xref: /linux/arch/powerpc/mm/book3s64/hash_utils.c (revision ad952db4a865e96ec98d4c5874a4699fe3286d56)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
4  *   {mikejc|engebret}@us.ibm.com
5  *
6  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7  *
8  * SMP scalability work:
9  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
10  *
11  *    Module name: htab.c
12  *
13  *    Description:
14  *      PowerPC Hashed Page Table functions
15  */
16 
17 #undef DEBUG
18 #undef DEBUG_LOW
19 
20 #define pr_fmt(fmt) "hash-mmu: " fmt
21 #include <linux/spinlock.h>
22 #include <linux/errno.h>
23 #include <linux/sched/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/stat.h>
26 #include <linux/sysctl.h>
27 #include <linux/export.h>
28 #include <linux/ctype.h>
29 #include <linux/cache.h>
30 #include <linux/init.h>
31 #include <linux/signal.h>
32 #include <linux/memblock.h>
33 #include <linux/context_tracking.h>
34 #include <linux/libfdt.h>
35 #include <linux/pkeys.h>
36 #include <linux/hugetlb.h>
37 #include <linux/cpu.h>
38 #include <linux/pgtable.h>
39 #include <linux/debugfs.h>
40 #include <linux/random.h>
41 #include <linux/elf-randomize.h>
42 #include <linux/of_fdt.h>
43 #include <linux/kfence.h>
44 
45 #include <asm/interrupt.h>
46 #include <asm/processor.h>
47 #include <asm/mmu.h>
48 #include <asm/mmu_context.h>
49 #include <asm/page.h>
50 #include <asm/pgalloc.h>
51 #include <asm/types.h>
52 #include <linux/uaccess.h>
53 #include <asm/machdep.h>
54 #include <asm/io.h>
55 #include <asm/eeh.h>
56 #include <asm/tlb.h>
57 #include <asm/cacheflush.h>
58 #include <asm/cputable.h>
59 #include <asm/sections.h>
60 #include <asm/spu.h>
61 #include <asm/udbg.h>
62 #include <asm/text-patching.h>
63 #include <asm/fadump.h>
64 #include <asm/firmware.h>
65 #include <asm/tm.h>
66 #include <asm/trace.h>
67 #include <asm/ps3.h>
68 #include <asm/pte-walk.h>
69 #include <asm/asm-prototypes.h>
70 #include <asm/ultravisor.h>
71 #include <asm/kfence.h>
72 
73 #include <mm/mmu_decl.h>
74 
75 #include "internal.h"
76 
77 
78 #ifdef DEBUG
79 #define DBG(fmt...) udbg_printf(fmt)
80 #else
81 #define DBG(fmt...)
82 #endif
83 
84 #ifdef DEBUG_LOW
85 #define DBG_LOW(fmt...) udbg_printf(fmt)
86 #else
87 #define DBG_LOW(fmt...)
88 #endif
89 
90 #define KB (1024)
91 #define MB (1024*KB)
92 #define GB (1024L*MB)
93 
94 /*
95  * Note:  pte   --> Linux PTE
96  *        HPTE  --> PowerPC Hashed Page Table Entry
97  *
98  * Execution context:
99  *   htab_initialize is called with the MMU off (of course), but
100  *   the kernel has been copied down to zero so it can directly
101  *   reference global data.  At this point it is very difficult
102  *   to print debug info.
103  *
104  */
105 
106 static unsigned long _SDR1;
107 
108 u8 hpte_page_sizes[1 << LP_BITS];
109 EXPORT_SYMBOL_GPL(hpte_page_sizes);
110 
111 struct hash_pte *htab_address;
112 unsigned long htab_size_bytes;
113 unsigned long htab_hash_mask;
114 EXPORT_SYMBOL_GPL(htab_hash_mask);
115 int mmu_linear_psize = MMU_PAGE_4K;
116 EXPORT_SYMBOL_GPL(mmu_linear_psize);
117 int mmu_virtual_psize = MMU_PAGE_4K;
118 int mmu_vmalloc_psize = MMU_PAGE_4K;
119 EXPORT_SYMBOL_GPL(mmu_vmalloc_psize);
120 int mmu_io_psize = MMU_PAGE_4K;
121 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
122 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
123 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
124 u16 mmu_slb_size = 64;
125 EXPORT_SYMBOL_GPL(mmu_slb_size);
126 #ifdef CONFIG_PPC_64K_PAGES
127 int mmu_ci_restrictions;
128 #endif
129 struct mmu_hash_ops mmu_hash_ops __ro_after_init;
130 EXPORT_SYMBOL(mmu_hash_ops);
131 
132 /*
133  * These are definitions of page sizes arrays to be used when none
134  * is provided by the firmware.
135  */
136 
137 /*
138  * Fallback (4k pages only)
139  */
140 static struct mmu_psize_def mmu_psize_defaults[] = {
141 	[MMU_PAGE_4K] = {
142 		.shift	= 12,
143 		.sllp	= 0,
144 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
145 		.avpnm	= 0,
146 		.tlbiel = 0,
147 	},
148 };
149 
150 /*
151  * POWER4, GPUL, POWER5
152  *
153  * Support for 16Mb large pages
154  */
155 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
156 	[MMU_PAGE_4K] = {
157 		.shift	= 12,
158 		.sllp	= 0,
159 		.penc   = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
160 		.avpnm	= 0,
161 		.tlbiel = 1,
162 	},
163 	[MMU_PAGE_16M] = {
164 		.shift	= 24,
165 		.sllp	= SLB_VSID_L,
166 		.penc   = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
167 			    [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
168 		.avpnm	= 0x1UL,
169 		.tlbiel = 0,
170 	},
171 };
172 
tlbiel_hash_set_isa206(unsigned int set,unsigned int is)173 static inline void tlbiel_hash_set_isa206(unsigned int set, unsigned int is)
174 {
175 	unsigned long rb;
176 
177 	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
178 
179 	asm volatile("tlbiel %0" : : "r" (rb));
180 }
181 
182 /*
183  * tlbiel instruction for hash, set invalidation
184  * i.e., r=1 and is=01 or is=10 or is=11
185  */
tlbiel_hash_set_isa300(unsigned int set,unsigned int is,unsigned int pid,unsigned int ric,unsigned int prs)186 static __always_inline void tlbiel_hash_set_isa300(unsigned int set, unsigned int is,
187 					unsigned int pid,
188 					unsigned int ric, unsigned int prs)
189 {
190 	unsigned long rb;
191 	unsigned long rs;
192 	unsigned int r = 0; /* hash format */
193 
194 	rb = (set << PPC_BITLSHIFT(51)) | (is << PPC_BITLSHIFT(53));
195 	rs = ((unsigned long)pid << PPC_BITLSHIFT(31));
196 
197 	asm volatile(PPC_TLBIEL(%0, %1, %2, %3, %4)
198 		     : : "r"(rb), "r"(rs), "i"(ric), "i"(prs), "i"(r)
199 		     : "memory");
200 }
201 
202 
tlbiel_all_isa206(unsigned int num_sets,unsigned int is)203 static void tlbiel_all_isa206(unsigned int num_sets, unsigned int is)
204 {
205 	unsigned int set;
206 
207 	asm volatile("ptesync": : :"memory");
208 
209 	for (set = 0; set < num_sets; set++)
210 		tlbiel_hash_set_isa206(set, is);
211 
212 	ppc_after_tlbiel_barrier();
213 }
214 
tlbiel_all_isa300(unsigned int num_sets,unsigned int is)215 static void tlbiel_all_isa300(unsigned int num_sets, unsigned int is)
216 {
217 	unsigned int set;
218 
219 	asm volatile("ptesync": : :"memory");
220 
221 	/*
222 	 * Flush the partition table cache if this is HV mode.
223 	 */
224 	if (early_cpu_has_feature(CPU_FTR_HVMODE))
225 		tlbiel_hash_set_isa300(0, is, 0, 2, 0);
226 
227 	/*
228 	 * Now invalidate the process table cache. UPRT=0 HPT modes (what
229 	 * current hardware implements) do not use the process table, but
230 	 * add the flushes anyway.
231 	 *
232 	 * From ISA v3.0B p. 1078:
233 	 *     The following forms are invalid.
234 	 *      * PRS=1, R=0, and RIC!=2 (The only process-scoped
235 	 *        HPT caching is of the Process Table.)
236 	 */
237 	tlbiel_hash_set_isa300(0, is, 0, 2, 1);
238 
239 	/*
240 	 * Then flush the sets of the TLB proper. Hash mode uses
241 	 * partition scoped TLB translations, which may be flushed
242 	 * in !HV mode.
243 	 */
244 	for (set = 0; set < num_sets; set++)
245 		tlbiel_hash_set_isa300(set, is, 0, 0, 0);
246 
247 	ppc_after_tlbiel_barrier();
248 
249 	asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT "; isync" : : :"memory");
250 }
251 
hash__tlbiel_all(unsigned int action)252 void hash__tlbiel_all(unsigned int action)
253 {
254 	unsigned int is;
255 
256 	switch (action) {
257 	case TLB_INVAL_SCOPE_GLOBAL:
258 		is = 3;
259 		break;
260 	case TLB_INVAL_SCOPE_LPID:
261 		is = 2;
262 		break;
263 	default:
264 		BUG();
265 	}
266 
267 	if (early_cpu_has_feature(CPU_FTR_ARCH_300))
268 		tlbiel_all_isa300(POWER9_TLB_SETS_HASH, is);
269 	else if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
270 		tlbiel_all_isa206(POWER8_TLB_SETS, is);
271 	else if (early_cpu_has_feature(CPU_FTR_ARCH_206))
272 		tlbiel_all_isa206(POWER7_TLB_SETS, is);
273 	else
274 		WARN(1, "%s called on pre-POWER7 CPU\n", __func__);
275 }
276 
277 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
kernel_map_linear_page(unsigned long vaddr,unsigned long idx,u8 * slots,raw_spinlock_t * lock)278 static void kernel_map_linear_page(unsigned long vaddr, unsigned long idx,
279 				   u8 *slots, raw_spinlock_t *lock)
280 {
281 	unsigned long hash;
282 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
283 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
284 	unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL), HPTE_USE_KERNEL_KEY);
285 	long ret;
286 
287 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
288 
289 	/* Don't create HPTE entries for bad address */
290 	if (!vsid)
291 		return;
292 
293 	if (slots[idx] & 0x80)
294 		return;
295 
296 	ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
297 				    HPTE_V_BOLTED,
298 				    mmu_linear_psize, mmu_kernel_ssize);
299 
300 	BUG_ON (ret < 0);
301 	raw_spin_lock(lock);
302 	BUG_ON(slots[idx] & 0x80);
303 	slots[idx] = ret | 0x80;
304 	raw_spin_unlock(lock);
305 }
306 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long idx,u8 * slots,raw_spinlock_t * lock)307 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long idx,
308 				     u8 *slots, raw_spinlock_t *lock)
309 {
310 	unsigned long hash, hslot, slot;
311 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
312 	unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
313 
314 	hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
315 	raw_spin_lock(lock);
316 	if (!(slots[idx] & 0x80)) {
317 		raw_spin_unlock(lock);
318 		return;
319 	}
320 	hslot = slots[idx] & 0x7f;
321 	slots[idx] = 0;
322 	raw_spin_unlock(lock);
323 	if (hslot & _PTEIDX_SECONDARY)
324 		hash = ~hash;
325 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
326 	slot += hslot & _PTEIDX_GROUP_IX;
327 	mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
328 				     mmu_linear_psize,
329 				     mmu_kernel_ssize, 0);
330 }
331 #endif
332 
hash_supports_debug_pagealloc(void)333 static inline bool hash_supports_debug_pagealloc(void)
334 {
335 	unsigned long max_hash_count = ppc64_rma_size / 4;
336 	unsigned long linear_map_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
337 
338 	if (!debug_pagealloc_enabled() || linear_map_count > max_hash_count)
339 		return false;
340 	return true;
341 }
342 
343 #ifdef CONFIG_DEBUG_PAGEALLOC
344 static u8 *linear_map_hash_slots;
345 static unsigned long linear_map_hash_count;
346 static DEFINE_RAW_SPINLOCK(linear_map_hash_lock);
hash_debug_pagealloc_alloc_slots(void)347 static __init void hash_debug_pagealloc_alloc_slots(void)
348 {
349 	if (!hash_supports_debug_pagealloc())
350 		return;
351 
352 	linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
353 	linear_map_hash_slots = memblock_alloc_try_nid(
354 			linear_map_hash_count, 1, MEMBLOCK_LOW_LIMIT,
355 			ppc64_rma_size,	NUMA_NO_NODE);
356 	if (!linear_map_hash_slots)
357 		panic("%s: Failed to allocate %lu bytes max_addr=%pa\n",
358 		      __func__, linear_map_hash_count, &ppc64_rma_size);
359 }
360 
hash_debug_pagealloc_add_slot(phys_addr_t paddr,int slot)361 static inline void hash_debug_pagealloc_add_slot(phys_addr_t paddr,
362 							int slot)
363 {
364 	if (!debug_pagealloc_enabled() || !linear_map_hash_count)
365 		return;
366 	if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
367 		linear_map_hash_slots[paddr >> PAGE_SHIFT] = slot | 0x80;
368 }
369 
hash_debug_pagealloc_map_pages(struct page * page,int numpages,int enable)370 static int hash_debug_pagealloc_map_pages(struct page *page, int numpages,
371 					  int enable)
372 {
373 	unsigned long flags, vaddr, lmi;
374 	int i;
375 
376 	if (!debug_pagealloc_enabled() || !linear_map_hash_count)
377 		return 0;
378 
379 	local_irq_save(flags);
380 	for (i = 0; i < numpages; i++, page++) {
381 		vaddr = (unsigned long)page_address(page);
382 		lmi = __pa(vaddr) >> PAGE_SHIFT;
383 		if (lmi >= linear_map_hash_count)
384 			continue;
385 		if (enable)
386 			kernel_map_linear_page(vaddr, lmi,
387 				linear_map_hash_slots, &linear_map_hash_lock);
388 		else
389 			kernel_unmap_linear_page(vaddr, lmi,
390 				linear_map_hash_slots, &linear_map_hash_lock);
391 	}
392 	local_irq_restore(flags);
393 	return 0;
394 }
395 
396 #else /* CONFIG_DEBUG_PAGEALLOC */
hash_debug_pagealloc_alloc_slots(void)397 static inline void hash_debug_pagealloc_alloc_slots(void) {}
hash_debug_pagealloc_add_slot(phys_addr_t paddr,int slot)398 static inline void hash_debug_pagealloc_add_slot(phys_addr_t paddr, int slot) {}
399 static int __maybe_unused
hash_debug_pagealloc_map_pages(struct page * page,int numpages,int enable)400 hash_debug_pagealloc_map_pages(struct page *page, int numpages, int enable)
401 {
402 	return 0;
403 }
404 #endif /* CONFIG_DEBUG_PAGEALLOC */
405 
406 #ifdef CONFIG_KFENCE
407 static u8 *linear_map_kf_hash_slots;
408 static unsigned long linear_map_kf_hash_count;
409 static DEFINE_RAW_SPINLOCK(linear_map_kf_hash_lock);
410 
411 static phys_addr_t kfence_pool;
412 
hash_kfence_alloc_pool(void)413 static __init void hash_kfence_alloc_pool(void)
414 {
415 	if (!kfence_early_init_enabled())
416 		goto err;
417 
418 	/* allocate linear map for kfence within RMA region */
419 	linear_map_kf_hash_count = KFENCE_POOL_SIZE >> PAGE_SHIFT;
420 	linear_map_kf_hash_slots = memblock_alloc_try_nid(
421 					linear_map_kf_hash_count, 1,
422 					MEMBLOCK_LOW_LIMIT, ppc64_rma_size,
423 					NUMA_NO_NODE);
424 	if (!linear_map_kf_hash_slots) {
425 		pr_err("%s: memblock for linear map (%lu) failed\n", __func__,
426 				linear_map_kf_hash_count);
427 		goto err;
428 	}
429 
430 	/* allocate kfence pool early */
431 	kfence_pool = memblock_phys_alloc_range(KFENCE_POOL_SIZE, PAGE_SIZE,
432 				MEMBLOCK_LOW_LIMIT, MEMBLOCK_ALLOC_ANYWHERE);
433 	if (!kfence_pool) {
434 		pr_err("%s: memblock for kfence pool (%lu) failed\n", __func__,
435 				KFENCE_POOL_SIZE);
436 		memblock_free(linear_map_kf_hash_slots,
437 				linear_map_kf_hash_count);
438 		linear_map_kf_hash_count = 0;
439 		goto err;
440 	}
441 	memblock_mark_nomap(kfence_pool, KFENCE_POOL_SIZE);
442 
443 	return;
444 err:
445 	pr_info("Disabling kfence\n");
446 	disable_kfence();
447 }
448 
hash_kfence_map_pool(void)449 static __init void hash_kfence_map_pool(void)
450 {
451 	unsigned long kfence_pool_start, kfence_pool_end;
452 	unsigned long prot = pgprot_val(PAGE_KERNEL);
453 	unsigned int pshift = mmu_psize_defs[mmu_linear_psize].shift;
454 
455 	if (!kfence_pool)
456 		return;
457 
458 	kfence_pool_start = (unsigned long) __va(kfence_pool);
459 	kfence_pool_end = kfence_pool_start + KFENCE_POOL_SIZE;
460 	__kfence_pool = (char *) kfence_pool_start;
461 	BUG_ON(htab_bolt_mapping(kfence_pool_start, kfence_pool_end,
462 				    kfence_pool, prot, mmu_linear_psize,
463 				    mmu_kernel_ssize));
464 	update_page_count(mmu_linear_psize, KFENCE_POOL_SIZE >> pshift);
465 	memblock_clear_nomap(kfence_pool, KFENCE_POOL_SIZE);
466 }
467 
hash_kfence_add_slot(phys_addr_t paddr,int slot)468 static inline void hash_kfence_add_slot(phys_addr_t paddr, int slot)
469 {
470 	unsigned long vaddr = (unsigned long) __va(paddr);
471 	unsigned long lmi = (vaddr - (unsigned long)__kfence_pool)
472 					>> PAGE_SHIFT;
473 
474 	if (!kfence_pool)
475 		return;
476 	BUG_ON(!is_kfence_address((void *)vaddr));
477 	BUG_ON(lmi >= linear_map_kf_hash_count);
478 	linear_map_kf_hash_slots[lmi] = slot | 0x80;
479 }
480 
hash_kfence_map_pages(struct page * page,int numpages,int enable)481 static int hash_kfence_map_pages(struct page *page, int numpages, int enable)
482 {
483 	unsigned long flags, vaddr, lmi;
484 	int i;
485 
486 	WARN_ON_ONCE(!linear_map_kf_hash_count);
487 	local_irq_save(flags);
488 	for (i = 0; i < numpages; i++, page++) {
489 		vaddr = (unsigned long)page_address(page);
490 		lmi = (vaddr - (unsigned long)__kfence_pool) >> PAGE_SHIFT;
491 
492 		/* Ideally this should never happen */
493 		if (lmi >= linear_map_kf_hash_count) {
494 			WARN_ON_ONCE(1);
495 			continue;
496 		}
497 
498 		if (enable)
499 			kernel_map_linear_page(vaddr, lmi,
500 					       linear_map_kf_hash_slots,
501 					       &linear_map_kf_hash_lock);
502 		else
503 			kernel_unmap_linear_page(vaddr, lmi,
504 						 linear_map_kf_hash_slots,
505 						 &linear_map_kf_hash_lock);
506 	}
507 	local_irq_restore(flags);
508 	return 0;
509 }
510 #else
hash_kfence_alloc_pool(void)511 static inline void hash_kfence_alloc_pool(void) {}
hash_kfence_map_pool(void)512 static inline void hash_kfence_map_pool(void) {}
hash_kfence_add_slot(phys_addr_t paddr,int slot)513 static inline void hash_kfence_add_slot(phys_addr_t paddr, int slot) {}
514 static int __maybe_unused
hash_kfence_map_pages(struct page * page,int numpages,int enable)515 hash_kfence_map_pages(struct page *page, int numpages, int enable)
516 {
517 	return 0;
518 }
519 #endif
520 
521 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_KFENCE)
hash__kernel_map_pages(struct page * page,int numpages,int enable)522 int hash__kernel_map_pages(struct page *page, int numpages, int enable)
523 {
524 	void *vaddr = page_address(page);
525 
526 	if (is_kfence_address(vaddr))
527 		return hash_kfence_map_pages(page, numpages, enable);
528 	else
529 		return hash_debug_pagealloc_map_pages(page, numpages, enable);
530 }
531 
hash_linear_map_add_slot(phys_addr_t paddr,int slot)532 static void hash_linear_map_add_slot(phys_addr_t paddr, int slot)
533 {
534 	if (is_kfence_address(__va(paddr)))
535 		hash_kfence_add_slot(paddr, slot);
536 	else
537 		hash_debug_pagealloc_add_slot(paddr, slot);
538 }
539 #else
hash_linear_map_add_slot(phys_addr_t paddr,int slot)540 static void hash_linear_map_add_slot(phys_addr_t paddr, int slot) {}
541 #endif
542 
543 /*
544  * 'R' and 'C' update notes:
545  *  - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
546  *     create writeable HPTEs without C set, because the hcall H_PROTECT
547  *     that we use in that case will not update C
548  *  - The above is however not a problem, because we also don't do that
549  *     fancy "no flush" variant of eviction and we use H_REMOVE which will
550  *     do the right thing and thus we don't have the race I described earlier
551  *
552  *    - Under bare metal,  we do have the race, so we need R and C set
553  *    - We make sure R is always set and never lost
554  *    - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
555  */
htab_convert_pte_flags(unsigned long pteflags,unsigned long flags)556 unsigned long htab_convert_pte_flags(unsigned long pteflags, unsigned long flags)
557 {
558 	unsigned long rflags = 0;
559 
560 	/* _PAGE_EXEC -> NOEXEC */
561 	if ((pteflags & _PAGE_EXEC) == 0)
562 		rflags |= HPTE_R_N;
563 	/*
564 	 * PPP bits:
565 	 * Linux uses slb key 0 for kernel and 1 for user.
566 	 * kernel RW areas are mapped with PPP=0b000
567 	 * User area is mapped with PPP=0b010 for read/write
568 	 * or PPP=0b011 for read-only (including writeable but clean pages).
569 	 */
570 	if (pteflags & _PAGE_PRIVILEGED) {
571 		/*
572 		 * Kernel read only mapped with ppp bits 0b110
573 		 */
574 		if (!(pteflags & _PAGE_WRITE)) {
575 			if (mmu_has_feature(MMU_FTR_KERNEL_RO))
576 				rflags |= (HPTE_R_PP0 | 0x2);
577 			else
578 				rflags |= 0x3;
579 		}
580 		VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
581 	} else {
582 		if (pteflags & _PAGE_RWX)
583 			rflags |= 0x2;
584 		/*
585 		 * We should never hit this in normal fault handling because
586 		 * a permission check (check_pte_access()) will bubble this
587 		 * to higher level linux handler even for PAGE_NONE.
588 		 */
589 		VM_WARN_ONCE(!(pteflags & _PAGE_RWX), "no-access mapping request");
590 		if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
591 			rflags |= 0x1;
592 	}
593 	/*
594 	 * We can't allow hardware to update hpte bits. Hence always
595 	 * set 'R' bit and set 'C' if it is a write fault
596 	 */
597 	rflags |=  HPTE_R_R;
598 
599 	if (pteflags & _PAGE_DIRTY)
600 		rflags |= HPTE_R_C;
601 	/*
602 	 * Add in WIG bits
603 	 */
604 
605 	if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
606 		rflags |= HPTE_R_I;
607 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
608 		rflags |= (HPTE_R_I | HPTE_R_G);
609 	else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
610 		rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
611 	else
612 		/*
613 		 * Add memory coherence if cache inhibited is not set
614 		 */
615 		rflags |= HPTE_R_M;
616 
617 	rflags |= pte_to_hpte_pkey_bits(pteflags, flags);
618 	return rflags;
619 }
620 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)621 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
622 		      unsigned long pstart, unsigned long prot,
623 		      int psize, int ssize)
624 {
625 	unsigned long vaddr, paddr;
626 	unsigned int step, shift;
627 	int ret = 0;
628 
629 	shift = mmu_psize_defs[psize].shift;
630 	step = 1 << shift;
631 
632 	prot = htab_convert_pte_flags(prot, HPTE_USE_KERNEL_KEY);
633 
634 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
635 	    vstart, vend, pstart, prot, psize, ssize);
636 
637 	/* Carefully map only the possible range */
638 	vaddr = ALIGN(vstart, step);
639 	paddr = ALIGN(pstart, step);
640 	vend  = ALIGN_DOWN(vend, step);
641 
642 	for (; vaddr < vend; vaddr += step, paddr += step) {
643 		unsigned long hash, hpteg;
644 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
645 		unsigned long vpn  = hpt_vpn(vaddr, vsid, ssize);
646 		unsigned long tprot = prot;
647 		bool secondary_hash = false;
648 
649 		/*
650 		 * If we hit a bad address return error.
651 		 */
652 		if (!vsid)
653 			return -1;
654 		/* Make kernel text executable */
655 		if (overlaps_kernel_text(vaddr, vaddr + step))
656 			tprot &= ~HPTE_R_N;
657 
658 		/*
659 		 * If relocatable, check if it overlaps interrupt vectors that
660 		 * are copied down to real 0. For relocatable kernel
661 		 * (e.g. kdump case) we copy interrupt vectors down to real
662 		 * address 0. Mark that region as executable. This is
663 		 * because on p8 system with relocation on exception feature
664 		 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
665 		 * in order to execute the interrupt handlers in virtual
666 		 * mode the vector region need to be marked as executable.
667 		 */
668 		if ((PHYSICAL_START > MEMORY_START) &&
669 			overlaps_interrupt_vector_text(vaddr, vaddr + step))
670 				tprot &= ~HPTE_R_N;
671 
672 		hash = hpt_hash(vpn, shift, ssize);
673 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
674 
675 		BUG_ON(!mmu_hash_ops.hpte_insert);
676 repeat:
677 		ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
678 					       HPTE_V_BOLTED, psize, psize,
679 					       ssize);
680 		if (ret == -1) {
681 			/*
682 			 * Try to keep bolted entries in primary.
683 			 * Remove non bolted entries and try insert again
684 			 */
685 			ret = mmu_hash_ops.hpte_remove(hpteg);
686 			if (ret != -1)
687 				ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
688 							       HPTE_V_BOLTED, psize, psize,
689 							       ssize);
690 			if (ret == -1 && !secondary_hash) {
691 				secondary_hash = true;
692 				hpteg = ((~hash & htab_hash_mask) * HPTES_PER_GROUP);
693 				goto repeat;
694 			}
695 		}
696 
697 		if (ret < 0)
698 			break;
699 
700 		cond_resched();
701 		/* add slot info in debug_pagealloc / kfence linear map */
702 		hash_linear_map_add_slot(paddr, ret);
703 	}
704 	return ret < 0 ? ret : 0;
705 }
706 
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)707 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
708 		      int psize, int ssize)
709 {
710 	unsigned long vaddr, time_limit;
711 	unsigned int step, shift;
712 	int rc;
713 	int ret = 0;
714 
715 	shift = mmu_psize_defs[psize].shift;
716 	step = 1 << shift;
717 
718 	if (!mmu_hash_ops.hpte_removebolted)
719 		return -ENODEV;
720 
721 	/* Unmap the full range specificied */
722 	vaddr = ALIGN_DOWN(vstart, step);
723 	time_limit = jiffies + HZ;
724 
725 	for (;vaddr < vend; vaddr += step) {
726 		rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
727 
728 		/*
729 		 * For large number of mappings introduce a cond_resched()
730 		 * to prevent softlockup warnings.
731 		 */
732 		if (time_after(jiffies, time_limit)) {
733 			cond_resched();
734 			time_limit = jiffies + HZ;
735 		}
736 		if (rc == -ENOENT) {
737 			ret = -ENOENT;
738 			continue;
739 		}
740 		if (rc < 0)
741 			return rc;
742 	}
743 
744 	return ret;
745 }
746 
747 static bool disable_1tb_segments __ro_after_init;
748 
parse_disable_1tb_segments(char * p)749 static int __init parse_disable_1tb_segments(char *p)
750 {
751 	disable_1tb_segments = true;
752 	return 0;
753 }
754 early_param("disable_1tb_segments", parse_disable_1tb_segments);
755 
756 bool stress_hpt_enabled __initdata;
757 
parse_stress_hpt(char * p)758 static int __init parse_stress_hpt(char *p)
759 {
760 	stress_hpt_enabled = true;
761 	return 0;
762 }
763 early_param("stress_hpt", parse_stress_hpt);
764 
765 __ro_after_init DEFINE_STATIC_KEY_FALSE(stress_hpt_key);
766 
767 /*
768  * per-CPU array allocated if we enable stress_hpt.
769  */
770 #define STRESS_MAX_GROUPS 16
771 struct stress_hpt_struct {
772 	unsigned long last_group[STRESS_MAX_GROUPS];
773 };
774 
stress_nr_groups(void)775 static inline int stress_nr_groups(void)
776 {
777 	/*
778 	 * LPAR H_REMOVE flushes TLB, so need some number > 1 of entries
779 	 * to allow practical forward progress. Bare metal returns 1, which
780 	 * seems to help uncover more bugs.
781 	 */
782 	if (firmware_has_feature(FW_FEATURE_LPAR))
783 		return STRESS_MAX_GROUPS;
784 	else
785 		return 1;
786 }
787 
788 static struct stress_hpt_struct *stress_hpt_struct;
789 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)790 static int __init htab_dt_scan_seg_sizes(unsigned long node,
791 					 const char *uname, int depth,
792 					 void *data)
793 {
794 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
795 	const __be32 *prop;
796 	int size = 0;
797 
798 	/* We are scanning "cpu" nodes only */
799 	if (type == NULL || strcmp(type, "cpu") != 0)
800 		return 0;
801 
802 	prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
803 	if (prop == NULL)
804 		return 0;
805 	for (; size >= 4; size -= 4, ++prop) {
806 		if (be32_to_cpu(prop[0]) == 40) {
807 			DBG("1T segment support detected\n");
808 
809 			if (disable_1tb_segments) {
810 				DBG("1T segments disabled by command line\n");
811 				break;
812 			}
813 
814 			cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
815 			return 1;
816 		}
817 	}
818 	cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
819 	return 0;
820 }
821 
get_idx_from_shift(unsigned int shift)822 static int __init get_idx_from_shift(unsigned int shift)
823 {
824 	int idx = -1;
825 
826 	switch (shift) {
827 	case 0xc:
828 		idx = MMU_PAGE_4K;
829 		break;
830 	case 0x10:
831 		idx = MMU_PAGE_64K;
832 		break;
833 	case 0x14:
834 		idx = MMU_PAGE_1M;
835 		break;
836 	case 0x18:
837 		idx = MMU_PAGE_16M;
838 		break;
839 	case 0x22:
840 		idx = MMU_PAGE_16G;
841 		break;
842 	}
843 	return idx;
844 }
845 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)846 static int __init htab_dt_scan_page_sizes(unsigned long node,
847 					  const char *uname, int depth,
848 					  void *data)
849 {
850 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
851 	const __be32 *prop;
852 	int size = 0;
853 
854 	/* We are scanning "cpu" nodes only */
855 	if (type == NULL || strcmp(type, "cpu") != 0)
856 		return 0;
857 
858 	prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
859 	if (!prop)
860 		return 0;
861 
862 	pr_info("Page sizes from device-tree:\n");
863 	size /= 4;
864 	cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
865 	while(size > 0) {
866 		unsigned int base_shift = be32_to_cpu(prop[0]);
867 		unsigned int slbenc = be32_to_cpu(prop[1]);
868 		unsigned int lpnum = be32_to_cpu(prop[2]);
869 		struct mmu_psize_def *def;
870 		int idx, base_idx;
871 
872 		size -= 3; prop += 3;
873 		base_idx = get_idx_from_shift(base_shift);
874 		if (base_idx < 0) {
875 			/* skip the pte encoding also */
876 			prop += lpnum * 2; size -= lpnum * 2;
877 			continue;
878 		}
879 		def = &mmu_psize_defs[base_idx];
880 		if (base_idx == MMU_PAGE_16M)
881 			cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
882 
883 		def->shift = base_shift;
884 		if (base_shift <= 23)
885 			def->avpnm = 0;
886 		else
887 			def->avpnm = (1 << (base_shift - 23)) - 1;
888 		def->sllp = slbenc;
889 		/*
890 		 * We don't know for sure what's up with tlbiel, so
891 		 * for now we only set it for 4K and 64K pages
892 		 */
893 		if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
894 			def->tlbiel = 1;
895 		else
896 			def->tlbiel = 0;
897 
898 		while (size > 0 && lpnum) {
899 			unsigned int shift = be32_to_cpu(prop[0]);
900 			int penc  = be32_to_cpu(prop[1]);
901 
902 			prop += 2; size -= 2;
903 			lpnum--;
904 
905 			idx = get_idx_from_shift(shift);
906 			if (idx < 0)
907 				continue;
908 
909 			if (penc == -1)
910 				pr_err("Invalid penc for base_shift=%d "
911 				       "shift=%d\n", base_shift, shift);
912 
913 			def->penc[idx] = penc;
914 			pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
915 				" avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
916 				base_shift, shift, def->sllp,
917 				def->avpnm, def->tlbiel, def->penc[idx]);
918 		}
919 	}
920 
921 	return 1;
922 }
923 
924 #ifdef CONFIG_HUGETLB_PAGE
925 /*
926  * Scan for 16G memory blocks that have been set aside for huge pages
927  * and reserve those blocks for 16G huge pages.
928  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)929 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
930 					const char *uname, int depth,
931 					void *data) {
932 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
933 	const __be64 *addr_prop;
934 	const __be32 *page_count_prop;
935 	unsigned int expected_pages;
936 	long unsigned int phys_addr;
937 	long unsigned int block_size;
938 
939 	/* We are scanning "memory" nodes only */
940 	if (type == NULL || strcmp(type, "memory") != 0)
941 		return 0;
942 
943 	/*
944 	 * This property is the log base 2 of the number of virtual pages that
945 	 * will represent this memory block.
946 	 */
947 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
948 	if (page_count_prop == NULL)
949 		return 0;
950 	expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
951 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
952 	if (addr_prop == NULL)
953 		return 0;
954 	phys_addr = be64_to_cpu(addr_prop[0]);
955 	block_size = be64_to_cpu(addr_prop[1]);
956 	if (block_size != (16 * GB))
957 		return 0;
958 	pr_info("Huge page(16GB) memory: "
959 			"addr = 0x%lX size = 0x%lX pages = %d\n",
960 			phys_addr, block_size, expected_pages);
961 	if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
962 		memblock_reserve(phys_addr, block_size * expected_pages);
963 		pseries_add_gpage(phys_addr, block_size, expected_pages);
964 	}
965 	return 0;
966 }
967 #endif /* CONFIG_HUGETLB_PAGE */
968 
mmu_psize_set_default_penc(void)969 static void __init mmu_psize_set_default_penc(void)
970 {
971 	int bpsize, apsize;
972 	for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
973 		for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
974 			mmu_psize_defs[bpsize].penc[apsize] = -1;
975 }
976 
977 #ifdef CONFIG_PPC_64K_PAGES
978 
might_have_hea(void)979 static bool __init might_have_hea(void)
980 {
981 	/*
982 	 * The HEA ethernet adapter requires awareness of the
983 	 * GX bus. Without that awareness we can easily assume
984 	 * we will never see an HEA ethernet device.
985 	 */
986 #ifdef CONFIG_IBMEBUS
987 	return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
988 		firmware_has_feature(FW_FEATURE_SPLPAR);
989 #else
990 	return false;
991 #endif
992 }
993 
994 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
995 
htab_scan_page_sizes(void)996 static void __init htab_scan_page_sizes(void)
997 {
998 	int rc;
999 
1000 	/* se the invalid penc to -1 */
1001 	mmu_psize_set_default_penc();
1002 
1003 	/* Default to 4K pages only */
1004 	memcpy(mmu_psize_defs, mmu_psize_defaults,
1005 	       sizeof(mmu_psize_defaults));
1006 
1007 	/*
1008 	 * Try to find the available page sizes in the device-tree
1009 	 */
1010 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
1011 	if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
1012 		/*
1013 		 * Nothing in the device-tree, but the CPU supports 16M pages,
1014 		 * so let's fallback on a known size list for 16M capable CPUs.
1015 		 */
1016 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
1017 		       sizeof(mmu_psize_defaults_gp));
1018 	}
1019 
1020 #ifdef CONFIG_HUGETLB_PAGE
1021 	if (!hugetlb_disabled && !early_radix_enabled() ) {
1022 		/* Reserve 16G huge page memory sections for huge pages */
1023 		of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
1024 	}
1025 #endif /* CONFIG_HUGETLB_PAGE */
1026 }
1027 
1028 /*
1029  * Fill in the hpte_page_sizes[] array.
1030  * We go through the mmu_psize_defs[] array looking for all the
1031  * supported base/actual page size combinations.  Each combination
1032  * has a unique pagesize encoding (penc) value in the low bits of
1033  * the LP field of the HPTE.  For actual page sizes less than 1MB,
1034  * some of the upper LP bits are used for RPN bits, meaning that
1035  * we need to fill in several entries in hpte_page_sizes[].
1036  *
1037  * In diagrammatic form, with r = RPN bits and z = page size bits:
1038  *        PTE LP     actual page size
1039  *    rrrr rrrz		>=8KB
1040  *    rrrr rrzz		>=16KB
1041  *    rrrr rzzz		>=32KB
1042  *    rrrr zzzz		>=64KB
1043  *    ...
1044  *
1045  * The zzzz bits are implementation-specific but are chosen so that
1046  * no encoding for a larger page size uses the same value in its
1047  * low-order N bits as the encoding for the 2^(12+N) byte page size
1048  * (if it exists).
1049  */
init_hpte_page_sizes(void)1050 static void __init init_hpte_page_sizes(void)
1051 {
1052 	long int ap, bp;
1053 	long int shift, penc;
1054 
1055 	for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
1056 		if (!mmu_psize_defs[bp].shift)
1057 			continue;	/* not a supported page size */
1058 		for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
1059 			penc = mmu_psize_defs[bp].penc[ap];
1060 			if (penc == -1 || !mmu_psize_defs[ap].shift)
1061 				continue;
1062 			shift = mmu_psize_defs[ap].shift - LP_SHIFT;
1063 			if (shift <= 0)
1064 				continue;	/* should never happen */
1065 			/*
1066 			 * For page sizes less than 1MB, this loop
1067 			 * replicates the entry for all possible values
1068 			 * of the rrrr bits.
1069 			 */
1070 			while (penc < (1 << LP_BITS)) {
1071 				hpte_page_sizes[penc] = (ap << 4) | bp;
1072 				penc += 1 << shift;
1073 			}
1074 		}
1075 	}
1076 }
1077 
htab_init_page_sizes(void)1078 static void __init htab_init_page_sizes(void)
1079 {
1080 	bool aligned = true;
1081 	init_hpte_page_sizes();
1082 
1083 	if (!hash_supports_debug_pagealloc() && !kfence_early_init_enabled()) {
1084 		/*
1085 		 * Pick a size for the linear mapping. Currently, we only
1086 		 * support 16M, 1M and 4K which is the default
1087 		 */
1088 		if (IS_ENABLED(CONFIG_STRICT_KERNEL_RWX) &&
1089 		    (unsigned long)_stext % 0x1000000) {
1090 			if (mmu_psize_defs[MMU_PAGE_16M].shift)
1091 				pr_warn("Kernel not 16M aligned, disabling 16M linear map alignment\n");
1092 			aligned = false;
1093 		}
1094 
1095 		if (mmu_psize_defs[MMU_PAGE_16M].shift && aligned)
1096 			mmu_linear_psize = MMU_PAGE_16M;
1097 		else if (mmu_psize_defs[MMU_PAGE_1M].shift)
1098 			mmu_linear_psize = MMU_PAGE_1M;
1099 	}
1100 
1101 #ifdef CONFIG_PPC_64K_PAGES
1102 	/*
1103 	 * Pick a size for the ordinary pages. Default is 4K, we support
1104 	 * 64K for user mappings and vmalloc if supported by the processor.
1105 	 * We only use 64k for ioremap if the processor
1106 	 * (and firmware) support cache-inhibited large pages.
1107 	 * If not, we use 4k and set mmu_ci_restrictions so that
1108 	 * hash_page knows to switch processes that use cache-inhibited
1109 	 * mappings to 4k pages.
1110 	 */
1111 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
1112 		mmu_virtual_psize = MMU_PAGE_64K;
1113 		mmu_vmalloc_psize = MMU_PAGE_64K;
1114 		if (mmu_linear_psize == MMU_PAGE_4K)
1115 			mmu_linear_psize = MMU_PAGE_64K;
1116 		if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
1117 			/*
1118 			 * When running on pSeries using 64k pages for ioremap
1119 			 * would stop us accessing the HEA ethernet. So if we
1120 			 * have the chance of ever seeing one, stay at 4k.
1121 			 */
1122 			if (!might_have_hea())
1123 				mmu_io_psize = MMU_PAGE_64K;
1124 		} else
1125 			mmu_ci_restrictions = 1;
1126 	}
1127 #endif /* CONFIG_PPC_64K_PAGES */
1128 
1129 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1130 	/*
1131 	 * We try to use 16M pages for vmemmap if that is supported
1132 	 * and we have at least 1G of RAM at boot
1133 	 */
1134 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
1135 	    memblock_phys_mem_size() >= 0x40000000)
1136 		mmu_vmemmap_psize = MMU_PAGE_16M;
1137 	else
1138 		mmu_vmemmap_psize = mmu_virtual_psize;
1139 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
1140 
1141 	pr_info("Page orders: linear mapping = %d, "
1142 	       "virtual = %d, io = %d"
1143 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1144 	       ", vmemmap = %d"
1145 #endif
1146 	       "\n",
1147 	       mmu_psize_defs[mmu_linear_psize].shift,
1148 	       mmu_psize_defs[mmu_virtual_psize].shift,
1149 	       mmu_psize_defs[mmu_io_psize].shift
1150 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1151 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
1152 #endif
1153 	       );
1154 }
1155 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)1156 static int __init htab_dt_scan_pftsize(unsigned long node,
1157 				       const char *uname, int depth,
1158 				       void *data)
1159 {
1160 	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1161 	const __be32 *prop;
1162 
1163 	/* We are scanning "cpu" nodes only */
1164 	if (type == NULL || strcmp(type, "cpu") != 0)
1165 		return 0;
1166 
1167 	prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
1168 	if (prop != NULL) {
1169 		/* pft_size[0] is the NUMA CEC cookie */
1170 		ppc64_pft_size = be32_to_cpu(prop[1]);
1171 		return 1;
1172 	}
1173 	return 0;
1174 }
1175 
htab_shift_for_mem_size(unsigned long mem_size)1176 unsigned htab_shift_for_mem_size(unsigned long mem_size)
1177 {
1178 	unsigned memshift = __ilog2(mem_size);
1179 	unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
1180 	unsigned pteg_shift;
1181 
1182 	/* round mem_size up to next power of 2 */
1183 	if ((1UL << memshift) < mem_size)
1184 		memshift += 1;
1185 
1186 	/* aim for 2 pages / pteg */
1187 	pteg_shift = memshift - (pshift + 1);
1188 
1189 	/*
1190 	 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
1191 	 * size permitted by the architecture.
1192 	 */
1193 	return max(pteg_shift + 7, 18U);
1194 }
1195 
htab_get_table_size(void)1196 static unsigned long __init htab_get_table_size(void)
1197 {
1198 	/*
1199 	 * If hash size isn't already provided by the platform, we try to
1200 	 * retrieve it from the device-tree. If it's not there neither, we
1201 	 * calculate it now based on the total RAM size
1202 	 */
1203 	if (ppc64_pft_size == 0)
1204 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
1205 	if (ppc64_pft_size)
1206 		return 1UL << ppc64_pft_size;
1207 
1208 	return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
1209 }
1210 
1211 #ifdef CONFIG_MEMORY_HOTPLUG
resize_hpt_for_hotplug(unsigned long new_mem_size)1212 static int resize_hpt_for_hotplug(unsigned long new_mem_size)
1213 {
1214 	unsigned target_hpt_shift;
1215 
1216 	if (!mmu_hash_ops.resize_hpt)
1217 		return 0;
1218 
1219 	target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
1220 
1221 	/*
1222 	 * To avoid lots of HPT resizes if memory size is fluctuating
1223 	 * across a boundary, we deliberately have some hysterisis
1224 	 * here: we immediately increase the HPT size if the target
1225 	 * shift exceeds the current shift, but we won't attempt to
1226 	 * reduce unless the target shift is at least 2 below the
1227 	 * current shift
1228 	 */
1229 	if (target_hpt_shift > ppc64_pft_size ||
1230 	    target_hpt_shift < ppc64_pft_size - 1)
1231 		return mmu_hash_ops.resize_hpt(target_hpt_shift);
1232 
1233 	return 0;
1234 }
1235 
hash__create_section_mapping(unsigned long start,unsigned long end,int nid,pgprot_t prot)1236 int hash__create_section_mapping(unsigned long start, unsigned long end,
1237 				 int nid, pgprot_t prot)
1238 {
1239 	int rc;
1240 	unsigned int pshift = mmu_psize_defs[mmu_linear_psize].shift;
1241 
1242 	if (end >= H_VMALLOC_START) {
1243 		pr_warn("Outside the supported range\n");
1244 		return -1;
1245 	}
1246 
1247 	resize_hpt_for_hotplug(memblock_phys_mem_size());
1248 
1249 	rc = htab_bolt_mapping(start, end, __pa(start),
1250 			       pgprot_val(prot), mmu_linear_psize,
1251 			       mmu_kernel_ssize);
1252 
1253 	if (rc < 0) {
1254 		int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
1255 					      mmu_kernel_ssize);
1256 		BUG_ON(rc2 && (rc2 != -ENOENT));
1257 	}
1258 	update_page_count(mmu_linear_psize, (end - start) >> pshift);
1259 	return rc;
1260 }
1261 
hash__remove_section_mapping(unsigned long start,unsigned long end)1262 int hash__remove_section_mapping(unsigned long start, unsigned long end)
1263 {
1264 	unsigned int pshift = mmu_psize_defs[mmu_linear_psize].shift;
1265 
1266 	int rc = htab_remove_mapping(start, end, mmu_linear_psize,
1267 				     mmu_kernel_ssize);
1268 
1269 	if (resize_hpt_for_hotplug(memblock_phys_mem_size()) == -ENOSPC)
1270 		pr_warn("Hash collision while resizing HPT\n");
1271 
1272 	if (!rc)
1273 		update_page_count(mmu_linear_psize, -((end - start) >> pshift));
1274 	return rc;
1275 }
1276 #endif /* CONFIG_MEMORY_HOTPLUG */
1277 
hash_init_partition_table(phys_addr_t hash_table,unsigned long htab_size)1278 static void __init hash_init_partition_table(phys_addr_t hash_table,
1279 					     unsigned long htab_size)
1280 {
1281 	mmu_partition_table_init();
1282 
1283 	/*
1284 	 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
1285 	 * For now, UPRT is 0 and we have no segment table.
1286 	 */
1287 	htab_size =  __ilog2(htab_size) - 18;
1288 	mmu_partition_table_set_entry(0, hash_table | htab_size, 0, false);
1289 	pr_info("Partition table %p\n", partition_tb);
1290 }
1291 
1292 void hpt_clear_stress(void);
1293 static struct timer_list stress_hpt_timer;
stress_hpt_timer_fn(struct timer_list * timer)1294 static void stress_hpt_timer_fn(struct timer_list *timer)
1295 {
1296 	int next_cpu;
1297 
1298 	hpt_clear_stress();
1299 	if (!firmware_has_feature(FW_FEATURE_LPAR))
1300 		tlbiel_all();
1301 
1302 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
1303 	if (next_cpu >= nr_cpu_ids)
1304 		next_cpu = cpumask_first(cpu_online_mask);
1305 	stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1306 	add_timer_on(&stress_hpt_timer, next_cpu);
1307 }
1308 
htab_initialize(void)1309 static void __init htab_initialize(void)
1310 {
1311 	unsigned long table;
1312 	unsigned long pteg_count;
1313 	unsigned long prot;
1314 	phys_addr_t base = 0, size = 0, end, limit = MEMBLOCK_ALLOC_ANYWHERE;
1315 	u64 i;
1316 	unsigned int pshift = mmu_psize_defs[mmu_linear_psize].shift;
1317 
1318 	DBG(" -> htab_initialize()\n");
1319 
1320 	if (firmware_has_feature(FW_FEATURE_LPAR))
1321 		limit = ppc64_rma_size;
1322 
1323 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
1324 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
1325 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
1326 		pr_info("Using 1TB segments\n");
1327 	}
1328 
1329 	if (stress_slb_enabled)
1330 		static_branch_enable(&stress_slb_key);
1331 
1332 	if (no_slb_preload)
1333 		static_branch_enable(&no_slb_preload_key);
1334 
1335 	if (stress_hpt_enabled) {
1336 		unsigned long tmp;
1337 		static_branch_enable(&stress_hpt_key);
1338 		// Too early to use nr_cpu_ids, so use NR_CPUS
1339 		tmp = memblock_phys_alloc_range(sizeof(struct stress_hpt_struct) * NR_CPUS,
1340 						__alignof__(struct stress_hpt_struct),
1341 						MEMBLOCK_LOW_LIMIT, limit);
1342 		memset((void *)tmp, 0xff, sizeof(struct stress_hpt_struct) * NR_CPUS);
1343 		stress_hpt_struct = __va(tmp);
1344 
1345 		timer_setup(&stress_hpt_timer, stress_hpt_timer_fn, 0);
1346 		stress_hpt_timer.expires = jiffies + msecs_to_jiffies(10);
1347 		add_timer(&stress_hpt_timer);
1348 	}
1349 
1350 	/*
1351 	 * Calculate the required size of the htab.  We want the number of
1352 	 * PTEGs to equal one half the number of real pages.
1353 	 */
1354 	htab_size_bytes = htab_get_table_size();
1355 	pteg_count = htab_size_bytes >> 7;
1356 
1357 	htab_hash_mask = pteg_count - 1;
1358 
1359 	if (firmware_has_feature(FW_FEATURE_LPAR) ||
1360 	    firmware_has_feature(FW_FEATURE_PS3_LV1)) {
1361 		/* Using a hypervisor which owns the htab */
1362 		htab_address = NULL;
1363 		_SDR1 = 0;
1364 #ifdef CONFIG_FA_DUMP
1365 		/*
1366 		 * If firmware assisted dump is active firmware preserves
1367 		 * the contents of htab along with entire partition memory.
1368 		 * Clear the htab if firmware assisted dump is active so
1369 		 * that we dont end up using old mappings.
1370 		 */
1371 		if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
1372 			mmu_hash_ops.hpte_clear_all();
1373 #endif
1374 	} else {
1375 
1376 		table = memblock_phys_alloc_range(htab_size_bytes,
1377 						  htab_size_bytes,
1378 						  MEMBLOCK_LOW_LIMIT, limit);
1379 		if (!table)
1380 			panic("ERROR: Failed to allocate %pa bytes below %pa\n",
1381 			      &htab_size_bytes, &limit);
1382 
1383 		DBG("Hash table allocated at %lx, size: %lx\n", table,
1384 		    htab_size_bytes);
1385 
1386 		htab_address = __va(table);
1387 
1388 		/* htab absolute addr + encoded htabsize */
1389 		_SDR1 = table + __ilog2(htab_size_bytes) - 18;
1390 
1391 		/* Initialize the HPT with no entries */
1392 		memset((void *)table, 0, htab_size_bytes);
1393 
1394 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1395 			/* Set SDR1 */
1396 			mtspr(SPRN_SDR1, _SDR1);
1397 		else
1398 			hash_init_partition_table(table, htab_size_bytes);
1399 	}
1400 
1401 	prot = pgprot_val(PAGE_KERNEL);
1402 
1403 	hash_debug_pagealloc_alloc_slots();
1404 	hash_kfence_alloc_pool();
1405 	/* create bolted the linear mapping in the hash table */
1406 	for_each_mem_range(i, &base, &end) {
1407 		size = end - base;
1408 		base = (unsigned long)__va(base);
1409 
1410 		pr_debug("creating mapping for region: 0x%pa..0x%pa (prot: %lx)\n",
1411 				&base, &size, prot);
1412 
1413 		if ((base + size) >= H_VMALLOC_START) {
1414 			pr_warn("Outside the supported range\n");
1415 			continue;
1416 		}
1417 
1418 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
1419 				prot, mmu_linear_psize, mmu_kernel_ssize));
1420 
1421 		update_page_count(mmu_linear_psize, size >> pshift);
1422 	}
1423 	hash_kfence_map_pool();
1424 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
1425 
1426 	/*
1427 	 * If we have a memory_limit and we've allocated TCEs then we need to
1428 	 * explicitly map the TCE area at the top of RAM. We also cope with the
1429 	 * case that the TCEs start below memory_limit.
1430 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
1431 	 * for either 4K or 16MB pages.
1432 	 */
1433 	if (tce_alloc_start) {
1434 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
1435 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
1436 
1437 		if (base + size >= tce_alloc_start)
1438 			tce_alloc_start = base + size + 1;
1439 
1440 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
1441 					 __pa(tce_alloc_start), prot,
1442 					 mmu_linear_psize, mmu_kernel_ssize));
1443 		update_page_count(mmu_linear_psize,
1444 				  (tce_alloc_end - tce_alloc_start) >> pshift);
1445 	}
1446 
1447 
1448 	DBG(" <- htab_initialize()\n");
1449 }
1450 #undef KB
1451 #undef MB
1452 
hash__early_init_devtree(void)1453 void __init hash__early_init_devtree(void)
1454 {
1455 	/* Initialize segment sizes */
1456 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
1457 
1458 	/* Initialize page sizes */
1459 	htab_scan_page_sizes();
1460 }
1461 
1462 static struct hash_mm_context init_hash_mm_context;
hash__early_init_mmu(void)1463 void __init hash__early_init_mmu(void)
1464 {
1465 #ifndef CONFIG_PPC_64K_PAGES
1466 	/*
1467 	 * We have code in __hash_page_4K() and elsewhere, which assumes it can
1468 	 * do the following:
1469 	 *   new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1470 	 *
1471 	 * Where the slot number is between 0-15, and values of 8-15 indicate
1472 	 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1473 	 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1474 	 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1475 	 * with a BUILD_BUG_ON().
1476 	 */
1477 	BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul  << (H_PAGE_F_GIX_SHIFT + 3)));
1478 #endif /* CONFIG_PPC_64K_PAGES */
1479 
1480 	htab_init_page_sizes();
1481 
1482 	/*
1483 	 * initialize page table size
1484 	 */
1485 	__pte_frag_nr = H_PTE_FRAG_NR;
1486 	__pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1487 	__pmd_frag_nr = H_PMD_FRAG_NR;
1488 	__pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1489 
1490 	__pte_index_size = H_PTE_INDEX_SIZE;
1491 	__pmd_index_size = H_PMD_INDEX_SIZE;
1492 	__pud_index_size = H_PUD_INDEX_SIZE;
1493 	__pgd_index_size = H_PGD_INDEX_SIZE;
1494 	__pud_cache_index = H_PUD_CACHE_INDEX;
1495 	__pte_table_size = H_PTE_TABLE_SIZE;
1496 	__pmd_table_size = H_PMD_TABLE_SIZE;
1497 	__pud_table_size = H_PUD_TABLE_SIZE;
1498 	__pgd_table_size = H_PGD_TABLE_SIZE;
1499 	__pmd_val_bits = HASH_PMD_VAL_BITS;
1500 	__pud_val_bits = HASH_PUD_VAL_BITS;
1501 	__pgd_val_bits = HASH_PGD_VAL_BITS;
1502 
1503 	__kernel_virt_start = H_KERN_VIRT_START;
1504 	__vmalloc_start = H_VMALLOC_START;
1505 	__vmalloc_end = H_VMALLOC_END;
1506 	__kernel_io_start = H_KERN_IO_START;
1507 	__kernel_io_end = H_KERN_IO_END;
1508 	vmemmap = (struct page *)H_VMEMMAP_START;
1509 	ioremap_bot = IOREMAP_BASE;
1510 
1511 #ifdef CONFIG_PCI
1512 	pci_io_base = ISA_IO_BASE;
1513 #endif
1514 
1515 	/* Select appropriate backend */
1516 	if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1517 		ps3_early_mm_init();
1518 	else if (firmware_has_feature(FW_FEATURE_LPAR))
1519 		hpte_init_pseries();
1520 	else if (IS_ENABLED(CONFIG_PPC_HASH_MMU_NATIVE))
1521 		hpte_init_native();
1522 
1523 	if (!mmu_hash_ops.hpte_insert)
1524 		panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1525 
1526 	/*
1527 	 * Initialize the MMU Hash table and create the linear mapping
1528 	 * of memory. Has to be done before SLB initialization as this is
1529 	 * currently where the page size encoding is obtained.
1530 	 */
1531 	htab_initialize();
1532 
1533 	init_mm.context.hash_context = &init_hash_mm_context;
1534 	mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
1535 
1536 	pr_info("Initializing hash mmu with SLB\n");
1537 	/* Initialize SLB management */
1538 	slb_initialize();
1539 
1540 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1541 			&& cpu_has_feature(CPU_FTR_HVMODE))
1542 		tlbiel_all();
1543 }
1544 
1545 #ifdef CONFIG_SMP
hash__early_init_mmu_secondary(void)1546 void hash__early_init_mmu_secondary(void)
1547 {
1548 	/* Initialize hash table for that CPU */
1549 	if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1550 
1551 		if (!cpu_has_feature(CPU_FTR_ARCH_300))
1552 			mtspr(SPRN_SDR1, _SDR1);
1553 		else
1554 			set_ptcr_when_no_uv(__pa(partition_tb) |
1555 					    (PATB_SIZE_SHIFT - 12));
1556 	}
1557 	/* Initialize SLB */
1558 	slb_initialize();
1559 
1560 	if (cpu_has_feature(CPU_FTR_ARCH_206)
1561 			&& cpu_has_feature(CPU_FTR_HVMODE))
1562 		tlbiel_all();
1563 
1564 #ifdef CONFIG_PPC_MEM_KEYS
1565 	if (mmu_has_feature(MMU_FTR_PKEY))
1566 		mtspr(SPRN_UAMOR, default_uamor);
1567 #endif
1568 }
1569 #endif /* CONFIG_SMP */
1570 
1571 /*
1572  * Called by asm hashtable.S for doing lazy icache flush
1573  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)1574 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1575 {
1576 	struct folio *folio;
1577 
1578 	if (!pfn_valid(pte_pfn(pte)))
1579 		return pp;
1580 
1581 	folio = page_folio(pte_page(pte));
1582 
1583 	/* page is dirty */
1584 	if (!test_bit(PG_dcache_clean, &folio->flags.f) &&
1585 	    !folio_test_reserved(folio)) {
1586 		if (trap == INTERRUPT_INST_STORAGE) {
1587 			flush_dcache_icache_folio(folio);
1588 			set_bit(PG_dcache_clean, &folio->flags.f);
1589 		} else
1590 			pp |= HPTE_R_N;
1591 	}
1592 	return pp;
1593 }
1594 
get_paca_psize(unsigned long addr)1595 static unsigned int get_paca_psize(unsigned long addr)
1596 {
1597 	unsigned char *psizes;
1598 	unsigned long index, mask_index;
1599 
1600 	if (addr < SLICE_LOW_TOP) {
1601 		psizes = get_paca()->mm_ctx_low_slices_psize;
1602 		index = GET_LOW_SLICE_INDEX(addr);
1603 	} else {
1604 		psizes = get_paca()->mm_ctx_high_slices_psize;
1605 		index = GET_HIGH_SLICE_INDEX(addr);
1606 	}
1607 	mask_index = index & 0x1;
1608 	return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1609 }
1610 
1611 
1612 /*
1613  * Demote a segment to using 4k pages.
1614  * For now this makes the whole process use 4k pages.
1615  */
1616 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)1617 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1618 {
1619 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1620 		return;
1621 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1622 #ifdef CONFIG_SPU_BASE
1623 	spu_flush_all_slbs(mm);
1624 #endif
1625 	if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1626 
1627 		copy_mm_to_paca(mm);
1628 		slb_flush_and_restore_bolted();
1629 	}
1630 }
1631 #endif /* CONFIG_PPC_64K_PAGES */
1632 
1633 #ifdef CONFIG_PPC_SUBPAGE_PROT
1634 /*
1635  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1636  * Userspace sets the subpage permissions using the subpage_prot system call.
1637  *
1638  * Result is 0: full permissions, _PAGE_RW: read-only,
1639  * _PAGE_RWX: no access.
1640  */
subpage_protection(struct mm_struct * mm,unsigned long ea)1641 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1642 {
1643 	struct subpage_prot_table *spt = mm_ctx_subpage_prot(&mm->context);
1644 	u32 spp = 0;
1645 	u32 **sbpm, *sbpp;
1646 
1647 	if (!spt)
1648 		return 0;
1649 
1650 	if (ea >= spt->maxaddr)
1651 		return 0;
1652 	if (ea < 0x100000000UL) {
1653 		/* addresses below 4GB use spt->low_prot */
1654 		sbpm = spt->low_prot;
1655 	} else {
1656 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1657 		if (!sbpm)
1658 			return 0;
1659 	}
1660 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1661 	if (!sbpp)
1662 		return 0;
1663 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1664 
1665 	/* extract 2-bit bitfield for this 4k subpage */
1666 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1667 
1668 	/*
1669 	 * 0 -> full permission
1670 	 * 1 -> Read only
1671 	 * 2 -> no access.
1672 	 * We return the flag that need to be cleared.
1673 	 */
1674 	spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1675 	return spp;
1676 }
1677 
1678 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)1679 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1680 {
1681 	return 0;
1682 }
1683 #endif
1684 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,int lpsize,unsigned long pte)1685 void hash_failure_debug(unsigned long ea, unsigned long access,
1686 			unsigned long vsid, unsigned long trap,
1687 			int ssize, int psize, int lpsize, unsigned long pte)
1688 {
1689 	if (!printk_ratelimit())
1690 		return;
1691 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1692 		ea, access, current->comm);
1693 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1694 		trap, vsid, ssize, psize, lpsize, pte);
1695 }
1696 
check_paca_psize(unsigned long ea,struct mm_struct * mm,int psize,bool user_region)1697 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1698 			     int psize, bool user_region)
1699 {
1700 	if (user_region) {
1701 		if (psize != get_paca_psize(ea)) {
1702 			copy_mm_to_paca(mm);
1703 			slb_flush_and_restore_bolted();
1704 		}
1705 	} else if (get_paca()->vmalloc_sllp !=
1706 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1707 		get_paca()->vmalloc_sllp =
1708 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1709 		slb_vmalloc_update();
1710 	}
1711 }
1712 
1713 /*
1714  * Result code is:
1715  *  0 - handled
1716  *  1 - normal page fault
1717  * -1 - critical hash insertion error
1718  * -2 - access not permitted by subpage protection mechanism
1719  */
hash_page_mm(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap,unsigned long flags)1720 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1721 		 unsigned long access, unsigned long trap,
1722 		 unsigned long flags)
1723 {
1724 	bool is_thp;
1725 	pgd_t *pgdir;
1726 	unsigned long vsid;
1727 	pte_t *ptep;
1728 	unsigned hugeshift;
1729 	int rc, user_region = 0;
1730 	int psize, ssize;
1731 
1732 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1733 		ea, access, trap);
1734 	trace_hash_fault(ea, access, trap);
1735 
1736 	/* Get region & vsid */
1737 	switch (get_region_id(ea)) {
1738 	case USER_REGION_ID:
1739 		user_region = 1;
1740 		if (! mm) {
1741 			DBG_LOW(" user region with no mm !\n");
1742 			rc = 1;
1743 			goto bail;
1744 		}
1745 		psize = get_slice_psize(mm, ea);
1746 		ssize = user_segment_size(ea);
1747 		vsid = get_user_vsid(&mm->context, ea, ssize);
1748 		break;
1749 	case VMALLOC_REGION_ID:
1750 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1751 		psize = mmu_vmalloc_psize;
1752 		ssize = mmu_kernel_ssize;
1753 		flags |= HPTE_USE_KERNEL_KEY;
1754 		break;
1755 
1756 	case IO_REGION_ID:
1757 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1758 		psize = mmu_io_psize;
1759 		ssize = mmu_kernel_ssize;
1760 		flags |= HPTE_USE_KERNEL_KEY;
1761 		break;
1762 	default:
1763 		/*
1764 		 * Not a valid range
1765 		 * Send the problem up to do_page_fault()
1766 		 */
1767 		rc = 1;
1768 		goto bail;
1769 	}
1770 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1771 
1772 	/* Bad address. */
1773 	if (!vsid) {
1774 		DBG_LOW("Bad address!\n");
1775 		rc = 1;
1776 		goto bail;
1777 	}
1778 	/* Get pgdir */
1779 	pgdir = mm->pgd;
1780 	if (pgdir == NULL) {
1781 		rc = 1;
1782 		goto bail;
1783 	}
1784 
1785 	/* Check CPU locality */
1786 	if (user_region && mm_is_thread_local(mm))
1787 		flags |= HPTE_LOCAL_UPDATE;
1788 
1789 #ifndef CONFIG_PPC_64K_PAGES
1790 	/*
1791 	 * If we use 4K pages and our psize is not 4K, then we might
1792 	 * be hitting a special driver mapping, and need to align the
1793 	 * address before we fetch the PTE.
1794 	 *
1795 	 * It could also be a hugepage mapping, in which case this is
1796 	 * not necessary, but it's not harmful, either.
1797 	 */
1798 	if (psize != MMU_PAGE_4K)
1799 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1800 #endif /* CONFIG_PPC_64K_PAGES */
1801 
1802 	/* Get PTE and page size from page tables */
1803 	ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1804 	if (ptep == NULL || !pte_present(*ptep)) {
1805 		DBG_LOW(" no PTE !\n");
1806 		rc = 1;
1807 		goto bail;
1808 	}
1809 
1810 	if (IS_ENABLED(CONFIG_PPC_4K_PAGES) && !radix_enabled()) {
1811 		if (hugeshift == PMD_SHIFT && psize == MMU_PAGE_16M)
1812 			hugeshift = mmu_psize_defs[MMU_PAGE_16M].shift;
1813 		if (hugeshift == PUD_SHIFT && psize == MMU_PAGE_16G)
1814 			hugeshift = mmu_psize_defs[MMU_PAGE_16G].shift;
1815 	}
1816 
1817 	/*
1818 	 * Add _PAGE_PRESENT to the required access perm. If there are parallel
1819 	 * updates to the pte that can possibly clear _PAGE_PTE, catch that too.
1820 	 *
1821 	 * We can safely use the return pte address in rest of the function
1822 	 * because we do set H_PAGE_BUSY which prevents further updates to pte
1823 	 * from generic code.
1824 	 */
1825 	access |= _PAGE_PRESENT | _PAGE_PTE;
1826 
1827 	/*
1828 	 * Pre-check access permissions (will be re-checked atomically
1829 	 * in __hash_page_XX but this pre-check is a fast path
1830 	 */
1831 	if (!check_pte_access(access, pte_val(*ptep))) {
1832 		DBG_LOW(" no access !\n");
1833 		rc = 1;
1834 		goto bail;
1835 	}
1836 
1837 	if (hugeshift) {
1838 		if (is_thp)
1839 			rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1840 					     trap, flags, ssize, psize);
1841 #ifdef CONFIG_HUGETLB_PAGE
1842 		else
1843 			rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1844 					      flags, ssize, hugeshift, psize);
1845 #else
1846 		else {
1847 			/*
1848 			 * if we have hugeshift, and is not transhuge with
1849 			 * hugetlb disabled, something is really wrong.
1850 			 */
1851 			rc = 1;
1852 			WARN_ON(1);
1853 		}
1854 #endif
1855 		if (current->mm == mm)
1856 			check_paca_psize(ea, mm, psize, user_region);
1857 
1858 		goto bail;
1859 	}
1860 
1861 #ifndef CONFIG_PPC_64K_PAGES
1862 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1863 #else
1864 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1865 		pte_val(*(ptep + PTRS_PER_PTE)));
1866 #endif
1867 	/* Do actual hashing */
1868 #ifdef CONFIG_PPC_64K_PAGES
1869 	/* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1870 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1871 		demote_segment_4k(mm, ea);
1872 		psize = MMU_PAGE_4K;
1873 	}
1874 
1875 	/*
1876 	 * If this PTE is non-cacheable and we have restrictions on
1877 	 * using non cacheable large pages, then we switch to 4k
1878 	 */
1879 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1880 		if (user_region) {
1881 			demote_segment_4k(mm, ea);
1882 			psize = MMU_PAGE_4K;
1883 		} else if (ea < VMALLOC_END) {
1884 			/*
1885 			 * some driver did a non-cacheable mapping
1886 			 * in vmalloc space, so switch vmalloc
1887 			 * to 4k pages
1888 			 */
1889 			pr_alert("Reducing vmalloc segment "
1890 			       "to 4kB pages because of "
1891 			       "non-cacheable mapping\n");
1892 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1893 #ifdef CONFIG_SPU_BASE
1894 			spu_flush_all_slbs(mm);
1895 #endif
1896 		}
1897 	}
1898 
1899 #endif /* CONFIG_PPC_64K_PAGES */
1900 
1901 	if (current->mm == mm)
1902 		check_paca_psize(ea, mm, psize, user_region);
1903 
1904 #ifdef CONFIG_PPC_64K_PAGES
1905 	if (psize == MMU_PAGE_64K)
1906 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1907 				     flags, ssize);
1908 	else
1909 #endif /* CONFIG_PPC_64K_PAGES */
1910 	{
1911 		int spp = subpage_protection(mm, ea);
1912 		if (access & spp)
1913 			rc = -2;
1914 		else
1915 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1916 					    flags, ssize, spp);
1917 	}
1918 
1919 	/*
1920 	 * Dump some info in case of hash insertion failure, they should
1921 	 * never happen so it is really useful to know if/when they do
1922 	 */
1923 	if (rc == -1)
1924 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1925 				   psize, pte_val(*ptep));
1926 #ifndef CONFIG_PPC_64K_PAGES
1927 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1928 #else
1929 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1930 		pte_val(*(ptep + PTRS_PER_PTE)));
1931 #endif
1932 	DBG_LOW(" -> rc=%d\n", rc);
1933 
1934 bail:
1935 	return rc;
1936 }
1937 EXPORT_SYMBOL_GPL(hash_page_mm);
1938 
hash_page(unsigned long ea,unsigned long access,unsigned long trap,unsigned long dsisr)1939 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1940 	      unsigned long dsisr)
1941 {
1942 	unsigned long flags = 0;
1943 	struct mm_struct *mm = current->mm;
1944 
1945 	if ((get_region_id(ea) == VMALLOC_REGION_ID) ||
1946 	    (get_region_id(ea) == IO_REGION_ID))
1947 		mm = &init_mm;
1948 
1949 	if (dsisr & DSISR_NOHPTE)
1950 		flags |= HPTE_NOHPTE_UPDATE;
1951 
1952 	return hash_page_mm(mm, ea, access, trap, flags);
1953 }
1954 EXPORT_SYMBOL_GPL(hash_page);
1955 
DEFINE_INTERRUPT_HANDLER(do_hash_fault)1956 DEFINE_INTERRUPT_HANDLER(do_hash_fault)
1957 {
1958 	unsigned long ea = regs->dar;
1959 	unsigned long dsisr = regs->dsisr;
1960 	unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1961 	unsigned long flags = 0;
1962 	struct mm_struct *mm;
1963 	unsigned int region_id;
1964 	long err;
1965 
1966 	if (unlikely(dsisr & (DSISR_BAD_FAULT_64S | DSISR_KEYFAULT))) {
1967 		hash__do_page_fault(regs);
1968 		return;
1969 	}
1970 
1971 	region_id = get_region_id(ea);
1972 	if ((region_id == VMALLOC_REGION_ID) || (region_id == IO_REGION_ID))
1973 		mm = &init_mm;
1974 	else
1975 		mm = current->mm;
1976 
1977 	if (dsisr & DSISR_NOHPTE)
1978 		flags |= HPTE_NOHPTE_UPDATE;
1979 
1980 	if (dsisr & DSISR_ISSTORE)
1981 		access |= _PAGE_WRITE;
1982 	/*
1983 	 * We set _PAGE_PRIVILEGED only when
1984 	 * kernel mode access kernel space.
1985 	 *
1986 	 * _PAGE_PRIVILEGED is NOT set
1987 	 * 1) when kernel mode access user space
1988 	 * 2) user space access kernel space.
1989 	 */
1990 	access |= _PAGE_PRIVILEGED;
1991 	if (user_mode(regs) || (region_id == USER_REGION_ID))
1992 		access &= ~_PAGE_PRIVILEGED;
1993 
1994 	if (TRAP(regs) == INTERRUPT_INST_STORAGE)
1995 		access |= _PAGE_EXEC;
1996 
1997 	err = hash_page_mm(mm, ea, access, TRAP(regs), flags);
1998 	if (unlikely(err < 0)) {
1999 		// failed to insert a hash PTE due to an hypervisor error
2000 		if (user_mode(regs)) {
2001 			if (IS_ENABLED(CONFIG_PPC_SUBPAGE_PROT) && err == -2)
2002 				_exception(SIGSEGV, regs, SEGV_ACCERR, ea);
2003 			else
2004 				_exception(SIGBUS, regs, BUS_ADRERR, ea);
2005 		} else {
2006 			bad_page_fault(regs, SIGBUS);
2007 		}
2008 		err = 0;
2009 
2010 	} else if (err) {
2011 		hash__do_page_fault(regs);
2012 	}
2013 }
2014 
should_hash_preload(struct mm_struct * mm,unsigned long ea)2015 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
2016 {
2017 	int psize = get_slice_psize(mm, ea);
2018 
2019 	/* We only prefault standard pages for now */
2020 	if (unlikely(psize != mm_ctx_user_psize(&mm->context)))
2021 		return false;
2022 
2023 	/*
2024 	 * Don't prefault if subpage protection is enabled for the EA.
2025 	 */
2026 	if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
2027 		return false;
2028 
2029 	return true;
2030 }
2031 
hash_preload(struct mm_struct * mm,pte_t * ptep,unsigned long ea,bool is_exec,unsigned long trap)2032 static void hash_preload(struct mm_struct *mm, pte_t *ptep, unsigned long ea,
2033 			 bool is_exec, unsigned long trap)
2034 {
2035 	unsigned long vsid;
2036 	pgd_t *pgdir;
2037 	int rc, ssize, update_flags = 0;
2038 	unsigned long access = _PAGE_PRESENT | _PAGE_READ | (is_exec ? _PAGE_EXEC : 0);
2039 	unsigned long flags;
2040 
2041 	BUG_ON(get_region_id(ea) != USER_REGION_ID);
2042 
2043 	if (!should_hash_preload(mm, ea))
2044 		return;
2045 
2046 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
2047 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
2048 
2049 	/* Get Linux PTE if available */
2050 	pgdir = mm->pgd;
2051 	if (pgdir == NULL)
2052 		return;
2053 
2054 	/* Get VSID */
2055 	ssize = user_segment_size(ea);
2056 	vsid = get_user_vsid(&mm->context, ea, ssize);
2057 	if (!vsid)
2058 		return;
2059 
2060 #ifdef CONFIG_PPC_64K_PAGES
2061 	/* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
2062 	 * a 64K kernel), then we don't preload, hash_page() will take
2063 	 * care of it once we actually try to access the page.
2064 	 * That way we don't have to duplicate all of the logic for segment
2065 	 * page size demotion here
2066 	 * Called with  PTL held, hence can be sure the value won't change in
2067 	 * between.
2068 	 */
2069 	if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
2070 		return;
2071 #endif /* CONFIG_PPC_64K_PAGES */
2072 
2073 	/*
2074 	 * __hash_page_* must run with interrupts off, including PMI interrupts
2075 	 * off, as it sets the H_PAGE_BUSY bit.
2076 	 *
2077 	 * It's otherwise possible for perf interrupts to hit at any time and
2078 	 * may take a hash fault reading the user stack, which could take a
2079 	 * hash miss and deadlock on the same H_PAGE_BUSY bit.
2080 	 *
2081 	 * Interrupts must also be off for the duration of the
2082 	 * mm_is_thread_local test and update, to prevent preempt running the
2083 	 * mm on another CPU (XXX: this may be racy vs kthread_use_mm).
2084 	 */
2085 	powerpc_local_irq_pmu_save(flags);
2086 
2087 	/* Is that local to this CPU ? */
2088 	if (mm_is_thread_local(mm))
2089 		update_flags |= HPTE_LOCAL_UPDATE;
2090 
2091 	/* Hash it in */
2092 #ifdef CONFIG_PPC_64K_PAGES
2093 	if (mm_ctx_user_psize(&mm->context) == MMU_PAGE_64K)
2094 		rc = __hash_page_64K(ea, access, vsid, ptep, trap,
2095 				     update_flags, ssize);
2096 	else
2097 #endif /* CONFIG_PPC_64K_PAGES */
2098 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
2099 				    ssize, subpage_protection(mm, ea));
2100 
2101 	/* Dump some info in case of hash insertion failure, they should
2102 	 * never happen so it is really useful to know if/when they do
2103 	 */
2104 	if (rc == -1)
2105 		hash_failure_debug(ea, access, vsid, trap, ssize,
2106 				   mm_ctx_user_psize(&mm->context),
2107 				   mm_ctx_user_psize(&mm->context),
2108 				   pte_val(*ptep));
2109 
2110 	powerpc_local_irq_pmu_restore(flags);
2111 }
2112 
2113 /*
2114  * This is called at the end of handling a user page fault, when the
2115  * fault has been handled by updating a PTE in the linux page tables.
2116  * We use it to preload an HPTE into the hash table corresponding to
2117  * the updated linux PTE.
2118  *
2119  * This must always be called with the pte lock held.
2120  */
__update_mmu_cache(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)2121 void __update_mmu_cache(struct vm_area_struct *vma, unsigned long address,
2122 		      pte_t *ptep)
2123 {
2124 	/*
2125 	 * We don't need to worry about _PAGE_PRESENT here because we are
2126 	 * called with either mm->page_table_lock held or ptl lock held
2127 	 */
2128 	unsigned long trap;
2129 	bool is_exec;
2130 
2131 	/* We only want HPTEs for linux PTEs that have _PAGE_ACCESSED set */
2132 	if (!pte_young(*ptep) || address >= TASK_SIZE)
2133 		return;
2134 
2135 	/*
2136 	 * We try to figure out if we are coming from an instruction
2137 	 * access fault and pass that down to __hash_page so we avoid
2138 	 * double-faulting on execution of fresh text. We have to test
2139 	 * for regs NULL since init will get here first thing at boot.
2140 	 *
2141 	 * We also avoid filling the hash if not coming from a fault.
2142 	 */
2143 
2144 	trap = current->thread.regs ? TRAP(current->thread.regs) : 0UL;
2145 	switch (trap) {
2146 	case 0x300:
2147 		is_exec = false;
2148 		break;
2149 	case 0x400:
2150 		is_exec = true;
2151 		break;
2152 	default:
2153 		return;
2154 	}
2155 
2156 	hash_preload(vma->vm_mm, ptep, address, is_exec, trap);
2157 }
2158 
2159 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
tm_flush_hash_page(int local)2160 static inline void tm_flush_hash_page(int local)
2161 {
2162 	/*
2163 	 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
2164 	 * page back to a block device w/PIO could pick up transactional data
2165 	 * (bad!) so we force an abort here. Before the sync the page will be
2166 	 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
2167 	 * kernel uses a page from userspace without unmapping it first, it may
2168 	 * see the speculated version.
2169 	 */
2170 	if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
2171 	    MSR_TM_ACTIVE(current->thread.regs->msr)) {
2172 		tm_enable();
2173 		tm_abort(TM_CAUSE_TLBI);
2174 	}
2175 }
2176 #else
tm_flush_hash_page(int local)2177 static inline void tm_flush_hash_page(int local)
2178 {
2179 }
2180 #endif
2181 
2182 /*
2183  * Return the global hash slot, corresponding to the given PTE, which contains
2184  * the HPTE.
2185  */
pte_get_hash_gslot(unsigned long vpn,unsigned long shift,int ssize,real_pte_t rpte,unsigned int subpg_index)2186 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
2187 		int ssize, real_pte_t rpte, unsigned int subpg_index)
2188 {
2189 	unsigned long hash, gslot, hidx;
2190 
2191 	hash = hpt_hash(vpn, shift, ssize);
2192 	hidx = __rpte_to_hidx(rpte, subpg_index);
2193 	if (hidx & _PTEIDX_SECONDARY)
2194 		hash = ~hash;
2195 	gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2196 	gslot += hidx & _PTEIDX_GROUP_IX;
2197 	return gslot;
2198 }
2199 
flush_hash_page(unsigned long vpn,real_pte_t pte,int psize,int ssize,unsigned long flags)2200 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
2201 		     unsigned long flags)
2202 {
2203 	unsigned long index, shift, gslot;
2204 	int local = flags & HPTE_LOCAL_UPDATE;
2205 
2206 	DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
2207 	pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
2208 		gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
2209 		DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
2210 		/*
2211 		 * We use same base page size and actual psize, because we don't
2212 		 * use these functions for hugepage
2213 		 */
2214 		mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
2215 					     ssize, local);
2216 	} pte_iterate_hashed_end();
2217 
2218 	tm_flush_hash_page(local);
2219 }
2220 
2221 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
flush_hash_hugepage(unsigned long vsid,unsigned long addr,pmd_t * pmdp,unsigned int psize,int ssize,unsigned long flags)2222 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
2223 			 pmd_t *pmdp, unsigned int psize, int ssize,
2224 			 unsigned long flags)
2225 {
2226 	int i, max_hpte_count, valid;
2227 	unsigned long s_addr;
2228 	unsigned char *hpte_slot_array;
2229 	unsigned long hidx, shift, vpn, hash, slot;
2230 	int local = flags & HPTE_LOCAL_UPDATE;
2231 
2232 	s_addr = addr & HPAGE_PMD_MASK;
2233 	hpte_slot_array = get_hpte_slot_array(pmdp);
2234 	/*
2235 	 * IF we try to do a HUGE PTE update after a withdraw is done.
2236 	 * we will find the below NULL. This happens when we do
2237 	 * split_huge_pmd
2238 	 */
2239 	if (!hpte_slot_array)
2240 		return;
2241 
2242 	if (mmu_hash_ops.hugepage_invalidate) {
2243 		mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
2244 						 psize, ssize, local);
2245 		goto tm_abort;
2246 	}
2247 	/*
2248 	 * No bluk hpte removal support, invalidate each entry
2249 	 */
2250 	shift = mmu_psize_defs[psize].shift;
2251 	max_hpte_count = HPAGE_PMD_SIZE >> shift;
2252 	for (i = 0; i < max_hpte_count; i++) {
2253 		/*
2254 		 * 8 bits per each hpte entries
2255 		 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
2256 		 */
2257 		valid = hpte_valid(hpte_slot_array, i);
2258 		if (!valid)
2259 			continue;
2260 		hidx =  hpte_hash_index(hpte_slot_array, i);
2261 
2262 		/* get the vpn */
2263 		addr = s_addr + (i * (1ul << shift));
2264 		vpn = hpt_vpn(addr, vsid, ssize);
2265 		hash = hpt_hash(vpn, shift, ssize);
2266 		if (hidx & _PTEIDX_SECONDARY)
2267 			hash = ~hash;
2268 
2269 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2270 		slot += hidx & _PTEIDX_GROUP_IX;
2271 		mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
2272 					     MMU_PAGE_16M, ssize, local);
2273 	}
2274 tm_abort:
2275 	tm_flush_hash_page(local);
2276 }
2277 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2278 
flush_hash_range(unsigned long number,int local)2279 void flush_hash_range(unsigned long number, int local)
2280 {
2281 	if (mmu_hash_ops.flush_hash_range)
2282 		mmu_hash_ops.flush_hash_range(number, local);
2283 	else {
2284 		int i;
2285 		struct ppc64_tlb_batch *batch =
2286 			this_cpu_ptr(&ppc64_tlb_batch);
2287 
2288 		for (i = 0; i < number; i++)
2289 			flush_hash_page(batch->vpn[i], batch->pte[i],
2290 					batch->psize, batch->ssize, local);
2291 	}
2292 }
2293 
hpte_insert_repeating(unsigned long hash,unsigned long vpn,unsigned long pa,unsigned long rflags,unsigned long vflags,int psize,int ssize)2294 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
2295 			   unsigned long pa, unsigned long rflags,
2296 			   unsigned long vflags, int psize, int ssize)
2297 {
2298 	unsigned long hpte_group;
2299 	long slot;
2300 
2301 repeat:
2302 	hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
2303 
2304 	/* Insert into the hash table, primary slot */
2305 	slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
2306 					psize, psize, ssize);
2307 
2308 	/* Primary is full, try the secondary */
2309 	if (unlikely(slot == -1)) {
2310 		hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
2311 		slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
2312 						vflags | HPTE_V_SECONDARY,
2313 						psize, psize, ssize);
2314 		if (slot == -1) {
2315 			if (mftb() & 0x1)
2316 				hpte_group = (hash & htab_hash_mask) *
2317 						HPTES_PER_GROUP;
2318 
2319 			mmu_hash_ops.hpte_remove(hpte_group);
2320 			goto repeat;
2321 		}
2322 	}
2323 
2324 	return slot;
2325 }
2326 
hpt_clear_stress(void)2327 void hpt_clear_stress(void)
2328 {
2329 	int cpu = raw_smp_processor_id();
2330 	int g;
2331 
2332 	for (g = 0; g < stress_nr_groups(); g++) {
2333 		unsigned long last_group;
2334 		last_group = stress_hpt_struct[cpu].last_group[g];
2335 
2336 		if (last_group != -1UL) {
2337 			int i;
2338 			for (i = 0; i < HPTES_PER_GROUP; i++) {
2339 				if (mmu_hash_ops.hpte_remove(last_group) == -1)
2340 					break;
2341 			}
2342 			stress_hpt_struct[cpu].last_group[g] = -1;
2343 		}
2344 	}
2345 }
2346 
hpt_do_stress(unsigned long ea,unsigned long hpte_group)2347 void hpt_do_stress(unsigned long ea, unsigned long hpte_group)
2348 {
2349 	unsigned long last_group;
2350 	int cpu = raw_smp_processor_id();
2351 
2352 	last_group = stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1];
2353 	if (hpte_group == last_group)
2354 		return;
2355 
2356 	if (last_group != -1UL) {
2357 		int i;
2358 		/*
2359 		 * Concurrent CPUs might be inserting into this group, so
2360 		 * give up after a number of iterations, to prevent a live
2361 		 * lock.
2362 		 */
2363 		for (i = 0; i < HPTES_PER_GROUP; i++) {
2364 			if (mmu_hash_ops.hpte_remove(last_group) == -1)
2365 				break;
2366 		}
2367 		stress_hpt_struct[cpu].last_group[stress_nr_groups() - 1] = -1;
2368 	}
2369 
2370 	if (ea >= PAGE_OFFSET) {
2371 		/*
2372 		 * We would really like to prefetch to get the TLB loaded, then
2373 		 * remove the PTE before returning from fault interrupt, to
2374 		 * increase the hash fault rate.
2375 		 *
2376 		 * Unfortunately QEMU TCG does not model the TLB in a way that
2377 		 * makes this possible, and systemsim (mambo) emulator does not
2378 		 * bring in TLBs with prefetches (although loads/stores do
2379 		 * work for non-CI PTEs).
2380 		 *
2381 		 * So remember this PTE and clear it on the next hash fault.
2382 		 */
2383 		memmove(&stress_hpt_struct[cpu].last_group[1],
2384 			&stress_hpt_struct[cpu].last_group[0],
2385 			(stress_nr_groups() - 1) * sizeof(unsigned long));
2386 		stress_hpt_struct[cpu].last_group[0] = hpte_group;
2387 	}
2388 }
2389 
hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)2390 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
2391 				phys_addr_t first_memblock_size)
2392 {
2393 	/*
2394 	 * We don't currently support the first MEMBLOCK not mapping 0
2395 	 * physical on those processors
2396 	 */
2397 	BUG_ON(first_memblock_base != 0);
2398 
2399 	/*
2400 	 * On virtualized systems the first entry is our RMA region aka VRMA,
2401 	 * non-virtualized 64-bit hash MMU systems don't have a limitation
2402 	 * on real mode access.
2403 	 *
2404 	 * For guests on platforms before POWER9, we clamp the it limit to 1G
2405 	 * to avoid some funky things such as RTAS bugs etc...
2406 	 *
2407 	 * On POWER9 we limit to 1TB in case the host erroneously told us that
2408 	 * the RMA was >1TB. Effective address bits 0:23 are treated as zero
2409 	 * (meaning the access is aliased to zero i.e. addr = addr % 1TB)
2410 	 * for virtual real mode addressing and so it doesn't make sense to
2411 	 * have an area larger than 1TB as it can't be addressed.
2412 	 */
2413 	if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
2414 		ppc64_rma_size = first_memblock_size;
2415 		if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
2416 			ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
2417 		else
2418 			ppc64_rma_size = min_t(u64, ppc64_rma_size,
2419 					       1UL << SID_SHIFT_1T);
2420 
2421 		/* Finally limit subsequent allocations */
2422 		memblock_set_current_limit(ppc64_rma_size);
2423 	} else {
2424 		ppc64_rma_size = ULONG_MAX;
2425 	}
2426 }
2427 
2428 #ifdef CONFIG_DEBUG_FS
2429 
hpt_order_get(void * data,u64 * val)2430 static int hpt_order_get(void *data, u64 *val)
2431 {
2432 	*val = ppc64_pft_size;
2433 	return 0;
2434 }
2435 
hpt_order_set(void * data,u64 val)2436 static int hpt_order_set(void *data, u64 val)
2437 {
2438 	int ret;
2439 
2440 	if (!mmu_hash_ops.resize_hpt)
2441 		return -ENODEV;
2442 
2443 	cpus_read_lock();
2444 	ret = mmu_hash_ops.resize_hpt(val);
2445 	cpus_read_unlock();
2446 
2447 	return ret;
2448 }
2449 
2450 DEFINE_DEBUGFS_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
2451 
hash64_debugfs(void)2452 static int __init hash64_debugfs(void)
2453 {
2454 	if (radix_enabled())
2455 		return 0;
2456 	debugfs_create_file("hpt_order", 0600, arch_debugfs_dir, NULL,
2457 			    &fops_hpt_order);
2458 	return 0;
2459 }
2460 machine_device_initcall(pseries, hash64_debugfs);
2461 #endif /* CONFIG_DEBUG_FS */
2462 
print_system_hash_info(void)2463 void __init print_system_hash_info(void)
2464 {
2465 	pr_info("ppc64_pft_size    = 0x%llx\n", ppc64_pft_size);
2466 
2467 	if (htab_hash_mask)
2468 		pr_info("htab_hash_mask    = 0x%lx\n", htab_hash_mask);
2469 }
2470 
arch_randomize_brk(struct mm_struct * mm)2471 unsigned long arch_randomize_brk(struct mm_struct *mm)
2472 {
2473 	/*
2474 	 * If we are using 1TB segments and we are allowed to randomise
2475 	 * the heap, we can put it above 1TB so it is backed by a 1TB
2476 	 * segment. Otherwise the heap will be in the bottom 1TB
2477 	 * which always uses 256MB segments and this may result in a
2478 	 * performance penalty.
2479 	 */
2480 	if (is_32bit_task())
2481 		return randomize_page(mm->brk, SZ_32M);
2482 	else if (!radix_enabled() && mmu_highuser_ssize == MMU_SEGSIZE_1T)
2483 		return randomize_page(max_t(unsigned long, mm->brk, SZ_1T), SZ_1G);
2484 	else
2485 		return randomize_page(mm->brk, SZ_1G);
2486 }
2487