xref: /linux/kernel/events/uprobes.c (revision 8804d970fab45726b3c7cd7f240b31122aa94219)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *	Srikar Dronamraju
8  *	Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11 
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>	/* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>		/* anon_vma_prepare */
20 #include <linux/mmu_notifier.h>
21 #include <linux/swap.h>		/* folio_free_swap */
22 #include <linux/ptrace.h>	/* user_enable_single_step */
23 #include <linux/kdebug.h>	/* notifier mechanism */
24 #include <linux/percpu-rwsem.h>
25 #include <linux/task_work.h>
26 #include <linux/shmem_fs.h>
27 #include <linux/khugepaged.h>
28 #include <linux/rcupdate_trace.h>
29 #include <linux/workqueue.h>
30 #include <linux/srcu.h>
31 #include <linux/oom.h>          /* check_stable_address_space */
32 #include <linux/pagewalk.h>
33 
34 #include <linux/uprobes.h>
35 
36 #define UINSNS_PER_PAGE			(PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
37 #define MAX_UPROBE_XOL_SLOTS		UINSNS_PER_PAGE
38 
39 static struct rb_root uprobes_tree = RB_ROOT;
40 /*
41  * allows us to skip the uprobe_mmap if there are no uprobe events active
42  * at this time.  Probably a fine grained per inode count is better?
43  */
44 #define no_uprobe_events()	RB_EMPTY_ROOT(&uprobes_tree)
45 
46 static DEFINE_RWLOCK(uprobes_treelock);	/* serialize rbtree access */
47 static seqcount_rwlock_t uprobes_seqcount = SEQCNT_RWLOCK_ZERO(uprobes_seqcount, &uprobes_treelock);
48 
49 #define UPROBES_HASH_SZ	13
50 /* serialize uprobe->pending_list */
51 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
52 #define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
53 
54 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
55 
56 /* Covers return_instance's uprobe lifetime. */
57 DEFINE_STATIC_SRCU(uretprobes_srcu);
58 
59 /* Have a copy of original instruction */
60 #define UPROBE_COPY_INSN	0
61 
62 struct uprobe {
63 	struct rb_node		rb_node;	/* node in the rb tree */
64 	refcount_t		ref;
65 	struct rw_semaphore	register_rwsem;
66 	struct rw_semaphore	consumer_rwsem;
67 	struct list_head	pending_list;
68 	struct list_head	consumers;
69 	struct inode		*inode;		/* Also hold a ref to inode */
70 	union {
71 		struct rcu_head		rcu;
72 		struct work_struct	work;
73 	};
74 	loff_t			offset;
75 	loff_t			ref_ctr_offset;
76 	unsigned long		flags;		/* "unsigned long" so bitops work */
77 
78 	/*
79 	 * The generic code assumes that it has two members of unknown type
80 	 * owned by the arch-specific code:
81 	 *
82 	 * 	insn -	copy_insn() saves the original instruction here for
83 	 *		arch_uprobe_analyze_insn().
84 	 *
85 	 *	ixol -	potentially modified instruction to execute out of
86 	 *		line, copied to xol_area by xol_get_insn_slot().
87 	 */
88 	struct arch_uprobe	arch;
89 };
90 
91 struct delayed_uprobe {
92 	struct list_head list;
93 	struct uprobe *uprobe;
94 	struct mm_struct *mm;
95 };
96 
97 static DEFINE_MUTEX(delayed_uprobe_lock);
98 static LIST_HEAD(delayed_uprobe_list);
99 
100 /*
101  * Execute out of line area: anonymous executable mapping installed
102  * by the probed task to execute the copy of the original instruction
103  * mangled by set_swbp().
104  *
105  * On a breakpoint hit, thread contests for a slot.  It frees the
106  * slot after singlestep. Currently a fixed number of slots are
107  * allocated.
108  */
109 struct xol_area {
110 	wait_queue_head_t 		wq;		/* if all slots are busy */
111 	unsigned long 			*bitmap;	/* 0 = free slot */
112 
113 	struct page			*page;
114 	/*
115 	 * We keep the vma's vm_start rather than a pointer to the vma
116 	 * itself.  The probed process or a naughty kernel module could make
117 	 * the vma go away, and we must handle that reasonably gracefully.
118 	 */
119 	unsigned long 			vaddr;		/* Page(s) of instruction slots */
120 };
121 
uprobe_warn(struct task_struct * t,const char * msg)122 static void uprobe_warn(struct task_struct *t, const char *msg)
123 {
124 	pr_warn("uprobe: %s:%d failed to %s\n", t->comm, t->pid, msg);
125 }
126 
127 /*
128  * valid_vma: Verify if the specified vma is an executable vma
129  * Relax restrictions while unregistering: vm_flags might have
130  * changed after breakpoint was inserted.
131  *	- is_register: indicates if we are in register context.
132  *	- Return 1 if the specified virtual address is in an
133  *	  executable vma.
134  */
valid_vma(struct vm_area_struct * vma,bool is_register)135 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
136 {
137 	vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
138 
139 	if (is_register)
140 		flags |= VM_WRITE;
141 
142 	return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
143 }
144 
offset_to_vaddr(struct vm_area_struct * vma,loff_t offset)145 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
146 {
147 	return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
148 }
149 
vaddr_to_offset(struct vm_area_struct * vma,unsigned long vaddr)150 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
151 {
152 	return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
153 }
154 
155 /**
156  * is_swbp_insn - check if instruction is breakpoint instruction.
157  * @insn: instruction to be checked.
158  * Default implementation of is_swbp_insn
159  * Returns true if @insn is a breakpoint instruction.
160  */
is_swbp_insn(uprobe_opcode_t * insn)161 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
162 {
163 	return *insn == UPROBE_SWBP_INSN;
164 }
165 
166 /**
167  * is_trap_insn - check if instruction is breakpoint instruction.
168  * @insn: instruction to be checked.
169  * Default implementation of is_trap_insn
170  * Returns true if @insn is a breakpoint instruction.
171  *
172  * This function is needed for the case where an architecture has multiple
173  * trap instructions (like powerpc).
174  */
is_trap_insn(uprobe_opcode_t * insn)175 bool __weak is_trap_insn(uprobe_opcode_t *insn)
176 {
177 	return is_swbp_insn(insn);
178 }
179 
uprobe_copy_from_page(struct page * page,unsigned long vaddr,void * dst,int len)180 void uprobe_copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
181 {
182 	void *kaddr = kmap_atomic(page);
183 	memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
184 	kunmap_atomic(kaddr);
185 }
186 
copy_to_page(struct page * page,unsigned long vaddr,const void * src,int len)187 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
188 {
189 	void *kaddr = kmap_atomic(page);
190 	memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
191 	kunmap_atomic(kaddr);
192 }
193 
verify_opcode(struct page * page,unsigned long vaddr,uprobe_opcode_t * insn,int nbytes,void * data)194 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *insn,
195 			 int nbytes, void *data)
196 {
197 	uprobe_opcode_t old_opcode;
198 	bool is_swbp;
199 
200 	/*
201 	 * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
202 	 * We do not check if it is any other 'trap variant' which could
203 	 * be conditional trap instruction such as the one powerpc supports.
204 	 *
205 	 * The logic is that we do not care if the underlying instruction
206 	 * is a trap variant; uprobes always wins over any other (gdb)
207 	 * breakpoint.
208 	 */
209 	uprobe_copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
210 	is_swbp = is_swbp_insn(&old_opcode);
211 
212 	if (is_swbp_insn(insn)) {
213 		if (is_swbp)		/* register: already installed? */
214 			return 0;
215 	} else {
216 		if (!is_swbp)		/* unregister: was it changed by us? */
217 			return 0;
218 	}
219 
220 	return 1;
221 }
222 
223 static struct delayed_uprobe *
delayed_uprobe_check(struct uprobe * uprobe,struct mm_struct * mm)224 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
225 {
226 	struct delayed_uprobe *du;
227 
228 	list_for_each_entry(du, &delayed_uprobe_list, list)
229 		if (du->uprobe == uprobe && du->mm == mm)
230 			return du;
231 	return NULL;
232 }
233 
delayed_uprobe_add(struct uprobe * uprobe,struct mm_struct * mm)234 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
235 {
236 	struct delayed_uprobe *du;
237 
238 	if (delayed_uprobe_check(uprobe, mm))
239 		return 0;
240 
241 	du  = kzalloc(sizeof(*du), GFP_KERNEL);
242 	if (!du)
243 		return -ENOMEM;
244 
245 	du->uprobe = uprobe;
246 	du->mm = mm;
247 	list_add(&du->list, &delayed_uprobe_list);
248 	return 0;
249 }
250 
delayed_uprobe_delete(struct delayed_uprobe * du)251 static void delayed_uprobe_delete(struct delayed_uprobe *du)
252 {
253 	if (WARN_ON(!du))
254 		return;
255 	list_del(&du->list);
256 	kfree(du);
257 }
258 
delayed_uprobe_remove(struct uprobe * uprobe,struct mm_struct * mm)259 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
260 {
261 	struct list_head *pos, *q;
262 	struct delayed_uprobe *du;
263 
264 	if (!uprobe && !mm)
265 		return;
266 
267 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
268 		du = list_entry(pos, struct delayed_uprobe, list);
269 
270 		if (uprobe && du->uprobe != uprobe)
271 			continue;
272 		if (mm && du->mm != mm)
273 			continue;
274 
275 		delayed_uprobe_delete(du);
276 	}
277 }
278 
valid_ref_ctr_vma(struct uprobe * uprobe,struct vm_area_struct * vma)279 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
280 			      struct vm_area_struct *vma)
281 {
282 	unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
283 
284 	return uprobe->ref_ctr_offset &&
285 		vma->vm_file &&
286 		file_inode(vma->vm_file) == uprobe->inode &&
287 		(vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
288 		vma->vm_start <= vaddr &&
289 		vma->vm_end > vaddr;
290 }
291 
292 static struct vm_area_struct *
find_ref_ctr_vma(struct uprobe * uprobe,struct mm_struct * mm)293 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295 	VMA_ITERATOR(vmi, mm, 0);
296 	struct vm_area_struct *tmp;
297 
298 	for_each_vma(vmi, tmp)
299 		if (valid_ref_ctr_vma(uprobe, tmp))
300 			return tmp;
301 
302 	return NULL;
303 }
304 
305 static int
__update_ref_ctr(struct mm_struct * mm,unsigned long vaddr,short d)306 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
307 {
308 	void *kaddr;
309 	struct page *page;
310 	int ret;
311 	short *ptr;
312 
313 	if (!vaddr || !d)
314 		return -EINVAL;
315 
316 	ret = get_user_pages_remote(mm, vaddr, 1,
317 				    FOLL_WRITE, &page, NULL);
318 	if (unlikely(ret <= 0)) {
319 		/*
320 		 * We are asking for 1 page. If get_user_pages_remote() fails,
321 		 * it may return 0, in that case we have to return error.
322 		 */
323 		return ret == 0 ? -EBUSY : ret;
324 	}
325 
326 	kaddr = kmap_atomic(page);
327 	ptr = kaddr + (vaddr & ~PAGE_MASK);
328 
329 	if (unlikely(*ptr + d < 0)) {
330 		pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
331 			"curr val: %d, delta: %d\n", vaddr, *ptr, d);
332 		ret = -EINVAL;
333 		goto out;
334 	}
335 
336 	*ptr += d;
337 	ret = 0;
338 out:
339 	kunmap_atomic(kaddr);
340 	put_page(page);
341 	return ret;
342 }
343 
update_ref_ctr_warn(struct uprobe * uprobe,struct mm_struct * mm,short d)344 static void update_ref_ctr_warn(struct uprobe *uprobe,
345 				struct mm_struct *mm, short d)
346 {
347 	pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
348 		"0x%llx ref_ctr_offset: 0x%llx of mm: 0x%p\n",
349 		d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
350 		(unsigned long long) uprobe->offset,
351 		(unsigned long long) uprobe->ref_ctr_offset, mm);
352 }
353 
update_ref_ctr(struct uprobe * uprobe,struct mm_struct * mm,short d)354 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
355 			  short d)
356 {
357 	struct vm_area_struct *rc_vma;
358 	unsigned long rc_vaddr;
359 	int ret = 0;
360 
361 	rc_vma = find_ref_ctr_vma(uprobe, mm);
362 
363 	if (rc_vma) {
364 		rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
365 		ret = __update_ref_ctr(mm, rc_vaddr, d);
366 		if (ret)
367 			update_ref_ctr_warn(uprobe, mm, d);
368 
369 		if (d > 0)
370 			return ret;
371 	}
372 
373 	mutex_lock(&delayed_uprobe_lock);
374 	if (d > 0)
375 		ret = delayed_uprobe_add(uprobe, mm);
376 	else
377 		delayed_uprobe_remove(uprobe, mm);
378 	mutex_unlock(&delayed_uprobe_lock);
379 
380 	return ret;
381 }
382 
orig_page_is_identical(struct vm_area_struct * vma,unsigned long vaddr,struct page * page,bool * pmd_mappable)383 static bool orig_page_is_identical(struct vm_area_struct *vma,
384 		unsigned long vaddr, struct page *page, bool *pmd_mappable)
385 {
386 	const pgoff_t index = vaddr_to_offset(vma, vaddr) >> PAGE_SHIFT;
387 	struct folio *orig_folio = filemap_get_folio(vma->vm_file->f_mapping,
388 						    index);
389 	struct page *orig_page;
390 	bool identical;
391 
392 	if (IS_ERR(orig_folio))
393 		return false;
394 	orig_page = folio_file_page(orig_folio, index);
395 
396 	*pmd_mappable = folio_test_pmd_mappable(orig_folio);
397 	identical = folio_test_uptodate(orig_folio) &&
398 		    pages_identical(page, orig_page);
399 	folio_put(orig_folio);
400 	return identical;
401 }
402 
__uprobe_write(struct vm_area_struct * vma,struct folio_walk * fw,struct folio * folio,unsigned long insn_vaddr,uprobe_opcode_t * insn,int nbytes,bool is_register)403 static int __uprobe_write(struct vm_area_struct *vma,
404 		struct folio_walk *fw, struct folio *folio,
405 		unsigned long insn_vaddr, uprobe_opcode_t *insn, int nbytes,
406 		bool is_register)
407 {
408 	const unsigned long vaddr = insn_vaddr & PAGE_MASK;
409 	bool pmd_mappable;
410 
411 	/* For now, we'll only handle PTE-mapped folios. */
412 	if (fw->level != FW_LEVEL_PTE)
413 		return -EFAULT;
414 
415 	/*
416 	 * See can_follow_write_pte(): we'd actually prefer a writable PTE here,
417 	 * but the VMA might not be writable.
418 	 */
419 	if (!pte_write(fw->pte)) {
420 		if (!PageAnonExclusive(fw->page))
421 			return -EFAULT;
422 		if (unlikely(userfaultfd_pte_wp(vma, fw->pte)))
423 			return -EFAULT;
424 		/* SOFTDIRTY is handled via pte_mkdirty() below. */
425 	}
426 
427 	/*
428 	 * We'll temporarily unmap the page and flush the TLB, such that we can
429 	 * modify the page atomically.
430 	 */
431 	flush_cache_page(vma, vaddr, pte_pfn(fw->pte));
432 	fw->pte = ptep_clear_flush(vma, vaddr, fw->ptep);
433 	copy_to_page(fw->page, insn_vaddr, insn, nbytes);
434 
435 	/*
436 	 * When unregistering, we may only zap a PTE if uffd is disabled and
437 	 * there are no unexpected folio references ...
438 	 */
439 	if (is_register || userfaultfd_missing(vma) ||
440 	    (folio_ref_count(folio) != folio_expected_ref_count(folio) + 1))
441 		goto remap;
442 
443 	/*
444 	 * ... and the mapped page is identical to the original page that
445 	 * would get faulted in on next access.
446 	 */
447 	if (!orig_page_is_identical(vma, vaddr, fw->page, &pmd_mappable))
448 		goto remap;
449 
450 	dec_mm_counter(vma->vm_mm, MM_ANONPAGES);
451 	folio_remove_rmap_pte(folio, fw->page, vma);
452 	if (!folio_mapped(folio) && folio_test_swapcache(folio) &&
453 	     folio_trylock(folio)) {
454 		folio_free_swap(folio);
455 		folio_unlock(folio);
456 	}
457 	folio_put(folio);
458 
459 	return pmd_mappable;
460 remap:
461 	/*
462 	 * Make sure that our copy_to_page() changes become visible before the
463 	 * set_pte_at() write.
464 	 */
465 	smp_wmb();
466 	/* We modified the page. Make sure to mark the PTE dirty. */
467 	set_pte_at(vma->vm_mm, vaddr, fw->ptep, pte_mkdirty(fw->pte));
468 	return 0;
469 }
470 
471 /*
472  * NOTE:
473  * Expect the breakpoint instruction to be the smallest size instruction for
474  * the architecture. If an arch has variable length instruction and the
475  * breakpoint instruction is not of the smallest length instruction
476  * supported by that architecture then we need to modify is_trap_at_addr and
477  * uprobe_write_opcode accordingly. This would never be a problem for archs
478  * that have fixed length instructions.
479  *
480  * uprobe_write_opcode - write the opcode at a given virtual address.
481  * @auprobe: arch specific probepoint information.
482  * @vma: the probed virtual memory area.
483  * @opcode_vaddr: the virtual address to store the opcode.
484  * @opcode: opcode to be written at @opcode_vaddr.
485  *
486  * Called with mm->mmap_lock held for write.
487  * Return 0 (success) or a negative errno.
488  */
uprobe_write_opcode(struct arch_uprobe * auprobe,struct vm_area_struct * vma,const unsigned long opcode_vaddr,uprobe_opcode_t opcode,bool is_register)489 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
490 		const unsigned long opcode_vaddr, uprobe_opcode_t opcode,
491 		bool is_register)
492 {
493 	return uprobe_write(auprobe, vma, opcode_vaddr, &opcode, UPROBE_SWBP_INSN_SIZE,
494 			    verify_opcode, is_register, true /* do_update_ref_ctr */, NULL);
495 }
496 
uprobe_write(struct arch_uprobe * auprobe,struct vm_area_struct * vma,const unsigned long insn_vaddr,uprobe_opcode_t * insn,int nbytes,uprobe_write_verify_t verify,bool is_register,bool do_update_ref_ctr,void * data)497 int uprobe_write(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
498 		 const unsigned long insn_vaddr, uprobe_opcode_t *insn, int nbytes,
499 		 uprobe_write_verify_t verify, bool is_register, bool do_update_ref_ctr,
500 		 void *data)
501 {
502 	const unsigned long vaddr = insn_vaddr & PAGE_MASK;
503 	struct mm_struct *mm = vma->vm_mm;
504 	struct uprobe *uprobe;
505 	int ret, ref_ctr_updated = 0;
506 	unsigned int gup_flags = FOLL_FORCE;
507 	struct mmu_notifier_range range;
508 	struct folio_walk fw;
509 	struct folio *folio;
510 	struct page *page;
511 
512 	uprobe = container_of(auprobe, struct uprobe, arch);
513 
514 	if (WARN_ON_ONCE(!is_cow_mapping(vma->vm_flags)))
515 		return -EINVAL;
516 
517 	/*
518 	 * When registering, we have to break COW to get an exclusive anonymous
519 	 * page that we can safely modify. Use FOLL_WRITE to trigger a write
520 	 * fault if required. When unregistering, we might be lucky and the
521 	 * anon page is already gone. So defer write faults until really
522 	 * required. Use FOLL_SPLIT_PMD, because __uprobe_write()
523 	 * cannot deal with PMDs yet.
524 	 */
525 	if (is_register)
526 		gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD;
527 
528 retry:
529 	ret = get_user_pages_remote(mm, vaddr, 1, gup_flags, &page, NULL);
530 	if (ret <= 0)
531 		goto out;
532 	folio = page_folio(page);
533 
534 	ret = verify(page, insn_vaddr, insn, nbytes, data);
535 	if (ret <= 0) {
536 		folio_put(folio);
537 		goto out;
538 	}
539 
540 	/* We are going to replace instruction, update ref_ctr. */
541 	if (do_update_ref_ctr && !ref_ctr_updated && uprobe->ref_ctr_offset) {
542 		ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
543 		if (ret) {
544 			folio_put(folio);
545 			goto out;
546 		}
547 
548 		ref_ctr_updated = 1;
549 	}
550 
551 	ret = 0;
552 	if (unlikely(!folio_test_anon(folio) || folio_is_zone_device(folio))) {
553 		VM_WARN_ON_ONCE(is_register);
554 		folio_put(folio);
555 		goto out;
556 	}
557 
558 	if (!is_register) {
559 		/*
560 		 * In the common case, we'll be able to zap the page when
561 		 * unregistering. So trigger MMU notifiers now, as we won't
562 		 * be able to do it under PTL.
563 		 */
564 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
565 					vaddr, vaddr + PAGE_SIZE);
566 		mmu_notifier_invalidate_range_start(&range);
567 	}
568 
569 	ret = -EAGAIN;
570 	/* Walk the page tables again, to perform the actual update. */
571 	if (folio_walk_start(&fw, vma, vaddr, 0)) {
572 		if (fw.page == page)
573 			ret = __uprobe_write(vma, &fw, folio, insn_vaddr, insn, nbytes, is_register);
574 		folio_walk_end(&fw, vma);
575 	}
576 
577 	if (!is_register)
578 		mmu_notifier_invalidate_range_end(&range);
579 
580 	folio_put(folio);
581 	switch (ret) {
582 	case -EFAULT:
583 		gup_flags |= FOLL_WRITE | FOLL_SPLIT_PMD;
584 		fallthrough;
585 	case -EAGAIN:
586 		goto retry;
587 	default:
588 		break;
589 	}
590 
591 out:
592 	/* Revert back reference counter if instruction update failed. */
593 	if (do_update_ref_ctr && ret < 0 && ref_ctr_updated)
594 		update_ref_ctr(uprobe, mm, is_register ? -1 : 1);
595 
596 	/* try collapse pmd for compound page */
597 	if (ret > 0)
598 		collapse_pte_mapped_thp(mm, vaddr, false);
599 
600 	return ret < 0 ? ret : 0;
601 }
602 
603 /**
604  * set_swbp - store breakpoint at a given address.
605  * @auprobe: arch specific probepoint information.
606  * @vma: the probed virtual memory area.
607  * @vaddr: the virtual address to insert the opcode.
608  *
609  * For mm @mm, store the breakpoint instruction at @vaddr.
610  * Return 0 (success) or a negative errno.
611  */
set_swbp(struct arch_uprobe * auprobe,struct vm_area_struct * vma,unsigned long vaddr)612 int __weak set_swbp(struct arch_uprobe *auprobe, struct vm_area_struct *vma,
613 		unsigned long vaddr)
614 {
615 	return uprobe_write_opcode(auprobe, vma, vaddr, UPROBE_SWBP_INSN, true);
616 }
617 
618 /**
619  * set_orig_insn - Restore the original instruction.
620  * @vma: the probed virtual memory area.
621  * @auprobe: arch specific probepoint information.
622  * @vaddr: the virtual address to insert the opcode.
623  *
624  * For mm @mm, restore the original opcode (opcode) at @vaddr.
625  * Return 0 (success) or a negative errno.
626  */
set_orig_insn(struct arch_uprobe * auprobe,struct vm_area_struct * vma,unsigned long vaddr)627 int __weak set_orig_insn(struct arch_uprobe *auprobe,
628 		struct vm_area_struct *vma, unsigned long vaddr)
629 {
630 	return uprobe_write_opcode(auprobe, vma, vaddr,
631 			*(uprobe_opcode_t *)&auprobe->insn, false);
632 }
633 
634 /* uprobe should have guaranteed positive refcount */
get_uprobe(struct uprobe * uprobe)635 static struct uprobe *get_uprobe(struct uprobe *uprobe)
636 {
637 	refcount_inc(&uprobe->ref);
638 	return uprobe;
639 }
640 
641 /*
642  * uprobe should have guaranteed lifetime, which can be either of:
643  *   - caller already has refcount taken (and wants an extra one);
644  *   - uprobe is RCU protected and won't be freed until after grace period;
645  *   - we are holding uprobes_treelock (for read or write, doesn't matter).
646  */
try_get_uprobe(struct uprobe * uprobe)647 static struct uprobe *try_get_uprobe(struct uprobe *uprobe)
648 {
649 	if (refcount_inc_not_zero(&uprobe->ref))
650 		return uprobe;
651 	return NULL;
652 }
653 
uprobe_is_active(struct uprobe * uprobe)654 static inline bool uprobe_is_active(struct uprobe *uprobe)
655 {
656 	return !RB_EMPTY_NODE(&uprobe->rb_node);
657 }
658 
uprobe_free_rcu_tasks_trace(struct rcu_head * rcu)659 static void uprobe_free_rcu_tasks_trace(struct rcu_head *rcu)
660 {
661 	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
662 
663 	kfree(uprobe);
664 }
665 
uprobe_free_srcu(struct rcu_head * rcu)666 static void uprobe_free_srcu(struct rcu_head *rcu)
667 {
668 	struct uprobe *uprobe = container_of(rcu, struct uprobe, rcu);
669 
670 	call_rcu_tasks_trace(&uprobe->rcu, uprobe_free_rcu_tasks_trace);
671 }
672 
uprobe_free_deferred(struct work_struct * work)673 static void uprobe_free_deferred(struct work_struct *work)
674 {
675 	struct uprobe *uprobe = container_of(work, struct uprobe, work);
676 
677 	write_lock(&uprobes_treelock);
678 
679 	if (uprobe_is_active(uprobe)) {
680 		write_seqcount_begin(&uprobes_seqcount);
681 		rb_erase(&uprobe->rb_node, &uprobes_tree);
682 		write_seqcount_end(&uprobes_seqcount);
683 	}
684 
685 	write_unlock(&uprobes_treelock);
686 
687 	/*
688 	 * If application munmap(exec_vma) before uprobe_unregister()
689 	 * gets called, we don't get a chance to remove uprobe from
690 	 * delayed_uprobe_list from remove_breakpoint(). Do it here.
691 	 */
692 	mutex_lock(&delayed_uprobe_lock);
693 	delayed_uprobe_remove(uprobe, NULL);
694 	mutex_unlock(&delayed_uprobe_lock);
695 
696 	/* start srcu -> rcu_tasks_trace -> kfree chain */
697 	call_srcu(&uretprobes_srcu, &uprobe->rcu, uprobe_free_srcu);
698 }
699 
put_uprobe(struct uprobe * uprobe)700 static void put_uprobe(struct uprobe *uprobe)
701 {
702 	if (!refcount_dec_and_test(&uprobe->ref))
703 		return;
704 
705 	INIT_WORK(&uprobe->work, uprobe_free_deferred);
706 	schedule_work(&uprobe->work);
707 }
708 
709 /* Initialize hprobe as SRCU-protected "leased" uprobe */
hprobe_init_leased(struct hprobe * hprobe,struct uprobe * uprobe,int srcu_idx)710 static void hprobe_init_leased(struct hprobe *hprobe, struct uprobe *uprobe, int srcu_idx)
711 {
712 	WARN_ON(!uprobe);
713 	hprobe->state = HPROBE_LEASED;
714 	hprobe->uprobe = uprobe;
715 	hprobe->srcu_idx = srcu_idx;
716 }
717 
718 /* Initialize hprobe as refcounted ("stable") uprobe (uprobe can be NULL). */
hprobe_init_stable(struct hprobe * hprobe,struct uprobe * uprobe)719 static void hprobe_init_stable(struct hprobe *hprobe, struct uprobe *uprobe)
720 {
721 	hprobe->state = uprobe ? HPROBE_STABLE : HPROBE_GONE;
722 	hprobe->uprobe = uprobe;
723 	hprobe->srcu_idx = -1;
724 }
725 
726 /*
727  * hprobe_consume() fetches hprobe's underlying uprobe and detects whether
728  * uprobe is SRCU protected or is refcounted. hprobe_consume() can be
729  * used only once for a given hprobe.
730  *
731  * Caller has to call hprobe_finalize() and pass previous hprobe_state, so
732  * that hprobe_finalize() can perform SRCU unlock or put uprobe, whichever
733  * is appropriate.
734  */
hprobe_consume(struct hprobe * hprobe,enum hprobe_state * hstate)735 static inline struct uprobe *hprobe_consume(struct hprobe *hprobe, enum hprobe_state *hstate)
736 {
737 	*hstate = xchg(&hprobe->state, HPROBE_CONSUMED);
738 	switch (*hstate) {
739 	case HPROBE_LEASED:
740 	case HPROBE_STABLE:
741 		return hprobe->uprobe;
742 	case HPROBE_GONE:	/* uprobe is NULL, no SRCU */
743 	case HPROBE_CONSUMED:	/* uprobe was finalized already, do nothing */
744 		return NULL;
745 	default:
746 		WARN(1, "hprobe invalid state %d", *hstate);
747 		return NULL;
748 	}
749 }
750 
751 /*
752  * Reset hprobe state and, if hprobe was LEASED, release SRCU lock.
753  * hprobe_finalize() can only be used from current context after
754  * hprobe_consume() call (which determines uprobe and hstate value).
755  */
hprobe_finalize(struct hprobe * hprobe,enum hprobe_state hstate)756 static void hprobe_finalize(struct hprobe *hprobe, enum hprobe_state hstate)
757 {
758 	switch (hstate) {
759 	case HPROBE_LEASED:
760 		__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
761 		break;
762 	case HPROBE_STABLE:
763 		put_uprobe(hprobe->uprobe);
764 		break;
765 	case HPROBE_GONE:
766 	case HPROBE_CONSUMED:
767 		break;
768 	default:
769 		WARN(1, "hprobe invalid state %d", hstate);
770 		break;
771 	}
772 }
773 
774 /*
775  * Attempt to switch (atomically) uprobe from being SRCU protected (LEASED)
776  * to refcounted (STABLE) state. Competes with hprobe_consume(); only one of
777  * them can win the race to perform SRCU unlocking. Whoever wins must perform
778  * SRCU unlock.
779  *
780  * Returns underlying valid uprobe or NULL, if there was no underlying uprobe
781  * to begin with or we failed to bump its refcount and it's going away.
782  *
783  * Returned non-NULL uprobe can be still safely used within an ongoing SRCU
784  * locked region. If `get` is true, it's guaranteed that non-NULL uprobe has
785  * an extra refcount for caller to assume and use. Otherwise, it's not
786  * guaranteed that returned uprobe has a positive refcount, so caller has to
787  * attempt try_get_uprobe(), if it needs to preserve uprobe beyond current
788  * SRCU lock region. See dup_utask().
789  */
hprobe_expire(struct hprobe * hprobe,bool get)790 static struct uprobe *hprobe_expire(struct hprobe *hprobe, bool get)
791 {
792 	enum hprobe_state hstate;
793 
794 	/*
795 	 * Caller should guarantee that return_instance is not going to be
796 	 * freed from under us. This can be achieved either through holding
797 	 * rcu_read_lock() or by owning return_instance in the first place.
798 	 *
799 	 * Underlying uprobe is itself protected from reuse by SRCU, so ensure
800 	 * SRCU lock is held properly.
801 	 */
802 	lockdep_assert(srcu_read_lock_held(&uretprobes_srcu));
803 
804 	hstate = READ_ONCE(hprobe->state);
805 	switch (hstate) {
806 	case HPROBE_STABLE:
807 		/* uprobe has positive refcount, bump refcount, if necessary */
808 		return get ? get_uprobe(hprobe->uprobe) : hprobe->uprobe;
809 	case HPROBE_GONE:
810 		/*
811 		 * SRCU was unlocked earlier and we didn't manage to take
812 		 * uprobe refcnt, so it's effectively NULL
813 		 */
814 		return NULL;
815 	case HPROBE_CONSUMED:
816 		/*
817 		 * uprobe was consumed, so it's effectively NULL as far as
818 		 * uretprobe processing logic is concerned
819 		 */
820 		return NULL;
821 	case HPROBE_LEASED: {
822 		struct uprobe *uprobe = try_get_uprobe(hprobe->uprobe);
823 		/*
824 		 * Try to switch hprobe state, guarding against
825 		 * hprobe_consume() or another hprobe_expire() racing with us.
826 		 * Note, if we failed to get uprobe refcount, we use special
827 		 * HPROBE_GONE state to signal that hprobe->uprobe shouldn't
828 		 * be used as it will be freed after SRCU is unlocked.
829 		 */
830 		if (try_cmpxchg(&hprobe->state, &hstate, uprobe ? HPROBE_STABLE : HPROBE_GONE)) {
831 			/* We won the race, we are the ones to unlock SRCU */
832 			__srcu_read_unlock(&uretprobes_srcu, hprobe->srcu_idx);
833 			return get ? get_uprobe(uprobe) : uprobe;
834 		}
835 
836 		/*
837 		 * We lost the race, undo refcount bump (if it ever happened),
838 		 * unless caller would like an extra refcount anyways.
839 		 */
840 		if (uprobe && !get)
841 			put_uprobe(uprobe);
842 		/*
843 		 * Even if hprobe_consume() or another hprobe_expire() wins
844 		 * the state update race and unlocks SRCU from under us, we
845 		 * still have a guarantee that underyling uprobe won't be
846 		 * freed due to ongoing caller's SRCU lock region, so we can
847 		 * return it regardless. Also, if `get` was true, we also have
848 		 * an extra ref for the caller to own. This is used in dup_utask().
849 		 */
850 		return uprobe;
851 	}
852 	default:
853 		WARN(1, "unknown hprobe state %d", hstate);
854 		return NULL;
855 	}
856 }
857 
858 static __always_inline
uprobe_cmp(const struct inode * l_inode,const loff_t l_offset,const struct uprobe * r)859 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
860 	       const struct uprobe *r)
861 {
862 	if (l_inode < r->inode)
863 		return -1;
864 
865 	if (l_inode > r->inode)
866 		return 1;
867 
868 	if (l_offset < r->offset)
869 		return -1;
870 
871 	if (l_offset > r->offset)
872 		return 1;
873 
874 	return 0;
875 }
876 
877 #define __node_2_uprobe(node) \
878 	rb_entry((node), struct uprobe, rb_node)
879 
880 struct __uprobe_key {
881 	struct inode *inode;
882 	loff_t offset;
883 };
884 
__uprobe_cmp_key(const void * key,const struct rb_node * b)885 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
886 {
887 	const struct __uprobe_key *a = key;
888 	return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
889 }
890 
__uprobe_cmp(struct rb_node * a,const struct rb_node * b)891 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
892 {
893 	struct uprobe *u = __node_2_uprobe(a);
894 	return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
895 }
896 
897 /*
898  * Assumes being inside RCU protected region.
899  * No refcount is taken on returned uprobe.
900  */
find_uprobe_rcu(struct inode * inode,loff_t offset)901 static struct uprobe *find_uprobe_rcu(struct inode *inode, loff_t offset)
902 {
903 	struct __uprobe_key key = {
904 		.inode = inode,
905 		.offset = offset,
906 	};
907 	struct rb_node *node;
908 	unsigned int seq;
909 
910 	lockdep_assert(rcu_read_lock_trace_held());
911 
912 	do {
913 		seq = read_seqcount_begin(&uprobes_seqcount);
914 		node = rb_find_rcu(&key, &uprobes_tree, __uprobe_cmp_key);
915 		/*
916 		 * Lockless RB-tree lookups can result only in false negatives.
917 		 * If the element is found, it is correct and can be returned
918 		 * under RCU protection. If we find nothing, we need to
919 		 * validate that seqcount didn't change. If it did, we have to
920 		 * try again as we might have missed the element (false
921 		 * negative). If seqcount is unchanged, search truly failed.
922 		 */
923 		if (node)
924 			return __node_2_uprobe(node);
925 	} while (read_seqcount_retry(&uprobes_seqcount, seq));
926 
927 	return NULL;
928 }
929 
930 /*
931  * Attempt to insert a new uprobe into uprobes_tree.
932  *
933  * If uprobe already exists (for given inode+offset), we just increment
934  * refcount of previously existing uprobe.
935  *
936  * If not, a provided new instance of uprobe is inserted into the tree (with
937  * assumed initial refcount == 1).
938  *
939  * In any case, we return a uprobe instance that ends up being in uprobes_tree.
940  * Caller has to clean up new uprobe instance, if it ended up not being
941  * inserted into the tree.
942  *
943  * We assume that uprobes_treelock is held for writing.
944  */
__insert_uprobe(struct uprobe * uprobe)945 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
946 {
947 	struct rb_node *node;
948 again:
949 	node = rb_find_add_rcu(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
950 	if (node) {
951 		struct uprobe *u = __node_2_uprobe(node);
952 
953 		if (!try_get_uprobe(u)) {
954 			rb_erase(node, &uprobes_tree);
955 			RB_CLEAR_NODE(&u->rb_node);
956 			goto again;
957 		}
958 
959 		return u;
960 	}
961 
962 	return uprobe;
963 }
964 
965 /*
966  * Acquire uprobes_treelock and insert uprobe into uprobes_tree
967  * (or reuse existing one, see __insert_uprobe() comments above).
968  */
insert_uprobe(struct uprobe * uprobe)969 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
970 {
971 	struct uprobe *u;
972 
973 	write_lock(&uprobes_treelock);
974 	write_seqcount_begin(&uprobes_seqcount);
975 	u = __insert_uprobe(uprobe);
976 	write_seqcount_end(&uprobes_seqcount);
977 	write_unlock(&uprobes_treelock);
978 
979 	return u;
980 }
981 
982 static void
ref_ctr_mismatch_warn(struct uprobe * cur_uprobe,struct uprobe * uprobe)983 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
984 {
985 	pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
986 		"ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
987 		uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
988 		(unsigned long long) cur_uprobe->ref_ctr_offset,
989 		(unsigned long long) uprobe->ref_ctr_offset);
990 }
991 
alloc_uprobe(struct inode * inode,loff_t offset,loff_t ref_ctr_offset)992 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
993 				   loff_t ref_ctr_offset)
994 {
995 	struct uprobe *uprobe, *cur_uprobe;
996 
997 	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
998 	if (!uprobe)
999 		return ERR_PTR(-ENOMEM);
1000 
1001 	uprobe->inode = inode;
1002 	uprobe->offset = offset;
1003 	uprobe->ref_ctr_offset = ref_ctr_offset;
1004 	INIT_LIST_HEAD(&uprobe->consumers);
1005 	init_rwsem(&uprobe->register_rwsem);
1006 	init_rwsem(&uprobe->consumer_rwsem);
1007 	RB_CLEAR_NODE(&uprobe->rb_node);
1008 	refcount_set(&uprobe->ref, 1);
1009 
1010 	/* add to uprobes_tree, sorted on inode:offset */
1011 	cur_uprobe = insert_uprobe(uprobe);
1012 	/* a uprobe exists for this inode:offset combination */
1013 	if (cur_uprobe != uprobe) {
1014 		if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
1015 			ref_ctr_mismatch_warn(cur_uprobe, uprobe);
1016 			put_uprobe(cur_uprobe);
1017 			kfree(uprobe);
1018 			return ERR_PTR(-EINVAL);
1019 		}
1020 		kfree(uprobe);
1021 		uprobe = cur_uprobe;
1022 	}
1023 
1024 	return uprobe;
1025 }
1026 
consumer_add(struct uprobe * uprobe,struct uprobe_consumer * uc)1027 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
1028 {
1029 	static atomic64_t id;
1030 
1031 	down_write(&uprobe->consumer_rwsem);
1032 	list_add_rcu(&uc->cons_node, &uprobe->consumers);
1033 	uc->id = (__u64) atomic64_inc_return(&id);
1034 	up_write(&uprobe->consumer_rwsem);
1035 }
1036 
1037 /*
1038  * For uprobe @uprobe, delete the consumer @uc.
1039  * Should never be called with consumer that's not part of @uprobe->consumers.
1040  */
consumer_del(struct uprobe * uprobe,struct uprobe_consumer * uc)1041 static void consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
1042 {
1043 	down_write(&uprobe->consumer_rwsem);
1044 	list_del_rcu(&uc->cons_node);
1045 	up_write(&uprobe->consumer_rwsem);
1046 }
1047 
__copy_insn(struct address_space * mapping,struct file * filp,void * insn,int nbytes,loff_t offset)1048 static int __copy_insn(struct address_space *mapping, struct file *filp,
1049 			void *insn, int nbytes, loff_t offset)
1050 {
1051 	struct page *page;
1052 	/*
1053 	 * Ensure that the page that has the original instruction is populated
1054 	 * and in page-cache. If ->read_folio == NULL it must be shmem_mapping(),
1055 	 * see uprobe_register().
1056 	 */
1057 	if (mapping->a_ops->read_folio)
1058 		page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
1059 	else
1060 		page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
1061 	if (IS_ERR(page))
1062 		return PTR_ERR(page);
1063 
1064 	uprobe_copy_from_page(page, offset, insn, nbytes);
1065 	put_page(page);
1066 
1067 	return 0;
1068 }
1069 
copy_insn(struct uprobe * uprobe,struct file * filp)1070 static int copy_insn(struct uprobe *uprobe, struct file *filp)
1071 {
1072 	struct address_space *mapping = uprobe->inode->i_mapping;
1073 	loff_t offs = uprobe->offset;
1074 	void *insn = &uprobe->arch.insn;
1075 	int size = sizeof(uprobe->arch.insn);
1076 	int len, err = -EIO;
1077 
1078 	/* Copy only available bytes, -EIO if nothing was read */
1079 	do {
1080 		if (offs >= i_size_read(uprobe->inode))
1081 			break;
1082 
1083 		len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
1084 		err = __copy_insn(mapping, filp, insn, len, offs);
1085 		if (err)
1086 			break;
1087 
1088 		insn += len;
1089 		offs += len;
1090 		size -= len;
1091 	} while (size);
1092 
1093 	return err;
1094 }
1095 
prepare_uprobe(struct uprobe * uprobe,struct file * file,struct mm_struct * mm,unsigned long vaddr)1096 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
1097 				struct mm_struct *mm, unsigned long vaddr)
1098 {
1099 	int ret = 0;
1100 
1101 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1102 		return ret;
1103 
1104 	/* TODO: move this into _register, until then we abuse this sem. */
1105 	down_write(&uprobe->consumer_rwsem);
1106 	if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
1107 		goto out;
1108 
1109 	ret = copy_insn(uprobe, file);
1110 	if (ret)
1111 		goto out;
1112 
1113 	ret = -ENOTSUPP;
1114 	if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
1115 		goto out;
1116 
1117 	ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
1118 	if (ret)
1119 		goto out;
1120 
1121 	smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
1122 	set_bit(UPROBE_COPY_INSN, &uprobe->flags);
1123 
1124  out:
1125 	up_write(&uprobe->consumer_rwsem);
1126 
1127 	return ret;
1128 }
1129 
consumer_filter(struct uprobe_consumer * uc,struct mm_struct * mm)1130 static inline bool consumer_filter(struct uprobe_consumer *uc, struct mm_struct *mm)
1131 {
1132 	return !uc->filter || uc->filter(uc, mm);
1133 }
1134 
filter_chain(struct uprobe * uprobe,struct mm_struct * mm)1135 static bool filter_chain(struct uprobe *uprobe, struct mm_struct *mm)
1136 {
1137 	struct uprobe_consumer *uc;
1138 	bool ret = false;
1139 
1140 	down_read(&uprobe->consumer_rwsem);
1141 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1142 		ret = consumer_filter(uc, mm);
1143 		if (ret)
1144 			break;
1145 	}
1146 	up_read(&uprobe->consumer_rwsem);
1147 
1148 	return ret;
1149 }
1150 
install_breakpoint(struct uprobe * uprobe,struct vm_area_struct * vma,unsigned long vaddr)1151 static int install_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma,
1152 		unsigned long vaddr)
1153 {
1154 	struct mm_struct *mm = vma->vm_mm;
1155 	bool first_uprobe;
1156 	int ret;
1157 
1158 	ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
1159 	if (ret)
1160 		return ret;
1161 
1162 	/*
1163 	 * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
1164 	 * the task can hit this breakpoint right after __replace_page().
1165 	 */
1166 	first_uprobe = !mm_flags_test(MMF_HAS_UPROBES, mm);
1167 	if (first_uprobe)
1168 		mm_flags_set(MMF_HAS_UPROBES, mm);
1169 
1170 	ret = set_swbp(&uprobe->arch, vma, vaddr);
1171 	if (!ret)
1172 		mm_flags_clear(MMF_RECALC_UPROBES, mm);
1173 	else if (first_uprobe)
1174 		mm_flags_clear(MMF_HAS_UPROBES, mm);
1175 
1176 	return ret;
1177 }
1178 
remove_breakpoint(struct uprobe * uprobe,struct vm_area_struct * vma,unsigned long vaddr)1179 static int remove_breakpoint(struct uprobe *uprobe, struct vm_area_struct *vma,
1180 		unsigned long vaddr)
1181 {
1182 	struct mm_struct *mm = vma->vm_mm;
1183 
1184 	mm_flags_set(MMF_RECALC_UPROBES, mm);
1185 	return set_orig_insn(&uprobe->arch, vma, vaddr);
1186 }
1187 
1188 struct map_info {
1189 	struct map_info *next;
1190 	struct mm_struct *mm;
1191 	unsigned long vaddr;
1192 };
1193 
free_map_info(struct map_info * info)1194 static inline struct map_info *free_map_info(struct map_info *info)
1195 {
1196 	struct map_info *next = info->next;
1197 	kfree(info);
1198 	return next;
1199 }
1200 
1201 static struct map_info *
build_map_info(struct address_space * mapping,loff_t offset,bool is_register)1202 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
1203 {
1204 	unsigned long pgoff = offset >> PAGE_SHIFT;
1205 	struct vm_area_struct *vma;
1206 	struct map_info *curr = NULL;
1207 	struct map_info *prev = NULL;
1208 	struct map_info *info;
1209 	int more = 0;
1210 
1211  again:
1212 	i_mmap_lock_read(mapping);
1213 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1214 		if (!valid_vma(vma, is_register))
1215 			continue;
1216 
1217 		if (!prev && !more) {
1218 			/*
1219 			 * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
1220 			 * reclaim. This is optimistic, no harm done if it fails.
1221 			 */
1222 			prev = kmalloc(sizeof(struct map_info),
1223 					GFP_NOWAIT | __GFP_NOMEMALLOC);
1224 			if (prev)
1225 				prev->next = NULL;
1226 		}
1227 		if (!prev) {
1228 			more++;
1229 			continue;
1230 		}
1231 
1232 		if (!mmget_not_zero(vma->vm_mm))
1233 			continue;
1234 
1235 		info = prev;
1236 		prev = prev->next;
1237 		info->next = curr;
1238 		curr = info;
1239 
1240 		info->mm = vma->vm_mm;
1241 		info->vaddr = offset_to_vaddr(vma, offset);
1242 	}
1243 	i_mmap_unlock_read(mapping);
1244 
1245 	if (!more)
1246 		goto out;
1247 
1248 	prev = curr;
1249 	while (curr) {
1250 		mmput(curr->mm);
1251 		curr = curr->next;
1252 	}
1253 
1254 	do {
1255 		info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1256 		if (!info) {
1257 			curr = ERR_PTR(-ENOMEM);
1258 			goto out;
1259 		}
1260 		info->next = prev;
1261 		prev = info;
1262 	} while (--more);
1263 
1264 	goto again;
1265  out:
1266 	while (prev)
1267 		prev = free_map_info(prev);
1268 	return curr;
1269 }
1270 
1271 static int
register_for_each_vma(struct uprobe * uprobe,struct uprobe_consumer * new)1272 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1273 {
1274 	bool is_register = !!new;
1275 	struct map_info *info;
1276 	int err = 0;
1277 
1278 	percpu_down_write(&dup_mmap_sem);
1279 	info = build_map_info(uprobe->inode->i_mapping,
1280 					uprobe->offset, is_register);
1281 	if (IS_ERR(info)) {
1282 		err = PTR_ERR(info);
1283 		goto out;
1284 	}
1285 
1286 	while (info) {
1287 		struct mm_struct *mm = info->mm;
1288 		struct vm_area_struct *vma;
1289 
1290 		if (err && is_register)
1291 			goto free;
1292 		/*
1293 		 * We take mmap_lock for writing to avoid the race with
1294 		 * find_active_uprobe_rcu() which takes mmap_lock for reading.
1295 		 * Thus this install_breakpoint() can not make
1296 		 * is_trap_at_addr() true right after find_uprobe_rcu()
1297 		 * returns NULL in find_active_uprobe_rcu().
1298 		 */
1299 		mmap_write_lock(mm);
1300 		if (check_stable_address_space(mm))
1301 			goto unlock;
1302 
1303 		vma = find_vma(mm, info->vaddr);
1304 		if (!vma || !valid_vma(vma, is_register) ||
1305 		    file_inode(vma->vm_file) != uprobe->inode)
1306 			goto unlock;
1307 
1308 		if (vma->vm_start > info->vaddr ||
1309 		    vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1310 			goto unlock;
1311 
1312 		if (is_register) {
1313 			/* consult only the "caller", new consumer. */
1314 			if (consumer_filter(new, mm))
1315 				err = install_breakpoint(uprobe, vma, info->vaddr);
1316 		} else if (mm_flags_test(MMF_HAS_UPROBES, mm)) {
1317 			if (!filter_chain(uprobe, mm))
1318 				err |= remove_breakpoint(uprobe, vma, info->vaddr);
1319 		}
1320 
1321  unlock:
1322 		mmap_write_unlock(mm);
1323  free:
1324 		mmput(mm);
1325 		info = free_map_info(info);
1326 	}
1327  out:
1328 	percpu_up_write(&dup_mmap_sem);
1329 	return err;
1330 }
1331 
1332 /**
1333  * uprobe_unregister_nosync - unregister an already registered probe.
1334  * @uprobe: uprobe to remove
1335  * @uc: identify which probe if multiple probes are colocated.
1336  */
uprobe_unregister_nosync(struct uprobe * uprobe,struct uprobe_consumer * uc)1337 void uprobe_unregister_nosync(struct uprobe *uprobe, struct uprobe_consumer *uc)
1338 {
1339 	int err;
1340 
1341 	down_write(&uprobe->register_rwsem);
1342 	consumer_del(uprobe, uc);
1343 	err = register_for_each_vma(uprobe, NULL);
1344 	up_write(&uprobe->register_rwsem);
1345 
1346 	/* TODO : cant unregister? schedule a worker thread */
1347 	if (unlikely(err)) {
1348 		uprobe_warn(current, "unregister, leaking uprobe");
1349 		return;
1350 	}
1351 
1352 	put_uprobe(uprobe);
1353 }
1354 EXPORT_SYMBOL_GPL(uprobe_unregister_nosync);
1355 
uprobe_unregister_sync(void)1356 void uprobe_unregister_sync(void)
1357 {
1358 	/*
1359 	 * Now that handler_chain() and handle_uretprobe_chain() iterate over
1360 	 * uprobe->consumers list under RCU protection without holding
1361 	 * uprobe->register_rwsem, we need to wait for RCU grace period to
1362 	 * make sure that we can't call into just unregistered
1363 	 * uprobe_consumer's callbacks anymore. If we don't do that, fast and
1364 	 * unlucky enough caller can free consumer's memory and cause
1365 	 * handler_chain() or handle_uretprobe_chain() to do an use-after-free.
1366 	 */
1367 	synchronize_rcu_tasks_trace();
1368 	synchronize_srcu(&uretprobes_srcu);
1369 }
1370 EXPORT_SYMBOL_GPL(uprobe_unregister_sync);
1371 
1372 /**
1373  * uprobe_register - register a probe
1374  * @inode: the file in which the probe has to be placed.
1375  * @offset: offset from the start of the file.
1376  * @ref_ctr_offset: offset of SDT marker / reference counter
1377  * @uc: information on howto handle the probe..
1378  *
1379  * Apart from the access refcount, uprobe_register() takes a creation
1380  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1381  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1382  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1383  * @uprobe even before the register operation is complete. Creation
1384  * refcount is released when the last @uc for the @uprobe
1385  * unregisters. Caller of uprobe_register() is required to keep @inode
1386  * (and the containing mount) referenced.
1387  *
1388  * Return: pointer to the new uprobe on success or an ERR_PTR on failure.
1389  */
uprobe_register(struct inode * inode,loff_t offset,loff_t ref_ctr_offset,struct uprobe_consumer * uc)1390 struct uprobe *uprobe_register(struct inode *inode,
1391 				loff_t offset, loff_t ref_ctr_offset,
1392 				struct uprobe_consumer *uc)
1393 {
1394 	struct uprobe *uprobe;
1395 	int ret;
1396 
1397 	/* Uprobe must have at least one set consumer */
1398 	if (!uc->handler && !uc->ret_handler)
1399 		return ERR_PTR(-EINVAL);
1400 
1401 	/* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1402 	if (!inode->i_mapping->a_ops->read_folio &&
1403 	    !shmem_mapping(inode->i_mapping))
1404 		return ERR_PTR(-EIO);
1405 	/* Racy, just to catch the obvious mistakes */
1406 	if (offset > i_size_read(inode))
1407 		return ERR_PTR(-EINVAL);
1408 
1409 	/*
1410 	 * This ensures that uprobe_copy_from_page(), copy_to_page() and
1411 	 * __update_ref_ctr() can't cross page boundary.
1412 	 */
1413 	if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1414 		return ERR_PTR(-EINVAL);
1415 	if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1416 		return ERR_PTR(-EINVAL);
1417 
1418 	uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1419 	if (IS_ERR(uprobe))
1420 		return uprobe;
1421 
1422 	down_write(&uprobe->register_rwsem);
1423 	consumer_add(uprobe, uc);
1424 	ret = register_for_each_vma(uprobe, uc);
1425 	up_write(&uprobe->register_rwsem);
1426 
1427 	if (ret) {
1428 		uprobe_unregister_nosync(uprobe, uc);
1429 		/*
1430 		 * Registration might have partially succeeded, so we can have
1431 		 * this consumer being called right at this time. We need to
1432 		 * sync here. It's ok, it's unlikely slow path.
1433 		 */
1434 		uprobe_unregister_sync();
1435 		return ERR_PTR(ret);
1436 	}
1437 
1438 	return uprobe;
1439 }
1440 EXPORT_SYMBOL_GPL(uprobe_register);
1441 
1442 /**
1443  * uprobe_apply - add or remove the breakpoints according to @uc->filter
1444  * @uprobe: uprobe which "owns" the breakpoint
1445  * @uc: consumer which wants to add more or remove some breakpoints
1446  * @add: add or remove the breakpoints
1447  * Return: 0 on success or negative error code.
1448  */
uprobe_apply(struct uprobe * uprobe,struct uprobe_consumer * uc,bool add)1449 int uprobe_apply(struct uprobe *uprobe, struct uprobe_consumer *uc, bool add)
1450 {
1451 	struct uprobe_consumer *con;
1452 	int ret = -ENOENT;
1453 
1454 	down_write(&uprobe->register_rwsem);
1455 
1456 	rcu_read_lock_trace();
1457 	list_for_each_entry_rcu(con, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
1458 		if (con == uc) {
1459 			ret = register_for_each_vma(uprobe, add ? uc : NULL);
1460 			break;
1461 		}
1462 	}
1463 	rcu_read_unlock_trace();
1464 
1465 	up_write(&uprobe->register_rwsem);
1466 
1467 	return ret;
1468 }
1469 
unapply_uprobe(struct uprobe * uprobe,struct mm_struct * mm)1470 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1471 {
1472 	VMA_ITERATOR(vmi, mm, 0);
1473 	struct vm_area_struct *vma;
1474 	int err = 0;
1475 
1476 	mmap_write_lock(mm);
1477 	for_each_vma(vmi, vma) {
1478 		unsigned long vaddr;
1479 		loff_t offset;
1480 
1481 		if (!valid_vma(vma, false) ||
1482 		    file_inode(vma->vm_file) != uprobe->inode)
1483 			continue;
1484 
1485 		offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1486 		if (uprobe->offset <  offset ||
1487 		    uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1488 			continue;
1489 
1490 		vaddr = offset_to_vaddr(vma, uprobe->offset);
1491 		err |= remove_breakpoint(uprobe, vma, vaddr);
1492 	}
1493 	mmap_write_unlock(mm);
1494 
1495 	return err;
1496 }
1497 
1498 static struct rb_node *
find_node_in_range(struct inode * inode,loff_t min,loff_t max)1499 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1500 {
1501 	struct rb_node *n = uprobes_tree.rb_node;
1502 
1503 	while (n) {
1504 		struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1505 
1506 		if (inode < u->inode) {
1507 			n = n->rb_left;
1508 		} else if (inode > u->inode) {
1509 			n = n->rb_right;
1510 		} else {
1511 			if (max < u->offset)
1512 				n = n->rb_left;
1513 			else if (min > u->offset)
1514 				n = n->rb_right;
1515 			else
1516 				break;
1517 		}
1518 	}
1519 
1520 	return n;
1521 }
1522 
1523 /*
1524  * For a given range in vma, build a list of probes that need to be inserted.
1525  */
build_probe_list(struct inode * inode,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * head)1526 static void build_probe_list(struct inode *inode,
1527 				struct vm_area_struct *vma,
1528 				unsigned long start, unsigned long end,
1529 				struct list_head *head)
1530 {
1531 	loff_t min, max;
1532 	struct rb_node *n, *t;
1533 	struct uprobe *u;
1534 
1535 	INIT_LIST_HEAD(head);
1536 	min = vaddr_to_offset(vma, start);
1537 	max = min + (end - start) - 1;
1538 
1539 	read_lock(&uprobes_treelock);
1540 	n = find_node_in_range(inode, min, max);
1541 	if (n) {
1542 		for (t = n; t; t = rb_prev(t)) {
1543 			u = rb_entry(t, struct uprobe, rb_node);
1544 			if (u->inode != inode || u->offset < min)
1545 				break;
1546 			/* if uprobe went away, it's safe to ignore it */
1547 			if (try_get_uprobe(u))
1548 				list_add(&u->pending_list, head);
1549 		}
1550 		for (t = n; (t = rb_next(t)); ) {
1551 			u = rb_entry(t, struct uprobe, rb_node);
1552 			if (u->inode != inode || u->offset > max)
1553 				break;
1554 			/* if uprobe went away, it's safe to ignore it */
1555 			if (try_get_uprobe(u))
1556 				list_add(&u->pending_list, head);
1557 		}
1558 	}
1559 	read_unlock(&uprobes_treelock);
1560 }
1561 
1562 /* @vma contains reference counter, not the probed instruction. */
delayed_ref_ctr_inc(struct vm_area_struct * vma)1563 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1564 {
1565 	struct list_head *pos, *q;
1566 	struct delayed_uprobe *du;
1567 	unsigned long vaddr;
1568 	int ret = 0, err = 0;
1569 
1570 	mutex_lock(&delayed_uprobe_lock);
1571 	list_for_each_safe(pos, q, &delayed_uprobe_list) {
1572 		du = list_entry(pos, struct delayed_uprobe, list);
1573 
1574 		if (du->mm != vma->vm_mm ||
1575 		    !valid_ref_ctr_vma(du->uprobe, vma))
1576 			continue;
1577 
1578 		vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1579 		ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1580 		if (ret) {
1581 			update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1582 			if (!err)
1583 				err = ret;
1584 		}
1585 		delayed_uprobe_delete(du);
1586 	}
1587 	mutex_unlock(&delayed_uprobe_lock);
1588 	return err;
1589 }
1590 
1591 /*
1592  * Called from mmap_region/vma_merge with mm->mmap_lock acquired.
1593  *
1594  * Currently we ignore all errors and always return 0, the callers
1595  * can't handle the failure anyway.
1596  */
uprobe_mmap(struct vm_area_struct * vma)1597 int uprobe_mmap(struct vm_area_struct *vma)
1598 {
1599 	struct list_head tmp_list;
1600 	struct uprobe *uprobe, *u;
1601 	struct inode *inode;
1602 
1603 	if (no_uprobe_events())
1604 		return 0;
1605 
1606 	if (vma->vm_file &&
1607 	    (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1608 	    mm_flags_test(MMF_HAS_UPROBES, vma->vm_mm))
1609 		delayed_ref_ctr_inc(vma);
1610 
1611 	if (!valid_vma(vma, true))
1612 		return 0;
1613 
1614 	inode = file_inode(vma->vm_file);
1615 	if (!inode)
1616 		return 0;
1617 
1618 	mutex_lock(uprobes_mmap_hash(inode));
1619 	build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1620 	/*
1621 	 * We can race with uprobe_unregister(), this uprobe can be already
1622 	 * removed. But in this case filter_chain() must return false, all
1623 	 * consumers have gone away.
1624 	 */
1625 	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1626 		if (!fatal_signal_pending(current) &&
1627 		    filter_chain(uprobe, vma->vm_mm)) {
1628 			unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1629 			install_breakpoint(uprobe, vma, vaddr);
1630 		}
1631 		put_uprobe(uprobe);
1632 	}
1633 	mutex_unlock(uprobes_mmap_hash(inode));
1634 
1635 	return 0;
1636 }
1637 
1638 static bool
vma_has_uprobes(struct vm_area_struct * vma,unsigned long start,unsigned long end)1639 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1640 {
1641 	loff_t min, max;
1642 	struct inode *inode;
1643 	struct rb_node *n;
1644 
1645 	inode = file_inode(vma->vm_file);
1646 
1647 	min = vaddr_to_offset(vma, start);
1648 	max = min + (end - start) - 1;
1649 
1650 	read_lock(&uprobes_treelock);
1651 	n = find_node_in_range(inode, min, max);
1652 	read_unlock(&uprobes_treelock);
1653 
1654 	return !!n;
1655 }
1656 
1657 /*
1658  * Called in context of a munmap of a vma.
1659  */
uprobe_munmap(struct vm_area_struct * vma,unsigned long start,unsigned long end)1660 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1661 {
1662 	if (no_uprobe_events() || !valid_vma(vma, false))
1663 		return;
1664 
1665 	if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1666 		return;
1667 
1668 	if (!mm_flags_test(MMF_HAS_UPROBES, vma->vm_mm) ||
1669 	     mm_flags_test(MMF_RECALC_UPROBES, vma->vm_mm))
1670 		return;
1671 
1672 	if (vma_has_uprobes(vma, start, end))
1673 		mm_flags_set(MMF_RECALC_UPROBES, vma->vm_mm);
1674 }
1675 
xol_fault(const struct vm_special_mapping * sm,struct vm_area_struct * vma,struct vm_fault * vmf)1676 static vm_fault_t xol_fault(const struct vm_special_mapping *sm,
1677 			    struct vm_area_struct *vma, struct vm_fault *vmf)
1678 {
1679 	struct xol_area *area = vma->vm_mm->uprobes_state.xol_area;
1680 
1681 	vmf->page = area->page;
1682 	get_page(vmf->page);
1683 	return 0;
1684 }
1685 
xol_mremap(const struct vm_special_mapping * sm,struct vm_area_struct * new_vma)1686 static int xol_mremap(const struct vm_special_mapping *sm, struct vm_area_struct *new_vma)
1687 {
1688 	return -EPERM;
1689 }
1690 
1691 static const struct vm_special_mapping xol_mapping = {
1692 	.name = "[uprobes]",
1693 	.fault = xol_fault,
1694 	.mremap = xol_mremap,
1695 };
1696 
1697 /* Slot allocation for XOL */
xol_add_vma(struct mm_struct * mm,struct xol_area * area)1698 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1699 {
1700 	struct vm_area_struct *vma;
1701 	int ret;
1702 
1703 	if (mmap_write_lock_killable(mm))
1704 		return -EINTR;
1705 
1706 	if (mm->uprobes_state.xol_area) {
1707 		ret = -EALREADY;
1708 		goto fail;
1709 	}
1710 
1711 	if (!area->vaddr) {
1712 		/* Try to map as high as possible, this is only a hint. */
1713 		area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1714 						PAGE_SIZE, 0, 0);
1715 		if (IS_ERR_VALUE(area->vaddr)) {
1716 			ret = area->vaddr;
1717 			goto fail;
1718 		}
1719 	}
1720 
1721 	vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1722 				VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO|
1723 				VM_SEALED_SYSMAP,
1724 				&xol_mapping);
1725 	if (IS_ERR(vma)) {
1726 		ret = PTR_ERR(vma);
1727 		goto fail;
1728 	}
1729 
1730 	ret = 0;
1731 	/* pairs with get_xol_area() */
1732 	smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1733  fail:
1734 	mmap_write_unlock(mm);
1735 
1736 	return ret;
1737 }
1738 
arch_uretprobe_trampoline(unsigned long * psize)1739 void * __weak arch_uretprobe_trampoline(unsigned long *psize)
1740 {
1741 	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1742 
1743 	*psize = UPROBE_SWBP_INSN_SIZE;
1744 	return &insn;
1745 }
1746 
__create_xol_area(unsigned long vaddr)1747 static struct xol_area *__create_xol_area(unsigned long vaddr)
1748 {
1749 	struct mm_struct *mm = current->mm;
1750 	unsigned long insns_size;
1751 	struct xol_area *area;
1752 	void *insns;
1753 
1754 	area = kzalloc(sizeof(*area), GFP_KERNEL);
1755 	if (unlikely(!area))
1756 		goto out;
1757 
1758 	area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1759 			       GFP_KERNEL);
1760 	if (!area->bitmap)
1761 		goto free_area;
1762 
1763 	area->page = alloc_page(GFP_HIGHUSER | __GFP_ZERO);
1764 	if (!area->page)
1765 		goto free_bitmap;
1766 
1767 	area->vaddr = vaddr;
1768 	init_waitqueue_head(&area->wq);
1769 	/* Reserve the 1st slot for get_trampoline_vaddr() */
1770 	set_bit(0, area->bitmap);
1771 	insns = arch_uretprobe_trampoline(&insns_size);
1772 	arch_uprobe_copy_ixol(area->page, 0, insns, insns_size);
1773 
1774 	if (!xol_add_vma(mm, area))
1775 		return area;
1776 
1777 	__free_page(area->page);
1778  free_bitmap:
1779 	kfree(area->bitmap);
1780  free_area:
1781 	kfree(area);
1782  out:
1783 	return NULL;
1784 }
1785 
1786 /*
1787  * get_xol_area - Allocate process's xol_area if necessary.
1788  * This area will be used for storing instructions for execution out of line.
1789  *
1790  * Returns the allocated area or NULL.
1791  */
get_xol_area(void)1792 static struct xol_area *get_xol_area(void)
1793 {
1794 	struct mm_struct *mm = current->mm;
1795 	struct xol_area *area;
1796 
1797 	if (!mm->uprobes_state.xol_area)
1798 		__create_xol_area(0);
1799 
1800 	/* Pairs with xol_add_vma() smp_store_release() */
1801 	area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1802 	return area;
1803 }
1804 
arch_uprobe_clear_state(struct mm_struct * mm)1805 void __weak arch_uprobe_clear_state(struct mm_struct *mm)
1806 {
1807 }
1808 
arch_uprobe_init_state(struct mm_struct * mm)1809 void __weak arch_uprobe_init_state(struct mm_struct *mm)
1810 {
1811 }
1812 
1813 /*
1814  * uprobe_clear_state - Free the area allocated for slots.
1815  */
uprobe_clear_state(struct mm_struct * mm)1816 void uprobe_clear_state(struct mm_struct *mm)
1817 {
1818 	struct xol_area *area = mm->uprobes_state.xol_area;
1819 
1820 	mutex_lock(&delayed_uprobe_lock);
1821 	delayed_uprobe_remove(NULL, mm);
1822 	mutex_unlock(&delayed_uprobe_lock);
1823 
1824 	arch_uprobe_clear_state(mm);
1825 
1826 	if (!area)
1827 		return;
1828 
1829 	put_page(area->page);
1830 	kfree(area->bitmap);
1831 	kfree(area);
1832 }
1833 
uprobe_start_dup_mmap(void)1834 void uprobe_start_dup_mmap(void)
1835 {
1836 	percpu_down_read(&dup_mmap_sem);
1837 }
1838 
uprobe_end_dup_mmap(void)1839 void uprobe_end_dup_mmap(void)
1840 {
1841 	percpu_up_read(&dup_mmap_sem);
1842 }
1843 
uprobe_dup_mmap(struct mm_struct * oldmm,struct mm_struct * newmm)1844 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1845 {
1846 	if (mm_flags_test(MMF_HAS_UPROBES, oldmm)) {
1847 		mm_flags_set(MMF_HAS_UPROBES, newmm);
1848 		/* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1849 		mm_flags_set(MMF_RECALC_UPROBES, newmm);
1850 	}
1851 }
1852 
xol_get_slot_nr(struct xol_area * area)1853 static unsigned long xol_get_slot_nr(struct xol_area *area)
1854 {
1855 	unsigned long slot_nr;
1856 
1857 	slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1858 	if (slot_nr < UINSNS_PER_PAGE) {
1859 		if (!test_and_set_bit(slot_nr, area->bitmap))
1860 			return slot_nr;
1861 	}
1862 
1863 	return UINSNS_PER_PAGE;
1864 }
1865 
1866 /*
1867  * xol_get_insn_slot - allocate a slot for xol.
1868  */
xol_get_insn_slot(struct uprobe * uprobe,struct uprobe_task * utask)1869 static bool xol_get_insn_slot(struct uprobe *uprobe, struct uprobe_task *utask)
1870 {
1871 	struct xol_area *area = get_xol_area();
1872 	unsigned long slot_nr;
1873 
1874 	if (!area)
1875 		return false;
1876 
1877 	wait_event(area->wq, (slot_nr = xol_get_slot_nr(area)) < UINSNS_PER_PAGE);
1878 
1879 	utask->xol_vaddr = area->vaddr + slot_nr * UPROBE_XOL_SLOT_BYTES;
1880 	arch_uprobe_copy_ixol(area->page, utask->xol_vaddr,
1881 			      &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1882 	return true;
1883 }
1884 
1885 /*
1886  * xol_free_insn_slot - free the slot allocated by xol_get_insn_slot()
1887  */
xol_free_insn_slot(struct uprobe_task * utask)1888 static void xol_free_insn_slot(struct uprobe_task *utask)
1889 {
1890 	struct xol_area *area = current->mm->uprobes_state.xol_area;
1891 	unsigned long offset = utask->xol_vaddr - area->vaddr;
1892 	unsigned int slot_nr;
1893 
1894 	utask->xol_vaddr = 0;
1895 	/* xol_vaddr must fit into [area->vaddr, area->vaddr + PAGE_SIZE) */
1896 	if (WARN_ON_ONCE(offset >= PAGE_SIZE))
1897 		return;
1898 
1899 	slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1900 	clear_bit(slot_nr, area->bitmap);
1901 	smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1902 	if (waitqueue_active(&area->wq))
1903 		wake_up(&area->wq);
1904 }
1905 
arch_uprobe_copy_ixol(struct page * page,unsigned long vaddr,void * src,unsigned long len)1906 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1907 				  void *src, unsigned long len)
1908 {
1909 	/* Initialize the slot */
1910 	copy_to_page(page, vaddr, src, len);
1911 
1912 	/*
1913 	 * We probably need flush_icache_user_page() but it needs vma.
1914 	 * This should work on most of architectures by default. If
1915 	 * architecture needs to do something different it can define
1916 	 * its own version of the function.
1917 	 */
1918 	flush_dcache_page(page);
1919 }
1920 
1921 /**
1922  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1923  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1924  * instruction.
1925  * Return the address of the breakpoint instruction.
1926  */
uprobe_get_swbp_addr(struct pt_regs * regs)1927 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1928 {
1929 	return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1930 }
1931 
uprobe_get_trap_addr(struct pt_regs * regs)1932 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1933 {
1934 	struct uprobe_task *utask = current->utask;
1935 
1936 	if (unlikely(utask && utask->active_uprobe))
1937 		return utask->vaddr;
1938 
1939 	return instruction_pointer(regs);
1940 }
1941 
ri_pool_push(struct uprobe_task * utask,struct return_instance * ri)1942 static void ri_pool_push(struct uprobe_task *utask, struct return_instance *ri)
1943 {
1944 	ri->cons_cnt = 0;
1945 	ri->next = utask->ri_pool;
1946 	utask->ri_pool = ri;
1947 }
1948 
ri_pool_pop(struct uprobe_task * utask)1949 static struct return_instance *ri_pool_pop(struct uprobe_task *utask)
1950 {
1951 	struct return_instance *ri = utask->ri_pool;
1952 
1953 	if (likely(ri))
1954 		utask->ri_pool = ri->next;
1955 
1956 	return ri;
1957 }
1958 
ri_free(struct return_instance * ri)1959 static void ri_free(struct return_instance *ri)
1960 {
1961 	kfree(ri->extra_consumers);
1962 	kfree_rcu(ri, rcu);
1963 }
1964 
free_ret_instance(struct uprobe_task * utask,struct return_instance * ri,bool cleanup_hprobe)1965 static void free_ret_instance(struct uprobe_task *utask,
1966 			      struct return_instance *ri, bool cleanup_hprobe)
1967 {
1968 	unsigned seq;
1969 
1970 	if (cleanup_hprobe) {
1971 		enum hprobe_state hstate;
1972 
1973 		(void)hprobe_consume(&ri->hprobe, &hstate);
1974 		hprobe_finalize(&ri->hprobe, hstate);
1975 	}
1976 
1977 	/*
1978 	 * At this point return_instance is unlinked from utask's
1979 	 * return_instances list and this has become visible to ri_timer().
1980 	 * If seqcount now indicates that ri_timer's return instance
1981 	 * processing loop isn't active, we can return ri into the pool of
1982 	 * to-be-reused return instances for future uretprobes. If ri_timer()
1983 	 * happens to be running right now, though, we fallback to safety and
1984 	 * just perform RCU-delated freeing of ri.
1985 	 * Admittedly, this is a rather simple use of seqcount, but it nicely
1986 	 * abstracts away all the necessary memory barriers, so we use
1987 	 * a well-supported kernel primitive here.
1988 	 */
1989 	if (raw_seqcount_try_begin(&utask->ri_seqcount, seq)) {
1990 		/* immediate reuse of ri without RCU GP is OK */
1991 		ri_pool_push(utask, ri);
1992 	} else {
1993 		/* we might be racing with ri_timer(), so play it safe */
1994 		ri_free(ri);
1995 	}
1996 }
1997 
1998 /*
1999  * Called with no locks held.
2000  * Called in context of an exiting or an exec-ing thread.
2001  */
uprobe_free_utask(struct task_struct * t)2002 void uprobe_free_utask(struct task_struct *t)
2003 {
2004 	struct uprobe_task *utask = t->utask;
2005 	struct return_instance *ri, *ri_next;
2006 
2007 	if (!utask)
2008 		return;
2009 
2010 	t->utask = NULL;
2011 	WARN_ON_ONCE(utask->active_uprobe || utask->xol_vaddr);
2012 
2013 	timer_delete_sync(&utask->ri_timer);
2014 
2015 	ri = utask->return_instances;
2016 	while (ri) {
2017 		ri_next = ri->next;
2018 		free_ret_instance(utask, ri, true /* cleanup_hprobe */);
2019 		ri = ri_next;
2020 	}
2021 
2022 	/* free_ret_instance() above might add to ri_pool, so this loop should come last */
2023 	ri = utask->ri_pool;
2024 	while (ri) {
2025 		ri_next = ri->next;
2026 		ri_free(ri);
2027 		ri = ri_next;
2028 	}
2029 
2030 	kfree(utask);
2031 }
2032 
2033 #define RI_TIMER_PERIOD (HZ / 10) /* 100 ms */
2034 
2035 #define for_each_ret_instance_rcu(pos, head) \
2036 	for (pos = rcu_dereference_raw(head); pos; pos = rcu_dereference_raw(pos->next))
2037 
ri_timer(struct timer_list * timer)2038 static void ri_timer(struct timer_list *timer)
2039 {
2040 	struct uprobe_task *utask = container_of(timer, struct uprobe_task, ri_timer);
2041 	struct return_instance *ri;
2042 
2043 	/* SRCU protects uprobe from reuse for the cmpxchg() inside hprobe_expire(). */
2044 	guard(srcu)(&uretprobes_srcu);
2045 	/* RCU protects return_instance from freeing. */
2046 	guard(rcu)();
2047 
2048 	/*
2049 	 * See free_ret_instance() for notes on seqcount use.
2050 	 * We also employ raw API variants to avoid lockdep false-positive
2051 	 * warning complaining about enabled preemption. The timer can only be
2052 	 * invoked once for a uprobe_task. Therefore there can only be one
2053 	 * writer. The reader does not require an even sequence count to make
2054 	 * progress, so it is OK to remain preemptible on PREEMPT_RT.
2055 	 */
2056 	raw_write_seqcount_begin(&utask->ri_seqcount);
2057 
2058 	for_each_ret_instance_rcu(ri, utask->return_instances)
2059 		hprobe_expire(&ri->hprobe, false);
2060 
2061 	raw_write_seqcount_end(&utask->ri_seqcount);
2062 }
2063 
alloc_utask(void)2064 static struct uprobe_task *alloc_utask(void)
2065 {
2066 	struct uprobe_task *utask;
2067 
2068 	utask = kzalloc(sizeof(*utask), GFP_KERNEL);
2069 	if (!utask)
2070 		return NULL;
2071 
2072 	timer_setup(&utask->ri_timer, ri_timer, 0);
2073 	seqcount_init(&utask->ri_seqcount);
2074 
2075 	return utask;
2076 }
2077 
2078 /*
2079  * Allocate a uprobe_task object for the task if necessary.
2080  * Called when the thread hits a breakpoint.
2081  *
2082  * Returns:
2083  * - pointer to new uprobe_task on success
2084  * - NULL otherwise
2085  */
get_utask(void)2086 static struct uprobe_task *get_utask(void)
2087 {
2088 	if (!current->utask)
2089 		current->utask = alloc_utask();
2090 	return current->utask;
2091 }
2092 
alloc_return_instance(struct uprobe_task * utask)2093 static struct return_instance *alloc_return_instance(struct uprobe_task *utask)
2094 {
2095 	struct return_instance *ri;
2096 
2097 	ri = ri_pool_pop(utask);
2098 	if (ri)
2099 		return ri;
2100 
2101 	ri = kzalloc(sizeof(*ri), GFP_KERNEL);
2102 	if (!ri)
2103 		return ZERO_SIZE_PTR;
2104 
2105 	return ri;
2106 }
2107 
dup_return_instance(struct return_instance * old)2108 static struct return_instance *dup_return_instance(struct return_instance *old)
2109 {
2110 	struct return_instance *ri;
2111 
2112 	ri = kmemdup(old, sizeof(*ri), GFP_KERNEL);
2113 	if (!ri)
2114 		return NULL;
2115 
2116 	if (unlikely(old->cons_cnt > 1)) {
2117 		ri->extra_consumers = kmemdup(old->extra_consumers,
2118 					      sizeof(ri->extra_consumers[0]) * (old->cons_cnt - 1),
2119 					      GFP_KERNEL);
2120 		if (!ri->extra_consumers) {
2121 			kfree(ri);
2122 			return NULL;
2123 		}
2124 	}
2125 
2126 	return ri;
2127 }
2128 
dup_utask(struct task_struct * t,struct uprobe_task * o_utask)2129 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
2130 {
2131 	struct uprobe_task *n_utask;
2132 	struct return_instance **p, *o, *n;
2133 	struct uprobe *uprobe;
2134 
2135 	n_utask = alloc_utask();
2136 	if (!n_utask)
2137 		return -ENOMEM;
2138 	t->utask = n_utask;
2139 
2140 	/* protect uprobes from freeing, we'll need try_get_uprobe() them */
2141 	guard(srcu)(&uretprobes_srcu);
2142 
2143 	p = &n_utask->return_instances;
2144 	for (o = o_utask->return_instances; o; o = o->next) {
2145 		n = dup_return_instance(o);
2146 		if (!n)
2147 			return -ENOMEM;
2148 
2149 		/* if uprobe is non-NULL, we'll have an extra refcount for uprobe */
2150 		uprobe = hprobe_expire(&o->hprobe, true);
2151 
2152 		/*
2153 		 * New utask will have stable properly refcounted uprobe or
2154 		 * NULL. Even if we failed to get refcounted uprobe, we still
2155 		 * need to preserve full set of return_instances for proper
2156 		 * uretprobe handling and nesting in forked task.
2157 		 */
2158 		hprobe_init_stable(&n->hprobe, uprobe);
2159 
2160 		n->next = NULL;
2161 		rcu_assign_pointer(*p, n);
2162 		p = &n->next;
2163 
2164 		n_utask->depth++;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
dup_xol_work(struct callback_head * work)2170 static void dup_xol_work(struct callback_head *work)
2171 {
2172 	if (current->flags & PF_EXITING)
2173 		return;
2174 
2175 	if (!__create_xol_area(current->utask->dup_xol_addr) &&
2176 			!fatal_signal_pending(current))
2177 		uprobe_warn(current, "dup xol area");
2178 }
2179 
2180 /*
2181  * Called in context of a new clone/fork from copy_process.
2182  */
uprobe_copy_process(struct task_struct * t,u64 flags)2183 void uprobe_copy_process(struct task_struct *t, u64 flags)
2184 {
2185 	struct uprobe_task *utask = current->utask;
2186 	struct mm_struct *mm = current->mm;
2187 	struct xol_area *area;
2188 
2189 	t->utask = NULL;
2190 
2191 	if (!utask || !utask->return_instances)
2192 		return;
2193 
2194 	if (mm == t->mm && !(flags & CLONE_VFORK))
2195 		return;
2196 
2197 	if (dup_utask(t, utask))
2198 		return uprobe_warn(t, "dup ret instances");
2199 
2200 	/* The task can fork() after dup_xol_work() fails */
2201 	area = mm->uprobes_state.xol_area;
2202 	if (!area)
2203 		return uprobe_warn(t, "dup xol area");
2204 
2205 	if (mm == t->mm)
2206 		return;
2207 
2208 	t->utask->dup_xol_addr = area->vaddr;
2209 	init_task_work(&t->utask->dup_xol_work, dup_xol_work);
2210 	task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
2211 }
2212 
2213 /*
2214  * Current area->vaddr notion assume the trampoline address is always
2215  * equal area->vaddr.
2216  *
2217  * Returns -1 in case the xol_area is not allocated.
2218  */
uprobe_get_trampoline_vaddr(void)2219 unsigned long uprobe_get_trampoline_vaddr(void)
2220 {
2221 	unsigned long trampoline_vaddr = UPROBE_NO_TRAMPOLINE_VADDR;
2222 	struct xol_area *area;
2223 
2224 	/* Pairs with xol_add_vma() smp_store_release() */
2225 	area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
2226 	if (area)
2227 		trampoline_vaddr = area->vaddr;
2228 
2229 	return trampoline_vaddr;
2230 }
2231 
cleanup_return_instances(struct uprobe_task * utask,bool chained,struct pt_regs * regs)2232 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
2233 					struct pt_regs *regs)
2234 {
2235 	struct return_instance *ri = utask->return_instances, *ri_next;
2236 	enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
2237 
2238 	while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
2239 		ri_next = ri->next;
2240 		rcu_assign_pointer(utask->return_instances, ri_next);
2241 		utask->depth--;
2242 
2243 		free_ret_instance(utask, ri, true /* cleanup_hprobe */);
2244 		ri = ri_next;
2245 	}
2246 }
2247 
prepare_uretprobe(struct uprobe * uprobe,struct pt_regs * regs,struct return_instance * ri)2248 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs,
2249 			      struct return_instance *ri)
2250 {
2251 	struct uprobe_task *utask = current->utask;
2252 	unsigned long orig_ret_vaddr, trampoline_vaddr;
2253 	bool chained;
2254 	int srcu_idx;
2255 
2256 	if (!get_xol_area())
2257 		goto free;
2258 
2259 	if (utask->depth >= MAX_URETPROBE_DEPTH) {
2260 		printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
2261 				" nestedness limit pid/tgid=%d/%d\n",
2262 				current->pid, current->tgid);
2263 		goto free;
2264 	}
2265 
2266 	trampoline_vaddr = uprobe_get_trampoline_vaddr();
2267 	orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
2268 	if (orig_ret_vaddr == -1)
2269 		goto free;
2270 
2271 	/* drop the entries invalidated by longjmp() */
2272 	chained = (orig_ret_vaddr == trampoline_vaddr);
2273 	cleanup_return_instances(utask, chained, regs);
2274 
2275 	/*
2276 	 * We don't want to keep trampoline address in stack, rather keep the
2277 	 * original return address of first caller thru all the consequent
2278 	 * instances. This also makes breakpoint unwrapping easier.
2279 	 */
2280 	if (chained) {
2281 		if (!utask->return_instances) {
2282 			/*
2283 			 * This situation is not possible. Likely we have an
2284 			 * attack from user-space.
2285 			 */
2286 			uprobe_warn(current, "handle tail call");
2287 			goto free;
2288 		}
2289 		orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
2290 	}
2291 
2292 	/* __srcu_read_lock() because SRCU lock survives switch to user space */
2293 	srcu_idx = __srcu_read_lock(&uretprobes_srcu);
2294 
2295 	ri->func = instruction_pointer(regs);
2296 	ri->stack = user_stack_pointer(regs);
2297 	ri->orig_ret_vaddr = orig_ret_vaddr;
2298 	ri->chained = chained;
2299 
2300 	utask->depth++;
2301 
2302 	hprobe_init_leased(&ri->hprobe, uprobe, srcu_idx);
2303 	ri->next = utask->return_instances;
2304 	rcu_assign_pointer(utask->return_instances, ri);
2305 
2306 	mod_timer(&utask->ri_timer, jiffies + RI_TIMER_PERIOD);
2307 
2308 	return;
2309 free:
2310 	ri_free(ri);
2311 }
2312 
2313 /* Prepare to single-step probed instruction out of line. */
2314 static int
pre_ssout(struct uprobe * uprobe,struct pt_regs * regs,unsigned long bp_vaddr)2315 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
2316 {
2317 	struct uprobe_task *utask = current->utask;
2318 	int err;
2319 
2320 	if (!try_get_uprobe(uprobe))
2321 		return -EINVAL;
2322 
2323 	if (!xol_get_insn_slot(uprobe, utask)) {
2324 		err = -ENOMEM;
2325 		goto err_out;
2326 	}
2327 
2328 	utask->vaddr = bp_vaddr;
2329 	err = arch_uprobe_pre_xol(&uprobe->arch, regs);
2330 	if (unlikely(err)) {
2331 		xol_free_insn_slot(utask);
2332 		goto err_out;
2333 	}
2334 
2335 	utask->active_uprobe = uprobe;
2336 	utask->state = UTASK_SSTEP;
2337 	return 0;
2338 err_out:
2339 	put_uprobe(uprobe);
2340 	return err;
2341 }
2342 
2343 /*
2344  * If we are singlestepping, then ensure this thread is not connected to
2345  * non-fatal signals until completion of singlestep.  When xol insn itself
2346  * triggers the signal,  restart the original insn even if the task is
2347  * already SIGKILL'ed (since coredump should report the correct ip).  This
2348  * is even more important if the task has a handler for SIGSEGV/etc, The
2349  * _same_ instruction should be repeated again after return from the signal
2350  * handler, and SSTEP can never finish in this case.
2351  */
uprobe_deny_signal(void)2352 bool uprobe_deny_signal(void)
2353 {
2354 	struct task_struct *t = current;
2355 	struct uprobe_task *utask = t->utask;
2356 
2357 	if (likely(!utask || !utask->active_uprobe))
2358 		return false;
2359 
2360 	WARN_ON_ONCE(utask->state != UTASK_SSTEP);
2361 
2362 	if (task_sigpending(t)) {
2363 		utask->signal_denied = true;
2364 		clear_tsk_thread_flag(t, TIF_SIGPENDING);
2365 
2366 		if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
2367 			utask->state = UTASK_SSTEP_TRAPPED;
2368 			set_tsk_thread_flag(t, TIF_UPROBE);
2369 		}
2370 	}
2371 
2372 	return true;
2373 }
2374 
mmf_recalc_uprobes(struct mm_struct * mm)2375 static void mmf_recalc_uprobes(struct mm_struct *mm)
2376 {
2377 	VMA_ITERATOR(vmi, mm, 0);
2378 	struct vm_area_struct *vma;
2379 
2380 	for_each_vma(vmi, vma) {
2381 		if (!valid_vma(vma, false))
2382 			continue;
2383 		/*
2384 		 * This is not strictly accurate, we can race with
2385 		 * uprobe_unregister() and see the already removed
2386 		 * uprobe if delete_uprobe() was not yet called.
2387 		 * Or this uprobe can be filtered out.
2388 		 */
2389 		if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2390 			return;
2391 	}
2392 
2393 	mm_flags_clear(MMF_HAS_UPROBES, mm);
2394 }
2395 
is_trap_at_addr(struct mm_struct * mm,unsigned long vaddr)2396 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2397 {
2398 	struct page *page;
2399 	uprobe_opcode_t opcode;
2400 	int result;
2401 
2402 	if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2403 		return -EINVAL;
2404 
2405 	pagefault_disable();
2406 	result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2407 	pagefault_enable();
2408 
2409 	if (likely(result == 0))
2410 		goto out;
2411 
2412 	result = get_user_pages(vaddr, 1, FOLL_FORCE, &page);
2413 	if (result < 0)
2414 		return result;
2415 
2416 	uprobe_copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2417 	put_page(page);
2418  out:
2419 	/* This needs to return true for any variant of the trap insn */
2420 	return is_trap_insn(&opcode);
2421 }
2422 
find_active_uprobe_speculative(unsigned long bp_vaddr)2423 static struct uprobe *find_active_uprobe_speculative(unsigned long bp_vaddr)
2424 {
2425 	struct mm_struct *mm = current->mm;
2426 	struct uprobe *uprobe = NULL;
2427 	struct vm_area_struct *vma;
2428 	struct file *vm_file;
2429 	loff_t offset;
2430 	unsigned int seq;
2431 
2432 	guard(rcu)();
2433 
2434 	if (!mmap_lock_speculate_try_begin(mm, &seq))
2435 		return NULL;
2436 
2437 	vma = vma_lookup(mm, bp_vaddr);
2438 	if (!vma)
2439 		return NULL;
2440 
2441 	/*
2442 	 * vm_file memory can be reused for another instance of struct file,
2443 	 * but can't be freed from under us, so it's safe to read fields from
2444 	 * it, even if the values are some garbage values; ultimately
2445 	 * find_uprobe_rcu() + mmap_lock_speculation_end() check will ensure
2446 	 * that whatever we speculatively found is correct
2447 	 */
2448 	vm_file = READ_ONCE(vma->vm_file);
2449 	if (!vm_file)
2450 		return NULL;
2451 
2452 	offset = (loff_t)(vma->vm_pgoff << PAGE_SHIFT) + (bp_vaddr - vma->vm_start);
2453 	uprobe = find_uprobe_rcu(vm_file->f_inode, offset);
2454 	if (!uprobe)
2455 		return NULL;
2456 
2457 	/* now double check that nothing about MM changed */
2458 	if (mmap_lock_speculate_retry(mm, seq))
2459 		return NULL;
2460 
2461 	return uprobe;
2462 }
2463 
2464 /* assumes being inside RCU protected region */
find_active_uprobe_rcu(unsigned long bp_vaddr,int * is_swbp)2465 static struct uprobe *find_active_uprobe_rcu(unsigned long bp_vaddr, int *is_swbp)
2466 {
2467 	struct mm_struct *mm = current->mm;
2468 	struct uprobe *uprobe = NULL;
2469 	struct vm_area_struct *vma;
2470 
2471 	uprobe = find_active_uprobe_speculative(bp_vaddr);
2472 	if (uprobe)
2473 		return uprobe;
2474 
2475 	mmap_read_lock(mm);
2476 	vma = vma_lookup(mm, bp_vaddr);
2477 	if (vma) {
2478 		if (vma->vm_file) {
2479 			struct inode *inode = file_inode(vma->vm_file);
2480 			loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2481 
2482 			uprobe = find_uprobe_rcu(inode, offset);
2483 		}
2484 
2485 		if (!uprobe)
2486 			*is_swbp = is_trap_at_addr(mm, bp_vaddr);
2487 	} else {
2488 		*is_swbp = -EFAULT;
2489 	}
2490 
2491 	if (!uprobe && mm_flags_test_and_clear(MMF_RECALC_UPROBES, mm))
2492 		mmf_recalc_uprobes(mm);
2493 	mmap_read_unlock(mm);
2494 
2495 	return uprobe;
2496 }
2497 
push_consumer(struct return_instance * ri,__u64 id,__u64 cookie)2498 static struct return_instance *push_consumer(struct return_instance *ri, __u64 id, __u64 cookie)
2499 {
2500 	struct return_consumer *ric;
2501 
2502 	if (unlikely(ri == ZERO_SIZE_PTR))
2503 		return ri;
2504 
2505 	if (unlikely(ri->cons_cnt > 0)) {
2506 		ric = krealloc(ri->extra_consumers, sizeof(*ric) * ri->cons_cnt, GFP_KERNEL);
2507 		if (!ric) {
2508 			ri_free(ri);
2509 			return ZERO_SIZE_PTR;
2510 		}
2511 		ri->extra_consumers = ric;
2512 	}
2513 
2514 	ric = likely(ri->cons_cnt == 0) ? &ri->consumer : &ri->extra_consumers[ri->cons_cnt - 1];
2515 	ric->id = id;
2516 	ric->cookie = cookie;
2517 
2518 	ri->cons_cnt++;
2519 	return ri;
2520 }
2521 
2522 static struct return_consumer *
return_consumer_find(struct return_instance * ri,int * iter,int id)2523 return_consumer_find(struct return_instance *ri, int *iter, int id)
2524 {
2525 	struct return_consumer *ric;
2526 	int idx;
2527 
2528 	for (idx = *iter; idx < ri->cons_cnt; idx++)
2529 	{
2530 		ric = likely(idx == 0) ? &ri->consumer : &ri->extra_consumers[idx - 1];
2531 		if (ric->id == id) {
2532 			*iter = idx + 1;
2533 			return ric;
2534 		}
2535 	}
2536 
2537 	return NULL;
2538 }
2539 
ignore_ret_handler(int rc)2540 static bool ignore_ret_handler(int rc)
2541 {
2542 	return rc == UPROBE_HANDLER_REMOVE || rc == UPROBE_HANDLER_IGNORE;
2543 }
2544 
handler_chain(struct uprobe * uprobe,struct pt_regs * regs)2545 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2546 {
2547 	struct uprobe_consumer *uc;
2548 	bool has_consumers = false, remove = true;
2549 	struct return_instance *ri = NULL;
2550 	struct uprobe_task *utask = current->utask;
2551 
2552 	utask->auprobe = &uprobe->arch;
2553 
2554 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2555 		bool session = uc->handler && uc->ret_handler;
2556 		__u64 cookie = 0;
2557 		int rc = 0;
2558 
2559 		if (uc->handler) {
2560 			rc = uc->handler(uc, regs, &cookie);
2561 			WARN(rc < 0 || rc > 2,
2562 				"bad rc=0x%x from %ps()\n", rc, uc->handler);
2563 		}
2564 
2565 		remove &= rc == UPROBE_HANDLER_REMOVE;
2566 		has_consumers = true;
2567 
2568 		if (!uc->ret_handler || ignore_ret_handler(rc))
2569 			continue;
2570 
2571 		if (!ri)
2572 			ri = alloc_return_instance(utask);
2573 
2574 		if (session)
2575 			ri = push_consumer(ri, uc->id, cookie);
2576 	}
2577 	utask->auprobe = NULL;
2578 
2579 	if (!ZERO_OR_NULL_PTR(ri))
2580 		prepare_uretprobe(uprobe, regs, ri);
2581 
2582 	if (remove && has_consumers) {
2583 		down_read(&uprobe->register_rwsem);
2584 
2585 		/* re-check that removal is still required, this time under lock */
2586 		if (!filter_chain(uprobe, current->mm)) {
2587 			WARN_ON(!uprobe_is_active(uprobe));
2588 			unapply_uprobe(uprobe, current->mm);
2589 		}
2590 
2591 		up_read(&uprobe->register_rwsem);
2592 	}
2593 }
2594 
2595 static void
handle_uretprobe_chain(struct return_instance * ri,struct uprobe * uprobe,struct pt_regs * regs)2596 handle_uretprobe_chain(struct return_instance *ri, struct uprobe *uprobe, struct pt_regs *regs)
2597 {
2598 	struct return_consumer *ric;
2599 	struct uprobe_consumer *uc;
2600 	int ric_idx = 0;
2601 
2602 	/* all consumers unsubscribed meanwhile */
2603 	if (unlikely(!uprobe))
2604 		return;
2605 
2606 	rcu_read_lock_trace();
2607 	list_for_each_entry_rcu(uc, &uprobe->consumers, cons_node, rcu_read_lock_trace_held()) {
2608 		bool session = uc->handler && uc->ret_handler;
2609 
2610 		if (uc->ret_handler) {
2611 			ric = return_consumer_find(ri, &ric_idx, uc->id);
2612 			if (!session || ric)
2613 				uc->ret_handler(uc, ri->func, regs, ric ? &ric->cookie : NULL);
2614 		}
2615 	}
2616 	rcu_read_unlock_trace();
2617 }
2618 
find_next_ret_chain(struct return_instance * ri)2619 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2620 {
2621 	bool chained;
2622 
2623 	do {
2624 		chained = ri->chained;
2625 		ri = ri->next;	/* can't be NULL if chained */
2626 	} while (chained);
2627 
2628 	return ri;
2629 }
2630 
uprobe_handle_trampoline(struct pt_regs * regs)2631 void uprobe_handle_trampoline(struct pt_regs *regs)
2632 {
2633 	struct uprobe_task *utask;
2634 	struct return_instance *ri, *ri_next, *next_chain;
2635 	struct uprobe *uprobe;
2636 	enum hprobe_state hstate;
2637 	bool valid;
2638 
2639 	utask = current->utask;
2640 	if (!utask)
2641 		goto sigill;
2642 
2643 	ri = utask->return_instances;
2644 	if (!ri)
2645 		goto sigill;
2646 
2647 	do {
2648 		/*
2649 		 * We should throw out the frames invalidated by longjmp().
2650 		 * If this chain is valid, then the next one should be alive
2651 		 * or NULL; the latter case means that nobody but ri->func
2652 		 * could hit this trampoline on return. TODO: sigaltstack().
2653 		 */
2654 		next_chain = find_next_ret_chain(ri);
2655 		valid = !next_chain || arch_uretprobe_is_alive(next_chain, RP_CHECK_RET, regs);
2656 
2657 		instruction_pointer_set(regs, ri->orig_ret_vaddr);
2658 		do {
2659 			/* pop current instance from the stack of pending return instances,
2660 			 * as it's not pending anymore: we just fixed up original
2661 			 * instruction pointer in regs and are about to call handlers;
2662 			 * this allows fixup_uretprobe_trampoline_entries() to properly fix up
2663 			 * captured stack traces from uretprobe handlers, in which pending
2664 			 * trampoline addresses on the stack are replaced with correct
2665 			 * original return addresses
2666 			 */
2667 			ri_next = ri->next;
2668 			rcu_assign_pointer(utask->return_instances, ri_next);
2669 			utask->depth--;
2670 
2671 			uprobe = hprobe_consume(&ri->hprobe, &hstate);
2672 			if (valid)
2673 				handle_uretprobe_chain(ri, uprobe, regs);
2674 			hprobe_finalize(&ri->hprobe, hstate);
2675 
2676 			/* We already took care of hprobe, no need to waste more time on that. */
2677 			free_ret_instance(utask, ri, false /* !cleanup_hprobe */);
2678 			ri = ri_next;
2679 		} while (ri != next_chain);
2680 	} while (!valid);
2681 
2682 	return;
2683 
2684 sigill:
2685 	uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2686 	force_sig(SIGILL);
2687 }
2688 
arch_uprobe_ignore(struct arch_uprobe * aup,struct pt_regs * regs)2689 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2690 {
2691 	return false;
2692 }
2693 
arch_uretprobe_is_alive(struct return_instance * ret,enum rp_check ctx,struct pt_regs * regs)2694 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2695 					struct pt_regs *regs)
2696 {
2697 	return true;
2698 }
2699 
arch_uprobe_optimize(struct arch_uprobe * auprobe,unsigned long vaddr)2700 void __weak arch_uprobe_optimize(struct arch_uprobe *auprobe, unsigned long vaddr)
2701 {
2702 }
2703 
2704 /*
2705  * Run handler and ask thread to singlestep.
2706  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2707  */
handle_swbp(struct pt_regs * regs)2708 static void handle_swbp(struct pt_regs *regs)
2709 {
2710 	struct uprobe *uprobe;
2711 	unsigned long bp_vaddr;
2712 	int is_swbp;
2713 
2714 	bp_vaddr = uprobe_get_swbp_addr(regs);
2715 	if (bp_vaddr == uprobe_get_trampoline_vaddr())
2716 		return uprobe_handle_trampoline(regs);
2717 
2718 	rcu_read_lock_trace();
2719 
2720 	uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2721 	if (!uprobe) {
2722 		if (is_swbp > 0) {
2723 			/* No matching uprobe; signal SIGTRAP. */
2724 			force_sig(SIGTRAP);
2725 		} else {
2726 			/*
2727 			 * Either we raced with uprobe_unregister() or we can't
2728 			 * access this memory. The latter is only possible if
2729 			 * another thread plays with our ->mm. In both cases
2730 			 * we can simply restart. If this vma was unmapped we
2731 			 * can pretend this insn was not executed yet and get
2732 			 * the (correct) SIGSEGV after restart.
2733 			 */
2734 			instruction_pointer_set(regs, bp_vaddr);
2735 		}
2736 		goto out;
2737 	}
2738 
2739 	/* change it in advance for ->handler() and restart */
2740 	instruction_pointer_set(regs, bp_vaddr);
2741 
2742 	/*
2743 	 * TODO: move copy_insn/etc into _register and remove this hack.
2744 	 * After we hit the bp, _unregister + _register can install the
2745 	 * new and not-yet-analyzed uprobe at the same address, restart.
2746 	 */
2747 	if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2748 		goto out;
2749 
2750 	/*
2751 	 * Pairs with the smp_wmb() in prepare_uprobe().
2752 	 *
2753 	 * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2754 	 * we must also see the stores to &uprobe->arch performed by the
2755 	 * prepare_uprobe() call.
2756 	 */
2757 	smp_rmb();
2758 
2759 	/* Tracing handlers use ->utask to communicate with fetch methods */
2760 	if (!get_utask())
2761 		goto out;
2762 
2763 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2764 		goto out;
2765 
2766 	handler_chain(uprobe, regs);
2767 
2768 	/*
2769 	 * If user decided to take execution elsewhere, it makes little sense
2770 	 * to execute the original instruction, so let's skip it.
2771 	 */
2772 	if (instruction_pointer(regs) != bp_vaddr)
2773 		goto out;
2774 
2775 	/* Try to optimize after first hit. */
2776 	arch_uprobe_optimize(&uprobe->arch, bp_vaddr);
2777 
2778 	if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2779 		goto out;
2780 
2781 	if (pre_ssout(uprobe, regs, bp_vaddr))
2782 		goto out;
2783 
2784 out:
2785 	/* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2786 	rcu_read_unlock_trace();
2787 }
2788 
handle_syscall_uprobe(struct pt_regs * regs,unsigned long bp_vaddr)2789 void handle_syscall_uprobe(struct pt_regs *regs, unsigned long bp_vaddr)
2790 {
2791 	struct uprobe *uprobe;
2792 	int is_swbp;
2793 
2794 	guard(rcu_tasks_trace)();
2795 
2796 	uprobe = find_active_uprobe_rcu(bp_vaddr, &is_swbp);
2797 	if (!uprobe)
2798 		return;
2799 	if (!get_utask())
2800 		return;
2801 	if (arch_uprobe_ignore(&uprobe->arch, regs))
2802 		return;
2803 	handler_chain(uprobe, regs);
2804 }
2805 
2806 /*
2807  * Perform required fix-ups and disable singlestep.
2808  * Allow pending signals to take effect.
2809  */
handle_singlestep(struct uprobe_task * utask,struct pt_regs * regs)2810 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2811 {
2812 	struct uprobe *uprobe;
2813 	int err = 0;
2814 
2815 	uprobe = utask->active_uprobe;
2816 	if (utask->state == UTASK_SSTEP_ACK)
2817 		err = arch_uprobe_post_xol(&uprobe->arch, regs);
2818 	else if (utask->state == UTASK_SSTEP_TRAPPED)
2819 		arch_uprobe_abort_xol(&uprobe->arch, regs);
2820 	else
2821 		WARN_ON_ONCE(1);
2822 
2823 	put_uprobe(uprobe);
2824 	utask->active_uprobe = NULL;
2825 	utask->state = UTASK_RUNNING;
2826 	xol_free_insn_slot(utask);
2827 
2828 	if (utask->signal_denied) {
2829 		set_thread_flag(TIF_SIGPENDING);
2830 		utask->signal_denied = false;
2831 	}
2832 
2833 	if (unlikely(err)) {
2834 		uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2835 		force_sig(SIGILL);
2836 	}
2837 }
2838 
2839 /*
2840  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2841  * allows the thread to return from interrupt. After that handle_swbp()
2842  * sets utask->active_uprobe.
2843  *
2844  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2845  * and allows the thread to return from interrupt.
2846  *
2847  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2848  * uprobe_notify_resume().
2849  */
uprobe_notify_resume(struct pt_regs * regs)2850 void uprobe_notify_resume(struct pt_regs *regs)
2851 {
2852 	struct uprobe_task *utask;
2853 
2854 	clear_thread_flag(TIF_UPROBE);
2855 
2856 	utask = current->utask;
2857 	if (utask && utask->active_uprobe)
2858 		handle_singlestep(utask, regs);
2859 	else
2860 		handle_swbp(regs);
2861 }
2862 
2863 /*
2864  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2865  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2866  */
uprobe_pre_sstep_notifier(struct pt_regs * regs)2867 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2868 {
2869 	if (!current->mm)
2870 		return 0;
2871 
2872 	if (!mm_flags_test(MMF_HAS_UPROBES, current->mm) &&
2873 	    (!current->utask || !current->utask->return_instances))
2874 		return 0;
2875 
2876 	set_thread_flag(TIF_UPROBE);
2877 	return 1;
2878 }
2879 
2880 /*
2881  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2882  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2883  */
uprobe_post_sstep_notifier(struct pt_regs * regs)2884 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2885 {
2886 	struct uprobe_task *utask = current->utask;
2887 
2888 	if (!current->mm || !utask || !utask->active_uprobe)
2889 		/* task is currently not uprobed */
2890 		return 0;
2891 
2892 	utask->state = UTASK_SSTEP_ACK;
2893 	set_thread_flag(TIF_UPROBE);
2894 	return 1;
2895 }
2896 
2897 static struct notifier_block uprobe_exception_nb = {
2898 	.notifier_call		= arch_uprobe_exception_notify,
2899 	.priority		= INT_MAX-1,	/* notified after kprobes, kgdb */
2900 };
2901 
uprobes_init(void)2902 void __init uprobes_init(void)
2903 {
2904 	int i;
2905 
2906 	for (i = 0; i < UPROBES_HASH_SZ; i++)
2907 		mutex_init(&uprobes_mmap_mutex[i]);
2908 
2909 	BUG_ON(register_die_notifier(&uprobe_exception_nb));
2910 }
2911