xref: /linux/arch/arm/mm/dma-mapping.c (revision a7405aa92feec2598cedc1b6c651beb1848240fe)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/dma-mapping.c
4  *
5  *  Copyright (C) 2000-2004 Russell King
6  *
7  *  DMA uncached mapping support.
8  */
9 #include <linux/module.h>
10 #include <linux/mm.h>
11 #include <linux/genalloc.h>
12 #include <linux/gfp.h>
13 #include <linux/errno.h>
14 #include <linux/list.h>
15 #include <linux/init.h>
16 #include <linux/device.h>
17 #include <linux/dma-direct.h>
18 #include <linux/dma-map-ops.h>
19 #include <linux/highmem.h>
20 #include <linux/memblock.h>
21 #include <linux/slab.h>
22 #include <linux/iommu.h>
23 #include <linux/io.h>
24 #include <linux/vmalloc.h>
25 #include <linux/sizes.h>
26 #include <linux/cma.h>
27 
28 #include <asm/page.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <asm/xen/xen-ops.h>
37 
38 #include "dma.h"
39 #include "mm.h"
40 
41 struct arm_dma_alloc_args {
42 	struct device *dev;
43 	size_t size;
44 	gfp_t gfp;
45 	pgprot_t prot;
46 	const void *caller;
47 	bool want_vaddr;
48 	int coherent_flag;
49 };
50 
51 struct arm_dma_free_args {
52 	struct device *dev;
53 	size_t size;
54 	void *cpu_addr;
55 	struct page *page;
56 	bool want_vaddr;
57 };
58 
59 #define NORMAL	    0
60 #define COHERENT    1
61 
62 struct arm_dma_allocator {
63 	void *(*alloc)(struct arm_dma_alloc_args *args,
64 		       struct page **ret_page);
65 	void (*free)(struct arm_dma_free_args *args);
66 };
67 
68 struct arm_dma_buffer {
69 	struct list_head list;
70 	void *virt;
71 	struct arm_dma_allocator *allocator;
72 };
73 
74 static LIST_HEAD(arm_dma_bufs);
75 static DEFINE_SPINLOCK(arm_dma_bufs_lock);
76 
arm_dma_buffer_find(void * virt)77 static struct arm_dma_buffer *arm_dma_buffer_find(void *virt)
78 {
79 	struct arm_dma_buffer *buf, *found = NULL;
80 	unsigned long flags;
81 
82 	spin_lock_irqsave(&arm_dma_bufs_lock, flags);
83 	list_for_each_entry(buf, &arm_dma_bufs, list) {
84 		if (buf->virt == virt) {
85 			list_del(&buf->list);
86 			found = buf;
87 			break;
88 		}
89 	}
90 	spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
91 	return found;
92 }
93 
94 /*
95  * The DMA API is built upon the notion of "buffer ownership".  A buffer
96  * is either exclusively owned by the CPU (and therefore may be accessed
97  * by it) or exclusively owned by the DMA device.  These helper functions
98  * represent the transitions between these two ownership states.
99  *
100  * Note, however, that on later ARMs, this notion does not work due to
101  * speculative prefetches.  We model our approach on the assumption that
102  * the CPU does do speculative prefetches, which means we clean caches
103  * before transfers and delay cache invalidation until transfer completion.
104  *
105  */
106 
__dma_clear_buffer(struct page * page,size_t size,int coherent_flag)107 static void __dma_clear_buffer(struct page *page, size_t size, int coherent_flag)
108 {
109 	/*
110 	 * Ensure that the allocated pages are zeroed, and that any data
111 	 * lurking in the kernel direct-mapped region is invalidated.
112 	 */
113 	if (PageHighMem(page)) {
114 		phys_addr_t base = __pfn_to_phys(page_to_pfn(page));
115 		phys_addr_t end = base + size;
116 		while (size > 0) {
117 			void *ptr = kmap_atomic(page);
118 			memset(ptr, 0, PAGE_SIZE);
119 			if (coherent_flag != COHERENT)
120 				dmac_flush_range(ptr, ptr + PAGE_SIZE);
121 			kunmap_atomic(ptr);
122 			page++;
123 			size -= PAGE_SIZE;
124 		}
125 		if (coherent_flag != COHERENT)
126 			outer_flush_range(base, end);
127 	} else {
128 		void *ptr = page_address(page);
129 		memset(ptr, 0, size);
130 		if (coherent_flag != COHERENT) {
131 			dmac_flush_range(ptr, ptr + size);
132 			outer_flush_range(__pa(ptr), __pa(ptr) + size);
133 		}
134 	}
135 }
136 
137 /*
138  * Allocate a DMA buffer for 'dev' of size 'size' using the
139  * specified gfp mask.  Note that 'size' must be page aligned.
140  */
__dma_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,int coherent_flag)141 static struct page *__dma_alloc_buffer(struct device *dev, size_t size,
142 				       gfp_t gfp, int coherent_flag)
143 {
144 	unsigned long order = get_order(size);
145 	struct page *page, *p, *e;
146 
147 	page = alloc_pages(gfp, order);
148 	if (!page)
149 		return NULL;
150 
151 	/*
152 	 * Now split the huge page and free the excess pages
153 	 */
154 	split_page(page, order);
155 	for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
156 		__free_page(p);
157 
158 	__dma_clear_buffer(page, size, coherent_flag);
159 
160 	return page;
161 }
162 
163 /*
164  * Free a DMA buffer.  'size' must be page aligned.
165  */
__dma_free_buffer(struct page * page,size_t size)166 static void __dma_free_buffer(struct page *page, size_t size)
167 {
168 	struct page *e = page + (size >> PAGE_SHIFT);
169 
170 	while (page < e) {
171 		__free_page(page);
172 		page++;
173 	}
174 }
175 
176 static void *__alloc_from_contiguous(struct device *dev, size_t size,
177 				     pgprot_t prot, struct page **ret_page,
178 				     const void *caller, bool want_vaddr,
179 				     int coherent_flag, gfp_t gfp);
180 
181 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
182 				 pgprot_t prot, struct page **ret_page,
183 				 const void *caller, bool want_vaddr);
184 
185 #define DEFAULT_DMA_COHERENT_POOL_SIZE	SZ_256K
186 static struct gen_pool *atomic_pool __ro_after_init;
187 
188 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
189 
early_coherent_pool(char * p)190 static int __init early_coherent_pool(char *p)
191 {
192 	atomic_pool_size = memparse(p, &p);
193 	return 0;
194 }
195 early_param("coherent_pool", early_coherent_pool);
196 
197 /*
198  * Initialise the coherent pool for atomic allocations.
199  */
atomic_pool_init(void)200 static int __init atomic_pool_init(void)
201 {
202 	pgprot_t prot = pgprot_dmacoherent(PAGE_KERNEL);
203 	gfp_t gfp = GFP_KERNEL | GFP_DMA;
204 	struct page *page;
205 	void *ptr;
206 
207 	atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
208 	if (!atomic_pool)
209 		goto out;
210 	/*
211 	 * The atomic pool is only used for non-coherent allocations
212 	 * so we must pass NORMAL for coherent_flag.
213 	 */
214 	if (dev_get_cma_area(NULL))
215 		ptr = __alloc_from_contiguous(NULL, atomic_pool_size, prot,
216 				      &page, atomic_pool_init, true, NORMAL,
217 				      GFP_KERNEL);
218 	else
219 		ptr = __alloc_remap_buffer(NULL, atomic_pool_size, gfp, prot,
220 					   &page, atomic_pool_init, true);
221 	if (ptr) {
222 		int ret;
223 
224 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)ptr,
225 					page_to_phys(page),
226 					atomic_pool_size, -1);
227 		if (ret)
228 			goto destroy_genpool;
229 
230 		gen_pool_set_algo(atomic_pool,
231 				gen_pool_first_fit_order_align,
232 				NULL);
233 		pr_info("DMA: preallocated %zu KiB pool for atomic coherent allocations\n",
234 		       atomic_pool_size / 1024);
235 		return 0;
236 	}
237 
238 destroy_genpool:
239 	gen_pool_destroy(atomic_pool);
240 	atomic_pool = NULL;
241 out:
242 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
243 	       atomic_pool_size / 1024);
244 	return -ENOMEM;
245 }
246 /*
247  * CMA is activated by core_initcall, so we must be called after it.
248  */
249 postcore_initcall(atomic_pool_init);
250 
251 #ifdef CONFIG_CMA_AREAS
252 struct dma_contig_early_reserve {
253 	phys_addr_t base;
254 	unsigned long size;
255 };
256 
257 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
258 
259 static int dma_mmu_remap_num __initdata;
260 
261 #ifdef CONFIG_DMA_CMA
dma_contiguous_early_fixup(phys_addr_t base,unsigned long size)262 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
263 {
264 	dma_mmu_remap[dma_mmu_remap_num].base = base;
265 	dma_mmu_remap[dma_mmu_remap_num].size = size;
266 	dma_mmu_remap_num++;
267 }
268 #endif
269 
dma_contiguous_remap(void)270 void __init dma_contiguous_remap(void)
271 {
272 	int i;
273 	for (i = 0; i < dma_mmu_remap_num; i++) {
274 		phys_addr_t start = dma_mmu_remap[i].base;
275 		phys_addr_t end = start + dma_mmu_remap[i].size;
276 		struct map_desc map;
277 		unsigned long addr;
278 
279 		if (end > arm_lowmem_limit)
280 			end = arm_lowmem_limit;
281 		if (start >= end)
282 			continue;
283 
284 		map.pfn = __phys_to_pfn(start);
285 		map.virtual = __phys_to_virt(start);
286 		map.length = end - start;
287 		map.type = MT_MEMORY_DMA_READY;
288 
289 		/*
290 		 * Clear previous low-memory mapping to ensure that the
291 		 * TLB does not see any conflicting entries, then flush
292 		 * the TLB of the old entries before creating new mappings.
293 		 *
294 		 * This ensures that any speculatively loaded TLB entries
295 		 * (even though they may be rare) can not cause any problems,
296 		 * and ensures that this code is architecturally compliant.
297 		 */
298 		for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
299 		     addr += PMD_SIZE)
300 			pmd_clear(pmd_off_k(addr));
301 
302 		flush_tlb_kernel_range(__phys_to_virt(start),
303 				       __phys_to_virt(end));
304 
305 		iotable_init(&map, 1);
306 	}
307 }
308 #endif
309 
__dma_update_pte(pte_t * pte,unsigned long addr,void * data)310 static int __dma_update_pte(pte_t *pte, unsigned long addr, void *data)
311 {
312 	struct page *page = virt_to_page((void *)addr);
313 	pgprot_t prot = *(pgprot_t *)data;
314 
315 	set_pte_ext(pte, mk_pte(page, prot), 0);
316 	return 0;
317 }
318 
__dma_remap(struct page * page,size_t size,pgprot_t prot)319 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
320 {
321 	unsigned long start = (unsigned long) page_address(page);
322 	unsigned end = start + size;
323 
324 	apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
325 	flush_tlb_kernel_range(start, end);
326 }
327 
__alloc_remap_buffer(struct device * dev,size_t size,gfp_t gfp,pgprot_t prot,struct page ** ret_page,const void * caller,bool want_vaddr)328 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
329 				 pgprot_t prot, struct page **ret_page,
330 				 const void *caller, bool want_vaddr)
331 {
332 	struct page *page;
333 	void *ptr = NULL;
334 	/*
335 	 * __alloc_remap_buffer is only called when the device is
336 	 * non-coherent
337 	 */
338 	page = __dma_alloc_buffer(dev, size, gfp, NORMAL);
339 	if (!page)
340 		return NULL;
341 	if (!want_vaddr)
342 		goto out;
343 
344 	ptr = dma_common_contiguous_remap(page, size, prot, caller);
345 	if (!ptr) {
346 		__dma_free_buffer(page, size);
347 		return NULL;
348 	}
349 
350  out:
351 	*ret_page = page;
352 	return ptr;
353 }
354 
__alloc_from_pool(size_t size,struct page ** ret_page)355 static void *__alloc_from_pool(size_t size, struct page **ret_page)
356 {
357 	unsigned long val;
358 	void *ptr = NULL;
359 
360 	if (!atomic_pool) {
361 		WARN(1, "coherent pool not initialised!\n");
362 		return NULL;
363 	}
364 
365 	val = gen_pool_alloc(atomic_pool, size);
366 	if (val) {
367 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
368 
369 		*ret_page = phys_to_page(phys);
370 		ptr = (void *)val;
371 	}
372 
373 	return ptr;
374 }
375 
__in_atomic_pool(void * start,size_t size)376 static bool __in_atomic_pool(void *start, size_t size)
377 {
378 	return gen_pool_has_addr(atomic_pool, (unsigned long)start, size);
379 }
380 
__free_from_pool(void * start,size_t size)381 static int __free_from_pool(void *start, size_t size)
382 {
383 	if (!__in_atomic_pool(start, size))
384 		return 0;
385 
386 	gen_pool_free(atomic_pool, (unsigned long)start, size);
387 
388 	return 1;
389 }
390 
__alloc_from_contiguous(struct device * dev,size_t size,pgprot_t prot,struct page ** ret_page,const void * caller,bool want_vaddr,int coherent_flag,gfp_t gfp)391 static void *__alloc_from_contiguous(struct device *dev, size_t size,
392 				     pgprot_t prot, struct page **ret_page,
393 				     const void *caller, bool want_vaddr,
394 				     int coherent_flag, gfp_t gfp)
395 {
396 	unsigned long order = get_order(size);
397 	size_t count = size >> PAGE_SHIFT;
398 	struct page *page;
399 	void *ptr = NULL;
400 
401 	page = dma_alloc_from_contiguous(dev, count, order, gfp & __GFP_NOWARN);
402 	if (!page)
403 		return NULL;
404 
405 	__dma_clear_buffer(page, size, coherent_flag);
406 
407 	if (!want_vaddr)
408 		goto out;
409 
410 	if (PageHighMem(page)) {
411 		ptr = dma_common_contiguous_remap(page, size, prot, caller);
412 		if (!ptr) {
413 			dma_release_from_contiguous(dev, page, count);
414 			return NULL;
415 		}
416 	} else {
417 		__dma_remap(page, size, prot);
418 		ptr = page_address(page);
419 	}
420 
421  out:
422 	*ret_page = page;
423 	return ptr;
424 }
425 
__free_from_contiguous(struct device * dev,struct page * page,void * cpu_addr,size_t size,bool want_vaddr)426 static void __free_from_contiguous(struct device *dev, struct page *page,
427 				   void *cpu_addr, size_t size, bool want_vaddr)
428 {
429 	if (want_vaddr) {
430 		if (PageHighMem(page))
431 			dma_common_free_remap(cpu_addr, size);
432 		else
433 			__dma_remap(page, size, PAGE_KERNEL);
434 	}
435 	dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
436 }
437 
__get_dma_pgprot(unsigned long attrs,pgprot_t prot)438 static inline pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot)
439 {
440 	prot = (attrs & DMA_ATTR_WRITE_COMBINE) ?
441 			pgprot_writecombine(prot) :
442 			pgprot_dmacoherent(prot);
443 	return prot;
444 }
445 
__alloc_simple_buffer(struct device * dev,size_t size,gfp_t gfp,struct page ** ret_page)446 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
447 				   struct page **ret_page)
448 {
449 	struct page *page;
450 	/* __alloc_simple_buffer is only called when the device is coherent */
451 	page = __dma_alloc_buffer(dev, size, gfp, COHERENT);
452 	if (!page)
453 		return NULL;
454 
455 	*ret_page = page;
456 	return page_address(page);
457 }
458 
simple_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)459 static void *simple_allocator_alloc(struct arm_dma_alloc_args *args,
460 				    struct page **ret_page)
461 {
462 	return __alloc_simple_buffer(args->dev, args->size, args->gfp,
463 				     ret_page);
464 }
465 
simple_allocator_free(struct arm_dma_free_args * args)466 static void simple_allocator_free(struct arm_dma_free_args *args)
467 {
468 	__dma_free_buffer(args->page, args->size);
469 }
470 
471 static struct arm_dma_allocator simple_allocator = {
472 	.alloc = simple_allocator_alloc,
473 	.free = simple_allocator_free,
474 };
475 
cma_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)476 static void *cma_allocator_alloc(struct arm_dma_alloc_args *args,
477 				 struct page **ret_page)
478 {
479 	return __alloc_from_contiguous(args->dev, args->size, args->prot,
480 				       ret_page, args->caller,
481 				       args->want_vaddr, args->coherent_flag,
482 				       args->gfp);
483 }
484 
cma_allocator_free(struct arm_dma_free_args * args)485 static void cma_allocator_free(struct arm_dma_free_args *args)
486 {
487 	__free_from_contiguous(args->dev, args->page, args->cpu_addr,
488 			       args->size, args->want_vaddr);
489 }
490 
491 static struct arm_dma_allocator cma_allocator = {
492 	.alloc = cma_allocator_alloc,
493 	.free = cma_allocator_free,
494 };
495 
pool_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)496 static void *pool_allocator_alloc(struct arm_dma_alloc_args *args,
497 				  struct page **ret_page)
498 {
499 	return __alloc_from_pool(args->size, ret_page);
500 }
501 
pool_allocator_free(struct arm_dma_free_args * args)502 static void pool_allocator_free(struct arm_dma_free_args *args)
503 {
504 	__free_from_pool(args->cpu_addr, args->size);
505 }
506 
507 static struct arm_dma_allocator pool_allocator = {
508 	.alloc = pool_allocator_alloc,
509 	.free = pool_allocator_free,
510 };
511 
remap_allocator_alloc(struct arm_dma_alloc_args * args,struct page ** ret_page)512 static void *remap_allocator_alloc(struct arm_dma_alloc_args *args,
513 				   struct page **ret_page)
514 {
515 	return __alloc_remap_buffer(args->dev, args->size, args->gfp,
516 				    args->prot, ret_page, args->caller,
517 				    args->want_vaddr);
518 }
519 
remap_allocator_free(struct arm_dma_free_args * args)520 static void remap_allocator_free(struct arm_dma_free_args *args)
521 {
522 	if (args->want_vaddr)
523 		dma_common_free_remap(args->cpu_addr, args->size);
524 
525 	__dma_free_buffer(args->page, args->size);
526 }
527 
528 static struct arm_dma_allocator remap_allocator = {
529 	.alloc = remap_allocator_alloc,
530 	.free = remap_allocator_free,
531 };
532 
__dma_alloc(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,pgprot_t prot,bool is_coherent,unsigned long attrs,const void * caller)533 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
534 			 gfp_t gfp, pgprot_t prot, bool is_coherent,
535 			 unsigned long attrs, const void *caller)
536 {
537 	u64 mask = min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
538 	struct page *page = NULL;
539 	void *addr;
540 	bool allowblock, cma;
541 	struct arm_dma_buffer *buf;
542 	struct arm_dma_alloc_args args = {
543 		.dev = dev,
544 		.size = PAGE_ALIGN(size),
545 		.gfp = gfp,
546 		.prot = prot,
547 		.caller = caller,
548 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
549 		.coherent_flag = is_coherent ? COHERENT : NORMAL,
550 	};
551 
552 #ifdef CONFIG_DMA_API_DEBUG
553 	u64 limit = (mask + 1) & ~mask;
554 	if (limit && size >= limit) {
555 		dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
556 			size, mask);
557 		return NULL;
558 	}
559 #endif
560 
561 	buf = kzalloc(sizeof(*buf),
562 		      gfp & ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM));
563 	if (!buf)
564 		return NULL;
565 
566 	if (mask < 0xffffffffULL)
567 		gfp |= GFP_DMA;
568 
569 	args.gfp = gfp;
570 
571 	*handle = DMA_MAPPING_ERROR;
572 	allowblock = gfpflags_allow_blocking(gfp);
573 	cma = allowblock ? dev_get_cma_area(dev) : NULL;
574 
575 	if (cma)
576 		buf->allocator = &cma_allocator;
577 	else if (is_coherent)
578 		buf->allocator = &simple_allocator;
579 	else if (allowblock)
580 		buf->allocator = &remap_allocator;
581 	else
582 		buf->allocator = &pool_allocator;
583 
584 	addr = buf->allocator->alloc(&args, &page);
585 
586 	if (page) {
587 		unsigned long flags;
588 
589 		*handle = phys_to_dma(dev, page_to_phys(page));
590 		buf->virt = args.want_vaddr ? addr : page;
591 
592 		spin_lock_irqsave(&arm_dma_bufs_lock, flags);
593 		list_add(&buf->list, &arm_dma_bufs);
594 		spin_unlock_irqrestore(&arm_dma_bufs_lock, flags);
595 	} else {
596 		kfree(buf);
597 	}
598 
599 	return args.want_vaddr ? addr : page;
600 }
601 
602 /*
603  * Free a buffer as defined by the above mapping.
604  */
__arm_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs,bool is_coherent)605 static void __arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
606 			   dma_addr_t handle, unsigned long attrs,
607 			   bool is_coherent)
608 {
609 	struct page *page = phys_to_page(dma_to_phys(dev, handle));
610 	struct arm_dma_buffer *buf;
611 	struct arm_dma_free_args args = {
612 		.dev = dev,
613 		.size = PAGE_ALIGN(size),
614 		.cpu_addr = cpu_addr,
615 		.page = page,
616 		.want_vaddr = ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0),
617 	};
618 
619 	buf = arm_dma_buffer_find(cpu_addr);
620 	if (WARN(!buf, "Freeing invalid buffer %p\n", cpu_addr))
621 		return;
622 
623 	buf->allocator->free(&args);
624 	kfree(buf);
625 }
626 
dma_cache_maint_page(phys_addr_t phys,size_t size,enum dma_data_direction dir,void (* op)(const void *,size_t,int))627 static void dma_cache_maint_page(phys_addr_t phys, size_t size,
628 	enum dma_data_direction dir,
629 	void (*op)(const void *, size_t, int))
630 {
631 	unsigned long offset = offset_in_page(phys);
632 	unsigned long pfn = __phys_to_pfn(phys);
633 	size_t left = size;
634 
635 	/*
636 	 * A single sg entry may refer to multiple physically contiguous
637 	 * pages.  But we still need to process highmem pages individually.
638 	 * If highmem is not configured then the bulk of this loop gets
639 	 * optimized out.
640 	 */
641 	do {
642 		size_t len = left;
643 		void *vaddr;
644 
645 		phys = __pfn_to_phys(pfn);
646 		if (PhysHighMem(phys)) {
647 			if (len + offset > PAGE_SIZE)
648 				len = PAGE_SIZE - offset;
649 
650 			if (cache_is_vipt_nonaliasing()) {
651 				vaddr = kmap_atomic_pfn(pfn);
652 				op(vaddr + offset, len, dir);
653 				kunmap_atomic(vaddr);
654 			} else {
655 				struct page *page = phys_to_page(phys);
656 
657 				vaddr = kmap_high_get(page);
658 				if (vaddr) {
659 					op(vaddr + offset, len, dir);
660 					kunmap_high(page);
661 				}
662 			}
663 		} else {
664 			phys += offset;
665 			vaddr = phys_to_virt(phys);
666 			op(vaddr, len, dir);
667 		}
668 		offset = 0;
669 		pfn++;
670 		left -= len;
671 	} while (left);
672 }
673 
674 /*
675  * Make an area consistent for devices.
676  * Note: Drivers should NOT use this function directly.
677  * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
678  */
arch_sync_dma_for_device(phys_addr_t paddr,size_t size,enum dma_data_direction dir)679 void arch_sync_dma_for_device(phys_addr_t paddr, size_t size,
680 			      enum dma_data_direction dir)
681 {
682 	dma_cache_maint_page(paddr, size, dir, dmac_map_area);
683 
684 	if (dir == DMA_FROM_DEVICE) {
685 		outer_inv_range(paddr, paddr + size);
686 	} else {
687 		outer_clean_range(paddr, paddr + size);
688 	}
689 	/* FIXME: non-speculating: flush on bidirectional mappings? */
690 }
691 
arch_sync_dma_for_cpu(phys_addr_t paddr,size_t size,enum dma_data_direction dir)692 void arch_sync_dma_for_cpu(phys_addr_t paddr, size_t size,
693 			   enum dma_data_direction dir)
694 {
695 	/* FIXME: non-speculating: not required */
696 	/* in any case, don't bother invalidating if DMA to device */
697 	if (dir != DMA_TO_DEVICE) {
698 		outer_inv_range(paddr, paddr + size);
699 
700 		dma_cache_maint_page(paddr, size, dir, dmac_unmap_area);
701 	}
702 
703 	/*
704 	 * Mark the D-cache clean for these pages to avoid extra flushing.
705 	 */
706 	if (dir != DMA_TO_DEVICE && size >= PAGE_SIZE) {
707 		struct folio *folio = pfn_folio(paddr / PAGE_SIZE);
708 		size_t offset = offset_in_folio(folio, paddr);
709 
710 		for (;;) {
711 			size_t sz = folio_size(folio) - offset;
712 
713 			if (size < sz)
714 				break;
715 			if (!offset)
716 				set_bit(PG_dcache_clean, &folio->flags.f);
717 			offset = 0;
718 			size -= sz;
719 			if (!size)
720 				break;
721 			folio = folio_next(folio);
722 		}
723 	}
724 }
725 
726 #ifdef CONFIG_ARM_DMA_USE_IOMMU
727 
__dma_info_to_prot(enum dma_data_direction dir,unsigned long attrs)728 static int __dma_info_to_prot(enum dma_data_direction dir, unsigned long attrs)
729 {
730 	int prot = 0;
731 
732 	if (attrs & DMA_ATTR_PRIVILEGED)
733 		prot |= IOMMU_PRIV;
734 
735 	if (attrs & DMA_ATTR_MMIO)
736 		prot |= IOMMU_MMIO;
737 
738 	switch (dir) {
739 	case DMA_BIDIRECTIONAL:
740 		return prot | IOMMU_READ | IOMMU_WRITE;
741 	case DMA_TO_DEVICE:
742 		return prot | IOMMU_READ;
743 	case DMA_FROM_DEVICE:
744 		return prot | IOMMU_WRITE;
745 	default:
746 		return prot;
747 	}
748 }
749 
750 /* IOMMU */
751 
752 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping);
753 
__alloc_iova(struct dma_iommu_mapping * mapping,size_t size)754 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
755 				      size_t size)
756 {
757 	unsigned int order = get_order(size);
758 	unsigned int align = 0;
759 	unsigned int count, start;
760 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
761 	unsigned long flags;
762 	dma_addr_t iova;
763 	int i;
764 
765 	if (order > CONFIG_ARM_DMA_IOMMU_ALIGNMENT)
766 		order = CONFIG_ARM_DMA_IOMMU_ALIGNMENT;
767 
768 	count = PAGE_ALIGN(size) >> PAGE_SHIFT;
769 	align = (1 << order) - 1;
770 
771 	spin_lock_irqsave(&mapping->lock, flags);
772 	for (i = 0; i < mapping->nr_bitmaps; i++) {
773 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
774 				mapping->bits, 0, count, align);
775 
776 		if (start > mapping->bits)
777 			continue;
778 
779 		bitmap_set(mapping->bitmaps[i], start, count);
780 		break;
781 	}
782 
783 	/*
784 	 * No unused range found. Try to extend the existing mapping
785 	 * and perform a second attempt to reserve an IO virtual
786 	 * address range of size bytes.
787 	 */
788 	if (i == mapping->nr_bitmaps) {
789 		if (extend_iommu_mapping(mapping)) {
790 			spin_unlock_irqrestore(&mapping->lock, flags);
791 			return DMA_MAPPING_ERROR;
792 		}
793 
794 		start = bitmap_find_next_zero_area(mapping->bitmaps[i],
795 				mapping->bits, 0, count, align);
796 
797 		if (start > mapping->bits) {
798 			spin_unlock_irqrestore(&mapping->lock, flags);
799 			return DMA_MAPPING_ERROR;
800 		}
801 
802 		bitmap_set(mapping->bitmaps[i], start, count);
803 	}
804 	spin_unlock_irqrestore(&mapping->lock, flags);
805 
806 	iova = mapping->base + (mapping_size * i);
807 	iova += start << PAGE_SHIFT;
808 
809 	return iova;
810 }
811 
__free_iova(struct dma_iommu_mapping * mapping,dma_addr_t addr,size_t size)812 static inline void __free_iova(struct dma_iommu_mapping *mapping,
813 			       dma_addr_t addr, size_t size)
814 {
815 	unsigned int start, count;
816 	size_t mapping_size = mapping->bits << PAGE_SHIFT;
817 	unsigned long flags;
818 	dma_addr_t bitmap_base;
819 	u32 bitmap_index;
820 
821 	if (!size)
822 		return;
823 
824 	bitmap_index = (u32) (addr - mapping->base) / (u32) mapping_size;
825 	BUG_ON(addr < mapping->base || bitmap_index > mapping->extensions);
826 
827 	bitmap_base = mapping->base + mapping_size * bitmap_index;
828 
829 	start = (addr - bitmap_base) >>	PAGE_SHIFT;
830 
831 	if (addr + size > bitmap_base + mapping_size) {
832 		/*
833 		 * The address range to be freed reaches into the iova
834 		 * range of the next bitmap. This should not happen as
835 		 * we don't allow this in __alloc_iova (at the
836 		 * moment).
837 		 */
838 		BUG();
839 	} else
840 		count = size >> PAGE_SHIFT;
841 
842 	spin_lock_irqsave(&mapping->lock, flags);
843 	bitmap_clear(mapping->bitmaps[bitmap_index], start, count);
844 	spin_unlock_irqrestore(&mapping->lock, flags);
845 }
846 
847 /* We'll try 2M, 1M, 64K, and finally 4K; array must end with 0! */
848 static const int iommu_order_array[] = { 9, 8, 4, 0 };
849 
__iommu_alloc_buffer(struct device * dev,size_t size,gfp_t gfp,unsigned long attrs,int coherent_flag)850 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size,
851 					  gfp_t gfp, unsigned long attrs,
852 					  int coherent_flag)
853 {
854 	struct page **pages;
855 	int count = size >> PAGE_SHIFT;
856 	int array_size = count * sizeof(struct page *);
857 	int i = 0;
858 	int order_idx = 0;
859 
860 	pages = kvzalloc(array_size, GFP_KERNEL);
861 	if (!pages)
862 		return NULL;
863 
864 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS)
865 	{
866 		unsigned long order = get_order(size);
867 		struct page *page;
868 
869 		page = dma_alloc_from_contiguous(dev, count, order,
870 						 gfp & __GFP_NOWARN);
871 		if (!page)
872 			goto error;
873 
874 		__dma_clear_buffer(page, size, coherent_flag);
875 
876 		for (i = 0; i < count; i++)
877 			pages[i] = page + i;
878 
879 		return pages;
880 	}
881 
882 	/* Go straight to 4K chunks if caller says it's OK. */
883 	if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
884 		order_idx = ARRAY_SIZE(iommu_order_array) - 1;
885 
886 	/*
887 	 * IOMMU can map any pages, so himem can also be used here
888 	 */
889 	gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
890 
891 	while (count) {
892 		int j, order;
893 
894 		order = iommu_order_array[order_idx];
895 
896 		/* Drop down when we get small */
897 		if (__fls(count) < order) {
898 			order_idx++;
899 			continue;
900 		}
901 
902 		if (order) {
903 			/* See if it's easy to allocate a high-order chunk */
904 			pages[i] = alloc_pages(gfp | __GFP_NORETRY, order);
905 
906 			/* Go down a notch at first sign of pressure */
907 			if (!pages[i]) {
908 				order_idx++;
909 				continue;
910 			}
911 		} else {
912 			pages[i] = alloc_pages(gfp, 0);
913 			if (!pages[i])
914 				goto error;
915 		}
916 
917 		if (order) {
918 			split_page(pages[i], order);
919 			j = 1 << order;
920 			while (--j)
921 				pages[i + j] = pages[i] + j;
922 		}
923 
924 		__dma_clear_buffer(pages[i], PAGE_SIZE << order, coherent_flag);
925 		i += 1 << order;
926 		count -= 1 << order;
927 	}
928 
929 	return pages;
930 error:
931 	while (i--)
932 		if (pages[i])
933 			__free_pages(pages[i], 0);
934 	kvfree(pages);
935 	return NULL;
936 }
937 
__iommu_free_buffer(struct device * dev,struct page ** pages,size_t size,unsigned long attrs)938 static int __iommu_free_buffer(struct device *dev, struct page **pages,
939 			       size_t size, unsigned long attrs)
940 {
941 	int count = size >> PAGE_SHIFT;
942 	int i;
943 
944 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
945 		dma_release_from_contiguous(dev, pages[0], count);
946 	} else {
947 		for (i = 0; i < count; i++)
948 			if (pages[i])
949 				__free_pages(pages[i], 0);
950 	}
951 
952 	kvfree(pages);
953 	return 0;
954 }
955 
956 /*
957  * Create a mapping in device IO address space for specified pages
958  */
959 static dma_addr_t
__iommu_create_mapping(struct device * dev,struct page ** pages,size_t size,unsigned long attrs)960 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size,
961 		       unsigned long attrs)
962 {
963 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
964 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
965 	dma_addr_t dma_addr, iova;
966 	int i;
967 
968 	dma_addr = __alloc_iova(mapping, size);
969 	if (dma_addr == DMA_MAPPING_ERROR)
970 		return dma_addr;
971 
972 	iova = dma_addr;
973 	for (i = 0; i < count; ) {
974 		int ret;
975 
976 		unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
977 		phys_addr_t phys = page_to_phys(pages[i]);
978 		unsigned int len, j;
979 
980 		for (j = i + 1; j < count; j++, next_pfn++)
981 			if (page_to_pfn(pages[j]) != next_pfn)
982 				break;
983 
984 		len = (j - i) << PAGE_SHIFT;
985 		ret = iommu_map(mapping->domain, iova, phys, len,
986 				__dma_info_to_prot(DMA_BIDIRECTIONAL, attrs),
987 				GFP_KERNEL);
988 		if (ret < 0)
989 			goto fail;
990 		iova += len;
991 		i = j;
992 	}
993 	return dma_addr;
994 fail:
995 	iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
996 	__free_iova(mapping, dma_addr, size);
997 	return DMA_MAPPING_ERROR;
998 }
999 
__iommu_remove_mapping(struct device * dev,dma_addr_t iova,size_t size)1000 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1001 {
1002 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1003 
1004 	/*
1005 	 * add optional in-page offset from iova to size and align
1006 	 * result to page size
1007 	 */
1008 	size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1009 	iova &= PAGE_MASK;
1010 
1011 	iommu_unmap(mapping->domain, iova, size);
1012 	__free_iova(mapping, iova, size);
1013 	return 0;
1014 }
1015 
__atomic_get_pages(void * addr)1016 static struct page **__atomic_get_pages(void *addr)
1017 {
1018 	struct page *page;
1019 	phys_addr_t phys;
1020 
1021 	phys = gen_pool_virt_to_phys(atomic_pool, (unsigned long)addr);
1022 	page = phys_to_page(phys);
1023 
1024 	return (struct page **)page;
1025 }
1026 
__iommu_get_pages(void * cpu_addr,unsigned long attrs)1027 static struct page **__iommu_get_pages(void *cpu_addr, unsigned long attrs)
1028 {
1029 	if (__in_atomic_pool(cpu_addr, PAGE_SIZE))
1030 		return __atomic_get_pages(cpu_addr);
1031 
1032 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1033 		return cpu_addr;
1034 
1035 	return dma_common_find_pages(cpu_addr);
1036 }
1037 
__iommu_alloc_simple(struct device * dev,size_t size,gfp_t gfp,dma_addr_t * handle,int coherent_flag,unsigned long attrs)1038 static void *__iommu_alloc_simple(struct device *dev, size_t size, gfp_t gfp,
1039 				  dma_addr_t *handle, int coherent_flag,
1040 				  unsigned long attrs)
1041 {
1042 	struct page *page;
1043 	void *addr;
1044 
1045 	if (coherent_flag  == COHERENT)
1046 		addr = __alloc_simple_buffer(dev, size, gfp, &page);
1047 	else
1048 		addr = __alloc_from_pool(size, &page);
1049 	if (!addr)
1050 		return NULL;
1051 
1052 	*handle = __iommu_create_mapping(dev, &page, size, attrs);
1053 	if (*handle == DMA_MAPPING_ERROR)
1054 		goto err_mapping;
1055 
1056 	return addr;
1057 
1058 err_mapping:
1059 	__free_from_pool(addr, size);
1060 	return NULL;
1061 }
1062 
__iommu_free_atomic(struct device * dev,void * cpu_addr,dma_addr_t handle,size_t size,int coherent_flag)1063 static void __iommu_free_atomic(struct device *dev, void *cpu_addr,
1064 			dma_addr_t handle, size_t size, int coherent_flag)
1065 {
1066 	__iommu_remove_mapping(dev, handle, size);
1067 	if (coherent_flag == COHERENT)
1068 		__dma_free_buffer(virt_to_page(cpu_addr), size);
1069 	else
1070 		__free_from_pool(cpu_addr, size);
1071 }
1072 
arm_iommu_alloc_attrs(struct device * dev,size_t size,dma_addr_t * handle,gfp_t gfp,unsigned long attrs)1073 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1074 	    dma_addr_t *handle, gfp_t gfp, unsigned long attrs)
1075 {
1076 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL);
1077 	struct page **pages;
1078 	void *addr = NULL;
1079 	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1080 
1081 	*handle = DMA_MAPPING_ERROR;
1082 	size = PAGE_ALIGN(size);
1083 
1084 	if (coherent_flag  == COHERENT || !gfpflags_allow_blocking(gfp))
1085 		return __iommu_alloc_simple(dev, size, gfp, handle,
1086 					    coherent_flag, attrs);
1087 
1088 	pages = __iommu_alloc_buffer(dev, size, gfp, attrs, coherent_flag);
1089 	if (!pages)
1090 		return NULL;
1091 
1092 	*handle = __iommu_create_mapping(dev, pages, size, attrs);
1093 	if (*handle == DMA_MAPPING_ERROR)
1094 		goto err_buffer;
1095 
1096 	if (attrs & DMA_ATTR_NO_KERNEL_MAPPING)
1097 		return pages;
1098 
1099 	addr = dma_common_pages_remap(pages, size, prot,
1100 				   __builtin_return_address(0));
1101 	if (!addr)
1102 		goto err_mapping;
1103 
1104 	return addr;
1105 
1106 err_mapping:
1107 	__iommu_remove_mapping(dev, *handle, size);
1108 err_buffer:
1109 	__iommu_free_buffer(dev, pages, size, attrs);
1110 	return NULL;
1111 }
1112 
arm_iommu_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1113 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1114 		    void *cpu_addr, dma_addr_t dma_addr, size_t size,
1115 		    unsigned long attrs)
1116 {
1117 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1118 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
1119 	int err;
1120 
1121 	if (!pages)
1122 		return -ENXIO;
1123 
1124 	if (vma->vm_pgoff >= nr_pages)
1125 		return -ENXIO;
1126 
1127 	if (!dev->dma_coherent)
1128 		vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1129 
1130 	err = vm_map_pages(vma, pages, nr_pages);
1131 	if (err)
1132 		pr_err("Remapping memory failed: %d\n", err);
1133 
1134 	return err;
1135 }
1136 
1137 /*
1138  * free a page as defined by the above mapping.
1139  * Must not be called with IRQs disabled.
1140  */
arm_iommu_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t handle,unsigned long attrs)1141 static void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1142 	dma_addr_t handle, unsigned long attrs)
1143 {
1144 	int coherent_flag = dev->dma_coherent ? COHERENT : NORMAL;
1145 	struct page **pages;
1146 	size = PAGE_ALIGN(size);
1147 
1148 	if (coherent_flag == COHERENT || __in_atomic_pool(cpu_addr, size)) {
1149 		__iommu_free_atomic(dev, cpu_addr, handle, size, coherent_flag);
1150 		return;
1151 	}
1152 
1153 	pages = __iommu_get_pages(cpu_addr, attrs);
1154 	if (!pages) {
1155 		WARN(1, "trying to free invalid coherent area: %p\n", cpu_addr);
1156 		return;
1157 	}
1158 
1159 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) == 0)
1160 		dma_common_free_remap(cpu_addr, size);
1161 
1162 	__iommu_remove_mapping(dev, handle, size);
1163 	__iommu_free_buffer(dev, pages, size, attrs);
1164 }
1165 
arm_iommu_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)1166 static int arm_iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
1167 				 void *cpu_addr, dma_addr_t dma_addr,
1168 				 size_t size, unsigned long attrs)
1169 {
1170 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1171 	struct page **pages = __iommu_get_pages(cpu_addr, attrs);
1172 
1173 	if (!pages)
1174 		return -ENXIO;
1175 
1176 	return sg_alloc_table_from_pages(sgt, pages, count, 0, size,
1177 					 GFP_KERNEL);
1178 }
1179 
1180 /*
1181  * Map a part of the scatter-gather list into contiguous io address space
1182  */
__map_sg_chunk(struct device * dev,struct scatterlist * sg,size_t size,dma_addr_t * handle,enum dma_data_direction dir,unsigned long attrs)1183 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1184 			  size_t size, dma_addr_t *handle,
1185 			  enum dma_data_direction dir, unsigned long attrs)
1186 {
1187 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1188 	dma_addr_t iova, iova_base;
1189 	int ret = 0;
1190 	unsigned int count;
1191 	struct scatterlist *s;
1192 	int prot;
1193 
1194 	size = PAGE_ALIGN(size);
1195 	*handle = DMA_MAPPING_ERROR;
1196 
1197 	iova_base = iova = __alloc_iova(mapping, size);
1198 	if (iova == DMA_MAPPING_ERROR)
1199 		return -ENOMEM;
1200 
1201 	for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1202 		phys_addr_t phys = page_to_phys(sg_page(s));
1203 		unsigned int len = PAGE_ALIGN(s->offset + s->length);
1204 
1205 		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1206 			arch_sync_dma_for_device(sg_phys(s), s->length, dir);
1207 
1208 		prot = __dma_info_to_prot(dir, attrs);
1209 
1210 		ret = iommu_map(mapping->domain, iova, phys, len, prot,
1211 				GFP_KERNEL);
1212 		if (ret < 0)
1213 			goto fail;
1214 		count += len >> PAGE_SHIFT;
1215 		iova += len;
1216 	}
1217 	*handle = iova_base;
1218 
1219 	return 0;
1220 fail:
1221 	iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1222 	__free_iova(mapping, iova_base, size);
1223 	return ret;
1224 }
1225 
1226 /**
1227  * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1228  * @dev: valid struct device pointer
1229  * @sg: list of buffers
1230  * @nents: number of buffers to map
1231  * @dir: DMA transfer direction
1232  *
1233  * Map a set of buffers described by scatterlist in streaming mode for DMA.
1234  * The scatter gather list elements are merged together (if possible) and
1235  * tagged with the appropriate dma address and length. They are obtained via
1236  * sg_dma_{address,length}.
1237  */
arm_iommu_map_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1238 static int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg,
1239 		int nents, enum dma_data_direction dir, unsigned long attrs)
1240 {
1241 	struct scatterlist *s = sg, *dma = sg, *start = sg;
1242 	int i, count = 0, ret;
1243 	unsigned int offset = s->offset;
1244 	unsigned int size = s->offset + s->length;
1245 	unsigned int max = dma_get_max_seg_size(dev);
1246 
1247 	for (i = 1; i < nents; i++) {
1248 		s = sg_next(s);
1249 
1250 		s->dma_length = 0;
1251 
1252 		if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1253 			ret = __map_sg_chunk(dev, start, size,
1254 					     &dma->dma_address, dir, attrs);
1255 			if (ret < 0)
1256 				goto bad_mapping;
1257 
1258 			dma->dma_address += offset;
1259 			dma->dma_length = size - offset;
1260 
1261 			size = offset = s->offset;
1262 			start = s;
1263 			dma = sg_next(dma);
1264 			count += 1;
1265 		}
1266 		size += s->length;
1267 	}
1268 	ret = __map_sg_chunk(dev, start, size, &dma->dma_address, dir, attrs);
1269 	if (ret < 0)
1270 		goto bad_mapping;
1271 
1272 	dma->dma_address += offset;
1273 	dma->dma_length = size - offset;
1274 
1275 	return count+1;
1276 
1277 bad_mapping:
1278 	for_each_sg(sg, s, count, i)
1279 		__iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1280 	if (ret == -ENOMEM)
1281 		return ret;
1282 	return -EINVAL;
1283 }
1284 
1285 /**
1286  * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1287  * @dev: valid struct device pointer
1288  * @sg: list of buffers
1289  * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1290  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1291  *
1292  * Unmap a set of streaming mode DMA translations.  Again, CPU access
1293  * rules concerning calls here are the same as for dma_unmap_single().
1294  */
arm_iommu_unmap_sg(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)1295 static void arm_iommu_unmap_sg(struct device *dev,
1296 			       struct scatterlist *sg, int nents,
1297 			       enum dma_data_direction dir,
1298 			       unsigned long attrs)
1299 {
1300 	struct scatterlist *s;
1301 	int i;
1302 
1303 	for_each_sg(sg, s, nents, i) {
1304 		if (sg_dma_len(s))
1305 			__iommu_remove_mapping(dev, sg_dma_address(s),
1306 					       sg_dma_len(s));
1307 		if (!dev->dma_coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
1308 			arch_sync_dma_for_cpu(sg_phys(s), s->length, dir);
1309 	}
1310 }
1311 
1312 /**
1313  * arm_iommu_sync_sg_for_cpu
1314  * @dev: valid struct device pointer
1315  * @sg: list of buffers
1316  * @nents: number of buffers to map (returned from dma_map_sg)
1317  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1318  */
arm_iommu_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1319 static void arm_iommu_sync_sg_for_cpu(struct device *dev,
1320 			struct scatterlist *sg,
1321 			int nents, enum dma_data_direction dir)
1322 {
1323 	struct scatterlist *s;
1324 	int i;
1325 
1326 	if (dev->dma_coherent)
1327 		return;
1328 
1329 	for_each_sg(sg, s, nents, i)
1330 		arch_sync_dma_for_cpu(sg_phys(s), s->length, dir);
1331 
1332 }
1333 
1334 /**
1335  * arm_iommu_sync_sg_for_device
1336  * @dev: valid struct device pointer
1337  * @sg: list of buffers
1338  * @nents: number of buffers to map (returned from dma_map_sg)
1339  * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1340  */
arm_iommu_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir)1341 static void arm_iommu_sync_sg_for_device(struct device *dev,
1342 			struct scatterlist *sg,
1343 			int nents, enum dma_data_direction dir)
1344 {
1345 	struct scatterlist *s;
1346 	int i;
1347 
1348 	if (dev->dma_coherent)
1349 		return;
1350 
1351 	for_each_sg(sg, s, nents, i)
1352 		arch_sync_dma_for_device(sg_phys(s), s->length, dir);
1353 }
1354 
1355 /**
1356  * arm_iommu_map_phys
1357  * @dev: valid struct device pointer
1358  * @phys: physical address that buffer resides in
1359  * @size: size of buffer to map
1360  * @dir: DMA transfer direction
1361  * @attrs: DMA mapping attributes
1362  *
1363  * IOMMU aware version of arm_dma_map_page()
1364  */
arm_iommu_map_phys(struct device * dev,phys_addr_t phys,size_t size,enum dma_data_direction dir,unsigned long attrs)1365 static dma_addr_t arm_iommu_map_phys(struct device *dev, phys_addr_t phys,
1366 	     size_t size, enum dma_data_direction dir, unsigned long attrs)
1367 {
1368 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1369 	int len = PAGE_ALIGN(size + offset_in_page(phys));
1370 	phys_addr_t addr = phys & PAGE_MASK;
1371 	dma_addr_t dma_addr;
1372 	int ret, prot;
1373 
1374 	if (!dev->dma_coherent &&
1375 	    !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO)))
1376 		arch_sync_dma_for_device(phys, size, dir);
1377 
1378 	dma_addr = __alloc_iova(mapping, len);
1379 	if (dma_addr == DMA_MAPPING_ERROR)
1380 		return dma_addr;
1381 
1382 	prot = __dma_info_to_prot(dir, attrs);
1383 
1384 	ret = iommu_map(mapping->domain, dma_addr, addr, len, prot, GFP_KERNEL);
1385 	if (ret < 0)
1386 		goto fail;
1387 
1388 	return dma_addr + offset_in_page(phys);
1389 fail:
1390 	__free_iova(mapping, dma_addr, len);
1391 	return DMA_MAPPING_ERROR;
1392 }
1393 
1394 /**
1395  * arm_iommu_unmap_page
1396  * @dev: valid struct device pointer
1397  * @handle: DMA address of buffer
1398  * @size: size of buffer (same as passed to dma_map_page)
1399  * @dir: DMA transfer direction (same as passed to dma_map_page)
1400  * @attrs: DMA mapping attributes
1401  *
1402  * IOMMU aware version of arm_dma_unmap_phys()
1403  */
arm_iommu_unmap_phys(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir,unsigned long attrs)1404 static void arm_iommu_unmap_phys(struct device *dev, dma_addr_t handle,
1405 		size_t size, enum dma_data_direction dir, unsigned long attrs)
1406 {
1407 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1408 	dma_addr_t iova = handle & PAGE_MASK;
1409 	int offset = handle & ~PAGE_MASK;
1410 	int len = PAGE_ALIGN(size + offset);
1411 
1412 	if (!iova)
1413 		return;
1414 
1415 	if (!dev->dma_coherent &&
1416 	    !(attrs & (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_MMIO))) {
1417 		phys_addr_t phys = iommu_iova_to_phys(mapping->domain, iova);
1418 
1419 		arch_sync_dma_for_cpu(phys + offset, size, dir);
1420 	}
1421 
1422 	iommu_unmap(mapping->domain, iova, len);
1423 	__free_iova(mapping, iova, len);
1424 }
1425 
arm_iommu_sync_single_for_cpu(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)1426 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1427 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1428 {
1429 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1430 	dma_addr_t iova = handle & PAGE_MASK;
1431 	unsigned int offset = handle & ~PAGE_MASK;
1432 	phys_addr_t phys;
1433 
1434 	if (dev->dma_coherent || !iova)
1435 		return;
1436 
1437 	phys = iommu_iova_to_phys(mapping->domain, iova);
1438 	arch_sync_dma_for_cpu(phys + offset, size, dir);
1439 }
1440 
arm_iommu_sync_single_for_device(struct device * dev,dma_addr_t handle,size_t size,enum dma_data_direction dir)1441 static void arm_iommu_sync_single_for_device(struct device *dev,
1442 		dma_addr_t handle, size_t size, enum dma_data_direction dir)
1443 {
1444 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1445 	dma_addr_t iova = handle & PAGE_MASK;
1446 	unsigned int offset = handle & ~PAGE_MASK;
1447 	phys_addr_t phys;
1448 
1449 	if (dev->dma_coherent || !iova)
1450 		return;
1451 
1452 	phys = iommu_iova_to_phys(mapping->domain, iova);
1453 	arch_sync_dma_for_device(phys + offset, size, dir);
1454 }
1455 
1456 static const struct dma_map_ops iommu_ops = {
1457 	.alloc		= arm_iommu_alloc_attrs,
1458 	.free		= arm_iommu_free_attrs,
1459 	.mmap		= arm_iommu_mmap_attrs,
1460 	.get_sgtable	= arm_iommu_get_sgtable,
1461 
1462 	.map_phys		= arm_iommu_map_phys,
1463 	.unmap_phys		= arm_iommu_unmap_phys,
1464 	.sync_single_for_cpu	= arm_iommu_sync_single_for_cpu,
1465 	.sync_single_for_device	= arm_iommu_sync_single_for_device,
1466 
1467 	.map_sg			= arm_iommu_map_sg,
1468 	.unmap_sg		= arm_iommu_unmap_sg,
1469 	.sync_sg_for_cpu	= arm_iommu_sync_sg_for_cpu,
1470 	.sync_sg_for_device	= arm_iommu_sync_sg_for_device,
1471 };
1472 
1473 /**
1474  * arm_iommu_create_mapping
1475  * @dev: pointer to the client device (for IOMMU calls)
1476  * @base: start address of the valid IO address space
1477  * @size: maximum size of the valid IO address space
1478  *
1479  * Creates a mapping structure which holds information about used/unused
1480  * IO address ranges, which is required to perform memory allocation and
1481  * mapping with IOMMU aware functions.
1482  *
1483  * The client device need to be attached to the mapping with
1484  * arm_iommu_attach_device function.
1485  */
1486 struct dma_iommu_mapping *
arm_iommu_create_mapping(struct device * dev,dma_addr_t base,u64 size)1487 arm_iommu_create_mapping(struct device *dev, dma_addr_t base, u64 size)
1488 {
1489 	unsigned int bits = size >> PAGE_SHIFT;
1490 	unsigned int bitmap_size = BITS_TO_LONGS(bits) * sizeof(long);
1491 	struct dma_iommu_mapping *mapping;
1492 	int extensions = 1;
1493 	int err = -ENOMEM;
1494 
1495 	/* currently only 32-bit DMA address space is supported */
1496 	if (size > DMA_BIT_MASK(32) + 1)
1497 		return ERR_PTR(-ERANGE);
1498 
1499 	if (!bitmap_size)
1500 		return ERR_PTR(-EINVAL);
1501 
1502 	if (bitmap_size > PAGE_SIZE) {
1503 		extensions = bitmap_size / PAGE_SIZE;
1504 		bitmap_size = PAGE_SIZE;
1505 	}
1506 
1507 	mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1508 	if (!mapping)
1509 		goto err;
1510 
1511 	mapping->bitmap_size = bitmap_size;
1512 	mapping->bitmaps = kcalloc(extensions, sizeof(unsigned long *),
1513 				   GFP_KERNEL);
1514 	if (!mapping->bitmaps)
1515 		goto err2;
1516 
1517 	mapping->bitmaps[0] = kzalloc(bitmap_size, GFP_KERNEL);
1518 	if (!mapping->bitmaps[0])
1519 		goto err3;
1520 
1521 	mapping->nr_bitmaps = 1;
1522 	mapping->extensions = extensions;
1523 	mapping->base = base;
1524 	mapping->bits = BITS_PER_BYTE * bitmap_size;
1525 
1526 	spin_lock_init(&mapping->lock);
1527 
1528 	mapping->domain = iommu_paging_domain_alloc(dev);
1529 	if (IS_ERR(mapping->domain)) {
1530 		err = PTR_ERR(mapping->domain);
1531 		goto err4;
1532 	}
1533 
1534 	kref_init(&mapping->kref);
1535 	return mapping;
1536 err4:
1537 	kfree(mapping->bitmaps[0]);
1538 err3:
1539 	kfree(mapping->bitmaps);
1540 err2:
1541 	kfree(mapping);
1542 err:
1543 	return ERR_PTR(err);
1544 }
1545 EXPORT_SYMBOL_GPL(arm_iommu_create_mapping);
1546 
release_iommu_mapping(struct kref * kref)1547 static void release_iommu_mapping(struct kref *kref)
1548 {
1549 	int i;
1550 	struct dma_iommu_mapping *mapping =
1551 		container_of(kref, struct dma_iommu_mapping, kref);
1552 
1553 	iommu_domain_free(mapping->domain);
1554 	for (i = 0; i < mapping->nr_bitmaps; i++)
1555 		kfree(mapping->bitmaps[i]);
1556 	kfree(mapping->bitmaps);
1557 	kfree(mapping);
1558 }
1559 
extend_iommu_mapping(struct dma_iommu_mapping * mapping)1560 static int extend_iommu_mapping(struct dma_iommu_mapping *mapping)
1561 {
1562 	int next_bitmap;
1563 
1564 	if (mapping->nr_bitmaps >= mapping->extensions)
1565 		return -EINVAL;
1566 
1567 	next_bitmap = mapping->nr_bitmaps;
1568 	mapping->bitmaps[next_bitmap] = kzalloc(mapping->bitmap_size,
1569 						GFP_ATOMIC);
1570 	if (!mapping->bitmaps[next_bitmap])
1571 		return -ENOMEM;
1572 
1573 	mapping->nr_bitmaps++;
1574 
1575 	return 0;
1576 }
1577 
arm_iommu_release_mapping(struct dma_iommu_mapping * mapping)1578 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1579 {
1580 	if (mapping)
1581 		kref_put(&mapping->kref, release_iommu_mapping);
1582 }
1583 EXPORT_SYMBOL_GPL(arm_iommu_release_mapping);
1584 
__arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)1585 static int __arm_iommu_attach_device(struct device *dev,
1586 				     struct dma_iommu_mapping *mapping)
1587 {
1588 	int err;
1589 
1590 	err = iommu_attach_device(mapping->domain, dev);
1591 	if (err)
1592 		return err;
1593 
1594 	kref_get(&mapping->kref);
1595 	to_dma_iommu_mapping(dev) = mapping;
1596 
1597 	pr_debug("Attached IOMMU controller to %s device.\n", dev_name(dev));
1598 	return 0;
1599 }
1600 
1601 /**
1602  * arm_iommu_attach_device
1603  * @dev: valid struct device pointer
1604  * @mapping: io address space mapping structure (returned from
1605  *	arm_iommu_create_mapping)
1606  *
1607  * Attaches specified io address space mapping to the provided device.
1608  * This replaces the dma operations (dma_map_ops pointer) with the
1609  * IOMMU aware version.
1610  *
1611  * More than one client might be attached to the same io address space
1612  * mapping.
1613  */
arm_iommu_attach_device(struct device * dev,struct dma_iommu_mapping * mapping)1614 int arm_iommu_attach_device(struct device *dev,
1615 			    struct dma_iommu_mapping *mapping)
1616 {
1617 	int err;
1618 
1619 	err = __arm_iommu_attach_device(dev, mapping);
1620 	if (err)
1621 		return err;
1622 
1623 	set_dma_ops(dev, &iommu_ops);
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL_GPL(arm_iommu_attach_device);
1627 
1628 /**
1629  * arm_iommu_detach_device
1630  * @dev: valid struct device pointer
1631  *
1632  * Detaches the provided device from a previously attached map.
1633  * This overwrites the dma_ops pointer with appropriate non-IOMMU ops.
1634  */
arm_iommu_detach_device(struct device * dev)1635 void arm_iommu_detach_device(struct device *dev)
1636 {
1637 	struct dma_iommu_mapping *mapping;
1638 
1639 	mapping = to_dma_iommu_mapping(dev);
1640 	if (!mapping) {
1641 		dev_warn(dev, "Not attached\n");
1642 		return;
1643 	}
1644 
1645 	iommu_detach_device(mapping->domain, dev);
1646 	kref_put(&mapping->kref, release_iommu_mapping);
1647 	to_dma_iommu_mapping(dev) = NULL;
1648 	set_dma_ops(dev, NULL);
1649 
1650 	pr_debug("Detached IOMMU controller from %s device.\n", dev_name(dev));
1651 }
1652 EXPORT_SYMBOL_GPL(arm_iommu_detach_device);
1653 
arm_setup_iommu_dma_ops(struct device * dev)1654 static void arm_setup_iommu_dma_ops(struct device *dev)
1655 {
1656 	struct dma_iommu_mapping *mapping;
1657 	u64 dma_base = 0, size = 1ULL << 32;
1658 
1659 	if (dev->dma_range_map) {
1660 		dma_base = dma_range_map_min(dev->dma_range_map);
1661 		size = dma_range_map_max(dev->dma_range_map) - dma_base;
1662 	}
1663 	mapping = arm_iommu_create_mapping(dev, dma_base, size);
1664 	if (IS_ERR(mapping)) {
1665 		pr_warn("Failed to create %llu-byte IOMMU mapping for device %s\n",
1666 				size, dev_name(dev));
1667 		return;
1668 	}
1669 
1670 	if (__arm_iommu_attach_device(dev, mapping)) {
1671 		pr_warn("Failed to attached device %s to IOMMU_mapping\n",
1672 				dev_name(dev));
1673 		arm_iommu_release_mapping(mapping);
1674 		return;
1675 	}
1676 
1677 	set_dma_ops(dev, &iommu_ops);
1678 }
1679 
arm_teardown_iommu_dma_ops(struct device * dev)1680 static void arm_teardown_iommu_dma_ops(struct device *dev)
1681 {
1682 	struct dma_iommu_mapping *mapping = to_dma_iommu_mapping(dev);
1683 
1684 	if (!mapping)
1685 		return;
1686 
1687 	arm_iommu_detach_device(dev);
1688 	arm_iommu_release_mapping(mapping);
1689 }
1690 
1691 #else
1692 
arm_setup_iommu_dma_ops(struct device * dev)1693 static void arm_setup_iommu_dma_ops(struct device *dev)
1694 {
1695 }
1696 
arm_teardown_iommu_dma_ops(struct device * dev)1697 static void arm_teardown_iommu_dma_ops(struct device *dev) { }
1698 
1699 #endif	/* CONFIG_ARM_DMA_USE_IOMMU */
1700 
arch_setup_dma_ops(struct device * dev,bool coherent)1701 void arch_setup_dma_ops(struct device *dev, bool coherent)
1702 {
1703 	/*
1704 	 * Due to legacy code that sets the ->dma_coherent flag from a bus
1705 	 * notifier we can't just assign coherent to the ->dma_coherent flag
1706 	 * here, but instead have to make sure we only set but never clear it
1707 	 * for now.
1708 	 */
1709 	if (coherent)
1710 		dev->dma_coherent = true;
1711 
1712 	/*
1713 	 * Don't override the dma_ops if they have already been set. Ideally
1714 	 * this should be the only location where dma_ops are set, remove this
1715 	 * check when all other callers of set_dma_ops will have disappeared.
1716 	 */
1717 	if (dev->dma_ops)
1718 		return;
1719 
1720 	if (device_iommu_mapped(dev))
1721 		arm_setup_iommu_dma_ops(dev);
1722 
1723 	xen_setup_dma_ops(dev);
1724 	dev->archdata.dma_ops_setup = true;
1725 }
1726 
arch_teardown_dma_ops(struct device * dev)1727 void arch_teardown_dma_ops(struct device *dev)
1728 {
1729 	if (!dev->archdata.dma_ops_setup)
1730 		return;
1731 
1732 	arm_teardown_iommu_dma_ops(dev);
1733 	/* Let arch_setup_dma_ops() start again from scratch upon re-probe */
1734 	set_dma_ops(dev, NULL);
1735 }
1736 
arch_dma_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)1737 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
1738 		gfp_t gfp, unsigned long attrs)
1739 {
1740 	return __dma_alloc(dev, size, dma_handle, gfp,
1741 			   __get_dma_pgprot(attrs, PAGE_KERNEL), false,
1742 			   attrs, __builtin_return_address(0));
1743 }
1744 
arch_dma_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)1745 void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
1746 		dma_addr_t dma_handle, unsigned long attrs)
1747 {
1748 	__arm_dma_free(dev, size, cpu_addr, dma_handle, attrs, false);
1749 }
1750