1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
4 *
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/export.h>
12 #include <linux/gfp.h>
13 #include <linux/iommu-dma.h>
14 #include <linux/kmsan.h>
15 #include <linux/of_device.h>
16 #include <linux/slab.h>
17 #include <linux/vmalloc.h>
18 #include "debug.h"
19 #include "direct.h"
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/dma.h>
23
24 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
25 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
26 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
27 bool dma_default_coherent = IS_ENABLED(CONFIG_ARCH_DMA_DEFAULT_COHERENT);
28 #endif
29
30 /*
31 * Managed DMA API
32 */
33 struct dma_devres {
34 size_t size;
35 void *vaddr;
36 dma_addr_t dma_handle;
37 unsigned long attrs;
38 };
39
dmam_release(struct device * dev,void * res)40 static void dmam_release(struct device *dev, void *res)
41 {
42 struct dma_devres *this = res;
43
44 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
45 this->attrs);
46 }
47
dmam_match(struct device * dev,void * res,void * match_data)48 static int dmam_match(struct device *dev, void *res, void *match_data)
49 {
50 struct dma_devres *this = res, *match = match_data;
51
52 if (this->vaddr == match->vaddr) {
53 WARN_ON(this->size != match->size ||
54 this->dma_handle != match->dma_handle);
55 return 1;
56 }
57 return 0;
58 }
59
60 /**
61 * dmam_free_coherent - Managed dma_free_coherent()
62 * @dev: Device to free coherent memory for
63 * @size: Size of allocation
64 * @vaddr: Virtual address of the memory to free
65 * @dma_handle: DMA handle of the memory to free
66 *
67 * Managed dma_free_coherent().
68 */
dmam_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)69 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
70 dma_addr_t dma_handle)
71 {
72 struct dma_devres match_data = { size, vaddr, dma_handle };
73
74 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
75 dma_free_coherent(dev, size, vaddr, dma_handle);
76 }
77 EXPORT_SYMBOL(dmam_free_coherent);
78
79 /**
80 * dmam_alloc_attrs - Managed dma_alloc_attrs()
81 * @dev: Device to allocate non_coherent memory for
82 * @size: Size of allocation
83 * @dma_handle: Out argument for allocated DMA handle
84 * @gfp: Allocation flags
85 * @attrs: Flags in the DMA_ATTR_* namespace.
86 *
87 * Managed dma_alloc_attrs(). Memory allocated using this function will be
88 * automatically released on driver detach.
89 *
90 * RETURNS:
91 * Pointer to allocated memory on success, NULL on failure.
92 */
dmam_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)93 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
94 gfp_t gfp, unsigned long attrs)
95 {
96 struct dma_devres *dr;
97 void *vaddr;
98
99 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
100 if (!dr)
101 return NULL;
102
103 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
104 if (!vaddr) {
105 devres_free(dr);
106 return NULL;
107 }
108
109 dr->vaddr = vaddr;
110 dr->dma_handle = *dma_handle;
111 dr->size = size;
112 dr->attrs = attrs;
113
114 devres_add(dev, dr);
115
116 return vaddr;
117 }
118 EXPORT_SYMBOL(dmam_alloc_attrs);
119
dma_go_direct(struct device * dev,dma_addr_t mask,const struct dma_map_ops * ops)120 static bool dma_go_direct(struct device *dev, dma_addr_t mask,
121 const struct dma_map_ops *ops)
122 {
123 if (use_dma_iommu(dev))
124 return false;
125
126 if (likely(!ops))
127 return true;
128
129 #ifdef CONFIG_DMA_OPS_BYPASS
130 if (dev->dma_ops_bypass)
131 return min_not_zero(mask, dev->bus_dma_limit) >=
132 dma_direct_get_required_mask(dev);
133 #endif
134 return false;
135 }
136
137
138 /*
139 * Check if the devices uses a direct mapping for streaming DMA operations.
140 * This allows IOMMU drivers to set a bypass mode if the DMA mask is large
141 * enough.
142 */
dma_alloc_direct(struct device * dev,const struct dma_map_ops * ops)143 static inline bool dma_alloc_direct(struct device *dev,
144 const struct dma_map_ops *ops)
145 {
146 return dma_go_direct(dev, dev->coherent_dma_mask, ops);
147 }
148
dma_map_direct(struct device * dev,const struct dma_map_ops * ops)149 static inline bool dma_map_direct(struct device *dev,
150 const struct dma_map_ops *ops)
151 {
152 return dma_go_direct(dev, *dev->dma_mask, ops);
153 }
154
dma_map_page_attrs(struct device * dev,struct page * page,size_t offset,size_t size,enum dma_data_direction dir,unsigned long attrs)155 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
156 size_t offset, size_t size, enum dma_data_direction dir,
157 unsigned long attrs)
158 {
159 const struct dma_map_ops *ops = get_dma_ops(dev);
160 dma_addr_t addr;
161
162 BUG_ON(!valid_dma_direction(dir));
163
164 if (WARN_ON_ONCE(!dev->dma_mask))
165 return DMA_MAPPING_ERROR;
166
167 if (dma_map_direct(dev, ops) ||
168 arch_dma_map_page_direct(dev, page_to_phys(page) + offset + size))
169 addr = dma_direct_map_page(dev, page, offset, size, dir, attrs);
170 else if (use_dma_iommu(dev))
171 addr = iommu_dma_map_page(dev, page, offset, size, dir, attrs);
172 else
173 addr = ops->map_page(dev, page, offset, size, dir, attrs);
174 kmsan_handle_dma(page, offset, size, dir);
175 trace_dma_map_page(dev, page_to_phys(page) + offset, addr, size, dir,
176 attrs);
177 debug_dma_map_page(dev, page, offset, size, dir, addr, attrs);
178
179 return addr;
180 }
181 EXPORT_SYMBOL(dma_map_page_attrs);
182
dma_unmap_page_attrs(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)183 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
184 enum dma_data_direction dir, unsigned long attrs)
185 {
186 const struct dma_map_ops *ops = get_dma_ops(dev);
187
188 BUG_ON(!valid_dma_direction(dir));
189 if (dma_map_direct(dev, ops) ||
190 arch_dma_unmap_page_direct(dev, addr + size))
191 dma_direct_unmap_page(dev, addr, size, dir, attrs);
192 else if (use_dma_iommu(dev))
193 iommu_dma_unmap_page(dev, addr, size, dir, attrs);
194 else
195 ops->unmap_page(dev, addr, size, dir, attrs);
196 trace_dma_unmap_page(dev, addr, size, dir, attrs);
197 debug_dma_unmap_page(dev, addr, size, dir);
198 }
199 EXPORT_SYMBOL(dma_unmap_page_attrs);
200
__dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)201 static int __dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
202 int nents, enum dma_data_direction dir, unsigned long attrs)
203 {
204 const struct dma_map_ops *ops = get_dma_ops(dev);
205 int ents;
206
207 BUG_ON(!valid_dma_direction(dir));
208
209 if (WARN_ON_ONCE(!dev->dma_mask))
210 return 0;
211
212 if (dma_map_direct(dev, ops) ||
213 arch_dma_map_sg_direct(dev, sg, nents))
214 ents = dma_direct_map_sg(dev, sg, nents, dir, attrs);
215 else if (use_dma_iommu(dev))
216 ents = iommu_dma_map_sg(dev, sg, nents, dir, attrs);
217 else
218 ents = ops->map_sg(dev, sg, nents, dir, attrs);
219
220 if (ents > 0) {
221 kmsan_handle_dma_sg(sg, nents, dir);
222 trace_dma_map_sg(dev, sg, nents, ents, dir, attrs);
223 debug_dma_map_sg(dev, sg, nents, ents, dir, attrs);
224 } else if (WARN_ON_ONCE(ents != -EINVAL && ents != -ENOMEM &&
225 ents != -EIO && ents != -EREMOTEIO)) {
226 trace_dma_map_sg_err(dev, sg, nents, ents, dir, attrs);
227 return -EIO;
228 }
229
230 return ents;
231 }
232
233 /**
234 * dma_map_sg_attrs - Map the given buffer for DMA
235 * @dev: The device for which to perform the DMA operation
236 * @sg: The sg_table object describing the buffer
237 * @nents: Number of entries to map
238 * @dir: DMA direction
239 * @attrs: Optional DMA attributes for the map operation
240 *
241 * Maps a buffer described by a scatterlist passed in the sg argument with
242 * nents segments for the @dir DMA operation by the @dev device.
243 *
244 * Returns the number of mapped entries (which can be less than nents)
245 * on success. Zero is returned for any error.
246 *
247 * dma_unmap_sg_attrs() should be used to unmap the buffer with the
248 * original sg and original nents (not the value returned by this funciton).
249 */
dma_map_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)250 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
251 int nents, enum dma_data_direction dir, unsigned long attrs)
252 {
253 int ret;
254
255 ret = __dma_map_sg_attrs(dev, sg, nents, dir, attrs);
256 if (ret < 0)
257 return 0;
258 return ret;
259 }
260 EXPORT_SYMBOL(dma_map_sg_attrs);
261
262 /**
263 * dma_map_sgtable - Map the given buffer for DMA
264 * @dev: The device for which to perform the DMA operation
265 * @sgt: The sg_table object describing the buffer
266 * @dir: DMA direction
267 * @attrs: Optional DMA attributes for the map operation
268 *
269 * Maps a buffer described by a scatterlist stored in the given sg_table
270 * object for the @dir DMA operation by the @dev device. After success, the
271 * ownership for the buffer is transferred to the DMA domain. One has to
272 * call dma_sync_sgtable_for_cpu() or dma_unmap_sgtable() to move the
273 * ownership of the buffer back to the CPU domain before touching the
274 * buffer by the CPU.
275 *
276 * Returns 0 on success or a negative error code on error. The following
277 * error codes are supported with the given meaning:
278 *
279 * -EINVAL An invalid argument, unaligned access or other error
280 * in usage. Will not succeed if retried.
281 * -ENOMEM Insufficient resources (like memory or IOVA space) to
282 * complete the mapping. Should succeed if retried later.
283 * -EIO Legacy error code with an unknown meaning. eg. this is
284 * returned if a lower level call returned
285 * DMA_MAPPING_ERROR.
286 * -EREMOTEIO The DMA device cannot access P2PDMA memory specified
287 * in the sg_table. This will not succeed if retried.
288 */
dma_map_sgtable(struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)289 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
290 enum dma_data_direction dir, unsigned long attrs)
291 {
292 int nents;
293
294 nents = __dma_map_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
295 if (nents < 0)
296 return nents;
297 sgt->nents = nents;
298 return 0;
299 }
300 EXPORT_SYMBOL_GPL(dma_map_sgtable);
301
dma_unmap_sg_attrs(struct device * dev,struct scatterlist * sg,int nents,enum dma_data_direction dir,unsigned long attrs)302 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
303 int nents, enum dma_data_direction dir,
304 unsigned long attrs)
305 {
306 const struct dma_map_ops *ops = get_dma_ops(dev);
307
308 BUG_ON(!valid_dma_direction(dir));
309 trace_dma_unmap_sg(dev, sg, nents, dir, attrs);
310 debug_dma_unmap_sg(dev, sg, nents, dir);
311 if (dma_map_direct(dev, ops) ||
312 arch_dma_unmap_sg_direct(dev, sg, nents))
313 dma_direct_unmap_sg(dev, sg, nents, dir, attrs);
314 else if (use_dma_iommu(dev))
315 iommu_dma_unmap_sg(dev, sg, nents, dir, attrs);
316 else if (ops->unmap_sg)
317 ops->unmap_sg(dev, sg, nents, dir, attrs);
318 }
319 EXPORT_SYMBOL(dma_unmap_sg_attrs);
320
dma_map_resource(struct device * dev,phys_addr_t phys_addr,size_t size,enum dma_data_direction dir,unsigned long attrs)321 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
322 size_t size, enum dma_data_direction dir, unsigned long attrs)
323 {
324 const struct dma_map_ops *ops = get_dma_ops(dev);
325 dma_addr_t addr = DMA_MAPPING_ERROR;
326
327 BUG_ON(!valid_dma_direction(dir));
328
329 if (WARN_ON_ONCE(!dev->dma_mask))
330 return DMA_MAPPING_ERROR;
331
332 if (dma_map_direct(dev, ops))
333 addr = dma_direct_map_resource(dev, phys_addr, size, dir, attrs);
334 else if (use_dma_iommu(dev))
335 addr = iommu_dma_map_resource(dev, phys_addr, size, dir, attrs);
336 else if (ops->map_resource)
337 addr = ops->map_resource(dev, phys_addr, size, dir, attrs);
338
339 trace_dma_map_resource(dev, phys_addr, addr, size, dir, attrs);
340 debug_dma_map_resource(dev, phys_addr, size, dir, addr, attrs);
341 return addr;
342 }
343 EXPORT_SYMBOL(dma_map_resource);
344
dma_unmap_resource(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir,unsigned long attrs)345 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
346 enum dma_data_direction dir, unsigned long attrs)
347 {
348 const struct dma_map_ops *ops = get_dma_ops(dev);
349
350 BUG_ON(!valid_dma_direction(dir));
351 if (dma_map_direct(dev, ops))
352 ; /* nothing to do: uncached and no swiotlb */
353 else if (use_dma_iommu(dev))
354 iommu_dma_unmap_resource(dev, addr, size, dir, attrs);
355 else if (ops->unmap_resource)
356 ops->unmap_resource(dev, addr, size, dir, attrs);
357 trace_dma_unmap_resource(dev, addr, size, dir, attrs);
358 debug_dma_unmap_resource(dev, addr, size, dir);
359 }
360 EXPORT_SYMBOL(dma_unmap_resource);
361
362 #ifdef CONFIG_DMA_NEED_SYNC
__dma_sync_single_for_cpu(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)363 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
364 enum dma_data_direction dir)
365 {
366 const struct dma_map_ops *ops = get_dma_ops(dev);
367
368 BUG_ON(!valid_dma_direction(dir));
369 if (dma_map_direct(dev, ops))
370 dma_direct_sync_single_for_cpu(dev, addr, size, dir);
371 else if (use_dma_iommu(dev))
372 iommu_dma_sync_single_for_cpu(dev, addr, size, dir);
373 else if (ops->sync_single_for_cpu)
374 ops->sync_single_for_cpu(dev, addr, size, dir);
375 trace_dma_sync_single_for_cpu(dev, addr, size, dir);
376 debug_dma_sync_single_for_cpu(dev, addr, size, dir);
377 }
378 EXPORT_SYMBOL(__dma_sync_single_for_cpu);
379
__dma_sync_single_for_device(struct device * dev,dma_addr_t addr,size_t size,enum dma_data_direction dir)380 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
381 size_t size, enum dma_data_direction dir)
382 {
383 const struct dma_map_ops *ops = get_dma_ops(dev);
384
385 BUG_ON(!valid_dma_direction(dir));
386 if (dma_map_direct(dev, ops))
387 dma_direct_sync_single_for_device(dev, addr, size, dir);
388 else if (use_dma_iommu(dev))
389 iommu_dma_sync_single_for_device(dev, addr, size, dir);
390 else if (ops->sync_single_for_device)
391 ops->sync_single_for_device(dev, addr, size, dir);
392 trace_dma_sync_single_for_device(dev, addr, size, dir);
393 debug_dma_sync_single_for_device(dev, addr, size, dir);
394 }
395 EXPORT_SYMBOL(__dma_sync_single_for_device);
396
__dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)397 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
398 int nelems, enum dma_data_direction dir)
399 {
400 const struct dma_map_ops *ops = get_dma_ops(dev);
401
402 BUG_ON(!valid_dma_direction(dir));
403 if (dma_map_direct(dev, ops))
404 dma_direct_sync_sg_for_cpu(dev, sg, nelems, dir);
405 else if (use_dma_iommu(dev))
406 iommu_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
407 else if (ops->sync_sg_for_cpu)
408 ops->sync_sg_for_cpu(dev, sg, nelems, dir);
409 trace_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
410 debug_dma_sync_sg_for_cpu(dev, sg, nelems, dir);
411 }
412 EXPORT_SYMBOL(__dma_sync_sg_for_cpu);
413
__dma_sync_sg_for_device(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction dir)414 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
415 int nelems, enum dma_data_direction dir)
416 {
417 const struct dma_map_ops *ops = get_dma_ops(dev);
418
419 BUG_ON(!valid_dma_direction(dir));
420 if (dma_map_direct(dev, ops))
421 dma_direct_sync_sg_for_device(dev, sg, nelems, dir);
422 else if (use_dma_iommu(dev))
423 iommu_dma_sync_sg_for_device(dev, sg, nelems, dir);
424 else if (ops->sync_sg_for_device)
425 ops->sync_sg_for_device(dev, sg, nelems, dir);
426 trace_dma_sync_sg_for_device(dev, sg, nelems, dir);
427 debug_dma_sync_sg_for_device(dev, sg, nelems, dir);
428 }
429 EXPORT_SYMBOL(__dma_sync_sg_for_device);
430
__dma_need_sync(struct device * dev,dma_addr_t dma_addr)431 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr)
432 {
433 const struct dma_map_ops *ops = get_dma_ops(dev);
434
435 if (dma_map_direct(dev, ops))
436 /*
437 * dma_skip_sync could've been reset on first SWIOTLB buffer
438 * mapping, but @dma_addr is not necessary an SWIOTLB buffer.
439 * In this case, fall back to more granular check.
440 */
441 return dma_direct_need_sync(dev, dma_addr);
442 return true;
443 }
444 EXPORT_SYMBOL_GPL(__dma_need_sync);
445
dma_setup_need_sync(struct device * dev)446 static void dma_setup_need_sync(struct device *dev)
447 {
448 const struct dma_map_ops *ops = get_dma_ops(dev);
449
450 if (dma_map_direct(dev, ops) || use_dma_iommu(dev))
451 /*
452 * dma_skip_sync will be reset to %false on first SWIOTLB buffer
453 * mapping, if any. During the device initialization, it's
454 * enough to check only for the DMA coherence.
455 */
456 dev->dma_skip_sync = dev_is_dma_coherent(dev);
457 else if (!ops->sync_single_for_device && !ops->sync_single_for_cpu &&
458 !ops->sync_sg_for_device && !ops->sync_sg_for_cpu)
459 /*
460 * Synchronization is not possible when none of DMA sync ops
461 * is set.
462 */
463 dev->dma_skip_sync = true;
464 else
465 dev->dma_skip_sync = false;
466 }
467 #else /* !CONFIG_DMA_NEED_SYNC */
dma_setup_need_sync(struct device * dev)468 static inline void dma_setup_need_sync(struct device *dev) { }
469 #endif /* !CONFIG_DMA_NEED_SYNC */
470
471 /*
472 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
473 * that the intention is to allow exporting memory allocated via the
474 * coherent DMA APIs through the dma_buf API, which only accepts a
475 * scattertable. This presents a couple of problems:
476 * 1. Not all memory allocated via the coherent DMA APIs is backed by
477 * a struct page
478 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
479 * as we will try to flush the memory through a different alias to that
480 * actually being used (and the flushes are redundant.)
481 */
dma_get_sgtable_attrs(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)482 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
483 void *cpu_addr, dma_addr_t dma_addr, size_t size,
484 unsigned long attrs)
485 {
486 const struct dma_map_ops *ops = get_dma_ops(dev);
487
488 if (dma_alloc_direct(dev, ops))
489 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
490 size, attrs);
491 if (use_dma_iommu(dev))
492 return iommu_dma_get_sgtable(dev, sgt, cpu_addr, dma_addr,
493 size, attrs);
494 if (!ops->get_sgtable)
495 return -ENXIO;
496 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
497 }
498 EXPORT_SYMBOL(dma_get_sgtable_attrs);
499
500 #ifdef CONFIG_MMU
501 /*
502 * Return the page attributes used for mapping dma_alloc_* memory, either in
503 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
504 */
dma_pgprot(struct device * dev,pgprot_t prot,unsigned long attrs)505 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
506 {
507 if (dev_is_dma_coherent(dev))
508 return prot;
509 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
510 if (attrs & DMA_ATTR_WRITE_COMBINE)
511 return pgprot_writecombine(prot);
512 #endif
513 return pgprot_dmacoherent(prot);
514 }
515 #endif /* CONFIG_MMU */
516
517 /**
518 * dma_can_mmap - check if a given device supports dma_mmap_*
519 * @dev: device to check
520 *
521 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
522 * map DMA allocations to userspace.
523 */
dma_can_mmap(struct device * dev)524 bool dma_can_mmap(struct device *dev)
525 {
526 const struct dma_map_ops *ops = get_dma_ops(dev);
527
528 if (dma_alloc_direct(dev, ops))
529 return dma_direct_can_mmap(dev);
530 if (use_dma_iommu(dev))
531 return true;
532 return ops->mmap != NULL;
533 }
534 EXPORT_SYMBOL_GPL(dma_can_mmap);
535
536 /**
537 * dma_mmap_attrs - map a coherent DMA allocation into user space
538 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
539 * @vma: vm_area_struct describing requested user mapping
540 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
541 * @dma_addr: device-view address returned from dma_alloc_attrs
542 * @size: size of memory originally requested in dma_alloc_attrs
543 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
544 *
545 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
546 * space. The coherent DMA buffer must not be freed by the driver until the
547 * user space mapping has been released.
548 */
dma_mmap_attrs(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)549 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
550 void *cpu_addr, dma_addr_t dma_addr, size_t size,
551 unsigned long attrs)
552 {
553 const struct dma_map_ops *ops = get_dma_ops(dev);
554
555 if (dma_alloc_direct(dev, ops))
556 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
557 attrs);
558 if (use_dma_iommu(dev))
559 return iommu_dma_mmap(dev, vma, cpu_addr, dma_addr, size,
560 attrs);
561 if (!ops->mmap)
562 return -ENXIO;
563 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
564 }
565 EXPORT_SYMBOL(dma_mmap_attrs);
566
dma_get_required_mask(struct device * dev)567 u64 dma_get_required_mask(struct device *dev)
568 {
569 const struct dma_map_ops *ops = get_dma_ops(dev);
570
571 if (dma_alloc_direct(dev, ops))
572 return dma_direct_get_required_mask(dev);
573
574 if (use_dma_iommu(dev))
575 return DMA_BIT_MASK(32);
576
577 if (ops->get_required_mask)
578 return ops->get_required_mask(dev);
579
580 /*
581 * We require every DMA ops implementation to at least support a 32-bit
582 * DMA mask (and use bounce buffering if that isn't supported in
583 * hardware). As the direct mapping code has its own routine to
584 * actually report an optimal mask we default to 32-bit here as that
585 * is the right thing for most IOMMUs, and at least not actively
586 * harmful in general.
587 */
588 return DMA_BIT_MASK(32);
589 }
590 EXPORT_SYMBOL_GPL(dma_get_required_mask);
591
dma_alloc_attrs(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t flag,unsigned long attrs)592 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
593 gfp_t flag, unsigned long attrs)
594 {
595 const struct dma_map_ops *ops = get_dma_ops(dev);
596 void *cpu_addr;
597
598 WARN_ON_ONCE(!dev->coherent_dma_mask);
599
600 /*
601 * DMA allocations can never be turned back into a page pointer, so
602 * requesting compound pages doesn't make sense (and can't even be
603 * supported at all by various backends).
604 */
605 if (WARN_ON_ONCE(flag & __GFP_COMP))
606 return NULL;
607
608 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr)) {
609 trace_dma_alloc(dev, cpu_addr, *dma_handle, size,
610 DMA_BIDIRECTIONAL, flag, attrs);
611 return cpu_addr;
612 }
613
614 /* let the implementation decide on the zone to allocate from: */
615 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
616
617 if (dma_alloc_direct(dev, ops)) {
618 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
619 } else if (use_dma_iommu(dev)) {
620 cpu_addr = iommu_dma_alloc(dev, size, dma_handle, flag, attrs);
621 } else if (ops->alloc) {
622 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
623 } else {
624 trace_dma_alloc(dev, NULL, 0, size, DMA_BIDIRECTIONAL, flag,
625 attrs);
626 return NULL;
627 }
628
629 trace_dma_alloc(dev, cpu_addr, *dma_handle, size, DMA_BIDIRECTIONAL,
630 flag, attrs);
631 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr, attrs);
632 return cpu_addr;
633 }
634 EXPORT_SYMBOL(dma_alloc_attrs);
635
dma_free_attrs(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_handle,unsigned long attrs)636 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
637 dma_addr_t dma_handle, unsigned long attrs)
638 {
639 const struct dma_map_ops *ops = get_dma_ops(dev);
640
641 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
642 return;
643 /*
644 * On non-coherent platforms which implement DMA-coherent buffers via
645 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
646 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
647 * sleep on some machines, and b) an indication that the driver is
648 * probably misusing the coherent API anyway.
649 */
650 WARN_ON(irqs_disabled());
651
652 trace_dma_free(dev, cpu_addr, dma_handle, size, DMA_BIDIRECTIONAL,
653 attrs);
654 if (!cpu_addr)
655 return;
656
657 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
658 if (dma_alloc_direct(dev, ops))
659 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
660 else if (use_dma_iommu(dev))
661 iommu_dma_free(dev, size, cpu_addr, dma_handle, attrs);
662 else if (ops->free)
663 ops->free(dev, size, cpu_addr, dma_handle, attrs);
664 }
665 EXPORT_SYMBOL(dma_free_attrs);
666
__dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)667 static struct page *__dma_alloc_pages(struct device *dev, size_t size,
668 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
669 {
670 const struct dma_map_ops *ops = get_dma_ops(dev);
671
672 if (WARN_ON_ONCE(!dev->coherent_dma_mask))
673 return NULL;
674 if (WARN_ON_ONCE(gfp & (__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM)))
675 return NULL;
676 if (WARN_ON_ONCE(gfp & __GFP_COMP))
677 return NULL;
678
679 size = PAGE_ALIGN(size);
680 if (dma_alloc_direct(dev, ops))
681 return dma_direct_alloc_pages(dev, size, dma_handle, dir, gfp);
682 if (use_dma_iommu(dev))
683 return dma_common_alloc_pages(dev, size, dma_handle, dir, gfp);
684 if (!ops->alloc_pages_op)
685 return NULL;
686 return ops->alloc_pages_op(dev, size, dma_handle, dir, gfp);
687 }
688
dma_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)689 struct page *dma_alloc_pages(struct device *dev, size_t size,
690 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
691 {
692 struct page *page = __dma_alloc_pages(dev, size, dma_handle, dir, gfp);
693
694 if (page) {
695 trace_dma_alloc_pages(dev, page_to_virt(page), *dma_handle,
696 size, dir, gfp, 0);
697 debug_dma_map_page(dev, page, 0, size, dir, *dma_handle, 0);
698 } else {
699 trace_dma_alloc_pages(dev, NULL, 0, size, dir, gfp, 0);
700 }
701 return page;
702 }
703 EXPORT_SYMBOL_GPL(dma_alloc_pages);
704
__dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)705 static void __dma_free_pages(struct device *dev, size_t size, struct page *page,
706 dma_addr_t dma_handle, enum dma_data_direction dir)
707 {
708 const struct dma_map_ops *ops = get_dma_ops(dev);
709
710 size = PAGE_ALIGN(size);
711 if (dma_alloc_direct(dev, ops))
712 dma_direct_free_pages(dev, size, page, dma_handle, dir);
713 else if (use_dma_iommu(dev))
714 dma_common_free_pages(dev, size, page, dma_handle, dir);
715 else if (ops->free_pages)
716 ops->free_pages(dev, size, page, dma_handle, dir);
717 }
718
dma_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_handle,enum dma_data_direction dir)719 void dma_free_pages(struct device *dev, size_t size, struct page *page,
720 dma_addr_t dma_handle, enum dma_data_direction dir)
721 {
722 trace_dma_free_pages(dev, page_to_virt(page), dma_handle, size, dir, 0);
723 debug_dma_unmap_page(dev, dma_handle, size, dir);
724 __dma_free_pages(dev, size, page, dma_handle, dir);
725 }
726 EXPORT_SYMBOL_GPL(dma_free_pages);
727
dma_mmap_pages(struct device * dev,struct vm_area_struct * vma,size_t size,struct page * page)728 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
729 size_t size, struct page *page)
730 {
731 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
732
733 if (vma->vm_pgoff >= count || vma_pages(vma) > count - vma->vm_pgoff)
734 return -ENXIO;
735 return remap_pfn_range(vma, vma->vm_start,
736 page_to_pfn(page) + vma->vm_pgoff,
737 vma_pages(vma) << PAGE_SHIFT, vma->vm_page_prot);
738 }
739 EXPORT_SYMBOL_GPL(dma_mmap_pages);
740
alloc_single_sgt(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp)741 static struct sg_table *alloc_single_sgt(struct device *dev, size_t size,
742 enum dma_data_direction dir, gfp_t gfp)
743 {
744 struct sg_table *sgt;
745 struct page *page;
746
747 sgt = kmalloc(sizeof(*sgt), gfp);
748 if (!sgt)
749 return NULL;
750 if (sg_alloc_table(sgt, 1, gfp))
751 goto out_free_sgt;
752 page = __dma_alloc_pages(dev, size, &sgt->sgl->dma_address, dir, gfp);
753 if (!page)
754 goto out_free_table;
755 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
756 sg_dma_len(sgt->sgl) = sgt->sgl->length;
757 return sgt;
758 out_free_table:
759 sg_free_table(sgt);
760 out_free_sgt:
761 kfree(sgt);
762 return NULL;
763 }
764
dma_alloc_noncontiguous(struct device * dev,size_t size,enum dma_data_direction dir,gfp_t gfp,unsigned long attrs)765 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
766 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs)
767 {
768 struct sg_table *sgt;
769
770 if (WARN_ON_ONCE(attrs & ~DMA_ATTR_ALLOC_SINGLE_PAGES))
771 return NULL;
772 if (WARN_ON_ONCE(gfp & __GFP_COMP))
773 return NULL;
774
775 if (use_dma_iommu(dev))
776 sgt = iommu_dma_alloc_noncontiguous(dev, size, dir, gfp, attrs);
777 else
778 sgt = alloc_single_sgt(dev, size, dir, gfp);
779
780 if (sgt) {
781 sgt->nents = 1;
782 trace_dma_alloc_sgt(dev, sgt, size, dir, gfp, attrs);
783 debug_dma_map_sg(dev, sgt->sgl, sgt->orig_nents, 1, dir, attrs);
784 } else {
785 trace_dma_alloc_sgt_err(dev, NULL, 0, size, dir, gfp, attrs);
786 }
787 return sgt;
788 }
789 EXPORT_SYMBOL_GPL(dma_alloc_noncontiguous);
790
free_single_sgt(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)791 static void free_single_sgt(struct device *dev, size_t size,
792 struct sg_table *sgt, enum dma_data_direction dir)
793 {
794 __dma_free_pages(dev, size, sg_page(sgt->sgl), sgt->sgl->dma_address,
795 dir);
796 sg_free_table(sgt);
797 kfree(sgt);
798 }
799
dma_free_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt,enum dma_data_direction dir)800 void dma_free_noncontiguous(struct device *dev, size_t size,
801 struct sg_table *sgt, enum dma_data_direction dir)
802 {
803 trace_dma_free_sgt(dev, sgt, size, dir);
804 debug_dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
805
806 if (use_dma_iommu(dev))
807 iommu_dma_free_noncontiguous(dev, size, sgt, dir);
808 else
809 free_single_sgt(dev, size, sgt, dir);
810 }
811 EXPORT_SYMBOL_GPL(dma_free_noncontiguous);
812
dma_vmap_noncontiguous(struct device * dev,size_t size,struct sg_table * sgt)813 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
814 struct sg_table *sgt)
815 {
816
817 if (use_dma_iommu(dev))
818 return iommu_dma_vmap_noncontiguous(dev, size, sgt);
819
820 return page_address(sg_page(sgt->sgl));
821 }
822 EXPORT_SYMBOL_GPL(dma_vmap_noncontiguous);
823
dma_vunmap_noncontiguous(struct device * dev,void * vaddr)824 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
825 {
826 if (use_dma_iommu(dev))
827 iommu_dma_vunmap_noncontiguous(dev, vaddr);
828 }
829 EXPORT_SYMBOL_GPL(dma_vunmap_noncontiguous);
830
dma_mmap_noncontiguous(struct device * dev,struct vm_area_struct * vma,size_t size,struct sg_table * sgt)831 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
832 size_t size, struct sg_table *sgt)
833 {
834 if (use_dma_iommu(dev))
835 return iommu_dma_mmap_noncontiguous(dev, vma, size, sgt);
836 return dma_mmap_pages(dev, vma, size, sg_page(sgt->sgl));
837 }
838 EXPORT_SYMBOL_GPL(dma_mmap_noncontiguous);
839
dma_supported(struct device * dev,u64 mask)840 static int dma_supported(struct device *dev, u64 mask)
841 {
842 const struct dma_map_ops *ops = get_dma_ops(dev);
843
844 if (use_dma_iommu(dev)) {
845 if (WARN_ON(ops))
846 return false;
847 return true;
848 }
849
850 /*
851 * ->dma_supported sets and clears the bypass flag, so ignore it here
852 * and always call into the method if there is one.
853 */
854 if (ops) {
855 if (!ops->dma_supported)
856 return true;
857 return ops->dma_supported(dev, mask);
858 }
859
860 return dma_direct_supported(dev, mask);
861 }
862
dma_pci_p2pdma_supported(struct device * dev)863 bool dma_pci_p2pdma_supported(struct device *dev)
864 {
865 const struct dma_map_ops *ops = get_dma_ops(dev);
866
867 /*
868 * Note: dma_ops_bypass is not checked here because P2PDMA should
869 * not be used with dma mapping ops that do not have support even
870 * if the specific device is bypassing them.
871 */
872
873 /* if ops is not set, dma direct and default IOMMU support P2PDMA */
874 return !ops;
875 }
876 EXPORT_SYMBOL_GPL(dma_pci_p2pdma_supported);
877
dma_set_mask(struct device * dev,u64 mask)878 int dma_set_mask(struct device *dev, u64 mask)
879 {
880 /*
881 * Truncate the mask to the actually supported dma_addr_t width to
882 * avoid generating unsupportable addresses.
883 */
884 mask = (dma_addr_t)mask;
885
886 if (!dev->dma_mask || !dma_supported(dev, mask))
887 return -EIO;
888
889 arch_dma_set_mask(dev, mask);
890 *dev->dma_mask = mask;
891 dma_setup_need_sync(dev);
892
893 return 0;
894 }
895 EXPORT_SYMBOL(dma_set_mask);
896
dma_set_coherent_mask(struct device * dev,u64 mask)897 int dma_set_coherent_mask(struct device *dev, u64 mask)
898 {
899 /*
900 * Truncate the mask to the actually supported dma_addr_t width to
901 * avoid generating unsupportable addresses.
902 */
903 mask = (dma_addr_t)mask;
904
905 if (!dma_supported(dev, mask))
906 return -EIO;
907
908 dev->coherent_dma_mask = mask;
909 return 0;
910 }
911 EXPORT_SYMBOL(dma_set_coherent_mask);
912
913 /**
914 * dma_addressing_limited - return if the device is addressing limited
915 * @dev: device to check
916 *
917 * Return %true if the devices DMA mask is too small to address all memory in
918 * the system, else %false. Lack of addressing bits is the prime reason for
919 * bounce buffering, but might not be the only one.
920 */
dma_addressing_limited(struct device * dev)921 bool dma_addressing_limited(struct device *dev)
922 {
923 const struct dma_map_ops *ops = get_dma_ops(dev);
924
925 if (min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) <
926 dma_get_required_mask(dev))
927 return true;
928
929 if (unlikely(ops) || use_dma_iommu(dev))
930 return false;
931 return !dma_direct_all_ram_mapped(dev);
932 }
933 EXPORT_SYMBOL_GPL(dma_addressing_limited);
934
dma_max_mapping_size(struct device * dev)935 size_t dma_max_mapping_size(struct device *dev)
936 {
937 const struct dma_map_ops *ops = get_dma_ops(dev);
938 size_t size = SIZE_MAX;
939
940 if (dma_map_direct(dev, ops))
941 size = dma_direct_max_mapping_size(dev);
942 else if (use_dma_iommu(dev))
943 size = iommu_dma_max_mapping_size(dev);
944 else if (ops && ops->max_mapping_size)
945 size = ops->max_mapping_size(dev);
946
947 return size;
948 }
949 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
950
dma_opt_mapping_size(struct device * dev)951 size_t dma_opt_mapping_size(struct device *dev)
952 {
953 const struct dma_map_ops *ops = get_dma_ops(dev);
954 size_t size = SIZE_MAX;
955
956 if (use_dma_iommu(dev))
957 size = iommu_dma_opt_mapping_size();
958 else if (ops && ops->opt_mapping_size)
959 size = ops->opt_mapping_size();
960
961 return min(dma_max_mapping_size(dev), size);
962 }
963 EXPORT_SYMBOL_GPL(dma_opt_mapping_size);
964
dma_get_merge_boundary(struct device * dev)965 unsigned long dma_get_merge_boundary(struct device *dev)
966 {
967 const struct dma_map_ops *ops = get_dma_ops(dev);
968
969 if (use_dma_iommu(dev))
970 return iommu_dma_get_merge_boundary(dev);
971
972 if (!ops || !ops->get_merge_boundary)
973 return 0; /* can't merge */
974
975 return ops->get_merge_boundary(dev);
976 }
977 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);
978