xref: /linux/drivers/iommu/intel/dmar.c (revision 53564f400572b1b8d9ee5bafb9c226eb1d38600a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2006, Intel Corporation.
4  *
5  * Copyright (C) 2006-2008 Intel Corporation
6  * Author: Ashok Raj <ashok.raj@intel.com>
7  * Author: Shaohua Li <shaohua.li@intel.com>
8  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9  *
10  * This file implements early detection/parsing of Remapping Devices
11  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12  * tables.
13  *
14  * These routines are used by both DMA-remapping and Interrupt-remapping
15  */
16 
17 #define pr_fmt(fmt)     "DMAR: " fmt
18 
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
32 
33 #include "iommu.h"
34 #include "../irq_remapping.h"
35 #include "../iommu-pages.h"
36 #include "perf.h"
37 #include "trace.h"
38 #include "perfmon.h"
39 
40 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
41 struct dmar_res_callback {
42 	dmar_res_handler_t	cb[ACPI_DMAR_TYPE_RESERVED];
43 	void			*arg[ACPI_DMAR_TYPE_RESERVED];
44 	bool			ignore_unhandled;
45 	bool			print_entry;
46 };
47 
48 /*
49  * Assumptions:
50  * 1) The hotplug framework guarentees that DMAR unit will be hot-added
51  *    before IO devices managed by that unit.
52  * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
53  *    after IO devices managed by that unit.
54  * 3) Hotplug events are rare.
55  *
56  * Locking rules for DMA and interrupt remapping related global data structures:
57  * 1) Use dmar_global_lock in process context
58  * 2) Use RCU in interrupt context
59  */
60 DECLARE_RWSEM(dmar_global_lock);
61 LIST_HEAD(dmar_drhd_units);
62 
63 struct acpi_table_header * __initdata dmar_tbl;
64 static int dmar_dev_scope_status = 1;
65 static DEFINE_IDA(dmar_seq_ids);
66 
67 static int alloc_iommu(struct dmar_drhd_unit *drhd);
68 static void free_iommu(struct intel_iommu *iommu);
69 
dmar_register_drhd_unit(struct dmar_drhd_unit * drhd)70 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
71 {
72 	/*
73 	 * add INCLUDE_ALL at the tail, so scan the list will find it at
74 	 * the very end.
75 	 */
76 	if (drhd->include_all)
77 		list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
78 	else
79 		list_add_rcu(&drhd->list, &dmar_drhd_units);
80 }
81 
dmar_alloc_dev_scope(void * start,void * end,int * cnt)82 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
83 {
84 	struct acpi_dmar_device_scope *scope;
85 
86 	*cnt = 0;
87 	while (start < end) {
88 		scope = start;
89 		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
90 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
91 		    scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
92 			(*cnt)++;
93 		else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
94 			scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
95 			pr_warn("Unsupported device scope\n");
96 		}
97 		start += scope->length;
98 	}
99 	if (*cnt == 0)
100 		return NULL;
101 
102 	return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
103 }
104 
dmar_free_dev_scope(struct dmar_dev_scope ** devices,int * cnt)105 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
106 {
107 	int i;
108 	struct device *tmp_dev;
109 
110 	if (*devices && *cnt) {
111 		for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
112 			put_device(tmp_dev);
113 		kfree(*devices);
114 	}
115 
116 	*devices = NULL;
117 	*cnt = 0;
118 }
119 
120 /* Optimize out kzalloc()/kfree() for normal cases */
121 static char dmar_pci_notify_info_buf[64];
122 
123 static struct dmar_pci_notify_info *
dmar_alloc_pci_notify_info(struct pci_dev * dev,unsigned long event)124 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
125 {
126 	int level = 0;
127 	size_t size;
128 	struct pci_dev *tmp;
129 	struct dmar_pci_notify_info *info;
130 
131 	/*
132 	 * Ignore devices that have a domain number higher than what can
133 	 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134 	 */
135 	if (pci_domain_nr(dev->bus) > U16_MAX)
136 		return NULL;
137 
138 	/* Only generate path[] for device addition event */
139 	if (event == BUS_NOTIFY_ADD_DEVICE)
140 		for (tmp = dev; tmp; tmp = tmp->bus->self)
141 			level++;
142 
143 	size = struct_size(info, path, level);
144 	if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 		info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146 	} else {
147 		info = kzalloc(size, GFP_KERNEL);
148 		if (!info) {
149 			if (dmar_dev_scope_status == 0)
150 				dmar_dev_scope_status = -ENOMEM;
151 			return NULL;
152 		}
153 	}
154 
155 	info->event = event;
156 	info->dev = dev;
157 	info->seg = pci_domain_nr(dev->bus);
158 	info->level = level;
159 	if (event == BUS_NOTIFY_ADD_DEVICE) {
160 		for (tmp = dev; tmp; tmp = tmp->bus->self) {
161 			level--;
162 			info->path[level].bus = tmp->bus->number;
163 			info->path[level].device = PCI_SLOT(tmp->devfn);
164 			info->path[level].function = PCI_FUNC(tmp->devfn);
165 			if (pci_is_root_bus(tmp->bus))
166 				info->bus = tmp->bus->number;
167 		}
168 	}
169 
170 	return info;
171 }
172 
dmar_free_pci_notify_info(struct dmar_pci_notify_info * info)173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174 {
175 	if ((void *)info != dmar_pci_notify_info_buf)
176 		kfree(info);
177 }
178 
dmar_match_pci_path(struct dmar_pci_notify_info * info,int bus,struct acpi_dmar_pci_path * path,int count)179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 				struct acpi_dmar_pci_path *path, int count)
181 {
182 	int i;
183 
184 	if (info->bus != bus)
185 		goto fallback;
186 	if (info->level != count)
187 		goto fallback;
188 
189 	for (i = 0; i < count; i++) {
190 		if (path[i].device != info->path[i].device ||
191 		    path[i].function != info->path[i].function)
192 			goto fallback;
193 	}
194 
195 	return true;
196 
197 fallback:
198 
199 	if (count != 1)
200 		return false;
201 
202 	i = info->level - 1;
203 	if (bus              == info->path[i].bus &&
204 	    path[0].device   == info->path[i].device &&
205 	    path[0].function == info->path[i].function) {
206 		pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 			bus, path[0].device, path[0].function);
208 		return true;
209 	}
210 
211 	return false;
212 }
213 
214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
dmar_insert_dev_scope(struct dmar_pci_notify_info * info,void * start,void * end,u16 segment,struct dmar_dev_scope * devices,int devices_cnt)215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 			  void *start, void*end, u16 segment,
217 			  struct dmar_dev_scope *devices,
218 			  int devices_cnt)
219 {
220 	int i, level;
221 	struct device *tmp, *dev = &info->dev->dev;
222 	struct acpi_dmar_device_scope *scope;
223 	struct acpi_dmar_pci_path *path;
224 
225 	if (segment != info->seg)
226 		return 0;
227 
228 	for (; start < end; start += scope->length) {
229 		scope = start;
230 		if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 		    scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232 			continue;
233 
234 		path = (struct acpi_dmar_pci_path *)(scope + 1);
235 		level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 		if (!dmar_match_pci_path(info, scope->bus, path, level))
237 			continue;
238 
239 		/*
240 		 * We expect devices with endpoint scope to have normal PCI
241 		 * headers, and devices with bridge scope to have bridge PCI
242 		 * headers.  However PCI NTB devices may be listed in the
243 		 * DMAR table with bridge scope, even though they have a
244 		 * normal PCI header.  NTB devices are identified by class
245 		 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 		 * for this special case.
247 		 */
248 		if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 		     info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 		    (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 		     (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 		      info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 			pr_warn("Device scope type does not match for %s\n",
254 				pci_name(info->dev));
255 			return -EINVAL;
256 		}
257 
258 		for_each_dev_scope(devices, devices_cnt, i, tmp)
259 			if (tmp == NULL) {
260 				devices[i].bus = info->dev->bus->number;
261 				devices[i].devfn = info->dev->devfn;
262 				rcu_assign_pointer(devices[i].dev,
263 						   get_device(dev));
264 				return 1;
265 			}
266 		if (WARN_ON(i >= devices_cnt))
267 			return -EINVAL;
268 	}
269 
270 	return 0;
271 }
272 
dmar_remove_dev_scope(struct dmar_pci_notify_info * info,u16 segment,struct dmar_dev_scope * devices,int count)273 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
274 			  struct dmar_dev_scope *devices, int count)
275 {
276 	int index;
277 	struct device *tmp;
278 
279 	if (info->seg != segment)
280 		return 0;
281 
282 	for_each_active_dev_scope(devices, count, index, tmp)
283 		if (tmp == &info->dev->dev) {
284 			RCU_INIT_POINTER(devices[index].dev, NULL);
285 			synchronize_rcu();
286 			put_device(tmp);
287 			return 1;
288 		}
289 
290 	return 0;
291 }
292 
dmar_pci_bus_add_dev(struct dmar_pci_notify_info * info)293 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
294 {
295 	int ret = 0;
296 	struct dmar_drhd_unit *dmaru;
297 	struct acpi_dmar_hardware_unit *drhd;
298 
299 	for_each_drhd_unit(dmaru) {
300 		if (dmaru->include_all)
301 			continue;
302 
303 		drhd = container_of(dmaru->hdr,
304 				    struct acpi_dmar_hardware_unit, header);
305 		ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
306 				((void *)drhd) + drhd->header.length,
307 				dmaru->segment,
308 				dmaru->devices, dmaru->devices_cnt);
309 		if (ret)
310 			break;
311 	}
312 	if (ret >= 0)
313 		ret = dmar_iommu_notify_scope_dev(info);
314 	if (ret < 0 && dmar_dev_scope_status == 0)
315 		dmar_dev_scope_status = ret;
316 
317 	if (ret >= 0)
318 		intel_irq_remap_add_device(info);
319 
320 	return ret;
321 }
322 
dmar_pci_bus_del_dev(struct dmar_pci_notify_info * info)323 static void  dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
324 {
325 	struct dmar_drhd_unit *dmaru;
326 
327 	for_each_drhd_unit(dmaru)
328 		if (dmar_remove_dev_scope(info, dmaru->segment,
329 			dmaru->devices, dmaru->devices_cnt))
330 			break;
331 	dmar_iommu_notify_scope_dev(info);
332 }
333 
vf_inherit_msi_domain(struct pci_dev * pdev)334 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
335 {
336 	struct pci_dev *physfn = pci_physfn(pdev);
337 
338 	dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
339 }
340 
dmar_pci_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)341 static int dmar_pci_bus_notifier(struct notifier_block *nb,
342 				 unsigned long action, void *data)
343 {
344 	struct pci_dev *pdev = to_pci_dev(data);
345 	struct dmar_pci_notify_info *info;
346 
347 	/* Only care about add/remove events for physical functions.
348 	 * For VFs we actually do the lookup based on the corresponding
349 	 * PF in device_to_iommu() anyway. */
350 	if (pdev->is_virtfn) {
351 		/*
352 		 * Ensure that the VF device inherits the irq domain of the
353 		 * PF device. Ideally the device would inherit the domain
354 		 * from the bus, but DMAR can have multiple units per bus
355 		 * which makes this impossible. The VF 'bus' could inherit
356 		 * from the PF device, but that's yet another x86'sism to
357 		 * inflict on everybody else.
358 		 */
359 		if (action == BUS_NOTIFY_ADD_DEVICE)
360 			vf_inherit_msi_domain(pdev);
361 		return NOTIFY_DONE;
362 	}
363 
364 	if (action != BUS_NOTIFY_ADD_DEVICE &&
365 	    action != BUS_NOTIFY_REMOVED_DEVICE)
366 		return NOTIFY_DONE;
367 
368 	info = dmar_alloc_pci_notify_info(pdev, action);
369 	if (!info)
370 		return NOTIFY_DONE;
371 
372 	down_write(&dmar_global_lock);
373 	if (action == BUS_NOTIFY_ADD_DEVICE)
374 		dmar_pci_bus_add_dev(info);
375 	else if (action == BUS_NOTIFY_REMOVED_DEVICE)
376 		dmar_pci_bus_del_dev(info);
377 	up_write(&dmar_global_lock);
378 
379 	dmar_free_pci_notify_info(info);
380 
381 	return NOTIFY_OK;
382 }
383 
384 static struct notifier_block dmar_pci_bus_nb = {
385 	.notifier_call = dmar_pci_bus_notifier,
386 	.priority = 1,
387 };
388 
389 static struct dmar_drhd_unit *
dmar_find_dmaru(struct acpi_dmar_hardware_unit * drhd)390 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
391 {
392 	struct dmar_drhd_unit *dmaru;
393 
394 	list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
395 				dmar_rcu_check())
396 		if (dmaru->segment == drhd->segment &&
397 		    dmaru->reg_base_addr == drhd->address)
398 			return dmaru;
399 
400 	return NULL;
401 }
402 
403 /*
404  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
405  * structure which uniquely represent one DMA remapping hardware unit
406  * present in the platform
407  */
dmar_parse_one_drhd(struct acpi_dmar_header * header,void * arg)408 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
409 {
410 	struct acpi_dmar_hardware_unit *drhd;
411 	struct dmar_drhd_unit *dmaru;
412 	int ret;
413 
414 	drhd = (struct acpi_dmar_hardware_unit *)header;
415 	dmaru = dmar_find_dmaru(drhd);
416 	if (dmaru)
417 		goto out;
418 
419 	dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
420 	if (!dmaru)
421 		return -ENOMEM;
422 
423 	/*
424 	 * If header is allocated from slab by ACPI _DSM method, we need to
425 	 * copy the content because the memory buffer will be freed on return.
426 	 */
427 	dmaru->hdr = (void *)(dmaru + 1);
428 	memcpy(dmaru->hdr, header, header->length);
429 	dmaru->reg_base_addr = drhd->address;
430 	dmaru->segment = drhd->segment;
431 	/* The size of the register set is 2 ^ N 4 KB pages. */
432 	dmaru->reg_size = 1UL << (drhd->size + 12);
433 	dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
434 	dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
435 					      ((void *)drhd) + drhd->header.length,
436 					      &dmaru->devices_cnt);
437 	if (dmaru->devices_cnt && dmaru->devices == NULL) {
438 		kfree(dmaru);
439 		return -ENOMEM;
440 	}
441 
442 	ret = alloc_iommu(dmaru);
443 	if (ret) {
444 		dmar_free_dev_scope(&dmaru->devices,
445 				    &dmaru->devices_cnt);
446 		kfree(dmaru);
447 		return ret;
448 	}
449 	dmar_register_drhd_unit(dmaru);
450 
451 out:
452 	if (arg)
453 		(*(int *)arg)++;
454 
455 	return 0;
456 }
457 
dmar_free_drhd(struct dmar_drhd_unit * dmaru)458 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
459 {
460 	if (dmaru->devices && dmaru->devices_cnt)
461 		dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
462 	if (dmaru->iommu)
463 		free_iommu(dmaru->iommu);
464 	kfree(dmaru);
465 }
466 
dmar_parse_one_andd(struct acpi_dmar_header * header,void * arg)467 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
468 				      void *arg)
469 {
470 	struct acpi_dmar_andd *andd = (void *)header;
471 
472 	/* Check for NUL termination within the designated length */
473 	if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
474 		pr_warn(FW_BUG
475 			   "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
476 			   "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
477 			   dmi_get_system_info(DMI_BIOS_VENDOR),
478 			   dmi_get_system_info(DMI_BIOS_VERSION),
479 			   dmi_get_system_info(DMI_PRODUCT_VERSION));
480 		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
481 		return -EINVAL;
482 	}
483 	pr_info("ANDD device: %x name: %s\n", andd->device_number,
484 		andd->device_name);
485 
486 	return 0;
487 }
488 
489 #ifdef CONFIG_ACPI_NUMA
dmar_parse_one_rhsa(struct acpi_dmar_header * header,void * arg)490 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
491 {
492 	struct acpi_dmar_rhsa *rhsa;
493 	struct dmar_drhd_unit *drhd;
494 
495 	rhsa = (struct acpi_dmar_rhsa *)header;
496 	for_each_drhd_unit(drhd) {
497 		if (drhd->reg_base_addr == rhsa->base_address) {
498 			int node = pxm_to_node(rhsa->proximity_domain);
499 
500 			if (node != NUMA_NO_NODE && !node_online(node))
501 				node = NUMA_NO_NODE;
502 			drhd->iommu->node = node;
503 			return 0;
504 		}
505 	}
506 	pr_warn(FW_BUG
507 		"Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
508 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
509 		rhsa->base_address,
510 		dmi_get_system_info(DMI_BIOS_VENDOR),
511 		dmi_get_system_info(DMI_BIOS_VERSION),
512 		dmi_get_system_info(DMI_PRODUCT_VERSION));
513 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
514 
515 	return 0;
516 }
517 #else
518 #define	dmar_parse_one_rhsa		dmar_res_noop
519 #endif
520 
521 static void
dmar_table_print_dmar_entry(struct acpi_dmar_header * header)522 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
523 {
524 	struct acpi_dmar_hardware_unit *drhd;
525 	struct acpi_dmar_reserved_memory *rmrr;
526 	struct acpi_dmar_atsr *atsr;
527 	struct acpi_dmar_rhsa *rhsa;
528 	struct acpi_dmar_satc *satc;
529 
530 	switch (header->type) {
531 	case ACPI_DMAR_TYPE_HARDWARE_UNIT:
532 		drhd = container_of(header, struct acpi_dmar_hardware_unit,
533 				    header);
534 		pr_info("DRHD base: %#016Lx flags: %#x\n",
535 			(unsigned long long)drhd->address, drhd->flags);
536 		break;
537 	case ACPI_DMAR_TYPE_RESERVED_MEMORY:
538 		rmrr = container_of(header, struct acpi_dmar_reserved_memory,
539 				    header);
540 		pr_info("RMRR base: %#016Lx end: %#016Lx\n",
541 			(unsigned long long)rmrr->base_address,
542 			(unsigned long long)rmrr->end_address);
543 		break;
544 	case ACPI_DMAR_TYPE_ROOT_ATS:
545 		atsr = container_of(header, struct acpi_dmar_atsr, header);
546 		pr_info("ATSR flags: %#x\n", atsr->flags);
547 		break;
548 	case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
549 		rhsa = container_of(header, struct acpi_dmar_rhsa, header);
550 		pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
551 		       (unsigned long long)rhsa->base_address,
552 		       rhsa->proximity_domain);
553 		break;
554 	case ACPI_DMAR_TYPE_NAMESPACE:
555 		/* We don't print this here because we need to sanity-check
556 		   it first. So print it in dmar_parse_one_andd() instead. */
557 		break;
558 	case ACPI_DMAR_TYPE_SATC:
559 		satc = container_of(header, struct acpi_dmar_satc, header);
560 		pr_info("SATC flags: 0x%x\n", satc->flags);
561 		break;
562 	}
563 }
564 
565 /**
566  * dmar_table_detect - checks to see if the platform supports DMAR devices
567  */
dmar_table_detect(void)568 static int __init dmar_table_detect(void)
569 {
570 	acpi_status status = AE_OK;
571 
572 	/* if we could find DMAR table, then there are DMAR devices */
573 	status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
574 
575 	if (ACPI_SUCCESS(status) && !dmar_tbl) {
576 		pr_warn("Unable to map DMAR\n");
577 		status = AE_NOT_FOUND;
578 	}
579 
580 	return ACPI_SUCCESS(status) ? 0 : -ENOENT;
581 }
582 
dmar_walk_remapping_entries(struct acpi_dmar_header * start,size_t len,struct dmar_res_callback * cb)583 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
584 				       size_t len, struct dmar_res_callback *cb)
585 {
586 	struct acpi_dmar_header *iter, *next;
587 	struct acpi_dmar_header *end = ((void *)start) + len;
588 
589 	for (iter = start; iter < end; iter = next) {
590 		next = (void *)iter + iter->length;
591 		if (iter->length == 0) {
592 			/* Avoid looping forever on bad ACPI tables */
593 			pr_debug(FW_BUG "Invalid 0-length structure\n");
594 			break;
595 		} else if (next > end) {
596 			/* Avoid passing table end */
597 			pr_warn(FW_BUG "Record passes table end\n");
598 			return -EINVAL;
599 		}
600 
601 		if (cb->print_entry)
602 			dmar_table_print_dmar_entry(iter);
603 
604 		if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
605 			/* continue for forward compatibility */
606 			pr_debug("Unknown DMAR structure type %d\n",
607 				 iter->type);
608 		} else if (cb->cb[iter->type]) {
609 			int ret;
610 
611 			ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
612 			if (ret)
613 				return ret;
614 		} else if (!cb->ignore_unhandled) {
615 			pr_warn("No handler for DMAR structure type %d\n",
616 				iter->type);
617 			return -EINVAL;
618 		}
619 	}
620 
621 	return 0;
622 }
623 
dmar_walk_dmar_table(struct acpi_table_dmar * dmar,struct dmar_res_callback * cb)624 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
625 				       struct dmar_res_callback *cb)
626 {
627 	return dmar_walk_remapping_entries((void *)(dmar + 1),
628 			dmar->header.length - sizeof(*dmar), cb);
629 }
630 
631 /**
632  * parse_dmar_table - parses the DMA reporting table
633  */
634 static int __init
parse_dmar_table(void)635 parse_dmar_table(void)
636 {
637 	struct acpi_table_dmar *dmar;
638 	int drhd_count = 0;
639 	int ret;
640 	struct dmar_res_callback cb = {
641 		.print_entry = true,
642 		.ignore_unhandled = true,
643 		.arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
644 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
645 		.cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
646 		.cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
647 		.cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
648 		.cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
649 		.cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
650 	};
651 
652 	/*
653 	 * Do it again, earlier dmar_tbl mapping could be mapped with
654 	 * fixed map.
655 	 */
656 	dmar_table_detect();
657 
658 	/*
659 	 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
660 	 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
661 	 */
662 	dmar_tbl = tboot_get_dmar_table(dmar_tbl);
663 
664 	dmar = (struct acpi_table_dmar *)dmar_tbl;
665 	if (!dmar)
666 		return -ENODEV;
667 
668 	if (dmar->width < PAGE_SHIFT - 1) {
669 		pr_warn("Invalid DMAR haw\n");
670 		return -EINVAL;
671 	}
672 
673 	pr_info("Host address width %d\n", dmar->width + 1);
674 	ret = dmar_walk_dmar_table(dmar, &cb);
675 	if (ret == 0 && drhd_count == 0)
676 		pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
677 
678 	return ret;
679 }
680 
dmar_pci_device_match(struct dmar_dev_scope devices[],int cnt,struct pci_dev * dev)681 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
682 				 int cnt, struct pci_dev *dev)
683 {
684 	int index;
685 	struct device *tmp;
686 
687 	while (dev) {
688 		for_each_active_dev_scope(devices, cnt, index, tmp)
689 			if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
690 				return 1;
691 
692 		/* Check our parent */
693 		dev = dev->bus->self;
694 	}
695 
696 	return 0;
697 }
698 
699 struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev * dev)700 dmar_find_matched_drhd_unit(struct pci_dev *dev)
701 {
702 	struct dmar_drhd_unit *dmaru;
703 	struct acpi_dmar_hardware_unit *drhd;
704 
705 	dev = pci_physfn(dev);
706 
707 	rcu_read_lock();
708 	for_each_drhd_unit(dmaru) {
709 		drhd = container_of(dmaru->hdr,
710 				    struct acpi_dmar_hardware_unit,
711 				    header);
712 
713 		if (dmaru->include_all &&
714 		    drhd->segment == pci_domain_nr(dev->bus))
715 			goto out;
716 
717 		if (dmar_pci_device_match(dmaru->devices,
718 					  dmaru->devices_cnt, dev))
719 			goto out;
720 	}
721 	dmaru = NULL;
722 out:
723 	rcu_read_unlock();
724 
725 	return dmaru;
726 }
727 
dmar_acpi_insert_dev_scope(u8 device_number,struct acpi_device * adev)728 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
729 					      struct acpi_device *adev)
730 {
731 	struct dmar_drhd_unit *dmaru;
732 	struct acpi_dmar_hardware_unit *drhd;
733 	struct acpi_dmar_device_scope *scope;
734 	struct device *tmp;
735 	int i;
736 	struct acpi_dmar_pci_path *path;
737 
738 	for_each_drhd_unit(dmaru) {
739 		drhd = container_of(dmaru->hdr,
740 				    struct acpi_dmar_hardware_unit,
741 				    header);
742 
743 		for (scope = (void *)(drhd + 1);
744 		     (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
745 		     scope = ((void *)scope) + scope->length) {
746 			if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
747 				continue;
748 			if (scope->enumeration_id != device_number)
749 				continue;
750 
751 			path = (void *)(scope + 1);
752 			pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
753 				dev_name(&adev->dev), dmaru->reg_base_addr,
754 				scope->bus, path->device, path->function);
755 			for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
756 				if (tmp == NULL) {
757 					dmaru->devices[i].bus = scope->bus;
758 					dmaru->devices[i].devfn = PCI_DEVFN(path->device,
759 									    path->function);
760 					rcu_assign_pointer(dmaru->devices[i].dev,
761 							   get_device(&adev->dev));
762 					return;
763 				}
764 			BUG_ON(i >= dmaru->devices_cnt);
765 		}
766 	}
767 	pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
768 		device_number, dev_name(&adev->dev));
769 }
770 
dmar_acpi_dev_scope_init(void)771 static int __init dmar_acpi_dev_scope_init(void)
772 {
773 	struct acpi_dmar_andd *andd;
774 
775 	if (dmar_tbl == NULL)
776 		return -ENODEV;
777 
778 	for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
779 	     ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
780 	     andd = ((void *)andd) + andd->header.length) {
781 		if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
782 			acpi_handle h;
783 			struct acpi_device *adev;
784 
785 			if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
786 							  andd->device_name,
787 							  &h))) {
788 				pr_err("Failed to find handle for ACPI object %s\n",
789 				       andd->device_name);
790 				continue;
791 			}
792 			adev = acpi_fetch_acpi_dev(h);
793 			if (!adev) {
794 				pr_err("Failed to get device for ACPI object %s\n",
795 				       andd->device_name);
796 				continue;
797 			}
798 			dmar_acpi_insert_dev_scope(andd->device_number, adev);
799 		}
800 	}
801 	return 0;
802 }
803 
dmar_dev_scope_init(void)804 int __init dmar_dev_scope_init(void)
805 {
806 	struct pci_dev *dev = NULL;
807 	struct dmar_pci_notify_info *info;
808 
809 	if (dmar_dev_scope_status != 1)
810 		return dmar_dev_scope_status;
811 
812 	if (list_empty(&dmar_drhd_units)) {
813 		dmar_dev_scope_status = -ENODEV;
814 	} else {
815 		dmar_dev_scope_status = 0;
816 
817 		dmar_acpi_dev_scope_init();
818 
819 		for_each_pci_dev(dev) {
820 			if (dev->is_virtfn)
821 				continue;
822 
823 			info = dmar_alloc_pci_notify_info(dev,
824 					BUS_NOTIFY_ADD_DEVICE);
825 			if (!info) {
826 				pci_dev_put(dev);
827 				return dmar_dev_scope_status;
828 			} else {
829 				dmar_pci_bus_add_dev(info);
830 				dmar_free_pci_notify_info(info);
831 			}
832 		}
833 	}
834 
835 	return dmar_dev_scope_status;
836 }
837 
dmar_register_bus_notifier(void)838 void __init dmar_register_bus_notifier(void)
839 {
840 	bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
841 }
842 
843 
dmar_table_init(void)844 int __init dmar_table_init(void)
845 {
846 	static int dmar_table_initialized;
847 	int ret;
848 
849 	if (dmar_table_initialized == 0) {
850 		ret = parse_dmar_table();
851 		if (ret < 0) {
852 			if (ret != -ENODEV)
853 				pr_info("Parse DMAR table failure.\n");
854 		} else  if (list_empty(&dmar_drhd_units)) {
855 			pr_info("No DMAR devices found\n");
856 			ret = -ENODEV;
857 		}
858 
859 		if (ret < 0)
860 			dmar_table_initialized = ret;
861 		else
862 			dmar_table_initialized = 1;
863 	}
864 
865 	return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
866 }
867 
warn_invalid_dmar(u64 addr,const char * message)868 static void warn_invalid_dmar(u64 addr, const char *message)
869 {
870 	pr_warn_once(FW_BUG
871 		"Your BIOS is broken; DMAR reported at address %llx%s!\n"
872 		"BIOS vendor: %s; Ver: %s; Product Version: %s\n",
873 		addr, message,
874 		dmi_get_system_info(DMI_BIOS_VENDOR),
875 		dmi_get_system_info(DMI_BIOS_VERSION),
876 		dmi_get_system_info(DMI_PRODUCT_VERSION));
877 	add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
878 }
879 
880 static int __ref
dmar_validate_one_drhd(struct acpi_dmar_header * entry,void * arg)881 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
882 {
883 	struct acpi_dmar_hardware_unit *drhd;
884 	void __iomem *addr;
885 	u64 cap, ecap;
886 
887 	drhd = (void *)entry;
888 	if (!drhd->address) {
889 		warn_invalid_dmar(0, "");
890 		return -EINVAL;
891 	}
892 
893 	if (arg)
894 		addr = ioremap(drhd->address, VTD_PAGE_SIZE);
895 	else
896 		addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
897 	if (!addr) {
898 		pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
899 		return -EINVAL;
900 	}
901 
902 	cap = dmar_readq(addr + DMAR_CAP_REG);
903 	ecap = dmar_readq(addr + DMAR_ECAP_REG);
904 
905 	if (arg)
906 		iounmap(addr);
907 	else
908 		early_iounmap(addr, VTD_PAGE_SIZE);
909 
910 	if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911 		warn_invalid_dmar(drhd->address, " returns all ones");
912 		return -EINVAL;
913 	}
914 
915 	return 0;
916 }
917 
detect_intel_iommu(void)918 void __init detect_intel_iommu(void)
919 {
920 	int ret;
921 	struct dmar_res_callback validate_drhd_cb = {
922 		.cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923 		.ignore_unhandled = true,
924 	};
925 
926 	down_write(&dmar_global_lock);
927 	ret = dmar_table_detect();
928 	if (!ret)
929 		ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
930 					   &validate_drhd_cb);
931 	if (!ret && !no_iommu && !iommu_detected &&
932 	    (!dmar_disabled || dmar_platform_optin())) {
933 		iommu_detected = 1;
934 		/* Make sure ACS will be enabled */
935 		pci_request_acs();
936 	}
937 
938 	if (!ret) {
939 		x86_init.iommu.iommu_init = intel_iommu_init;
940 		x86_platform.iommu_shutdown = intel_iommu_shutdown;
941 	}
942 
943 	if (dmar_tbl) {
944 		acpi_put_table(dmar_tbl);
945 		dmar_tbl = NULL;
946 	}
947 	up_write(&dmar_global_lock);
948 }
949 
unmap_iommu(struct intel_iommu * iommu)950 static void unmap_iommu(struct intel_iommu *iommu)
951 {
952 	iounmap(iommu->reg);
953 	release_mem_region(iommu->reg_phys, iommu->reg_size);
954 }
955 
956 /**
957  * map_iommu: map the iommu's registers
958  * @iommu: the iommu to map
959  * @drhd: DMA remapping hardware definition structure
960  *
961  * Memory map the iommu's registers.  Start w/ a single page, and
962  * possibly expand if that turns out to be insufficent.
963  */
map_iommu(struct intel_iommu * iommu,struct dmar_drhd_unit * drhd)964 static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
965 {
966 	u64 phys_addr = drhd->reg_base_addr;
967 	int map_size, err=0;
968 
969 	iommu->reg_phys = phys_addr;
970 	iommu->reg_size = drhd->reg_size;
971 
972 	if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
973 		pr_err("Can't reserve memory\n");
974 		err = -EBUSY;
975 		goto out;
976 	}
977 
978 	iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
979 	if (!iommu->reg) {
980 		pr_err("Can't map the region\n");
981 		err = -ENOMEM;
982 		goto release;
983 	}
984 
985 	iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
986 	iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
987 
988 	if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
989 		err = -EINVAL;
990 		warn_invalid_dmar(phys_addr, " returns all ones");
991 		goto unmap;
992 	}
993 
994 	/* the registers might be more than one page */
995 	map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
996 			 cap_max_fault_reg_offset(iommu->cap));
997 	map_size = VTD_PAGE_ALIGN(map_size);
998 	if (map_size > iommu->reg_size) {
999 		iounmap(iommu->reg);
1000 		release_mem_region(iommu->reg_phys, iommu->reg_size);
1001 		iommu->reg_size = map_size;
1002 		if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1003 					iommu->name)) {
1004 			pr_err("Can't reserve memory\n");
1005 			err = -EBUSY;
1006 			goto out;
1007 		}
1008 		iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1009 		if (!iommu->reg) {
1010 			pr_err("Can't map the region\n");
1011 			err = -ENOMEM;
1012 			goto release;
1013 		}
1014 	}
1015 
1016 	if (cap_ecmds(iommu->cap)) {
1017 		int i;
1018 
1019 		for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1020 			iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1021 						       i * DMA_ECMD_REG_STEP);
1022 		}
1023 	}
1024 
1025 	err = 0;
1026 	goto out;
1027 
1028 unmap:
1029 	iounmap(iommu->reg);
1030 release:
1031 	release_mem_region(iommu->reg_phys, iommu->reg_size);
1032 out:
1033 	return err;
1034 }
1035 
alloc_iommu(struct dmar_drhd_unit * drhd)1036 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1037 {
1038 	struct intel_iommu *iommu;
1039 	u32 ver, sts;
1040 	int agaw = -1;
1041 	int msagaw = -1;
1042 	int err;
1043 
1044 	if (!drhd->reg_base_addr) {
1045 		warn_invalid_dmar(0, "");
1046 		return -EINVAL;
1047 	}
1048 
1049 	iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1050 	if (!iommu)
1051 		return -ENOMEM;
1052 
1053 	iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1054 					DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1055 	if (iommu->seq_id < 0) {
1056 		pr_err("Failed to allocate seq_id\n");
1057 		err = iommu->seq_id;
1058 		goto error;
1059 	}
1060 	snprintf(iommu->name, sizeof(iommu->name), "dmar%d", iommu->seq_id);
1061 
1062 	err = map_iommu(iommu, drhd);
1063 	if (err) {
1064 		pr_err("Failed to map %s\n", iommu->name);
1065 		goto error_free_seq_id;
1066 	}
1067 
1068 	if (!cap_sagaw(iommu->cap) &&
1069 	    (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1070 		pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1071 			iommu->name);
1072 		drhd->ignored = 1;
1073 	}
1074 
1075 	if (!drhd->ignored) {
1076 		agaw = iommu_calculate_agaw(iommu);
1077 		if (agaw < 0) {
1078 			pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1079 			       iommu->seq_id);
1080 			drhd->ignored = 1;
1081 		}
1082 	}
1083 	if (!drhd->ignored) {
1084 		msagaw = iommu_calculate_max_sagaw(iommu);
1085 		if (msagaw < 0) {
1086 			pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1087 			       iommu->seq_id);
1088 			drhd->ignored = 1;
1089 			agaw = -1;
1090 		}
1091 	}
1092 	iommu->agaw = agaw;
1093 	iommu->msagaw = msagaw;
1094 	iommu->segment = drhd->segment;
1095 	iommu->device_rbtree = RB_ROOT;
1096 	spin_lock_init(&iommu->device_rbtree_lock);
1097 	mutex_init(&iommu->iopf_lock);
1098 	iommu->node = NUMA_NO_NODE;
1099 	spin_lock_init(&iommu->lock);
1100 	ida_init(&iommu->domain_ida);
1101 	mutex_init(&iommu->did_lock);
1102 
1103 	ver = readl(iommu->reg + DMAR_VER_REG);
1104 	pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1105 		iommu->name,
1106 		(unsigned long long)drhd->reg_base_addr,
1107 		DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1108 		(unsigned long long)iommu->cap,
1109 		(unsigned long long)iommu->ecap);
1110 
1111 	/* Reflect status in gcmd */
1112 	sts = readl(iommu->reg + DMAR_GSTS_REG);
1113 	if (sts & DMA_GSTS_IRES)
1114 		iommu->gcmd |= DMA_GCMD_IRE;
1115 	if (sts & DMA_GSTS_TES)
1116 		iommu->gcmd |= DMA_GCMD_TE;
1117 	if (sts & DMA_GSTS_QIES)
1118 		iommu->gcmd |= DMA_GCMD_QIE;
1119 
1120 	if (alloc_iommu_pmu(iommu))
1121 		pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1122 
1123 	raw_spin_lock_init(&iommu->register_lock);
1124 
1125 	/*
1126 	 * A value of N in PSS field of eCap register indicates hardware
1127 	 * supports PASID field of N+1 bits.
1128 	 */
1129 	if (pasid_supported(iommu))
1130 		iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1131 
1132 	/*
1133 	 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134 	 * be set yet. When intel_iommu_init() runs, it registers the units
1135 	 * present at boot time, then sets intel_iommu_enabled.
1136 	 */
1137 	if (intel_iommu_enabled && !drhd->ignored) {
1138 		err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139 					     intel_iommu_groups,
1140 					     "%s", iommu->name);
1141 		if (err)
1142 			goto err_unmap;
1143 
1144 		err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145 		if (err)
1146 			goto err_sysfs;
1147 
1148 		iommu_pmu_register(iommu);
1149 	}
1150 
1151 	drhd->iommu = iommu;
1152 	iommu->drhd = drhd;
1153 
1154 	return 0;
1155 
1156 err_sysfs:
1157 	iommu_device_sysfs_remove(&iommu->iommu);
1158 err_unmap:
1159 	free_iommu_pmu(iommu);
1160 	unmap_iommu(iommu);
1161 error_free_seq_id:
1162 	ida_free(&dmar_seq_ids, iommu->seq_id);
1163 error:
1164 	kfree(iommu);
1165 	return err;
1166 }
1167 
free_iommu(struct intel_iommu * iommu)1168 static void free_iommu(struct intel_iommu *iommu)
1169 {
1170 	if (intel_iommu_enabled && !iommu->drhd->ignored) {
1171 		iommu_pmu_unregister(iommu);
1172 		iommu_device_unregister(&iommu->iommu);
1173 		iommu_device_sysfs_remove(&iommu->iommu);
1174 	}
1175 
1176 	free_iommu_pmu(iommu);
1177 
1178 	if (iommu->irq) {
1179 		if (iommu->pr_irq) {
1180 			free_irq(iommu->pr_irq, iommu);
1181 			dmar_free_hwirq(iommu->pr_irq);
1182 			iommu->pr_irq = 0;
1183 		}
1184 		free_irq(iommu->irq, iommu);
1185 		dmar_free_hwirq(iommu->irq);
1186 		iommu->irq = 0;
1187 	}
1188 
1189 	if (iommu->qi) {
1190 		iommu_free_pages(iommu->qi->desc);
1191 		kfree(iommu->qi->desc_status);
1192 		kfree(iommu->qi);
1193 	}
1194 
1195 	if (iommu->reg)
1196 		unmap_iommu(iommu);
1197 
1198 	ida_destroy(&iommu->domain_ida);
1199 	ida_free(&dmar_seq_ids, iommu->seq_id);
1200 	kfree(iommu);
1201 }
1202 
1203 /*
1204  * Reclaim all the submitted descriptors which have completed its work.
1205  */
reclaim_free_desc(struct q_inval * qi)1206 static inline void reclaim_free_desc(struct q_inval *qi)
1207 {
1208 	while (qi->desc_status[qi->free_tail] == QI_FREE && qi->free_tail != qi->free_head) {
1209 		qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1210 		qi->free_cnt++;
1211 	}
1212 }
1213 
qi_type_string(u8 type)1214 static const char *qi_type_string(u8 type)
1215 {
1216 	switch (type) {
1217 	case QI_CC_TYPE:
1218 		return "Context-cache Invalidation";
1219 	case QI_IOTLB_TYPE:
1220 		return "IOTLB Invalidation";
1221 	case QI_DIOTLB_TYPE:
1222 		return "Device-TLB Invalidation";
1223 	case QI_IEC_TYPE:
1224 		return "Interrupt Entry Cache Invalidation";
1225 	case QI_IWD_TYPE:
1226 		return "Invalidation Wait";
1227 	case QI_EIOTLB_TYPE:
1228 		return "PASID-based IOTLB Invalidation";
1229 	case QI_PC_TYPE:
1230 		return "PASID-cache Invalidation";
1231 	case QI_DEIOTLB_TYPE:
1232 		return "PASID-based Device-TLB Invalidation";
1233 	case QI_PGRP_RESP_TYPE:
1234 		return "Page Group Response";
1235 	default:
1236 		return "UNKNOWN";
1237 	}
1238 }
1239 
qi_dump_fault(struct intel_iommu * iommu,u32 fault)1240 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1241 {
1242 	unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1243 	u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1244 	struct qi_desc *desc = iommu->qi->desc + head;
1245 
1246 	if (fault & DMA_FSTS_IQE)
1247 		pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1248 		       DMAR_IQER_REG_IQEI(iqe_err));
1249 	if (fault & DMA_FSTS_ITE)
1250 		pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1251 		       DMAR_IQER_REG_ITESID(iqe_err));
1252 	if (fault & DMA_FSTS_ICE)
1253 		pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1254 		       DMAR_IQER_REG_ICESID(iqe_err));
1255 
1256 	pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1257 	       qi_type_string(desc->qw0 & 0xf),
1258 	       (unsigned long long)desc->qw0,
1259 	       (unsigned long long)desc->qw1);
1260 
1261 	head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1262 	head <<= qi_shift(iommu);
1263 	desc = iommu->qi->desc + head;
1264 
1265 	pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1266 	       qi_type_string(desc->qw0 & 0xf),
1267 	       (unsigned long long)desc->qw0,
1268 	       (unsigned long long)desc->qw1);
1269 }
1270 
qi_check_fault(struct intel_iommu * iommu,int index,int wait_index)1271 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1272 {
1273 	u32 fault;
1274 	int head, tail;
1275 	struct device *dev;
1276 	u64 iqe_err, ite_sid;
1277 	struct q_inval *qi = iommu->qi;
1278 	int shift = qi_shift(iommu);
1279 
1280 	if (qi->desc_status[wait_index] == QI_ABORT)
1281 		return -EAGAIN;
1282 
1283 	fault = readl(iommu->reg + DMAR_FSTS_REG);
1284 	if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1285 		qi_dump_fault(iommu, fault);
1286 
1287 	/*
1288 	 * If IQE happens, the head points to the descriptor associated
1289 	 * with the error. No new descriptors are fetched until the IQE
1290 	 * is cleared.
1291 	 */
1292 	if (fault & DMA_FSTS_IQE) {
1293 		head = readl(iommu->reg + DMAR_IQH_REG);
1294 		if ((head >> shift) == index) {
1295 			struct qi_desc *desc = qi->desc + head;
1296 
1297 			/*
1298 			 * desc->qw2 and desc->qw3 are either reserved or
1299 			 * used by software as private data. We won't print
1300 			 * out these two qw's for security consideration.
1301 			 */
1302 			memcpy(desc, qi->desc + (wait_index << shift),
1303 			       1 << shift);
1304 			writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1305 			pr_info("Invalidation Queue Error (IQE) cleared\n");
1306 			return -EINVAL;
1307 		}
1308 	}
1309 
1310 	/*
1311 	 * If ITE happens, all pending wait_desc commands are aborted.
1312 	 * No new descriptors are fetched until the ITE is cleared.
1313 	 */
1314 	if (fault & DMA_FSTS_ITE) {
1315 		head = readl(iommu->reg + DMAR_IQH_REG);
1316 		head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1317 		head |= 1;
1318 		tail = readl(iommu->reg + DMAR_IQT_REG);
1319 		tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1320 
1321 		/*
1322 		 * SID field is valid only when the ITE field is Set in FSTS_REG
1323 		 * see Intel VT-d spec r4.1, section 11.4.9.9
1324 		 */
1325 		iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1326 		ite_sid = DMAR_IQER_REG_ITESID(iqe_err);
1327 
1328 		writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1329 		pr_info("Invalidation Time-out Error (ITE) cleared\n");
1330 
1331 		do {
1332 			if (qi->desc_status[head] == QI_IN_USE)
1333 				qi->desc_status[head] = QI_ABORT;
1334 			head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1335 		} while (head != tail);
1336 
1337 		/*
1338 		 * If device was released or isn't present, no need to retry
1339 		 * the ATS invalidate request anymore.
1340 		 *
1341 		 * 0 value of ite_sid means old VT-d device, no ite_sid value.
1342 		 * see Intel VT-d spec r4.1, section 11.4.9.9
1343 		 */
1344 		if (ite_sid) {
1345 			dev = device_rbtree_find(iommu, ite_sid);
1346 			if (!dev || !dev_is_pci(dev) ||
1347 			    !pci_device_is_present(to_pci_dev(dev)))
1348 				return -ETIMEDOUT;
1349 		}
1350 		if (qi->desc_status[wait_index] == QI_ABORT)
1351 			return -EAGAIN;
1352 	}
1353 
1354 	if (fault & DMA_FSTS_ICE) {
1355 		writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1356 		pr_info("Invalidation Completion Error (ICE) cleared\n");
1357 	}
1358 
1359 	return 0;
1360 }
1361 
1362 /*
1363  * Function to submit invalidation descriptors of all types to the queued
1364  * invalidation interface(QI). Multiple descriptors can be submitted at a
1365  * time, a wait descriptor will be appended to each submission to ensure
1366  * hardware has completed the invalidation before return. Wait descriptors
1367  * can be part of the submission but it will not be polled for completion.
1368  */
qi_submit_sync(struct intel_iommu * iommu,struct qi_desc * desc,unsigned int count,unsigned long options)1369 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1370 		   unsigned int count, unsigned long options)
1371 {
1372 	struct q_inval *qi = iommu->qi;
1373 	s64 devtlb_start_ktime = 0;
1374 	s64 iotlb_start_ktime = 0;
1375 	s64 iec_start_ktime = 0;
1376 	struct qi_desc wait_desc;
1377 	int wait_index, index;
1378 	unsigned long flags;
1379 	int offset, shift;
1380 	int rc, i;
1381 	u64 type;
1382 
1383 	if (!qi)
1384 		return 0;
1385 
1386 	type = desc->qw0 & GENMASK_ULL(3, 0);
1387 
1388 	if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1389 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1390 		iotlb_start_ktime = ktime_to_ns(ktime_get());
1391 
1392 	if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1393 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1394 		devtlb_start_ktime = ktime_to_ns(ktime_get());
1395 
1396 	if (type == QI_IEC_TYPE &&
1397 	    dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1398 		iec_start_ktime = ktime_to_ns(ktime_get());
1399 
1400 restart:
1401 	rc = 0;
1402 
1403 	raw_spin_lock_irqsave(&qi->q_lock, flags);
1404 	/*
1405 	 * Check if we have enough empty slots in the queue to submit,
1406 	 * the calculation is based on:
1407 	 * # of desc + 1 wait desc + 1 space between head and tail
1408 	 */
1409 	while (qi->free_cnt < count + 2) {
1410 		raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1411 		cpu_relax();
1412 		raw_spin_lock_irqsave(&qi->q_lock, flags);
1413 	}
1414 
1415 	index = qi->free_head;
1416 	wait_index = (index + count) % QI_LENGTH;
1417 	shift = qi_shift(iommu);
1418 
1419 	for (i = 0; i < count; i++) {
1420 		offset = ((index + i) % QI_LENGTH) << shift;
1421 		memcpy(qi->desc + offset, &desc[i], 1 << shift);
1422 		qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1423 		trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1424 				desc[i].qw2, desc[i].qw3);
1425 	}
1426 	qi->desc_status[wait_index] = QI_IN_USE;
1427 
1428 	wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1429 			QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1430 	if (options & QI_OPT_WAIT_DRAIN)
1431 		wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1432 	wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1433 	wait_desc.qw2 = 0;
1434 	wait_desc.qw3 = 0;
1435 
1436 	offset = wait_index << shift;
1437 	memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1438 
1439 	qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1440 	qi->free_cnt -= count + 1;
1441 
1442 	/*
1443 	 * update the HW tail register indicating the presence of
1444 	 * new descriptors.
1445 	 */
1446 	writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1447 
1448 	while (READ_ONCE(qi->desc_status[wait_index]) != QI_DONE) {
1449 		/*
1450 		 * We will leave the interrupts disabled, to prevent interrupt
1451 		 * context to queue another cmd while a cmd is already submitted
1452 		 * and waiting for completion on this cpu. This is to avoid
1453 		 * a deadlock where the interrupt context can wait indefinitely
1454 		 * for free slots in the queue.
1455 		 */
1456 		rc = qi_check_fault(iommu, index, wait_index);
1457 		if (rc)
1458 			break;
1459 
1460 		raw_spin_unlock(&qi->q_lock);
1461 		cpu_relax();
1462 		raw_spin_lock(&qi->q_lock);
1463 	}
1464 
1465 	/*
1466 	 * The reclaim code can free descriptors from multiple submissions
1467 	 * starting from the tail of the queue. When count == 0, the
1468 	 * status of the standalone wait descriptor at the tail of the queue
1469 	 * must be set to QI_FREE to allow the reclaim code to proceed.
1470 	 * It is also possible that descriptors from one of the previous
1471 	 * submissions has to be reclaimed by a subsequent submission.
1472 	 */
1473 	for (i = 0; i <= count; i++)
1474 		qi->desc_status[(index + i) % QI_LENGTH] = QI_FREE;
1475 
1476 	reclaim_free_desc(qi);
1477 	raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1478 
1479 	if (rc == -EAGAIN)
1480 		goto restart;
1481 
1482 	if (iotlb_start_ktime)
1483 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1484 				ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1485 
1486 	if (devtlb_start_ktime)
1487 		dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1488 				ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1489 
1490 	if (iec_start_ktime)
1491 		dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1492 				ktime_to_ns(ktime_get()) - iec_start_ktime);
1493 
1494 	return rc;
1495 }
1496 
1497 /*
1498  * Flush the global interrupt entry cache.
1499  */
qi_global_iec(struct intel_iommu * iommu)1500 void qi_global_iec(struct intel_iommu *iommu)
1501 {
1502 	struct qi_desc desc;
1503 
1504 	desc.qw0 = QI_IEC_TYPE;
1505 	desc.qw1 = 0;
1506 	desc.qw2 = 0;
1507 	desc.qw3 = 0;
1508 
1509 	/* should never fail */
1510 	qi_submit_sync(iommu, &desc, 1, 0);
1511 }
1512 
qi_flush_context(struct intel_iommu * iommu,u16 did,u16 sid,u8 fm,u64 type)1513 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1514 		      u64 type)
1515 {
1516 	struct qi_desc desc;
1517 
1518 	desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1519 			| QI_CC_GRAN(type) | QI_CC_TYPE;
1520 	desc.qw1 = 0;
1521 	desc.qw2 = 0;
1522 	desc.qw3 = 0;
1523 
1524 	qi_submit_sync(iommu, &desc, 1, 0);
1525 }
1526 
qi_flush_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type)1527 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1528 		    unsigned int size_order, u64 type)
1529 {
1530 	struct qi_desc desc;
1531 
1532 	qi_desc_iotlb(iommu, did, addr, size_order, type, &desc);
1533 	qi_submit_sync(iommu, &desc, 1, 0);
1534 }
1535 
qi_flush_dev_iotlb(struct intel_iommu * iommu,u16 sid,u16 pfsid,u16 qdep,u64 addr,unsigned mask)1536 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1537 			u16 qdep, u64 addr, unsigned mask)
1538 {
1539 	struct qi_desc desc;
1540 
1541 	/*
1542 	 * VT-d spec, section 4.3:
1543 	 *
1544 	 * Software is recommended to not submit any Device-TLB invalidation
1545 	 * requests while address remapping hardware is disabled.
1546 	 */
1547 	if (!(iommu->gcmd & DMA_GCMD_TE))
1548 		return;
1549 
1550 	qi_desc_dev_iotlb(sid, pfsid, qdep, addr, mask, &desc);
1551 	qi_submit_sync(iommu, &desc, 1, 0);
1552 }
1553 
1554 /* PASID-based IOTLB invalidation */
qi_flush_piotlb(struct intel_iommu * iommu,u16 did,u32 pasid,u64 addr,unsigned long npages,bool ih)1555 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1556 		     unsigned long npages, bool ih)
1557 {
1558 	struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1559 
1560 	/*
1561 	 * npages == -1 means a PASID-selective invalidation, otherwise,
1562 	 * a positive value for Page-selective-within-PASID invalidation.
1563 	 * 0 is not a valid input.
1564 	 */
1565 	if (WARN_ON(!npages)) {
1566 		pr_err("Invalid input npages = %ld\n", npages);
1567 		return;
1568 	}
1569 
1570 	qi_desc_piotlb(did, pasid, addr, npages, ih, &desc);
1571 	qi_submit_sync(iommu, &desc, 1, 0);
1572 }
1573 
1574 /* PASID-based device IOTLB Invalidate */
qi_flush_dev_iotlb_pasid(struct intel_iommu * iommu,u16 sid,u16 pfsid,u32 pasid,u16 qdep,u64 addr,unsigned int size_order)1575 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1576 			      u32 pasid,  u16 qdep, u64 addr, unsigned int size_order)
1577 {
1578 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1579 
1580 	/*
1581 	 * VT-d spec, section 4.3:
1582 	 *
1583 	 * Software is recommended to not submit any Device-TLB invalidation
1584 	 * requests while address remapping hardware is disabled.
1585 	 */
1586 	if (!(iommu->gcmd & DMA_GCMD_TE))
1587 		return;
1588 
1589 	qi_desc_dev_iotlb_pasid(sid, pfsid, pasid,
1590 				qdep, addr, size_order,
1591 				&desc);
1592 	qi_submit_sync(iommu, &desc, 1, 0);
1593 }
1594 
qi_flush_pasid_cache(struct intel_iommu * iommu,u16 did,u64 granu,u32 pasid)1595 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1596 			  u64 granu, u32 pasid)
1597 {
1598 	struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1599 
1600 	desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1601 			QI_PC_GRAN(granu) | QI_PC_TYPE;
1602 	qi_submit_sync(iommu, &desc, 1, 0);
1603 }
1604 
1605 /*
1606  * Disable Queued Invalidation interface.
1607  */
dmar_disable_qi(struct intel_iommu * iommu)1608 void dmar_disable_qi(struct intel_iommu *iommu)
1609 {
1610 	unsigned long flags;
1611 	u32 sts;
1612 	cycles_t start_time = get_cycles();
1613 
1614 	if (!ecap_qis(iommu->ecap))
1615 		return;
1616 
1617 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1618 
1619 	sts =  readl(iommu->reg + DMAR_GSTS_REG);
1620 	if (!(sts & DMA_GSTS_QIES))
1621 		goto end;
1622 
1623 	/*
1624 	 * Give a chance to HW to complete the pending invalidation requests.
1625 	 */
1626 	while ((readl(iommu->reg + DMAR_IQT_REG) !=
1627 		readl(iommu->reg + DMAR_IQH_REG)) &&
1628 		(DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1629 		cpu_relax();
1630 
1631 	iommu->gcmd &= ~DMA_GCMD_QIE;
1632 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1633 
1634 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1635 		      !(sts & DMA_GSTS_QIES), sts);
1636 end:
1637 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1638 }
1639 
1640 /*
1641  * Enable queued invalidation.
1642  */
__dmar_enable_qi(struct intel_iommu * iommu)1643 static void __dmar_enable_qi(struct intel_iommu *iommu)
1644 {
1645 	u32 sts;
1646 	unsigned long flags;
1647 	struct q_inval *qi = iommu->qi;
1648 	u64 val = virt_to_phys(qi->desc);
1649 
1650 	qi->free_head = qi->free_tail = 0;
1651 	qi->free_cnt = QI_LENGTH;
1652 
1653 	/*
1654 	 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1655 	 * is present.
1656 	 */
1657 	if (ecap_smts(iommu->ecap))
1658 		val |= BIT_ULL(11) | BIT_ULL(0);
1659 
1660 	raw_spin_lock_irqsave(&iommu->register_lock, flags);
1661 
1662 	/* write zero to the tail reg */
1663 	writel(0, iommu->reg + DMAR_IQT_REG);
1664 
1665 	dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1666 
1667 	iommu->gcmd |= DMA_GCMD_QIE;
1668 	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1669 
1670 	/* Make sure hardware complete it */
1671 	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1672 
1673 	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1674 }
1675 
1676 /*
1677  * Enable Queued Invalidation interface. This is a must to support
1678  * interrupt-remapping. Also used by DMA-remapping, which replaces
1679  * register based IOTLB invalidation.
1680  */
dmar_enable_qi(struct intel_iommu * iommu)1681 int dmar_enable_qi(struct intel_iommu *iommu)
1682 {
1683 	struct q_inval *qi;
1684 	void *desc;
1685 
1686 	if (!ecap_qis(iommu->ecap))
1687 		return -ENOENT;
1688 
1689 	/*
1690 	 * queued invalidation is already setup and enabled.
1691 	 */
1692 	if (iommu->qi)
1693 		return 0;
1694 
1695 	iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1696 	if (!iommu->qi)
1697 		return -ENOMEM;
1698 
1699 	qi = iommu->qi;
1700 
1701 	/*
1702 	 * Need two pages to accommodate 256 descriptors of 256 bits each
1703 	 * if the remapping hardware supports scalable mode translation.
1704 	 */
1705 	desc = iommu_alloc_pages_node_sz(iommu->node, GFP_ATOMIC,
1706 					 ecap_smts(iommu->ecap) ? SZ_8K :
1707 								  SZ_4K);
1708 	if (!desc) {
1709 		kfree(qi);
1710 		iommu->qi = NULL;
1711 		return -ENOMEM;
1712 	}
1713 
1714 	qi->desc = desc;
1715 
1716 	qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1717 	if (!qi->desc_status) {
1718 		iommu_free_pages(qi->desc);
1719 		kfree(qi);
1720 		iommu->qi = NULL;
1721 		return -ENOMEM;
1722 	}
1723 
1724 	raw_spin_lock_init(&qi->q_lock);
1725 
1726 	__dmar_enable_qi(iommu);
1727 
1728 	return 0;
1729 }
1730 
1731 /* iommu interrupt handling. Most stuff are MSI-like. */
1732 
1733 enum faulttype {
1734 	DMA_REMAP,
1735 	INTR_REMAP,
1736 	UNKNOWN,
1737 };
1738 
1739 static const char *dma_remap_fault_reasons[] =
1740 {
1741 	"Software",
1742 	"Present bit in root entry is clear",
1743 	"Present bit in context entry is clear",
1744 	"Invalid context entry",
1745 	"Access beyond MGAW",
1746 	"PTE Write access is not set",
1747 	"PTE Read access is not set",
1748 	"Next page table ptr is invalid",
1749 	"Root table address invalid",
1750 	"Context table ptr is invalid",
1751 	"non-zero reserved fields in RTP",
1752 	"non-zero reserved fields in CTP",
1753 	"non-zero reserved fields in PTE",
1754 	"PCE for translation request specifies blocking",
1755 };
1756 
1757 static const char * const dma_remap_sm_fault_reasons[] = {
1758 	"SM: Invalid Root Table Address",
1759 	"SM: TTM 0 for request with PASID",
1760 	"SM: TTM 0 for page group request",
1761 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1762 	"SM: Error attempting to access Root Entry",
1763 	"SM: Present bit in Root Entry is clear",
1764 	"SM: Non-zero reserved field set in Root Entry",
1765 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1766 	"SM: Error attempting to access Context Entry",
1767 	"SM: Present bit in Context Entry is clear",
1768 	"SM: Non-zero reserved field set in the Context Entry",
1769 	"SM: Invalid Context Entry",
1770 	"SM: DTE field in Context Entry is clear",
1771 	"SM: PASID Enable field in Context Entry is clear",
1772 	"SM: PASID is larger than the max in Context Entry",
1773 	"SM: PRE field in Context-Entry is clear",
1774 	"SM: RID_PASID field error in Context-Entry",
1775 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1776 	"SM: Error attempting to access the PASID Directory Entry",
1777 	"SM: Present bit in Directory Entry is clear",
1778 	"SM: Non-zero reserved field set in PASID Directory Entry",
1779 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1780 	"SM: Error attempting to access PASID Table Entry",
1781 	"SM: Present bit in PASID Table Entry is clear",
1782 	"SM: Non-zero reserved field set in PASID Table Entry",
1783 	"SM: Invalid Scalable-Mode PASID Table Entry",
1784 	"SM: ERE field is clear in PASID Table Entry",
1785 	"SM: SRE field is clear in PASID Table Entry",
1786 	"Unknown", "Unknown",/* 0x5E-0x5F */
1787 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1788 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1789 	"SM: Error attempting to access first-level paging entry",
1790 	"SM: Present bit in first-level paging entry is clear",
1791 	"SM: Non-zero reserved field set in first-level paging entry",
1792 	"SM: Error attempting to access FL-PML4 entry",
1793 	"SM: First-level entry address beyond MGAW in Nested translation",
1794 	"SM: Read permission error in FL-PML4 entry in Nested translation",
1795 	"SM: Read permission error in first-level paging entry in Nested translation",
1796 	"SM: Write permission error in first-level paging entry in Nested translation",
1797 	"SM: Error attempting to access second-level paging entry",
1798 	"SM: Read/Write permission error in second-level paging entry",
1799 	"SM: Non-zero reserved field set in second-level paging entry",
1800 	"SM: Invalid second-level page table pointer",
1801 	"SM: A/D bit update needed in second-level entry when set up in no snoop",
1802 	"Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1803 	"SM: Address in first-level translation is not canonical",
1804 	"SM: U/S set 0 for first-level translation with user privilege",
1805 	"SM: No execute permission for request with PASID and ER=1",
1806 	"SM: Address beyond the DMA hardware max",
1807 	"SM: Second-level entry address beyond the max",
1808 	"SM: No write permission for Write/AtomicOp request",
1809 	"SM: No read permission for Read/AtomicOp request",
1810 	"SM: Invalid address-interrupt address",
1811 	"Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1812 	"SM: A/D bit update needed in first-level entry when set up in no snoop",
1813 };
1814 
1815 static const char *irq_remap_fault_reasons[] =
1816 {
1817 	"Detected reserved fields in the decoded interrupt-remapped request",
1818 	"Interrupt index exceeded the interrupt-remapping table size",
1819 	"Present field in the IRTE entry is clear",
1820 	"Error accessing interrupt-remapping table pointed by IRTA_REG",
1821 	"Detected reserved fields in the IRTE entry",
1822 	"Blocked a compatibility format interrupt request",
1823 	"Blocked an interrupt request due to source-id verification failure",
1824 };
1825 
dmar_get_fault_reason(u8 fault_reason,int * fault_type)1826 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1827 {
1828 	if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1829 					ARRAY_SIZE(irq_remap_fault_reasons))) {
1830 		*fault_type = INTR_REMAP;
1831 		return irq_remap_fault_reasons[fault_reason - 0x20];
1832 	} else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1833 			ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1834 		*fault_type = DMA_REMAP;
1835 		return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1836 	} else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1837 		*fault_type = DMA_REMAP;
1838 		return dma_remap_fault_reasons[fault_reason];
1839 	} else {
1840 		*fault_type = UNKNOWN;
1841 		return "Unknown";
1842 	}
1843 }
1844 
1845 
dmar_msi_reg(struct intel_iommu * iommu,int irq)1846 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1847 {
1848 	if (iommu->irq == irq)
1849 		return DMAR_FECTL_REG;
1850 	else if (iommu->pr_irq == irq)
1851 		return DMAR_PECTL_REG;
1852 	else if (iommu->perf_irq == irq)
1853 		return DMAR_PERFINTRCTL_REG;
1854 	else
1855 		BUG();
1856 }
1857 
dmar_msi_unmask(struct irq_data * data)1858 void dmar_msi_unmask(struct irq_data *data)
1859 {
1860 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1861 	int reg = dmar_msi_reg(iommu, data->irq);
1862 	unsigned long flag;
1863 
1864 	/* unmask it */
1865 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1866 	writel(0, iommu->reg + reg);
1867 	/* Read a reg to force flush the post write */
1868 	readl(iommu->reg + reg);
1869 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1870 }
1871 
dmar_msi_mask(struct irq_data * data)1872 void dmar_msi_mask(struct irq_data *data)
1873 {
1874 	struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1875 	int reg = dmar_msi_reg(iommu, data->irq);
1876 	unsigned long flag;
1877 
1878 	/* mask it */
1879 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1880 	writel(DMA_FECTL_IM, iommu->reg + reg);
1881 	/* Read a reg to force flush the post write */
1882 	readl(iommu->reg + reg);
1883 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1884 }
1885 
dmar_msi_write(int irq,struct msi_msg * msg)1886 void dmar_msi_write(int irq, struct msi_msg *msg)
1887 {
1888 	struct intel_iommu *iommu = irq_get_handler_data(irq);
1889 	int reg = dmar_msi_reg(iommu, irq);
1890 	unsigned long flag;
1891 
1892 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1893 	writel(msg->data, iommu->reg + reg + 4);
1894 	writel(msg->address_lo, iommu->reg + reg + 8);
1895 	writel(msg->address_hi, iommu->reg + reg + 12);
1896 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1897 }
1898 
dmar_fault_do_one(struct intel_iommu * iommu,int type,u8 fault_reason,u32 pasid,u16 source_id,unsigned long long addr)1899 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1900 		u8 fault_reason, u32 pasid, u16 source_id,
1901 		unsigned long long addr)
1902 {
1903 	const char *reason;
1904 	int fault_type;
1905 
1906 	reason = dmar_get_fault_reason(fault_reason, &fault_type);
1907 
1908 	if (fault_type == INTR_REMAP) {
1909 		pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1910 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1911 		       PCI_FUNC(source_id & 0xFF), addr >> 48,
1912 		       fault_reason, reason);
1913 
1914 		return 0;
1915 	}
1916 
1917 	if (pasid == IOMMU_PASID_INVALID)
1918 		pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1919 		       type ? "DMA Read" : "DMA Write",
1920 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1921 		       PCI_FUNC(source_id & 0xFF), addr,
1922 		       fault_reason, reason);
1923 	else
1924 		pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1925 		       type ? "DMA Read" : "DMA Write", pasid,
1926 		       source_id >> 8, PCI_SLOT(source_id & 0xFF),
1927 		       PCI_FUNC(source_id & 0xFF), addr,
1928 		       fault_reason, reason);
1929 
1930 	dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1931 
1932 	return 0;
1933 }
1934 
1935 #define PRIMARY_FAULT_REG_LEN (16)
dmar_fault(int irq,void * dev_id)1936 irqreturn_t dmar_fault(int irq, void *dev_id)
1937 {
1938 	struct intel_iommu *iommu = dev_id;
1939 	int reg, fault_index;
1940 	u32 fault_status;
1941 	unsigned long flag;
1942 	static DEFINE_RATELIMIT_STATE(rs,
1943 				      DEFAULT_RATELIMIT_INTERVAL,
1944 				      DEFAULT_RATELIMIT_BURST);
1945 
1946 	raw_spin_lock_irqsave(&iommu->register_lock, flag);
1947 	fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1948 	if (fault_status && __ratelimit(&rs))
1949 		pr_err("DRHD: handling fault status reg %x\n", fault_status);
1950 
1951 	/* TBD: ignore advanced fault log currently */
1952 	if (!(fault_status & DMA_FSTS_PPF))
1953 		goto unlock_exit;
1954 
1955 	fault_index = dma_fsts_fault_record_index(fault_status);
1956 	reg = cap_fault_reg_offset(iommu->cap);
1957 	while (1) {
1958 		/* Disable printing, simply clear the fault when ratelimited */
1959 		bool ratelimited = !__ratelimit(&rs);
1960 		u8 fault_reason;
1961 		u16 source_id;
1962 		u64 guest_addr;
1963 		u32 pasid;
1964 		int type;
1965 		u32 data;
1966 		bool pasid_present;
1967 
1968 		/* highest 32 bits */
1969 		data = readl(iommu->reg + reg +
1970 				fault_index * PRIMARY_FAULT_REG_LEN + 12);
1971 		if (!(data & DMA_FRCD_F))
1972 			break;
1973 
1974 		if (!ratelimited) {
1975 			fault_reason = dma_frcd_fault_reason(data);
1976 			type = dma_frcd_type(data);
1977 
1978 			pasid = dma_frcd_pasid_value(data);
1979 			data = readl(iommu->reg + reg +
1980 				     fault_index * PRIMARY_FAULT_REG_LEN + 8);
1981 			source_id = dma_frcd_source_id(data);
1982 
1983 			pasid_present = dma_frcd_pasid_present(data);
1984 			guest_addr = dmar_readq(iommu->reg + reg +
1985 					fault_index * PRIMARY_FAULT_REG_LEN);
1986 			guest_addr = dma_frcd_page_addr(guest_addr);
1987 		}
1988 
1989 		/* clear the fault */
1990 		writel(DMA_FRCD_F, iommu->reg + reg +
1991 			fault_index * PRIMARY_FAULT_REG_LEN + 12);
1992 
1993 		raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1994 
1995 		if (!ratelimited)
1996 			/* Using pasid -1 if pasid is not present */
1997 			dmar_fault_do_one(iommu, type, fault_reason,
1998 					  pasid_present ? pasid : IOMMU_PASID_INVALID,
1999 					  source_id, guest_addr);
2000 
2001 		fault_index++;
2002 		if (fault_index >= cap_num_fault_regs(iommu->cap))
2003 			fault_index = 0;
2004 		raw_spin_lock_irqsave(&iommu->register_lock, flag);
2005 	}
2006 
2007 	writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2008 	       iommu->reg + DMAR_FSTS_REG);
2009 
2010 unlock_exit:
2011 	raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2012 	return IRQ_HANDLED;
2013 }
2014 
dmar_set_interrupt(struct intel_iommu * iommu)2015 int dmar_set_interrupt(struct intel_iommu *iommu)
2016 {
2017 	int irq, ret;
2018 
2019 	/*
2020 	 * Check if the fault interrupt is already initialized.
2021 	 */
2022 	if (iommu->irq)
2023 		return 0;
2024 
2025 	irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2026 	if (irq > 0) {
2027 		iommu->irq = irq;
2028 	} else {
2029 		pr_err("No free IRQ vectors\n");
2030 		return -EINVAL;
2031 	}
2032 
2033 	ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2034 	if (ret)
2035 		pr_err("Can't request irq\n");
2036 	return ret;
2037 }
2038 
enable_drhd_fault_handling(unsigned int cpu)2039 int enable_drhd_fault_handling(unsigned int cpu)
2040 {
2041 	struct dmar_drhd_unit *drhd;
2042 	struct intel_iommu *iommu;
2043 
2044 	/*
2045 	 * Enable fault control interrupt.
2046 	 */
2047 	guard(rwsem_read)(&dmar_global_lock);
2048 	for_each_iommu(iommu, drhd) {
2049 		u32 fault_status;
2050 		int ret;
2051 
2052 		if (iommu->irq || iommu->node != cpu_to_node(cpu))
2053 			continue;
2054 
2055 		ret = dmar_set_interrupt(iommu);
2056 
2057 		if (ret) {
2058 			pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2059 			       (unsigned long long)drhd->reg_base_addr, ret);
2060 			return -1;
2061 		}
2062 
2063 		/*
2064 		 * Clear any previous faults.
2065 		 */
2066 		dmar_fault(iommu->irq, iommu);
2067 		fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2068 		writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 /*
2075  * Re-enable Queued Invalidation interface.
2076  */
dmar_reenable_qi(struct intel_iommu * iommu)2077 int dmar_reenable_qi(struct intel_iommu *iommu)
2078 {
2079 	if (!ecap_qis(iommu->ecap))
2080 		return -ENOENT;
2081 
2082 	if (!iommu->qi)
2083 		return -ENOENT;
2084 
2085 	/*
2086 	 * First disable queued invalidation.
2087 	 */
2088 	dmar_disable_qi(iommu);
2089 	/*
2090 	 * Then enable queued invalidation again. Since there is no pending
2091 	 * invalidation requests now, it's safe to re-enable queued
2092 	 * invalidation.
2093 	 */
2094 	__dmar_enable_qi(iommu);
2095 
2096 	return 0;
2097 }
2098 
2099 /*
2100  * Check interrupt remapping support in DMAR table description.
2101  */
dmar_ir_support(void)2102 int __init dmar_ir_support(void)
2103 {
2104 	struct acpi_table_dmar *dmar;
2105 	dmar = (struct acpi_table_dmar *)dmar_tbl;
2106 	if (!dmar)
2107 		return 0;
2108 	return dmar->flags & 0x1;
2109 }
2110 
2111 /* Check whether DMAR units are in use */
dmar_in_use(void)2112 static inline bool dmar_in_use(void)
2113 {
2114 	return irq_remapping_enabled || intel_iommu_enabled;
2115 }
2116 
dmar_free_unused_resources(void)2117 static int __init dmar_free_unused_resources(void)
2118 {
2119 	struct dmar_drhd_unit *dmaru, *dmaru_n;
2120 
2121 	if (dmar_in_use())
2122 		return 0;
2123 
2124 	if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2125 		bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2126 
2127 	down_write(&dmar_global_lock);
2128 	list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2129 		list_del(&dmaru->list);
2130 		dmar_free_drhd(dmaru);
2131 	}
2132 	up_write(&dmar_global_lock);
2133 
2134 	return 0;
2135 }
2136 
2137 late_initcall(dmar_free_unused_resources);
2138 
2139 /*
2140  * DMAR Hotplug Support
2141  * For more details, please refer to Intel(R) Virtualization Technology
2142  * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2143  * "Remapping Hardware Unit Hot Plug".
2144  */
2145 static guid_t dmar_hp_guid =
2146 	GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2147 		  0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2148 
2149 /*
2150  * Currently there's only one revision and BIOS will not check the revision id,
2151  * so use 0 for safety.
2152  */
2153 #define	DMAR_DSM_REV_ID			0
2154 #define	DMAR_DSM_FUNC_DRHD		1
2155 #define	DMAR_DSM_FUNC_ATSR		2
2156 #define	DMAR_DSM_FUNC_RHSA		3
2157 #define	DMAR_DSM_FUNC_SATC		4
2158 
dmar_detect_dsm(acpi_handle handle,int func)2159 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2160 {
2161 	return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2162 }
2163 
dmar_walk_dsm_resource(acpi_handle handle,int func,dmar_res_handler_t handler,void * arg)2164 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2165 				  dmar_res_handler_t handler, void *arg)
2166 {
2167 	int ret = -ENODEV;
2168 	union acpi_object *obj;
2169 	struct acpi_dmar_header *start;
2170 	struct dmar_res_callback callback;
2171 	static int res_type[] = {
2172 		[DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2173 		[DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2174 		[DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2175 		[DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2176 	};
2177 
2178 	if (!dmar_detect_dsm(handle, func))
2179 		return 0;
2180 
2181 	obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2182 				      func, NULL, ACPI_TYPE_BUFFER);
2183 	if (!obj)
2184 		return -ENODEV;
2185 
2186 	memset(&callback, 0, sizeof(callback));
2187 	callback.cb[res_type[func]] = handler;
2188 	callback.arg[res_type[func]] = arg;
2189 	start = (struct acpi_dmar_header *)obj->buffer.pointer;
2190 	ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2191 
2192 	ACPI_FREE(obj);
2193 
2194 	return ret;
2195 }
2196 
dmar_hp_add_drhd(struct acpi_dmar_header * header,void * arg)2197 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2198 {
2199 	int ret;
2200 	struct dmar_drhd_unit *dmaru;
2201 
2202 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2203 	if (!dmaru)
2204 		return -ENODEV;
2205 
2206 	ret = dmar_ir_hotplug(dmaru, true);
2207 	if (ret == 0)
2208 		ret = dmar_iommu_hotplug(dmaru, true);
2209 
2210 	return ret;
2211 }
2212 
dmar_hp_remove_drhd(struct acpi_dmar_header * header,void * arg)2213 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2214 {
2215 	int i, ret;
2216 	struct device *dev;
2217 	struct dmar_drhd_unit *dmaru;
2218 
2219 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2220 	if (!dmaru)
2221 		return 0;
2222 
2223 	/*
2224 	 * All PCI devices managed by this unit should have been destroyed.
2225 	 */
2226 	if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2227 		for_each_active_dev_scope(dmaru->devices,
2228 					  dmaru->devices_cnt, i, dev)
2229 			return -EBUSY;
2230 	}
2231 
2232 	ret = dmar_ir_hotplug(dmaru, false);
2233 	if (ret == 0)
2234 		ret = dmar_iommu_hotplug(dmaru, false);
2235 
2236 	return ret;
2237 }
2238 
dmar_hp_release_drhd(struct acpi_dmar_header * header,void * arg)2239 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2240 {
2241 	struct dmar_drhd_unit *dmaru;
2242 
2243 	dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2244 	if (dmaru) {
2245 		list_del_rcu(&dmaru->list);
2246 		synchronize_rcu();
2247 		dmar_free_drhd(dmaru);
2248 	}
2249 
2250 	return 0;
2251 }
2252 
dmar_hotplug_insert(acpi_handle handle)2253 static int dmar_hotplug_insert(acpi_handle handle)
2254 {
2255 	int ret;
2256 	int drhd_count = 0;
2257 
2258 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2259 				     &dmar_validate_one_drhd, (void *)1);
2260 	if (ret)
2261 		goto out;
2262 
2263 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2264 				     &dmar_parse_one_drhd, (void *)&drhd_count);
2265 	if (ret == 0 && drhd_count == 0) {
2266 		pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2267 		goto out;
2268 	} else if (ret) {
2269 		goto release_drhd;
2270 	}
2271 
2272 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2273 				     &dmar_parse_one_rhsa, NULL);
2274 	if (ret)
2275 		goto release_drhd;
2276 
2277 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2278 				     &dmar_parse_one_atsr, NULL);
2279 	if (ret)
2280 		goto release_atsr;
2281 
2282 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2283 				     &dmar_hp_add_drhd, NULL);
2284 	if (!ret)
2285 		return 0;
2286 
2287 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2288 			       &dmar_hp_remove_drhd, NULL);
2289 release_atsr:
2290 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2291 			       &dmar_release_one_atsr, NULL);
2292 release_drhd:
2293 	dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2294 			       &dmar_hp_release_drhd, NULL);
2295 out:
2296 	return ret;
2297 }
2298 
dmar_hotplug_remove(acpi_handle handle)2299 static int dmar_hotplug_remove(acpi_handle handle)
2300 {
2301 	int ret;
2302 
2303 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2304 				     &dmar_check_one_atsr, NULL);
2305 	if (ret)
2306 		return ret;
2307 
2308 	ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2309 				     &dmar_hp_remove_drhd, NULL);
2310 	if (ret == 0) {
2311 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2312 					       &dmar_release_one_atsr, NULL));
2313 		WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2314 					       &dmar_hp_release_drhd, NULL));
2315 	} else {
2316 		dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2317 				       &dmar_hp_add_drhd, NULL);
2318 	}
2319 
2320 	return ret;
2321 }
2322 
dmar_get_dsm_handle(acpi_handle handle,u32 lvl,void * context,void ** retval)2323 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2324 				       void *context, void **retval)
2325 {
2326 	acpi_handle *phdl = retval;
2327 
2328 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2329 		*phdl = handle;
2330 		return AE_CTRL_TERMINATE;
2331 	}
2332 
2333 	return AE_OK;
2334 }
2335 
dmar_device_hotplug(acpi_handle handle,bool insert)2336 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2337 {
2338 	int ret;
2339 	acpi_handle tmp = NULL;
2340 	acpi_status status;
2341 
2342 	if (!dmar_in_use())
2343 		return 0;
2344 
2345 	if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2346 		tmp = handle;
2347 	} else {
2348 		status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2349 					     ACPI_UINT32_MAX,
2350 					     dmar_get_dsm_handle,
2351 					     NULL, NULL, &tmp);
2352 		if (ACPI_FAILURE(status)) {
2353 			pr_warn("Failed to locate _DSM method.\n");
2354 			return -ENXIO;
2355 		}
2356 	}
2357 	if (tmp == NULL)
2358 		return 0;
2359 
2360 	down_write(&dmar_global_lock);
2361 	if (insert)
2362 		ret = dmar_hotplug_insert(tmp);
2363 	else
2364 		ret = dmar_hotplug_remove(tmp);
2365 	up_write(&dmar_global_lock);
2366 
2367 	return ret;
2368 }
2369 
dmar_device_add(acpi_handle handle)2370 int dmar_device_add(acpi_handle handle)
2371 {
2372 	return dmar_device_hotplug(handle, true);
2373 }
2374 
dmar_device_remove(acpi_handle handle)2375 int dmar_device_remove(acpi_handle handle)
2376 {
2377 	return dmar_device_hotplug(handle, false);
2378 }
2379 
2380 /*
2381  * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2382  *
2383  * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2384  * the ACPI DMAR table. This means that the platform boot firmware has made
2385  * sure no device can issue DMA outside of RMRR regions.
2386  */
dmar_platform_optin(void)2387 bool dmar_platform_optin(void)
2388 {
2389 	struct acpi_table_dmar *dmar;
2390 	acpi_status status;
2391 	bool ret;
2392 
2393 	status = acpi_get_table(ACPI_SIG_DMAR, 0,
2394 				(struct acpi_table_header **)&dmar);
2395 	if (ACPI_FAILURE(status))
2396 		return false;
2397 
2398 	ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2399 	acpi_put_table((struct acpi_table_header *)dmar);
2400 
2401 	return ret;
2402 }
2403 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2404