1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/arch/arm/mm/dma-mapping.c
4 *
5 * Copyright (C) 2000-2004 Russell King
6 *
7 * DMA uncached mapping support.
8 */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27
28 #include <asm/page.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <asm/xen/xen-ops.h>
37
38 #include "dma.h"
39 #include "mm.h"
40
41 struct arm_dma_alloc_args {
42 struct device *dev;
43 size_t size;
44 gfp_t gfp;
45 pgprot_t prot;
46 const void *caller;
47 bool want_vaddr;
48 int coherent_flag;
49 };
50
51 struct arm_dma_free_args {
52 struct device *dev;
53 size_t size;
54 void *cpu_addr;
55 struct page *page;
56 bool want_vaddr;
57 };
58
59 #define NORMAL 0
60 #define COHERENT 1
61
62 struct arm_dma_allocator {
63 void *(*alloc)(struct arm_dma_alloc_args *args,
64 struct page **ret_page);
65 void (*free)(struct arm_dma_free_args *args);
66 };
67
68 struct arm_dma_buffer {
69 struct list_head list;
70 void *virt;
71 struct arm_dma_allocator *allocator;
72 };
73
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76
arm_dma_buffer_find(void * virt)77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 struct arm_dma_buffer *buf, *found = NULL;
80 unsigned long flags;
81
82 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 list_for_each_entry(buf, &arm_dma_bufs, list) {
84 if (buf->virt == virt) {
85 list_del(&buf->list);
86 found = buf;
87 break;
88 }
89 }
90 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 return found;
92 }
93
94 /*
95 * The DMA API is built upon the notion of "buffer ownership". A buffer
96 * is either exclusively owned by the CPU (and therefore may be accessed
97 * by it) or exclusively owned by the DMA device. These helper functions
98 * represent the transitions between these two ownership states.
99 *
100 * Note, however, that on later ARMs, this notion does not work due to
101 * speculative prefetches. We model our approach on the assumption that
102 * the CPU does do speculative prefetches, which means we clean caches
103 * before transfers and delay cache invalidation until transfer completion.
104 *
105 */
106
__dma_clear_buffer(struct page * page,size_t size,int coherent_flag)107 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108 {
109 /*
110 * Ensure that the allocated pages are zeroed, and that any data
111 * lurking in the kernel direct-mapped region is invalidated.
112 */
113 if (PageHighMem(page)) {
114 phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 phys_addr_t end = base + size;
116 while (size > 0) {
117 void *ptr = kmap_atomic(page);
118 memset(ptr, 0, PAGE_SIZE);
119 if (coherent_flag != COHERENT)
120 dmac_flush_range(ptr, ptr + PAGE_SIZE);
121 kunmap_atomic(ptr);
122 page++;
123 size -= PAGE_SIZE;
124 }
125 if (coherent_flag != COHERENT)
126 outer_flush_range(base, end);
127 } else {
128 void *ptr = page_address(page);
129 memset(ptr, 0, size);
130 if (coherent_flag != COHERENT) {
131 dmac_flush_range(ptr, ptr + size);
132 outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 }
134 }
135 }
136
137 /*
138 * Allocate a DMA buffer for 'dev' of size 'size' using the
139 * specified gfp mask. Note that 'size' must be page aligned.
140 */
__dma_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,int coherent_flag)141 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 gfp_t gfp, int coherent_flag)
143 {
144 unsigned long order = get_order(size);
145 struct page *page, *p, *e;
146
147 page = alloc_pages(gfp, order);
148 if (!page)
149 return NULL;
150
151 /*
152 * Now split the huge page and free the excess pages
153 */
154 split_page(page, order);
155 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 __free_page(p);
157
158 __dma_clear_buffer(page, size, coherent_flag);
159
160 return page;
161 }
162
163 /*
164 * Free a DMA buffer. 'size' must be page aligned.
165 */
__dma_free_buffer(struct page * page,size_t size)166 static void __dma_free_buffer(struct page *page, size_t size)
167 {
168 struct page *e = page + (size >> PAGE_SHIFT);
169
170 while (page < e) {
171 __free_page(page);
172 page++;
173 }
174 }
175
176 static void *__alloc_from_contiguous(struct device *dev, size_t size,
177 pgprot_t prot, struct page **ret_page,
178 const void *caller, bool want_vaddr,
179 int coherent_flag, gfp_t gfp);
180
181 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 pgprot_t prot, struct page **ret_page,
183 const void *caller, bool want_vaddr);
184
185 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K
186 static struct gen_pool *atomic_pool __ro_after_init;
187
188 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189
early_coherent_pool(char * p)190 static int __init early_coherent_pool(char *p)
191 {
192 atomic_pool_size = memparse(p, &p);
193 return 0;
194 }
195 early_param("coherent_pool", early_coherent_pool);
196
197 /*
198 * Initialise the coherent pool for atomic allocations.
199 */
atomic_pool_init(void)200 static int __init atomic_pool_init(void)
201 {
202 pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203 gfp_t gfp = GFP_KERNEL | GFP_DMA;
204 struct page *page;
205 void *ptr;
206
207 atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 if (!atomic_pool)
209 goto out;
210 /*
211 * The atomic pool is only used for non-coherent allocations
212 * so we must pass NORMAL for coherent_flag.
213 */
214 if (dev_get_cma_area(NULL))
215 ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216 &page, atomic_pool_init, true, NORMAL,
217 GFP_KERNEL);
218 else
219 ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220 &page, atomic_pool_init, true);
221 if (ptr) {
222 int ret;
223
224 ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 page_to_phys(page),
226 atomic_pool_size, -1);
227 if (ret)
228 goto destroy_genpool;
229
230 gen_pool_set_algo(atomic_pool,
231 gen_pool_first_fit_order_align,
232 NULL);
233 pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234 atomic_pool_size / 1024);
235 return 0;
236 }
237
238 destroy_genpool:
239 gen_pool_destroy(atomic_pool);
240 atomic_pool = NULL;
241 out:
242 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243 atomic_pool_size / 1024);
244 return -ENOMEM;
245 }
246 /*
247 * CMA is activated by core_initcall, so we must be called after it.
248 */
249 postcore_initcall(atomic_pool_init);
250
251 #ifdef CONFIG_CMA_AREAS
252 struct dma_contig_early_reserve {
253 phys_addr_t base;
254 unsigned long size;
255 };
256
257 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258
259 static int dma_mmu_remap_num __initdata;
260
261 #ifdef CONFIG_DMA_CMA
dma_contiguous_early_fixup(phys_addr_t base,unsigned long size)262 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
263 {
264 dma_mmu_remap[dma_mmu_remap_num].base = base;
265 dma_mmu_remap[dma_mmu_remap_num].size = size;
266 dma_mmu_remap_num++;
267 }
268 #endif
269
dma_contiguous_remap(void)270 void __init dma_contiguous_remap(void)
271 {
272 int i;
273 for (i = 0; i < dma_mmu_remap_num; i++) {
274 phys_addr_t start = dma_mmu_remap[i].base;
275 phys_addr_t end = start + dma_mmu_remap[i].size;
276 struct map_desc map;
277 unsigned long addr;
278
279 if (end > arm_lowmem_limit)
280 end = arm_lowmem_limit;
281 if (start >= end)
282 continue;
283
284 map.pfn = __phys_to_pfn(start);
285 map.virtual = __phys_to_virt(start);
286 map.length = end - start;
287 map.type = MT_MEMORY_DMA_READY;
288
289 /*
290 * Clear previous low-memory mapping to ensure that the
291 * TLB does not see any conflicting entries, then flush
292 * the TLB of the old entries before creating new mappings.
293 *
294 * This ensures that any speculatively loaded TLB entries
295 * (even though they may be rare) can not cause any problems,
296 * and ensures that this code is architecturally compliant.
297 */
298 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
299 addr += PMD_SIZE)
300 pmd_clear(pmd_off_k(addr));
301
302 flush_tlb_kernel_range(__phys_to_virt(start),
303 __phys_to_virt(end));
304
305 iotable_init(&map, 1);
306 }
307 }
308 #endif
309
__dma_update_pte(pte_t * pte,unsigned long addr,void * data)310 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
311 {
312 struct page *page = virt_to_page((void *)addr);
313 pgprot_t prot = *(pgprot_t *)data;
314
315 set_pte_ext(pte, mk_pte(page, prot), 0);
316 return 0;
317 }
318
__dma_remap(struct page * page,size_t size,pgprot_t prot)319 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
320 {
321 unsigned long start = (unsigned long) page_address(page);
322 unsigned end = start + size;
323
324 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
325 flush_tlb_kernel_range(start, end);
326 }
327
__alloc_remap_buffer(struct device * dev,size_t size,gfp_t gfp,pgprot_t prot,struct page ** ret_page,const void * caller,bool want_vaddr)328 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
329 pgprot_t prot, struct page **ret_page,
330 const void *caller, bool want_vaddr)
331 {
332 struct page *page;
333 void *ptr = NULL;
334 /*
335 * __alloc_remap_buffer is only called when the device is
336 * non-coherent
337 */
338 page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
339 if (!page)
340 return NULL;
341 if (!want_vaddr)
342 goto out;
343
344 ptr = dma_common_contiguous_remap(page, size, prot, caller);
345 if (!ptr) {
346 __dma_free_buffer(page, size);
347 return NULL;
348 }
349
350 out:
351 *ret_page = page;
352 return ptr;
353 }
354
__alloc_from_pool(size_t size,struct page ** ret_page)355 static void *__alloc_from_pool(size_t size, struct page **ret_page)
356 {
357 unsigned long val;
358 void *ptr = NULL;
359
360 if (!atomic_pool) {
361 WARN(1, "coherent pool not initialised!\n");
362 return NULL;
363 }
364
365 val = gen_pool_alloc(atomic_pool, size);
366 if (val) {
367 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
368
369 *ret_page = phys_to_page(phys);
370 ptr = (void *)val;
371 }
372
373 return ptr;
374 }
375
__in_atomic_pool(void * start,size_t size)376 static bool __in_atomic_pool(void *start, size_t size)
377 {
378 return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
379 }
380
__free_from_pool(void * start,size_t size)381 static int __free_from_pool(void *start, size_t size)
382 {
383 if (!__in_atomic_pool(start, size))
384 return 0;
385
386 gen_pool_free(atomic_pool, (unsigned long)start, size);
387
388 return 1;
389 }
390
__alloc_from_contiguous(struct device * dev,size_t size,pgprot_t prot,struct page ** ret_page,const void * caller,bool want_vaddr,int coherent_flag,gfp_t gfp)391 static void *__alloc_from_contiguous(struct device *dev, size_t size,
392 pgprot_t prot, struct page **ret_page,
393 const void *caller, bool want_vaddr,
394 int coherent_flag, gfp_t gfp)
395 {
396 unsigned long order = get_order(size);
397 size_t count = size >> PAGE_SHIFT;
398 struct page *page;
399 void *ptr = NULL;
400
401 page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
402 if (!page)
403 return NULL;
404
405 __dma_clear_buffer(page, size, coherent_flag);
406
407 if (!want_vaddr)
408 goto out;
409
410 if (PageHighMem(page)) {
411 ptr = dma_common_contiguous_remap(page, size, prot, caller);
412 if (!ptr) {
413 dma_release_from_contiguous(dev, page, count);
414 return NULL;
415 }
416 } else {
417 __dma_remap(page, size, prot);
418 ptr = page_address(page);
419 }
420
421 out:
422 *ret_page = page;
423 return ptr;
424 }
425
__free_from_contiguous(struct device * dev,struct page * page,void * cpu_addr,size_t size,bool want_vaddr)426 static void __free_from_contiguous(struct device *dev, struct page *page,
427 void *cpu_addr, size_t size, bool want_vaddr)
428 {
429 if (want_vaddr) {
430 if (PageHighMem(page))
431 dma_common_free_remap(cpu_addr, size);
432 else
433 __dma_remap(page, size, PAGE_KERNEL);
434 }
435 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
436 }
437
__get_dma_pgprot(unsigned long attrs,pgprot_t prot)438 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
439 {
440 prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
441 pgprot_writecombine(prot) :
442 pgprot_dmacoherent(prot);
443 return prot;
444 }
445
__alloc_simple_buffer(struct device * dev,size_t size,gfp_t gfp,struct page ** ret_page)446 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
447 struct page **ret_page)
448 {
449 struct page *page;
450 /* __alloc_simple_buffer is only called when the device is coherent */
451 page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
452 if (!page)
453 return NULL;
454
455 *ret_page = page;
456 return page_address(page);
457 }
458
simple_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)459 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
460 struct page **ret_page)
461 {
462 return __alloc_simple_buffer(args->dev, args->size, args->gfp,
463 ret_page);
464 }
465
simple_allocator_free(struct arm_dma_free_args * args)466 static void simple_allocator_free(struct arm_dma_free_args *args)
467 {
468 __dma_free_buffer(args->page, args->size);
469 }
470
471 static struct arm_dma_allocator simple_allocator = {
472 .alloc = simple_allocator_alloc,
473 .free = simple_allocator_free,
474 };
475
cma_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)476 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
477 struct page **ret_page)
478 {
479 return __alloc_from_contiguous(args->dev, args->size, args->prot,
480 ret_page, args->caller,
481 args->want_vaddr, args->coherent_flag,
482 args->gfp);
483 }
484
cma_allocator_free(struct arm_dma_free_args * args)485 static void cma_allocator_free(struct arm_dma_free_args *args)
486 {
487 __free_from_contiguous(args->dev, args->page, args->cpu_addr,
488 args->size, args->want_vaddr);
489 }
490
491 static struct arm_dma_allocator cma_allocator = {
492 .alloc = cma_allocator_alloc,
493 .free = cma_allocator_free,
494 };
495
pool_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)496 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
497 struct page **ret_page)
498 {
499 return __alloc_from_pool(args->size, ret_page);
500 }
501
pool_allocator_free(struct arm_dma_free_args * args)502 static void pool_allocator_free(struct arm_dma_free_args *args)
503 {
504 __free_from_pool(args->cpu_addr, args->size);
505 }
506
507 static struct arm_dma_allocator pool_allocator = {
508 .alloc = pool_allocator_alloc,
509 .free = pool_allocator_free,
510 };
511
remap_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)512 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
513 struct page **ret_page)
514 {
515 return __alloc_remap_buffer(args->dev, args->size, args->gfp,
516 args->prot, ret_page, args->caller,
517 args->want_vaddr);
518 }
519
remap_allocator_free(struct arm_dma_free_args * args)520 static void remap_allocator_free(struct arm_dma_free_args *args)
521 {
522 if (args->want_vaddr)
523 dma_common_free_remap(args->cpu_addr, args->size);
524
525 __dma_free_buffer(args->page, args->size);
526 }
527
528 static struct arm_dma_allocator remap_allocator = {
529 .alloc = remap_allocator_alloc,
530 .free = remap_allocator_free,
531 };
532
__dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,pgprot_t prot,bool is_coherent,unsigned long attrs,const void * caller)533 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
534 gfp_t gfp, pgprot_t prot, bool is_coherent,
535 unsigned long attrs, const void *caller)
536 {
537 u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
538 struct page *page = NULL;
539 void *addr;
540 bool allowblock, cma;
541 struct arm_dma_buffer *buf;
542 struct arm_dma_alloc_args args = {
543 .dev = dev,
544 .size = PAGE_ALIGN(size),
545 .gfp = gfp,
546 .prot = prot,
547 .caller = caller,
548 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
549 .coherent_flag = is_coherent ? COHERENT : NORMAL,
550 };
551
552 #ifdef CONFIG_DMA_API_DEBUG
553 u64 limit = (mask + 1) & ~mask;
554 if (limit && size >= limit) {
555 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
556 size, mask);
557 return NULL;
558 }
559 #endif
560
561 buf = kzalloc(sizeof(*buf),
562 gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
563 if (!buf)
564 return NULL;
565
566 if (mask < 0xffffffffULL)
567 gfp |= GFP_DMA;
568
569 args.gfp = gfp;
570
571 *handle = DMA_MAPPING_ERROR;
572 allowblock = gfpflags_allow_blocking(gfp);
573 cma = allowblock ? dev_get_cma_area(dev) : NULL;
574
575 if (cma)
576 buf->allocator = &cma_allocator;
577 else if (is_coherent)
578 buf->allocator = &simple_allocator;
579 else if (allowblock)
580 buf->allocator = &remap_allocator;
581 else
582 buf->allocator = &pool_allocator;
583
584 addr = buf->allocator->alloc(&args, &page);
585
586 if (page) {
587 unsigned long flags;
588
589 *handle = phys_to_dma(dev, page_to_phys(page));
590 buf->virt = args.want_vaddr ? addr : page;
591
592 spin_lock_irqsave(&arm_dma_bufs_lock, flags);
593 list_add(&buf->list, &arm_dma_bufs);
594 spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
595 } else {
596 kfree(buf);
597 }
598
599 return args.want_vaddr ? addr : page;
600 }
601
602 /*
603 * Free a buffer as defined by the above mapping.
604 */
__arm_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs,bool is_coherent)605 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
606 dma_addr_t handle, unsigned long attrs,
607 bool is_coherent)
608 {
609 struct page *page = phys_to_page(dma_to_phys(dev, handle));
610 struct arm_dma_buffer *buf;
611 struct arm_dma_free_args args = {
612 .dev = dev,
613 .size = PAGE_ALIGN(size),
614 .cpu_addr = cpu_addr,
615 .page = page,
616 .want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
617 };
618
619 buf = arm_dma_buffer_find(cpu_addr);
620 if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
621 return;
622
623 buf->allocator->free(&args);
624 kfree(buf);
625 }
626
dma_cache_maint_page(phys_addr_t phys,size_t size,enum dma_data_direction dir,void (* op)(const void *,size_t,int))627 static void dma_cache_maint_page(phys_addr_t phys, size_t size,
628 enum dma_data_direction dir,
629 void (*op)(const void *, size_t, int))
630 {
631 unsigned long offset = offset_in_page(phys);
632 unsigned long pfn = __phys_to_pfn(phys);
633 size_t left = size;
634
635 /*
636 * A single sg entry may refer to multiple physically contiguous
637 * pages. But we still need to process highmem pages individually.
638 * If highmem is not configured then the bulk of this loop gets
639 * optimized out.
640 */
641 do {
642 size_t len = left;
643 void *vaddr;
644
645 phys = __pfn_to_phys(pfn);
646 if (PhysHighMem(phys)) {
647 if (len + offset > PAGE_SIZE)
648 len = PAGE_SIZE - offset;
649
650 if (cache_is_vipt_nonaliasing()) {
651 vaddr = kmap_atomic_pfn(pfn);
652 op(vaddr + offset, len, dir);
653 kunmap_atomic(vaddr);
654 } else {
655 struct page *page = phys_to_page(phys);
656
657 vaddr = kmap_high_get(page);
658 if (vaddr) {
659 op(vaddr + offset, len, dir);
660 kunmap_high(page);
661 }
662 }
663 } else {
664 phys += offset;
665 vaddr = phys_to_virt(phys);
666 op(vaddr, len, dir);
667 }
668 offset = 0;
669 pfn++;
670 left -= len;
671 } while (left);
672 }
673
674 /*
675 * Make an area consistent for devices.
676 * Note: Drivers should NOT use this function directly.
677 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
678 */
arch_sync_dma_for_device(phys_addr_t paddr,size_t size,enum dma_data_direction dir)679 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
680 enum dma_data_direction dir)
681 {
682 dma_cache_maint_page(paddr, size, dir, dmac_map_area);
683
684 if (dir == DMA_FROM_DEVICE) {
685 outer_inv_range(paddr, paddr + size);
686 } else {
687 outer_clean_range(paddr, paddr + size);
688 }
689 /* FIXME: non-speculating: flush on bidirectional mappings? */
690 }
691
arch_sync_dma_for_cpu(phys_addr_t paddr,size_t size,enum dma_data_direction dir)692 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
693 enum dma_data_direction dir)
694 {
695 /* FIXME: non-speculating: not required */
696 /* in any case, don't bother invalidating if DMA to device */
697 if (dir != DMA_TO_DEVICE) {
698 outer_inv_range(paddr, paddr + size);
699
700 dma_cache_maint_page(paddr, size, dir, dmac_unmap_area);
701 }
702
703 /*
704 * Mark the D-cache clean for these pages to avoid extra flushing.
705 */
706 if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
707 struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
708 size_t offset = offset_in_folio(folio, paddr);
709
710 for (;;) {
711 size_t sz = folio_size(folio) - offset;
712
713 if (size < sz)
714 break;
715 if (!offset)
716 set_bit(PG_dcache_clean, &folio->flags.f);
717 offset = 0;
718 size -= sz;
719 if (!size)
720 break;
721 folio = folio_next(folio);
722 }
723 }
724 }
725
726 #ifdef CONFIG_ARM_DMA_USE_IOMMU
727
__dma_info_to_prot(enum dma_data_direction dir,unsigned long attrs)728 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
729 {
730 int prot = 0;
731
732 if (attrs & DMA_ATTR_PRIVILEGED)
733 prot |= IOMMU_PRIV;
734
735 if (attrs & DMA_ATTR_MMIO)
736 prot |= IOMMU_MMIO;
737
738 switch (dir) {
739 case DMA_BIDIRECTIONAL:
740 return prot | IOMMU_READ | IOMMU_WRITE;
741 case DMA_TO_DEVICE:
742 return prot | IOMMU_READ;
743 case DMA_FROM_DEVICE:
744 return prot | IOMMU_WRITE;
745 default:
746 return prot;
747 }
748 }
749
750 /* IOMMU */
751
752 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
753
__alloc_iova(struct dma_iommu_mapping * mapping,size_t size)754 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
755 size_t size)
756 {
757 unsigned int order = get_order(size);
758 unsigned int align = 0;
759 unsigned int count, start;
760 size_t mapping_size = mapping->bits << PAGE_SHIFT;
761 unsigned long flags;
762 dma_addr_t iova;
763 int i;
764
765 if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
766 order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
767
768 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
769 align = (1 << order) - 1;
770
771 spin_lock_irqsave(&mapping->lock, flags);
772 for (i = 0; i < mapping->nr_bitmaps; i++) {
773 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
774 mapping->bits, 0, count, align);
775
776 if (start > mapping->bits)
777 continue;
778
779 bitmap_set(mapping->bitmaps[i], start, count);
780 break;
781 }
782
783 /*
784 * No unused range found. Try to extend the existing mapping
785 * and perform a second attempt to reserve an IO virtual
786 * address range of size bytes.
787 */
788 if (i == mapping->nr_bitmaps) {
789 if (extend_iommu_mapping(mapping)) {
790 spin_unlock_irqrestore(&mapping->lock, flags);
791 return DMA_MAPPING_ERROR;
792 }
793
794 start = bitmap_find_next_zero_area(mapping->bitmaps[i],
795 mapping->bits, 0, count, align);
796
797 if (start > mapping->bits) {
798 spin_unlock_irqrestore(&mapping->lock, flags);
799 return DMA_MAPPING_ERROR;
800 }
801
802 bitmap_set(mapping->bitmaps[i], start, count);
803 }
804 spin_unlock_irqrestore(&mapping->lock, flags);
805
806 iova = mapping->base + (mapping_size * i);
807 iova += start << PAGE_SHIFT;
808
809 return iova;
810 }
811
__free_iova(struct dma_iommu_mapping * mapping,dma_addr_t addr,size_t size)812 static inline void __free_iova(struct dma_iommu_mapping *mapping,
813 dma_addr_t addr, size_t size)
814 {
815 unsigned int start, count;
816 size_t mapping_size = mapping->bits << PAGE_SHIFT;
817 unsigned long flags;
818 dma_addr_t bitmap_base;
819 u32 bitmap_index;
820
821 if (!size)
822 return;
823
824 bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
825 BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
826
827 bitmap_base = mapping->base + mapping_size * bitmap_index;
828
829 start = (addr - bitmap_base) >> PAGE_SHIFT;
830
831 if (addr + size > bitmap_base + mapping_size) {
832 /*
833 * The address range to be freed reaches into the iova
834 * range of the next bitmap. This should not happen as
835 * we don't allow this in __alloc_iova (at the
836 * moment).
837 */
838 BUG();
839 } else
840 count = size >> PAGE_SHIFT;
841
842 spin_lock_irqsave(&mapping->lock, flags);
843 bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
844 spin_unlock_irqrestore(&mapping->lock, flags);
845 }
846
847 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
848 static const int iommu_order_array[] = { 9, 8, 4, 0 };
849
__iommu_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,unsigned long attrs,int coherent_flag)850 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
851 gfp_t gfp, unsigned long attrs,
852 int coherent_flag)
853 {
854 struct page **pages;
855 int count = size >> PAGE_SHIFT;
856 int array_size = count * sizeof(struct page *);
857 int i = 0;
858 int order_idx = 0;
859
860 pages = kvzalloc(array_size, GFP_KERNEL);
861 if (!pages)
862 return NULL;
863
864 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
865 {
866 unsigned long order = get_order(size);
867 struct page *page;
868
869 page = dma_alloc_from_contiguous(dev, count, order,
870 gfp & __GFP_NOWARN);
871 if (!page)
872 goto error;
873
874 __dma_clear_buffer(page, size, coherent_flag);
875
876 for (i = 0; i < count; i++)
877 pages[i] = page + i;
878
879 return pages;
880 }
881
882 /* Go straight to 4K chunks if caller says it's OK. */
883 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
884 order_idx = ARRAY_SIZE(iommu_order_array) - 1;
885
886 /*
887 * IOMMU can map any pages, so himem can also be used here
888 */
889 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
890
891 while (count) {
892 int j, order;
893
894 order = iommu_order_array[order_idx];
895
896 /* Drop down when we get small */
897 if (__fls(count) < order) {
898 order_idx++;
899 continue;
900 }
901
902 if (order) {
903 /* See if it's easy to allocate a high-order chunk */
904 pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
905
906 /* Go down a notch at first sign of pressure */
907 if (!pages[i]) {
908 order_idx++;
909 continue;
910 }
911 } else {
912 pages[i] = alloc_pages(gfp, 0);
913 if (!pages[i])
914 goto error;
915 }
916
917 if (order) {
918 split_page(pages[i], order);
919 j = 1 << order;
920 while (--j)
921 pages[i + j] = pages[i] + j;
922 }
923
924 __dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
925 i += 1 << order;
926 count -= 1 << order;
927 }
928
929 return pages;
930 error:
931 while (i--)
932 if (pages[i])
933 __free_pages(pages[i], 0);
934 kvfree(pages);
935 return NULL;
936 }
937
__iommu_free_buffer(struct device * dev,struct page ** pages,size_t size,unsigned long attrs)938 static int __iommu_free_buffer(struct device *dev, struct page **pages,
939 size_t size, unsigned long attrs)
940 {
941 int count = size >> PAGE_SHIFT;
942 int i;
943
944 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
945 dma_release_from_contiguous(dev, pages[0], count);
946 } else {
947 for (i = 0; i < count; i++)
948 if (pages[i])
949 __free_pages(pages[i], 0);
950 }
951
952 kvfree(pages);
953 return 0;
954 }
955
956 /*
957 * Create a mapping in device IO address space for specified pages
958 */
959 static dma_addr_t
__iommu_create_mapping(struct device * dev,struct page ** pages,size_t size,unsigned long attrs)960 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
961 unsigned long attrs)
962 {
963 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
964 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
965 dma_addr_t dma_addr, iova;
966 int i;
967
968 dma_addr = __alloc_iova(mapping, size);
969 if (dma_addr == DMA_MAPPING_ERROR)
970 return dma_addr;
971
972 iova = dma_addr;
973 for (i = 0; i < count; ) {
974 int ret;
975
976 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
977 phys_addr_t phys = page_to_phys(pages[i]);
978 unsigned int len, j;
979
980 for (j = i + 1; j < count; j++, next_pfn++)
981 if (page_to_pfn(pages[j]) != next_pfn)
982 break;
983
984 len = (j - i) << PAGE_SHIFT;
985 ret = iommu_map(mapping->domain, iova, phys, len,
986 __dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
987 GFP_KERNEL);
988 if (ret < 0)
989 goto fail;
990 iova += len;
991 i = j;
992 }
993 return dma_addr;
994 fail:
995 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
996 __free_iova(mapping, dma_addr, size);
997 return DMA_MAPPING_ERROR;
998 }
999
__iommu_remove_mapping(struct device * dev,dma_addr_t iova,size_t size)1000 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1001 {
1002 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1003
1004 /*
1005 * add optional in-page offset from iova to size and align
1006 * result to page size
1007 */
1008 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1009 iova &= PAGE_MASK;
1010
1011 iommu_unmap(mapping->domain, iova, size);
1012 __free_iova(mapping, iova, size);
1013 return 0;
1014 }
1015
__atomic_get_pages(void * addr)1016 static struct page **__atomic_get_pages(void *addr)
1017 {
1018 struct page *page;
1019 phys_addr_t phys;
1020
1021 phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1022 page = phys_to_page(phys);
1023
1024 return (struct page **)page;
1025 }
1026
__iommu_get_pages(void * cpu_addr,unsigned long attrs)1027 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1028 {
1029 if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1030 return __atomic_get_pages(cpu_addr);
1031
1032 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1033 return cpu_addr;
1034
1035 return dma_common_find_pages(cpu_addr);
1036 }
1037
__iommu_alloc_simple(struct device * dev,size_t size,gfp_t gfp,dma_addr_t * handle,int coherent_flag,unsigned long attrs)1038 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1039 dma_addr_t *handle, int coherent_flag,
1040 unsigned long attrs)
1041 {
1042 struct page *page;
1043 void *addr;
1044
1045 if (coherent_flag == COHERENT)
1046 addr = __alloc_simple_buffer(dev, size, gfp, &page);
1047 else
1048 addr = __alloc_from_pool(size, &page);
1049 if (!addr)
1050 return NULL;
1051
1052 *handle = __iommu_create_mapping(dev, &page, size, attrs);
1053 if (*handle == DMA_MAPPING_ERROR)
1054 goto err_mapping;
1055
1056 return addr;
1057
1058 err_mapping:
1059 __free_from_pool(addr, size);
1060 return NULL;
1061 }
1062
__iommu_free_atomic(struct device * dev,void * cpu_addr,dma_addr_t handle,size_t size,int coherent_flag)1063 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1064 dma_addr_t handle, size_t size, int coherent_flag)
1065 {
1066 __iommu_remove_mapping(dev, handle, size);
1067 if (coherent_flag == COHERENT)
1068 __dma_free_buffer(virt_to_page(cpu_addr), size);
1069 else
1070 __free_from_pool(cpu_addr, size);
1071 }
1072
arm_iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1073 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1074 dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1075 {
1076 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1077 struct page **pages;
1078 void *addr = NULL;
1079 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1080
1081 *handle = DMA_MAPPING_ERROR;
1082 size = PAGE_ALIGN(size);
1083
1084 if (coherent_flag == COHERENT || !gfpflags_allow_blocking(gfp))
1085 return __iommu_alloc_simple(dev, size, gfp, handle,
1086 coherent_flag, attrs);
1087
1088 pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1089 if (!pages)
1090 return NULL;
1091
1092 *handle = __iommu_create_mapping(dev, pages, size, attrs);
1093 if (*handle == DMA_MAPPING_ERROR)
1094 goto err_buffer;
1095
1096 if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1097 return pages;
1098
1099 addr = dma_common_pages_remap(pages, size, prot,
1100 __builtin_return_address(0));
1101 if (!addr)
1102 goto err_mapping;
1103
1104 return addr;
1105
1106 err_mapping:
1107 __iommu_remove_mapping(dev, *handle, size);
1108 err_buffer:
1109 __iommu_free_buffer(dev, pages, size, attrs);
1110 return NULL;
1111 }
1112
arm_iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1113 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1114 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1115 unsigned long attrs)
1116 {
1117 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1118 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1119 int err;
1120
1121 if (!pages)
1122 return -ENXIO;
1123
1124 if (vma->vm_pgoff >= nr_pages)
1125 return -ENXIO;
1126
1127 if (!dev->dma_coherent)
1128 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1129
1130 err = vm_map_pages(vma, pages, nr_pages);
1131 if (err)
1132 pr_err("Remapping memory failed: %d\n", err);
1133
1134 return err;
1135 }
1136
1137 /*
1138 * free a page as defined by the above mapping.
1139 * Must not be called with IRQs disabled.
1140 */
arm_iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1141 static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1142 dma_addr_t handle, unsigned long attrs)
1143 {
1144 int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1145 struct page **pages;
1146 size = PAGE_ALIGN(size);
1147
1148 if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1149 __iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1150 return;
1151 }
1152
1153 pages = __iommu_get_pages(cpu_addr, attrs);
1154 if (!pages) {
1155 WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1156 return;
1157 }
1158
1159 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1160 dma_common_free_remap(cpu_addr, size);
1161
1162 __iommu_remove_mapping(dev, handle, size);
1163 __iommu_free_buffer(dev, pages, size, attrs);
1164 }
1165
arm_iommu_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1166 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1167 void *cpu_addr, dma_addr_t dma_addr,
1168 size_t size, unsigned long attrs)
1169 {
1170 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1171 struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1172
1173 if (!pages)
1174 return -ENXIO;
1175
1176 return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1177 GFP_KERNEL);
1178 }
1179
1180 /*
1181 * Map a part of the scatter-gather list into contiguous io address space
1182 */
__map_sg_chunk(struct device * dev,struct scatterlist * sg,size_t size,dma_addr_t * handle,enum dma_data_direction dir,unsigned long attrs)1183 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1184 size_t size, dma_addr_t *handle,
1185 enum dma_data_direction dir, unsigned long attrs)
1186 {
1187 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1188 dma_addr_t iova, iova_base;
1189 int ret = 0;
1190 unsigned int count;
1191 struct scatterlist *s;
1192 int prot;
1193
1194 size = PAGE_ALIGN(size);
1195 *handle = DMA_MAPPING_ERROR;
1196
1197 iova_base = iova = __alloc_iova(mapping, size);
1198 if (iova == DMA_MAPPING_ERROR)
1199 return -ENOMEM;
1200
1201 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1202 phys_addr_t phys = page_to_phys(sg_page(s));
1203 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1204
1205 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1206 arch_sync_dma_for_device(sg_phys(s), s->length, dir);
1207
1208 prot = __dma_info_to_prot(dir, attrs);
1209
1210 ret = iommu_map(mapping->domain, iova, phys, len, prot,
1211 GFP_KERNEL);
1212 if (ret < 0)
1213 goto fail;
1214 count += len >> PAGE_SHIFT;
1215 iova += len;
1216 }
1217 *handle = iova_base;
1218
1219 return 0;
1220 fail:
1221 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1222 __free_iova(mapping, iova_base, size);
1223 return ret;
1224 }
1225
1226 /**
1227 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1228 * @dev: valid struct device pointer
1229 * @sg: list of buffers
1230 * @nents: number of buffers to map
1231 * @dir: DMA transfer direction
1232 *
1233 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1234 * The scatter gather list elements are merged together (if possible) and
1235 * tagged with the appropriate dma address and length. They are obtained via
1236 * sg_dma_{address,length}.
1237 */
arm_iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1238 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1239 int nents, enum dma_data_direction dir, unsigned long attrs)
1240 {
1241 struct scatterlist *s = sg, *dma = sg, *start = sg;
1242 int i, count = 0, ret;
1243 unsigned int offset = s->offset;
1244 unsigned int size = s->offset + s->length;
1245 unsigned int max = dma_get_max_seg_size(dev);
1246
1247 for (i = 1; i < nents; i++) {
1248 s = sg_next(s);
1249
1250 s->dma_length = 0;
1251
1252 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1253 ret = __map_sg_chunk(dev, start, size,
1254 &dma->dma_address, dir, attrs);
1255 if (ret < 0)
1256 goto bad_mapping;
1257
1258 dma->dma_address += offset;
1259 dma->dma_length = size - offset;
1260
1261 size = offset = s->offset;
1262 start = s;
1263 dma = sg_next(dma);
1264 count += 1;
1265 }
1266 size += s->length;
1267 }
1268 ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1269 if (ret < 0)
1270 goto bad_mapping;
1271
1272 dma->dma_address += offset;
1273 dma->dma_length = size - offset;
1274
1275 return count+1;
1276
1277 bad_mapping:
1278 for_each_sg(sg, s, count, i)
1279 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1280 if (ret == -ENOMEM)
1281 return ret;
1282 return -EINVAL;
1283 }
1284
1285 /**
1286 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1287 * @dev: valid struct device pointer
1288 * @sg: list of buffers
1289 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1290 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1291 *
1292 * Unmap a set of streaming mode DMA translations. Again, CPU access
1293 * rules concerning calls here are the same as for dma_unmap_single().
1294 */
arm_iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1295 static void arm_iommu_unmap_sg(struct device *dev,
1296 struct scatterlist *sg, int nents,
1297 enum dma_data_direction dir,
1298 unsigned long attrs)
1299 {
1300 struct scatterlist *s;
1301 int i;
1302
1303 for_each_sg(sg, s, nents, i) {
1304 if (sg_dma_len(s))
1305 __iommu_remove_mapping(dev, sg_dma_address(s),
1306 sg_dma_len(s));
1307 if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1308 arch_sync_dma_for_cpu(sg_phys(s), s->length, dir);
1309 }
1310 }
1311
1312 /**
1313 * arm_iommu_sync_sg_for_cpu
1314 * @dev: valid struct device pointer
1315 * @sg: list of buffers
1316 * @nents: number of buffers to map (returned from dma_map_sg)
1317 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1318 */
arm_iommu_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1319 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1320 struct scatterlist *sg,
1321 int nents, enum dma_data_direction dir)
1322 {
1323 struct scatterlist *s;
1324 int i;
1325
1326 if (dev->dma_coherent)
1327 return;
1328
1329 for_each_sg(sg, s, nents, i)
1330 arch_sync_dma_for_cpu(sg_phys(s), s->length, dir);
1331
1332 }
1333
1334 /**
1335 * arm_iommu_sync_sg_for_device
1336 * @dev: valid struct device pointer
1337 * @sg: list of buffers
1338 * @nents: number of buffers to map (returned from dma_map_sg)
1339 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1340 */
arm_iommu_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1341 static void arm_iommu_sync_sg_for_device(struct device *dev,
1342 struct scatterlist *sg,
1343 int nents, enum dma_data_direction dir)
1344 {
1345 struct scatterlist *s;
1346 int i;
1347
1348 if (dev->dma_coherent)
1349 return;
1350
1351 for_each_sg(sg, s, nents, i)
1352 arch_sync_dma_for_device(sg_phys(s), s->length, dir);
1353 }
1354
1355 /**
1356 * arm_iommu_map_phys
1357 * @dev: valid struct device pointer
1358 * @phys: physical address that buffer resides in
1359 * @size: size of buffer to map
1360 * @dir: DMA transfer direction
1361 * @attrs: DMA mapping attributes
1362 *
1363 * IOMMU aware version of arm_dma_map_page()
1364 */
arm_iommu_map_phys(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1365 static dma_addr_t arm_iommu_map_phys(struct device *dev, phys_addr_t phys,
1366 size_t size, enum dma_data_direction dir, unsigned long attrs)
1367 {
1368 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1369 int len = PAGE_ALIGN(size + offset_in_page(phys));
1370 phys_addr_t addr = phys & PAGE_MASK;
1371 dma_addr_t dma_addr;
1372 int ret, prot;
1373
1374 if (!dev->dma_coherent &&
1375 !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO)))
1376 arch_sync_dma_for_device(phys, size, dir);
1377
1378 dma_addr = __alloc_iova(mapping, len);
1379 if (dma_addr == DMA_MAPPING_ERROR)
1380 return dma_addr;
1381
1382 prot = __dma_info_to_prot(dir, attrs);
1383
1384 ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1385 if (ret < 0)
1386 goto fail;
1387
1388 return dma_addr + offset_in_page(phys);
1389 fail:
1390 __free_iova(mapping, dma_addr, len);
1391 return DMA_MAPPING_ERROR;
1392 }
1393
1394 /**
1395 * arm_iommu_unmap_page
1396 * @dev: valid struct device pointer
1397 * @handle: DMA address of buffer
1398 * @size: size of buffer (same as passed to dma_map_page)
1399 * @dir: DMA transfer direction (same as passed to dma_map_page)
1400 * @attrs: DMA mapping attributes
1401 *
1402 * IOMMU aware version of arm_dma_unmap_phys()
1403 */
arm_iommu_unmap_phys(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1404 static void arm_iommu_unmap_phys(struct device *dev, dma_addr_t handle,
1405 size_t size, enum dma_data_direction dir, unsigned long attrs)
1406 {
1407 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1408 dma_addr_t iova = handle & PAGE_MASK;
1409 int offset = handle & ~PAGE_MASK;
1410 int len = PAGE_ALIGN(size + offset);
1411
1412 if (!iova)
1413 return;
1414
1415 if (!dev->dma_coherent &&
1416 !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO))) {
1417 phys_addr_t phys = iommu_iova_to_phys(mapping->domain, iova);
1418
1419 arch_sync_dma_for_cpu(phys + offset, size, dir);
1420 }
1421
1422 iommu_unmap(mapping->domain, iova, len);
1423 __free_iova(mapping, iova, len);
1424 }
1425
arm_iommu_sync_single_for_cpu(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)1426 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1427 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1428 {
1429 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1430 dma_addr_t iova = handle & PAGE_MASK;
1431 unsigned int offset = handle & ~PAGE_MASK;
1432 phys_addr_t phys;
1433
1434 if (dev->dma_coherent || !iova)
1435 return;
1436
1437 phys = iommu_iova_to_phys(mapping->domain, iova);
1438 arch_sync_dma_for_cpu(phys + offset, size, dir);
1439 }
1440
arm_iommu_sync_single_for_device(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)1441 static void arm_iommu_sync_single_for_device(struct device *dev,
1442 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1443 {
1444 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1445 dma_addr_t iova = handle & PAGE_MASK;
1446 unsigned int offset = handle & ~PAGE_MASK;
1447 phys_addr_t phys;
1448
1449 if (dev->dma_coherent || !iova)
1450 return;
1451
1452 phys = iommu_iova_to_phys(mapping->domain, iova);
1453 arch_sync_dma_for_device(phys + offset, size, dir);
1454 }
1455
1456 static const struct dma_map_ops iommu_ops = {
1457 .alloc = arm_iommu_alloc_attrs,
1458 .free = arm_iommu_free_attrs,
1459 .mmap = arm_iommu_mmap_attrs,
1460 .get_sgtable = arm_iommu_get_sgtable,
1461
1462 .map_phys = arm_iommu_map_phys,
1463 .unmap_phys = arm_iommu_unmap_phys,
1464 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1465 .sync_single_for_device = arm_iommu_sync_single_for_device,
1466
1467 .map_sg = arm_iommu_map_sg,
1468 .unmap_sg = arm_iommu_unmap_sg,
1469 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1470 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1471 };
1472
1473 /**
1474 * arm_iommu_create_mapping
1475 * @dev: pointer to the client device (for IOMMU calls)
1476 * @base: start address of the valid IO address space
1477 * @size: maximum size of the valid IO address space
1478 *
1479 * Creates a mapping structure which holds information about used/unused
1480 * IO address ranges, which is required to perform memory allocation and
1481 * mapping with IOMMU aware functions.
1482 *
1483 * The client device need to be attached to the mapping with
1484 * arm_iommu_attach_device function.
1485 */
1486 struct dma_iommu_mapping *
arm_iommu_create_mapping(struct device * dev,dma_addr_t base,u64 size)1487 arm_iommu_create_mapping(struct device *dev, dma_addr_t base, u64 size)
1488 {
1489 unsigned int bits = size >> PAGE_SHIFT;
1490 unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1491 struct dma_iommu_mapping *mapping;
1492 int extensions = 1;
1493 int err = -ENOMEM;
1494
1495 /* currently only 32-bit DMA address space is supported */
1496 if (size > DMA_BIT_MASK(32) + 1)
1497 return ERR_PTR(-ERANGE);
1498
1499 if (!bitmap_size)
1500 return ERR_PTR(-EINVAL);
1501
1502 if (bitmap_size > PAGE_SIZE) {
1503 extensions = bitmap_size / PAGE_SIZE;
1504 bitmap_size = PAGE_SIZE;
1505 }
1506
1507 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1508 if (!mapping)
1509 goto err;
1510
1511 mapping->bitmap_size = bitmap_size;
1512 mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1513 GFP_KERNEL);
1514 if (!mapping->bitmaps)
1515 goto err2;
1516
1517 mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1518 if (!mapping->bitmaps[0])
1519 goto err3;
1520
1521 mapping->nr_bitmaps = 1;
1522 mapping->extensions = extensions;
1523 mapping->base = base;
1524 mapping->bits = BITS_PER_BYTE * bitmap_size;
1525
1526 spin_lock_init(&mapping->lock);
1527
1528 mapping->domain = iommu_paging_domain_alloc(dev);
1529 if (IS_ERR(mapping->domain)) {
1530 err = PTR_ERR(mapping->domain);
1531 goto err4;
1532 }
1533
1534 kref_init(&mapping->kref);
1535 return mapping;
1536 err4:
1537 kfree(mapping->bitmaps[0]);
1538 err3:
1539 kfree(mapping->bitmaps);
1540 err2:
1541 kfree(mapping);
1542 err:
1543 return ERR_PTR(err);
1544 }
1545 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1546
release_iommu_mapping(struct kref * kref)1547 static void release_iommu_mapping(struct kref *kref)
1548 {
1549 int i;
1550 struct dma_iommu_mapping *mapping =
1551 container_of(kref, struct dma_iommu_mapping, kref);
1552
1553 iommu_domain_free(mapping->domain);
1554 for (i = 0; i < mapping->nr_bitmaps; i++)
1555 kfree(mapping->bitmaps[i]);
1556 kfree(mapping->bitmaps);
1557 kfree(mapping);
1558 }
1559
extend_iommu_mapping(struct dma_iommu_mapping * mapping)1560 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1561 {
1562 int next_bitmap;
1563
1564 if (mapping->nr_bitmaps >= mapping->extensions)
1565 return -EINVAL;
1566
1567 next_bitmap = mapping->nr_bitmaps;
1568 mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1569 GFP_ATOMIC);
1570 if (!mapping->bitmaps[next_bitmap])
1571 return -ENOMEM;
1572
1573 mapping->nr_bitmaps++;
1574
1575 return 0;
1576 }
1577
arm_iommu_release_mapping(struct dma_iommu_mapping * mapping)1578 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1579 {
1580 if (mapping)
1581 kref_put(&mapping->kref, release_iommu_mapping);
1582 }
1583 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1584
__arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)1585 static int __arm_iommu_attach_device(struct device *dev,
1586 struct dma_iommu_mapping *mapping)
1587 {
1588 int err;
1589
1590 err = iommu_attach_device(mapping->domain, dev);
1591 if (err)
1592 return err;
1593
1594 kref_get(&mapping->kref);
1595 to_dma_iommu_mapping(dev) = mapping;
1596
1597 pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1598 return 0;
1599 }
1600
1601 /**
1602 * arm_iommu_attach_device
1603 * @dev: valid struct device pointer
1604 * @mapping: io address space mapping structure (returned from
1605 * arm_iommu_create_mapping)
1606 *
1607 * Attaches specified io address space mapping to the provided device.
1608 * This replaces the dma operations (dma_map_ops pointer) with the
1609 * IOMMU aware version.
1610 *
1611 * More than one client might be attached to the same io address space
1612 * mapping.
1613 */
arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)1614 int arm_iommu_attach_device(struct device *dev,
1615 struct dma_iommu_mapping *mapping)
1616 {
1617 int err;
1618
1619 err = __arm_iommu_attach_device(dev, mapping);
1620 if (err)
1621 return err;
1622
1623 set_dma_ops(dev, &iommu_ops);
1624 return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1627
1628 /**
1629 * arm_iommu_detach_device
1630 * @dev: valid struct device pointer
1631 *
1632 * Detaches the provided device from a previously attached map.
1633 * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1634 */
arm_iommu_detach_device(struct device * dev)1635 void arm_iommu_detach_device(struct device *dev)
1636 {
1637 struct dma_iommu_mapping *mapping;
1638
1639 mapping = to_dma_iommu_mapping(dev);
1640 if (!mapping) {
1641 dev_warn(dev, "Not attached\n");
1642 return;
1643 }
1644
1645 iommu_detach_device(mapping->domain, dev);
1646 kref_put(&mapping->kref, release_iommu_mapping);
1647 to_dma_iommu_mapping(dev) = NULL;
1648 set_dma_ops(dev, NULL);
1649
1650 pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1651 }
1652 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1653
arm_setup_iommu_dma_ops(struct device * dev)1654 static void arm_setup_iommu_dma_ops(struct device *dev)
1655 {
1656 struct dma_iommu_mapping *mapping;
1657 u64 dma_base = 0, size = 1ULL << 32;
1658
1659 if (dev->dma_range_map) {
1660 dma_base = dma_range_map_min(dev->dma_range_map);
1661 size = dma_range_map_max(dev->dma_range_map) - dma_base;
1662 }
1663 mapping = arm_iommu_create_mapping(dev, dma_base, size);
1664 if (IS_ERR(mapping)) {
1665 pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1666 size, dev_name(dev));
1667 return;
1668 }
1669
1670 if (__arm_iommu_attach_device(dev, mapping)) {
1671 pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1672 dev_name(dev));
1673 arm_iommu_release_mapping(mapping);
1674 return;
1675 }
1676
1677 set_dma_ops(dev, &iommu_ops);
1678 }
1679
arm_teardown_iommu_dma_ops(struct device * dev)1680 static void arm_teardown_iommu_dma_ops(struct device *dev)
1681 {
1682 struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1683
1684 if (!mapping)
1685 return;
1686
1687 arm_iommu_detach_device(dev);
1688 arm_iommu_release_mapping(mapping);
1689 }
1690
1691 #else
1692
arm_setup_iommu_dma_ops(struct device * dev)1693 static void arm_setup_iommu_dma_ops(struct device *dev)
1694 {
1695 }
1696
arm_teardown_iommu_dma_ops(struct device * dev)1697 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1698
1699 #endif /* CONFIG_ARM_DMA_USE_IOMMU */
1700
arch_setup_dma_ops(struct device * dev,bool coherent)1701 void arch_setup_dma_ops(struct device *dev, bool coherent)
1702 {
1703 /*
1704 * Due to legacy code that sets the ->dma_coherent flag from a bus
1705 * notifier we can't just assign coherent to the ->dma_coherent flag
1706 * here, but instead have to make sure we only set but never clear it
1707 * for now.
1708 */
1709 if (coherent)
1710 dev->dma_coherent = true;
1711
1712 /*
1713 * Don't override the dma_ops if they have already been set. Ideally
1714 * this should be the only location where dma_ops are set, remove this
1715 * check when all other callers of set_dma_ops will have disappeared.
1716 */
1717 if (dev->dma_ops)
1718 return;
1719
1720 if (device_iommu_mapped(dev))
1721 arm_setup_iommu_dma_ops(dev);
1722
1723 xen_setup_dma_ops(dev);
1724 dev->archdata.dma_ops_setup = true;
1725 }
1726
arch_teardown_dma_ops(struct device * dev)1727 void arch_teardown_dma_ops(struct device *dev)
1728 {
1729 if (!dev->archdata.dma_ops_setup)
1730 return;
1731
1732 arm_teardown_iommu_dma_ops(dev);
1733 /* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1734 set_dma_ops(dev, NULL);
1735 }
1736
arch_dma_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)1737 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1738 gfp_t gfp, unsigned long attrs)
1739 {
1740 return __dma_alloc(dev, size, dma_handle, gfp,
1741 __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1742 attrs, __builtin_return_address(0));
1743 }
1744
arch_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)1745 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1746 dma_addr_t dma_handle, unsigned long attrs)
1747 {
1748 __arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1749 }
1750