xref: /linux/include/linux/dmaengine.h (revision 23db0ed34f9e3756d243c5dc56d9f7c1fadecf89)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4  */
5 #ifndef LINUX_DMAENGINE_H
6 #define LINUX_DMAENGINE_H
7 
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/uio.h>
11 #include <linux/bug.h>
12 #include <linux/scatterlist.h>
13 #include <linux/bitmap.h>
14 #include <linux/types.h>
15 #include <asm/page.h>
16 
17 /**
18  * typedef dma_cookie_t - an opaque DMA cookie
19  *
20  * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21  */
22 typedef s32 dma_cookie_t;
23 #define DMA_MIN_COOKIE	1
24 
dma_submit_error(dma_cookie_t cookie)25 static inline int dma_submit_error(dma_cookie_t cookie)
26 {
27 	return cookie < 0 ? cookie : 0;
28 }
29 
30 /**
31  * enum dma_status - DMA transaction status
32  * @DMA_COMPLETE: transaction completed
33  * @DMA_IN_PROGRESS: transaction not yet processed
34  * @DMA_PAUSED: transaction is paused
35  * @DMA_ERROR: transaction failed
36  */
37 enum dma_status {
38 	DMA_COMPLETE,
39 	DMA_IN_PROGRESS,
40 	DMA_PAUSED,
41 	DMA_ERROR,
42 	DMA_OUT_OF_ORDER,
43 };
44 
45 /**
46  * enum dma_transaction_type - DMA transaction types/indexes
47  *
48  * Note: The DMA_ASYNC_TX capability is not to be set by drivers.  It is
49  * automatically set as dma devices are registered.
50  */
51 enum dma_transaction_type {
52 	DMA_MEMCPY,
53 	DMA_XOR,
54 	DMA_PQ,
55 	DMA_XOR_VAL,
56 	DMA_PQ_VAL,
57 	DMA_MEMSET,
58 	DMA_MEMSET_SG,
59 	DMA_INTERRUPT,
60 	DMA_PRIVATE,
61 	DMA_ASYNC_TX,
62 	DMA_SLAVE,
63 	DMA_CYCLIC,
64 	DMA_INTERLEAVE,
65 	DMA_COMPLETION_NO_ORDER,
66 	DMA_REPEAT,
67 	DMA_LOAD_EOT,
68 /* last transaction type for creation of the capabilities mask */
69 	DMA_TX_TYPE_END,
70 };
71 
72 /**
73  * enum dma_transfer_direction - dma transfer mode and direction indicator
74  * @DMA_MEM_TO_MEM: Async/Memcpy mode
75  * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76  * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77  * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78  */
79 enum dma_transfer_direction {
80 	DMA_MEM_TO_MEM,
81 	DMA_MEM_TO_DEV,
82 	DMA_DEV_TO_MEM,
83 	DMA_DEV_TO_DEV,
84 	DMA_TRANS_NONE,
85 };
86 
87 /*
88  * Interleaved Transfer Request
89  * ----------------------------
90  * A chunk is collection of contiguous bytes to be transferred.
91  * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
92  * ICGs may or may not change between chunks.
93  * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94  *  that when repeated an integral number of times, specifies the transfer.
95  * A transfer template is specification of a Frame, the number of times
96  *  it is to be repeated and other per-transfer attributes.
97  *
98  * Practically, a client driver would have ready a template for each
99  *  type of transfer it is going to need during its lifetime and
100  *  set only 'src_start' and 'dst_start' before submitting the requests.
101  *
102  *
103  *  |      Frame-1        |       Frame-2       | ~ |       Frame-'numf'  |
104  *  |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105  *
106  *    ==  Chunk size
107  *    ... ICG
108  */
109 
110 /**
111  * struct data_chunk - Element of scatter-gather list that makes a frame.
112  * @size: Number of bytes to read from source.
113  *	  size_dst := fn(op, size_src), so doesn't mean much for destination.
114  * @icg: Number of bytes to jump after last src/dst address of this
115  *	 chunk and before first src/dst address for next chunk.
116  *	 Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117  *	 Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
118  * @dst_icg: Number of bytes to jump after last dst address of this
119  *	 chunk and before the first dst address for next chunk.
120  *	 Ignored if dst_inc is true and dst_sgl is false.
121  * @src_icg: Number of bytes to jump after last src address of this
122  *	 chunk and before the first src address for next chunk.
123  *	 Ignored if src_inc is true and src_sgl is false.
124  */
125 struct data_chunk {
126 	size_t size;
127 	size_t icg;
128 	size_t dst_icg;
129 	size_t src_icg;
130 };
131 
132 /**
133  * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134  *	 and attributes.
135  * @src_start: Bus address of source for the first chunk.
136  * @dst_start: Bus address of destination for the first chunk.
137  * @dir: Specifies the type of Source and Destination.
138  * @src_inc: If the source address increments after reading from it.
139  * @dst_inc: If the destination address increments after writing to it.
140  * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141  *		Otherwise, source is read contiguously (icg ignored).
142  *		Ignored if src_inc is false.
143  * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144  *		Otherwise, destination is filled contiguously (icg ignored).
145  *		Ignored if dst_inc is false.
146  * @numf: Number of frames in this template.
147  * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148  * @sgl: Array of {chunk,icg} pairs that make up a frame.
149  */
150 struct dma_interleaved_template {
151 	dma_addr_t src_start;
152 	dma_addr_t dst_start;
153 	enum dma_transfer_direction dir;
154 	bool src_inc;
155 	bool dst_inc;
156 	bool src_sgl;
157 	bool dst_sgl;
158 	size_t numf;
159 	size_t frame_size;
160 	struct data_chunk sgl[];
161 };
162 
163 /**
164  * struct dma_vec - DMA vector
165  * @addr: Bus address of the start of the vector
166  * @len: Length in bytes of the DMA vector
167  */
168 struct dma_vec {
169 	dma_addr_t addr;
170 	size_t len;
171 };
172 
173 /**
174  * enum dma_ctrl_flags - DMA flags to augment operation preparation,
175  *  control completion, and communicate status.
176  * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
177  *  this transaction
178  * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
179  *  acknowledges receipt, i.e. has a chance to establish any dependency
180  *  chains
181  * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
182  * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
183  * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
184  *  sources that were the result of a previous operation, in the case of a PQ
185  *  operation it continues the calculation with new sources
186  * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
187  *  on the result of this operation
188  * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
189  *  cleared or freed
190  * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
191  *  data and the descriptor should be in different format from normal
192  *  data descriptors.
193  * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
194  *  repeated when it ends until a transaction is issued on the same channel
195  *  with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
196  *  interleaved transactions and is ignored for all other transaction types.
197  * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
198  *  active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
199  *  repeated transaction ends. Not setting this flag when the previously queued
200  *  transaction is marked with DMA_PREP_REPEAT will cause the new transaction
201  *  to never be processed and stay in the issued queue forever. The flag is
202  *  ignored if the previous transaction is not a repeated transaction.
203  */
204 enum dma_ctrl_flags {
205 	DMA_PREP_INTERRUPT = (1 << 0),
206 	DMA_CTRL_ACK = (1 << 1),
207 	DMA_PREP_PQ_DISABLE_P = (1 << 2),
208 	DMA_PREP_PQ_DISABLE_Q = (1 << 3),
209 	DMA_PREP_CONTINUE = (1 << 4),
210 	DMA_PREP_FENCE = (1 << 5),
211 	DMA_CTRL_REUSE = (1 << 6),
212 	DMA_PREP_CMD = (1 << 7),
213 	DMA_PREP_REPEAT = (1 << 8),
214 	DMA_PREP_LOAD_EOT = (1 << 9),
215 };
216 
217 /**
218  * enum sum_check_bits - bit position of pq_check_flags
219  */
220 enum sum_check_bits {
221 	SUM_CHECK_P = 0,
222 	SUM_CHECK_Q = 1,
223 };
224 
225 /**
226  * enum sum_check_flags - result of async_{xor,pq}_zero_sum operations
227  * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
228  * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
229  */
230 enum sum_check_flags {
231 	SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
232 	SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
233 };
234 
235 
236 /**
237  * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
238  * See linux/cpumask.h
239  */
240 typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
241 
242 /**
243  * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
244  * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
245  *  client driver and it is attached (via the dmaengine_desc_attach_metadata()
246  *  helper) to the descriptor.
247  *
248  * Client drivers interested to use this mode can follow:
249  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
250  *   1. prepare the descriptor (dmaengine_prep_*)
251  *	construct the metadata in the client's buffer
252  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
253  *	descriptor
254  *   3. submit the transfer
255  * - DMA_DEV_TO_MEM:
256  *   1. prepare the descriptor (dmaengine_prep_*)
257  *   2. use dmaengine_desc_attach_metadata() to attach the buffer to the
258  *	descriptor
259  *   3. submit the transfer
260  *   4. when the transfer is completed, the metadata should be available in the
261  *	attached buffer
262  *
263  * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
264  *  driver. The client driver can ask for the pointer, maximum size and the
265  *  currently used size of the metadata and can directly update or read it.
266  *  dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
267  *  provided as helper functions.
268  *
269  *  Note: the metadata area for the descriptor is no longer valid after the
270  *  transfer has been completed (valid up to the point when the completion
271  *  callback returns if used).
272  *
273  * Client drivers interested to use this mode can follow:
274  * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
275  *   1. prepare the descriptor (dmaengine_prep_*)
276  *   2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
277  *	metadata area
278  *   3. update the metadata at the pointer
279  *   4. use dmaengine_desc_set_metadata_len()  to tell the DMA engine the amount
280  *	of data the client has placed into the metadata buffer
281  *   5. submit the transfer
282  * - DMA_DEV_TO_MEM:
283  *   1. prepare the descriptor (dmaengine_prep_*)
284  *   2. submit the transfer
285  *   3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
286  *	pointer to the engine's metadata area
287  *   4. Read out the metadata from the pointer
288  *
289  * Warning: the two modes are not compatible and clients must use one mode for a
290  * descriptor.
291  */
292 enum dma_desc_metadata_mode {
293 	DESC_METADATA_NONE = 0,
294 	DESC_METADATA_CLIENT = BIT(0),
295 	DESC_METADATA_ENGINE = BIT(1),
296 };
297 
298 /**
299  * struct dma_chan_percpu - the per-CPU part of struct dma_chan
300  * @memcpy_count: transaction counter
301  * @bytes_transferred: byte counter
302  */
303 struct dma_chan_percpu {
304 	/* stats */
305 	unsigned long memcpy_count;
306 	unsigned long bytes_transferred;
307 };
308 
309 /**
310  * struct dma_router - DMA router structure
311  * @dev: pointer to the DMA router device
312  * @route_free: function to be called when the route can be disconnected
313  */
314 struct dma_router {
315 	struct device *dev;
316 	void (*route_free)(struct device *dev, void *route_data);
317 };
318 
319 /**
320  * struct dma_chan - devices supply DMA channels, clients use them
321  * @device: ptr to the dma device who supplies this channel, always !%NULL
322  * @slave: ptr to the device using this channel
323  * @cookie: last cookie value returned to client
324  * @completed_cookie: last completed cookie for this channel
325  * @chan_id: channel ID for sysfs
326  * @dev: class device for sysfs
327  * @name: backlink name for sysfs
328  * @dbg_client_name: slave name for debugfs in format:
329  *	dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
330  * @device_node: used to add this to the device chan list
331  * @local: per-cpu pointer to a struct dma_chan_percpu
332  * @client_count: how many clients are using this channel
333  * @table_count: number of appearances in the mem-to-mem allocation table
334  * @router: pointer to the DMA router structure
335  * @route_data: channel specific data for the router
336  * @private: private data for certain client-channel associations
337  */
338 struct dma_chan {
339 	struct dma_device *device;
340 	struct device *slave;
341 	dma_cookie_t cookie;
342 	dma_cookie_t completed_cookie;
343 
344 	/* sysfs */
345 	int chan_id;
346 	struct dma_chan_dev *dev;
347 	const char *name;
348 #ifdef CONFIG_DEBUG_FS
349 	char *dbg_client_name;
350 #endif
351 
352 	struct list_head device_node;
353 	struct dma_chan_percpu __percpu *local;
354 	int client_count;
355 	int table_count;
356 
357 	/* DMA router */
358 	struct dma_router *router;
359 	void *route_data;
360 
361 	void *private;
362 };
363 
364 /**
365  * struct dma_chan_dev - relate sysfs device node to backing channel device
366  * @chan: driver channel device
367  * @device: sysfs device
368  * @dev_id: parent dma_device dev_id
369  * @chan_dma_dev: The channel is using custom/different dma-mapping
370  * compared to the parent dma_device
371  */
372 struct dma_chan_dev {
373 	struct dma_chan *chan;
374 	struct device device;
375 	int dev_id;
376 	bool chan_dma_dev;
377 };
378 
379 /**
380  * enum dma_slave_buswidth - defines bus width of the DMA slave
381  * device, source or target buses
382  */
383 enum dma_slave_buswidth {
384 	DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
385 	DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
386 	DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
387 	DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
388 	DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
389 	DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
390 	DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
391 	DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
392 	DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
393 	DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
394 };
395 
396 /**
397  * struct dma_slave_config - dma slave channel runtime config
398  * @direction: whether the data shall go in or out on this slave
399  * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
400  * legal values. DEPRECATED, drivers should use the direction argument
401  * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
402  * the dir field in the dma_interleaved_template structure.
403  * @src_addr: this is the physical address where DMA slave data
404  * should be read (RX), if the source is memory this argument is
405  * ignored.
406  * @dst_addr: this is the physical address where DMA slave data
407  * should be written (TX), if the destination is memory this argument
408  * is ignored.
409  * @src_addr_width: this is the width in bytes of the source (RX)
410  * register where DMA data shall be read. If the source
411  * is memory this may be ignored depending on architecture.
412  * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
413  * @dst_addr_width: same as src_addr_width but for destination
414  * target (TX) mutatis mutandis.
415  * @src_maxburst: the maximum number of words (note: words, as in
416  * units of the src_addr_width member, not bytes) that can be sent
417  * in one burst to the device. Typically something like half the
418  * FIFO depth on I/O peripherals so you don't overflow it. This
419  * may or may not be applicable on memory sources.
420  * @dst_maxburst: same as src_maxburst but for destination target
421  * mutatis mutandis.
422  * @src_port_window_size: The length of the register area in words the data need
423  * to be accessed on the device side. It is only used for devices which is using
424  * an area instead of a single register to receive the data. Typically the DMA
425  * loops in this area in order to transfer the data.
426  * @dst_port_window_size: same as src_port_window_size but for the destination
427  * port.
428  * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
429  * with 'true' if peripheral should be flow controller. Direction will be
430  * selected at Runtime.
431  * @peripheral_config: peripheral configuration for programming peripheral
432  * for dmaengine transfer
433  * @peripheral_size: peripheral configuration buffer size
434  *
435  * This struct is passed in as configuration data to a DMA engine
436  * in order to set up a certain channel for DMA transport at runtime.
437  * The DMA device/engine has to provide support for an additional
438  * callback in the dma_device structure, device_config and this struct
439  * will then be passed in as an argument to the function.
440  *
441  * The rationale for adding configuration information to this struct is as
442  * follows: if it is likely that more than one DMA slave controllers in
443  * the world will support the configuration option, then make it generic.
444  * If not: if it is fixed so that it be sent in static from the platform
445  * data, then prefer to do that.
446  */
447 struct dma_slave_config {
448 	enum dma_transfer_direction direction;
449 	phys_addr_t src_addr;
450 	phys_addr_t dst_addr;
451 	enum dma_slave_buswidth src_addr_width;
452 	enum dma_slave_buswidth dst_addr_width;
453 	u32 src_maxburst;
454 	u32 dst_maxburst;
455 	u32 src_port_window_size;
456 	u32 dst_port_window_size;
457 	bool device_fc;
458 	void *peripheral_config;
459 	size_t peripheral_size;
460 };
461 
462 /**
463  * enum dma_residue_granularity - Granularity of the reported transfer residue
464  * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
465  *  DMA channel is only able to tell whether a descriptor has been completed or
466  *  not, which means residue reporting is not supported by this channel. The
467  *  residue field of the dma_tx_state field will always be 0.
468  * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
469  *  completed segment of the transfer (For cyclic transfers this is after each
470  *  period). This is typically implemented by having the hardware generate an
471  *  interrupt after each transferred segment and then the drivers updates the
472  *  outstanding residue by the size of the segment. Another possibility is if
473  *  the hardware supports scatter-gather and the segment descriptor has a field
474  *  which gets set after the segment has been completed. The driver then counts
475  *  the number of segments without the flag set to compute the residue.
476  * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
477  *  burst. This is typically only supported if the hardware has a progress
478  *  register of some sort (E.g. a register with the current read/write address
479  *  or a register with the amount of bursts/beats/bytes that have been
480  *  transferred or still need to be transferred).
481  */
482 enum dma_residue_granularity {
483 	DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
484 	DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
485 	DMA_RESIDUE_GRANULARITY_BURST = 2,
486 };
487 
488 /**
489  * struct dma_slave_caps - expose capabilities of a slave channel only
490  * @src_addr_widths: bit mask of src addr widths the channel supports.
491  *	Width is specified in bytes, e.g. for a channel supporting
492  *	a width of 4 the mask should have BIT(4) set.
493  * @dst_addr_widths: bit mask of dst addr widths the channel supports
494  * @directions: bit mask of slave directions the channel supports.
495  *	Since the enum dma_transfer_direction is not defined as bit flag for
496  *	each type, the dma controller should set BIT(<TYPE>) and same
497  *	should be checked by controller as well
498  * @min_burst: min burst capability per-transfer
499  * @max_burst: max burst capability per-transfer
500  * @max_sg_burst: max number of SG list entries executed in a single burst
501  *	DMA tansaction with no software intervention for reinitialization.
502  *	Zero value means unlimited number of entries.
503  * @cmd_pause: true, if pause is supported (i.e. for reading residue or
504  *	       for resume later)
505  * @cmd_resume: true, if resume is supported
506  * @cmd_terminate: true, if terminate cmd is supported
507  * @residue_granularity: granularity of the reported transfer residue
508  * @descriptor_reuse: if a descriptor can be reused by client and
509  * resubmitted multiple times
510  */
511 struct dma_slave_caps {
512 	u32 src_addr_widths;
513 	u32 dst_addr_widths;
514 	u32 directions;
515 	u32 min_burst;
516 	u32 max_burst;
517 	u32 max_sg_burst;
518 	bool cmd_pause;
519 	bool cmd_resume;
520 	bool cmd_terminate;
521 	enum dma_residue_granularity residue_granularity;
522 	bool descriptor_reuse;
523 };
524 
dma_chan_name(struct dma_chan * chan)525 static inline const char *dma_chan_name(struct dma_chan *chan)
526 {
527 	return dev_name(&chan->dev->device);
528 }
529 
530 /**
531  * typedef dma_filter_fn - callback filter for dma_request_channel
532  * @chan: channel to be reviewed
533  * @filter_param: opaque parameter passed through dma_request_channel
534  *
535  * When this optional parameter is specified in a call to dma_request_channel a
536  * suitable channel is passed to this routine for further dispositioning before
537  * being returned.  Where 'suitable' indicates a non-busy channel that
538  * satisfies the given capability mask.  It returns 'true' to indicate that the
539  * channel is suitable.
540  */
541 typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
542 
543 typedef void (*dma_async_tx_callback)(void *dma_async_param);
544 
545 enum dmaengine_tx_result {
546 	DMA_TRANS_NOERROR = 0,		/* SUCCESS */
547 	DMA_TRANS_READ_FAILED,		/* Source DMA read failed */
548 	DMA_TRANS_WRITE_FAILED,		/* Destination DMA write failed */
549 	DMA_TRANS_ABORTED,		/* Op never submitted / aborted */
550 };
551 
552 struct dmaengine_result {
553 	enum dmaengine_tx_result result;
554 	u32 residue;
555 };
556 
557 typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
558 				const struct dmaengine_result *result);
559 
560 struct dmaengine_unmap_data {
561 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
562 	u16 map_cnt;
563 #else
564 	u8 map_cnt;
565 #endif
566 	u8 to_cnt;
567 	u8 from_cnt;
568 	u8 bidi_cnt;
569 	struct device *dev;
570 	struct kref kref;
571 	size_t len;
572 	dma_addr_t addr[];
573 };
574 
575 struct dma_async_tx_descriptor;
576 
577 struct dma_descriptor_metadata_ops {
578 	int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
579 		      size_t len);
580 
581 	void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
582 			 size_t *payload_len, size_t *max_len);
583 	int (*set_len)(struct dma_async_tx_descriptor *desc,
584 		       size_t payload_len);
585 };
586 
587 /**
588  * struct dma_async_tx_descriptor - async transaction descriptor
589  * ---dma generic offload fields---
590  * @cookie: tracking cookie for this transaction, set to -EBUSY if
591  *	this tx is sitting on a dependency list
592  * @flags: flags to augment operation preparation, control completion, and
593  *	communicate status
594  * @phys: physical address of the descriptor
595  * @chan: target channel for this operation
596  * @tx_submit: accept the descriptor, assign ordered cookie and mark the
597  * @desc_free: driver's callback function to free a resusable descriptor
598  *	after completion
599  * descriptor pending. To be pushed on .issue_pending() call
600  * @callback: routine to call after this operation is complete
601  * @callback_result: error result from a DMA transaction
602  * @callback_param: general parameter to pass to the callback routine
603  * @unmap: hook for generic DMA unmap data
604  * @desc_metadata_mode: core managed metadata mode to protect mixed use of
605  *	DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
606  *	DESC_METADATA_NONE
607  * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
608  *	DMA driver if metadata mode is supported with the descriptor
609  * ---async_tx api specific fields---
610  * @next: at completion submit this descriptor
611  * @parent: pointer to the next level up in the dependency chain
612  * @lock: protect the parent and next pointers
613  */
614 struct dma_async_tx_descriptor {
615 	dma_cookie_t cookie;
616 	enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
617 	dma_addr_t phys;
618 	struct dma_chan *chan;
619 	dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
620 	int (*desc_free)(struct dma_async_tx_descriptor *tx);
621 	dma_async_tx_callback callback;
622 	dma_async_tx_callback_result callback_result;
623 	void *callback_param;
624 	struct dmaengine_unmap_data *unmap;
625 	enum dma_desc_metadata_mode desc_metadata_mode;
626 	struct dma_descriptor_metadata_ops *metadata_ops;
627 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
628 	struct dma_async_tx_descriptor *next;
629 	struct dma_async_tx_descriptor *parent;
630 	spinlock_t lock;
631 #endif
632 };
633 
634 #ifdef CONFIG_DMA_ENGINE
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)635 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
636 				 struct dmaengine_unmap_data *unmap)
637 {
638 	kref_get(&unmap->kref);
639 	tx->unmap = unmap;
640 }
641 
642 struct dmaengine_unmap_data *
643 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
644 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
645 #else
dma_set_unmap(struct dma_async_tx_descriptor * tx,struct dmaengine_unmap_data * unmap)646 static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
647 				 struct dmaengine_unmap_data *unmap)
648 {
649 }
650 static inline struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)651 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
652 {
653 	return NULL;
654 }
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)655 static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
656 {
657 }
658 #endif
659 
dma_descriptor_unmap(struct dma_async_tx_descriptor * tx)660 static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
661 {
662 	if (!tx->unmap)
663 		return;
664 
665 	dmaengine_unmap_put(tx->unmap);
666 	tx->unmap = NULL;
667 }
668 
669 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
txd_lock(struct dma_async_tx_descriptor * txd)670 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
671 {
672 }
txd_unlock(struct dma_async_tx_descriptor * txd)673 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
674 {
675 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)676 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
677 {
678 	BUG();
679 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)680 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
681 {
682 }
txd_clear_next(struct dma_async_tx_descriptor * txd)683 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
684 {
685 }
txd_next(struct dma_async_tx_descriptor * txd)686 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
687 {
688 	return NULL;
689 }
txd_parent(struct dma_async_tx_descriptor * txd)690 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
691 {
692 	return NULL;
693 }
694 
695 #else
txd_lock(struct dma_async_tx_descriptor * txd)696 static inline void txd_lock(struct dma_async_tx_descriptor *txd)
697 {
698 	spin_lock_bh(&txd->lock);
699 }
txd_unlock(struct dma_async_tx_descriptor * txd)700 static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
701 {
702 	spin_unlock_bh(&txd->lock);
703 }
txd_chain(struct dma_async_tx_descriptor * txd,struct dma_async_tx_descriptor * next)704 static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
705 {
706 	txd->next = next;
707 	next->parent = txd;
708 }
txd_clear_parent(struct dma_async_tx_descriptor * txd)709 static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
710 {
711 	txd->parent = NULL;
712 }
txd_clear_next(struct dma_async_tx_descriptor * txd)713 static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
714 {
715 	txd->next = NULL;
716 }
txd_parent(struct dma_async_tx_descriptor * txd)717 static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
718 {
719 	return txd->parent;
720 }
txd_next(struct dma_async_tx_descriptor * txd)721 static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
722 {
723 	return txd->next;
724 }
725 #endif
726 
727 /**
728  * struct dma_tx_state - filled in to report the status of
729  * a transfer.
730  * @last: last completed DMA cookie
731  * @used: last issued DMA cookie (i.e. the one in progress)
732  * @residue: the remaining number of bytes left to transmit
733  *	on the selected transfer for states DMA_IN_PROGRESS and
734  *	DMA_PAUSED if this is implemented in the driver, else 0
735  * @in_flight_bytes: amount of data in bytes cached by the DMA.
736  */
737 struct dma_tx_state {
738 	dma_cookie_t last;
739 	dma_cookie_t used;
740 	u32 residue;
741 	u32 in_flight_bytes;
742 };
743 
744 /**
745  * enum dmaengine_alignment - defines alignment of the DMA async tx
746  * buffers
747  */
748 enum dmaengine_alignment {
749 	DMAENGINE_ALIGN_1_BYTE = 0,
750 	DMAENGINE_ALIGN_2_BYTES = 1,
751 	DMAENGINE_ALIGN_4_BYTES = 2,
752 	DMAENGINE_ALIGN_8_BYTES = 3,
753 	DMAENGINE_ALIGN_16_BYTES = 4,
754 	DMAENGINE_ALIGN_32_BYTES = 5,
755 	DMAENGINE_ALIGN_64_BYTES = 6,
756 	DMAENGINE_ALIGN_128_BYTES = 7,
757 	DMAENGINE_ALIGN_256_BYTES = 8,
758 };
759 
760 /**
761  * struct dma_slave_map - associates slave device and it's slave channel with
762  * parameter to be used by a filter function
763  * @devname: name of the device
764  * @slave: slave channel name
765  * @param: opaque parameter to pass to struct dma_filter.fn
766  */
767 struct dma_slave_map {
768 	const char *devname;
769 	const char *slave;
770 	void *param;
771 };
772 
773 /**
774  * struct dma_filter - information for slave device/channel to filter_fn/param
775  * mapping
776  * @fn: filter function callback
777  * @mapcnt: number of slave device/channel in the map
778  * @map: array of channel to filter mapping data
779  */
780 struct dma_filter {
781 	dma_filter_fn fn;
782 	int mapcnt;
783 	const struct dma_slave_map *map;
784 };
785 
786 /**
787  * struct dma_device - info on the entity supplying DMA services
788  * @ref: reference is taken and put every time a channel is allocated or freed
789  * @chancnt: how many DMA channels are supported
790  * @privatecnt: how many DMA channels are requested by dma_request_channel
791  * @channels: the list of struct dma_chan
792  * @global_node: list_head for global dma_device_list
793  * @filter: information for device/slave to filter function/param mapping
794  * @cap_mask: one or more dma_capability flags
795  * @desc_metadata_modes: supported metadata modes by the DMA device
796  * @max_xor: maximum number of xor sources, 0 if no capability
797  * @max_pq: maximum number of PQ sources and PQ-continue capability
798  * @copy_align: alignment shift for memcpy operations
799  * @xor_align: alignment shift for xor operations
800  * @pq_align: alignment shift for pq operations
801  * @fill_align: alignment shift for memset operations
802  * @dev_id: unique device ID
803  * @dev: struct device reference for dma mapping api
804  * @owner: owner module (automatically set based on the provided dev)
805  * @chan_ida: unique channel ID
806  * @src_addr_widths: bit mask of src addr widths the device supports
807  *	Width is specified in bytes, e.g. for a device supporting
808  *	a width of 4 the mask should have BIT(4) set.
809  * @dst_addr_widths: bit mask of dst addr widths the device supports
810  * @directions: bit mask of slave directions the device supports.
811  *	Since the enum dma_transfer_direction is not defined as bit flag for
812  *	each type, the dma controller should set BIT(<TYPE>) and same
813  *	should be checked by controller as well
814  * @min_burst: min burst capability per-transfer
815  * @max_burst: max burst capability per-transfer
816  * @max_sg_burst: max number of SG list entries executed in a single burst
817  *	DMA tansaction with no software intervention for reinitialization.
818  *	Zero value means unlimited number of entries.
819  * @descriptor_reuse: a submitted transfer can be resubmitted after completion
820  * @residue_granularity: granularity of the transfer residue reported
821  *	by tx_status
822  * @device_alloc_chan_resources: allocate resources and return the
823  *	number of allocated descriptors
824  * @device_router_config: optional callback for DMA router configuration
825  * @device_free_chan_resources: release DMA channel's resources
826  * @device_prep_dma_memcpy: prepares a memcpy operation
827  * @device_prep_dma_xor: prepares a xor operation
828  * @device_prep_dma_xor_val: prepares a xor validation operation
829  * @device_prep_dma_pq: prepares a pq operation
830  * @device_prep_dma_pq_val: prepares a pqzero_sum operation
831  * @device_prep_dma_memset: prepares a memset operation
832  * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
833  * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
834  * @device_prep_peripheral_dma_vec: prepares a scatter-gather DMA transfer,
835  *	where the address and size of each segment is located in one entry of
836  *	the dma_vec array.
837  * @device_prep_slave_sg: prepares a slave dma operation
838  * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
839  *	The function takes a buffer of size buf_len. The callback function will
840  *	be called after period_len bytes have been transferred.
841  * @device_prep_interleaved_dma: Transfer expression in a generic way.
842  * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
843  * @device_caps: May be used to override the generic DMA slave capabilities
844  *	with per-channel specific ones
845  * @device_config: Pushes a new configuration to a channel, return 0 or an error
846  *	code
847  * @device_pause: Pauses any transfer happening on a channel. Returns
848  *	0 or an error code
849  * @device_resume: Resumes any transfer on a channel previously
850  *	paused. Returns 0 or an error code
851  * @device_terminate_all: Aborts all transfers on a channel. Returns 0
852  *	or an error code
853  * @device_synchronize: Synchronizes the termination of a transfers to the
854  *  current context.
855  * @device_tx_status: poll for transaction completion, the optional
856  *	txstate parameter can be supplied with a pointer to get a
857  *	struct with auxiliary transfer status information, otherwise the call
858  *	will just return a simple status code
859  * @device_issue_pending: push pending transactions to hardware
860  * @device_release: called sometime atfer dma_async_device_unregister() is
861  *     called and there are no further references to this structure. This
862  *     must be implemented to free resources however many existing drivers
863  *     do not and are therefore not safe to unbind while in use.
864  * @dbg_summary_show: optional routine to show contents in debugfs; default code
865  *     will be used when this is omitted, but custom code can show extra,
866  *     controller specific information.
867  * @dbg_dev_root: the root folder in debugfs for this device
868  */
869 struct dma_device {
870 	struct kref ref;
871 	unsigned int chancnt;
872 	unsigned int privatecnt;
873 	struct list_head channels;
874 	struct list_head global_node;
875 	struct dma_filter filter;
876 	dma_cap_mask_t cap_mask;
877 	enum dma_desc_metadata_mode desc_metadata_modes;
878 	unsigned short max_xor;
879 	unsigned short max_pq;
880 	enum dmaengine_alignment copy_align;
881 	enum dmaengine_alignment xor_align;
882 	enum dmaengine_alignment pq_align;
883 	enum dmaengine_alignment fill_align;
884 	#define DMA_HAS_PQ_CONTINUE (1 << 15)
885 
886 	int dev_id;
887 	struct device *dev;
888 	struct module *owner;
889 	struct ida chan_ida;
890 
891 	u32 src_addr_widths;
892 	u32 dst_addr_widths;
893 	u32 directions;
894 	u32 min_burst;
895 	u32 max_burst;
896 	u32 max_sg_burst;
897 	bool descriptor_reuse;
898 	enum dma_residue_granularity residue_granularity;
899 
900 	int (*device_alloc_chan_resources)(struct dma_chan *chan);
901 	int (*device_router_config)(struct dma_chan *chan);
902 	void (*device_free_chan_resources)(struct dma_chan *chan);
903 
904 	struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
905 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
906 		size_t len, unsigned long flags);
907 	struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
908 		struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
909 		unsigned int src_cnt, size_t len, unsigned long flags);
910 	struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
911 		struct dma_chan *chan, dma_addr_t *src,	unsigned int src_cnt,
912 		size_t len, enum sum_check_flags *result, unsigned long flags);
913 	struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
914 		struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
915 		unsigned int src_cnt, const unsigned char *scf,
916 		size_t len, unsigned long flags);
917 	struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
918 		struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
919 		unsigned int src_cnt, const unsigned char *scf, size_t len,
920 		enum sum_check_flags *pqres, unsigned long flags);
921 	struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
922 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
923 		unsigned long flags);
924 	struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
925 		struct dma_chan *chan, struct scatterlist *sg,
926 		unsigned int nents, int value, unsigned long flags);
927 	struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
928 		struct dma_chan *chan, unsigned long flags);
929 
930 	struct dma_async_tx_descriptor *(*device_prep_peripheral_dma_vec)(
931 		struct dma_chan *chan, const struct dma_vec *vecs,
932 		size_t nents, enum dma_transfer_direction direction,
933 		unsigned long flags);
934 	struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
935 		struct dma_chan *chan, struct scatterlist *sgl,
936 		unsigned int sg_len, enum dma_transfer_direction direction,
937 		unsigned long flags, void *context);
938 	struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
939 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
940 		size_t period_len, enum dma_transfer_direction direction,
941 		unsigned long flags);
942 	struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
943 		struct dma_chan *chan, struct dma_interleaved_template *xt,
944 		unsigned long flags);
945 	struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
946 		struct dma_chan *chan, dma_addr_t dst, u64 data,
947 		unsigned long flags);
948 
949 	void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
950 	int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config);
951 	int (*device_pause)(struct dma_chan *chan);
952 	int (*device_resume)(struct dma_chan *chan);
953 	int (*device_terminate_all)(struct dma_chan *chan);
954 	void (*device_synchronize)(struct dma_chan *chan);
955 
956 	enum dma_status (*device_tx_status)(struct dma_chan *chan,
957 					    dma_cookie_t cookie,
958 					    struct dma_tx_state *txstate);
959 	void (*device_issue_pending)(struct dma_chan *chan);
960 	void (*device_release)(struct dma_device *dev);
961 	/* debugfs support */
962 	void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
963 	struct dentry *dbg_dev_root;
964 };
965 
dmaengine_slave_config(struct dma_chan * chan,struct dma_slave_config * config)966 static inline int dmaengine_slave_config(struct dma_chan *chan,
967 					  struct dma_slave_config *config)
968 {
969 	if (chan->device->device_config)
970 		return chan->device->device_config(chan, config);
971 
972 	return -ENOSYS;
973 }
974 
is_slave_direction(enum dma_transfer_direction direction)975 static inline bool is_slave_direction(enum dma_transfer_direction direction)
976 {
977 	return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM) ||
978 	       (direction == DMA_DEV_TO_DEV);
979 }
980 
dmaengine_prep_slave_single(struct dma_chan * chan,dma_addr_t buf,size_t len,enum dma_transfer_direction dir,unsigned long flags)981 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
982 	struct dma_chan *chan, dma_addr_t buf, size_t len,
983 	enum dma_transfer_direction dir, unsigned long flags)
984 {
985 	struct scatterlist sg;
986 	sg_init_table(&sg, 1);
987 	sg_dma_address(&sg) = buf;
988 	sg_dma_len(&sg) = len;
989 
990 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
991 		return NULL;
992 
993 	return chan->device->device_prep_slave_sg(chan, &sg, 1,
994 						  dir, flags, NULL);
995 }
996 
997 /**
998  * dmaengine_prep_peripheral_dma_vec() - Prepare a DMA scatter-gather descriptor
999  * @chan: The channel to be used for this descriptor
1000  * @vecs: The array of DMA vectors that should be transferred
1001  * @nents: The number of DMA vectors in the array
1002  * @dir: Specifies the direction of the data transfer
1003  * @flags: DMA engine flags
1004  */
dmaengine_prep_peripheral_dma_vec(struct dma_chan * chan,const struct dma_vec * vecs,size_t nents,enum dma_transfer_direction dir,unsigned long flags)1005 static inline struct dma_async_tx_descriptor *dmaengine_prep_peripheral_dma_vec(
1006 	struct dma_chan *chan, const struct dma_vec *vecs, size_t nents,
1007 	enum dma_transfer_direction dir, unsigned long flags)
1008 {
1009 	if (!chan || !chan->device || !chan->device->device_prep_peripheral_dma_vec)
1010 		return NULL;
1011 
1012 	return chan->device->device_prep_peripheral_dma_vec(chan, vecs, nents,
1013 							    dir, flags);
1014 }
1015 
dmaengine_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags)1016 static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
1017 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
1018 	enum dma_transfer_direction dir, unsigned long flags)
1019 {
1020 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1021 		return NULL;
1022 
1023 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1024 						  dir, flags, NULL);
1025 }
1026 
1027 #ifdef CONFIG_RAPIDIO_DMA_ENGINE
1028 struct rio_dma_ext;
dmaengine_prep_rio_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction dir,unsigned long flags,struct rio_dma_ext * rio_ext)1029 static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
1030 	struct dma_chan *chan, struct scatterlist *sgl,	unsigned int sg_len,
1031 	enum dma_transfer_direction dir, unsigned long flags,
1032 	struct rio_dma_ext *rio_ext)
1033 {
1034 	if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1035 		return NULL;
1036 
1037 	return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1038 						  dir, flags, rio_ext);
1039 }
1040 #endif
1041 
dmaengine_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t buf_addr,size_t buf_len,size_t period_len,enum dma_transfer_direction dir,unsigned long flags)1042 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1043 		struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1044 		size_t period_len, enum dma_transfer_direction dir,
1045 		unsigned long flags)
1046 {
1047 	if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1048 		return NULL;
1049 
1050 	return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
1051 						period_len, dir, flags);
1052 }
1053 
dmaengine_prep_interleaved_dma(struct dma_chan * chan,struct dma_interleaved_template * xt,unsigned long flags)1054 static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1055 		struct dma_chan *chan, struct dma_interleaved_template *xt,
1056 		unsigned long flags)
1057 {
1058 	if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1059 		return NULL;
1060 	if (flags & DMA_PREP_REPEAT &&
1061 	    !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1062 		return NULL;
1063 
1064 	return chan->device->device_prep_interleaved_dma(chan, xt, flags);
1065 }
1066 
1067 /**
1068  * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor.
1069  * @chan: The channel to be used for this descriptor
1070  * @dest: Address of buffer to be set
1071  * @value: Treated as a single byte value that fills the destination buffer
1072  * @len: The total size of dest
1073  * @flags: DMA engine flags
1074  */
dmaengine_prep_dma_memset(struct dma_chan * chan,dma_addr_t dest,int value,size_t len,unsigned long flags)1075 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1076 		struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1077 		unsigned long flags)
1078 {
1079 	if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
1080 		return NULL;
1081 
1082 	return chan->device->device_prep_dma_memset(chan, dest, value,
1083 						    len, flags);
1084 }
1085 
dmaengine_prep_dma_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)1086 static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1087 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1088 		size_t len, unsigned long flags)
1089 {
1090 	if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1091 		return NULL;
1092 
1093 	return chan->device->device_prep_dma_memcpy(chan, dest, src,
1094 						    len, flags);
1095 }
1096 
dmaengine_is_metadata_mode_supported(struct dma_chan * chan,enum dma_desc_metadata_mode mode)1097 static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1098 		enum dma_desc_metadata_mode mode)
1099 {
1100 	if (!chan)
1101 		return false;
1102 
1103 	return !!(chan->device->desc_metadata_modes & mode);
1104 }
1105 
1106 #ifdef CONFIG_DMA_ENGINE
1107 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1108 				   void *data, size_t len);
1109 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1110 				      size_t *payload_len, size_t *max_len);
1111 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1112 				    size_t payload_len);
1113 #else /* CONFIG_DMA_ENGINE */
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1114 static inline int dmaengine_desc_attach_metadata(
1115 		struct dma_async_tx_descriptor *desc, void *data, size_t len)
1116 {
1117 	return -EINVAL;
1118 }
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1119 static inline void *dmaengine_desc_get_metadata_ptr(
1120 		struct dma_async_tx_descriptor *desc, size_t *payload_len,
1121 		size_t *max_len)
1122 {
1123 	return NULL;
1124 }
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1125 static inline int dmaengine_desc_set_metadata_len(
1126 		struct dma_async_tx_descriptor *desc, size_t payload_len)
1127 {
1128 	return -EINVAL;
1129 }
1130 #endif /* CONFIG_DMA_ENGINE */
1131 
1132 /**
1133  * dmaengine_terminate_all() - Terminate all active DMA transfers
1134  * @chan: The channel for which to terminate the transfers
1135  *
1136  * This function is DEPRECATED use either dmaengine_terminate_sync() or
1137  * dmaengine_terminate_async() instead.
1138  */
dmaengine_terminate_all(struct dma_chan * chan)1139 static inline int dmaengine_terminate_all(struct dma_chan *chan)
1140 {
1141 	if (chan->device->device_terminate_all)
1142 		return chan->device->device_terminate_all(chan);
1143 
1144 	return -ENOSYS;
1145 }
1146 
1147 /**
1148  * dmaengine_terminate_async() - Terminate all active DMA transfers
1149  * @chan: The channel for which to terminate the transfers
1150  *
1151  * Calling this function will terminate all active and pending descriptors
1152  * that have previously been submitted to the channel. It is not guaranteed
1153  * though that the transfer for the active descriptor has stopped when the
1154  * function returns. Furthermore it is possible the complete callback of a
1155  * submitted transfer is still running when this function returns.
1156  *
1157  * dmaengine_synchronize() needs to be called before it is safe to free
1158  * any memory that is accessed by previously submitted descriptors or before
1159  * freeing any resources accessed from within the completion callback of any
1160  * previously submitted descriptors.
1161  *
1162  * This function can be called from atomic context as well as from within a
1163  * complete callback of a descriptor submitted on the same channel.
1164  *
1165  * If none of the two conditions above apply consider using
1166  * dmaengine_terminate_sync() instead.
1167  */
dmaengine_terminate_async(struct dma_chan * chan)1168 static inline int dmaengine_terminate_async(struct dma_chan *chan)
1169 {
1170 	if (chan->device->device_terminate_all)
1171 		return chan->device->device_terminate_all(chan);
1172 
1173 	return -EINVAL;
1174 }
1175 
1176 /**
1177  * dmaengine_synchronize() - Synchronize DMA channel termination
1178  * @chan: The channel to synchronize
1179  *
1180  * Synchronizes to the DMA channel termination to the current context. When this
1181  * function returns it is guaranteed that all transfers for previously issued
1182  * descriptors have stopped and it is safe to free the memory associated
1183  * with them. Furthermore it is guaranteed that all complete callback functions
1184  * for a previously submitted descriptor have finished running and it is safe to
1185  * free resources accessed from within the complete callbacks.
1186  *
1187  * The behavior of this function is undefined if dma_async_issue_pending() has
1188  * been called between dmaengine_terminate_async() and this function.
1189  *
1190  * This function must only be called from non-atomic context and must not be
1191  * called from within a complete callback of a descriptor submitted on the same
1192  * channel.
1193  */
dmaengine_synchronize(struct dma_chan * chan)1194 static inline void dmaengine_synchronize(struct dma_chan *chan)
1195 {
1196 	might_sleep();
1197 
1198 	if (chan->device->device_synchronize)
1199 		chan->device->device_synchronize(chan);
1200 }
1201 
1202 /**
1203  * dmaengine_terminate_sync() - Terminate all active DMA transfers
1204  * @chan: The channel for which to terminate the transfers
1205  *
1206  * Calling this function will terminate all active and pending transfers
1207  * that have previously been submitted to the channel. It is similar to
1208  * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1209  * stopped and that all complete callbacks have finished running when the
1210  * function returns.
1211  *
1212  * This function must only be called from non-atomic context and must not be
1213  * called from within a complete callback of a descriptor submitted on the same
1214  * channel.
1215  */
dmaengine_terminate_sync(struct dma_chan * chan)1216 static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1217 {
1218 	int ret;
1219 
1220 	ret = dmaengine_terminate_async(chan);
1221 	if (ret)
1222 		return ret;
1223 
1224 	dmaengine_synchronize(chan);
1225 
1226 	return 0;
1227 }
1228 
dmaengine_pause(struct dma_chan * chan)1229 static inline int dmaengine_pause(struct dma_chan *chan)
1230 {
1231 	if (chan->device->device_pause)
1232 		return chan->device->device_pause(chan);
1233 
1234 	return -ENOSYS;
1235 }
1236 
dmaengine_resume(struct dma_chan * chan)1237 static inline int dmaengine_resume(struct dma_chan *chan)
1238 {
1239 	if (chan->device->device_resume)
1240 		return chan->device->device_resume(chan);
1241 
1242 	return -ENOSYS;
1243 }
1244 
dmaengine_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * state)1245 static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1246 	dma_cookie_t cookie, struct dma_tx_state *state)
1247 {
1248 	return chan->device->device_tx_status(chan, cookie, state);
1249 }
1250 
dmaengine_submit(struct dma_async_tx_descriptor * desc)1251 static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
1252 {
1253 	return desc->tx_submit(desc);
1254 }
1255 
dmaengine_check_align(enum dmaengine_alignment align,size_t off1,size_t off2,size_t len)1256 static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1257 					 size_t off1, size_t off2, size_t len)
1258 {
1259 	return !(((1 << align) - 1) & (off1 | off2 | len));
1260 }
1261 
is_dma_copy_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1262 static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1263 				       size_t off2, size_t len)
1264 {
1265 	return dmaengine_check_align(dev->copy_align, off1, off2, len);
1266 }
1267 
is_dma_xor_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1268 static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1269 				      size_t off2, size_t len)
1270 {
1271 	return dmaengine_check_align(dev->xor_align, off1, off2, len);
1272 }
1273 
is_dma_pq_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1274 static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1275 				     size_t off2, size_t len)
1276 {
1277 	return dmaengine_check_align(dev->pq_align, off1, off2, len);
1278 }
1279 
is_dma_fill_aligned(struct dma_device * dev,size_t off1,size_t off2,size_t len)1280 static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1281 				       size_t off2, size_t len)
1282 {
1283 	return dmaengine_check_align(dev->fill_align, off1, off2, len);
1284 }
1285 
1286 static inline void
dma_set_maxpq(struct dma_device * dma,int maxpq,int has_pq_continue)1287 dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1288 {
1289 	dma->max_pq = maxpq;
1290 	if (has_pq_continue)
1291 		dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1292 }
1293 
dmaf_continue(enum dma_ctrl_flags flags)1294 static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1295 {
1296 	return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1297 }
1298 
dmaf_p_disabled_continue(enum dma_ctrl_flags flags)1299 static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1300 {
1301 	enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1302 
1303 	return (flags & mask) == mask;
1304 }
1305 
dma_dev_has_pq_continue(struct dma_device * dma)1306 static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1307 {
1308 	return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1309 }
1310 
dma_dev_to_maxpq(struct dma_device * dma)1311 static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
1312 {
1313 	return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1314 }
1315 
1316 /* dma_maxpq - reduce maxpq in the face of continued operations
1317  * @dma - dma device with PQ capability
1318  * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1319  *
1320  * When an engine does not support native continuation we need 3 extra
1321  * source slots to reuse P and Q with the following coefficients:
1322  * 1/ {00} * P : remove P from Q', but use it as a source for P'
1323  * 2/ {01} * Q : use Q to continue Q' calculation
1324  * 3/ {00} * Q : subtract Q from P' to cancel (2)
1325  *
1326  * In the case where P is disabled we only need 1 extra source:
1327  * 1/ {01} * Q : use Q to continue Q' calculation
1328  */
dma_maxpq(struct dma_device * dma,enum dma_ctrl_flags flags)1329 static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1330 {
1331 	if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1332 		return dma_dev_to_maxpq(dma);
1333 	if (dmaf_p_disabled_continue(flags))
1334 		return dma_dev_to_maxpq(dma) - 1;
1335 	if (dmaf_continue(flags))
1336 		return dma_dev_to_maxpq(dma) - 3;
1337 	BUG();
1338 }
1339 
dmaengine_get_icg(bool inc,bool sgl,size_t icg,size_t dir_icg)1340 static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1341 				      size_t dir_icg)
1342 {
1343 	if (inc) {
1344 		if (dir_icg)
1345 			return dir_icg;
1346 		if (sgl)
1347 			return icg;
1348 	}
1349 
1350 	return 0;
1351 }
1352 
dmaengine_get_dst_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1353 static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1354 					   struct data_chunk *chunk)
1355 {
1356 	return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1357 				 chunk->icg, chunk->dst_icg);
1358 }
1359 
dmaengine_get_src_icg(struct dma_interleaved_template * xt,struct data_chunk * chunk)1360 static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1361 					   struct data_chunk *chunk)
1362 {
1363 	return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1364 				 chunk->icg, chunk->src_icg);
1365 }
1366 
1367 /* --- public DMA engine API --- */
1368 
1369 #ifdef CONFIG_DMA_ENGINE
1370 void dmaengine_get(void);
1371 void dmaengine_put(void);
1372 #else
dmaengine_get(void)1373 static inline void dmaengine_get(void)
1374 {
1375 }
dmaengine_put(void)1376 static inline void dmaengine_put(void)
1377 {
1378 }
1379 #endif
1380 
1381 #ifdef CONFIG_ASYNC_TX_DMA
1382 #define async_dmaengine_get()	dmaengine_get()
1383 #define async_dmaengine_put()	dmaengine_put()
1384 #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1385 #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1386 #else
1387 #define async_dma_find_channel(type) dma_find_channel(type)
1388 #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
1389 #else
async_dmaengine_get(void)1390 static inline void async_dmaengine_get(void)
1391 {
1392 }
async_dmaengine_put(void)1393 static inline void async_dmaengine_put(void)
1394 {
1395 }
1396 static inline struct dma_chan *
async_dma_find_channel(enum dma_transaction_type type)1397 async_dma_find_channel(enum dma_transaction_type type)
1398 {
1399 	return NULL;
1400 }
1401 #endif /* CONFIG_ASYNC_TX_DMA */
1402 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1403 				  struct dma_chan *chan);
1404 
async_tx_ack(struct dma_async_tx_descriptor * tx)1405 static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
1406 {
1407 	tx->flags |= DMA_CTRL_ACK;
1408 }
1409 
async_tx_clear_ack(struct dma_async_tx_descriptor * tx)1410 static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1411 {
1412 	tx->flags &= ~DMA_CTRL_ACK;
1413 }
1414 
async_tx_test_ack(struct dma_async_tx_descriptor * tx)1415 static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
1416 {
1417 	return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
1418 }
1419 
1420 #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1421 static inline void
__dma_cap_set(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1422 __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1423 {
1424 	set_bit(tx_type, dstp->bits);
1425 }
1426 
1427 #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1428 static inline void
__dma_cap_clear(enum dma_transaction_type tx_type,dma_cap_mask_t * dstp)1429 __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1430 {
1431 	clear_bit(tx_type, dstp->bits);
1432 }
1433 
1434 #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
__dma_cap_zero(dma_cap_mask_t * dstp)1435 static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1436 {
1437 	bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1438 }
1439 
1440 #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1441 static inline int
__dma_has_cap(enum dma_transaction_type tx_type,dma_cap_mask_t * srcp)1442 __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1443 {
1444 	return test_bit(tx_type, srcp->bits);
1445 }
1446 
1447 #define for_each_dma_cap_mask(cap, mask) \
1448 	for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
1449 
1450 /**
1451  * dma_async_issue_pending - flush pending transactions to HW
1452  * @chan: target DMA channel
1453  *
1454  * This allows drivers to push copies to HW in batches,
1455  * reducing MMIO writes where possible.
1456  */
dma_async_issue_pending(struct dma_chan * chan)1457 static inline void dma_async_issue_pending(struct dma_chan *chan)
1458 {
1459 	chan->device->device_issue_pending(chan);
1460 }
1461 
1462 /**
1463  * dma_async_is_tx_complete - poll for transaction completion
1464  * @chan: DMA channel
1465  * @cookie: transaction identifier to check status of
1466  * @last: returns last completed cookie, can be NULL
1467  * @used: returns last issued cookie, can be NULL
1468  *
1469  * If @last and @used are passed in, upon return they reflect the driver
1470  * internal state and can be used with dma_async_is_complete() to check
1471  * the status of multiple cookies without re-checking hardware state.
1472  */
dma_async_is_tx_complete(struct dma_chan * chan,dma_cookie_t cookie,dma_cookie_t * last,dma_cookie_t * used)1473 static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
1474 	dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1475 {
1476 	struct dma_tx_state state;
1477 	enum dma_status status;
1478 
1479 	status = chan->device->device_tx_status(chan, cookie, &state);
1480 	if (last)
1481 		*last = state.last;
1482 	if (used)
1483 		*used = state.used;
1484 	return status;
1485 }
1486 
1487 /**
1488  * dma_async_is_complete - test a cookie against chan state
1489  * @cookie: transaction identifier to test status of
1490  * @last_complete: last know completed transaction
1491  * @last_used: last cookie value handed out
1492  *
1493  * dma_async_is_complete() is used in dma_async_is_tx_complete()
1494  * the test logic is separated for lightweight testing of multiple cookies
1495  */
dma_async_is_complete(dma_cookie_t cookie,dma_cookie_t last_complete,dma_cookie_t last_used)1496 static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1497 			dma_cookie_t last_complete, dma_cookie_t last_used)
1498 {
1499 	if (last_complete <= last_used) {
1500 		if ((cookie <= last_complete) || (cookie > last_used))
1501 			return DMA_COMPLETE;
1502 	} else {
1503 		if ((cookie <= last_complete) && (cookie > last_used))
1504 			return DMA_COMPLETE;
1505 	}
1506 	return DMA_IN_PROGRESS;
1507 }
1508 
1509 static inline void
dma_set_tx_state(struct dma_tx_state * st,dma_cookie_t last,dma_cookie_t used,u32 residue)1510 dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1511 {
1512 	if (!st)
1513 		return;
1514 
1515 	st->last = last;
1516 	st->used = used;
1517 	st->residue = residue;
1518 }
1519 
1520 #ifdef CONFIG_DMA_ENGINE
1521 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1522 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
1523 enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
1524 void dma_issue_pending_all(void);
1525 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1526 				       dma_filter_fn fn, void *fn_param,
1527 				       struct device_node *np);
1528 
1529 struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1530 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1531 
1532 void dma_release_channel(struct dma_chan *chan);
1533 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
1534 #else
dma_find_channel(enum dma_transaction_type tx_type)1535 static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1536 {
1537 	return NULL;
1538 }
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)1539 static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1540 {
1541 	return DMA_COMPLETE;
1542 }
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1543 static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1544 {
1545 	return DMA_COMPLETE;
1546 }
dma_issue_pending_all(void)1547 static inline void dma_issue_pending_all(void)
1548 {
1549 }
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)1550 static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1551 						     dma_filter_fn fn,
1552 						     void *fn_param,
1553 						     struct device_node *np)
1554 {
1555 	return NULL;
1556 }
dma_request_chan(struct device * dev,const char * name)1557 static inline struct dma_chan *dma_request_chan(struct device *dev,
1558 						const char *name)
1559 {
1560 	return ERR_PTR(-ENODEV);
1561 }
dma_request_chan_by_mask(const dma_cap_mask_t * mask)1562 static inline struct dma_chan *dma_request_chan_by_mask(
1563 						const dma_cap_mask_t *mask)
1564 {
1565 	return ERR_PTR(-ENODEV);
1566 }
dma_release_channel(struct dma_chan * chan)1567 static inline void dma_release_channel(struct dma_chan *chan)
1568 {
1569 }
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)1570 static inline int dma_get_slave_caps(struct dma_chan *chan,
1571 				     struct dma_slave_caps *caps)
1572 {
1573 	return -ENXIO;
1574 }
1575 #endif
1576 
dmaengine_desc_set_reuse(struct dma_async_tx_descriptor * tx)1577 static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1578 {
1579 	struct dma_slave_caps caps;
1580 	int ret;
1581 
1582 	ret = dma_get_slave_caps(tx->chan, &caps);
1583 	if (ret)
1584 		return ret;
1585 
1586 	if (!caps.descriptor_reuse)
1587 		return -EPERM;
1588 
1589 	tx->flags |= DMA_CTRL_REUSE;
1590 	return 0;
1591 }
1592 
dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor * tx)1593 static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1594 {
1595 	tx->flags &= ~DMA_CTRL_REUSE;
1596 }
1597 
dmaengine_desc_test_reuse(struct dma_async_tx_descriptor * tx)1598 static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1599 {
1600 	return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1601 }
1602 
dmaengine_desc_free(struct dma_async_tx_descriptor * desc)1603 static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1604 {
1605 	/* this is supported for reusable desc, so check that */
1606 	if (!dmaengine_desc_test_reuse(desc))
1607 		return -EPERM;
1608 
1609 	return desc->desc_free(desc);
1610 }
1611 
1612 /* --- DMA device --- */
1613 
1614 int dma_async_device_register(struct dma_device *device);
1615 int dmaenginem_async_device_register(struct dma_device *device);
1616 void dma_async_device_unregister(struct dma_device *device);
1617 int dma_async_device_channel_register(struct dma_device *device,
1618 				      struct dma_chan *chan,
1619 				      const char *name);
1620 void dma_async_device_channel_unregister(struct dma_device *device,
1621 					 struct dma_chan *chan);
1622 void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
1623 #define dma_request_channel(mask, x, y) \
1624 	__dma_request_channel(&(mask), x, y, NULL)
1625 
1626 /* Deprecated, please use dma_request_chan() directly */
1627 static inline struct dma_chan * __deprecated
dma_request_slave_channel(struct device * dev,const char * name)1628 dma_request_slave_channel(struct device *dev, const char *name)
1629 {
1630 	struct dma_chan *ch = dma_request_chan(dev, name);
1631 
1632 	return IS_ERR(ch) ? NULL : ch;
1633 }
1634 
1635 static inline struct dma_chan
dma_request_slave_channel_compat(const dma_cap_mask_t mask,dma_filter_fn fn,void * fn_param,struct device * dev,const char * name)1636 *dma_request_slave_channel_compat(const dma_cap_mask_t mask,
1637 				  dma_filter_fn fn, void *fn_param,
1638 				  struct device *dev, const char *name)
1639 {
1640 	struct dma_chan *chan;
1641 
1642 	chan = dma_request_slave_channel(dev, name);
1643 	if (chan)
1644 		return chan;
1645 
1646 	if (!fn || !fn_param)
1647 		return NULL;
1648 
1649 	return __dma_request_channel(&mask, fn, fn_param, NULL);
1650 }
1651 
1652 static inline char *
dmaengine_get_direction_text(enum dma_transfer_direction dir)1653 dmaengine_get_direction_text(enum dma_transfer_direction dir)
1654 {
1655 	switch (dir) {
1656 	case DMA_DEV_TO_MEM:
1657 		return "DEV_TO_MEM";
1658 	case DMA_MEM_TO_DEV:
1659 		return "MEM_TO_DEV";
1660 	case DMA_MEM_TO_MEM:
1661 		return "MEM_TO_MEM";
1662 	case DMA_DEV_TO_DEV:
1663 		return "DEV_TO_DEV";
1664 	default:
1665 		return "invalid";
1666 	}
1667 }
1668 
dmaengine_get_dma_device(struct dma_chan * chan)1669 static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1670 {
1671 	if (chan->dev->chan_dma_dev)
1672 		return &chan->dev->device;
1673 
1674 	return chan->device->dev;
1675 }
1676 
1677 #endif /* DMAENGINE_H */
1678