1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2006, Intel Corporation.
4 *
5 * Copyright (C) 2006-2008 Intel Corporation
6 * Author: Ashok Raj <ashok.raj@intel.com>
7 * Author: Shaohua Li <shaohua.li@intel.com>
8 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * This file implements early detection/parsing of Remapping Devices
11 * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
12 * tables.
13 *
14 * These routines are used by both DMA-remapping and Interrupt-remapping
15 */
16
17 #define pr_fmt(fmt) "DMAR: " fmt
18
19 #include <linux/pci.h>
20 #include <linux/dmar.h>
21 #include <linux/iova.h>
22 #include <linux/timer.h>
23 #include <linux/irq.h>
24 #include <linux/interrupt.h>
25 #include <linux/tboot.h>
26 #include <linux/dmi.h>
27 #include <linux/slab.h>
28 #include <linux/iommu.h>
29 #include <linux/numa.h>
30 #include <linux/limits.h>
31 #include <asm/irq_remapping.h>
32
33 #include "iommu.h"
34 #include "../irq_remapping.h"
35 #include "../iommu-pages.h"
36 #include "perf.h"
37 #include "trace.h"
38 #include "perfmon.h"
39
40 typedef int (*dmar_res_handler_t)(struct acpi_dmar_header *, void *);
41 struct dmar_res_callback {
42 dmar_res_handler_t cb[ACPI_DMAR_TYPE_RESERVED];
43 void *arg[ACPI_DMAR_TYPE_RESERVED];
44 bool ignore_unhandled;
45 bool print_entry;
46 };
47
48 /*
49 * Assumptions:
50 * 1) The hotplug framework guarentees that DMAR unit will be hot-added
51 * before IO devices managed by that unit.
52 * 2) The hotplug framework guarantees that DMAR unit will be hot-removed
53 * after IO devices managed by that unit.
54 * 3) Hotplug events are rare.
55 *
56 * Locking rules for DMA and interrupt remapping related global data structures:
57 * 1) Use dmar_global_lock in process context
58 * 2) Use RCU in interrupt context
59 */
60 DECLARE_RWSEM(dmar_global_lock);
61 LIST_HEAD(dmar_drhd_units);
62
63 struct acpi_table_header * __initdata dmar_tbl;
64 static int dmar_dev_scope_status = 1;
65 static DEFINE_IDA(dmar_seq_ids);
66
67 static int alloc_iommu(struct dmar_drhd_unit *drhd);
68 static void free_iommu(struct intel_iommu *iommu);
69
dmar_register_drhd_unit(struct dmar_drhd_unit * drhd)70 static void dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
71 {
72 /*
73 * add INCLUDE_ALL at the tail, so scan the list will find it at
74 * the very end.
75 */
76 if (drhd->include_all)
77 list_add_tail_rcu(&drhd->list, &dmar_drhd_units);
78 else
79 list_add_rcu(&drhd->list, &dmar_drhd_units);
80 }
81
dmar_alloc_dev_scope(void * start,void * end,int * cnt)82 void *dmar_alloc_dev_scope(void *start, void *end, int *cnt)
83 {
84 struct acpi_dmar_device_scope *scope;
85
86 *cnt = 0;
87 while (start < end) {
88 scope = start;
89 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_NAMESPACE ||
90 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
91 scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
92 (*cnt)++;
93 else if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_IOAPIC &&
94 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_HPET) {
95 pr_warn("Unsupported device scope\n");
96 }
97 start += scope->length;
98 }
99 if (*cnt == 0)
100 return NULL;
101
102 return kcalloc(*cnt, sizeof(struct dmar_dev_scope), GFP_KERNEL);
103 }
104
dmar_free_dev_scope(struct dmar_dev_scope ** devices,int * cnt)105 void dmar_free_dev_scope(struct dmar_dev_scope **devices, int *cnt)
106 {
107 int i;
108 struct device *tmp_dev;
109
110 if (*devices && *cnt) {
111 for_each_active_dev_scope(*devices, *cnt, i, tmp_dev)
112 put_device(tmp_dev);
113 kfree(*devices);
114 }
115
116 *devices = NULL;
117 *cnt = 0;
118 }
119
120 /* Optimize out kzalloc()/kfree() for normal cases */
121 static char dmar_pci_notify_info_buf[64];
122
123 static struct dmar_pci_notify_info *
dmar_alloc_pci_notify_info(struct pci_dev * dev,unsigned long event)124 dmar_alloc_pci_notify_info(struct pci_dev *dev, unsigned long event)
125 {
126 int level = 0;
127 size_t size;
128 struct pci_dev *tmp;
129 struct dmar_pci_notify_info *info;
130
131 /*
132 * Ignore devices that have a domain number higher than what can
133 * be looked up in DMAR, e.g. VMD subdevices with domain 0x10000
134 */
135 if (pci_domain_nr(dev->bus) > U16_MAX)
136 return NULL;
137
138 /* Only generate path[] for device addition event */
139 if (event == BUS_NOTIFY_ADD_DEVICE)
140 for (tmp = dev; tmp; tmp = tmp->bus->self)
141 level++;
142
143 size = struct_size(info, path, level);
144 if (size <= sizeof(dmar_pci_notify_info_buf)) {
145 info = (struct dmar_pci_notify_info *)dmar_pci_notify_info_buf;
146 } else {
147 info = kzalloc(size, GFP_KERNEL);
148 if (!info) {
149 if (dmar_dev_scope_status == 0)
150 dmar_dev_scope_status = -ENOMEM;
151 return NULL;
152 }
153 }
154
155 info->event = event;
156 info->dev = dev;
157 info->seg = pci_domain_nr(dev->bus);
158 info->level = level;
159 if (event == BUS_NOTIFY_ADD_DEVICE) {
160 for (tmp = dev; tmp; tmp = tmp->bus->self) {
161 level--;
162 info->path[level].bus = tmp->bus->number;
163 info->path[level].device = PCI_SLOT(tmp->devfn);
164 info->path[level].function = PCI_FUNC(tmp->devfn);
165 if (pci_is_root_bus(tmp->bus))
166 info->bus = tmp->bus->number;
167 }
168 }
169
170 return info;
171 }
172
dmar_free_pci_notify_info(struct dmar_pci_notify_info * info)173 static inline void dmar_free_pci_notify_info(struct dmar_pci_notify_info *info)
174 {
175 if ((void *)info != dmar_pci_notify_info_buf)
176 kfree(info);
177 }
178
dmar_match_pci_path(struct dmar_pci_notify_info * info,int bus,struct acpi_dmar_pci_path * path,int count)179 static bool dmar_match_pci_path(struct dmar_pci_notify_info *info, int bus,
180 struct acpi_dmar_pci_path *path, int count)
181 {
182 int i;
183
184 if (info->bus != bus)
185 goto fallback;
186 if (info->level != count)
187 goto fallback;
188
189 for (i = 0; i < count; i++) {
190 if (path[i].device != info->path[i].device ||
191 path[i].function != info->path[i].function)
192 goto fallback;
193 }
194
195 return true;
196
197 fallback:
198
199 if (count != 1)
200 return false;
201
202 i = info->level - 1;
203 if (bus == info->path[i].bus &&
204 path[0].device == info->path[i].device &&
205 path[0].function == info->path[i].function) {
206 pr_info(FW_BUG "RMRR entry for device %02x:%02x.%x is broken - applying workaround\n",
207 bus, path[0].device, path[0].function);
208 return true;
209 }
210
211 return false;
212 }
213
214 /* Return: > 0 if match found, 0 if no match found, < 0 if error happens */
dmar_insert_dev_scope(struct dmar_pci_notify_info * info,void * start,void * end,u16 segment,struct dmar_dev_scope * devices,int devices_cnt)215 int dmar_insert_dev_scope(struct dmar_pci_notify_info *info,
216 void *start, void*end, u16 segment,
217 struct dmar_dev_scope *devices,
218 int devices_cnt)
219 {
220 int i, level;
221 struct device *tmp, *dev = &info->dev->dev;
222 struct acpi_dmar_device_scope *scope;
223 struct acpi_dmar_pci_path *path;
224
225 if (segment != info->seg)
226 return 0;
227
228 for (; start < end; start += scope->length) {
229 scope = start;
230 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
231 scope->entry_type != ACPI_DMAR_SCOPE_TYPE_BRIDGE)
232 continue;
233
234 path = (struct acpi_dmar_pci_path *)(scope + 1);
235 level = (scope->length - sizeof(*scope)) / sizeof(*path);
236 if (!dmar_match_pci_path(info, scope->bus, path, level))
237 continue;
238
239 /*
240 * We expect devices with endpoint scope to have normal PCI
241 * headers, and devices with bridge scope to have bridge PCI
242 * headers. However PCI NTB devices may be listed in the
243 * DMAR table with bridge scope, even though they have a
244 * normal PCI header. NTB devices are identified by class
245 * "BRIDGE_OTHER" (0680h) - we don't declare a socpe mismatch
246 * for this special case.
247 */
248 if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT &&
249 info->dev->hdr_type != PCI_HEADER_TYPE_NORMAL) ||
250 (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE &&
251 (info->dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
252 info->dev->class >> 16 != PCI_BASE_CLASS_BRIDGE))) {
253 pr_warn("Device scope type does not match for %s\n",
254 pci_name(info->dev));
255 return -EINVAL;
256 }
257
258 for_each_dev_scope(devices, devices_cnt, i, tmp)
259 if (tmp == NULL) {
260 devices[i].bus = info->dev->bus->number;
261 devices[i].devfn = info->dev->devfn;
262 rcu_assign_pointer(devices[i].dev,
263 get_device(dev));
264 return 1;
265 }
266 if (WARN_ON(i >= devices_cnt))
267 return -EINVAL;
268 }
269
270 return 0;
271 }
272
dmar_remove_dev_scope(struct dmar_pci_notify_info * info,u16 segment,struct dmar_dev_scope * devices,int count)273 int dmar_remove_dev_scope(struct dmar_pci_notify_info *info, u16 segment,
274 struct dmar_dev_scope *devices, int count)
275 {
276 int index;
277 struct device *tmp;
278
279 if (info->seg != segment)
280 return 0;
281
282 for_each_active_dev_scope(devices, count, index, tmp)
283 if (tmp == &info->dev->dev) {
284 RCU_INIT_POINTER(devices[index].dev, NULL);
285 synchronize_rcu();
286 put_device(tmp);
287 return 1;
288 }
289
290 return 0;
291 }
292
dmar_pci_bus_add_dev(struct dmar_pci_notify_info * info)293 static int dmar_pci_bus_add_dev(struct dmar_pci_notify_info *info)
294 {
295 int ret = 0;
296 struct dmar_drhd_unit *dmaru;
297 struct acpi_dmar_hardware_unit *drhd;
298
299 for_each_drhd_unit(dmaru) {
300 if (dmaru->include_all)
301 continue;
302
303 drhd = container_of(dmaru->hdr,
304 struct acpi_dmar_hardware_unit, header);
305 ret = dmar_insert_dev_scope(info, (void *)(drhd + 1),
306 ((void *)drhd) + drhd->header.length,
307 dmaru->segment,
308 dmaru->devices, dmaru->devices_cnt);
309 if (ret)
310 break;
311 }
312 if (ret >= 0)
313 ret = dmar_iommu_notify_scope_dev(info);
314 if (ret < 0 && dmar_dev_scope_status == 0)
315 dmar_dev_scope_status = ret;
316
317 if (ret >= 0)
318 intel_irq_remap_add_device(info);
319
320 return ret;
321 }
322
dmar_pci_bus_del_dev(struct dmar_pci_notify_info * info)323 static void dmar_pci_bus_del_dev(struct dmar_pci_notify_info *info)
324 {
325 struct dmar_drhd_unit *dmaru;
326
327 for_each_drhd_unit(dmaru)
328 if (dmar_remove_dev_scope(info, dmaru->segment,
329 dmaru->devices, dmaru->devices_cnt))
330 break;
331 dmar_iommu_notify_scope_dev(info);
332 }
333
vf_inherit_msi_domain(struct pci_dev * pdev)334 static inline void vf_inherit_msi_domain(struct pci_dev *pdev)
335 {
336 struct pci_dev *physfn = pci_physfn(pdev);
337
338 dev_set_msi_domain(&pdev->dev, dev_get_msi_domain(&physfn->dev));
339 }
340
dmar_pci_bus_notifier(struct notifier_block * nb,unsigned long action,void * data)341 static int dmar_pci_bus_notifier(struct notifier_block *nb,
342 unsigned long action, void *data)
343 {
344 struct pci_dev *pdev = to_pci_dev(data);
345 struct dmar_pci_notify_info *info;
346
347 /* Only care about add/remove events for physical functions.
348 * For VFs we actually do the lookup based on the corresponding
349 * PF in device_to_iommu() anyway. */
350 if (pdev->is_virtfn) {
351 /*
352 * Ensure that the VF device inherits the irq domain of the
353 * PF device. Ideally the device would inherit the domain
354 * from the bus, but DMAR can have multiple units per bus
355 * which makes this impossible. The VF 'bus' could inherit
356 * from the PF device, but that's yet another x86'sism to
357 * inflict on everybody else.
358 */
359 if (action == BUS_NOTIFY_ADD_DEVICE)
360 vf_inherit_msi_domain(pdev);
361 return NOTIFY_DONE;
362 }
363
364 if (action != BUS_NOTIFY_ADD_DEVICE &&
365 action != BUS_NOTIFY_REMOVED_DEVICE)
366 return NOTIFY_DONE;
367
368 info = dmar_alloc_pci_notify_info(pdev, action);
369 if (!info)
370 return NOTIFY_DONE;
371
372 down_write(&dmar_global_lock);
373 if (action == BUS_NOTIFY_ADD_DEVICE)
374 dmar_pci_bus_add_dev(info);
375 else if (action == BUS_NOTIFY_REMOVED_DEVICE)
376 dmar_pci_bus_del_dev(info);
377 up_write(&dmar_global_lock);
378
379 dmar_free_pci_notify_info(info);
380
381 return NOTIFY_OK;
382 }
383
384 static struct notifier_block dmar_pci_bus_nb = {
385 .notifier_call = dmar_pci_bus_notifier,
386 .priority = 1,
387 };
388
389 static struct dmar_drhd_unit *
dmar_find_dmaru(struct acpi_dmar_hardware_unit * drhd)390 dmar_find_dmaru(struct acpi_dmar_hardware_unit *drhd)
391 {
392 struct dmar_drhd_unit *dmaru;
393
394 list_for_each_entry_rcu(dmaru, &dmar_drhd_units, list,
395 dmar_rcu_check())
396 if (dmaru->segment == drhd->segment &&
397 dmaru->reg_base_addr == drhd->address)
398 return dmaru;
399
400 return NULL;
401 }
402
403 /*
404 * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
405 * structure which uniquely represent one DMA remapping hardware unit
406 * present in the platform
407 */
dmar_parse_one_drhd(struct acpi_dmar_header * header,void * arg)408 static int dmar_parse_one_drhd(struct acpi_dmar_header *header, void *arg)
409 {
410 struct acpi_dmar_hardware_unit *drhd;
411 struct dmar_drhd_unit *dmaru;
412 int ret;
413
414 drhd = (struct acpi_dmar_hardware_unit *)header;
415 dmaru = dmar_find_dmaru(drhd);
416 if (dmaru)
417 goto out;
418
419 dmaru = kzalloc(sizeof(*dmaru) + header->length, GFP_KERNEL);
420 if (!dmaru)
421 return -ENOMEM;
422
423 /*
424 * If header is allocated from slab by ACPI _DSM method, we need to
425 * copy the content because the memory buffer will be freed on return.
426 */
427 dmaru->hdr = (void *)(dmaru + 1);
428 memcpy(dmaru->hdr, header, header->length);
429 dmaru->reg_base_addr = drhd->address;
430 dmaru->segment = drhd->segment;
431 /* The size of the register set is 2 ^ N 4 KB pages. */
432 dmaru->reg_size = 1UL << (drhd->size + 12);
433 dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
434 dmaru->devices = dmar_alloc_dev_scope((void *)(drhd + 1),
435 ((void *)drhd) + drhd->header.length,
436 &dmaru->devices_cnt);
437 if (dmaru->devices_cnt && dmaru->devices == NULL) {
438 kfree(dmaru);
439 return -ENOMEM;
440 }
441
442 ret = alloc_iommu(dmaru);
443 if (ret) {
444 dmar_free_dev_scope(&dmaru->devices,
445 &dmaru->devices_cnt);
446 kfree(dmaru);
447 return ret;
448 }
449 dmar_register_drhd_unit(dmaru);
450
451 out:
452 if (arg)
453 (*(int *)arg)++;
454
455 return 0;
456 }
457
dmar_free_drhd(struct dmar_drhd_unit * dmaru)458 static void dmar_free_drhd(struct dmar_drhd_unit *dmaru)
459 {
460 if (dmaru->devices && dmaru->devices_cnt)
461 dmar_free_dev_scope(&dmaru->devices, &dmaru->devices_cnt);
462 if (dmaru->iommu)
463 free_iommu(dmaru->iommu);
464 kfree(dmaru);
465 }
466
dmar_parse_one_andd(struct acpi_dmar_header * header,void * arg)467 static int __init dmar_parse_one_andd(struct acpi_dmar_header *header,
468 void *arg)
469 {
470 struct acpi_dmar_andd *andd = (void *)header;
471
472 /* Check for NUL termination within the designated length */
473 if (strnlen(andd->device_name, header->length - 8) == header->length - 8) {
474 pr_warn(FW_BUG
475 "Your BIOS is broken; ANDD object name is not NUL-terminated\n"
476 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
477 dmi_get_system_info(DMI_BIOS_VENDOR),
478 dmi_get_system_info(DMI_BIOS_VERSION),
479 dmi_get_system_info(DMI_PRODUCT_VERSION));
480 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
481 return -EINVAL;
482 }
483 pr_info("ANDD device: %x name: %s\n", andd->device_number,
484 andd->device_name);
485
486 return 0;
487 }
488
489 #ifdef CONFIG_ACPI_NUMA
dmar_parse_one_rhsa(struct acpi_dmar_header * header,void * arg)490 static int dmar_parse_one_rhsa(struct acpi_dmar_header *header, void *arg)
491 {
492 struct acpi_dmar_rhsa *rhsa;
493 struct dmar_drhd_unit *drhd;
494
495 rhsa = (struct acpi_dmar_rhsa *)header;
496 for_each_drhd_unit(drhd) {
497 if (drhd->reg_base_addr == rhsa->base_address) {
498 int node = pxm_to_node(rhsa->proximity_domain);
499
500 if (node != NUMA_NO_NODE && !node_online(node))
501 node = NUMA_NO_NODE;
502 drhd->iommu->node = node;
503 return 0;
504 }
505 }
506 pr_warn(FW_BUG
507 "Your BIOS is broken; RHSA refers to non-existent DMAR unit at %llx\n"
508 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
509 rhsa->base_address,
510 dmi_get_system_info(DMI_BIOS_VENDOR),
511 dmi_get_system_info(DMI_BIOS_VERSION),
512 dmi_get_system_info(DMI_PRODUCT_VERSION));
513 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
514
515 return 0;
516 }
517 #else
518 #define dmar_parse_one_rhsa dmar_res_noop
519 #endif
520
521 static void
dmar_table_print_dmar_entry(struct acpi_dmar_header * header)522 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
523 {
524 struct acpi_dmar_hardware_unit *drhd;
525 struct acpi_dmar_reserved_memory *rmrr;
526 struct acpi_dmar_atsr *atsr;
527 struct acpi_dmar_rhsa *rhsa;
528 struct acpi_dmar_satc *satc;
529
530 switch (header->type) {
531 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
532 drhd = container_of(header, struct acpi_dmar_hardware_unit,
533 header);
534 pr_info("DRHD base: %#016Lx flags: %#x\n",
535 (unsigned long long)drhd->address, drhd->flags);
536 break;
537 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
538 rmrr = container_of(header, struct acpi_dmar_reserved_memory,
539 header);
540 pr_info("RMRR base: %#016Lx end: %#016Lx\n",
541 (unsigned long long)rmrr->base_address,
542 (unsigned long long)rmrr->end_address);
543 break;
544 case ACPI_DMAR_TYPE_ROOT_ATS:
545 atsr = container_of(header, struct acpi_dmar_atsr, header);
546 pr_info("ATSR flags: %#x\n", atsr->flags);
547 break;
548 case ACPI_DMAR_TYPE_HARDWARE_AFFINITY:
549 rhsa = container_of(header, struct acpi_dmar_rhsa, header);
550 pr_info("RHSA base: %#016Lx proximity domain: %#x\n",
551 (unsigned long long)rhsa->base_address,
552 rhsa->proximity_domain);
553 break;
554 case ACPI_DMAR_TYPE_NAMESPACE:
555 /* We don't print this here because we need to sanity-check
556 it first. So print it in dmar_parse_one_andd() instead. */
557 break;
558 case ACPI_DMAR_TYPE_SATC:
559 satc = container_of(header, struct acpi_dmar_satc, header);
560 pr_info("SATC flags: 0x%x\n", satc->flags);
561 break;
562 }
563 }
564
565 /**
566 * dmar_table_detect - checks to see if the platform supports DMAR devices
567 */
dmar_table_detect(void)568 static int __init dmar_table_detect(void)
569 {
570 acpi_status status = AE_OK;
571
572 /* if we could find DMAR table, then there are DMAR devices */
573 status = acpi_get_table(ACPI_SIG_DMAR, 0, &dmar_tbl);
574
575 if (ACPI_SUCCESS(status) && !dmar_tbl) {
576 pr_warn("Unable to map DMAR\n");
577 status = AE_NOT_FOUND;
578 }
579
580 return ACPI_SUCCESS(status) ? 0 : -ENOENT;
581 }
582
dmar_walk_remapping_entries(struct acpi_dmar_header * start,size_t len,struct dmar_res_callback * cb)583 static int dmar_walk_remapping_entries(struct acpi_dmar_header *start,
584 size_t len, struct dmar_res_callback *cb)
585 {
586 struct acpi_dmar_header *iter, *next;
587 struct acpi_dmar_header *end = ((void *)start) + len;
588
589 for (iter = start; iter < end; iter = next) {
590 next = (void *)iter + iter->length;
591 if (iter->length == 0) {
592 /* Avoid looping forever on bad ACPI tables */
593 pr_debug(FW_BUG "Invalid 0-length structure\n");
594 break;
595 } else if (next > end) {
596 /* Avoid passing table end */
597 pr_warn(FW_BUG "Record passes table end\n");
598 return -EINVAL;
599 }
600
601 if (cb->print_entry)
602 dmar_table_print_dmar_entry(iter);
603
604 if (iter->type >= ACPI_DMAR_TYPE_RESERVED) {
605 /* continue for forward compatibility */
606 pr_debug("Unknown DMAR structure type %d\n",
607 iter->type);
608 } else if (cb->cb[iter->type]) {
609 int ret;
610
611 ret = cb->cb[iter->type](iter, cb->arg[iter->type]);
612 if (ret)
613 return ret;
614 } else if (!cb->ignore_unhandled) {
615 pr_warn("No handler for DMAR structure type %d\n",
616 iter->type);
617 return -EINVAL;
618 }
619 }
620
621 return 0;
622 }
623
dmar_walk_dmar_table(struct acpi_table_dmar * dmar,struct dmar_res_callback * cb)624 static inline int dmar_walk_dmar_table(struct acpi_table_dmar *dmar,
625 struct dmar_res_callback *cb)
626 {
627 return dmar_walk_remapping_entries((void *)(dmar + 1),
628 dmar->header.length - sizeof(*dmar), cb);
629 }
630
631 /**
632 * parse_dmar_table - parses the DMA reporting table
633 */
634 static int __init
parse_dmar_table(void)635 parse_dmar_table(void)
636 {
637 struct acpi_table_dmar *dmar;
638 int drhd_count = 0;
639 int ret;
640 struct dmar_res_callback cb = {
641 .print_entry = true,
642 .ignore_unhandled = true,
643 .arg[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &drhd_count,
644 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_parse_one_drhd,
645 .cb[ACPI_DMAR_TYPE_RESERVED_MEMORY] = &dmar_parse_one_rmrr,
646 .cb[ACPI_DMAR_TYPE_ROOT_ATS] = &dmar_parse_one_atsr,
647 .cb[ACPI_DMAR_TYPE_HARDWARE_AFFINITY] = &dmar_parse_one_rhsa,
648 .cb[ACPI_DMAR_TYPE_NAMESPACE] = &dmar_parse_one_andd,
649 .cb[ACPI_DMAR_TYPE_SATC] = &dmar_parse_one_satc,
650 };
651
652 /*
653 * Do it again, earlier dmar_tbl mapping could be mapped with
654 * fixed map.
655 */
656 dmar_table_detect();
657
658 /*
659 * ACPI tables may not be DMA protected by tboot, so use DMAR copy
660 * SINIT saved in SinitMleData in TXT heap (which is DMA protected)
661 */
662 dmar_tbl = tboot_get_dmar_table(dmar_tbl);
663
664 dmar = (struct acpi_table_dmar *)dmar_tbl;
665 if (!dmar)
666 return -ENODEV;
667
668 if (dmar->width < PAGE_SHIFT - 1) {
669 pr_warn("Invalid DMAR haw\n");
670 return -EINVAL;
671 }
672
673 pr_info("Host address width %d\n", dmar->width + 1);
674 ret = dmar_walk_dmar_table(dmar, &cb);
675 if (ret == 0 && drhd_count == 0)
676 pr_warn(FW_BUG "No DRHD structure found in DMAR table\n");
677
678 return ret;
679 }
680
dmar_pci_device_match(struct dmar_dev_scope devices[],int cnt,struct pci_dev * dev)681 static int dmar_pci_device_match(struct dmar_dev_scope devices[],
682 int cnt, struct pci_dev *dev)
683 {
684 int index;
685 struct device *tmp;
686
687 while (dev) {
688 for_each_active_dev_scope(devices, cnt, index, tmp)
689 if (dev_is_pci(tmp) && dev == to_pci_dev(tmp))
690 return 1;
691
692 /* Check our parent */
693 dev = dev->bus->self;
694 }
695
696 return 0;
697 }
698
699 struct dmar_drhd_unit *
dmar_find_matched_drhd_unit(struct pci_dev * dev)700 dmar_find_matched_drhd_unit(struct pci_dev *dev)
701 {
702 struct dmar_drhd_unit *dmaru;
703 struct acpi_dmar_hardware_unit *drhd;
704
705 dev = pci_physfn(dev);
706
707 rcu_read_lock();
708 for_each_drhd_unit(dmaru) {
709 drhd = container_of(dmaru->hdr,
710 struct acpi_dmar_hardware_unit,
711 header);
712
713 if (dmaru->include_all &&
714 drhd->segment == pci_domain_nr(dev->bus))
715 goto out;
716
717 if (dmar_pci_device_match(dmaru->devices,
718 dmaru->devices_cnt, dev))
719 goto out;
720 }
721 dmaru = NULL;
722 out:
723 rcu_read_unlock();
724
725 return dmaru;
726 }
727
dmar_acpi_insert_dev_scope(u8 device_number,struct acpi_device * adev)728 static void __init dmar_acpi_insert_dev_scope(u8 device_number,
729 struct acpi_device *adev)
730 {
731 struct dmar_drhd_unit *dmaru;
732 struct acpi_dmar_hardware_unit *drhd;
733 struct acpi_dmar_device_scope *scope;
734 struct device *tmp;
735 int i;
736 struct acpi_dmar_pci_path *path;
737
738 for_each_drhd_unit(dmaru) {
739 drhd = container_of(dmaru->hdr,
740 struct acpi_dmar_hardware_unit,
741 header);
742
743 for (scope = (void *)(drhd + 1);
744 (unsigned long)scope < ((unsigned long)drhd) + drhd->header.length;
745 scope = ((void *)scope) + scope->length) {
746 if (scope->entry_type != ACPI_DMAR_SCOPE_TYPE_NAMESPACE)
747 continue;
748 if (scope->enumeration_id != device_number)
749 continue;
750
751 path = (void *)(scope + 1);
752 pr_info("ACPI device \"%s\" under DMAR at %llx as %02x:%02x.%d\n",
753 dev_name(&adev->dev), dmaru->reg_base_addr,
754 scope->bus, path->device, path->function);
755 for_each_dev_scope(dmaru->devices, dmaru->devices_cnt, i, tmp)
756 if (tmp == NULL) {
757 dmaru->devices[i].bus = scope->bus;
758 dmaru->devices[i].devfn = PCI_DEVFN(path->device,
759 path->function);
760 rcu_assign_pointer(dmaru->devices[i].dev,
761 get_device(&adev->dev));
762 return;
763 }
764 BUG_ON(i >= dmaru->devices_cnt);
765 }
766 }
767 pr_warn("No IOMMU scope found for ANDD enumeration ID %d (%s)\n",
768 device_number, dev_name(&adev->dev));
769 }
770
dmar_acpi_dev_scope_init(void)771 static int __init dmar_acpi_dev_scope_init(void)
772 {
773 struct acpi_dmar_andd *andd;
774
775 if (dmar_tbl == NULL)
776 return -ENODEV;
777
778 for (andd = (void *)dmar_tbl + sizeof(struct acpi_table_dmar);
779 ((unsigned long)andd) < ((unsigned long)dmar_tbl) + dmar_tbl->length;
780 andd = ((void *)andd) + andd->header.length) {
781 if (andd->header.type == ACPI_DMAR_TYPE_NAMESPACE) {
782 acpi_handle h;
783 struct acpi_device *adev;
784
785 if (!ACPI_SUCCESS(acpi_get_handle(ACPI_ROOT_OBJECT,
786 andd->device_name,
787 &h))) {
788 pr_err("Failed to find handle for ACPI object %s\n",
789 andd->device_name);
790 continue;
791 }
792 adev = acpi_fetch_acpi_dev(h);
793 if (!adev) {
794 pr_err("Failed to get device for ACPI object %s\n",
795 andd->device_name);
796 continue;
797 }
798 dmar_acpi_insert_dev_scope(andd->device_number, adev);
799 }
800 }
801 return 0;
802 }
803
dmar_dev_scope_init(void)804 int __init dmar_dev_scope_init(void)
805 {
806 struct pci_dev *dev = NULL;
807 struct dmar_pci_notify_info *info;
808
809 if (dmar_dev_scope_status != 1)
810 return dmar_dev_scope_status;
811
812 if (list_empty(&dmar_drhd_units)) {
813 dmar_dev_scope_status = -ENODEV;
814 } else {
815 dmar_dev_scope_status = 0;
816
817 dmar_acpi_dev_scope_init();
818
819 for_each_pci_dev(dev) {
820 if (dev->is_virtfn)
821 continue;
822
823 info = dmar_alloc_pci_notify_info(dev,
824 BUS_NOTIFY_ADD_DEVICE);
825 if (!info) {
826 pci_dev_put(dev);
827 return dmar_dev_scope_status;
828 } else {
829 dmar_pci_bus_add_dev(info);
830 dmar_free_pci_notify_info(info);
831 }
832 }
833 }
834
835 return dmar_dev_scope_status;
836 }
837
dmar_register_bus_notifier(void)838 void __init dmar_register_bus_notifier(void)
839 {
840 bus_register_notifier(&pci_bus_type, &dmar_pci_bus_nb);
841 }
842
843
dmar_table_init(void)844 int __init dmar_table_init(void)
845 {
846 static int dmar_table_initialized;
847 int ret;
848
849 if (dmar_table_initialized == 0) {
850 ret = parse_dmar_table();
851 if (ret < 0) {
852 if (ret != -ENODEV)
853 pr_info("Parse DMAR table failure.\n");
854 } else if (list_empty(&dmar_drhd_units)) {
855 pr_info("No DMAR devices found\n");
856 ret = -ENODEV;
857 }
858
859 if (ret < 0)
860 dmar_table_initialized = ret;
861 else
862 dmar_table_initialized = 1;
863 }
864
865 return dmar_table_initialized < 0 ? dmar_table_initialized : 0;
866 }
867
warn_invalid_dmar(u64 addr,const char * message)868 static void warn_invalid_dmar(u64 addr, const char *message)
869 {
870 pr_warn_once(FW_BUG
871 "Your BIOS is broken; DMAR reported at address %llx%s!\n"
872 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
873 addr, message,
874 dmi_get_system_info(DMI_BIOS_VENDOR),
875 dmi_get_system_info(DMI_BIOS_VERSION),
876 dmi_get_system_info(DMI_PRODUCT_VERSION));
877 add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
878 }
879
880 static int __ref
dmar_validate_one_drhd(struct acpi_dmar_header * entry,void * arg)881 dmar_validate_one_drhd(struct acpi_dmar_header *entry, void *arg)
882 {
883 struct acpi_dmar_hardware_unit *drhd;
884 void __iomem *addr;
885 u64 cap, ecap;
886
887 drhd = (void *)entry;
888 if (!drhd->address) {
889 warn_invalid_dmar(0, "");
890 return -EINVAL;
891 }
892
893 if (arg)
894 addr = ioremap(drhd->address, VTD_PAGE_SIZE);
895 else
896 addr = early_ioremap(drhd->address, VTD_PAGE_SIZE);
897 if (!addr) {
898 pr_warn("Can't validate DRHD address: %llx\n", drhd->address);
899 return -EINVAL;
900 }
901
902 cap = dmar_readq(addr + DMAR_CAP_REG);
903 ecap = dmar_readq(addr + DMAR_ECAP_REG);
904
905 if (arg)
906 iounmap(addr);
907 else
908 early_iounmap(addr, VTD_PAGE_SIZE);
909
910 if (cap == (uint64_t)-1 && ecap == (uint64_t)-1) {
911 warn_invalid_dmar(drhd->address, " returns all ones");
912 return -EINVAL;
913 }
914
915 return 0;
916 }
917
detect_intel_iommu(void)918 void __init detect_intel_iommu(void)
919 {
920 int ret;
921 struct dmar_res_callback validate_drhd_cb = {
922 .cb[ACPI_DMAR_TYPE_HARDWARE_UNIT] = &dmar_validate_one_drhd,
923 .ignore_unhandled = true,
924 };
925
926 down_write(&dmar_global_lock);
927 ret = dmar_table_detect();
928 if (!ret)
929 ret = dmar_walk_dmar_table((struct acpi_table_dmar *)dmar_tbl,
930 &validate_drhd_cb);
931 if (!ret && !no_iommu && !iommu_detected &&
932 (!dmar_disabled || dmar_platform_optin())) {
933 iommu_detected = 1;
934 /* Make sure ACS will be enabled */
935 pci_request_acs();
936 }
937
938 if (!ret) {
939 x86_init.iommu.iommu_init = intel_iommu_init;
940 x86_platform.iommu_shutdown = intel_iommu_shutdown;
941 }
942
943 if (dmar_tbl) {
944 acpi_put_table(dmar_tbl);
945 dmar_tbl = NULL;
946 }
947 up_write(&dmar_global_lock);
948 }
949
unmap_iommu(struct intel_iommu * iommu)950 static void unmap_iommu(struct intel_iommu *iommu)
951 {
952 iounmap(iommu->reg);
953 release_mem_region(iommu->reg_phys, iommu->reg_size);
954 }
955
956 /**
957 * map_iommu: map the iommu's registers
958 * @iommu: the iommu to map
959 * @drhd: DMA remapping hardware definition structure
960 *
961 * Memory map the iommu's registers. Start w/ a single page, and
962 * possibly expand if that turns out to be insufficent.
963 */
map_iommu(struct intel_iommu * iommu,struct dmar_drhd_unit * drhd)964 static int map_iommu(struct intel_iommu *iommu, struct dmar_drhd_unit *drhd)
965 {
966 u64 phys_addr = drhd->reg_base_addr;
967 int map_size, err=0;
968
969 iommu->reg_phys = phys_addr;
970 iommu->reg_size = drhd->reg_size;
971
972 if (!request_mem_region(iommu->reg_phys, iommu->reg_size, iommu->name)) {
973 pr_err("Can't reserve memory\n");
974 err = -EBUSY;
975 goto out;
976 }
977
978 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
979 if (!iommu->reg) {
980 pr_err("Can't map the region\n");
981 err = -ENOMEM;
982 goto release;
983 }
984
985 iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
986 iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
987
988 if (iommu->cap == (uint64_t)-1 && iommu->ecap == (uint64_t)-1) {
989 err = -EINVAL;
990 warn_invalid_dmar(phys_addr, " returns all ones");
991 goto unmap;
992 }
993
994 /* the registers might be more than one page */
995 map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
996 cap_max_fault_reg_offset(iommu->cap));
997 map_size = VTD_PAGE_ALIGN(map_size);
998 if (map_size > iommu->reg_size) {
999 iounmap(iommu->reg);
1000 release_mem_region(iommu->reg_phys, iommu->reg_size);
1001 iommu->reg_size = map_size;
1002 if (!request_mem_region(iommu->reg_phys, iommu->reg_size,
1003 iommu->name)) {
1004 pr_err("Can't reserve memory\n");
1005 err = -EBUSY;
1006 goto out;
1007 }
1008 iommu->reg = ioremap(iommu->reg_phys, iommu->reg_size);
1009 if (!iommu->reg) {
1010 pr_err("Can't map the region\n");
1011 err = -ENOMEM;
1012 goto release;
1013 }
1014 }
1015
1016 if (cap_ecmds(iommu->cap)) {
1017 int i;
1018
1019 for (i = 0; i < DMA_MAX_NUM_ECMDCAP; i++) {
1020 iommu->ecmdcap[i] = dmar_readq(iommu->reg + DMAR_ECCAP_REG +
1021 i * DMA_ECMD_REG_STEP);
1022 }
1023 }
1024
1025 err = 0;
1026 goto out;
1027
1028 unmap:
1029 iounmap(iommu->reg);
1030 release:
1031 release_mem_region(iommu->reg_phys, iommu->reg_size);
1032 out:
1033 return err;
1034 }
1035
alloc_iommu(struct dmar_drhd_unit * drhd)1036 static int alloc_iommu(struct dmar_drhd_unit *drhd)
1037 {
1038 struct intel_iommu *iommu;
1039 u32 ver, sts;
1040 int agaw = -1;
1041 int msagaw = -1;
1042 int err;
1043
1044 if (!drhd->reg_base_addr) {
1045 warn_invalid_dmar(0, "");
1046 return -EINVAL;
1047 }
1048
1049 iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
1050 if (!iommu)
1051 return -ENOMEM;
1052
1053 iommu->seq_id = ida_alloc_range(&dmar_seq_ids, 0,
1054 DMAR_UNITS_SUPPORTED - 1, GFP_KERNEL);
1055 if (iommu->seq_id < 0) {
1056 pr_err("Failed to allocate seq_id\n");
1057 err = iommu->seq_id;
1058 goto error;
1059 }
1060 snprintf(iommu->name, sizeof(iommu->name), "dmar%d", iommu->seq_id);
1061
1062 err = map_iommu(iommu, drhd);
1063 if (err) {
1064 pr_err("Failed to map %s\n", iommu->name);
1065 goto error_free_seq_id;
1066 }
1067
1068 if (!cap_sagaw(iommu->cap) &&
1069 (!ecap_smts(iommu->ecap) || ecap_slts(iommu->ecap))) {
1070 pr_info("%s: No supported address widths. Not attempting DMA translation.\n",
1071 iommu->name);
1072 drhd->ignored = 1;
1073 }
1074
1075 if (!drhd->ignored) {
1076 agaw = iommu_calculate_agaw(iommu);
1077 if (agaw < 0) {
1078 pr_err("Cannot get a valid agaw for iommu (seq_id = %d)\n",
1079 iommu->seq_id);
1080 drhd->ignored = 1;
1081 }
1082 }
1083 if (!drhd->ignored) {
1084 msagaw = iommu_calculate_max_sagaw(iommu);
1085 if (msagaw < 0) {
1086 pr_err("Cannot get a valid max agaw for iommu (seq_id = %d)\n",
1087 iommu->seq_id);
1088 drhd->ignored = 1;
1089 agaw = -1;
1090 }
1091 }
1092 iommu->agaw = agaw;
1093 iommu->msagaw = msagaw;
1094 iommu->segment = drhd->segment;
1095 iommu->device_rbtree = RB_ROOT;
1096 spin_lock_init(&iommu->device_rbtree_lock);
1097 mutex_init(&iommu->iopf_lock);
1098 iommu->node = NUMA_NO_NODE;
1099 spin_lock_init(&iommu->lock);
1100 ida_init(&iommu->domain_ida);
1101 mutex_init(&iommu->did_lock);
1102
1103 ver = readl(iommu->reg + DMAR_VER_REG);
1104 pr_info("%s: reg_base_addr %llx ver %d:%d cap %llx ecap %llx\n",
1105 iommu->name,
1106 (unsigned long long)drhd->reg_base_addr,
1107 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
1108 (unsigned long long)iommu->cap,
1109 (unsigned long long)iommu->ecap);
1110
1111 /* Reflect status in gcmd */
1112 sts = readl(iommu->reg + DMAR_GSTS_REG);
1113 if (sts & DMA_GSTS_IRES)
1114 iommu->gcmd |= DMA_GCMD_IRE;
1115 if (sts & DMA_GSTS_TES)
1116 iommu->gcmd |= DMA_GCMD_TE;
1117 if (sts & DMA_GSTS_QIES)
1118 iommu->gcmd |= DMA_GCMD_QIE;
1119
1120 if (alloc_iommu_pmu(iommu))
1121 pr_debug("Cannot alloc PMU for iommu (seq_id = %d)\n", iommu->seq_id);
1122
1123 raw_spin_lock_init(&iommu->register_lock);
1124
1125 /*
1126 * A value of N in PSS field of eCap register indicates hardware
1127 * supports PASID field of N+1 bits.
1128 */
1129 if (pasid_supported(iommu))
1130 iommu->iommu.max_pasids = 2UL << ecap_pss(iommu->ecap);
1131
1132 /*
1133 * This is only for hotplug; at boot time intel_iommu_enabled won't
1134 * be set yet. When intel_iommu_init() runs, it registers the units
1135 * present at boot time, then sets intel_iommu_enabled.
1136 */
1137 if (intel_iommu_enabled && !drhd->ignored) {
1138 err = iommu_device_sysfs_add(&iommu->iommu, NULL,
1139 intel_iommu_groups,
1140 "%s", iommu->name);
1141 if (err)
1142 goto err_unmap;
1143
1144 err = iommu_device_register(&iommu->iommu, &intel_iommu_ops, NULL);
1145 if (err)
1146 goto err_sysfs;
1147
1148 iommu_pmu_register(iommu);
1149 }
1150
1151 drhd->iommu = iommu;
1152 iommu->drhd = drhd;
1153
1154 return 0;
1155
1156 err_sysfs:
1157 iommu_device_sysfs_remove(&iommu->iommu);
1158 err_unmap:
1159 free_iommu_pmu(iommu);
1160 unmap_iommu(iommu);
1161 error_free_seq_id:
1162 ida_free(&dmar_seq_ids, iommu->seq_id);
1163 error:
1164 kfree(iommu);
1165 return err;
1166 }
1167
free_iommu(struct intel_iommu * iommu)1168 static void free_iommu(struct intel_iommu *iommu)
1169 {
1170 if (intel_iommu_enabled && !iommu->drhd->ignored) {
1171 iommu_pmu_unregister(iommu);
1172 iommu_device_unregister(&iommu->iommu);
1173 iommu_device_sysfs_remove(&iommu->iommu);
1174 }
1175
1176 free_iommu_pmu(iommu);
1177
1178 if (iommu->irq) {
1179 if (iommu->pr_irq) {
1180 free_irq(iommu->pr_irq, iommu);
1181 dmar_free_hwirq(iommu->pr_irq);
1182 iommu->pr_irq = 0;
1183 }
1184 free_irq(iommu->irq, iommu);
1185 dmar_free_hwirq(iommu->irq);
1186 iommu->irq = 0;
1187 }
1188
1189 if (iommu->qi) {
1190 iommu_free_pages(iommu->qi->desc);
1191 kfree(iommu->qi->desc_status);
1192 kfree(iommu->qi);
1193 }
1194
1195 if (iommu->reg)
1196 unmap_iommu(iommu);
1197
1198 ida_destroy(&iommu->domain_ida);
1199 ida_free(&dmar_seq_ids, iommu->seq_id);
1200 kfree(iommu);
1201 }
1202
1203 /*
1204 * Reclaim all the submitted descriptors which have completed its work.
1205 */
reclaim_free_desc(struct q_inval * qi)1206 static inline void reclaim_free_desc(struct q_inval *qi)
1207 {
1208 while (qi->desc_status[qi->free_tail] == QI_FREE && qi->free_tail != qi->free_head) {
1209 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
1210 qi->free_cnt++;
1211 }
1212 }
1213
qi_type_string(u8 type)1214 static const char *qi_type_string(u8 type)
1215 {
1216 switch (type) {
1217 case QI_CC_TYPE:
1218 return "Context-cache Invalidation";
1219 case QI_IOTLB_TYPE:
1220 return "IOTLB Invalidation";
1221 case QI_DIOTLB_TYPE:
1222 return "Device-TLB Invalidation";
1223 case QI_IEC_TYPE:
1224 return "Interrupt Entry Cache Invalidation";
1225 case QI_IWD_TYPE:
1226 return "Invalidation Wait";
1227 case QI_EIOTLB_TYPE:
1228 return "PASID-based IOTLB Invalidation";
1229 case QI_PC_TYPE:
1230 return "PASID-cache Invalidation";
1231 case QI_DEIOTLB_TYPE:
1232 return "PASID-based Device-TLB Invalidation";
1233 case QI_PGRP_RESP_TYPE:
1234 return "Page Group Response";
1235 default:
1236 return "UNKNOWN";
1237 }
1238 }
1239
qi_dump_fault(struct intel_iommu * iommu,u32 fault)1240 static void qi_dump_fault(struct intel_iommu *iommu, u32 fault)
1241 {
1242 unsigned int head = dmar_readl(iommu->reg + DMAR_IQH_REG);
1243 u64 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1244 struct qi_desc *desc = iommu->qi->desc + head;
1245
1246 if (fault & DMA_FSTS_IQE)
1247 pr_err("VT-d detected Invalidation Queue Error: Reason %llx",
1248 DMAR_IQER_REG_IQEI(iqe_err));
1249 if (fault & DMA_FSTS_ITE)
1250 pr_err("VT-d detected Invalidation Time-out Error: SID %llx",
1251 DMAR_IQER_REG_ITESID(iqe_err));
1252 if (fault & DMA_FSTS_ICE)
1253 pr_err("VT-d detected Invalidation Completion Error: SID %llx",
1254 DMAR_IQER_REG_ICESID(iqe_err));
1255
1256 pr_err("QI HEAD: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1257 qi_type_string(desc->qw0 & 0xf),
1258 (unsigned long long)desc->qw0,
1259 (unsigned long long)desc->qw1);
1260
1261 head = ((head >> qi_shift(iommu)) + QI_LENGTH - 1) % QI_LENGTH;
1262 head <<= qi_shift(iommu);
1263 desc = iommu->qi->desc + head;
1264
1265 pr_err("QI PRIOR: %s qw0 = 0x%llx, qw1 = 0x%llx\n",
1266 qi_type_string(desc->qw0 & 0xf),
1267 (unsigned long long)desc->qw0,
1268 (unsigned long long)desc->qw1);
1269 }
1270
qi_check_fault(struct intel_iommu * iommu,int index,int wait_index)1271 static int qi_check_fault(struct intel_iommu *iommu, int index, int wait_index)
1272 {
1273 u32 fault;
1274 int head, tail;
1275 struct device *dev;
1276 u64 iqe_err, ite_sid;
1277 struct q_inval *qi = iommu->qi;
1278 int shift = qi_shift(iommu);
1279
1280 if (qi->desc_status[wait_index] == QI_ABORT)
1281 return -EAGAIN;
1282
1283 fault = readl(iommu->reg + DMAR_FSTS_REG);
1284 if (fault & (DMA_FSTS_IQE | DMA_FSTS_ITE | DMA_FSTS_ICE))
1285 qi_dump_fault(iommu, fault);
1286
1287 /*
1288 * If IQE happens, the head points to the descriptor associated
1289 * with the error. No new descriptors are fetched until the IQE
1290 * is cleared.
1291 */
1292 if (fault & DMA_FSTS_IQE) {
1293 head = readl(iommu->reg + DMAR_IQH_REG);
1294 if ((head >> shift) == index) {
1295 struct qi_desc *desc = qi->desc + head;
1296
1297 /*
1298 * desc->qw2 and desc->qw3 are either reserved or
1299 * used by software as private data. We won't print
1300 * out these two qw's for security consideration.
1301 */
1302 memcpy(desc, qi->desc + (wait_index << shift),
1303 1 << shift);
1304 writel(DMA_FSTS_IQE, iommu->reg + DMAR_FSTS_REG);
1305 pr_info("Invalidation Queue Error (IQE) cleared\n");
1306 return -EINVAL;
1307 }
1308 }
1309
1310 /*
1311 * If ITE happens, all pending wait_desc commands are aborted.
1312 * No new descriptors are fetched until the ITE is cleared.
1313 */
1314 if (fault & DMA_FSTS_ITE) {
1315 head = readl(iommu->reg + DMAR_IQH_REG);
1316 head = ((head >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1317 head |= 1;
1318 tail = readl(iommu->reg + DMAR_IQT_REG);
1319 tail = ((tail >> shift) - 1 + QI_LENGTH) % QI_LENGTH;
1320
1321 /*
1322 * SID field is valid only when the ITE field is Set in FSTS_REG
1323 * see Intel VT-d spec r4.1, section 11.4.9.9
1324 */
1325 iqe_err = dmar_readq(iommu->reg + DMAR_IQER_REG);
1326 ite_sid = DMAR_IQER_REG_ITESID(iqe_err);
1327
1328 writel(DMA_FSTS_ITE, iommu->reg + DMAR_FSTS_REG);
1329 pr_info("Invalidation Time-out Error (ITE) cleared\n");
1330
1331 do {
1332 if (qi->desc_status[head] == QI_IN_USE)
1333 qi->desc_status[head] = QI_ABORT;
1334 head = (head - 2 + QI_LENGTH) % QI_LENGTH;
1335 } while (head != tail);
1336
1337 /*
1338 * If device was released or isn't present, no need to retry
1339 * the ATS invalidate request anymore.
1340 *
1341 * 0 value of ite_sid means old VT-d device, no ite_sid value.
1342 * see Intel VT-d spec r4.1, section 11.4.9.9
1343 */
1344 if (ite_sid) {
1345 dev = device_rbtree_find(iommu, ite_sid);
1346 if (!dev || !dev_is_pci(dev) ||
1347 !pci_device_is_present(to_pci_dev(dev)))
1348 return -ETIMEDOUT;
1349 }
1350 if (qi->desc_status[wait_index] == QI_ABORT)
1351 return -EAGAIN;
1352 }
1353
1354 if (fault & DMA_FSTS_ICE) {
1355 writel(DMA_FSTS_ICE, iommu->reg + DMAR_FSTS_REG);
1356 pr_info("Invalidation Completion Error (ICE) cleared\n");
1357 }
1358
1359 return 0;
1360 }
1361
1362 /*
1363 * Function to submit invalidation descriptors of all types to the queued
1364 * invalidation interface(QI). Multiple descriptors can be submitted at a
1365 * time, a wait descriptor will be appended to each submission to ensure
1366 * hardware has completed the invalidation before return. Wait descriptors
1367 * can be part of the submission but it will not be polled for completion.
1368 */
qi_submit_sync(struct intel_iommu * iommu,struct qi_desc * desc,unsigned int count,unsigned long options)1369 int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1370 unsigned int count, unsigned long options)
1371 {
1372 struct q_inval *qi = iommu->qi;
1373 s64 devtlb_start_ktime = 0;
1374 s64 iotlb_start_ktime = 0;
1375 s64 iec_start_ktime = 0;
1376 struct qi_desc wait_desc;
1377 int wait_index, index;
1378 unsigned long flags;
1379 int offset, shift;
1380 int rc, i;
1381 u64 type;
1382
1383 if (!qi)
1384 return 0;
1385
1386 type = desc->qw0 & GENMASK_ULL(3, 0);
1387
1388 if ((type == QI_IOTLB_TYPE || type == QI_EIOTLB_TYPE) &&
1389 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IOTLB))
1390 iotlb_start_ktime = ktime_to_ns(ktime_get());
1391
1392 if ((type == QI_DIOTLB_TYPE || type == QI_DEIOTLB_TYPE) &&
1393 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_DEVTLB))
1394 devtlb_start_ktime = ktime_to_ns(ktime_get());
1395
1396 if (type == QI_IEC_TYPE &&
1397 dmar_latency_enabled(iommu, DMAR_LATENCY_INV_IEC))
1398 iec_start_ktime = ktime_to_ns(ktime_get());
1399
1400 restart:
1401 rc = 0;
1402
1403 raw_spin_lock_irqsave(&qi->q_lock, flags);
1404 /*
1405 * Check if we have enough empty slots in the queue to submit,
1406 * the calculation is based on:
1407 * # of desc + 1 wait desc + 1 space between head and tail
1408 */
1409 while (qi->free_cnt < count + 2) {
1410 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1411 cpu_relax();
1412 raw_spin_lock_irqsave(&qi->q_lock, flags);
1413 }
1414
1415 index = qi->free_head;
1416 wait_index = (index + count) % QI_LENGTH;
1417 shift = qi_shift(iommu);
1418
1419 for (i = 0; i < count; i++) {
1420 offset = ((index + i) % QI_LENGTH) << shift;
1421 memcpy(qi->desc + offset, &desc[i], 1 << shift);
1422 qi->desc_status[(index + i) % QI_LENGTH] = QI_IN_USE;
1423 trace_qi_submit(iommu, desc[i].qw0, desc[i].qw1,
1424 desc[i].qw2, desc[i].qw3);
1425 }
1426 qi->desc_status[wait_index] = QI_IN_USE;
1427
1428 wait_desc.qw0 = QI_IWD_STATUS_DATA(QI_DONE) |
1429 QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
1430 if (options & QI_OPT_WAIT_DRAIN)
1431 wait_desc.qw0 |= QI_IWD_PRQ_DRAIN;
1432 wait_desc.qw1 = virt_to_phys(&qi->desc_status[wait_index]);
1433 wait_desc.qw2 = 0;
1434 wait_desc.qw3 = 0;
1435
1436 offset = wait_index << shift;
1437 memcpy(qi->desc + offset, &wait_desc, 1 << shift);
1438
1439 qi->free_head = (qi->free_head + count + 1) % QI_LENGTH;
1440 qi->free_cnt -= count + 1;
1441
1442 /*
1443 * update the HW tail register indicating the presence of
1444 * new descriptors.
1445 */
1446 writel(qi->free_head << shift, iommu->reg + DMAR_IQT_REG);
1447
1448 while (READ_ONCE(qi->desc_status[wait_index]) != QI_DONE) {
1449 /*
1450 * We will leave the interrupts disabled, to prevent interrupt
1451 * context to queue another cmd while a cmd is already submitted
1452 * and waiting for completion on this cpu. This is to avoid
1453 * a deadlock where the interrupt context can wait indefinitely
1454 * for free slots in the queue.
1455 */
1456 rc = qi_check_fault(iommu, index, wait_index);
1457 if (rc)
1458 break;
1459
1460 raw_spin_unlock(&qi->q_lock);
1461 cpu_relax();
1462 raw_spin_lock(&qi->q_lock);
1463 }
1464
1465 /*
1466 * The reclaim code can free descriptors from multiple submissions
1467 * starting from the tail of the queue. When count == 0, the
1468 * status of the standalone wait descriptor at the tail of the queue
1469 * must be set to QI_FREE to allow the reclaim code to proceed.
1470 * It is also possible that descriptors from one of the previous
1471 * submissions has to be reclaimed by a subsequent submission.
1472 */
1473 for (i = 0; i <= count; i++)
1474 qi->desc_status[(index + i) % QI_LENGTH] = QI_FREE;
1475
1476 reclaim_free_desc(qi);
1477 raw_spin_unlock_irqrestore(&qi->q_lock, flags);
1478
1479 if (rc == -EAGAIN)
1480 goto restart;
1481
1482 if (iotlb_start_ktime)
1483 dmar_latency_update(iommu, DMAR_LATENCY_INV_IOTLB,
1484 ktime_to_ns(ktime_get()) - iotlb_start_ktime);
1485
1486 if (devtlb_start_ktime)
1487 dmar_latency_update(iommu, DMAR_LATENCY_INV_DEVTLB,
1488 ktime_to_ns(ktime_get()) - devtlb_start_ktime);
1489
1490 if (iec_start_ktime)
1491 dmar_latency_update(iommu, DMAR_LATENCY_INV_IEC,
1492 ktime_to_ns(ktime_get()) - iec_start_ktime);
1493
1494 return rc;
1495 }
1496
1497 /*
1498 * Flush the global interrupt entry cache.
1499 */
qi_global_iec(struct intel_iommu * iommu)1500 void qi_global_iec(struct intel_iommu *iommu)
1501 {
1502 struct qi_desc desc;
1503
1504 desc.qw0 = QI_IEC_TYPE;
1505 desc.qw1 = 0;
1506 desc.qw2 = 0;
1507 desc.qw3 = 0;
1508
1509 /* should never fail */
1510 qi_submit_sync(iommu, &desc, 1, 0);
1511 }
1512
qi_flush_context(struct intel_iommu * iommu,u16 did,u16 sid,u8 fm,u64 type)1513 void qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
1514 u64 type)
1515 {
1516 struct qi_desc desc;
1517
1518 desc.qw0 = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
1519 | QI_CC_GRAN(type) | QI_CC_TYPE;
1520 desc.qw1 = 0;
1521 desc.qw2 = 0;
1522 desc.qw3 = 0;
1523
1524 qi_submit_sync(iommu, &desc, 1, 0);
1525 }
1526
qi_flush_iotlb(struct intel_iommu * iommu,u16 did,u64 addr,unsigned int size_order,u64 type)1527 void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1528 unsigned int size_order, u64 type)
1529 {
1530 struct qi_desc desc;
1531
1532 qi_desc_iotlb(iommu, did, addr, size_order, type, &desc);
1533 qi_submit_sync(iommu, &desc, 1, 0);
1534 }
1535
qi_flush_dev_iotlb(struct intel_iommu * iommu,u16 sid,u16 pfsid,u16 qdep,u64 addr,unsigned mask)1536 void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1537 u16 qdep, u64 addr, unsigned mask)
1538 {
1539 struct qi_desc desc;
1540
1541 /*
1542 * VT-d spec, section 4.3:
1543 *
1544 * Software is recommended to not submit any Device-TLB invalidation
1545 * requests while address remapping hardware is disabled.
1546 */
1547 if (!(iommu->gcmd & DMA_GCMD_TE))
1548 return;
1549
1550 qi_desc_dev_iotlb(sid, pfsid, qdep, addr, mask, &desc);
1551 qi_submit_sync(iommu, &desc, 1, 0);
1552 }
1553
1554 /* PASID-based IOTLB invalidation */
qi_flush_piotlb(struct intel_iommu * iommu,u16 did,u32 pasid,u64 addr,unsigned long npages,bool ih)1555 void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1556 unsigned long npages, bool ih)
1557 {
1558 struct qi_desc desc = {.qw2 = 0, .qw3 = 0};
1559
1560 /*
1561 * npages == -1 means a PASID-selective invalidation, otherwise,
1562 * a positive value for Page-selective-within-PASID invalidation.
1563 * 0 is not a valid input.
1564 */
1565 if (WARN_ON(!npages)) {
1566 pr_err("Invalid input npages = %ld\n", npages);
1567 return;
1568 }
1569
1570 qi_desc_piotlb(did, pasid, addr, npages, ih, &desc);
1571 qi_submit_sync(iommu, &desc, 1, 0);
1572 }
1573
1574 /* PASID-based device IOTLB Invalidate */
qi_flush_dev_iotlb_pasid(struct intel_iommu * iommu,u16 sid,u16 pfsid,u32 pasid,u16 qdep,u64 addr,unsigned int size_order)1575 void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1576 u32 pasid, u16 qdep, u64 addr, unsigned int size_order)
1577 {
1578 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1579
1580 /*
1581 * VT-d spec, section 4.3:
1582 *
1583 * Software is recommended to not submit any Device-TLB invalidation
1584 * requests while address remapping hardware is disabled.
1585 */
1586 if (!(iommu->gcmd & DMA_GCMD_TE))
1587 return;
1588
1589 qi_desc_dev_iotlb_pasid(sid, pfsid, pasid,
1590 qdep, addr, size_order,
1591 &desc);
1592 qi_submit_sync(iommu, &desc, 1, 0);
1593 }
1594
qi_flush_pasid_cache(struct intel_iommu * iommu,u16 did,u64 granu,u32 pasid)1595 void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did,
1596 u64 granu, u32 pasid)
1597 {
1598 struct qi_desc desc = {.qw1 = 0, .qw2 = 0, .qw3 = 0};
1599
1600 desc.qw0 = QI_PC_PASID(pasid) | QI_PC_DID(did) |
1601 QI_PC_GRAN(granu) | QI_PC_TYPE;
1602 qi_submit_sync(iommu, &desc, 1, 0);
1603 }
1604
1605 /*
1606 * Disable Queued Invalidation interface.
1607 */
dmar_disable_qi(struct intel_iommu * iommu)1608 void dmar_disable_qi(struct intel_iommu *iommu)
1609 {
1610 unsigned long flags;
1611 u32 sts;
1612 cycles_t start_time = get_cycles();
1613
1614 if (!ecap_qis(iommu->ecap))
1615 return;
1616
1617 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1618
1619 sts = readl(iommu->reg + DMAR_GSTS_REG);
1620 if (!(sts & DMA_GSTS_QIES))
1621 goto end;
1622
1623 /*
1624 * Give a chance to HW to complete the pending invalidation requests.
1625 */
1626 while ((readl(iommu->reg + DMAR_IQT_REG) !=
1627 readl(iommu->reg + DMAR_IQH_REG)) &&
1628 (DMAR_OPERATION_TIMEOUT > (get_cycles() - start_time)))
1629 cpu_relax();
1630
1631 iommu->gcmd &= ~DMA_GCMD_QIE;
1632 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1633
1634 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl,
1635 !(sts & DMA_GSTS_QIES), sts);
1636 end:
1637 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1638 }
1639
1640 /*
1641 * Enable queued invalidation.
1642 */
__dmar_enable_qi(struct intel_iommu * iommu)1643 static void __dmar_enable_qi(struct intel_iommu *iommu)
1644 {
1645 u32 sts;
1646 unsigned long flags;
1647 struct q_inval *qi = iommu->qi;
1648 u64 val = virt_to_phys(qi->desc);
1649
1650 qi->free_head = qi->free_tail = 0;
1651 qi->free_cnt = QI_LENGTH;
1652
1653 /*
1654 * Set DW=1 and QS=1 in IQA_REG when Scalable Mode capability
1655 * is present.
1656 */
1657 if (ecap_smts(iommu->ecap))
1658 val |= BIT_ULL(11) | BIT_ULL(0);
1659
1660 raw_spin_lock_irqsave(&iommu->register_lock, flags);
1661
1662 /* write zero to the tail reg */
1663 writel(0, iommu->reg + DMAR_IQT_REG);
1664
1665 dmar_writeq(iommu->reg + DMAR_IQA_REG, val);
1666
1667 iommu->gcmd |= DMA_GCMD_QIE;
1668 writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
1669
1670 /* Make sure hardware complete it */
1671 IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
1672
1673 raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
1674 }
1675
1676 /*
1677 * Enable Queued Invalidation interface. This is a must to support
1678 * interrupt-remapping. Also used by DMA-remapping, which replaces
1679 * register based IOTLB invalidation.
1680 */
dmar_enable_qi(struct intel_iommu * iommu)1681 int dmar_enable_qi(struct intel_iommu *iommu)
1682 {
1683 struct q_inval *qi;
1684 void *desc;
1685
1686 if (!ecap_qis(iommu->ecap))
1687 return -ENOENT;
1688
1689 /*
1690 * queued invalidation is already setup and enabled.
1691 */
1692 if (iommu->qi)
1693 return 0;
1694
1695 iommu->qi = kmalloc(sizeof(*qi), GFP_ATOMIC);
1696 if (!iommu->qi)
1697 return -ENOMEM;
1698
1699 qi = iommu->qi;
1700
1701 /*
1702 * Need two pages to accommodate 256 descriptors of 256 bits each
1703 * if the remapping hardware supports scalable mode translation.
1704 */
1705 desc = iommu_alloc_pages_node_sz(iommu->node, GFP_ATOMIC,
1706 ecap_smts(iommu->ecap) ? SZ_8K :
1707 SZ_4K);
1708 if (!desc) {
1709 kfree(qi);
1710 iommu->qi = NULL;
1711 return -ENOMEM;
1712 }
1713
1714 qi->desc = desc;
1715
1716 qi->desc_status = kcalloc(QI_LENGTH, sizeof(int), GFP_ATOMIC);
1717 if (!qi->desc_status) {
1718 iommu_free_pages(qi->desc);
1719 kfree(qi);
1720 iommu->qi = NULL;
1721 return -ENOMEM;
1722 }
1723
1724 raw_spin_lock_init(&qi->q_lock);
1725
1726 __dmar_enable_qi(iommu);
1727
1728 return 0;
1729 }
1730
1731 /* iommu interrupt handling. Most stuff are MSI-like. */
1732
1733 enum faulttype {
1734 DMA_REMAP,
1735 INTR_REMAP,
1736 UNKNOWN,
1737 };
1738
1739 static const char *dma_remap_fault_reasons[] =
1740 {
1741 "Software",
1742 "Present bit in root entry is clear",
1743 "Present bit in context entry is clear",
1744 "Invalid context entry",
1745 "Access beyond MGAW",
1746 "PTE Write access is not set",
1747 "PTE Read access is not set",
1748 "Next page table ptr is invalid",
1749 "Root table address invalid",
1750 "Context table ptr is invalid",
1751 "non-zero reserved fields in RTP",
1752 "non-zero reserved fields in CTP",
1753 "non-zero reserved fields in PTE",
1754 "PCE for translation request specifies blocking",
1755 };
1756
1757 static const char * const dma_remap_sm_fault_reasons[] = {
1758 "SM: Invalid Root Table Address",
1759 "SM: TTM 0 for request with PASID",
1760 "SM: TTM 0 for page group request",
1761 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x33-0x37 */
1762 "SM: Error attempting to access Root Entry",
1763 "SM: Present bit in Root Entry is clear",
1764 "SM: Non-zero reserved field set in Root Entry",
1765 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x3B-0x3F */
1766 "SM: Error attempting to access Context Entry",
1767 "SM: Present bit in Context Entry is clear",
1768 "SM: Non-zero reserved field set in the Context Entry",
1769 "SM: Invalid Context Entry",
1770 "SM: DTE field in Context Entry is clear",
1771 "SM: PASID Enable field in Context Entry is clear",
1772 "SM: PASID is larger than the max in Context Entry",
1773 "SM: PRE field in Context-Entry is clear",
1774 "SM: RID_PASID field error in Context-Entry",
1775 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x49-0x4F */
1776 "SM: Error attempting to access the PASID Directory Entry",
1777 "SM: Present bit in Directory Entry is clear",
1778 "SM: Non-zero reserved field set in PASID Directory Entry",
1779 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x53-0x57 */
1780 "SM: Error attempting to access PASID Table Entry",
1781 "SM: Present bit in PASID Table Entry is clear",
1782 "SM: Non-zero reserved field set in PASID Table Entry",
1783 "SM: Invalid Scalable-Mode PASID Table Entry",
1784 "SM: ERE field is clear in PASID Table Entry",
1785 "SM: SRE field is clear in PASID Table Entry",
1786 "Unknown", "Unknown",/* 0x5E-0x5F */
1787 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x60-0x67 */
1788 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x68-0x6F */
1789 "SM: Error attempting to access first-level paging entry",
1790 "SM: Present bit in first-level paging entry is clear",
1791 "SM: Non-zero reserved field set in first-level paging entry",
1792 "SM: Error attempting to access FL-PML4 entry",
1793 "SM: First-level entry address beyond MGAW in Nested translation",
1794 "SM: Read permission error in FL-PML4 entry in Nested translation",
1795 "SM: Read permission error in first-level paging entry in Nested translation",
1796 "SM: Write permission error in first-level paging entry in Nested translation",
1797 "SM: Error attempting to access second-level paging entry",
1798 "SM: Read/Write permission error in second-level paging entry",
1799 "SM: Non-zero reserved field set in second-level paging entry",
1800 "SM: Invalid second-level page table pointer",
1801 "SM: A/D bit update needed in second-level entry when set up in no snoop",
1802 "Unknown", "Unknown", "Unknown", /* 0x7D-0x7F */
1803 "SM: Address in first-level translation is not canonical",
1804 "SM: U/S set 0 for first-level translation with user privilege",
1805 "SM: No execute permission for request with PASID and ER=1",
1806 "SM: Address beyond the DMA hardware max",
1807 "SM: Second-level entry address beyond the max",
1808 "SM: No write permission for Write/AtomicOp request",
1809 "SM: No read permission for Read/AtomicOp request",
1810 "SM: Invalid address-interrupt address",
1811 "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", "Unknown", /* 0x88-0x8F */
1812 "SM: A/D bit update needed in first-level entry when set up in no snoop",
1813 };
1814
1815 static const char *irq_remap_fault_reasons[] =
1816 {
1817 "Detected reserved fields in the decoded interrupt-remapped request",
1818 "Interrupt index exceeded the interrupt-remapping table size",
1819 "Present field in the IRTE entry is clear",
1820 "Error accessing interrupt-remapping table pointed by IRTA_REG",
1821 "Detected reserved fields in the IRTE entry",
1822 "Blocked a compatibility format interrupt request",
1823 "Blocked an interrupt request due to source-id verification failure",
1824 };
1825
dmar_get_fault_reason(u8 fault_reason,int * fault_type)1826 static const char *dmar_get_fault_reason(u8 fault_reason, int *fault_type)
1827 {
1828 if (fault_reason >= 0x20 && (fault_reason - 0x20 <
1829 ARRAY_SIZE(irq_remap_fault_reasons))) {
1830 *fault_type = INTR_REMAP;
1831 return irq_remap_fault_reasons[fault_reason - 0x20];
1832 } else if (fault_reason >= 0x30 && (fault_reason - 0x30 <
1833 ARRAY_SIZE(dma_remap_sm_fault_reasons))) {
1834 *fault_type = DMA_REMAP;
1835 return dma_remap_sm_fault_reasons[fault_reason - 0x30];
1836 } else if (fault_reason < ARRAY_SIZE(dma_remap_fault_reasons)) {
1837 *fault_type = DMA_REMAP;
1838 return dma_remap_fault_reasons[fault_reason];
1839 } else {
1840 *fault_type = UNKNOWN;
1841 return "Unknown";
1842 }
1843 }
1844
1845
dmar_msi_reg(struct intel_iommu * iommu,int irq)1846 static inline int dmar_msi_reg(struct intel_iommu *iommu, int irq)
1847 {
1848 if (iommu->irq == irq)
1849 return DMAR_FECTL_REG;
1850 else if (iommu->pr_irq == irq)
1851 return DMAR_PECTL_REG;
1852 else if (iommu->perf_irq == irq)
1853 return DMAR_PERFINTRCTL_REG;
1854 else
1855 BUG();
1856 }
1857
dmar_msi_unmask(struct irq_data * data)1858 void dmar_msi_unmask(struct irq_data *data)
1859 {
1860 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1861 int reg = dmar_msi_reg(iommu, data->irq);
1862 unsigned long flag;
1863
1864 /* unmask it */
1865 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1866 writel(0, iommu->reg + reg);
1867 /* Read a reg to force flush the post write */
1868 readl(iommu->reg + reg);
1869 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1870 }
1871
dmar_msi_mask(struct irq_data * data)1872 void dmar_msi_mask(struct irq_data *data)
1873 {
1874 struct intel_iommu *iommu = irq_data_get_irq_handler_data(data);
1875 int reg = dmar_msi_reg(iommu, data->irq);
1876 unsigned long flag;
1877
1878 /* mask it */
1879 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1880 writel(DMA_FECTL_IM, iommu->reg + reg);
1881 /* Read a reg to force flush the post write */
1882 readl(iommu->reg + reg);
1883 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1884 }
1885
dmar_msi_write(int irq,struct msi_msg * msg)1886 void dmar_msi_write(int irq, struct msi_msg *msg)
1887 {
1888 struct intel_iommu *iommu = irq_get_handler_data(irq);
1889 int reg = dmar_msi_reg(iommu, irq);
1890 unsigned long flag;
1891
1892 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1893 writel(msg->data, iommu->reg + reg + 4);
1894 writel(msg->address_lo, iommu->reg + reg + 8);
1895 writel(msg->address_hi, iommu->reg + reg + 12);
1896 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1897 }
1898
dmar_fault_do_one(struct intel_iommu * iommu,int type,u8 fault_reason,u32 pasid,u16 source_id,unsigned long long addr)1899 static int dmar_fault_do_one(struct intel_iommu *iommu, int type,
1900 u8 fault_reason, u32 pasid, u16 source_id,
1901 unsigned long long addr)
1902 {
1903 const char *reason;
1904 int fault_type;
1905
1906 reason = dmar_get_fault_reason(fault_reason, &fault_type);
1907
1908 if (fault_type == INTR_REMAP) {
1909 pr_err("[INTR-REMAP] Request device [%02x:%02x.%d] fault index 0x%llx [fault reason 0x%02x] %s\n",
1910 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1911 PCI_FUNC(source_id & 0xFF), addr >> 48,
1912 fault_reason, reason);
1913
1914 return 0;
1915 }
1916
1917 if (pasid == IOMMU_PASID_INVALID)
1918 pr_err("[%s NO_PASID] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1919 type ? "DMA Read" : "DMA Write",
1920 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1921 PCI_FUNC(source_id & 0xFF), addr,
1922 fault_reason, reason);
1923 else
1924 pr_err("[%s PASID 0x%x] Request device [%02x:%02x.%d] fault addr 0x%llx [fault reason 0x%02x] %s\n",
1925 type ? "DMA Read" : "DMA Write", pasid,
1926 source_id >> 8, PCI_SLOT(source_id & 0xFF),
1927 PCI_FUNC(source_id & 0xFF), addr,
1928 fault_reason, reason);
1929
1930 dmar_fault_dump_ptes(iommu, source_id, addr, pasid);
1931
1932 return 0;
1933 }
1934
1935 #define PRIMARY_FAULT_REG_LEN (16)
dmar_fault(int irq,void * dev_id)1936 irqreturn_t dmar_fault(int irq, void *dev_id)
1937 {
1938 struct intel_iommu *iommu = dev_id;
1939 int reg, fault_index;
1940 u32 fault_status;
1941 unsigned long flag;
1942 static DEFINE_RATELIMIT_STATE(rs,
1943 DEFAULT_RATELIMIT_INTERVAL,
1944 DEFAULT_RATELIMIT_BURST);
1945
1946 raw_spin_lock_irqsave(&iommu->register_lock, flag);
1947 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
1948 if (fault_status && __ratelimit(&rs))
1949 pr_err("DRHD: handling fault status reg %x\n", fault_status);
1950
1951 /* TBD: ignore advanced fault log currently */
1952 if (!(fault_status & DMA_FSTS_PPF))
1953 goto unlock_exit;
1954
1955 fault_index = dma_fsts_fault_record_index(fault_status);
1956 reg = cap_fault_reg_offset(iommu->cap);
1957 while (1) {
1958 /* Disable printing, simply clear the fault when ratelimited */
1959 bool ratelimited = !__ratelimit(&rs);
1960 u8 fault_reason;
1961 u16 source_id;
1962 u64 guest_addr;
1963 u32 pasid;
1964 int type;
1965 u32 data;
1966 bool pasid_present;
1967
1968 /* highest 32 bits */
1969 data = readl(iommu->reg + reg +
1970 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1971 if (!(data & DMA_FRCD_F))
1972 break;
1973
1974 if (!ratelimited) {
1975 fault_reason = dma_frcd_fault_reason(data);
1976 type = dma_frcd_type(data);
1977
1978 pasid = dma_frcd_pasid_value(data);
1979 data = readl(iommu->reg + reg +
1980 fault_index * PRIMARY_FAULT_REG_LEN + 8);
1981 source_id = dma_frcd_source_id(data);
1982
1983 pasid_present = dma_frcd_pasid_present(data);
1984 guest_addr = dmar_readq(iommu->reg + reg +
1985 fault_index * PRIMARY_FAULT_REG_LEN);
1986 guest_addr = dma_frcd_page_addr(guest_addr);
1987 }
1988
1989 /* clear the fault */
1990 writel(DMA_FRCD_F, iommu->reg + reg +
1991 fault_index * PRIMARY_FAULT_REG_LEN + 12);
1992
1993 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
1994
1995 if (!ratelimited)
1996 /* Using pasid -1 if pasid is not present */
1997 dmar_fault_do_one(iommu, type, fault_reason,
1998 pasid_present ? pasid : IOMMU_PASID_INVALID,
1999 source_id, guest_addr);
2000
2001 fault_index++;
2002 if (fault_index >= cap_num_fault_regs(iommu->cap))
2003 fault_index = 0;
2004 raw_spin_lock_irqsave(&iommu->register_lock, flag);
2005 }
2006
2007 writel(DMA_FSTS_PFO | DMA_FSTS_PPF | DMA_FSTS_PRO,
2008 iommu->reg + DMAR_FSTS_REG);
2009
2010 unlock_exit:
2011 raw_spin_unlock_irqrestore(&iommu->register_lock, flag);
2012 return IRQ_HANDLED;
2013 }
2014
dmar_set_interrupt(struct intel_iommu * iommu)2015 int dmar_set_interrupt(struct intel_iommu *iommu)
2016 {
2017 int irq, ret;
2018
2019 /*
2020 * Check if the fault interrupt is already initialized.
2021 */
2022 if (iommu->irq)
2023 return 0;
2024
2025 irq = dmar_alloc_hwirq(iommu->seq_id, iommu->node, iommu);
2026 if (irq > 0) {
2027 iommu->irq = irq;
2028 } else {
2029 pr_err("No free IRQ vectors\n");
2030 return -EINVAL;
2031 }
2032
2033 ret = request_irq(irq, dmar_fault, IRQF_NO_THREAD, iommu->name, iommu);
2034 if (ret)
2035 pr_err("Can't request irq\n");
2036 return ret;
2037 }
2038
enable_drhd_fault_handling(unsigned int cpu)2039 int enable_drhd_fault_handling(unsigned int cpu)
2040 {
2041 struct dmar_drhd_unit *drhd;
2042 struct intel_iommu *iommu;
2043
2044 /*
2045 * Enable fault control interrupt.
2046 */
2047 guard(rwsem_read)(&dmar_global_lock);
2048 for_each_iommu(iommu, drhd) {
2049 u32 fault_status;
2050 int ret;
2051
2052 if (iommu->irq || iommu->node != cpu_to_node(cpu))
2053 continue;
2054
2055 ret = dmar_set_interrupt(iommu);
2056
2057 if (ret) {
2058 pr_err("DRHD %Lx: failed to enable fault, interrupt, ret %d\n",
2059 (unsigned long long)drhd->reg_base_addr, ret);
2060 return -1;
2061 }
2062
2063 /*
2064 * Clear any previous faults.
2065 */
2066 dmar_fault(iommu->irq, iommu);
2067 fault_status = readl(iommu->reg + DMAR_FSTS_REG);
2068 writel(fault_status, iommu->reg + DMAR_FSTS_REG);
2069 }
2070
2071 return 0;
2072 }
2073
2074 /*
2075 * Re-enable Queued Invalidation interface.
2076 */
dmar_reenable_qi(struct intel_iommu * iommu)2077 int dmar_reenable_qi(struct intel_iommu *iommu)
2078 {
2079 if (!ecap_qis(iommu->ecap))
2080 return -ENOENT;
2081
2082 if (!iommu->qi)
2083 return -ENOENT;
2084
2085 /*
2086 * First disable queued invalidation.
2087 */
2088 dmar_disable_qi(iommu);
2089 /*
2090 * Then enable queued invalidation again. Since there is no pending
2091 * invalidation requests now, it's safe to re-enable queued
2092 * invalidation.
2093 */
2094 __dmar_enable_qi(iommu);
2095
2096 return 0;
2097 }
2098
2099 /*
2100 * Check interrupt remapping support in DMAR table description.
2101 */
dmar_ir_support(void)2102 int __init dmar_ir_support(void)
2103 {
2104 struct acpi_table_dmar *dmar;
2105 dmar = (struct acpi_table_dmar *)dmar_tbl;
2106 if (!dmar)
2107 return 0;
2108 return dmar->flags & 0x1;
2109 }
2110
2111 /* Check whether DMAR units are in use */
dmar_in_use(void)2112 static inline bool dmar_in_use(void)
2113 {
2114 return irq_remapping_enabled || intel_iommu_enabled;
2115 }
2116
dmar_free_unused_resources(void)2117 static int __init dmar_free_unused_resources(void)
2118 {
2119 struct dmar_drhd_unit *dmaru, *dmaru_n;
2120
2121 if (dmar_in_use())
2122 return 0;
2123
2124 if (dmar_dev_scope_status != 1 && !list_empty(&dmar_drhd_units))
2125 bus_unregister_notifier(&pci_bus_type, &dmar_pci_bus_nb);
2126
2127 down_write(&dmar_global_lock);
2128 list_for_each_entry_safe(dmaru, dmaru_n, &dmar_drhd_units, list) {
2129 list_del(&dmaru->list);
2130 dmar_free_drhd(dmaru);
2131 }
2132 up_write(&dmar_global_lock);
2133
2134 return 0;
2135 }
2136
2137 late_initcall(dmar_free_unused_resources);
2138
2139 /*
2140 * DMAR Hotplug Support
2141 * For more details, please refer to Intel(R) Virtualization Technology
2142 * for Directed-IO Architecture Specifiction, Rev 2.2, Section 8.8
2143 * "Remapping Hardware Unit Hot Plug".
2144 */
2145 static guid_t dmar_hp_guid =
2146 GUID_INIT(0xD8C1A3A6, 0xBE9B, 0x4C9B,
2147 0x91, 0xBF, 0xC3, 0xCB, 0x81, 0xFC, 0x5D, 0xAF);
2148
2149 /*
2150 * Currently there's only one revision and BIOS will not check the revision id,
2151 * so use 0 for safety.
2152 */
2153 #define DMAR_DSM_REV_ID 0
2154 #define DMAR_DSM_FUNC_DRHD 1
2155 #define DMAR_DSM_FUNC_ATSR 2
2156 #define DMAR_DSM_FUNC_RHSA 3
2157 #define DMAR_DSM_FUNC_SATC 4
2158
dmar_detect_dsm(acpi_handle handle,int func)2159 static inline bool dmar_detect_dsm(acpi_handle handle, int func)
2160 {
2161 return acpi_check_dsm(handle, &dmar_hp_guid, DMAR_DSM_REV_ID, 1 << func);
2162 }
2163
dmar_walk_dsm_resource(acpi_handle handle,int func,dmar_res_handler_t handler,void * arg)2164 static int dmar_walk_dsm_resource(acpi_handle handle, int func,
2165 dmar_res_handler_t handler, void *arg)
2166 {
2167 int ret = -ENODEV;
2168 union acpi_object *obj;
2169 struct acpi_dmar_header *start;
2170 struct dmar_res_callback callback;
2171 static int res_type[] = {
2172 [DMAR_DSM_FUNC_DRHD] = ACPI_DMAR_TYPE_HARDWARE_UNIT,
2173 [DMAR_DSM_FUNC_ATSR] = ACPI_DMAR_TYPE_ROOT_ATS,
2174 [DMAR_DSM_FUNC_RHSA] = ACPI_DMAR_TYPE_HARDWARE_AFFINITY,
2175 [DMAR_DSM_FUNC_SATC] = ACPI_DMAR_TYPE_SATC,
2176 };
2177
2178 if (!dmar_detect_dsm(handle, func))
2179 return 0;
2180
2181 obj = acpi_evaluate_dsm_typed(handle, &dmar_hp_guid, DMAR_DSM_REV_ID,
2182 func, NULL, ACPI_TYPE_BUFFER);
2183 if (!obj)
2184 return -ENODEV;
2185
2186 memset(&callback, 0, sizeof(callback));
2187 callback.cb[res_type[func]] = handler;
2188 callback.arg[res_type[func]] = arg;
2189 start = (struct acpi_dmar_header *)obj->buffer.pointer;
2190 ret = dmar_walk_remapping_entries(start, obj->buffer.length, &callback);
2191
2192 ACPI_FREE(obj);
2193
2194 return ret;
2195 }
2196
dmar_hp_add_drhd(struct acpi_dmar_header * header,void * arg)2197 static int dmar_hp_add_drhd(struct acpi_dmar_header *header, void *arg)
2198 {
2199 int ret;
2200 struct dmar_drhd_unit *dmaru;
2201
2202 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2203 if (!dmaru)
2204 return -ENODEV;
2205
2206 ret = dmar_ir_hotplug(dmaru, true);
2207 if (ret == 0)
2208 ret = dmar_iommu_hotplug(dmaru, true);
2209
2210 return ret;
2211 }
2212
dmar_hp_remove_drhd(struct acpi_dmar_header * header,void * arg)2213 static int dmar_hp_remove_drhd(struct acpi_dmar_header *header, void *arg)
2214 {
2215 int i, ret;
2216 struct device *dev;
2217 struct dmar_drhd_unit *dmaru;
2218
2219 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2220 if (!dmaru)
2221 return 0;
2222
2223 /*
2224 * All PCI devices managed by this unit should have been destroyed.
2225 */
2226 if (!dmaru->include_all && dmaru->devices && dmaru->devices_cnt) {
2227 for_each_active_dev_scope(dmaru->devices,
2228 dmaru->devices_cnt, i, dev)
2229 return -EBUSY;
2230 }
2231
2232 ret = dmar_ir_hotplug(dmaru, false);
2233 if (ret == 0)
2234 ret = dmar_iommu_hotplug(dmaru, false);
2235
2236 return ret;
2237 }
2238
dmar_hp_release_drhd(struct acpi_dmar_header * header,void * arg)2239 static int dmar_hp_release_drhd(struct acpi_dmar_header *header, void *arg)
2240 {
2241 struct dmar_drhd_unit *dmaru;
2242
2243 dmaru = dmar_find_dmaru((struct acpi_dmar_hardware_unit *)header);
2244 if (dmaru) {
2245 list_del_rcu(&dmaru->list);
2246 synchronize_rcu();
2247 dmar_free_drhd(dmaru);
2248 }
2249
2250 return 0;
2251 }
2252
dmar_hotplug_insert(acpi_handle handle)2253 static int dmar_hotplug_insert(acpi_handle handle)
2254 {
2255 int ret;
2256 int drhd_count = 0;
2257
2258 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2259 &dmar_validate_one_drhd, (void *)1);
2260 if (ret)
2261 goto out;
2262
2263 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2264 &dmar_parse_one_drhd, (void *)&drhd_count);
2265 if (ret == 0 && drhd_count == 0) {
2266 pr_warn(FW_BUG "No DRHD structures in buffer returned by _DSM method\n");
2267 goto out;
2268 } else if (ret) {
2269 goto release_drhd;
2270 }
2271
2272 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_RHSA,
2273 &dmar_parse_one_rhsa, NULL);
2274 if (ret)
2275 goto release_drhd;
2276
2277 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2278 &dmar_parse_one_atsr, NULL);
2279 if (ret)
2280 goto release_atsr;
2281
2282 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2283 &dmar_hp_add_drhd, NULL);
2284 if (!ret)
2285 return 0;
2286
2287 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2288 &dmar_hp_remove_drhd, NULL);
2289 release_atsr:
2290 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2291 &dmar_release_one_atsr, NULL);
2292 release_drhd:
2293 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2294 &dmar_hp_release_drhd, NULL);
2295 out:
2296 return ret;
2297 }
2298
dmar_hotplug_remove(acpi_handle handle)2299 static int dmar_hotplug_remove(acpi_handle handle)
2300 {
2301 int ret;
2302
2303 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2304 &dmar_check_one_atsr, NULL);
2305 if (ret)
2306 return ret;
2307
2308 ret = dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2309 &dmar_hp_remove_drhd, NULL);
2310 if (ret == 0) {
2311 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_ATSR,
2312 &dmar_release_one_atsr, NULL));
2313 WARN_ON(dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2314 &dmar_hp_release_drhd, NULL));
2315 } else {
2316 dmar_walk_dsm_resource(handle, DMAR_DSM_FUNC_DRHD,
2317 &dmar_hp_add_drhd, NULL);
2318 }
2319
2320 return ret;
2321 }
2322
dmar_get_dsm_handle(acpi_handle handle,u32 lvl,void * context,void ** retval)2323 static acpi_status dmar_get_dsm_handle(acpi_handle handle, u32 lvl,
2324 void *context, void **retval)
2325 {
2326 acpi_handle *phdl = retval;
2327
2328 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2329 *phdl = handle;
2330 return AE_CTRL_TERMINATE;
2331 }
2332
2333 return AE_OK;
2334 }
2335
dmar_device_hotplug(acpi_handle handle,bool insert)2336 static int dmar_device_hotplug(acpi_handle handle, bool insert)
2337 {
2338 int ret;
2339 acpi_handle tmp = NULL;
2340 acpi_status status;
2341
2342 if (!dmar_in_use())
2343 return 0;
2344
2345 if (dmar_detect_dsm(handle, DMAR_DSM_FUNC_DRHD)) {
2346 tmp = handle;
2347 } else {
2348 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle,
2349 ACPI_UINT32_MAX,
2350 dmar_get_dsm_handle,
2351 NULL, NULL, &tmp);
2352 if (ACPI_FAILURE(status)) {
2353 pr_warn("Failed to locate _DSM method.\n");
2354 return -ENXIO;
2355 }
2356 }
2357 if (tmp == NULL)
2358 return 0;
2359
2360 down_write(&dmar_global_lock);
2361 if (insert)
2362 ret = dmar_hotplug_insert(tmp);
2363 else
2364 ret = dmar_hotplug_remove(tmp);
2365 up_write(&dmar_global_lock);
2366
2367 return ret;
2368 }
2369
dmar_device_add(acpi_handle handle)2370 int dmar_device_add(acpi_handle handle)
2371 {
2372 return dmar_device_hotplug(handle, true);
2373 }
2374
dmar_device_remove(acpi_handle handle)2375 int dmar_device_remove(acpi_handle handle)
2376 {
2377 return dmar_device_hotplug(handle, false);
2378 }
2379
2380 /*
2381 * dmar_platform_optin - Is %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in DMAR table
2382 *
2383 * Returns true if the platform has %DMA_CTRL_PLATFORM_OPT_IN_FLAG set in
2384 * the ACPI DMAR table. This means that the platform boot firmware has made
2385 * sure no device can issue DMA outside of RMRR regions.
2386 */
dmar_platform_optin(void)2387 bool dmar_platform_optin(void)
2388 {
2389 struct acpi_table_dmar *dmar;
2390 acpi_status status;
2391 bool ret;
2392
2393 status = acpi_get_table(ACPI_SIG_DMAR, 0,
2394 (struct acpi_table_header **)&dmar);
2395 if (ACPI_FAILURE(status))
2396 return false;
2397
2398 ret = !!(dmar->flags & DMAR_PLATFORM_OPT_IN);
2399 acpi_put_table((struct acpi_table_header *)dmar);
2400
2401 return ret;
2402 }
2403 EXPORT_SYMBOL_GPL(dmar_platform_optin);
2404