1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/cache.h>
264 #include <linux/err.h>
265 #include <linux/time.h>
266 #include <linux/slab.h>
267 #include <linux/errqueue.h>
268 #include <linux/static_key.h>
269 #include <linux/btf.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/proto_memory.h>
276 #include <net/xfrm.h>
277 #include <net/ip.h>
278 #include <net/sock.h>
279 #include <net/rstreason.h>
280
281 #include <linux/uaccess.h>
282 #include <asm/ioctls.h>
283 #include <net/busy_poll.h>
284 #include <net/hotdata.h>
285 #include <trace/events/tcp.h>
286 #include <net/rps.h>
287
288 #include "../core/devmem.h"
289
290 /* Track pending CMSGs. */
291 enum {
292 TCP_CMSG_INQ = 1,
293 TCP_CMSG_TS = 2
294 };
295
296 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
297 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
298
299 DEFINE_PER_CPU(u32, tcp_tw_isn);
300 EXPORT_PER_CPU_SYMBOL_GPL(tcp_tw_isn);
301
302 long sysctl_tcp_mem[3] __read_mostly;
303 EXPORT_IPV6_MOD(sysctl_tcp_mem);
304
305 atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp; /* Current allocated memory. */
306 EXPORT_IPV6_MOD(tcp_memory_allocated);
307 DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
308 EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
309
310 #if IS_ENABLED(CONFIG_SMC)
311 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
312 EXPORT_SYMBOL(tcp_have_smc);
313 #endif
314
315 /*
316 * Current number of TCP sockets.
317 */
318 struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
319 EXPORT_IPV6_MOD(tcp_sockets_allocated);
320
321 /*
322 * TCP splice context
323 */
324 struct tcp_splice_state {
325 struct pipe_inode_info *pipe;
326 size_t len;
327 unsigned int flags;
328 };
329
330 /*
331 * Pressure flag: try to collapse.
332 * Technical note: it is used by multiple contexts non atomically.
333 * All the __sk_mem_schedule() is of this nature: accounting
334 * is strict, actions are advisory and have some latency.
335 */
336 unsigned long tcp_memory_pressure __read_mostly;
337 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
338
tcp_enter_memory_pressure(struct sock * sk)339 void tcp_enter_memory_pressure(struct sock *sk)
340 {
341 unsigned long val;
342
343 if (READ_ONCE(tcp_memory_pressure))
344 return;
345 val = jiffies;
346
347 if (!val)
348 val--;
349 if (!cmpxchg(&tcp_memory_pressure, 0, val))
350 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
351 }
352 EXPORT_IPV6_MOD_GPL(tcp_enter_memory_pressure);
353
tcp_leave_memory_pressure(struct sock * sk)354 void tcp_leave_memory_pressure(struct sock *sk)
355 {
356 unsigned long val;
357
358 if (!READ_ONCE(tcp_memory_pressure))
359 return;
360 val = xchg(&tcp_memory_pressure, 0);
361 if (val)
362 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
363 jiffies_to_msecs(jiffies - val));
364 }
365 EXPORT_IPV6_MOD_GPL(tcp_leave_memory_pressure);
366
367 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)368 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
369 {
370 u8 res = 0;
371
372 if (seconds > 0) {
373 int period = timeout;
374
375 res = 1;
376 while (seconds > period && res < 255) {
377 res++;
378 timeout <<= 1;
379 if (timeout > rto_max)
380 timeout = rto_max;
381 period += timeout;
382 }
383 }
384 return res;
385 }
386
387 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)388 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
389 {
390 int period = 0;
391
392 if (retrans > 0) {
393 period = timeout;
394 while (--retrans) {
395 timeout <<= 1;
396 if (timeout > rto_max)
397 timeout = rto_max;
398 period += timeout;
399 }
400 }
401 return period;
402 }
403
tcp_compute_delivery_rate(const struct tcp_sock * tp)404 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
405 {
406 u32 rate = READ_ONCE(tp->rate_delivered);
407 u32 intv = READ_ONCE(tp->rate_interval_us);
408 u64 rate64 = 0;
409
410 if (rate && intv) {
411 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
412 do_div(rate64, intv);
413 }
414 return rate64;
415 }
416
417 /* Address-family independent initialization for a tcp_sock.
418 *
419 * NOTE: A lot of things set to zero explicitly by call to
420 * sk_alloc() so need not be done here.
421 */
tcp_init_sock(struct sock * sk)422 void tcp_init_sock(struct sock *sk)
423 {
424 struct inet_connection_sock *icsk = inet_csk(sk);
425 struct tcp_sock *tp = tcp_sk(sk);
426 int rto_min_us, rto_max_ms;
427
428 tp->out_of_order_queue = RB_ROOT;
429 sk->tcp_rtx_queue = RB_ROOT;
430 tcp_init_xmit_timers(sk);
431 INIT_LIST_HEAD(&tp->tsq_node);
432 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
433
434 icsk->icsk_rto = TCP_TIMEOUT_INIT;
435
436 rto_max_ms = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_max_ms);
437 icsk->icsk_rto_max = msecs_to_jiffies(rto_max_ms);
438
439 rto_min_us = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rto_min_us);
440 icsk->icsk_rto_min = usecs_to_jiffies(rto_min_us);
441 icsk->icsk_delack_max = TCP_DELACK_MAX;
442 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
443 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
444
445 /* So many TCP implementations out there (incorrectly) count the
446 * initial SYN frame in their delayed-ACK and congestion control
447 * algorithms that we must have the following bandaid to talk
448 * efficiently to them. -DaveM
449 */
450 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
451
452 /* There's a bubble in the pipe until at least the first ACK. */
453 tp->app_limited = ~0U;
454 tp->rate_app_limited = 1;
455
456 /* See draft-stevens-tcpca-spec-01 for discussion of the
457 * initialization of these values.
458 */
459 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
460 tp->snd_cwnd_clamp = ~0;
461 tp->mss_cache = TCP_MSS_DEFAULT;
462
463 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
464 tcp_assign_congestion_control(sk);
465
466 tp->tsoffset = 0;
467 tp->rack.reo_wnd_steps = 1;
468
469 sk->sk_write_space = sk_stream_write_space;
470 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
471
472 icsk->icsk_sync_mss = tcp_sync_mss;
473
474 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
475 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
476 tcp_scaling_ratio_init(sk);
477
478 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
479 sk_sockets_allocated_inc(sk);
480 xa_init_flags(&sk->sk_user_frags, XA_FLAGS_ALLOC1);
481 }
482 EXPORT_IPV6_MOD(tcp_init_sock);
483
tcp_tx_timestamp(struct sock * sk,struct sockcm_cookie * sockc)484 static void tcp_tx_timestamp(struct sock *sk, struct sockcm_cookie *sockc)
485 {
486 struct sk_buff *skb = tcp_write_queue_tail(sk);
487 u32 tsflags = sockc->tsflags;
488
489 if (tsflags && skb) {
490 struct skb_shared_info *shinfo = skb_shinfo(skb);
491 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
492
493 sock_tx_timestamp(sk, sockc, &shinfo->tx_flags);
494 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
495 tcb->txstamp_ack |= TSTAMP_ACK_SK;
496 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
497 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
498 }
499
500 if (cgroup_bpf_enabled(CGROUP_SOCK_OPS) &&
501 SK_BPF_CB_FLAG_TEST(sk, SK_BPF_CB_TX_TIMESTAMPING) && skb)
502 bpf_skops_tx_timestamping(sk, skb, BPF_SOCK_OPS_TSTAMP_SENDMSG_CB);
503 }
504
tcp_stream_is_readable(struct sock * sk,int target)505 static bool tcp_stream_is_readable(struct sock *sk, int target)
506 {
507 if (tcp_epollin_ready(sk, target))
508 return true;
509 return sk_is_readable(sk);
510 }
511
512 /*
513 * Wait for a TCP event.
514 *
515 * Note that we don't need to lock the socket, as the upper poll layers
516 * take care of normal races (between the test and the event) and we don't
517 * go look at any of the socket buffers directly.
518 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)519 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
520 {
521 __poll_t mask;
522 struct sock *sk = sock->sk;
523 const struct tcp_sock *tp = tcp_sk(sk);
524 u8 shutdown;
525 int state;
526
527 sock_poll_wait(file, sock, wait);
528
529 state = inet_sk_state_load(sk);
530 if (state == TCP_LISTEN)
531 return inet_csk_listen_poll(sk);
532
533 /* Socket is not locked. We are protected from async events
534 * by poll logic and correct handling of state changes
535 * made by other threads is impossible in any case.
536 */
537
538 mask = 0;
539
540 /*
541 * EPOLLHUP is certainly not done right. But poll() doesn't
542 * have a notion of HUP in just one direction, and for a
543 * socket the read side is more interesting.
544 *
545 * Some poll() documentation says that EPOLLHUP is incompatible
546 * with the EPOLLOUT/POLLWR flags, so somebody should check this
547 * all. But careful, it tends to be safer to return too many
548 * bits than too few, and you can easily break real applications
549 * if you don't tell them that something has hung up!
550 *
551 * Check-me.
552 *
553 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
554 * our fs/select.c). It means that after we received EOF,
555 * poll always returns immediately, making impossible poll() on write()
556 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
557 * if and only if shutdown has been made in both directions.
558 * Actually, it is interesting to look how Solaris and DUX
559 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
560 * then we could set it on SND_SHUTDOWN. BTW examples given
561 * in Stevens' books assume exactly this behaviour, it explains
562 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
563 *
564 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
565 * blocking on fresh not-connected or disconnected socket. --ANK
566 */
567 shutdown = READ_ONCE(sk->sk_shutdown);
568 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
569 mask |= EPOLLHUP;
570 if (shutdown & RCV_SHUTDOWN)
571 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
572
573 /* Connected or passive Fast Open socket? */
574 if (state != TCP_SYN_SENT &&
575 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
576 int target = sock_rcvlowat(sk, 0, INT_MAX);
577 u16 urg_data = READ_ONCE(tp->urg_data);
578
579 if (unlikely(urg_data) &&
580 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
581 !sock_flag(sk, SOCK_URGINLINE))
582 target++;
583
584 if (tcp_stream_is_readable(sk, target))
585 mask |= EPOLLIN | EPOLLRDNORM;
586
587 if (!(shutdown & SEND_SHUTDOWN)) {
588 if (__sk_stream_is_writeable(sk, 1)) {
589 mask |= EPOLLOUT | EPOLLWRNORM;
590 } else { /* send SIGIO later */
591 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
592 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
593
594 /* Race breaker. If space is freed after
595 * wspace test but before the flags are set,
596 * IO signal will be lost. Memory barrier
597 * pairs with the input side.
598 */
599 smp_mb__after_atomic();
600 if (__sk_stream_is_writeable(sk, 1))
601 mask |= EPOLLOUT | EPOLLWRNORM;
602 }
603 } else
604 mask |= EPOLLOUT | EPOLLWRNORM;
605
606 if (urg_data & TCP_URG_VALID)
607 mask |= EPOLLPRI;
608 } else if (state == TCP_SYN_SENT &&
609 inet_test_bit(DEFER_CONNECT, sk)) {
610 /* Active TCP fastopen socket with defer_connect
611 * Return EPOLLOUT so application can call write()
612 * in order for kernel to generate SYN+data
613 */
614 mask |= EPOLLOUT | EPOLLWRNORM;
615 }
616 /* This barrier is coupled with smp_wmb() in tcp_done_with_error() */
617 smp_rmb();
618 if (READ_ONCE(sk->sk_err) ||
619 !skb_queue_empty_lockless(&sk->sk_error_queue))
620 mask |= EPOLLERR;
621
622 return mask;
623 }
624 EXPORT_SYMBOL(tcp_poll);
625
tcp_ioctl(struct sock * sk,int cmd,int * karg)626 int tcp_ioctl(struct sock *sk, int cmd, int *karg)
627 {
628 struct tcp_sock *tp = tcp_sk(sk);
629 int answ;
630 bool slow;
631
632 switch (cmd) {
633 case SIOCINQ:
634 if (sk->sk_state == TCP_LISTEN)
635 return -EINVAL;
636
637 slow = lock_sock_fast(sk);
638 answ = tcp_inq(sk);
639 unlock_sock_fast(sk, slow);
640 break;
641 case SIOCATMARK:
642 answ = READ_ONCE(tp->urg_data) &&
643 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
644 break;
645 case SIOCOUTQ:
646 if (sk->sk_state == TCP_LISTEN)
647 return -EINVAL;
648
649 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
650 answ = 0;
651 else
652 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
653 break;
654 case SIOCOUTQNSD:
655 if (sk->sk_state == TCP_LISTEN)
656 return -EINVAL;
657
658 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
659 answ = 0;
660 else
661 answ = READ_ONCE(tp->write_seq) -
662 READ_ONCE(tp->snd_nxt);
663 break;
664 default:
665 return -ENOIOCTLCMD;
666 }
667
668 *karg = answ;
669 return 0;
670 }
671 EXPORT_IPV6_MOD(tcp_ioctl);
672
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)673 void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
674 {
675 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
676 tp->pushed_seq = tp->write_seq;
677 }
678
forced_push(const struct tcp_sock * tp)679 static inline bool forced_push(const struct tcp_sock *tp)
680 {
681 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
682 }
683
tcp_skb_entail(struct sock * sk,struct sk_buff * skb)684 void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
685 {
686 struct tcp_sock *tp = tcp_sk(sk);
687 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
688
689 tcb->seq = tcb->end_seq = tp->write_seq;
690 tcb->tcp_flags = TCPHDR_ACK;
691 __skb_header_release(skb);
692 tcp_add_write_queue_tail(sk, skb);
693 sk_wmem_queued_add(sk, skb->truesize);
694 sk_mem_charge(sk, skb->truesize);
695 if (tp->nonagle & TCP_NAGLE_PUSH)
696 tp->nonagle &= ~TCP_NAGLE_PUSH;
697
698 tcp_slow_start_after_idle_check(sk);
699 }
700
tcp_mark_urg(struct tcp_sock * tp,int flags)701 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
702 {
703 if (flags & MSG_OOB)
704 tp->snd_up = tp->write_seq;
705 }
706
707 /* If a not yet filled skb is pushed, do not send it if
708 * we have data packets in Qdisc or NIC queues :
709 * Because TX completion will happen shortly, it gives a chance
710 * to coalesce future sendmsg() payload into this skb, without
711 * need for a timer, and with no latency trade off.
712 * As packets containing data payload have a bigger truesize
713 * than pure acks (dataless) packets, the last checks prevent
714 * autocorking if we only have an ACK in Qdisc/NIC queues,
715 * or if TX completion was delayed after we processed ACK packet.
716 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)717 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
718 int size_goal)
719 {
720 return skb->len < size_goal &&
721 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
722 !tcp_rtx_queue_empty(sk) &&
723 refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
724 tcp_skb_can_collapse_to(skb);
725 }
726
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)727 void tcp_push(struct sock *sk, int flags, int mss_now,
728 int nonagle, int size_goal)
729 {
730 struct tcp_sock *tp = tcp_sk(sk);
731 struct sk_buff *skb;
732
733 skb = tcp_write_queue_tail(sk);
734 if (!skb)
735 return;
736 if (!(flags & MSG_MORE) || forced_push(tp))
737 tcp_mark_push(tp, skb);
738
739 tcp_mark_urg(tp, flags);
740
741 if (tcp_should_autocork(sk, skb, size_goal)) {
742
743 /* avoid atomic op if TSQ_THROTTLED bit is already set */
744 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
746 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
747 smp_mb__after_atomic();
748 }
749 /* It is possible TX completion already happened
750 * before we set TSQ_THROTTLED.
751 */
752 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
753 return;
754 }
755
756 if (flags & MSG_MORE)
757 nonagle = TCP_NAGLE_CORK;
758
759 __tcp_push_pending_frames(sk, mss_now, nonagle);
760 }
761
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)762 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
763 unsigned int offset, size_t len)
764 {
765 struct tcp_splice_state *tss = rd_desc->arg.data;
766 int ret;
767
768 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
769 min(rd_desc->count, len), tss->flags);
770 if (ret > 0)
771 rd_desc->count -= ret;
772 return ret;
773 }
774
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)775 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
776 {
777 /* Store TCP splice context information in read_descriptor_t. */
778 read_descriptor_t rd_desc = {
779 .arg.data = tss,
780 .count = tss->len,
781 };
782
783 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
784 }
785
786 /**
787 * tcp_splice_read - splice data from TCP socket to a pipe
788 * @sock: socket to splice from
789 * @ppos: position (not valid)
790 * @pipe: pipe to splice to
791 * @len: number of bytes to splice
792 * @flags: splice modifier flags
793 *
794 * Description:
795 * Will read pages from given socket and fill them into a pipe.
796 *
797 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)798 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
799 struct pipe_inode_info *pipe, size_t len,
800 unsigned int flags)
801 {
802 struct sock *sk = sock->sk;
803 struct tcp_splice_state tss = {
804 .pipe = pipe,
805 .len = len,
806 .flags = flags,
807 };
808 long timeo;
809 ssize_t spliced;
810 int ret;
811
812 sock_rps_record_flow(sk);
813 /*
814 * We can't seek on a socket input
815 */
816 if (unlikely(*ppos))
817 return -ESPIPE;
818
819 ret = spliced = 0;
820
821 lock_sock(sk);
822
823 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
824 while (tss.len) {
825 ret = __tcp_splice_read(sk, &tss);
826 if (ret < 0)
827 break;
828 else if (!ret) {
829 if (spliced)
830 break;
831 if (sock_flag(sk, SOCK_DONE))
832 break;
833 if (sk->sk_err) {
834 ret = sock_error(sk);
835 break;
836 }
837 if (sk->sk_shutdown & RCV_SHUTDOWN)
838 break;
839 if (sk->sk_state == TCP_CLOSE) {
840 /*
841 * This occurs when user tries to read
842 * from never connected socket.
843 */
844 ret = -ENOTCONN;
845 break;
846 }
847 if (!timeo) {
848 ret = -EAGAIN;
849 break;
850 }
851 /* if __tcp_splice_read() got nothing while we have
852 * an skb in receive queue, we do not want to loop.
853 * This might happen with URG data.
854 */
855 if (!skb_queue_empty(&sk->sk_receive_queue))
856 break;
857 ret = sk_wait_data(sk, &timeo, NULL);
858 if (ret < 0)
859 break;
860 if (signal_pending(current)) {
861 ret = sock_intr_errno(timeo);
862 break;
863 }
864 continue;
865 }
866 tss.len -= ret;
867 spliced += ret;
868
869 if (!tss.len || !timeo)
870 break;
871 release_sock(sk);
872 lock_sock(sk);
873
874 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
875 (sk->sk_shutdown & RCV_SHUTDOWN) ||
876 signal_pending(current))
877 break;
878 }
879
880 release_sock(sk);
881
882 if (spliced)
883 return spliced;
884
885 return ret;
886 }
887 EXPORT_IPV6_MOD(tcp_splice_read);
888
tcp_stream_alloc_skb(struct sock * sk,gfp_t gfp,bool force_schedule)889 struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
890 bool force_schedule)
891 {
892 struct sk_buff *skb;
893
894 skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
895 if (likely(skb)) {
896 bool mem_scheduled;
897
898 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
899 if (force_schedule) {
900 mem_scheduled = true;
901 sk_forced_mem_schedule(sk, skb->truesize);
902 } else {
903 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
904 }
905 if (likely(mem_scheduled)) {
906 skb_reserve(skb, MAX_TCP_HEADER);
907 skb->ip_summed = CHECKSUM_PARTIAL;
908 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
909 return skb;
910 }
911 __kfree_skb(skb);
912 } else {
913 sk->sk_prot->enter_memory_pressure(sk);
914 sk_stream_moderate_sndbuf(sk);
915 }
916 return NULL;
917 }
918
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)919 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
920 int large_allowed)
921 {
922 struct tcp_sock *tp = tcp_sk(sk);
923 u32 new_size_goal, size_goal;
924
925 if (!large_allowed)
926 return mss_now;
927
928 /* Note : tcp_tso_autosize() will eventually split this later */
929 new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
930
931 /* We try hard to avoid divides here */
932 size_goal = tp->gso_segs * mss_now;
933 if (unlikely(new_size_goal < size_goal ||
934 new_size_goal >= size_goal + mss_now)) {
935 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
936 sk->sk_gso_max_segs);
937 size_goal = tp->gso_segs * mss_now;
938 }
939
940 return max(size_goal, mss_now);
941 }
942
tcp_send_mss(struct sock * sk,int * size_goal,int flags)943 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
944 {
945 int mss_now;
946
947 mss_now = tcp_current_mss(sk);
948 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
949
950 return mss_now;
951 }
952
953 /* In some cases, sendmsg() could have added an skb to the write queue,
954 * but failed adding payload on it. We need to remove it to consume less
955 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
956 * epoll() users. Another reason is that tcp_write_xmit() does not like
957 * finding an empty skb in the write queue.
958 */
tcp_remove_empty_skb(struct sock * sk)959 void tcp_remove_empty_skb(struct sock *sk)
960 {
961 struct sk_buff *skb = tcp_write_queue_tail(sk);
962
963 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
964 tcp_unlink_write_queue(skb, sk);
965 if (tcp_write_queue_empty(sk))
966 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
967 tcp_wmem_free_skb(sk, skb);
968 }
969 }
970
971 /* skb changing from pure zc to mixed, must charge zc */
tcp_downgrade_zcopy_pure(struct sock * sk,struct sk_buff * skb)972 static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
973 {
974 if (unlikely(skb_zcopy_pure(skb))) {
975 u32 extra = skb->truesize -
976 SKB_TRUESIZE(skb_end_offset(skb));
977
978 if (!sk_wmem_schedule(sk, extra))
979 return -ENOMEM;
980
981 sk_mem_charge(sk, extra);
982 skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
983 }
984 return 0;
985 }
986
987
tcp_wmem_schedule(struct sock * sk,int copy)988 int tcp_wmem_schedule(struct sock *sk, int copy)
989 {
990 int left;
991
992 if (likely(sk_wmem_schedule(sk, copy)))
993 return copy;
994
995 /* We could be in trouble if we have nothing queued.
996 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
997 * to guarantee some progress.
998 */
999 left = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[0]) - sk->sk_wmem_queued;
1000 if (left > 0)
1001 sk_forced_mem_schedule(sk, min(left, copy));
1002 return min(copy, sk->sk_forward_alloc);
1003 }
1004
tcp_free_fastopen_req(struct tcp_sock * tp)1005 void tcp_free_fastopen_req(struct tcp_sock *tp)
1006 {
1007 if (tp->fastopen_req) {
1008 kfree(tp->fastopen_req);
1009 tp->fastopen_req = NULL;
1010 }
1011 }
1012
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1013 int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
1014 size_t size, struct ubuf_info *uarg)
1015 {
1016 struct tcp_sock *tp = tcp_sk(sk);
1017 struct inet_sock *inet = inet_sk(sk);
1018 struct sockaddr *uaddr = msg->msg_name;
1019 int err, flags;
1020
1021 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1022 TFO_CLIENT_ENABLE) ||
1023 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1024 uaddr->sa_family == AF_UNSPEC))
1025 return -EOPNOTSUPP;
1026 if (tp->fastopen_req)
1027 return -EALREADY; /* Another Fast Open is in progress */
1028
1029 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1030 sk->sk_allocation);
1031 if (unlikely(!tp->fastopen_req))
1032 return -ENOBUFS;
1033 tp->fastopen_req->data = msg;
1034 tp->fastopen_req->size = size;
1035 tp->fastopen_req->uarg = uarg;
1036
1037 if (inet_test_bit(DEFER_CONNECT, sk)) {
1038 err = tcp_connect(sk);
1039 /* Same failure procedure as in tcp_v4/6_connect */
1040 if (err) {
1041 tcp_set_state(sk, TCP_CLOSE);
1042 inet->inet_dport = 0;
1043 sk->sk_route_caps = 0;
1044 }
1045 }
1046 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1047 err = __inet_stream_connect(sk->sk_socket, uaddr,
1048 msg->msg_namelen, flags, 1);
1049 /* fastopen_req could already be freed in __inet_stream_connect
1050 * if the connection times out or gets rst
1051 */
1052 if (tp->fastopen_req) {
1053 *copied = tp->fastopen_req->copied;
1054 tcp_free_fastopen_req(tp);
1055 inet_clear_bit(DEFER_CONNECT, sk);
1056 }
1057 return err;
1058 }
1059
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1060 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1061 {
1062 struct tcp_sock *tp = tcp_sk(sk);
1063 struct ubuf_info *uarg = NULL;
1064 struct sk_buff *skb;
1065 struct sockcm_cookie sockc;
1066 int flags, err, copied = 0;
1067 int mss_now = 0, size_goal, copied_syn = 0;
1068 int process_backlog = 0;
1069 int zc = 0;
1070 long timeo;
1071
1072 flags = msg->msg_flags;
1073
1074 if ((flags & MSG_ZEROCOPY) && size) {
1075 if (msg->msg_ubuf) {
1076 uarg = msg->msg_ubuf;
1077 if (sk->sk_route_caps & NETIF_F_SG)
1078 zc = MSG_ZEROCOPY;
1079 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1080 skb = tcp_write_queue_tail(sk);
1081 uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1082 if (!uarg) {
1083 err = -ENOBUFS;
1084 goto out_err;
1085 }
1086 if (sk->sk_route_caps & NETIF_F_SG)
1087 zc = MSG_ZEROCOPY;
1088 else
1089 uarg_to_msgzc(uarg)->zerocopy = 0;
1090 }
1091 } else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1092 if (sk->sk_route_caps & NETIF_F_SG)
1093 zc = MSG_SPLICE_PAGES;
1094 }
1095
1096 if (unlikely(flags & MSG_FASTOPEN ||
1097 inet_test_bit(DEFER_CONNECT, sk)) &&
1098 !tp->repair) {
1099 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1100 if (err == -EINPROGRESS && copied_syn > 0)
1101 goto out;
1102 else if (err)
1103 goto out_err;
1104 }
1105
1106 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1107
1108 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1109
1110 /* Wait for a connection to finish. One exception is TCP Fast Open
1111 * (passive side) where data is allowed to be sent before a connection
1112 * is fully established.
1113 */
1114 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1115 !tcp_passive_fastopen(sk)) {
1116 err = sk_stream_wait_connect(sk, &timeo);
1117 if (err != 0)
1118 goto do_error;
1119 }
1120
1121 if (unlikely(tp->repair)) {
1122 if (tp->repair_queue == TCP_RECV_QUEUE) {
1123 copied = tcp_send_rcvq(sk, msg, size);
1124 goto out_nopush;
1125 }
1126
1127 err = -EINVAL;
1128 if (tp->repair_queue == TCP_NO_QUEUE)
1129 goto out_err;
1130
1131 /* 'common' sending to sendq */
1132 }
1133
1134 sockc = (struct sockcm_cookie) { .tsflags = READ_ONCE(sk->sk_tsflags)};
1135 if (msg->msg_controllen) {
1136 err = sock_cmsg_send(sk, msg, &sockc);
1137 if (unlikely(err)) {
1138 err = -EINVAL;
1139 goto out_err;
1140 }
1141 }
1142
1143 /* This should be in poll */
1144 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1145
1146 /* Ok commence sending. */
1147 copied = 0;
1148
1149 restart:
1150 mss_now = tcp_send_mss(sk, &size_goal, flags);
1151
1152 err = -EPIPE;
1153 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1154 goto do_error;
1155
1156 while (msg_data_left(msg)) {
1157 ssize_t copy = 0;
1158
1159 skb = tcp_write_queue_tail(sk);
1160 if (skb)
1161 copy = size_goal - skb->len;
1162
1163 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1164 bool first_skb;
1165
1166 new_segment:
1167 if (!sk_stream_memory_free(sk))
1168 goto wait_for_space;
1169
1170 if (unlikely(process_backlog >= 16)) {
1171 process_backlog = 0;
1172 if (sk_flush_backlog(sk))
1173 goto restart;
1174 }
1175 first_skb = tcp_rtx_and_write_queues_empty(sk);
1176 skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1177 first_skb);
1178 if (!skb)
1179 goto wait_for_space;
1180
1181 process_backlog++;
1182
1183 #ifdef CONFIG_SKB_DECRYPTED
1184 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1185 #endif
1186 tcp_skb_entail(sk, skb);
1187 copy = size_goal;
1188
1189 /* All packets are restored as if they have
1190 * already been sent. skb_mstamp_ns isn't set to
1191 * avoid wrong rtt estimation.
1192 */
1193 if (tp->repair)
1194 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1195 }
1196
1197 /* Try to append data to the end of skb. */
1198 if (copy > msg_data_left(msg))
1199 copy = msg_data_left(msg);
1200
1201 if (zc == 0) {
1202 bool merge = true;
1203 int i = skb_shinfo(skb)->nr_frags;
1204 struct page_frag *pfrag = sk_page_frag(sk);
1205
1206 if (!sk_page_frag_refill(sk, pfrag))
1207 goto wait_for_space;
1208
1209 if (!skb_can_coalesce(skb, i, pfrag->page,
1210 pfrag->offset)) {
1211 if (i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
1212 tcp_mark_push(tp, skb);
1213 goto new_segment;
1214 }
1215 merge = false;
1216 }
1217
1218 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1219
1220 if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1221 if (tcp_downgrade_zcopy_pure(sk, skb))
1222 goto wait_for_space;
1223 skb_zcopy_downgrade_managed(skb);
1224 }
1225
1226 copy = tcp_wmem_schedule(sk, copy);
1227 if (!copy)
1228 goto wait_for_space;
1229
1230 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1231 pfrag->page,
1232 pfrag->offset,
1233 copy);
1234 if (err)
1235 goto do_error;
1236
1237 /* Update the skb. */
1238 if (merge) {
1239 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1240 } else {
1241 skb_fill_page_desc(skb, i, pfrag->page,
1242 pfrag->offset, copy);
1243 page_ref_inc(pfrag->page);
1244 }
1245 pfrag->offset += copy;
1246 } else if (zc == MSG_ZEROCOPY) {
1247 /* First append to a fragless skb builds initial
1248 * pure zerocopy skb
1249 */
1250 if (!skb->len)
1251 skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1252
1253 if (!skb_zcopy_pure(skb)) {
1254 copy = tcp_wmem_schedule(sk, copy);
1255 if (!copy)
1256 goto wait_for_space;
1257 }
1258
1259 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1260 if (err == -EMSGSIZE || err == -EEXIST) {
1261 tcp_mark_push(tp, skb);
1262 goto new_segment;
1263 }
1264 if (err < 0)
1265 goto do_error;
1266 copy = err;
1267 } else if (zc == MSG_SPLICE_PAGES) {
1268 /* Splice in data if we can; copy if we can't. */
1269 if (tcp_downgrade_zcopy_pure(sk, skb))
1270 goto wait_for_space;
1271 copy = tcp_wmem_schedule(sk, copy);
1272 if (!copy)
1273 goto wait_for_space;
1274
1275 err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1276 sk->sk_allocation);
1277 if (err < 0) {
1278 if (err == -EMSGSIZE) {
1279 tcp_mark_push(tp, skb);
1280 goto new_segment;
1281 }
1282 goto do_error;
1283 }
1284 copy = err;
1285
1286 if (!(flags & MSG_NO_SHARED_FRAGS))
1287 skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1288
1289 sk_wmem_queued_add(sk, copy);
1290 sk_mem_charge(sk, copy);
1291 }
1292
1293 if (!copied)
1294 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1295
1296 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1297 TCP_SKB_CB(skb)->end_seq += copy;
1298 tcp_skb_pcount_set(skb, 0);
1299
1300 copied += copy;
1301 if (!msg_data_left(msg)) {
1302 if (unlikely(flags & MSG_EOR))
1303 TCP_SKB_CB(skb)->eor = 1;
1304 goto out;
1305 }
1306
1307 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1308 continue;
1309
1310 if (forced_push(tp)) {
1311 tcp_mark_push(tp, skb);
1312 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1313 } else if (skb == tcp_send_head(sk))
1314 tcp_push_one(sk, mss_now);
1315 continue;
1316
1317 wait_for_space:
1318 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1319 tcp_remove_empty_skb(sk);
1320 if (copied)
1321 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1322 TCP_NAGLE_PUSH, size_goal);
1323
1324 err = sk_stream_wait_memory(sk, &timeo);
1325 if (err != 0)
1326 goto do_error;
1327
1328 mss_now = tcp_send_mss(sk, &size_goal, flags);
1329 }
1330
1331 out:
1332 if (copied) {
1333 tcp_tx_timestamp(sk, &sockc);
1334 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1335 }
1336 out_nopush:
1337 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1338 if (uarg && !msg->msg_ubuf)
1339 net_zcopy_put(uarg);
1340 return copied + copied_syn;
1341
1342 do_error:
1343 tcp_remove_empty_skb(sk);
1344
1345 if (copied + copied_syn)
1346 goto out;
1347 out_err:
1348 /* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1349 if (uarg && !msg->msg_ubuf)
1350 net_zcopy_put_abort(uarg, true);
1351 err = sk_stream_error(sk, flags, err);
1352 /* make sure we wake any epoll edge trigger waiter */
1353 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1354 sk->sk_write_space(sk);
1355 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1356 }
1357 return err;
1358 }
1359 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1360
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1361 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1362 {
1363 int ret;
1364
1365 lock_sock(sk);
1366 ret = tcp_sendmsg_locked(sk, msg, size);
1367 release_sock(sk);
1368
1369 return ret;
1370 }
1371 EXPORT_SYMBOL(tcp_sendmsg);
1372
tcp_splice_eof(struct socket * sock)1373 void tcp_splice_eof(struct socket *sock)
1374 {
1375 struct sock *sk = sock->sk;
1376 struct tcp_sock *tp = tcp_sk(sk);
1377 int mss_now, size_goal;
1378
1379 if (!tcp_write_queue_tail(sk))
1380 return;
1381
1382 lock_sock(sk);
1383 mss_now = tcp_send_mss(sk, &size_goal, 0);
1384 tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1385 release_sock(sk);
1386 }
1387 EXPORT_IPV6_MOD_GPL(tcp_splice_eof);
1388
1389 /*
1390 * Handle reading urgent data. BSD has very simple semantics for
1391 * this, no blocking and very strange errors 8)
1392 */
1393
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1394 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1395 {
1396 struct tcp_sock *tp = tcp_sk(sk);
1397
1398 /* No URG data to read. */
1399 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1400 tp->urg_data == TCP_URG_READ)
1401 return -EINVAL; /* Yes this is right ! */
1402
1403 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1404 return -ENOTCONN;
1405
1406 if (tp->urg_data & TCP_URG_VALID) {
1407 int err = 0;
1408 char c = tp->urg_data;
1409
1410 if (!(flags & MSG_PEEK))
1411 WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1412
1413 /* Read urgent data. */
1414 msg->msg_flags |= MSG_OOB;
1415
1416 if (len > 0) {
1417 if (!(flags & MSG_TRUNC))
1418 err = memcpy_to_msg(msg, &c, 1);
1419 len = 1;
1420 } else
1421 msg->msg_flags |= MSG_TRUNC;
1422
1423 return err ? -EFAULT : len;
1424 }
1425
1426 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1427 return 0;
1428
1429 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1430 * the available implementations agree in this case:
1431 * this call should never block, independent of the
1432 * blocking state of the socket.
1433 * Mike <pall@rz.uni-karlsruhe.de>
1434 */
1435 return -EAGAIN;
1436 }
1437
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1438 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1439 {
1440 struct sk_buff *skb;
1441 int copied = 0, err = 0;
1442
1443 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1444 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1445 if (err)
1446 return err;
1447 copied += skb->len;
1448 }
1449
1450 skb_queue_walk(&sk->sk_write_queue, skb) {
1451 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1452 if (err)
1453 break;
1454
1455 copied += skb->len;
1456 }
1457
1458 return err ?: copied;
1459 }
1460
1461 /* Clean up the receive buffer for full frames taken by the user,
1462 * then send an ACK if necessary. COPIED is the number of bytes
1463 * tcp_recvmsg has given to the user so far, it speeds up the
1464 * calculation of whether or not we must ACK for the sake of
1465 * a window update.
1466 */
__tcp_cleanup_rbuf(struct sock * sk,int copied)1467 void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1468 {
1469 struct tcp_sock *tp = tcp_sk(sk);
1470 bool time_to_ack = false;
1471
1472 if (inet_csk_ack_scheduled(sk)) {
1473 const struct inet_connection_sock *icsk = inet_csk(sk);
1474
1475 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1476 tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1477 /*
1478 * If this read emptied read buffer, we send ACK, if
1479 * connection is not bidirectional, user drained
1480 * receive buffer and there was a small segment
1481 * in queue.
1482 */
1483 (copied > 0 &&
1484 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1485 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1486 !inet_csk_in_pingpong_mode(sk))) &&
1487 !atomic_read(&sk->sk_rmem_alloc)))
1488 time_to_ack = true;
1489 }
1490
1491 /* We send an ACK if we can now advertise a non-zero window
1492 * which has been raised "significantly".
1493 *
1494 * Even if window raised up to infinity, do not send window open ACK
1495 * in states, where we will not receive more. It is useless.
1496 */
1497 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1498 __u32 rcv_window_now = tcp_receive_window(tp);
1499
1500 /* Optimize, __tcp_select_window() is not cheap. */
1501 if (2*rcv_window_now <= tp->window_clamp) {
1502 __u32 new_window = __tcp_select_window(sk);
1503
1504 /* Send ACK now, if this read freed lots of space
1505 * in our buffer. Certainly, new_window is new window.
1506 * We can advertise it now, if it is not less than current one.
1507 * "Lots" means "at least twice" here.
1508 */
1509 if (new_window && new_window >= 2 * rcv_window_now)
1510 time_to_ack = true;
1511 }
1512 }
1513 if (time_to_ack)
1514 tcp_send_ack(sk);
1515 }
1516
tcp_cleanup_rbuf(struct sock * sk,int copied)1517 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1518 {
1519 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1520 struct tcp_sock *tp = tcp_sk(sk);
1521
1522 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1523 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1524 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1525 __tcp_cleanup_rbuf(sk, copied);
1526 }
1527
tcp_eat_recv_skb(struct sock * sk,struct sk_buff * skb)1528 static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1529 {
1530 __skb_unlink(skb, &sk->sk_receive_queue);
1531 if (likely(skb->destructor == sock_rfree)) {
1532 sock_rfree(skb);
1533 skb->destructor = NULL;
1534 skb->sk = NULL;
1535 return skb_attempt_defer_free(skb);
1536 }
1537 __kfree_skb(skb);
1538 }
1539
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1540 struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1541 {
1542 struct sk_buff *skb;
1543 u32 offset;
1544
1545 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1546 offset = seq - TCP_SKB_CB(skb)->seq;
1547 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1548 pr_err_once("%s: found a SYN, please report !\n", __func__);
1549 offset--;
1550 }
1551 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1552 *off = offset;
1553 return skb;
1554 }
1555 /* This looks weird, but this can happen if TCP collapsing
1556 * splitted a fat GRO packet, while we released socket lock
1557 * in skb_splice_bits()
1558 */
1559 tcp_eat_recv_skb(sk, skb);
1560 }
1561 return NULL;
1562 }
1563 EXPORT_SYMBOL(tcp_recv_skb);
1564
1565 /*
1566 * This routine provides an alternative to tcp_recvmsg() for routines
1567 * that would like to handle copying from skbuffs directly in 'sendfile'
1568 * fashion.
1569 * Note:
1570 * - It is assumed that the socket was locked by the caller.
1571 * - The routine does not block.
1572 * - At present, there is no support for reading OOB data
1573 * or for 'peeking' the socket using this routine
1574 * (although both would be easy to implement).
1575 */
__tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1576 static int __tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1577 sk_read_actor_t recv_actor, bool noack,
1578 u32 *copied_seq)
1579 {
1580 struct sk_buff *skb;
1581 struct tcp_sock *tp = tcp_sk(sk);
1582 u32 seq = *copied_seq;
1583 u32 offset;
1584 int copied = 0;
1585
1586 if (sk->sk_state == TCP_LISTEN)
1587 return -ENOTCONN;
1588 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1589 if (offset < skb->len) {
1590 int used;
1591 size_t len;
1592
1593 len = skb->len - offset;
1594 /* Stop reading if we hit a patch of urgent data */
1595 if (unlikely(tp->urg_data)) {
1596 u32 urg_offset = tp->urg_seq - seq;
1597 if (urg_offset < len)
1598 len = urg_offset;
1599 if (!len)
1600 break;
1601 }
1602 used = recv_actor(desc, skb, offset, len);
1603 if (used <= 0) {
1604 if (!copied)
1605 copied = used;
1606 break;
1607 }
1608 if (WARN_ON_ONCE(used > len))
1609 used = len;
1610 seq += used;
1611 copied += used;
1612 offset += used;
1613
1614 /* If recv_actor drops the lock (e.g. TCP splice
1615 * receive) the skb pointer might be invalid when
1616 * getting here: tcp_collapse might have deleted it
1617 * while aggregating skbs from the socket queue.
1618 */
1619 skb = tcp_recv_skb(sk, seq - 1, &offset);
1620 if (!skb)
1621 break;
1622 /* TCP coalescing might have appended data to the skb.
1623 * Try to splice more frags
1624 */
1625 if (offset + 1 != skb->len)
1626 continue;
1627 }
1628 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1629 tcp_eat_recv_skb(sk, skb);
1630 ++seq;
1631 break;
1632 }
1633 tcp_eat_recv_skb(sk, skb);
1634 if (!desc->count)
1635 break;
1636 WRITE_ONCE(*copied_seq, seq);
1637 }
1638 WRITE_ONCE(*copied_seq, seq);
1639
1640 if (noack)
1641 goto out;
1642
1643 tcp_rcv_space_adjust(sk);
1644
1645 /* Clean up data we have read: This will do ACK frames. */
1646 if (copied > 0) {
1647 tcp_recv_skb(sk, seq, &offset);
1648 tcp_cleanup_rbuf(sk, copied);
1649 }
1650 out:
1651 return copied;
1652 }
1653
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1654 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1655 sk_read_actor_t recv_actor)
1656 {
1657 return __tcp_read_sock(sk, desc, recv_actor, false,
1658 &tcp_sk(sk)->copied_seq);
1659 }
1660 EXPORT_SYMBOL(tcp_read_sock);
1661
tcp_read_sock_noack(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor,bool noack,u32 * copied_seq)1662 int tcp_read_sock_noack(struct sock *sk, read_descriptor_t *desc,
1663 sk_read_actor_t recv_actor, bool noack,
1664 u32 *copied_seq)
1665 {
1666 return __tcp_read_sock(sk, desc, recv_actor, noack, copied_seq);
1667 }
1668
tcp_read_skb(struct sock * sk,skb_read_actor_t recv_actor)1669 int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1670 {
1671 struct sk_buff *skb;
1672 int copied = 0;
1673
1674 if (sk->sk_state == TCP_LISTEN)
1675 return -ENOTCONN;
1676
1677 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1678 u8 tcp_flags;
1679 int used;
1680
1681 __skb_unlink(skb, &sk->sk_receive_queue);
1682 WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1683 tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1684 used = recv_actor(sk, skb);
1685 if (used < 0) {
1686 if (!copied)
1687 copied = used;
1688 break;
1689 }
1690 copied += used;
1691
1692 if (tcp_flags & TCPHDR_FIN)
1693 break;
1694 }
1695 return copied;
1696 }
1697 EXPORT_IPV6_MOD(tcp_read_skb);
1698
tcp_read_done(struct sock * sk,size_t len)1699 void tcp_read_done(struct sock *sk, size_t len)
1700 {
1701 struct tcp_sock *tp = tcp_sk(sk);
1702 u32 seq = tp->copied_seq;
1703 struct sk_buff *skb;
1704 size_t left;
1705 u32 offset;
1706
1707 if (sk->sk_state == TCP_LISTEN)
1708 return;
1709
1710 left = len;
1711 while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1712 int used;
1713
1714 used = min_t(size_t, skb->len - offset, left);
1715 seq += used;
1716 left -= used;
1717
1718 if (skb->len > offset + used)
1719 break;
1720
1721 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1722 tcp_eat_recv_skb(sk, skb);
1723 ++seq;
1724 break;
1725 }
1726 tcp_eat_recv_skb(sk, skb);
1727 }
1728 WRITE_ONCE(tp->copied_seq, seq);
1729
1730 tcp_rcv_space_adjust(sk);
1731
1732 /* Clean up data we have read: This will do ACK frames. */
1733 if (left != len)
1734 tcp_cleanup_rbuf(sk, len - left);
1735 }
1736 EXPORT_SYMBOL(tcp_read_done);
1737
tcp_peek_len(struct socket * sock)1738 int tcp_peek_len(struct socket *sock)
1739 {
1740 return tcp_inq(sock->sk);
1741 }
1742 EXPORT_IPV6_MOD(tcp_peek_len);
1743
1744 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1745 int tcp_set_rcvlowat(struct sock *sk, int val)
1746 {
1747 int space, cap;
1748
1749 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1750 cap = sk->sk_rcvbuf >> 1;
1751 else
1752 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1753 val = min(val, cap);
1754 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1755
1756 /* Check if we need to signal EPOLLIN right now */
1757 tcp_data_ready(sk);
1758
1759 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1760 return 0;
1761
1762 space = tcp_space_from_win(sk, val);
1763 if (space > sk->sk_rcvbuf) {
1764 WRITE_ONCE(sk->sk_rcvbuf, space);
1765 WRITE_ONCE(tcp_sk(sk)->window_clamp, val);
1766 }
1767 return 0;
1768 }
1769 EXPORT_IPV6_MOD(tcp_set_rcvlowat);
1770
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)1771 void tcp_update_recv_tstamps(struct sk_buff *skb,
1772 struct scm_timestamping_internal *tss)
1773 {
1774 if (skb->tstamp)
1775 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1776 else
1777 tss->ts[0] = (struct timespec64) {0};
1778
1779 if (skb_hwtstamps(skb)->hwtstamp)
1780 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1781 else
1782 tss->ts[2] = (struct timespec64) {0};
1783 }
1784
1785 #ifdef CONFIG_MMU
1786 static const struct vm_operations_struct tcp_vm_ops = {
1787 };
1788
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1789 int tcp_mmap(struct file *file, struct socket *sock,
1790 struct vm_area_struct *vma)
1791 {
1792 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1793 return -EPERM;
1794 vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1795
1796 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1797 vm_flags_set(vma, VM_MIXEDMAP);
1798
1799 vma->vm_ops = &tcp_vm_ops;
1800 return 0;
1801 }
1802 EXPORT_IPV6_MOD(tcp_mmap);
1803
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1804 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1805 u32 *offset_frag)
1806 {
1807 skb_frag_t *frag;
1808
1809 if (unlikely(offset_skb >= skb->len))
1810 return NULL;
1811
1812 offset_skb -= skb_headlen(skb);
1813 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1814 return NULL;
1815
1816 frag = skb_shinfo(skb)->frags;
1817 while (offset_skb) {
1818 if (skb_frag_size(frag) > offset_skb) {
1819 *offset_frag = offset_skb;
1820 return frag;
1821 }
1822 offset_skb -= skb_frag_size(frag);
1823 ++frag;
1824 }
1825 *offset_frag = 0;
1826 return frag;
1827 }
1828
can_map_frag(const skb_frag_t * frag)1829 static bool can_map_frag(const skb_frag_t *frag)
1830 {
1831 struct page *page;
1832
1833 if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1834 return false;
1835
1836 page = skb_frag_page(frag);
1837
1838 if (PageCompound(page) || page->mapping)
1839 return false;
1840
1841 return true;
1842 }
1843
find_next_mappable_frag(const skb_frag_t * frag,int remaining_in_skb)1844 static int find_next_mappable_frag(const skb_frag_t *frag,
1845 int remaining_in_skb)
1846 {
1847 int offset = 0;
1848
1849 if (likely(can_map_frag(frag)))
1850 return 0;
1851
1852 while (offset < remaining_in_skb && !can_map_frag(frag)) {
1853 offset += skb_frag_size(frag);
1854 ++frag;
1855 }
1856 return offset;
1857 }
1858
tcp_zerocopy_set_hint_for_skb(struct sock * sk,struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 offset)1859 static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1860 struct tcp_zerocopy_receive *zc,
1861 struct sk_buff *skb, u32 offset)
1862 {
1863 u32 frag_offset, partial_frag_remainder = 0;
1864 int mappable_offset;
1865 skb_frag_t *frag;
1866
1867 /* worst case: skip to next skb. try to improve on this case below */
1868 zc->recv_skip_hint = skb->len - offset;
1869
1870 /* Find the frag containing this offset (and how far into that frag) */
1871 frag = skb_advance_to_frag(skb, offset, &frag_offset);
1872 if (!frag)
1873 return;
1874
1875 if (frag_offset) {
1876 struct skb_shared_info *info = skb_shinfo(skb);
1877
1878 /* We read part of the last frag, must recvmsg() rest of skb. */
1879 if (frag == &info->frags[info->nr_frags - 1])
1880 return;
1881
1882 /* Else, we must at least read the remainder in this frag. */
1883 partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1884 zc->recv_skip_hint -= partial_frag_remainder;
1885 ++frag;
1886 }
1887
1888 /* partial_frag_remainder: If part way through a frag, must read rest.
1889 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1890 * in partial_frag_remainder.
1891 */
1892 mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1893 zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1894 }
1895
1896 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1897 int flags, struct scm_timestamping_internal *tss,
1898 int *cmsg_flags);
receive_fallback_to_copy(struct sock * sk,struct tcp_zerocopy_receive * zc,int inq,struct scm_timestamping_internal * tss)1899 static int receive_fallback_to_copy(struct sock *sk,
1900 struct tcp_zerocopy_receive *zc, int inq,
1901 struct scm_timestamping_internal *tss)
1902 {
1903 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1904 struct msghdr msg = {};
1905 int err;
1906
1907 zc->length = 0;
1908 zc->recv_skip_hint = 0;
1909
1910 if (copy_address != zc->copybuf_address)
1911 return -EINVAL;
1912
1913 err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1914 &msg.msg_iter);
1915 if (err)
1916 return err;
1917
1918 err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1919 tss, &zc->msg_flags);
1920 if (err < 0)
1921 return err;
1922
1923 zc->copybuf_len = err;
1924 if (likely(zc->copybuf_len)) {
1925 struct sk_buff *skb;
1926 u32 offset;
1927
1928 skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1929 if (skb)
1930 tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1931 }
1932 return 0;
1933 }
1934
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1935 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1936 struct sk_buff *skb, u32 copylen,
1937 u32 *offset, u32 *seq)
1938 {
1939 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1940 struct msghdr msg = {};
1941 int err;
1942
1943 if (copy_address != zc->copybuf_address)
1944 return -EINVAL;
1945
1946 err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1947 &msg.msg_iter);
1948 if (err)
1949 return err;
1950 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1951 if (err)
1952 return err;
1953 zc->recv_skip_hint -= copylen;
1954 *offset += copylen;
1955 *seq += copylen;
1956 return (__s32)copylen;
1957 }
1958
tcp_zc_handle_leftover(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len,struct scm_timestamping_internal * tss)1959 static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1960 struct sock *sk,
1961 struct sk_buff *skb,
1962 u32 *seq,
1963 s32 copybuf_len,
1964 struct scm_timestamping_internal *tss)
1965 {
1966 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1967
1968 if (!copylen)
1969 return 0;
1970 /* skb is null if inq < PAGE_SIZE. */
1971 if (skb) {
1972 offset = *seq - TCP_SKB_CB(skb)->seq;
1973 } else {
1974 skb = tcp_recv_skb(sk, *seq, &offset);
1975 if (TCP_SKB_CB(skb)->has_rxtstamp) {
1976 tcp_update_recv_tstamps(skb, tss);
1977 zc->msg_flags |= TCP_CMSG_TS;
1978 }
1979 }
1980
1981 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1982 seq);
1983 return zc->copybuf_len < 0 ? 0 : copylen;
1984 }
1985
tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct * vma,struct page ** pending_pages,unsigned long pages_remaining,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map,int err)1986 static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1987 struct page **pending_pages,
1988 unsigned long pages_remaining,
1989 unsigned long *address,
1990 u32 *length,
1991 u32 *seq,
1992 struct tcp_zerocopy_receive *zc,
1993 u32 total_bytes_to_map,
1994 int err)
1995 {
1996 /* At least one page did not map. Try zapping if we skipped earlier. */
1997 if (err == -EBUSY &&
1998 zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1999 u32 maybe_zap_len;
2000
2001 maybe_zap_len = total_bytes_to_map - /* All bytes to map */
2002 *length + /* Mapped or pending */
2003 (pages_remaining * PAGE_SIZE); /* Failed map. */
2004 zap_page_range_single(vma, *address, maybe_zap_len, NULL);
2005 err = 0;
2006 }
2007
2008 if (!err) {
2009 unsigned long leftover_pages = pages_remaining;
2010 int bytes_mapped;
2011
2012 /* We called zap_page_range_single, try to reinsert. */
2013 err = vm_insert_pages(vma, *address,
2014 pending_pages,
2015 &pages_remaining);
2016 bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
2017 *seq += bytes_mapped;
2018 *address += bytes_mapped;
2019 }
2020 if (err) {
2021 /* Either we were unable to zap, OR we zapped, retried an
2022 * insert, and still had an issue. Either ways, pages_remaining
2023 * is the number of pages we were unable to map, and we unroll
2024 * some state we speculatively touched before.
2025 */
2026 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
2027
2028 *length -= bytes_not_mapped;
2029 zc->recv_skip_hint += bytes_not_mapped;
2030 }
2031 return err;
2032 }
2033
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned int pages_to_map,unsigned long * address,u32 * length,u32 * seq,struct tcp_zerocopy_receive * zc,u32 total_bytes_to_map)2034 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
2035 struct page **pages,
2036 unsigned int pages_to_map,
2037 unsigned long *address,
2038 u32 *length,
2039 u32 *seq,
2040 struct tcp_zerocopy_receive *zc,
2041 u32 total_bytes_to_map)
2042 {
2043 unsigned long pages_remaining = pages_to_map;
2044 unsigned int pages_mapped;
2045 unsigned int bytes_mapped;
2046 int err;
2047
2048 err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2049 pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2050 bytes_mapped = PAGE_SIZE * pages_mapped;
2051 /* Even if vm_insert_pages fails, it may have partially succeeded in
2052 * mapping (some but not all of the pages).
2053 */
2054 *seq += bytes_mapped;
2055 *address += bytes_mapped;
2056
2057 if (likely(!err))
2058 return 0;
2059
2060 /* Error: maybe zap and retry + rollback state for failed inserts. */
2061 return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2062 pages_remaining, address, length, seq, zc, total_bytes_to_map,
2063 err);
2064 }
2065
2066 #define TCP_VALID_ZC_MSG_FLAGS (TCP_CMSG_TS)
tcp_zc_finalize_rx_tstamp(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2067 static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2068 struct tcp_zerocopy_receive *zc,
2069 struct scm_timestamping_internal *tss)
2070 {
2071 unsigned long msg_control_addr;
2072 struct msghdr cmsg_dummy;
2073
2074 msg_control_addr = (unsigned long)zc->msg_control;
2075 cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2076 cmsg_dummy.msg_controllen =
2077 (__kernel_size_t)zc->msg_controllen;
2078 cmsg_dummy.msg_flags = in_compat_syscall()
2079 ? MSG_CMSG_COMPAT : 0;
2080 cmsg_dummy.msg_control_is_user = true;
2081 zc->msg_flags = 0;
2082 if (zc->msg_control == msg_control_addr &&
2083 zc->msg_controllen == cmsg_dummy.msg_controllen) {
2084 tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2085 zc->msg_control = (__u64)
2086 ((uintptr_t)cmsg_dummy.msg_control_user);
2087 zc->msg_controllen =
2088 (__u64)cmsg_dummy.msg_controllen;
2089 zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2090 }
2091 }
2092
find_tcp_vma(struct mm_struct * mm,unsigned long address,bool * mmap_locked)2093 static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2094 unsigned long address,
2095 bool *mmap_locked)
2096 {
2097 struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2098
2099 if (vma) {
2100 if (vma->vm_ops != &tcp_vm_ops) {
2101 vma_end_read(vma);
2102 return NULL;
2103 }
2104 *mmap_locked = false;
2105 return vma;
2106 }
2107
2108 mmap_read_lock(mm);
2109 vma = vma_lookup(mm, address);
2110 if (!vma || vma->vm_ops != &tcp_vm_ops) {
2111 mmap_read_unlock(mm);
2112 return NULL;
2113 }
2114 *mmap_locked = true;
2115 return vma;
2116 }
2117
2118 #define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc,struct scm_timestamping_internal * tss)2119 static int tcp_zerocopy_receive(struct sock *sk,
2120 struct tcp_zerocopy_receive *zc,
2121 struct scm_timestamping_internal *tss)
2122 {
2123 u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2124 unsigned long address = (unsigned long)zc->address;
2125 struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2126 s32 copybuf_len = zc->copybuf_len;
2127 struct tcp_sock *tp = tcp_sk(sk);
2128 const skb_frag_t *frags = NULL;
2129 unsigned int pages_to_map = 0;
2130 struct vm_area_struct *vma;
2131 struct sk_buff *skb = NULL;
2132 u32 seq = tp->copied_seq;
2133 u32 total_bytes_to_map;
2134 int inq = tcp_inq(sk);
2135 bool mmap_locked;
2136 int ret;
2137
2138 zc->copybuf_len = 0;
2139 zc->msg_flags = 0;
2140
2141 if (address & (PAGE_SIZE - 1) || address != zc->address)
2142 return -EINVAL;
2143
2144 if (sk->sk_state == TCP_LISTEN)
2145 return -ENOTCONN;
2146
2147 sock_rps_record_flow(sk);
2148
2149 if (inq && inq <= copybuf_len)
2150 return receive_fallback_to_copy(sk, zc, inq, tss);
2151
2152 if (inq < PAGE_SIZE) {
2153 zc->length = 0;
2154 zc->recv_skip_hint = inq;
2155 if (!inq && sock_flag(sk, SOCK_DONE))
2156 return -EIO;
2157 return 0;
2158 }
2159
2160 vma = find_tcp_vma(current->mm, address, &mmap_locked);
2161 if (!vma)
2162 return -EINVAL;
2163
2164 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2165 avail_len = min_t(u32, vma_len, inq);
2166 total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2167 if (total_bytes_to_map) {
2168 if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2169 zap_page_range_single(vma, address, total_bytes_to_map,
2170 NULL);
2171 zc->length = total_bytes_to_map;
2172 zc->recv_skip_hint = 0;
2173 } else {
2174 zc->length = avail_len;
2175 zc->recv_skip_hint = avail_len;
2176 }
2177 ret = 0;
2178 while (length + PAGE_SIZE <= zc->length) {
2179 int mappable_offset;
2180 struct page *page;
2181
2182 if (zc->recv_skip_hint < PAGE_SIZE) {
2183 u32 offset_frag;
2184
2185 if (skb) {
2186 if (zc->recv_skip_hint > 0)
2187 break;
2188 skb = skb->next;
2189 offset = seq - TCP_SKB_CB(skb)->seq;
2190 } else {
2191 skb = tcp_recv_skb(sk, seq, &offset);
2192 }
2193
2194 if (!skb_frags_readable(skb))
2195 break;
2196
2197 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2198 tcp_update_recv_tstamps(skb, tss);
2199 zc->msg_flags |= TCP_CMSG_TS;
2200 }
2201 zc->recv_skip_hint = skb->len - offset;
2202 frags = skb_advance_to_frag(skb, offset, &offset_frag);
2203 if (!frags || offset_frag)
2204 break;
2205 }
2206
2207 mappable_offset = find_next_mappable_frag(frags,
2208 zc->recv_skip_hint);
2209 if (mappable_offset) {
2210 zc->recv_skip_hint = mappable_offset;
2211 break;
2212 }
2213 page = skb_frag_page(frags);
2214 if (WARN_ON_ONCE(!page))
2215 break;
2216
2217 prefetchw(page);
2218 pages[pages_to_map++] = page;
2219 length += PAGE_SIZE;
2220 zc->recv_skip_hint -= PAGE_SIZE;
2221 frags++;
2222 if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2223 zc->recv_skip_hint < PAGE_SIZE) {
2224 /* Either full batch, or we're about to go to next skb
2225 * (and we cannot unroll failed ops across skbs).
2226 */
2227 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2228 pages_to_map,
2229 &address, &length,
2230 &seq, zc,
2231 total_bytes_to_map);
2232 if (ret)
2233 goto out;
2234 pages_to_map = 0;
2235 }
2236 }
2237 if (pages_to_map) {
2238 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2239 &address, &length, &seq,
2240 zc, total_bytes_to_map);
2241 }
2242 out:
2243 if (mmap_locked)
2244 mmap_read_unlock(current->mm);
2245 else
2246 vma_end_read(vma);
2247 /* Try to copy straggler data. */
2248 if (!ret)
2249 copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2250
2251 if (length + copylen) {
2252 WRITE_ONCE(tp->copied_seq, seq);
2253 tcp_rcv_space_adjust(sk);
2254
2255 /* Clean up data we have read: This will do ACK frames. */
2256 tcp_recv_skb(sk, seq, &offset);
2257 tcp_cleanup_rbuf(sk, length + copylen);
2258 ret = 0;
2259 if (length == zc->length)
2260 zc->recv_skip_hint = 0;
2261 } else {
2262 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2263 ret = -EIO;
2264 }
2265 zc->length = length;
2266 return ret;
2267 }
2268 #endif
2269
2270 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2271 void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2272 struct scm_timestamping_internal *tss)
2273 {
2274 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2275 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2276 bool has_timestamping = false;
2277
2278 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2279 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2280 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2281 if (new_tstamp) {
2282 struct __kernel_timespec kts = {
2283 .tv_sec = tss->ts[0].tv_sec,
2284 .tv_nsec = tss->ts[0].tv_nsec,
2285 };
2286 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2287 sizeof(kts), &kts);
2288 } else {
2289 struct __kernel_old_timespec ts_old = {
2290 .tv_sec = tss->ts[0].tv_sec,
2291 .tv_nsec = tss->ts[0].tv_nsec,
2292 };
2293 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2294 sizeof(ts_old), &ts_old);
2295 }
2296 } else {
2297 if (new_tstamp) {
2298 struct __kernel_sock_timeval stv = {
2299 .tv_sec = tss->ts[0].tv_sec,
2300 .tv_usec = tss->ts[0].tv_nsec / 1000,
2301 };
2302 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2303 sizeof(stv), &stv);
2304 } else {
2305 struct __kernel_old_timeval tv = {
2306 .tv_sec = tss->ts[0].tv_sec,
2307 .tv_usec = tss->ts[0].tv_nsec / 1000,
2308 };
2309 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2310 sizeof(tv), &tv);
2311 }
2312 }
2313 }
2314
2315 if (tsflags & SOF_TIMESTAMPING_SOFTWARE &&
2316 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE ||
2317 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2318 has_timestamping = true;
2319 else
2320 tss->ts[0] = (struct timespec64) {0};
2321 }
2322
2323 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2324 if (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE &&
2325 (tsflags & SOF_TIMESTAMPING_RX_HARDWARE ||
2326 !(tsflags & SOF_TIMESTAMPING_OPT_RX_FILTER)))
2327 has_timestamping = true;
2328 else
2329 tss->ts[2] = (struct timespec64) {0};
2330 }
2331
2332 if (has_timestamping) {
2333 tss->ts[1] = (struct timespec64) {0};
2334 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2335 put_cmsg_scm_timestamping64(msg, tss);
2336 else
2337 put_cmsg_scm_timestamping(msg, tss);
2338 }
2339 }
2340
tcp_inq_hint(struct sock * sk)2341 static int tcp_inq_hint(struct sock *sk)
2342 {
2343 const struct tcp_sock *tp = tcp_sk(sk);
2344 u32 copied_seq = READ_ONCE(tp->copied_seq);
2345 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2346 int inq;
2347
2348 inq = rcv_nxt - copied_seq;
2349 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2350 lock_sock(sk);
2351 inq = tp->rcv_nxt - tp->copied_seq;
2352 release_sock(sk);
2353 }
2354 /* After receiving a FIN, tell the user-space to continue reading
2355 * by returning a non-zero inq.
2356 */
2357 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2358 inq = 1;
2359 return inq;
2360 }
2361
2362 /* batch __xa_alloc() calls and reduce xa_lock()/xa_unlock() overhead. */
2363 struct tcp_xa_pool {
2364 u8 max; /* max <= MAX_SKB_FRAGS */
2365 u8 idx; /* idx <= max */
2366 __u32 tokens[MAX_SKB_FRAGS];
2367 netmem_ref netmems[MAX_SKB_FRAGS];
2368 };
2369
tcp_xa_pool_commit_locked(struct sock * sk,struct tcp_xa_pool * p)2370 static void tcp_xa_pool_commit_locked(struct sock *sk, struct tcp_xa_pool *p)
2371 {
2372 int i;
2373
2374 /* Commit part that has been copied to user space. */
2375 for (i = 0; i < p->idx; i++)
2376 __xa_cmpxchg(&sk->sk_user_frags, p->tokens[i], XA_ZERO_ENTRY,
2377 (__force void *)p->netmems[i], GFP_KERNEL);
2378 /* Rollback what has been pre-allocated and is no longer needed. */
2379 for (; i < p->max; i++)
2380 __xa_erase(&sk->sk_user_frags, p->tokens[i]);
2381
2382 p->max = 0;
2383 p->idx = 0;
2384 }
2385
tcp_xa_pool_commit(struct sock * sk,struct tcp_xa_pool * p)2386 static void tcp_xa_pool_commit(struct sock *sk, struct tcp_xa_pool *p)
2387 {
2388 if (!p->max)
2389 return;
2390
2391 xa_lock_bh(&sk->sk_user_frags);
2392
2393 tcp_xa_pool_commit_locked(sk, p);
2394
2395 xa_unlock_bh(&sk->sk_user_frags);
2396 }
2397
tcp_xa_pool_refill(struct sock * sk,struct tcp_xa_pool * p,unsigned int max_frags)2398 static int tcp_xa_pool_refill(struct sock *sk, struct tcp_xa_pool *p,
2399 unsigned int max_frags)
2400 {
2401 int err, k;
2402
2403 if (p->idx < p->max)
2404 return 0;
2405
2406 xa_lock_bh(&sk->sk_user_frags);
2407
2408 tcp_xa_pool_commit_locked(sk, p);
2409
2410 for (k = 0; k < max_frags; k++) {
2411 err = __xa_alloc(&sk->sk_user_frags, &p->tokens[k],
2412 XA_ZERO_ENTRY, xa_limit_31b, GFP_KERNEL);
2413 if (err)
2414 break;
2415 }
2416
2417 xa_unlock_bh(&sk->sk_user_frags);
2418
2419 p->max = k;
2420 p->idx = 0;
2421 return k ? 0 : err;
2422 }
2423
2424 /* On error, returns the -errno. On success, returns number of bytes sent to the
2425 * user. May not consume all of @remaining_len.
2426 */
tcp_recvmsg_dmabuf(struct sock * sk,const struct sk_buff * skb,unsigned int offset,struct msghdr * msg,int remaining_len)2427 static int tcp_recvmsg_dmabuf(struct sock *sk, const struct sk_buff *skb,
2428 unsigned int offset, struct msghdr *msg,
2429 int remaining_len)
2430 {
2431 struct dmabuf_cmsg dmabuf_cmsg = { 0 };
2432 struct tcp_xa_pool tcp_xa_pool;
2433 unsigned int start;
2434 int i, copy, n;
2435 int sent = 0;
2436 int err = 0;
2437
2438 tcp_xa_pool.max = 0;
2439 tcp_xa_pool.idx = 0;
2440 do {
2441 start = skb_headlen(skb);
2442
2443 if (skb_frags_readable(skb)) {
2444 err = -ENODEV;
2445 goto out;
2446 }
2447
2448 /* Copy header. */
2449 copy = start - offset;
2450 if (copy > 0) {
2451 copy = min(copy, remaining_len);
2452
2453 n = copy_to_iter(skb->data + offset, copy,
2454 &msg->msg_iter);
2455 if (n != copy) {
2456 err = -EFAULT;
2457 goto out;
2458 }
2459
2460 offset += copy;
2461 remaining_len -= copy;
2462
2463 /* First a dmabuf_cmsg for # bytes copied to user
2464 * buffer.
2465 */
2466 memset(&dmabuf_cmsg, 0, sizeof(dmabuf_cmsg));
2467 dmabuf_cmsg.frag_size = copy;
2468 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2469 SO_DEVMEM_LINEAR,
2470 sizeof(dmabuf_cmsg),
2471 &dmabuf_cmsg);
2472 if (err)
2473 goto out;
2474
2475 sent += copy;
2476
2477 if (remaining_len == 0)
2478 goto out;
2479 }
2480
2481 /* after that, send information of dmabuf pages through a
2482 * sequence of cmsg
2483 */
2484 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2485 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2486 struct net_iov *niov;
2487 u64 frag_offset;
2488 int end;
2489
2490 /* !skb_frags_readable() should indicate that ALL the
2491 * frags in this skb are dmabuf net_iovs. We're checking
2492 * for that flag above, but also check individual frags
2493 * here. If the tcp stack is not setting
2494 * skb_frags_readable() correctly, we still don't want
2495 * to crash here.
2496 */
2497 if (!skb_frag_net_iov(frag)) {
2498 net_err_ratelimited("Found non-dmabuf skb with net_iov");
2499 err = -ENODEV;
2500 goto out;
2501 }
2502
2503 niov = skb_frag_net_iov(frag);
2504 if (!net_is_devmem_iov(niov)) {
2505 err = -ENODEV;
2506 goto out;
2507 }
2508
2509 end = start + skb_frag_size(frag);
2510 copy = end - offset;
2511
2512 if (copy > 0) {
2513 copy = min(copy, remaining_len);
2514
2515 frag_offset = net_iov_virtual_addr(niov) +
2516 skb_frag_off(frag) + offset -
2517 start;
2518 dmabuf_cmsg.frag_offset = frag_offset;
2519 dmabuf_cmsg.frag_size = copy;
2520 err = tcp_xa_pool_refill(sk, &tcp_xa_pool,
2521 skb_shinfo(skb)->nr_frags - i);
2522 if (err)
2523 goto out;
2524
2525 /* Will perform the exchange later */
2526 dmabuf_cmsg.frag_token = tcp_xa_pool.tokens[tcp_xa_pool.idx];
2527 dmabuf_cmsg.dmabuf_id = net_devmem_iov_binding_id(niov);
2528
2529 offset += copy;
2530 remaining_len -= copy;
2531
2532 err = put_cmsg_notrunc(msg, SOL_SOCKET,
2533 SO_DEVMEM_DMABUF,
2534 sizeof(dmabuf_cmsg),
2535 &dmabuf_cmsg);
2536 if (err)
2537 goto out;
2538
2539 atomic_long_inc(&niov->pp_ref_count);
2540 tcp_xa_pool.netmems[tcp_xa_pool.idx++] = skb_frag_netmem(frag);
2541
2542 sent += copy;
2543
2544 if (remaining_len == 0)
2545 goto out;
2546 }
2547 start = end;
2548 }
2549
2550 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2551 if (!remaining_len)
2552 goto out;
2553
2554 /* if remaining_len is not satisfied yet, we need to go to the
2555 * next frag in the frag_list to satisfy remaining_len.
2556 */
2557 skb = skb_shinfo(skb)->frag_list ?: skb->next;
2558
2559 offset = offset - start;
2560 } while (skb);
2561
2562 if (remaining_len) {
2563 err = -EFAULT;
2564 goto out;
2565 }
2566
2567 out:
2568 tcp_xa_pool_commit(sk, &tcp_xa_pool);
2569 if (!sent)
2570 sent = err;
2571
2572 return sent;
2573 }
2574
2575 /*
2576 * This routine copies from a sock struct into the user buffer.
2577 *
2578 * Technical note: in 2.3 we work on _locked_ socket, so that
2579 * tricks with *seq access order and skb->users are not required.
2580 * Probably, code can be easily improved even more.
2581 */
2582
tcp_recvmsg_locked(struct sock * sk,struct msghdr * msg,size_t len,int flags,struct scm_timestamping_internal * tss,int * cmsg_flags)2583 static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2584 int flags, struct scm_timestamping_internal *tss,
2585 int *cmsg_flags)
2586 {
2587 struct tcp_sock *tp = tcp_sk(sk);
2588 int last_copied_dmabuf = -1; /* uninitialized */
2589 int copied = 0;
2590 u32 peek_seq;
2591 u32 *seq;
2592 unsigned long used;
2593 int err;
2594 int target; /* Read at least this many bytes */
2595 long timeo;
2596 struct sk_buff *skb, *last;
2597 u32 peek_offset = 0;
2598 u32 urg_hole = 0;
2599
2600 err = -ENOTCONN;
2601 if (sk->sk_state == TCP_LISTEN)
2602 goto out;
2603
2604 if (tp->recvmsg_inq) {
2605 *cmsg_flags = TCP_CMSG_INQ;
2606 msg->msg_get_inq = 1;
2607 }
2608 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2609
2610 /* Urgent data needs to be handled specially. */
2611 if (flags & MSG_OOB)
2612 goto recv_urg;
2613
2614 if (unlikely(tp->repair)) {
2615 err = -EPERM;
2616 if (!(flags & MSG_PEEK))
2617 goto out;
2618
2619 if (tp->repair_queue == TCP_SEND_QUEUE)
2620 goto recv_sndq;
2621
2622 err = -EINVAL;
2623 if (tp->repair_queue == TCP_NO_QUEUE)
2624 goto out;
2625
2626 /* 'common' recv queue MSG_PEEK-ing */
2627 }
2628
2629 seq = &tp->copied_seq;
2630 if (flags & MSG_PEEK) {
2631 peek_offset = max(sk_peek_offset(sk, flags), 0);
2632 peek_seq = tp->copied_seq + peek_offset;
2633 seq = &peek_seq;
2634 }
2635
2636 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2637
2638 do {
2639 u32 offset;
2640
2641 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2642 if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2643 if (copied)
2644 break;
2645 if (signal_pending(current)) {
2646 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2647 break;
2648 }
2649 }
2650
2651 /* Next get a buffer. */
2652
2653 last = skb_peek_tail(&sk->sk_receive_queue);
2654 skb_queue_walk(&sk->sk_receive_queue, skb) {
2655 last = skb;
2656 /* Now that we have two receive queues this
2657 * shouldn't happen.
2658 */
2659 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2660 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2661 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2662 flags))
2663 break;
2664
2665 offset = *seq - TCP_SKB_CB(skb)->seq;
2666 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2667 pr_err_once("%s: found a SYN, please report !\n", __func__);
2668 offset--;
2669 }
2670 if (offset < skb->len)
2671 goto found_ok_skb;
2672 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2673 goto found_fin_ok;
2674 WARN(!(flags & MSG_PEEK),
2675 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2676 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2677 }
2678
2679 /* Well, if we have backlog, try to process it now yet. */
2680
2681 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2682 break;
2683
2684 if (copied) {
2685 if (!timeo ||
2686 sk->sk_err ||
2687 sk->sk_state == TCP_CLOSE ||
2688 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2689 signal_pending(current))
2690 break;
2691 } else {
2692 if (sock_flag(sk, SOCK_DONE))
2693 break;
2694
2695 if (sk->sk_err) {
2696 copied = sock_error(sk);
2697 break;
2698 }
2699
2700 if (sk->sk_shutdown & RCV_SHUTDOWN)
2701 break;
2702
2703 if (sk->sk_state == TCP_CLOSE) {
2704 /* This occurs when user tries to read
2705 * from never connected socket.
2706 */
2707 copied = -ENOTCONN;
2708 break;
2709 }
2710
2711 if (!timeo) {
2712 copied = -EAGAIN;
2713 break;
2714 }
2715
2716 if (signal_pending(current)) {
2717 copied = sock_intr_errno(timeo);
2718 break;
2719 }
2720 }
2721
2722 if (copied >= target) {
2723 /* Do not sleep, just process backlog. */
2724 __sk_flush_backlog(sk);
2725 } else {
2726 tcp_cleanup_rbuf(sk, copied);
2727 err = sk_wait_data(sk, &timeo, last);
2728 if (err < 0) {
2729 err = copied ? : err;
2730 goto out;
2731 }
2732 }
2733
2734 if ((flags & MSG_PEEK) &&
2735 (peek_seq - peek_offset - copied - urg_hole != tp->copied_seq)) {
2736 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2737 current->comm,
2738 task_pid_nr(current));
2739 peek_seq = tp->copied_seq + peek_offset;
2740 }
2741 continue;
2742
2743 found_ok_skb:
2744 /* Ok so how much can we use? */
2745 used = skb->len - offset;
2746 if (len < used)
2747 used = len;
2748
2749 /* Do we have urgent data here? */
2750 if (unlikely(tp->urg_data)) {
2751 u32 urg_offset = tp->urg_seq - *seq;
2752 if (urg_offset < used) {
2753 if (!urg_offset) {
2754 if (!sock_flag(sk, SOCK_URGINLINE)) {
2755 WRITE_ONCE(*seq, *seq + 1);
2756 urg_hole++;
2757 offset++;
2758 used--;
2759 if (!used)
2760 goto skip_copy;
2761 }
2762 } else
2763 used = urg_offset;
2764 }
2765 }
2766
2767 if (!(flags & MSG_TRUNC)) {
2768 if (last_copied_dmabuf != -1 &&
2769 last_copied_dmabuf != !skb_frags_readable(skb))
2770 break;
2771
2772 if (skb_frags_readable(skb)) {
2773 err = skb_copy_datagram_msg(skb, offset, msg,
2774 used);
2775 if (err) {
2776 /* Exception. Bailout! */
2777 if (!copied)
2778 copied = -EFAULT;
2779 break;
2780 }
2781 } else {
2782 if (!(flags & MSG_SOCK_DEVMEM)) {
2783 /* dmabuf skbs can only be received
2784 * with the MSG_SOCK_DEVMEM flag.
2785 */
2786 if (!copied)
2787 copied = -EFAULT;
2788
2789 break;
2790 }
2791
2792 err = tcp_recvmsg_dmabuf(sk, skb, offset, msg,
2793 used);
2794 if (err <= 0) {
2795 if (!copied)
2796 copied = -EFAULT;
2797
2798 break;
2799 }
2800 used = err;
2801 }
2802 }
2803
2804 last_copied_dmabuf = !skb_frags_readable(skb);
2805
2806 WRITE_ONCE(*seq, *seq + used);
2807 copied += used;
2808 len -= used;
2809 if (flags & MSG_PEEK)
2810 sk_peek_offset_fwd(sk, used);
2811 else
2812 sk_peek_offset_bwd(sk, used);
2813 tcp_rcv_space_adjust(sk);
2814
2815 skip_copy:
2816 if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2817 WRITE_ONCE(tp->urg_data, 0);
2818 tcp_fast_path_check(sk);
2819 }
2820
2821 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2822 tcp_update_recv_tstamps(skb, tss);
2823 *cmsg_flags |= TCP_CMSG_TS;
2824 }
2825
2826 if (used + offset < skb->len)
2827 continue;
2828
2829 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2830 goto found_fin_ok;
2831 if (!(flags & MSG_PEEK))
2832 tcp_eat_recv_skb(sk, skb);
2833 continue;
2834
2835 found_fin_ok:
2836 /* Process the FIN. */
2837 WRITE_ONCE(*seq, *seq + 1);
2838 if (!(flags & MSG_PEEK))
2839 tcp_eat_recv_skb(sk, skb);
2840 break;
2841 } while (len > 0);
2842
2843 /* According to UNIX98, msg_name/msg_namelen are ignored
2844 * on connected socket. I was just happy when found this 8) --ANK
2845 */
2846
2847 /* Clean up data we have read: This will do ACK frames. */
2848 tcp_cleanup_rbuf(sk, copied);
2849 return copied;
2850
2851 out:
2852 return err;
2853
2854 recv_urg:
2855 err = tcp_recv_urg(sk, msg, len, flags);
2856 goto out;
2857
2858 recv_sndq:
2859 err = tcp_peek_sndq(sk, msg, len);
2860 goto out;
2861 }
2862
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int flags,int * addr_len)2863 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2864 int *addr_len)
2865 {
2866 int cmsg_flags = 0, ret;
2867 struct scm_timestamping_internal tss;
2868
2869 if (unlikely(flags & MSG_ERRQUEUE))
2870 return inet_recv_error(sk, msg, len, addr_len);
2871
2872 if (sk_can_busy_loop(sk) &&
2873 skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2874 sk->sk_state == TCP_ESTABLISHED)
2875 sk_busy_loop(sk, flags & MSG_DONTWAIT);
2876
2877 lock_sock(sk);
2878 ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2879 release_sock(sk);
2880
2881 if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2882 if (cmsg_flags & TCP_CMSG_TS)
2883 tcp_recv_timestamp(msg, sk, &tss);
2884 if (msg->msg_get_inq) {
2885 msg->msg_inq = tcp_inq_hint(sk);
2886 if (cmsg_flags & TCP_CMSG_INQ)
2887 put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2888 sizeof(msg->msg_inq), &msg->msg_inq);
2889 }
2890 }
2891 return ret;
2892 }
2893 EXPORT_IPV6_MOD(tcp_recvmsg);
2894
tcp_set_state(struct sock * sk,int state)2895 void tcp_set_state(struct sock *sk, int state)
2896 {
2897 int oldstate = sk->sk_state;
2898
2899 /* We defined a new enum for TCP states that are exported in BPF
2900 * so as not force the internal TCP states to be frozen. The
2901 * following checks will detect if an internal state value ever
2902 * differs from the BPF value. If this ever happens, then we will
2903 * need to remap the internal value to the BPF value before calling
2904 * tcp_call_bpf_2arg.
2905 */
2906 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2907 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2908 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2909 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2910 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2911 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2912 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2913 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2914 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2915 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2916 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2917 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2918 BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2919 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2920
2921 /* bpf uapi header bpf.h defines an anonymous enum with values
2922 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2923 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2924 * But clang built vmlinux does not have this enum in DWARF
2925 * since clang removes the above code before generating IR/debuginfo.
2926 * Let us explicitly emit the type debuginfo to ensure the
2927 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2928 * regardless of which compiler is used.
2929 */
2930 BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2931
2932 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2933 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2934
2935 switch (state) {
2936 case TCP_ESTABLISHED:
2937 if (oldstate != TCP_ESTABLISHED)
2938 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2939 break;
2940 case TCP_CLOSE_WAIT:
2941 if (oldstate == TCP_SYN_RECV)
2942 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2943 break;
2944
2945 case TCP_CLOSE:
2946 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2947 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2948
2949 sk->sk_prot->unhash(sk);
2950 if (inet_csk(sk)->icsk_bind_hash &&
2951 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2952 inet_put_port(sk);
2953 fallthrough;
2954 default:
2955 if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
2956 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2957 }
2958
2959 /* Change state AFTER socket is unhashed to avoid closed
2960 * socket sitting in hash tables.
2961 */
2962 inet_sk_state_store(sk, state);
2963 }
2964 EXPORT_SYMBOL_GPL(tcp_set_state);
2965
2966 /*
2967 * State processing on a close. This implements the state shift for
2968 * sending our FIN frame. Note that we only send a FIN for some
2969 * states. A shutdown() may have already sent the FIN, or we may be
2970 * closed.
2971 */
2972
2973 static const unsigned char new_state[16] = {
2974 /* current state: new state: action: */
2975 [0 /* (Invalid) */] = TCP_CLOSE,
2976 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2977 [TCP_SYN_SENT] = TCP_CLOSE,
2978 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2979 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2980 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2981 [TCP_TIME_WAIT] = TCP_CLOSE,
2982 [TCP_CLOSE] = TCP_CLOSE,
2983 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2984 [TCP_LAST_ACK] = TCP_LAST_ACK,
2985 [TCP_LISTEN] = TCP_CLOSE,
2986 [TCP_CLOSING] = TCP_CLOSING,
2987 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2988 };
2989
tcp_close_state(struct sock * sk)2990 static int tcp_close_state(struct sock *sk)
2991 {
2992 int next = (int)new_state[sk->sk_state];
2993 int ns = next & TCP_STATE_MASK;
2994
2995 tcp_set_state(sk, ns);
2996
2997 return next & TCP_ACTION_FIN;
2998 }
2999
3000 /*
3001 * Shutdown the sending side of a connection. Much like close except
3002 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
3003 */
3004
tcp_shutdown(struct sock * sk,int how)3005 void tcp_shutdown(struct sock *sk, int how)
3006 {
3007 /* We need to grab some memory, and put together a FIN,
3008 * and then put it into the queue to be sent.
3009 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
3010 */
3011 if (!(how & SEND_SHUTDOWN))
3012 return;
3013
3014 /* If we've already sent a FIN, or it's a closed state, skip this. */
3015 if ((1 << sk->sk_state) &
3016 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
3017 TCPF_CLOSE_WAIT)) {
3018 /* Clear out any half completed packets. FIN if needed. */
3019 if (tcp_close_state(sk))
3020 tcp_send_fin(sk);
3021 }
3022 }
3023 EXPORT_IPV6_MOD(tcp_shutdown);
3024
tcp_orphan_count_sum(void)3025 int tcp_orphan_count_sum(void)
3026 {
3027 int i, total = 0;
3028
3029 for_each_possible_cpu(i)
3030 total += per_cpu(tcp_orphan_count, i);
3031
3032 return max(total, 0);
3033 }
3034
3035 static int tcp_orphan_cache;
3036 static struct timer_list tcp_orphan_timer;
3037 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
3038
tcp_orphan_update(struct timer_list * unused)3039 static void tcp_orphan_update(struct timer_list *unused)
3040 {
3041 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
3042 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
3043 }
3044
tcp_too_many_orphans(int shift)3045 static bool tcp_too_many_orphans(int shift)
3046 {
3047 return READ_ONCE(tcp_orphan_cache) << shift >
3048 READ_ONCE(sysctl_tcp_max_orphans);
3049 }
3050
tcp_out_of_memory(const struct sock * sk)3051 static bool tcp_out_of_memory(const struct sock *sk)
3052 {
3053 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
3054 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
3055 return true;
3056 return false;
3057 }
3058
tcp_check_oom(const struct sock * sk,int shift)3059 bool tcp_check_oom(const struct sock *sk, int shift)
3060 {
3061 bool too_many_orphans, out_of_socket_memory;
3062
3063 too_many_orphans = tcp_too_many_orphans(shift);
3064 out_of_socket_memory = tcp_out_of_memory(sk);
3065
3066 if (too_many_orphans)
3067 net_info_ratelimited("too many orphaned sockets\n");
3068 if (out_of_socket_memory)
3069 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
3070 return too_many_orphans || out_of_socket_memory;
3071 }
3072
__tcp_close(struct sock * sk,long timeout)3073 void __tcp_close(struct sock *sk, long timeout)
3074 {
3075 struct sk_buff *skb;
3076 int data_was_unread = 0;
3077 int state;
3078
3079 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
3080
3081 if (sk->sk_state == TCP_LISTEN) {
3082 tcp_set_state(sk, TCP_CLOSE);
3083
3084 /* Special case. */
3085 inet_csk_listen_stop(sk);
3086
3087 goto adjudge_to_death;
3088 }
3089
3090 /* We need to flush the recv. buffs. We do this only on the
3091 * descriptor close, not protocol-sourced closes, because the
3092 * reader process may not have drained the data yet!
3093 */
3094 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
3095 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
3096
3097 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
3098 len--;
3099 data_was_unread += len;
3100 __kfree_skb(skb);
3101 }
3102
3103 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
3104 if (sk->sk_state == TCP_CLOSE)
3105 goto adjudge_to_death;
3106
3107 /* As outlined in RFC 2525, section 2.17, we send a RST here because
3108 * data was lost. To witness the awful effects of the old behavior of
3109 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
3110 * GET in an FTP client, suspend the process, wait for the client to
3111 * advertise a zero window, then kill -9 the FTP client, wheee...
3112 * Note: timeout is always zero in such a case.
3113 */
3114 if (unlikely(tcp_sk(sk)->repair)) {
3115 sk->sk_prot->disconnect(sk, 0);
3116 } else if (data_was_unread) {
3117 /* Unread data was tossed, zap the connection. */
3118 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
3119 tcp_set_state(sk, TCP_CLOSE);
3120 tcp_send_active_reset(sk, sk->sk_allocation,
3121 SK_RST_REASON_TCP_ABORT_ON_CLOSE);
3122 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
3123 /* Check zero linger _after_ checking for unread data. */
3124 sk->sk_prot->disconnect(sk, 0);
3125 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
3126 } else if (tcp_close_state(sk)) {
3127 /* We FIN if the application ate all the data before
3128 * zapping the connection.
3129 */
3130
3131 /* RED-PEN. Formally speaking, we have broken TCP state
3132 * machine. State transitions:
3133 *
3134 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
3135 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (it is difficult)
3136 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
3137 *
3138 * are legal only when FIN has been sent (i.e. in window),
3139 * rather than queued out of window. Purists blame.
3140 *
3141 * F.e. "RFC state" is ESTABLISHED,
3142 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
3143 *
3144 * The visible declinations are that sometimes
3145 * we enter time-wait state, when it is not required really
3146 * (harmless), do not send active resets, when they are
3147 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
3148 * they look as CLOSING or LAST_ACK for Linux)
3149 * Probably, I missed some more holelets.
3150 * --ANK
3151 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
3152 * in a single packet! (May consider it later but will
3153 * probably need API support or TCP_CORK SYN-ACK until
3154 * data is written and socket is closed.)
3155 */
3156 tcp_send_fin(sk);
3157 }
3158
3159 sk_stream_wait_close(sk, timeout);
3160
3161 adjudge_to_death:
3162 state = sk->sk_state;
3163 sock_hold(sk);
3164 sock_orphan(sk);
3165
3166 local_bh_disable();
3167 bh_lock_sock(sk);
3168 /* remove backlog if any, without releasing ownership. */
3169 __release_sock(sk);
3170
3171 this_cpu_inc(tcp_orphan_count);
3172
3173 /* Have we already been destroyed by a softirq or backlog? */
3174 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
3175 goto out;
3176
3177 /* This is a (useful) BSD violating of the RFC. There is a
3178 * problem with TCP as specified in that the other end could
3179 * keep a socket open forever with no application left this end.
3180 * We use a 1 minute timeout (about the same as BSD) then kill
3181 * our end. If they send after that then tough - BUT: long enough
3182 * that we won't make the old 4*rto = almost no time - whoops
3183 * reset mistake.
3184 *
3185 * Nope, it was not mistake. It is really desired behaviour
3186 * f.e. on http servers, when such sockets are useless, but
3187 * consume significant resources. Let's do it with special
3188 * linger2 option. --ANK
3189 */
3190
3191 if (sk->sk_state == TCP_FIN_WAIT2) {
3192 struct tcp_sock *tp = tcp_sk(sk);
3193 if (READ_ONCE(tp->linger2) < 0) {
3194 tcp_set_state(sk, TCP_CLOSE);
3195 tcp_send_active_reset(sk, GFP_ATOMIC,
3196 SK_RST_REASON_TCP_ABORT_ON_LINGER);
3197 __NET_INC_STATS(sock_net(sk),
3198 LINUX_MIB_TCPABORTONLINGER);
3199 } else {
3200 const int tmo = tcp_fin_time(sk);
3201
3202 if (tmo > TCP_TIMEWAIT_LEN) {
3203 tcp_reset_keepalive_timer(sk,
3204 tmo - TCP_TIMEWAIT_LEN);
3205 } else {
3206 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
3207 goto out;
3208 }
3209 }
3210 }
3211 if (sk->sk_state != TCP_CLOSE) {
3212 if (tcp_check_oom(sk, 0)) {
3213 tcp_set_state(sk, TCP_CLOSE);
3214 tcp_send_active_reset(sk, GFP_ATOMIC,
3215 SK_RST_REASON_TCP_ABORT_ON_MEMORY);
3216 __NET_INC_STATS(sock_net(sk),
3217 LINUX_MIB_TCPABORTONMEMORY);
3218 } else if (!check_net(sock_net(sk))) {
3219 /* Not possible to send reset; just close */
3220 tcp_set_state(sk, TCP_CLOSE);
3221 }
3222 }
3223
3224 if (sk->sk_state == TCP_CLOSE) {
3225 struct request_sock *req;
3226
3227 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
3228 lockdep_sock_is_held(sk));
3229 /* We could get here with a non-NULL req if the socket is
3230 * aborted (e.g., closed with unread data) before 3WHS
3231 * finishes.
3232 */
3233 if (req)
3234 reqsk_fastopen_remove(sk, req, false);
3235 inet_csk_destroy_sock(sk);
3236 }
3237 /* Otherwise, socket is reprieved until protocol close. */
3238
3239 out:
3240 bh_unlock_sock(sk);
3241 local_bh_enable();
3242 }
3243
tcp_close(struct sock * sk,long timeout)3244 void tcp_close(struct sock *sk, long timeout)
3245 {
3246 lock_sock(sk);
3247 __tcp_close(sk, timeout);
3248 release_sock(sk);
3249 if (!sk->sk_net_refcnt)
3250 inet_csk_clear_xmit_timers_sync(sk);
3251 sock_put(sk);
3252 }
3253 EXPORT_SYMBOL(tcp_close);
3254
3255 /* These states need RST on ABORT according to RFC793 */
3256
tcp_need_reset(int state)3257 static inline bool tcp_need_reset(int state)
3258 {
3259 return (1 << state) &
3260 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
3261 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
3262 }
3263
tcp_rtx_queue_purge(struct sock * sk)3264 static void tcp_rtx_queue_purge(struct sock *sk)
3265 {
3266 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
3267
3268 tcp_sk(sk)->highest_sack = NULL;
3269 while (p) {
3270 struct sk_buff *skb = rb_to_skb(p);
3271
3272 p = rb_next(p);
3273 /* Since we are deleting whole queue, no need to
3274 * list_del(&skb->tcp_tsorted_anchor)
3275 */
3276 tcp_rtx_queue_unlink(skb, sk);
3277 tcp_wmem_free_skb(sk, skb);
3278 }
3279 }
3280
tcp_write_queue_purge(struct sock * sk)3281 void tcp_write_queue_purge(struct sock *sk)
3282 {
3283 struct sk_buff *skb;
3284
3285 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3286 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
3287 tcp_skb_tsorted_anchor_cleanup(skb);
3288 tcp_wmem_free_skb(sk, skb);
3289 }
3290 tcp_rtx_queue_purge(sk);
3291 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
3292 tcp_clear_all_retrans_hints(tcp_sk(sk));
3293 tcp_sk(sk)->packets_out = 0;
3294 inet_csk(sk)->icsk_backoff = 0;
3295 }
3296
tcp_disconnect(struct sock * sk,int flags)3297 int tcp_disconnect(struct sock *sk, int flags)
3298 {
3299 struct inet_sock *inet = inet_sk(sk);
3300 struct inet_connection_sock *icsk = inet_csk(sk);
3301 struct tcp_sock *tp = tcp_sk(sk);
3302 int old_state = sk->sk_state;
3303 u32 seq;
3304
3305 if (old_state != TCP_CLOSE)
3306 tcp_set_state(sk, TCP_CLOSE);
3307
3308 /* ABORT function of RFC793 */
3309 if (old_state == TCP_LISTEN) {
3310 inet_csk_listen_stop(sk);
3311 } else if (unlikely(tp->repair)) {
3312 WRITE_ONCE(sk->sk_err, ECONNABORTED);
3313 } else if (tcp_need_reset(old_state)) {
3314 tcp_send_active_reset(sk, gfp_any(), SK_RST_REASON_TCP_STATE);
3315 WRITE_ONCE(sk->sk_err, ECONNRESET);
3316 } else if (tp->snd_nxt != tp->write_seq &&
3317 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK)) {
3318 /* The last check adjusts for discrepancy of Linux wrt. RFC
3319 * states
3320 */
3321 tcp_send_active_reset(sk, gfp_any(),
3322 SK_RST_REASON_TCP_DISCONNECT_WITH_DATA);
3323 WRITE_ONCE(sk->sk_err, ECONNRESET);
3324 } else if (old_state == TCP_SYN_SENT)
3325 WRITE_ONCE(sk->sk_err, ECONNRESET);
3326
3327 tcp_clear_xmit_timers(sk);
3328 __skb_queue_purge(&sk->sk_receive_queue);
3329 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3330 WRITE_ONCE(tp->urg_data, 0);
3331 sk_set_peek_off(sk, -1);
3332 tcp_write_queue_purge(sk);
3333 tcp_fastopen_active_disable_ofo_check(sk);
3334 skb_rbtree_purge(&tp->out_of_order_queue);
3335
3336 inet->inet_dport = 0;
3337
3338 inet_bhash2_reset_saddr(sk);
3339
3340 WRITE_ONCE(sk->sk_shutdown, 0);
3341 sock_reset_flag(sk, SOCK_DONE);
3342 tp->srtt_us = 0;
3343 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3344 tp->rcv_rtt_last_tsecr = 0;
3345
3346 seq = tp->write_seq + tp->max_window + 2;
3347 if (!seq)
3348 seq = 1;
3349 WRITE_ONCE(tp->write_seq, seq);
3350
3351 icsk->icsk_backoff = 0;
3352 icsk->icsk_probes_out = 0;
3353 icsk->icsk_probes_tstamp = 0;
3354 icsk->icsk_rto = TCP_TIMEOUT_INIT;
3355 WRITE_ONCE(icsk->icsk_rto_min, TCP_RTO_MIN);
3356 WRITE_ONCE(icsk->icsk_delack_max, TCP_DELACK_MAX);
3357 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3358 tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3359 tp->snd_cwnd_cnt = 0;
3360 tp->is_cwnd_limited = 0;
3361 tp->max_packets_out = 0;
3362 tp->window_clamp = 0;
3363 tp->delivered = 0;
3364 tp->delivered_ce = 0;
3365 if (icsk->icsk_ca_initialized && icsk->icsk_ca_ops->release)
3366 icsk->icsk_ca_ops->release(sk);
3367 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3368 icsk->icsk_ca_initialized = 0;
3369 tcp_set_ca_state(sk, TCP_CA_Open);
3370 tp->is_sack_reneg = 0;
3371 tcp_clear_retrans(tp);
3372 tp->total_retrans = 0;
3373 inet_csk_delack_init(sk);
3374 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3375 * issue in __tcp_select_window()
3376 */
3377 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3378 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3379 __sk_dst_reset(sk);
3380 dst_release(unrcu_pointer(xchg(&sk->sk_rx_dst, NULL)));
3381 tcp_saved_syn_free(tp);
3382 tp->compressed_ack = 0;
3383 tp->segs_in = 0;
3384 tp->segs_out = 0;
3385 tp->bytes_sent = 0;
3386 tp->bytes_acked = 0;
3387 tp->bytes_received = 0;
3388 tp->bytes_retrans = 0;
3389 tp->data_segs_in = 0;
3390 tp->data_segs_out = 0;
3391 tp->duplicate_sack[0].start_seq = 0;
3392 tp->duplicate_sack[0].end_seq = 0;
3393 tp->dsack_dups = 0;
3394 tp->reord_seen = 0;
3395 tp->retrans_out = 0;
3396 tp->sacked_out = 0;
3397 tp->tlp_high_seq = 0;
3398 tp->last_oow_ack_time = 0;
3399 tp->plb_rehash = 0;
3400 /* There's a bubble in the pipe until at least the first ACK. */
3401 tp->app_limited = ~0U;
3402 tp->rate_app_limited = 1;
3403 tp->rack.mstamp = 0;
3404 tp->rack.advanced = 0;
3405 tp->rack.reo_wnd_steps = 1;
3406 tp->rack.last_delivered = 0;
3407 tp->rack.reo_wnd_persist = 0;
3408 tp->rack.dsack_seen = 0;
3409 tp->syn_data_acked = 0;
3410 tp->rx_opt.saw_tstamp = 0;
3411 tp->rx_opt.dsack = 0;
3412 tp->rx_opt.num_sacks = 0;
3413 tp->rcv_ooopack = 0;
3414
3415
3416 /* Clean up fastopen related fields */
3417 tcp_free_fastopen_req(tp);
3418 inet_clear_bit(DEFER_CONNECT, sk);
3419 tp->fastopen_client_fail = 0;
3420
3421 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3422
3423 if (sk->sk_frag.page) {
3424 put_page(sk->sk_frag.page);
3425 sk->sk_frag.page = NULL;
3426 sk->sk_frag.offset = 0;
3427 }
3428 sk_error_report(sk);
3429 return 0;
3430 }
3431 EXPORT_SYMBOL(tcp_disconnect);
3432
tcp_can_repair_sock(const struct sock * sk)3433 static inline bool tcp_can_repair_sock(const struct sock *sk)
3434 {
3435 return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3436 (sk->sk_state != TCP_LISTEN);
3437 }
3438
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)3439 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3440 {
3441 struct tcp_repair_window opt;
3442
3443 if (!tp->repair)
3444 return -EPERM;
3445
3446 if (len != sizeof(opt))
3447 return -EINVAL;
3448
3449 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3450 return -EFAULT;
3451
3452 if (opt.max_window < opt.snd_wnd)
3453 return -EINVAL;
3454
3455 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3456 return -EINVAL;
3457
3458 if (after(opt.rcv_wup, tp->rcv_nxt))
3459 return -EINVAL;
3460
3461 tp->snd_wl1 = opt.snd_wl1;
3462 tp->snd_wnd = opt.snd_wnd;
3463 tp->max_window = opt.max_window;
3464
3465 tp->rcv_wnd = opt.rcv_wnd;
3466 tp->rcv_wup = opt.rcv_wup;
3467
3468 return 0;
3469 }
3470
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)3471 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3472 unsigned int len)
3473 {
3474 struct tcp_sock *tp = tcp_sk(sk);
3475 struct tcp_repair_opt opt;
3476 size_t offset = 0;
3477
3478 while (len >= sizeof(opt)) {
3479 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3480 return -EFAULT;
3481
3482 offset += sizeof(opt);
3483 len -= sizeof(opt);
3484
3485 switch (opt.opt_code) {
3486 case TCPOPT_MSS:
3487 tp->rx_opt.mss_clamp = opt.opt_val;
3488 tcp_mtup_init(sk);
3489 break;
3490 case TCPOPT_WINDOW:
3491 {
3492 u16 snd_wscale = opt.opt_val & 0xFFFF;
3493 u16 rcv_wscale = opt.opt_val >> 16;
3494
3495 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3496 return -EFBIG;
3497
3498 tp->rx_opt.snd_wscale = snd_wscale;
3499 tp->rx_opt.rcv_wscale = rcv_wscale;
3500 tp->rx_opt.wscale_ok = 1;
3501 }
3502 break;
3503 case TCPOPT_SACK_PERM:
3504 if (opt.opt_val != 0)
3505 return -EINVAL;
3506
3507 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3508 break;
3509 case TCPOPT_TIMESTAMP:
3510 if (opt.opt_val != 0)
3511 return -EINVAL;
3512
3513 tp->rx_opt.tstamp_ok = 1;
3514 break;
3515 }
3516 }
3517
3518 return 0;
3519 }
3520
3521 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3522 EXPORT_IPV6_MOD(tcp_tx_delay_enabled);
3523
tcp_enable_tx_delay(void)3524 static void tcp_enable_tx_delay(void)
3525 {
3526 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3527 static int __tcp_tx_delay_enabled = 0;
3528
3529 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3530 static_branch_enable(&tcp_tx_delay_enabled);
3531 pr_info("TCP_TX_DELAY enabled\n");
3532 }
3533 }
3534 }
3535
3536 /* When set indicates to always queue non-full frames. Later the user clears
3537 * this option and we transmit any pending partial frames in the queue. This is
3538 * meant to be used alongside sendfile() to get properly filled frames when the
3539 * user (for example) must write out headers with a write() call first and then
3540 * use sendfile to send out the data parts.
3541 *
3542 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3543 * TCP_NODELAY.
3544 */
__tcp_sock_set_cork(struct sock * sk,bool on)3545 void __tcp_sock_set_cork(struct sock *sk, bool on)
3546 {
3547 struct tcp_sock *tp = tcp_sk(sk);
3548
3549 if (on) {
3550 tp->nonagle |= TCP_NAGLE_CORK;
3551 } else {
3552 tp->nonagle &= ~TCP_NAGLE_CORK;
3553 if (tp->nonagle & TCP_NAGLE_OFF)
3554 tp->nonagle |= TCP_NAGLE_PUSH;
3555 tcp_push_pending_frames(sk);
3556 }
3557 }
3558
tcp_sock_set_cork(struct sock * sk,bool on)3559 void tcp_sock_set_cork(struct sock *sk, bool on)
3560 {
3561 lock_sock(sk);
3562 __tcp_sock_set_cork(sk, on);
3563 release_sock(sk);
3564 }
3565 EXPORT_SYMBOL(tcp_sock_set_cork);
3566
3567 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3568 * remembered, but it is not activated until cork is cleared.
3569 *
3570 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3571 * even TCP_CORK for currently queued segments.
3572 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3573 void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3574 {
3575 if (on) {
3576 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3577 tcp_push_pending_frames(sk);
3578 } else {
3579 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3580 }
3581 }
3582
tcp_sock_set_nodelay(struct sock * sk)3583 void tcp_sock_set_nodelay(struct sock *sk)
3584 {
3585 lock_sock(sk);
3586 __tcp_sock_set_nodelay(sk, true);
3587 release_sock(sk);
3588 }
3589 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3590
__tcp_sock_set_quickack(struct sock * sk,int val)3591 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3592 {
3593 if (!val) {
3594 inet_csk_enter_pingpong_mode(sk);
3595 return;
3596 }
3597
3598 inet_csk_exit_pingpong_mode(sk);
3599 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3600 inet_csk_ack_scheduled(sk)) {
3601 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3602 tcp_cleanup_rbuf(sk, 1);
3603 if (!(val & 1))
3604 inet_csk_enter_pingpong_mode(sk);
3605 }
3606 }
3607
tcp_sock_set_quickack(struct sock * sk,int val)3608 void tcp_sock_set_quickack(struct sock *sk, int val)
3609 {
3610 lock_sock(sk);
3611 __tcp_sock_set_quickack(sk, val);
3612 release_sock(sk);
3613 }
3614 EXPORT_SYMBOL(tcp_sock_set_quickack);
3615
tcp_sock_set_syncnt(struct sock * sk,int val)3616 int tcp_sock_set_syncnt(struct sock *sk, int val)
3617 {
3618 if (val < 1 || val > MAX_TCP_SYNCNT)
3619 return -EINVAL;
3620
3621 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3622 return 0;
3623 }
3624 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3625
tcp_sock_set_user_timeout(struct sock * sk,int val)3626 int tcp_sock_set_user_timeout(struct sock *sk, int val)
3627 {
3628 /* Cap the max time in ms TCP will retry or probe the window
3629 * before giving up and aborting (ETIMEDOUT) a connection.
3630 */
3631 if (val < 0)
3632 return -EINVAL;
3633
3634 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3635 return 0;
3636 }
3637 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3638
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3639 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3640 {
3641 struct tcp_sock *tp = tcp_sk(sk);
3642
3643 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3644 return -EINVAL;
3645
3646 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3647 WRITE_ONCE(tp->keepalive_time, val * HZ);
3648 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3649 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3650 u32 elapsed = keepalive_time_elapsed(tp);
3651
3652 if (tp->keepalive_time > elapsed)
3653 elapsed = tp->keepalive_time - elapsed;
3654 else
3655 elapsed = 0;
3656 tcp_reset_keepalive_timer(sk, elapsed);
3657 }
3658
3659 return 0;
3660 }
3661
tcp_sock_set_keepidle(struct sock * sk,int val)3662 int tcp_sock_set_keepidle(struct sock *sk, int val)
3663 {
3664 int err;
3665
3666 lock_sock(sk);
3667 err = tcp_sock_set_keepidle_locked(sk, val);
3668 release_sock(sk);
3669 return err;
3670 }
3671 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3672
tcp_sock_set_keepintvl(struct sock * sk,int val)3673 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3674 {
3675 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3676 return -EINVAL;
3677
3678 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3679 return 0;
3680 }
3681 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3682
tcp_sock_set_keepcnt(struct sock * sk,int val)3683 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3684 {
3685 if (val < 1 || val > MAX_TCP_KEEPCNT)
3686 return -EINVAL;
3687
3688 /* Paired with READ_ONCE() in keepalive_probes() */
3689 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3690 return 0;
3691 }
3692 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3693
tcp_set_window_clamp(struct sock * sk,int val)3694 int tcp_set_window_clamp(struct sock *sk, int val)
3695 {
3696 u32 old_window_clamp, new_window_clamp, new_rcv_ssthresh;
3697 struct tcp_sock *tp = tcp_sk(sk);
3698
3699 if (!val) {
3700 if (sk->sk_state != TCP_CLOSE)
3701 return -EINVAL;
3702 WRITE_ONCE(tp->window_clamp, 0);
3703 return 0;
3704 }
3705
3706 old_window_clamp = tp->window_clamp;
3707 new_window_clamp = max_t(int, SOCK_MIN_RCVBUF / 2, val);
3708
3709 if (new_window_clamp == old_window_clamp)
3710 return 0;
3711
3712 WRITE_ONCE(tp->window_clamp, new_window_clamp);
3713
3714 /* Need to apply the reserved mem provisioning only
3715 * when shrinking the window clamp.
3716 */
3717 if (new_window_clamp < old_window_clamp) {
3718 __tcp_adjust_rcv_ssthresh(sk, new_window_clamp);
3719 } else {
3720 new_rcv_ssthresh = min(tp->rcv_wnd, new_window_clamp);
3721 tp->rcv_ssthresh = max(new_rcv_ssthresh, tp->rcv_ssthresh);
3722 }
3723 return 0;
3724 }
3725
3726 /*
3727 * Socket option code for TCP.
3728 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3729 int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3730 sockptr_t optval, unsigned int optlen)
3731 {
3732 struct tcp_sock *tp = tcp_sk(sk);
3733 struct inet_connection_sock *icsk = inet_csk(sk);
3734 struct net *net = sock_net(sk);
3735 int val;
3736 int err = 0;
3737
3738 /* These are data/string values, all the others are ints */
3739 switch (optname) {
3740 case TCP_CONGESTION: {
3741 char name[TCP_CA_NAME_MAX];
3742
3743 if (optlen < 1)
3744 return -EINVAL;
3745
3746 val = strncpy_from_sockptr(name, optval,
3747 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3748 if (val < 0)
3749 return -EFAULT;
3750 name[val] = 0;
3751
3752 sockopt_lock_sock(sk);
3753 err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3754 sockopt_ns_capable(sock_net(sk)->user_ns,
3755 CAP_NET_ADMIN));
3756 sockopt_release_sock(sk);
3757 return err;
3758 }
3759 case TCP_ULP: {
3760 char name[TCP_ULP_NAME_MAX];
3761
3762 if (optlen < 1)
3763 return -EINVAL;
3764
3765 val = strncpy_from_sockptr(name, optval,
3766 min_t(long, TCP_ULP_NAME_MAX - 1,
3767 optlen));
3768 if (val < 0)
3769 return -EFAULT;
3770 name[val] = 0;
3771
3772 sockopt_lock_sock(sk);
3773 err = tcp_set_ulp(sk, name);
3774 sockopt_release_sock(sk);
3775 return err;
3776 }
3777 case TCP_FASTOPEN_KEY: {
3778 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3779 __u8 *backup_key = NULL;
3780
3781 /* Allow a backup key as well to facilitate key rotation
3782 * First key is the active one.
3783 */
3784 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3785 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3786 return -EINVAL;
3787
3788 if (copy_from_sockptr(key, optval, optlen))
3789 return -EFAULT;
3790
3791 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3792 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3793
3794 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3795 }
3796 default:
3797 /* fallthru */
3798 break;
3799 }
3800
3801 if (optlen < sizeof(int))
3802 return -EINVAL;
3803
3804 if (copy_from_sockptr(&val, optval, sizeof(val)))
3805 return -EFAULT;
3806
3807 /* Handle options that can be set without locking the socket. */
3808 switch (optname) {
3809 case TCP_SYNCNT:
3810 return tcp_sock_set_syncnt(sk, val);
3811 case TCP_USER_TIMEOUT:
3812 return tcp_sock_set_user_timeout(sk, val);
3813 case TCP_KEEPINTVL:
3814 return tcp_sock_set_keepintvl(sk, val);
3815 case TCP_KEEPCNT:
3816 return tcp_sock_set_keepcnt(sk, val);
3817 case TCP_LINGER2:
3818 if (val < 0)
3819 WRITE_ONCE(tp->linger2, -1);
3820 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3821 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3822 else
3823 WRITE_ONCE(tp->linger2, val * HZ);
3824 return 0;
3825 case TCP_DEFER_ACCEPT:
3826 /* Translate value in seconds to number of retransmits */
3827 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3828 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3829 TCP_RTO_MAX / HZ));
3830 return 0;
3831 case TCP_RTO_MAX_MS:
3832 if (val < MSEC_PER_SEC || val > TCP_RTO_MAX_SEC * MSEC_PER_SEC)
3833 return -EINVAL;
3834 WRITE_ONCE(inet_csk(sk)->icsk_rto_max, msecs_to_jiffies(val));
3835 return 0;
3836 case TCP_RTO_MIN_US: {
3837 int rto_min = usecs_to_jiffies(val);
3838
3839 if (rto_min > TCP_RTO_MIN || rto_min < TCP_TIMEOUT_MIN)
3840 return -EINVAL;
3841 WRITE_ONCE(inet_csk(sk)->icsk_rto_min, rto_min);
3842 return 0;
3843 }
3844 case TCP_DELACK_MAX_US: {
3845 int delack_max = usecs_to_jiffies(val);
3846
3847 if (delack_max > TCP_DELACK_MAX || delack_max < TCP_TIMEOUT_MIN)
3848 return -EINVAL;
3849 WRITE_ONCE(inet_csk(sk)->icsk_delack_max, delack_max);
3850 return 0;
3851 }
3852 }
3853
3854 sockopt_lock_sock(sk);
3855
3856 switch (optname) {
3857 case TCP_MAXSEG:
3858 /* Values greater than interface MTU won't take effect. However
3859 * at the point when this call is done we typically don't yet
3860 * know which interface is going to be used
3861 */
3862 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3863 err = -EINVAL;
3864 break;
3865 }
3866 tp->rx_opt.user_mss = val;
3867 break;
3868
3869 case TCP_NODELAY:
3870 __tcp_sock_set_nodelay(sk, val);
3871 break;
3872
3873 case TCP_THIN_LINEAR_TIMEOUTS:
3874 if (val < 0 || val > 1)
3875 err = -EINVAL;
3876 else
3877 tp->thin_lto = val;
3878 break;
3879
3880 case TCP_THIN_DUPACK:
3881 if (val < 0 || val > 1)
3882 err = -EINVAL;
3883 break;
3884
3885 case TCP_REPAIR:
3886 if (!tcp_can_repair_sock(sk))
3887 err = -EPERM;
3888 else if (val == TCP_REPAIR_ON) {
3889 tp->repair = 1;
3890 sk->sk_reuse = SK_FORCE_REUSE;
3891 tp->repair_queue = TCP_NO_QUEUE;
3892 } else if (val == TCP_REPAIR_OFF) {
3893 tp->repair = 0;
3894 sk->sk_reuse = SK_NO_REUSE;
3895 tcp_send_window_probe(sk);
3896 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3897 tp->repair = 0;
3898 sk->sk_reuse = SK_NO_REUSE;
3899 } else
3900 err = -EINVAL;
3901
3902 break;
3903
3904 case TCP_REPAIR_QUEUE:
3905 if (!tp->repair)
3906 err = -EPERM;
3907 else if ((unsigned int)val < TCP_QUEUES_NR)
3908 tp->repair_queue = val;
3909 else
3910 err = -EINVAL;
3911 break;
3912
3913 case TCP_QUEUE_SEQ:
3914 if (sk->sk_state != TCP_CLOSE) {
3915 err = -EPERM;
3916 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3917 if (!tcp_rtx_queue_empty(sk))
3918 err = -EPERM;
3919 else
3920 WRITE_ONCE(tp->write_seq, val);
3921 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3922 if (tp->rcv_nxt != tp->copied_seq) {
3923 err = -EPERM;
3924 } else {
3925 WRITE_ONCE(tp->rcv_nxt, val);
3926 WRITE_ONCE(tp->copied_seq, val);
3927 }
3928 } else {
3929 err = -EINVAL;
3930 }
3931 break;
3932
3933 case TCP_REPAIR_OPTIONS:
3934 if (!tp->repair)
3935 err = -EINVAL;
3936 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3937 err = tcp_repair_options_est(sk, optval, optlen);
3938 else
3939 err = -EPERM;
3940 break;
3941
3942 case TCP_CORK:
3943 __tcp_sock_set_cork(sk, val);
3944 break;
3945
3946 case TCP_KEEPIDLE:
3947 err = tcp_sock_set_keepidle_locked(sk, val);
3948 break;
3949 case TCP_SAVE_SYN:
3950 /* 0: disable, 1: enable, 2: start from ether_header */
3951 if (val < 0 || val > 2)
3952 err = -EINVAL;
3953 else
3954 tp->save_syn = val;
3955 break;
3956
3957 case TCP_WINDOW_CLAMP:
3958 err = tcp_set_window_clamp(sk, val);
3959 break;
3960
3961 case TCP_QUICKACK:
3962 __tcp_sock_set_quickack(sk, val);
3963 break;
3964
3965 case TCP_AO_REPAIR:
3966 if (!tcp_can_repair_sock(sk)) {
3967 err = -EPERM;
3968 break;
3969 }
3970 err = tcp_ao_set_repair(sk, optval, optlen);
3971 break;
3972 #ifdef CONFIG_TCP_AO
3973 case TCP_AO_ADD_KEY:
3974 case TCP_AO_DEL_KEY:
3975 case TCP_AO_INFO: {
3976 /* If this is the first TCP-AO setsockopt() on the socket,
3977 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3978 * in any state.
3979 */
3980 if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3981 goto ao_parse;
3982 if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3983 lockdep_sock_is_held(sk)))
3984 goto ao_parse;
3985 if (tp->repair)
3986 goto ao_parse;
3987 err = -EISCONN;
3988 break;
3989 ao_parse:
3990 err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3991 break;
3992 }
3993 #endif
3994 #ifdef CONFIG_TCP_MD5SIG
3995 case TCP_MD5SIG:
3996 case TCP_MD5SIG_EXT:
3997 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3998 break;
3999 #endif
4000 case TCP_FASTOPEN:
4001 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
4002 TCPF_LISTEN))) {
4003 tcp_fastopen_init_key_once(net);
4004
4005 fastopen_queue_tune(sk, val);
4006 } else {
4007 err = -EINVAL;
4008 }
4009 break;
4010 case TCP_FASTOPEN_CONNECT:
4011 if (val > 1 || val < 0) {
4012 err = -EINVAL;
4013 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
4014 TFO_CLIENT_ENABLE) {
4015 if (sk->sk_state == TCP_CLOSE)
4016 tp->fastopen_connect = val;
4017 else
4018 err = -EINVAL;
4019 } else {
4020 err = -EOPNOTSUPP;
4021 }
4022 break;
4023 case TCP_FASTOPEN_NO_COOKIE:
4024 if (val > 1 || val < 0)
4025 err = -EINVAL;
4026 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4027 err = -EINVAL;
4028 else
4029 tp->fastopen_no_cookie = val;
4030 break;
4031 case TCP_TIMESTAMP:
4032 if (!tp->repair) {
4033 err = -EPERM;
4034 break;
4035 }
4036 /* val is an opaque field,
4037 * and low order bit contains usec_ts enable bit.
4038 * Its a best effort, and we do not care if user makes an error.
4039 */
4040 tp->tcp_usec_ts = val & 1;
4041 WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
4042 break;
4043 case TCP_REPAIR_WINDOW:
4044 err = tcp_repair_set_window(tp, optval, optlen);
4045 break;
4046 case TCP_NOTSENT_LOWAT:
4047 WRITE_ONCE(tp->notsent_lowat, val);
4048 sk->sk_write_space(sk);
4049 break;
4050 case TCP_INQ:
4051 if (val > 1 || val < 0)
4052 err = -EINVAL;
4053 else
4054 tp->recvmsg_inq = val;
4055 break;
4056 case TCP_TX_DELAY:
4057 if (val)
4058 tcp_enable_tx_delay();
4059 WRITE_ONCE(tp->tcp_tx_delay, val);
4060 break;
4061 default:
4062 err = -ENOPROTOOPT;
4063 break;
4064 }
4065
4066 sockopt_release_sock(sk);
4067 return err;
4068 }
4069
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4070 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
4071 unsigned int optlen)
4072 {
4073 const struct inet_connection_sock *icsk = inet_csk(sk);
4074
4075 if (level != SOL_TCP)
4076 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4077 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
4078 optval, optlen);
4079 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
4080 }
4081 EXPORT_IPV6_MOD(tcp_setsockopt);
4082
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)4083 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
4084 struct tcp_info *info)
4085 {
4086 u64 stats[__TCP_CHRONO_MAX], total = 0;
4087 enum tcp_chrono i;
4088
4089 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
4090 stats[i] = tp->chrono_stat[i - 1];
4091 if (i == tp->chrono_type)
4092 stats[i] += tcp_jiffies32 - tp->chrono_start;
4093 stats[i] *= USEC_PER_SEC / HZ;
4094 total += stats[i];
4095 }
4096
4097 info->tcpi_busy_time = total;
4098 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
4099 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
4100 }
4101
4102 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)4103 void tcp_get_info(struct sock *sk, struct tcp_info *info)
4104 {
4105 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
4106 const struct inet_connection_sock *icsk = inet_csk(sk);
4107 unsigned long rate;
4108 u32 now;
4109 u64 rate64;
4110 bool slow;
4111
4112 memset(info, 0, sizeof(*info));
4113 if (sk->sk_type != SOCK_STREAM)
4114 return;
4115
4116 info->tcpi_state = inet_sk_state_load(sk);
4117
4118 /* Report meaningful fields for all TCP states, including listeners */
4119 rate = READ_ONCE(sk->sk_pacing_rate);
4120 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4121 info->tcpi_pacing_rate = rate64;
4122
4123 rate = READ_ONCE(sk->sk_max_pacing_rate);
4124 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4125 info->tcpi_max_pacing_rate = rate64;
4126
4127 info->tcpi_reordering = tp->reordering;
4128 info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
4129
4130 if (info->tcpi_state == TCP_LISTEN) {
4131 /* listeners aliased fields :
4132 * tcpi_unacked -> Number of children ready for accept()
4133 * tcpi_sacked -> max backlog
4134 */
4135 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
4136 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
4137 return;
4138 }
4139
4140 slow = lock_sock_fast(sk);
4141
4142 info->tcpi_ca_state = icsk->icsk_ca_state;
4143 info->tcpi_retransmits = icsk->icsk_retransmits;
4144 info->tcpi_probes = icsk->icsk_probes_out;
4145 info->tcpi_backoff = icsk->icsk_backoff;
4146
4147 if (tp->rx_opt.tstamp_ok)
4148 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
4149 if (tcp_is_sack(tp))
4150 info->tcpi_options |= TCPI_OPT_SACK;
4151 if (tp->rx_opt.wscale_ok) {
4152 info->tcpi_options |= TCPI_OPT_WSCALE;
4153 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
4154 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
4155 }
4156
4157 if (tcp_ecn_mode_any(tp))
4158 info->tcpi_options |= TCPI_OPT_ECN;
4159 if (tp->ecn_flags & TCP_ECN_SEEN)
4160 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
4161 if (tp->syn_data_acked)
4162 info->tcpi_options |= TCPI_OPT_SYN_DATA;
4163 if (tp->tcp_usec_ts)
4164 info->tcpi_options |= TCPI_OPT_USEC_TS;
4165
4166 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
4167 info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
4168 tcp_delack_max(sk)));
4169 info->tcpi_snd_mss = tp->mss_cache;
4170 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
4171
4172 info->tcpi_unacked = tp->packets_out;
4173 info->tcpi_sacked = tp->sacked_out;
4174
4175 info->tcpi_lost = tp->lost_out;
4176 info->tcpi_retrans = tp->retrans_out;
4177
4178 now = tcp_jiffies32;
4179 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
4180 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
4181 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
4182
4183 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
4184 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
4185 info->tcpi_rtt = tp->srtt_us >> 3;
4186 info->tcpi_rttvar = tp->mdev_us >> 2;
4187 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
4188 info->tcpi_advmss = tp->advmss;
4189
4190 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
4191 info->tcpi_rcv_space = tp->rcvq_space.space;
4192
4193 info->tcpi_total_retrans = tp->total_retrans;
4194
4195 info->tcpi_bytes_acked = tp->bytes_acked;
4196 info->tcpi_bytes_received = tp->bytes_received;
4197 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
4198 tcp_get_info_chrono_stats(tp, info);
4199
4200 info->tcpi_segs_out = tp->segs_out;
4201
4202 /* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
4203 info->tcpi_segs_in = READ_ONCE(tp->segs_in);
4204 info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
4205
4206 info->tcpi_min_rtt = tcp_min_rtt(tp);
4207 info->tcpi_data_segs_out = tp->data_segs_out;
4208
4209 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
4210 rate64 = tcp_compute_delivery_rate(tp);
4211 if (rate64)
4212 info->tcpi_delivery_rate = rate64;
4213 info->tcpi_delivered = tp->delivered;
4214 info->tcpi_delivered_ce = tp->delivered_ce;
4215 info->tcpi_bytes_sent = tp->bytes_sent;
4216 info->tcpi_bytes_retrans = tp->bytes_retrans;
4217 info->tcpi_dsack_dups = tp->dsack_dups;
4218 info->tcpi_reord_seen = tp->reord_seen;
4219 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
4220 info->tcpi_snd_wnd = tp->snd_wnd;
4221 info->tcpi_rcv_wnd = tp->rcv_wnd;
4222 info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
4223 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
4224
4225 info->tcpi_total_rto = tp->total_rto;
4226 info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
4227 info->tcpi_total_rto_time = tp->total_rto_time;
4228 if (tp->rto_stamp)
4229 info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
4230
4231 unlock_sock_fast(sk, slow);
4232 }
4233 EXPORT_SYMBOL_GPL(tcp_get_info);
4234
tcp_opt_stats_get_size(void)4235 static size_t tcp_opt_stats_get_size(void)
4236 {
4237 return
4238 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
4239 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
4240 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
4241 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
4242 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
4243 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
4244 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
4245 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
4246 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
4247 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
4248 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
4249 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
4250 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
4251 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
4252 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
4253 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
4254 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
4255 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
4256 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
4257 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
4258 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
4259 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
4260 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
4261 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
4262 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
4263 nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
4264 nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
4265 0;
4266 }
4267
4268 /* Returns TTL or hop limit of an incoming packet from skb. */
tcp_skb_ttl_or_hop_limit(const struct sk_buff * skb)4269 static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
4270 {
4271 if (skb->protocol == htons(ETH_P_IP))
4272 return ip_hdr(skb)->ttl;
4273 else if (skb->protocol == htons(ETH_P_IPV6))
4274 return ipv6_hdr(skb)->hop_limit;
4275 else
4276 return 0;
4277 }
4278
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb,const struct sk_buff * ack_skb)4279 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
4280 const struct sk_buff *orig_skb,
4281 const struct sk_buff *ack_skb)
4282 {
4283 const struct tcp_sock *tp = tcp_sk(sk);
4284 struct sk_buff *stats;
4285 struct tcp_info info;
4286 unsigned long rate;
4287 u64 rate64;
4288
4289 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
4290 if (!stats)
4291 return NULL;
4292
4293 tcp_get_info_chrono_stats(tp, &info);
4294 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
4295 info.tcpi_busy_time, TCP_NLA_PAD);
4296 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
4297 info.tcpi_rwnd_limited, TCP_NLA_PAD);
4298 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
4299 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
4300 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
4301 tp->data_segs_out, TCP_NLA_PAD);
4302 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
4303 tp->total_retrans, TCP_NLA_PAD);
4304
4305 rate = READ_ONCE(sk->sk_pacing_rate);
4306 rate64 = (rate != ~0UL) ? rate : ~0ULL;
4307 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
4308
4309 rate64 = tcp_compute_delivery_rate(tp);
4310 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
4311
4312 nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
4313 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
4314 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
4315
4316 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
4317 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
4318 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
4319 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
4320 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
4321
4322 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
4323 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
4324
4325 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
4326 TCP_NLA_PAD);
4327 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
4328 TCP_NLA_PAD);
4329 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
4330 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
4331 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
4332 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
4333 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
4334 max_t(int, 0, tp->write_seq - tp->snd_nxt));
4335 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
4336 TCP_NLA_PAD);
4337 if (ack_skb)
4338 nla_put_u8(stats, TCP_NLA_TTL,
4339 tcp_skb_ttl_or_hop_limit(ack_skb));
4340
4341 nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
4342 return stats;
4343 }
4344
do_tcp_getsockopt(struct sock * sk,int level,int optname,sockptr_t optval,sockptr_t optlen)4345 int do_tcp_getsockopt(struct sock *sk, int level,
4346 int optname, sockptr_t optval, sockptr_t optlen)
4347 {
4348 struct inet_connection_sock *icsk = inet_csk(sk);
4349 struct tcp_sock *tp = tcp_sk(sk);
4350 struct net *net = sock_net(sk);
4351 int val, len;
4352
4353 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4354 return -EFAULT;
4355
4356 if (len < 0)
4357 return -EINVAL;
4358
4359 len = min_t(unsigned int, len, sizeof(int));
4360
4361 switch (optname) {
4362 case TCP_MAXSEG:
4363 val = tp->mss_cache;
4364 if (tp->rx_opt.user_mss &&
4365 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4366 val = tp->rx_opt.user_mss;
4367 if (tp->repair)
4368 val = tp->rx_opt.mss_clamp;
4369 break;
4370 case TCP_NODELAY:
4371 val = !!(tp->nonagle&TCP_NAGLE_OFF);
4372 break;
4373 case TCP_CORK:
4374 val = !!(tp->nonagle&TCP_NAGLE_CORK);
4375 break;
4376 case TCP_KEEPIDLE:
4377 val = keepalive_time_when(tp) / HZ;
4378 break;
4379 case TCP_KEEPINTVL:
4380 val = keepalive_intvl_when(tp) / HZ;
4381 break;
4382 case TCP_KEEPCNT:
4383 val = keepalive_probes(tp);
4384 break;
4385 case TCP_SYNCNT:
4386 val = READ_ONCE(icsk->icsk_syn_retries) ? :
4387 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4388 break;
4389 case TCP_LINGER2:
4390 val = READ_ONCE(tp->linger2);
4391 if (val >= 0)
4392 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4393 break;
4394 case TCP_DEFER_ACCEPT:
4395 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4396 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4397 TCP_RTO_MAX / HZ);
4398 break;
4399 case TCP_WINDOW_CLAMP:
4400 val = READ_ONCE(tp->window_clamp);
4401 break;
4402 case TCP_INFO: {
4403 struct tcp_info info;
4404
4405 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4406 return -EFAULT;
4407
4408 tcp_get_info(sk, &info);
4409
4410 len = min_t(unsigned int, len, sizeof(info));
4411 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4412 return -EFAULT;
4413 if (copy_to_sockptr(optval, &info, len))
4414 return -EFAULT;
4415 return 0;
4416 }
4417 case TCP_CC_INFO: {
4418 const struct tcp_congestion_ops *ca_ops;
4419 union tcp_cc_info info;
4420 size_t sz = 0;
4421 int attr;
4422
4423 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4424 return -EFAULT;
4425
4426 ca_ops = icsk->icsk_ca_ops;
4427 if (ca_ops && ca_ops->get_info)
4428 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4429
4430 len = min_t(unsigned int, len, sz);
4431 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4432 return -EFAULT;
4433 if (copy_to_sockptr(optval, &info, len))
4434 return -EFAULT;
4435 return 0;
4436 }
4437 case TCP_QUICKACK:
4438 val = !inet_csk_in_pingpong_mode(sk);
4439 break;
4440
4441 case TCP_CONGESTION:
4442 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4443 return -EFAULT;
4444 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4445 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4446 return -EFAULT;
4447 if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4448 return -EFAULT;
4449 return 0;
4450
4451 case TCP_ULP:
4452 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4453 return -EFAULT;
4454 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4455 if (!icsk->icsk_ulp_ops) {
4456 len = 0;
4457 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4458 return -EFAULT;
4459 return 0;
4460 }
4461 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4462 return -EFAULT;
4463 if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4464 return -EFAULT;
4465 return 0;
4466
4467 case TCP_FASTOPEN_KEY: {
4468 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4469 unsigned int key_len;
4470
4471 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4472 return -EFAULT;
4473
4474 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4475 TCP_FASTOPEN_KEY_LENGTH;
4476 len = min_t(unsigned int, len, key_len);
4477 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4478 return -EFAULT;
4479 if (copy_to_sockptr(optval, key, len))
4480 return -EFAULT;
4481 return 0;
4482 }
4483 case TCP_THIN_LINEAR_TIMEOUTS:
4484 val = tp->thin_lto;
4485 break;
4486
4487 case TCP_THIN_DUPACK:
4488 val = 0;
4489 break;
4490
4491 case TCP_REPAIR:
4492 val = tp->repair;
4493 break;
4494
4495 case TCP_REPAIR_QUEUE:
4496 if (tp->repair)
4497 val = tp->repair_queue;
4498 else
4499 return -EINVAL;
4500 break;
4501
4502 case TCP_REPAIR_WINDOW: {
4503 struct tcp_repair_window opt;
4504
4505 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4506 return -EFAULT;
4507
4508 if (len != sizeof(opt))
4509 return -EINVAL;
4510
4511 if (!tp->repair)
4512 return -EPERM;
4513
4514 opt.snd_wl1 = tp->snd_wl1;
4515 opt.snd_wnd = tp->snd_wnd;
4516 opt.max_window = tp->max_window;
4517 opt.rcv_wnd = tp->rcv_wnd;
4518 opt.rcv_wup = tp->rcv_wup;
4519
4520 if (copy_to_sockptr(optval, &opt, len))
4521 return -EFAULT;
4522 return 0;
4523 }
4524 case TCP_QUEUE_SEQ:
4525 if (tp->repair_queue == TCP_SEND_QUEUE)
4526 val = tp->write_seq;
4527 else if (tp->repair_queue == TCP_RECV_QUEUE)
4528 val = tp->rcv_nxt;
4529 else
4530 return -EINVAL;
4531 break;
4532
4533 case TCP_USER_TIMEOUT:
4534 val = READ_ONCE(icsk->icsk_user_timeout);
4535 break;
4536
4537 case TCP_FASTOPEN:
4538 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4539 break;
4540
4541 case TCP_FASTOPEN_CONNECT:
4542 val = tp->fastopen_connect;
4543 break;
4544
4545 case TCP_FASTOPEN_NO_COOKIE:
4546 val = tp->fastopen_no_cookie;
4547 break;
4548
4549 case TCP_TX_DELAY:
4550 val = READ_ONCE(tp->tcp_tx_delay);
4551 break;
4552
4553 case TCP_TIMESTAMP:
4554 val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4555 if (tp->tcp_usec_ts)
4556 val |= 1;
4557 else
4558 val &= ~1;
4559 break;
4560 case TCP_NOTSENT_LOWAT:
4561 val = READ_ONCE(tp->notsent_lowat);
4562 break;
4563 case TCP_INQ:
4564 val = tp->recvmsg_inq;
4565 break;
4566 case TCP_SAVE_SYN:
4567 val = tp->save_syn;
4568 break;
4569 case TCP_SAVED_SYN: {
4570 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4571 return -EFAULT;
4572
4573 sockopt_lock_sock(sk);
4574 if (tp->saved_syn) {
4575 if (len < tcp_saved_syn_len(tp->saved_syn)) {
4576 len = tcp_saved_syn_len(tp->saved_syn);
4577 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4578 sockopt_release_sock(sk);
4579 return -EFAULT;
4580 }
4581 sockopt_release_sock(sk);
4582 return -EINVAL;
4583 }
4584 len = tcp_saved_syn_len(tp->saved_syn);
4585 if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4586 sockopt_release_sock(sk);
4587 return -EFAULT;
4588 }
4589 if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4590 sockopt_release_sock(sk);
4591 return -EFAULT;
4592 }
4593 tcp_saved_syn_free(tp);
4594 sockopt_release_sock(sk);
4595 } else {
4596 sockopt_release_sock(sk);
4597 len = 0;
4598 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4599 return -EFAULT;
4600 }
4601 return 0;
4602 }
4603 #ifdef CONFIG_MMU
4604 case TCP_ZEROCOPY_RECEIVE: {
4605 struct scm_timestamping_internal tss;
4606 struct tcp_zerocopy_receive zc = {};
4607 int err;
4608
4609 if (copy_from_sockptr(&len, optlen, sizeof(int)))
4610 return -EFAULT;
4611 if (len < 0 ||
4612 len < offsetofend(struct tcp_zerocopy_receive, length))
4613 return -EINVAL;
4614 if (unlikely(len > sizeof(zc))) {
4615 err = check_zeroed_sockptr(optval, sizeof(zc),
4616 len - sizeof(zc));
4617 if (err < 1)
4618 return err == 0 ? -EINVAL : err;
4619 len = sizeof(zc);
4620 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4621 return -EFAULT;
4622 }
4623 if (copy_from_sockptr(&zc, optval, len))
4624 return -EFAULT;
4625 if (zc.reserved)
4626 return -EINVAL;
4627 if (zc.msg_flags & ~(TCP_VALID_ZC_MSG_FLAGS))
4628 return -EINVAL;
4629 sockopt_lock_sock(sk);
4630 err = tcp_zerocopy_receive(sk, &zc, &tss);
4631 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4632 &zc, &len, err);
4633 sockopt_release_sock(sk);
4634 if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4635 goto zerocopy_rcv_cmsg;
4636 switch (len) {
4637 case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4638 goto zerocopy_rcv_cmsg;
4639 case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4640 case offsetofend(struct tcp_zerocopy_receive, msg_control):
4641 case offsetofend(struct tcp_zerocopy_receive, flags):
4642 case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4643 case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4644 case offsetofend(struct tcp_zerocopy_receive, err):
4645 goto zerocopy_rcv_sk_err;
4646 case offsetofend(struct tcp_zerocopy_receive, inq):
4647 goto zerocopy_rcv_inq;
4648 case offsetofend(struct tcp_zerocopy_receive, length):
4649 default:
4650 goto zerocopy_rcv_out;
4651 }
4652 zerocopy_rcv_cmsg:
4653 if (zc.msg_flags & TCP_CMSG_TS)
4654 tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4655 else
4656 zc.msg_flags = 0;
4657 zerocopy_rcv_sk_err:
4658 if (!err)
4659 zc.err = sock_error(sk);
4660 zerocopy_rcv_inq:
4661 zc.inq = tcp_inq_hint(sk);
4662 zerocopy_rcv_out:
4663 if (!err && copy_to_sockptr(optval, &zc, len))
4664 err = -EFAULT;
4665 return err;
4666 }
4667 #endif
4668 case TCP_AO_REPAIR:
4669 if (!tcp_can_repair_sock(sk))
4670 return -EPERM;
4671 return tcp_ao_get_repair(sk, optval, optlen);
4672 case TCP_AO_GET_KEYS:
4673 case TCP_AO_INFO: {
4674 int err;
4675
4676 sockopt_lock_sock(sk);
4677 if (optname == TCP_AO_GET_KEYS)
4678 err = tcp_ao_get_mkts(sk, optval, optlen);
4679 else
4680 err = tcp_ao_get_sock_info(sk, optval, optlen);
4681 sockopt_release_sock(sk);
4682
4683 return err;
4684 }
4685 case TCP_IS_MPTCP:
4686 val = 0;
4687 break;
4688 case TCP_RTO_MAX_MS:
4689 val = jiffies_to_msecs(tcp_rto_max(sk));
4690 break;
4691 case TCP_RTO_MIN_US:
4692 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_rto_min));
4693 break;
4694 case TCP_DELACK_MAX_US:
4695 val = jiffies_to_usecs(READ_ONCE(inet_csk(sk)->icsk_delack_max));
4696 break;
4697 default:
4698 return -ENOPROTOOPT;
4699 }
4700
4701 if (copy_to_sockptr(optlen, &len, sizeof(int)))
4702 return -EFAULT;
4703 if (copy_to_sockptr(optval, &val, len))
4704 return -EFAULT;
4705 return 0;
4706 }
4707
tcp_bpf_bypass_getsockopt(int level,int optname)4708 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4709 {
4710 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4711 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4712 */
4713 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4714 return true;
4715
4716 return false;
4717 }
4718 EXPORT_IPV6_MOD(tcp_bpf_bypass_getsockopt);
4719
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4720 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4721 int __user *optlen)
4722 {
4723 struct inet_connection_sock *icsk = inet_csk(sk);
4724
4725 if (level != SOL_TCP)
4726 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4727 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4728 optval, optlen);
4729 return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4730 USER_SOCKPTR(optlen));
4731 }
4732 EXPORT_IPV6_MOD(tcp_getsockopt);
4733
4734 #ifdef CONFIG_TCP_MD5SIG
4735 int tcp_md5_sigpool_id = -1;
4736 EXPORT_IPV6_MOD_GPL(tcp_md5_sigpool_id);
4737
tcp_md5_alloc_sigpool(void)4738 int tcp_md5_alloc_sigpool(void)
4739 {
4740 size_t scratch_size;
4741 int ret;
4742
4743 scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4744 ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4745 if (ret >= 0) {
4746 /* As long as any md5 sigpool was allocated, the return
4747 * id would stay the same. Re-write the id only for the case
4748 * when previously all MD5 keys were deleted and this call
4749 * allocates the first MD5 key, which may return a different
4750 * sigpool id than was used previously.
4751 */
4752 WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4753 return 0;
4754 }
4755 return ret;
4756 }
4757
tcp_md5_release_sigpool(void)4758 void tcp_md5_release_sigpool(void)
4759 {
4760 tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
4761 }
4762
tcp_md5_add_sigpool(void)4763 void tcp_md5_add_sigpool(void)
4764 {
4765 tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
4766 }
4767
tcp_md5_hash_key(struct tcp_sigpool * hp,const struct tcp_md5sig_key * key)4768 int tcp_md5_hash_key(struct tcp_sigpool *hp,
4769 const struct tcp_md5sig_key *key)
4770 {
4771 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4772 struct scatterlist sg;
4773
4774 sg_init_one(&sg, key->key, keylen);
4775 ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4776
4777 /* We use data_race() because tcp_md5_do_add() might change
4778 * key->key under us
4779 */
4780 return data_race(crypto_ahash_update(hp->req));
4781 }
4782 EXPORT_IPV6_MOD(tcp_md5_hash_key);
4783
4784 /* Called with rcu_read_lock() */
4785 static enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4786 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4787 const void *saddr, const void *daddr,
4788 int family, int l3index, const __u8 *hash_location)
4789 {
4790 /* This gets called for each TCP segment that has TCP-MD5 option.
4791 * We have 3 drop cases:
4792 * o No MD5 hash and one expected.
4793 * o MD5 hash and we're not expecting one.
4794 * o MD5 hash and its wrong.
4795 */
4796 const struct tcp_sock *tp = tcp_sk(sk);
4797 struct tcp_md5sig_key *key;
4798 u8 newhash[16];
4799 int genhash;
4800
4801 key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4802
4803 if (!key && hash_location) {
4804 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4805 trace_tcp_hash_md5_unexpected(sk, skb);
4806 return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4807 }
4808
4809 /* Check the signature.
4810 * To support dual stack listeners, we need to handle
4811 * IPv4-mapped case.
4812 */
4813 if (family == AF_INET)
4814 genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4815 else
4816 genhash = tp->af_specific->calc_md5_hash(newhash, key,
4817 NULL, skb);
4818 if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4819 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4820 trace_tcp_hash_md5_mismatch(sk, skb);
4821 return SKB_DROP_REASON_TCP_MD5FAILURE;
4822 }
4823 return SKB_NOT_DROPPED_YET;
4824 }
4825 #else
4826 static inline enum skb_drop_reason
tcp_inbound_md5_hash(const struct sock * sk,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int l3index,const __u8 * hash_location)4827 tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4828 const void *saddr, const void *daddr,
4829 int family, int l3index, const __u8 *hash_location)
4830 {
4831 return SKB_NOT_DROPPED_YET;
4832 }
4833
4834 #endif
4835
4836 /* Called with rcu_read_lock() */
4837 enum skb_drop_reason
tcp_inbound_hash(struct sock * sk,const struct request_sock * req,const struct sk_buff * skb,const void * saddr,const void * daddr,int family,int dif,int sdif)4838 tcp_inbound_hash(struct sock *sk, const struct request_sock *req,
4839 const struct sk_buff *skb,
4840 const void *saddr, const void *daddr,
4841 int family, int dif, int sdif)
4842 {
4843 const struct tcphdr *th = tcp_hdr(skb);
4844 const struct tcp_ao_hdr *aoh;
4845 const __u8 *md5_location;
4846 int l3index;
4847
4848 /* Invalid option or two times meet any of auth options */
4849 if (tcp_parse_auth_options(th, &md5_location, &aoh)) {
4850 trace_tcp_hash_bad_header(sk, skb);
4851 return SKB_DROP_REASON_TCP_AUTH_HDR;
4852 }
4853
4854 if (req) {
4855 if (tcp_rsk_used_ao(req) != !!aoh) {
4856 u8 keyid, rnext, maclen;
4857
4858 if (aoh) {
4859 keyid = aoh->keyid;
4860 rnext = aoh->rnext_keyid;
4861 maclen = tcp_ao_hdr_maclen(aoh);
4862 } else {
4863 keyid = rnext = maclen = 0;
4864 }
4865
4866 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAOBAD);
4867 trace_tcp_ao_handshake_failure(sk, skb, keyid, rnext, maclen);
4868 return SKB_DROP_REASON_TCP_AOFAILURE;
4869 }
4870 }
4871
4872 /* sdif set, means packet ingressed via a device
4873 * in an L3 domain and dif is set to the l3mdev
4874 */
4875 l3index = sdif ? dif : 0;
4876
4877 /* Fast path: unsigned segments */
4878 if (likely(!md5_location && !aoh)) {
4879 /* Drop if there's TCP-MD5 or TCP-AO key with any rcvid/sndid
4880 * for the remote peer. On TCP-AO established connection
4881 * the last key is impossible to remove, so there's
4882 * always at least one current_key.
4883 */
4884 if (tcp_ao_required(sk, saddr, family, l3index, true)) {
4885 trace_tcp_hash_ao_required(sk, skb);
4886 return SKB_DROP_REASON_TCP_AONOTFOUND;
4887 }
4888 if (unlikely(tcp_md5_do_lookup(sk, l3index, saddr, family))) {
4889 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND);
4890 trace_tcp_hash_md5_required(sk, skb);
4891 return SKB_DROP_REASON_TCP_MD5NOTFOUND;
4892 }
4893 return SKB_NOT_DROPPED_YET;
4894 }
4895
4896 if (aoh)
4897 return tcp_inbound_ao_hash(sk, skb, family, req, l3index, aoh);
4898
4899 return tcp_inbound_md5_hash(sk, skb, saddr, daddr, family,
4900 l3index, md5_location);
4901 }
4902 EXPORT_IPV6_MOD_GPL(tcp_inbound_hash);
4903
tcp_done(struct sock * sk)4904 void tcp_done(struct sock *sk)
4905 {
4906 struct request_sock *req;
4907
4908 /* We might be called with a new socket, after
4909 * inet_csk_prepare_forced_close() has been called
4910 * so we can not use lockdep_sock_is_held(sk)
4911 */
4912 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4913
4914 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4915 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4916
4917 tcp_set_state(sk, TCP_CLOSE);
4918 tcp_clear_xmit_timers(sk);
4919 if (req)
4920 reqsk_fastopen_remove(sk, req, false);
4921
4922 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4923
4924 if (!sock_flag(sk, SOCK_DEAD))
4925 sk->sk_state_change(sk);
4926 else
4927 inet_csk_destroy_sock(sk);
4928 }
4929 EXPORT_SYMBOL_GPL(tcp_done);
4930
tcp_abort(struct sock * sk,int err)4931 int tcp_abort(struct sock *sk, int err)
4932 {
4933 int state = inet_sk_state_load(sk);
4934
4935 if (state == TCP_NEW_SYN_RECV) {
4936 struct request_sock *req = inet_reqsk(sk);
4937
4938 local_bh_disable();
4939 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4940 local_bh_enable();
4941 return 0;
4942 }
4943 if (state == TCP_TIME_WAIT) {
4944 struct inet_timewait_sock *tw = inet_twsk(sk);
4945
4946 refcount_inc(&tw->tw_refcnt);
4947 local_bh_disable();
4948 inet_twsk_deschedule_put(tw);
4949 local_bh_enable();
4950 return 0;
4951 }
4952
4953 /* BPF context ensures sock locking. */
4954 if (!has_current_bpf_ctx())
4955 /* Don't race with userspace socket closes such as tcp_close. */
4956 lock_sock(sk);
4957
4958 /* Avoid closing the same socket twice. */
4959 if (sk->sk_state == TCP_CLOSE) {
4960 if (!has_current_bpf_ctx())
4961 release_sock(sk);
4962 return -ENOENT;
4963 }
4964
4965 if (sk->sk_state == TCP_LISTEN) {
4966 tcp_set_state(sk, TCP_CLOSE);
4967 inet_csk_listen_stop(sk);
4968 }
4969
4970 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4971 local_bh_disable();
4972 bh_lock_sock(sk);
4973
4974 if (tcp_need_reset(sk->sk_state))
4975 tcp_send_active_reset(sk, GFP_ATOMIC,
4976 SK_RST_REASON_TCP_STATE);
4977 tcp_done_with_error(sk, err);
4978
4979 bh_unlock_sock(sk);
4980 local_bh_enable();
4981 if (!has_current_bpf_ctx())
4982 release_sock(sk);
4983 return 0;
4984 }
4985 EXPORT_SYMBOL_GPL(tcp_abort);
4986
4987 extern struct tcp_congestion_ops tcp_reno;
4988
4989 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4990 static int __init set_thash_entries(char *str)
4991 {
4992 ssize_t ret;
4993
4994 if (!str)
4995 return 0;
4996
4997 ret = kstrtoul(str, 0, &thash_entries);
4998 if (ret)
4999 return 0;
5000
5001 return 1;
5002 }
5003 __setup("thash_entries=", set_thash_entries);
5004
tcp_init_mem(void)5005 static void __init tcp_init_mem(void)
5006 {
5007 unsigned long limit = nr_free_buffer_pages() / 16;
5008
5009 limit = max(limit, 128UL);
5010 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
5011 sysctl_tcp_mem[1] = limit; /* 6.25 % */
5012 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
5013 }
5014
tcp_struct_check(void)5015 static void __init tcp_struct_check(void)
5016 {
5017 /* TX read-mostly hotpath cache lines */
5018 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
5019 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
5020 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
5021 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
5022 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
5023 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
5024 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
5025 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
5026
5027 /* TXRX read-mostly hotpath cache lines */
5028 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
5029 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
5030 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
5031 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
5032 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
5033 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
5034 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
5035 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
5036 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
5037
5038 /* RX read-mostly hotpath cache lines */
5039 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
5040 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
5041 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
5042 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
5043 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
5044 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
5045 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
5046 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
5047 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
5048 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
5049 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
5050 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
5051 #if IS_ENABLED(CONFIG_TLS_DEVICE)
5052 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tcp_clean_acked);
5053 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 77);
5054 #else
5055 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
5056 #endif
5057
5058 /* TX read-write hotpath cache lines */
5059 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
5060 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
5061 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
5062 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
5063 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
5064 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
5065 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
5066 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
5067 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
5068 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
5069 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
5070 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
5071 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
5072 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
5073 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
5074 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 89);
5075
5076 /* TXRX read-write hotpath cache lines */
5077 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
5078 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_clock_cache);
5079 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, tcp_mstamp);
5080 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
5081 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
5082 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
5083 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
5084 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
5085 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
5086 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
5087 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
5088 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
5089 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
5090 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
5091 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
5092
5093 /* 32bit arches with 8byte alignment on u64 fields might need padding
5094 * before tcp_clock_cache.
5095 */
5096 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 92 + 4);
5097
5098 /* RX read-write hotpath cache lines */
5099 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
5100 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
5101 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
5102 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
5103 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
5104 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
5105 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
5106 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
5107 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
5108 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
5109 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
5110 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
5111 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
5112 CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
5113 CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
5114 }
5115
tcp_init(void)5116 void __init tcp_init(void)
5117 {
5118 int max_rshare, max_wshare, cnt;
5119 unsigned long limit;
5120 unsigned int i;
5121
5122 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
5123 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
5124 sizeof_field(struct sk_buff, cb));
5125
5126 tcp_struct_check();
5127
5128 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
5129
5130 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
5131 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
5132
5133 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
5134 thash_entries, 21, /* one slot per 2 MB*/
5135 0, 64 * 1024);
5136 tcp_hashinfo.bind_bucket_cachep =
5137 kmem_cache_create("tcp_bind_bucket",
5138 sizeof(struct inet_bind_bucket), 0,
5139 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5140 SLAB_ACCOUNT,
5141 NULL);
5142 tcp_hashinfo.bind2_bucket_cachep =
5143 kmem_cache_create("tcp_bind2_bucket",
5144 sizeof(struct inet_bind2_bucket), 0,
5145 SLAB_HWCACHE_ALIGN | SLAB_PANIC |
5146 SLAB_ACCOUNT,
5147 NULL);
5148
5149 /* Size and allocate the main established and bind bucket
5150 * hash tables.
5151 *
5152 * The methodology is similar to that of the buffer cache.
5153 */
5154 tcp_hashinfo.ehash =
5155 alloc_large_system_hash("TCP established",
5156 sizeof(struct inet_ehash_bucket),
5157 thash_entries,
5158 17, /* one slot per 128 KB of memory */
5159 0,
5160 NULL,
5161 &tcp_hashinfo.ehash_mask,
5162 0,
5163 thash_entries ? 0 : 512 * 1024);
5164 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
5165 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
5166
5167 if (inet_ehash_locks_alloc(&tcp_hashinfo))
5168 panic("TCP: failed to alloc ehash_locks");
5169 tcp_hashinfo.bhash =
5170 alloc_large_system_hash("TCP bind",
5171 2 * sizeof(struct inet_bind_hashbucket),
5172 tcp_hashinfo.ehash_mask + 1,
5173 17, /* one slot per 128 KB of memory */
5174 0,
5175 &tcp_hashinfo.bhash_size,
5176 NULL,
5177 0,
5178 64 * 1024);
5179 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
5180 tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
5181 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
5182 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
5183 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
5184 spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
5185 INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
5186 }
5187
5188 tcp_hashinfo.pernet = false;
5189
5190 cnt = tcp_hashinfo.ehash_mask + 1;
5191 sysctl_tcp_max_orphans = cnt / 2;
5192
5193 tcp_init_mem();
5194 /* Set per-socket limits to no more than 1/128 the pressure threshold */
5195 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
5196 max_wshare = min(4UL*1024*1024, limit);
5197 max_rshare = min(6UL*1024*1024, limit);
5198
5199 init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
5200 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
5201 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
5202
5203 init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
5204 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
5205 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
5206
5207 pr_info("Hash tables configured (established %u bind %u)\n",
5208 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
5209
5210 tcp_v4_init();
5211 tcp_metrics_init();
5212 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
5213 tcp_tasklet_init();
5214 mptcp_init();
5215 }
5216