_asli_r(buf, t0, B_hi, 32 - n);
2088 len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
2089 len += arc_lsri_r(BUF(buf, len), B_hi, B_hi, n);
2090 len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
2091 } else if (n <= 63) {
2092 len = arc_lsri_r(buf, B_lo, B_hi, n - 32);
2093 len += arc_movi_r(BUF(buf, len), B_hi, 0);
2094 }
2095 /* n >= 64 is undefined behaviour. */
2096
2097 return len;
2098 }
2099
2100 /* "asr a,b,c" --> "a = (b s>> (c & 31))". */
arsh_r32(u8 * buf,u8 rd,u8 rs)2101 u8 arsh_r32(u8 *buf, u8 rd, u8 rs)
2102 {
2103 return arc_asr_r(buf, REG_LO(rd), REG_LO(rd), REG_LO(rs));
2104 }
2105
arsh_r32_i32(u8 * buf,u8 rd,u8 imm)2106 u8 arsh_r32_i32(u8 *buf, u8 rd, u8 imm)
2107 {
2108 return arc_asri_r(buf, REG_LO(rd), REG_LO(rd), imm);
2109 }
2110
2111 /*
2112 * For comparison, see rsh_r64().
2113 *
2114 * algorithm
2115 * ---------
2116 * if (n <= 32)
2117 * to_lo = hi << (32-n)
2118 * hi s>>= n
2119 * lo >>= n
2120 * lo |= to_lo
2121 * else
2122 * hi_sign = hi s>>31
2123 * lo = hi s>> (n-32)
2124 * hi = hi_sign
2125 *
2126 * ARSH B,C
2127 * ----------
2128 * not t0, C_lo
2129 * asl t1, B_hi, 1
2130 * asl t1, t1, t0
2131 * mov t0, C_lo
2132 * asr B_hi, B_hi, t0
2133 * lsr B_lo, B_lo, t0
2134 * or B_lo, B_lo, t1
2135 * btst t0, 5
2136 * asr t0, B_hi, 31 # now, t0 = 0 or -1 based on B_hi's sign
2137 * mov.ne B_lo, B_hi
2138 * mov.ne B_hi, t0
2139 */
arsh_r64(u8 * buf,u8 rd,u8 rs)2140 u8 arsh_r64(u8 *buf, u8 rd, u8 rs)
2141 {
2142 const u8 t0 = REG_LO(JIT_REG_TMP);
2143 const u8 t1 = REG_HI(JIT_REG_TMP);
2144 const u8 C_lo = REG_LO(rs);
2145 const u8 B_lo = REG_LO(rd);
2146 const u8 B_hi = REG_HI(rd);
2147 u8 len;
2148
2149 len = arc_not_r(buf, t0, C_lo);
2150 len += arc_asli_r(BUF(buf, len), t1, B_hi, 1);
2151 len += arc_asl_r(BUF(buf, len), t1, t1, t0);
2152 len += arc_mov_r(BUF(buf, len), t0, C_lo);
2153 len += arc_asr_r(BUF(buf, len), B_hi, B_hi, t0);
2154 len += arc_lsr_r(BUF(buf, len), B_lo, B_lo, t0);
2155 len += arc_or_r(BUF(buf, len), B_lo, B_lo, t1);
2156 len += arc_btst_i(BUF(buf, len), t0, 5);
2157 len += arc_asri_r(BUF(buf, len), t0, B_hi, 31);
2158 len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_lo, B_hi);
2159 len += arc_mov_cc_r(BUF(buf, len), CC_unequal, B_hi, t0);
2160
2161 return len;
2162 }
2163
2164 /*
2165 * if (n < 32)
2166 * to_lo = lo << 32-n # extract lower n bits, right-padded with 32-n 0s
2167 * lo >>=n
2168 * hi s>>=n
2169 * hi |= to_lo
2170 * else if (n < 64)
2171 * lo = hi s>> n-32
2172 * hi = (lo[msb] ? -1 : 0)
2173 */
arsh_r64_i32(u8 * buf,u8 rd,s32 imm)2174 u8 arsh_r64_i32(u8 *buf, u8 rd, s32 imm)
2175 {
2176 const u8 t0 = REG_LO(JIT_REG_TMP);
2177 const u8 B_lo = REG_LO(rd);
2178 const u8 B_hi = REG_HI(rd);
2179 const u8 n = (u8)imm;
2180 u8 len = 0;
2181
2182 if (n == 0) {
2183 return 0;
2184 } else if (n <= 31) {
2185 len = arc_asli_r(buf, t0, B_hi, 32 - n);
2186 len += arc_lsri_r(BUF(buf, len), B_lo, B_lo, n);
2187 len += arc_asri_r(BUF(buf, len), B_hi, B_hi, n);
2188 len += arc_or_r(BUF(buf, len), B_lo, B_lo, t0);
2189 } else if (n <= 63) {
2190 len = arc_asri_r(buf, B_lo, B_hi, n - 32);
2191 len += arc_movi_r(BUF(buf, len), B_hi, -1);
2192 len += arc_btst_i(BUF(buf, len), B_lo, 31);
2193 len += arc_movu_cc_r(BUF(buf, len), CC_equal, B_hi, 0);
2194 }
2195 /* n >= 64 is undefined behaviour. */
2196
2197 return len;
2198 }
2199
gen_swap(u8 * buf,u8 rd,u8 size,u8 endian,bool force,bool do_zext)2200 u8 gen_swap(u8 *buf, u8 rd, u8 size, u8 endian, bool force, bool do_zext)
2201 {
2202 u8 len = 0;
2203 #ifdef __BIG_ENDIAN
2204 const u8 host_endian = BPF_FROM_BE;
2205 #else
2206 const u8 host_endian = BPF_FROM_LE;
2207 #endif
2208 if (host_endian != endian || force) {
2209 switch (size) {
2210 case 16:
2211 /*
2212 * r = B4B3_B2B1 << 16 --> r = B2B1_0000
2213 * then, swape(r) would become the desired 0000_B1B2
2214 */
2215 len = arc_asli_r(buf, REG_LO(rd), REG_LO(rd), 16);
2216 fallthrough;
2217 case 32:
2218 len += arc_swape_r(BUF(buf, len), REG_LO(rd));
2219 if (do_zext)
2220 len += zext(BUF(buf, len), rd);
2221 break;
2222 case 64:
2223 /*
2224 * swap "hi" and "lo":
2225 * hi ^= lo;
2226 * lo ^= hi;
2227 * hi ^= lo;
2228 * and then swap the bytes in "hi" and "lo".
2229 */
2230 len = arc_xor_r(buf, REG_HI(rd), REG_LO(rd));
2231 len += arc_xor_r(BUF(buf, len), REG_LO(rd), REG_HI(rd));
2232 len += arc_xor_r(BUF(buf, len), REG_HI(rd), REG_LO(rd));
2233 len += arc_swape_r(BUF(buf, len), REG_LO(rd));
2234 len += arc_swape_r(BUF(buf, len), REG_HI(rd));
2235 break;
2236 default:
2237 /* The caller must have handled this. */
2238 break;
2239 }
2240 } else {
2241 /*
2242 * If the same endianness, there's not much to do other
2243 * than zeroing out the upper bytes based on the "size".
2244 */
2245 switch (size) {
2246 case 16:
2247 len = arc_and_i(buf, REG_LO(rd), 0xffff);
2248 fallthrough;
2249 case 32:
2250 if (do_zext)
2251 len += zext(BUF(buf, len), rd);
2252 break;
2253 case 64:
2254 break;
2255 default:
2256 /* The caller must have handled this. */
2257 break;
2258 }
2259 }
2260
2261 return len;
2262 }
2263
2264 /*
2265 * To create a frame, all that is needed is:
2266 *
2267 * push fp
2268 * mov fp, sp
2269 * sub sp, <frame_size>
2270 *
2271 * "push fp" is taken care of separately while saving the clobbered registers.
2272 * All that remains is copying SP value to FP and shrinking SP's address space
2273 * for any possible function call to come.
2274 */
frame_create(u8 * buf,u16 size)2275 static inline u8 frame_create(u8 *buf, u16 size)
2276 {
2277 u8 len;
2278
2279 len = arc_mov_r(buf, ARC_R_FP, ARC_R_SP);
2280 if (IN_U6_RANGE(size))
2281 len += arc_subi_r(BUF(buf, len), ARC_R_SP, size);
2282 else
2283 len += arc_sub_i(BUF(buf, len), ARC_R_SP, size);
2284 return len;
2285 }
2286
2287 /*
2288 * mov sp, fp
2289 *
2290 * The value of SP upon entering was copied to FP.
2291 */
frame_restore(u8 * buf)2292 static inline u8 frame_restore(u8 *buf)
2293 {
2294 return arc_mov_r(buf, ARC_R_SP, ARC_R_FP);
2295 }
2296
2297 /*
2298 * Going from a JITed code to the native caller:
2299 *
2300 * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r0 <- r8
2301 * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r1 <- r9
2302 */
bpf_to_arc_return(u8 * buf)2303 static u8 bpf_to_arc_return(u8 *buf)
2304 {
2305 u8 len;
2306
2307 len = arc_mov_r(buf, ARC_R_0, REG_LO(BPF_REG_0));
2308 len += arc_mov_r(BUF(buf, len), ARC_R_1, REG_HI(BPF_REG_0));
2309 return len;
2310 }
2311
2312 /*
2313 * Coming back from an external (in-kernel) function to the JITed code:
2314 *
2315 * mov ARC_ABI_RET_lo, BPF_REG_0_lo # r8 <- r0
2316 * mov ARC_ABI_RET_hi, BPF_REG_0_hi # r9 <- r1
2317 */
arc_to_bpf_return(u8 * buf)2318 u8 arc_to_bpf_return(u8 *buf)
2319 {
2320 u8 len;
2321
2322 len = arc_mov_r(buf, REG_LO(BPF_REG_0), ARC_R_0);
2323 len += arc_mov_r(BUF(buf, len), REG_HI(BPF_REG_0), ARC_R_1);
2324 return len;
2325 }
2326
2327 /*
2328 * This translation leads to:
2329 *
2330 * mov r10, addr # always an 8-byte instruction
2331 * jl [r10]
2332 *
2333 * The length of the "mov" must be fixed (8), otherwise it may diverge
2334 * during the normal and extra passes:
2335 *
2336 * normal pass extra pass
2337 *
2338 * 180: mov r10,0 | 180: mov r10,0x700578d8
2339 * 184: jl [r10] | 188: jl [r10]
2340 * 188: add.f r16,r16,0x1 | 18c: adc r17,r17,0
2341 * 18c: adc r17,r17,0 |
2342 *
2343 * In the above example, the change from "r10 <- 0" to "r10 <- 0x700578d8"
2344 * has led to an increase in the length of the "mov" instruction.
2345 * Inadvertently, that caused the loss of the "add.f" instruction.
2346 */
jump_and_link(u8 * buf,u32 addr)2347 static u8 jump_and_link(u8 *buf, u32 addr)
2348 {
2349 u8 len;
2350
2351 len = arc_mov_i_fixed(buf, REG_LO(JIT_REG_TMP), addr);
2352 len += arc_jl(BUF(buf, len), REG_LO(JIT_REG_TMP));
2353 return len;
2354 }
2355
2356 /*
2357 * This function determines which ARC registers must be saved and restored.
2358 * It does so by looking into:
2359 *
2360 * "bpf_reg": The clobbered (destination) BPF register
2361 * "is_call": Indicator if the current instruction is a call
2362 *
2363 * When a register of interest is clobbered, its corresponding bit position
2364 * in return value, "usage", is set to true.
2365 */
mask_for_used_regs(u8 bpf_reg,bool is_call)2366 u32 mask_for_used_regs(u8 bpf_reg, bool is_call)
2367 {
2368 u32 usage = 0;
2369
2370 /* BPF registers that must be saved. */
2371 if (bpf_reg >= BPF_REG_6 && bpf_reg <= BPF_REG_9) {
2372 usage |= BIT(REG_LO(bpf_reg));
2373 usage |= BIT(REG_HI(bpf_reg));
2374 /*
2375 * Using the frame pointer register implies that it should
2376 * be saved and reinitialised with the current frame data.
2377 */
2378 } else if (bpf_reg == BPF_REG_FP) {
2379 usage |= BIT(REG_LO(BPF_REG_FP));
2380 /* Could there be some ARC registers that must to be saved? */
2381 } else {
2382 if (REG_LO(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
2383 REG_LO(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
2384 usage |= BIT(REG_LO(bpf_reg));
2385
2386 if (REG_HI(bpf_reg) >= ARC_CALLEE_SAVED_REG_FIRST &&
2387 REG_HI(bpf_reg) <= ARC_CALLEE_SAVED_REG_LAST)
2388 usage |= BIT(REG_HI(bpf_reg));
2389 }
2390
2391 /* A "call" indicates that ARC's "blink" reg must be saved. */
2392 usage |= is_call ? BIT(ARC_R_BLINK) : 0;
2393
2394 return usage;
2395 }
2396
2397 /*
2398 * push blink # if blink is marked as clobbered
2399 * push r[0-n] # if r[i] is marked as clobbered
2400 * push fp # if fp is marked as clobbered
2401 * mov fp, sp # if frame_size > 0 (clobbers fp)
2402 * sub sp, <frame_size> # same as above
2403 */
arc_prologue(u8 * buf,u32 usage,u16 frame_size)2404 u8 arc_prologue(u8 *buf, u32 usage, u16 frame_size)
2405 {
2406 u8 len = 0;
2407 u32 gp_regs = 0;
2408
2409 /* Deal with blink first. */
2410 if (usage & BIT(ARC_R_BLINK))
2411 len += arc_push_r(BUF(buf, len), ARC_R_BLINK);
2412
2413 gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
2414 while (gp_regs) {
2415 u8 reg = __builtin_ffs(gp_regs) - 1;
2416
2417 len += arc_push_r(BUF(buf, len), reg);
2418 gp_regs &= ~BIT(reg);
2419 }
2420
2421 /* Deal with fp last. */
2422 if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
2423 len += arc_push_r(BUF(buf, len), ARC_R_FP);
2424
2425 if (frame_size > 0)
2426 len += frame_create(BUF(buf, len), frame_size);
2427
2428 #ifdef ARC_BPF_JIT_DEBUG
2429 if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
2430 pr_err("FP is being saved while there is no frame.");
2431 BUG();
2432 }
2433 #endif
2434
2435 return len;
2436 }
2437
2438 /*
2439 * mov sp, fp # if frame_size > 0
2440 * pop fp # if fp is marked as clobbered
2441 * pop r[n-0] # if r[i] is marked as clobbered
2442 * pop blink # if blink is marked as clobbered
2443 * mov r0, r8 # always: ABI_return <- BPF_return
2444 * mov r1, r9 # continuation of above
2445 * j [blink] # always
2446 *
2447 * "fp being marked as clobbered" and "frame_size > 0" are the two sides of
2448 * the same coin.
2449 */
arc_epilogue(u8 * buf,u32 usage,u16 frame_size)2450 u8 arc_epilogue(u8 *buf, u32 usage, u16 frame_size)
2451 {
2452 u32 len = 0;
2453 u32 gp_regs = 0;
2454
2455 #ifdef ARC_BPF_JIT_DEBUG
2456 if ((usage & BIT(ARC_R_FP)) && frame_size == 0) {
2457 pr_err("FP is being saved while there is no frame.");
2458 BUG();
2459 }
2460 #endif
2461
2462 if (frame_size > 0)
2463 len += frame_restore(BUF(buf, len));
2464
2465 /* Deal with fp first. */
2466 if ((usage & BIT(ARC_R_FP)) || frame_size > 0)
2467 len += arc_pop_r(BUF(buf, len), ARC_R_FP);
2468
2469 gp_regs = usage & ~(BIT(ARC_R_BLINK) | BIT(ARC_R_FP));
2470 while (gp_regs) {
2471 /* "usage" is 32-bit, each bit indicating an ARC register. */
2472 u8 reg = 31 - __builtin_clz(gp_regs);
2473
2474 len += arc_pop_r(BUF(buf, len), reg);
2475 gp_regs &= ~BIT(reg);
2476 }
2477
2478 /* Deal with blink last. */
2479 if (usage & BIT(ARC_R_BLINK))
2480 len += arc_pop_r(BUF(buf, len), ARC_R_BLINK);
2481
2482 /* Wrap up the return value and jump back to the caller. */
2483 len += bpf_to_arc_return(BUF(buf, len));
2484 len += arc_jmp_return(BUF(buf, len));
2485
2486 return len;
2487 }
2488
2489 /*
2490 * For details on the algorithm, see the comments of "gen_jcc_64()".
2491 *
2492 * This data structure is holding information for jump translations.
2493 *
2494 * jit_off: How many bytes into the current JIT address, "b"ranch insn. occurs
2495 * cond: The condition that the ARC branch instruction must use
2496 *
2497 * e.g.:
2498 *
2499 * BPF_JGE R1, R0, @target
2500 * ------------------------
2501 * |
2502 * v
2503 * 0x1000: cmp r3, r1 # 0x1000 is the JIT address for "BPF_JGE ..." insn
2504 * 0x1004: bhi @target # first jump (branch higher)
2505 * 0x1008: blo @end # second jump acting as a skip (end is 0x1014)
2506 * 0x100C: cmp r2, r0 # the lower 32 bits are evaluated
2507 * 0x1010: bhs @target # third jump (branch higher or same)
2508 * 0x1014: ...
2509 *
2510 * The jit_off(set) of the "bhi" is 4 bytes.
2511 * The cond(ition) for the "bhi" is "CC_great_u".
2512 *
2513 * The jit_off(set) is necessary for calculating the exact displacement
2514 * to the "target" address:
2515 *
2516 * jit_address + jit_off(set) - @target
2517 * 0x1000 + 4 - @target
2518 */
2519 #define JCC64_NR_OF_JMPS 3 /* Number of jumps in jcc64 template. */
2520 #define JCC64_INSNS_TO_END 3 /* Number of insn. inclusive the 2nd jmp to end. */
2521 #define JCC64_SKIP_JMP 1 /* Index of the "skip" jump to "end". */
2522 static const struct {
2523 /*
2524 * "jit_off" is common between all "jmp[]" and is coupled with
2525 * "cond" of each "jmp[]" instance. e.g.:
2526 *
2527 * arcv2_64_jccs.jit_off[1]
2528 * arcv2_64_jccs.jmp[ARC_CC_UGT].cond[1]
2529 *
2530 * Are indicating that the second jump in JITed code of "UGT"
2531 * is at offset "jit_off[1]" while its condition is "cond[1]".
2532 */
2533 u8 jit_off[JCC64_NR_OF_JMPS];
2534
2535 struct {
2536 u8 cond[JCC64_NR_OF_JMPS];
2537 } jmp[ARC_CC_SLE + 1];
2538 } arcv2_64_jccs = {
2539 .jit_off = {
2540 INSN_len_normal * 1,
2541 INSN_len_normal * 2,
2542 INSN_len_normal * 4
2543 },
2544 /*
2545 * cmp rd_hi, rs_hi
2546 * bhi @target # 1: u>
2547 * blo @end # 2: u<
2548 * cmp rd_lo, rs_lo
2549 * bhi @target # 3: u>
2550 * end:
2551 */
2552 .jmp[ARC_CC_UGT] = {
2553 .cond = {CC_great_u, CC_less_u, CC_great_u}
2554 },
2555 /*
2556 * cmp rd_hi, rs_hi
2557 * bhi @target # 1: u>
2558 * blo @end # 2: u<
2559 * cmp rd_lo, rs_lo
2560 * bhs @target # 3: u>=
2561 * end:
2562 */
2563 .jmp[ARC_CC_UGE] = {
2564 .cond = {CC_great_u, CC_less_u, CC_great_eq_u}
2565 },
2566 /*
2567 * cmp rd_hi, rs_hi
2568 * blo @target # 1: u<
2569 * bhi @end # 2: u>
2570 * cmp rd_lo, rs_lo
2571 * blo @target # 3: u<
2572 * end:
2573 */
2574 .jmp[ARC_CC_ULT] = {
2575 .cond = {CC_less_u, CC_great_u, CC_less_u}
2576 },
2577 /*
2578 * cmp rd_hi, rs_hi
2579 * blo @target # 1: u<
2580 * bhi @end # 2: u>
2581 * cmp rd_lo, rs_lo
2582 * bls @target # 3: u<=
2583 * end:
2584 */
2585 .jmp[ARC_CC_ULE] = {
2586 .cond = {CC_less_u, CC_great_u, CC_less_eq_u}
2587 },
2588 /*
2589 * cmp rd_hi, rs_hi
2590 * bgt @target # 1: s>
2591 * blt @end # 2: s<
2592 * cmp rd_lo, rs_lo
2593 * bhi @target # 3: u>
2594 * end:
2595 */
2596 .jmp[ARC_CC_SGT] = {
2597 .cond = {CC_great_s, CC_less_s, CC_great_u}
2598 },
2599 /*
2600 * cmp rd_hi, rs_hi
2601 * bgt @target # 1: s>
2602 * blt @end # 2: s<
2603 * cmp rd_lo, rs_lo
2604 * bhs @target # 3: u>=
2605 * end:
2606 */
2607 .jmp[ARC_CC_SGE] = {
2608 .cond = {CC_great_s, CC_less_s, CC_great_eq_u}
2609 },
2610 /*
2611 * cmp rd_hi, rs_hi
2612 * blt @target # 1: s<
2613 * bgt @end # 2: s>
2614 * cmp rd_lo, rs_lo
2615 * blo @target # 3: u<
2616 * end:
2617 */
2618 .jmp[ARC_CC_SLT] = {
2619 .cond = {CC_less_s, CC_great_s, CC_less_u}
2620 },
2621 /*
2622 * cmp rd_hi, rs_hi
2623 * blt @target # 1: s<
2624 * bgt @end # 2: s>
2625 * cmp rd_lo, rs_lo
2626 * bls @target # 3: u<=
2627 * end:
2628 */
2629 .jmp[ARC_CC_SLE] = {
2630 .cond = {CC_less_s, CC_great_s, CC_less_eq_u}
2631 }
2632 };
2633
2634 /*
2635 * The displacement (offset) for ARC's "b"ranch instruction is the distance
2636 * from the aligned version of _current_ instruction (PCL) to the target
2637 * instruction:
2638 *
2639 * DISP = TARGET - PCL # PCL is the word aligned PC
2640 */
get_displacement(u32 curr_off,u32 targ_off)2641 static inline s32 get_displacement(u32 curr_off, u32 targ_off)
2642 {
2643 return (s32)(targ_off - (curr_off & ~3L));
2644 }
2645
2646 /*
2647 * "disp"lacement should be:
2648 *
2649 * 1. 16-bit aligned.
2650 * 2. fit in S25, because no "condition code" is supposed to be encoded.
2651 */
is_valid_far_disp(s32 disp)2652 static inline bool is_valid_far_disp(s32 disp)
2653 {
2654 return (!(disp & 1) && IN_S25_RANGE(disp));
2655 }
2656
2657 /*
2658 * "disp"lacement should be:
2659 *
2660 * 1. 16-bit aligned.
2661 * 2. fit in S21, because "condition code" is supposed to be encoded too.
2662 */
is_valid_near_disp(s32 disp)2663 static inline bool is_valid_near_disp(s32 disp)
2664 {
2665 return (!(disp & 1) && IN_S21_RANGE(disp));
2666 }
2667
2668 /*
2669 * cmp rd_hi, rs_hi
2670 * cmp.z rd_lo, rs_lo
2671 * b{eq,ne} @target
2672 * | |
2673 * | `--> "eq" param is false (JNE)
2674 * `-----> "eq" param is true (JEQ)
2675 */
gen_j_eq_64(u8 * buf,u8 rd,u8 rs,bool eq,u32 curr_off,u32 targ_off)2676 static int gen_j_eq_64(u8 *buf, u8 rd, u8 rs, bool eq,
2677 u32 curr_off, u32 targ_off)
2678 {
2679 s32 disp;
2680 u8 len = 0;
2681
2682 len += arc_cmp_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
2683 len += arc_cmpz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2684 disp = get_displacement(curr_off + len, targ_off);
2685 len += arc_bcc(BUF(buf, len), eq ? CC_equal : CC_unequal, disp);
2686
2687 return len;
2688 }
2689
2690 /*
2691 * tst rd_hi, rs_hi
2692 * tst.z rd_lo, rs_lo
2693 * bne @target
2694 */
gen_jset_64(u8 * buf,u8 rd,u8 rs,u32 curr_off,u32 targ_off)2695 static u8 gen_jset_64(u8 *buf, u8 rd, u8 rs, u32 curr_off, u32 targ_off)
2696 {
2697 u8 len = 0;
2698 s32 disp;
2699
2700 len += arc_tst_r(BUF(buf, len), REG_HI(rd), REG_HI(rs));
2701 len += arc_tstz_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2702 disp = get_displacement(curr_off + len, targ_off);
2703 len += arc_bcc(BUF(buf, len), CC_unequal, disp);
2704
2705 return len;
2706 }
2707
2708 /*
2709 * Verify if all the jumps for a JITed jcc64 operation are valid,
2710 * by consulting the data stored at "arcv2_64_jccs".
2711 */
check_jcc_64(u32 curr_off,u32 targ_off,u8 cond)2712 static bool check_jcc_64(u32 curr_off, u32 targ_off, u8 cond)
2713 {
2714 size_t i;
2715
2716 if (cond >= ARC_CC_LAST)
2717 return false;
2718
2719 for (i = 0; i < JCC64_NR_OF_JMPS; i++) {
2720 u32 from, to;
2721
2722 from = curr_off + arcv2_64_jccs.jit_off[i];
2723 /* for the 2nd jump, we jump to the end of block. */
2724 if (i != JCC64_SKIP_JMP)
2725 to = targ_off;
2726 else
2727 to = from + (JCC64_INSNS_TO_END * INSN_len_normal);
2728 /* There is a "cc" in the instruction, so a "near" jump. */
2729 if (!is_valid_near_disp(get_displacement(from, to)))
2730 return false;
2731 }
2732
2733 return true;
2734 }
2735
2736 /* Can the jump from "curr_off" to "targ_off" actually happen? */
check_jmp_64(u32 curr_off,u32 targ_off,u8 cond)2737 bool check_jmp_64(u32 curr_off, u32 targ_off, u8 cond)
2738 {
2739 s32 disp;
2740
2741 switch (cond) {
2742 case ARC_CC_UGT:
2743 case ARC_CC_UGE:
2744 case ARC_CC_ULT:
2745 case ARC_CC_ULE:
2746 case ARC_CC_SGT:
2747 case ARC_CC_SGE:
2748 case ARC_CC_SLT:
2749 case ARC_CC_SLE:
2750 return check_jcc_64(curr_off, targ_off, cond);
2751 case ARC_CC_EQ:
2752 case ARC_CC_NE:
2753 case ARC_CC_SET:
2754 /*
2755 * The "jump" for the JITed BPF_J{SET,EQ,NE} is actually the
2756 * 3rd instruction. See comments of "gen_j{set,_eq}_64()".
2757 */
2758 curr_off += 2 * INSN_len_normal;
2759 disp = get_displacement(curr_off, targ_off);
2760 /* There is a "cc" field in the issued instruction. */
2761 return is_valid_near_disp(disp);
2762 case ARC_CC_AL:
2763 disp = get_displacement(curr_off, targ_off);
2764 return is_valid_far_disp(disp);
2765 default:
2766 return false;
2767 }
2768 }
2769
2770 /*
2771 * The template for the 64-bit jumps with the following BPF conditions
2772 *
2773 * u< u<= u> u>= s< s<= s> s>=
2774 *
2775 * Looks like below:
2776 *
2777 * cmp rd_hi, rs_hi
2778 * b<c1> @target
2779 * b<c2> @end
2780 * cmp rd_lo, rs_lo # if execution reaches here, r{d,s}_hi are equal
2781 * b<c3> @target
2782 * end:
2783 *
2784 * "c1" is the condition that JIT is handling minus the equality part.
2785 * For instance if we have to translate an "unsigned greater or equal",
2786 * then "c1" will be "unsigned greater". We won't know about equality
2787 * until all 64-bits of data (higeher and lower registers) are processed.
2788 *
2789 * "c2" is the counter logic of "c1". For instance, if "c1" is originated
2790 * from "s>", then "c2" would be "s<". Notice that equality doesn't play
2791 * a role here either, because the lower 32 bits are not processed yet.
2792 *
2793 * "c3" is the unsigned version of "c1", no matter if the BPF condition
2794 * was signed or unsigned. An unsigned version is necessary, because the
2795 * MSB of the lower 32 bits does not reflect a sign in the whole 64-bit
2796 * scheme. Otherwise, 64-bit comparisons like
2797 * (0x0000_0000,0x8000_0000) s>= (0x0000_0000,0x0000_0000)
2798 * would yield an incorrect result. Finally, if there is an equality
2799 * check in the BPF condition, it will be reflected in "c3".
2800 *
2801 * You can find all the instances of this template where the
2802 * "arcv2_64_jccs" is getting initialised.
2803 */
gen_jcc_64(u8 * buf,u8 rd,u8 rs,u8 cond,u32 curr_off,u32 targ_off)2804 static u8 gen_jcc_64(u8 *buf, u8 rd, u8 rs, u8 cond,
2805 u32 curr_off, u32 targ_off)
2806 {
2807 s32 disp;
2808 u32 end_off;
2809 const u8 *cc = arcv2_64_jccs.jmp[cond].cond;
2810 u8 len = 0;
2811
2812 /* cmp rd_hi, rs_hi */
2813 len += arc_cmp_r(buf, REG_HI(rd), REG_HI(rs));
2814
2815 /* b<c1> @target */
2816 disp = get_displacement(curr_off + len, targ_off);
2817 len += arc_bcc(BUF(buf, len), cc[0], disp);
2818
2819 /* b<c2> @end */
2820 end_off = curr_off + len + (JCC64_INSNS_TO_END * INSN_len_normal);
2821 disp = get_displacement(curr_off + len, end_off);
2822 len += arc_bcc(BUF(buf, len), cc[1], disp);
2823
2824 /* cmp rd_lo, rs_lo */
2825 len += arc_cmp_r(BUF(buf, len), REG_LO(rd), REG_LO(rs));
2826
2827 /* b<c3> @target */
2828 disp = get_displacement(curr_off + len, targ_off);
2829 len += arc_bcc(BUF(buf, len), cc[2], disp);
2830
2831 return len;
2832 }
2833
2834 /*
2835 * This function only applies the necessary logic to make the proper
2836 * translations. All the sanity checks must have already been done
2837 * by calling the check_jmp_64().
2838 */
gen_jmp_64(u8 * buf,u8 rd,u8 rs,u8 cond,u32 curr_off,u32 targ_off)2839 u8 gen_jmp_64(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
2840 {
2841 u8 len = 0;
2842 bool eq = false;
2843 s32 disp;
2844
2845 switch (cond) {
2846 case ARC_CC_AL:
2847 disp = get_displacement(curr_off, targ_off);
2848 len = arc_b(buf, disp);
2849 break;
2850 case ARC_CC_UGT:
2851 case ARC_CC_UGE:
2852 case ARC_CC_ULT:
2853 case ARC_CC_ULE:
2854 case ARC_CC_SGT:
2855 case ARC_CC_SGE:
2856 case ARC_CC_SLT:
2857 case ARC_CC_SLE:
2858 len = gen_jcc_64(buf, rd, rs, cond, curr_off, targ_off);
2859 break;
2860 case ARC_CC_EQ:
2861 eq = true;
2862 fallthrough;
2863 case ARC_CC_NE:
2864 len = gen_j_eq_64(buf, rd, rs, eq, curr_off, targ_off);
2865 break;
2866 case ARC_CC_SET:
2867 len = gen_jset_64(buf, rd, rs, curr_off, targ_off);
2868 break;
2869 default:
2870 #ifdef ARC_BPF_JIT_DEBUG
2871 pr_err("64-bit jump condition is not known.");
2872 BUG();
2873 #endif
2874 }
2875 return len;
2876 }
2877
2878 /*
2879 * The condition codes to use when generating JIT instructions
2880 * for 32-bit jumps.
2881 *
2882 * The "ARC_CC_AL" index is not really used by the code, but it
2883 * is here for the sake of completeness.
2884 *
2885 * The "ARC_CC_SET" becomes "CC_unequal" because of the "tst"
2886 * instruction that precedes the conditional branch.
2887 */
2888 static const u8 arcv2_32_jmps[ARC_CC_LAST] = {
2889 [ARC_CC_UGT] = CC_great_u,
2890 [ARC_CC_UGE] = CC_great_eq_u,
2891 [ARC_CC_ULT] = CC_less_u,
2892 [ARC_CC_ULE] = CC_less_eq_u,
2893 [ARC_CC_SGT] = CC_great_s,
2894 [ARC_CC_SGE] = CC_great_eq_s,
2895 [ARC_CC_SLT] = CC_less_s,
2896 [ARC_CC_SLE] = CC_less_eq_s,
2897 [ARC_CC_AL] = CC_always,
2898 [ARC_CC_EQ] = CC_equal,
2899 [ARC_CC_NE] = CC_unequal,
2900 [ARC_CC_SET] = CC_unequal
2901 };
2902
2903 /* Can the jump from "curr_off" to "targ_off" actually happen? */
check_jmp_32(u32 curr_off,u32 targ_off,u8 cond)2904 bool check_jmp_32(u32 curr_off, u32 targ_off, u8 cond)
2905 {
2906 u8 addendum;
2907 s32 disp;
2908
2909 if (cond >= ARC_CC_LAST)
2910 return false;
2911
2912 /*
2913 * The unconditional jump happens immediately, while the rest
2914 * are either preceded by a "cmp" or "tst" instruction.
2915 */
2916 addendum = (cond == ARC_CC_AL) ? 0 : INSN_len_normal;
2917 disp = get_displacement(curr_off + addendum, targ_off);
2918
2919 if (cond == ARC_CC_AL)
2920 return is_valid_far_disp(disp);
2921 else
2922 return is_valid_near_disp(disp);
2923 }
2924
2925 /*
2926 * The JITed code for 32-bit (conditional) branches:
2927 *
2928 * ARC_CC_AL @target
2929 * b @jit_targ_addr
2930 *
2931 * ARC_CC_SET rd, rs, @target
2932 * tst rd, rs
2933 * bnz @jit_targ_addr
2934 *
2935 * ARC_CC_xx rd, rs, @target
2936 * cmp rd, rs
2937 * b<cc> @jit_targ_addr # cc = arcv2_32_jmps[xx]
2938 */
gen_jmp_32(u8 * buf,u8 rd,u8 rs,u8 cond,u32 curr_off,u32 targ_off)2939 u8 gen_jmp_32(u8 *buf, u8 rd, u8 rs, u8 cond, u32 curr_off, u32 targ_off)
2940 {
2941 s32 disp;
2942 u8 len = 0;
2943
2944 /*
2945 * Although this must have already been checked by "check_jmp_32()",
2946 * we're not going to risk accessing "arcv2_32_jmps" array without
2947 * the boundary check.
2948 */
2949 if (cond >= ARC_CC_LAST) {
2950 #ifdef ARC_BPF_JIT_DEBUG
2951 pr_err("32-bit jump condition is not known.");
2952 BUG();
2953 #endif
2954 return 0;
2955 }
2956
2957 /* If there is a "condition", issue the "cmp" or "tst" first. */
2958 if (cond != ARC_CC_AL) {
2959 if (cond == ARC_CC_SET)
2960 len = tst_r32(buf, rd, rs);
2961 else
2962 len = cmp_r32(buf, rd, rs);
2963 /*
2964 * The issued instruction affects the "disp"lacement as
2965 * it alters the "curr_off" by its "len"gth. The "curr_off"
2966 * should always point to the jump instruction.
2967 */
2968 disp = get_displacement(curr_off + len, targ_off);
2969 len += arc_bcc(BUF(buf, len), arcv2_32_jmps[cond], disp);
2970 } else {
2971 /* The straight forward unconditional jump. */
2972 disp = get_displacement(curr_off, targ_off);
2973 len = arc_b(buf, disp);
2974 }
2975
2976 return len;
2977 }
2978
2979 /*
2980 * Generate code for functions calls. There can be two types of calls:
2981 *
2982 * - Calling another BPF function
2983 * - Calling an in-kernel function which is compiled by ARC gcc
2984 *
2985 * In the later case, we must comply to ARCv2 ABI and handle arguments
2986 * and return values accordingly.
2987 */
gen_func_call(u8 * buf,ARC_ADDR func_addr,bool external_func)2988 u8 gen_func_call(u8 *buf, ARC_ADDR func_addr, bool external_func)
2989 {
2990 u8 len = 0;
2991
2992 /*
2993 * In case of an in-kernel function call, always push the 5th
2994 * argument onto the stack, because that's where the ABI dictates
2995 * it should be found. If the callee doesn't really use it, no harm
2996 * is done. The stack is readjusted either way after the call.
2997 */
2998 if (external_func)
2999 len += push_r64(BUF(buf, len), BPF_REG_5);
3000
3001 len += jump_and_link(BUF(buf, len), func_addr);
3002
3003 if (external_func)
3004 len += arc_add_i(BUF(buf, len), ARC_R_SP, ARC_R_SP, ARG5_SIZE);
3005
3006 return len;
3007 }
3008