1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4 *
5 * Derived from MIPS:
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/acpi.h>
15 #include <linux/cpu.h>
16 #include <linux/dmi.h>
17 #include <linux/efi.h>
18 #include <linux/export.h>
19 #include <linux/memblock.h>
20 #include <linux/initrd.h>
21 #include <linux/ioport.h>
22 #include <linux/kexec.h>
23 #include <linux/crash_dump.h>
24 #include <linux/root_dev.h>
25 #include <linux/console.h>
26 #include <linux/pfn.h>
27 #include <linux/platform_device.h>
28 #include <linux/sizes.h>
29 #include <linux/device.h>
30 #include <linux/dma-map-ops.h>
31 #include <linux/libfdt.h>
32 #include <linux/of_fdt.h>
33 #include <linux/of_address.h>
34 #include <linux/suspend.h>
35 #include <linux/swiotlb.h>
36
37 #include <asm/addrspace.h>
38 #include <asm/alternative.h>
39 #include <asm/bootinfo.h>
40 #include <asm/cache.h>
41 #include <asm/cpu.h>
42 #include <asm/dma.h>
43 #include <asm/efi.h>
44 #include <asm/loongson.h>
45 #include <asm/numa.h>
46 #include <asm/pgalloc.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/time.h>
50 #include <asm/unwind.h>
51
52 #define SMBIOS_BIOSSIZE_OFFSET 0x09
53 #define SMBIOS_BIOSEXTERN_OFFSET 0x13
54 #define SMBIOS_FREQLOW_OFFSET 0x16
55 #define SMBIOS_FREQHIGH_OFFSET 0x17
56 #define SMBIOS_FREQLOW_MASK 0xFF
57 #define SMBIOS_CORE_PACKAGE_OFFSET 0x23
58 #define SMBIOS_THREAD_PACKAGE_OFFSET 0x25
59 #define LOONGSON_EFI_ENABLE (1 << 3)
60
61 unsigned long fw_arg0, fw_arg1, fw_arg2;
62 DEFINE_PER_CPU(unsigned long, kernelsp);
63 struct cpuinfo_loongarch cpu_data[NR_CPUS] __read_mostly;
64
65 EXPORT_SYMBOL(cpu_data);
66
67 struct loongson_board_info b_info;
68 static const char dmi_empty_string[] = " ";
69
70 /*
71 * Setup information
72 *
73 * These are initialized so they are in the .data section
74 */
75 char init_command_line[COMMAND_LINE_SIZE] __initdata;
76
77 static int num_standard_resources;
78 static struct resource *standard_resources;
79
80 static struct resource code_resource = { .name = "Kernel code", };
81 static struct resource data_resource = { .name = "Kernel data", };
82 static struct resource bss_resource = { .name = "Kernel bss", };
83
get_system_type(void)84 const char *get_system_type(void)
85 {
86 return "generic-loongson-machine";
87 }
88
arch_cpu_finalize_init(void)89 void __init arch_cpu_finalize_init(void)
90 {
91 alternative_instructions();
92 }
93
dmi_string_parse(const struct dmi_header * dm,u8 s)94 static const char *dmi_string_parse(const struct dmi_header *dm, u8 s)
95 {
96 const u8 *bp = ((u8 *) dm) + dm->length;
97
98 if (s) {
99 s--;
100 while (s > 0 && *bp) {
101 bp += strlen(bp) + 1;
102 s--;
103 }
104
105 if (*bp != 0) {
106 size_t len = strlen(bp)+1;
107 size_t cmp_len = len > 8 ? 8 : len;
108
109 if (!memcmp(bp, dmi_empty_string, cmp_len))
110 return dmi_empty_string;
111
112 return bp;
113 }
114 }
115
116 return "";
117 }
118
parse_cpu_table(const struct dmi_header * dm)119 static void __init parse_cpu_table(const struct dmi_header *dm)
120 {
121 long freq_temp = 0;
122 char *dmi_data = (char *)dm;
123
124 freq_temp = ((*(dmi_data + SMBIOS_FREQHIGH_OFFSET) << 8) +
125 ((*(dmi_data + SMBIOS_FREQLOW_OFFSET)) & SMBIOS_FREQLOW_MASK));
126 cpu_clock_freq = freq_temp * 1000000;
127
128 loongson_sysconf.cpuname = (void *)dmi_string_parse(dm, dmi_data[16]);
129 loongson_sysconf.cores_per_package = *(dmi_data + SMBIOS_THREAD_PACKAGE_OFFSET);
130
131 pr_info("CpuClock = %llu\n", cpu_clock_freq);
132 }
133
parse_bios_table(const struct dmi_header * dm)134 static void __init parse_bios_table(const struct dmi_header *dm)
135 {
136 char *dmi_data = (char *)dm;
137
138 b_info.bios_size = (*(dmi_data + SMBIOS_BIOSSIZE_OFFSET) + 1) << 6;
139 }
140
find_tokens(const struct dmi_header * dm,void * dummy)141 static void __init find_tokens(const struct dmi_header *dm, void *dummy)
142 {
143 switch (dm->type) {
144 case 0x0: /* Extern BIOS */
145 parse_bios_table(dm);
146 break;
147 case 0x4: /* Calling interface */
148 parse_cpu_table(dm);
149 break;
150 }
151 }
smbios_parse(void)152 static void __init smbios_parse(void)
153 {
154 b_info.bios_vendor = (void *)dmi_get_system_info(DMI_BIOS_VENDOR);
155 b_info.bios_version = (void *)dmi_get_system_info(DMI_BIOS_VERSION);
156 b_info.bios_release_date = (void *)dmi_get_system_info(DMI_BIOS_DATE);
157 b_info.board_vendor = (void *)dmi_get_system_info(DMI_BOARD_VENDOR);
158 b_info.board_name = (void *)dmi_get_system_info(DMI_BOARD_NAME);
159 dmi_walk(find_tokens, NULL);
160 }
161
162 #ifdef CONFIG_ARCH_WRITECOMBINE
163 bool wc_enabled = true;
164 #else
165 bool wc_enabled = false;
166 #endif
167
168 EXPORT_SYMBOL(wc_enabled);
169
setup_writecombine(char * p)170 static int __init setup_writecombine(char *p)
171 {
172 if (!strcmp(p, "on"))
173 wc_enabled = true;
174 else if (!strcmp(p, "off"))
175 wc_enabled = false;
176 else
177 pr_warn("Unknown writecombine setting \"%s\".\n", p);
178
179 return 0;
180 }
181 early_param("writecombine", setup_writecombine);
182
183 static int usermem __initdata;
184
early_parse_mem(char * p)185 static int __init early_parse_mem(char *p)
186 {
187 phys_addr_t start, size;
188
189 if (!p) {
190 pr_err("mem parameter is empty, do nothing\n");
191 return -EINVAL;
192 }
193
194 /*
195 * If a user specifies memory size, we
196 * blow away any automatically generated
197 * size.
198 */
199 if (usermem == 0) {
200 usermem = 1;
201 memblock_remove(memblock_start_of_DRAM(),
202 memblock_end_of_DRAM() - memblock_start_of_DRAM());
203 }
204 start = 0;
205 size = memparse(p, &p);
206 if (*p == '@')
207 start = memparse(p + 1, &p);
208 else {
209 pr_err("Invalid format!\n");
210 return -EINVAL;
211 }
212
213 if (!IS_ENABLED(CONFIG_NUMA))
214 memblock_add(start, size);
215 else
216 memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE);
217
218 return 0;
219 }
220 early_param("mem", early_parse_mem);
221
arch_reserve_vmcore(void)222 static void __init arch_reserve_vmcore(void)
223 {
224 #ifdef CONFIG_PROC_VMCORE
225 u64 i;
226 phys_addr_t start, end;
227
228 if (!is_kdump_kernel())
229 return;
230
231 if (!elfcorehdr_size) {
232 for_each_mem_range(i, &start, &end) {
233 if (elfcorehdr_addr >= start && elfcorehdr_addr < end) {
234 /*
235 * Reserve from the elf core header to the end of
236 * the memory segment, that should all be kdump
237 * reserved memory.
238 */
239 elfcorehdr_size = end - elfcorehdr_addr;
240 break;
241 }
242 }
243 }
244
245 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
246 pr_warn("elfcorehdr is overlapped\n");
247 return;
248 }
249
250 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
251
252 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
253 elfcorehdr_size >> 10, elfcorehdr_addr);
254 #endif
255 }
256
arch_reserve_crashkernel(void)257 static void __init arch_reserve_crashkernel(void)
258 {
259 int ret;
260 unsigned long long low_size = 0;
261 unsigned long long crash_base, crash_size;
262 bool high = false;
263
264 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
265 return;
266
267 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
268 &crash_size, &crash_base, &low_size, &high);
269 if (ret)
270 return;
271
272 reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
273 }
274
fdt_setup(void)275 static void __init fdt_setup(void)
276 {
277 #ifdef CONFIG_OF_EARLY_FLATTREE
278 void *fdt_pointer;
279
280 /* ACPI-based systems do not require parsing fdt */
281 if (acpi_os_get_root_pointer())
282 return;
283
284 /* Prefer to use built-in dtb, checking its legality first. */
285 if (IS_ENABLED(CONFIG_BUILTIN_DTB) && !fdt_check_header(__dtb_start))
286 fdt_pointer = __dtb_start;
287 else
288 fdt_pointer = efi_fdt_pointer(); /* Fallback to firmware dtb */
289
290 if (!fdt_pointer || fdt_check_header(fdt_pointer))
291 return;
292
293 early_init_dt_scan(fdt_pointer, __pa(fdt_pointer));
294 early_init_fdt_reserve_self();
295
296 max_low_pfn = PFN_PHYS(memblock_end_of_DRAM());
297 #endif
298 }
299
bootcmdline_init(char ** cmdline_p)300 static void __init bootcmdline_init(char **cmdline_p)
301 {
302 /*
303 * If CONFIG_CMDLINE_FORCE is enabled then initializing the command line
304 * is trivial - we simply use the built-in command line unconditionally &
305 * unmodified.
306 */
307 if (IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
308 strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
309 goto out;
310 }
311
312 #ifdef CONFIG_OF_FLATTREE
313 /*
314 * If CONFIG_CMDLINE_BOOTLOADER is enabled and we are in FDT-based system,
315 * the boot_command_line will be overwritten by early_init_dt_scan_chosen().
316 * So we need to append init_command_line (the original copy of boot_command_line)
317 * to boot_command_line.
318 */
319 if (initial_boot_params) {
320 if (boot_command_line[0])
321 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
322
323 if (!strstr(boot_command_line, init_command_line))
324 strlcat(boot_command_line, init_command_line, COMMAND_LINE_SIZE);
325
326 goto out;
327 }
328 #endif
329
330 /*
331 * Append built-in command line to the bootloader command line if
332 * CONFIG_CMDLINE_EXTEND is enabled.
333 */
334 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) && CONFIG_CMDLINE[0]) {
335 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
336 strlcat(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
337 }
338
339 /*
340 * Use built-in command line if the bootloader command line is empty.
341 */
342 if (IS_ENABLED(CONFIG_CMDLINE_BOOTLOADER) && !boot_command_line[0])
343 strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
344
345 out:
346 *cmdline_p = boot_command_line;
347 }
348
platform_init(void)349 void __init platform_init(void)
350 {
351 arch_reserve_vmcore();
352 arch_reserve_crashkernel();
353
354 #ifdef CONFIG_ACPI
355 acpi_table_upgrade();
356 acpi_gbl_use_default_register_widths = false;
357 acpi_boot_table_init();
358 #endif
359
360 early_init_fdt_scan_reserved_mem();
361 unflatten_and_copy_device_tree();
362
363 #ifdef CONFIG_NUMA
364 init_numa_memory();
365 #endif
366 dmi_setup();
367 smbios_parse();
368 pr_info("The BIOS Version: %s\n", b_info.bios_version);
369
370 efi_runtime_init();
371 }
372
check_kernel_sections_mem(void)373 static void __init check_kernel_sections_mem(void)
374 {
375 phys_addr_t start = __pa_symbol(&_text);
376 phys_addr_t size = __pa_symbol(&_end) - start;
377
378 if (!memblock_is_region_memory(start, size)) {
379 pr_info("Kernel sections are not in the memory maps\n");
380 memblock_add(start, size);
381 }
382 }
383
384 /*
385 * arch_mem_init - initialize memory management subsystem
386 */
arch_mem_init(char ** cmdline_p)387 static void __init arch_mem_init(char **cmdline_p)
388 {
389 /* Recalculate max_low_pfn for "mem=xxx" */
390 max_pfn = max_low_pfn = PHYS_PFN(memblock_end_of_DRAM());
391
392 if (usermem)
393 pr_info("User-defined physical RAM map overwrite\n");
394
395 check_kernel_sections_mem();
396
397 /*
398 * In order to reduce the possibility of kernel panic when failed to
399 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
400 * low memory as small as possible before swiotlb_init(), so make
401 * sparse_init() using top-down allocation.
402 */
403 memblock_set_bottom_up(false);
404 sparse_init();
405 memblock_set_bottom_up(true);
406
407 swiotlb_init(true, SWIOTLB_VERBOSE);
408
409 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
410
411 /* Reserve for hibernation. */
412 register_nosave_region(PFN_DOWN(__pa_symbol(&__nosave_begin)),
413 PFN_UP(__pa_symbol(&__nosave_end)));
414
415 memblock_dump_all();
416
417 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
418 }
419
resource_init(void)420 static void __init resource_init(void)
421 {
422 long i = 0;
423 size_t res_size;
424 struct resource *res;
425 struct memblock_region *region;
426
427 code_resource.start = __pa_symbol(&_text);
428 code_resource.end = __pa_symbol(&_etext) - 1;
429 data_resource.start = __pa_symbol(&_etext);
430 data_resource.end = __pa_symbol(&_edata) - 1;
431 bss_resource.start = __pa_symbol(&__bss_start);
432 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
433
434 num_standard_resources = memblock.memory.cnt;
435 res_size = num_standard_resources * sizeof(*standard_resources);
436 standard_resources = memblock_alloc_or_panic(res_size, SMP_CACHE_BYTES);
437
438 for_each_mem_region(region) {
439 res = &standard_resources[i++];
440 if (!memblock_is_nomap(region)) {
441 res->name = "System RAM";
442 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
443 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
444 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
445 } else {
446 res->name = "Reserved";
447 res->flags = IORESOURCE_MEM;
448 res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
449 res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
450 }
451
452 request_resource(&iomem_resource, res);
453
454 /*
455 * We don't know which RAM region contains kernel data,
456 * so we try it repeatedly and let the resource manager
457 * test it.
458 */
459 request_resource(res, &code_resource);
460 request_resource(res, &data_resource);
461 request_resource(res, &bss_resource);
462 }
463 }
464
add_legacy_isa_io(struct fwnode_handle * fwnode,resource_size_t hw_start,resource_size_t size)465 static int __init add_legacy_isa_io(struct fwnode_handle *fwnode,
466 resource_size_t hw_start, resource_size_t size)
467 {
468 int ret = 0;
469 unsigned long vaddr;
470 struct logic_pio_hwaddr *range;
471
472 range = kzalloc(sizeof(*range), GFP_ATOMIC);
473 if (!range)
474 return -ENOMEM;
475
476 range->fwnode = fwnode;
477 range->size = size = round_up(size, PAGE_SIZE);
478 range->hw_start = hw_start;
479 range->flags = LOGIC_PIO_CPU_MMIO;
480
481 ret = logic_pio_register_range(range);
482 if (ret) {
483 kfree(range);
484 return ret;
485 }
486
487 /* Legacy ISA must placed at the start of PCI_IOBASE */
488 if (range->io_start != 0) {
489 logic_pio_unregister_range(range);
490 kfree(range);
491 return -EINVAL;
492 }
493
494 vaddr = (unsigned long)(PCI_IOBASE + range->io_start);
495 vmap_page_range(vaddr, vaddr + size, hw_start, pgprot_device(PAGE_KERNEL));
496
497 return 0;
498 }
499
arch_reserve_pio_range(void)500 static __init int arch_reserve_pio_range(void)
501 {
502 struct device_node *np;
503
504 for_each_node_by_name(np, "isa") {
505 struct of_range range;
506 struct of_range_parser parser;
507
508 pr_info("ISA Bridge: %pOF\n", np);
509
510 if (of_range_parser_init(&parser, np)) {
511 pr_info("Failed to parse resources.\n");
512 of_node_put(np);
513 break;
514 }
515
516 for_each_of_range(&parser, &range) {
517 switch (range.flags & IORESOURCE_TYPE_BITS) {
518 case IORESOURCE_IO:
519 pr_info(" IO 0x%016llx..0x%016llx -> 0x%016llx\n",
520 range.cpu_addr,
521 range.cpu_addr + range.size - 1,
522 range.bus_addr);
523 if (add_legacy_isa_io(&np->fwnode, range.cpu_addr, range.size))
524 pr_warn("Failed to reserve legacy IO in Logic PIO\n");
525 break;
526 case IORESOURCE_MEM:
527 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx\n",
528 range.cpu_addr,
529 range.cpu_addr + range.size - 1,
530 range.bus_addr);
531 break;
532 }
533 }
534 }
535
536 return 0;
537 }
538 arch_initcall(arch_reserve_pio_range);
539
reserve_memblock_reserved_regions(void)540 static int __init reserve_memblock_reserved_regions(void)
541 {
542 u64 i, j;
543
544 for (i = 0; i < num_standard_resources; ++i) {
545 struct resource *mem = &standard_resources[i];
546 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
547
548 if (!memblock_is_region_reserved(mem->start, mem_size))
549 continue;
550
551 for_each_reserved_mem_range(j, &r_start, &r_end) {
552 resource_size_t start, end;
553
554 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
555 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
556
557 if (start > mem->end || end < mem->start)
558 continue;
559
560 reserve_region_with_split(mem, start, end, "Reserved");
561 }
562 }
563
564 return 0;
565 }
566 arch_initcall(reserve_memblock_reserved_regions);
567
568 #ifdef CONFIG_SMP
prefill_possible_map(void)569 static void __init prefill_possible_map(void)
570 {
571 int i, possible;
572
573 possible = num_processors + disabled_cpus;
574 if (possible > nr_cpu_ids)
575 possible = nr_cpu_ids;
576
577 pr_info("SMP: Allowing %d CPUs, %d hotplug CPUs\n",
578 possible, max((possible - num_processors), 0));
579
580 for (i = 0; i < possible; i++)
581 set_cpu_possible(i, true);
582 for (; i < NR_CPUS; i++) {
583 set_cpu_present(i, false);
584 set_cpu_possible(i, false);
585 }
586
587 set_nr_cpu_ids(possible);
588 }
589 #endif
590
setup_arch(char ** cmdline_p)591 void __init setup_arch(char **cmdline_p)
592 {
593 cpu_probe();
594 unwind_init();
595
596 init_environ();
597 efi_init();
598 fdt_setup();
599 memblock_init();
600 pagetable_init();
601 bootcmdline_init(cmdline_p);
602 parse_early_param();
603 reserve_initrd_mem();
604
605 platform_init();
606 arch_mem_init(cmdline_p);
607
608 resource_init();
609 jump_label_init(); /* Initialise the static keys for paravirtualization */
610
611 #ifdef CONFIG_SMP
612 plat_smp_setup();
613 prefill_possible_map();
614 #endif
615
616 paging_init();
617
618 #ifdef CONFIG_KASAN
619 kasan_init();
620 #endif
621 }
622