xref: /linux/include/linux/dma-mapping.h (revision 726e2d0cf2bbc14e3bf38491cddda1a56fe18663)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_DMA_MAPPING_H
3 #define _LINUX_DMA_MAPPING_H
4 
5 #include <linux/cache.h>
6 #include <linux/sizes.h>
7 #include <linux/string.h>
8 #include <linux/device.h>
9 #include <linux/err.h>
10 #include <linux/dma-direction.h>
11 #include <linux/scatterlist.h>
12 #include <linux/bug.h>
13 #include <linux/mem_encrypt.h>
14 
15 /**
16  * List of possible attributes associated with a DMA mapping. The semantics
17  * of each attribute should be defined in Documentation/core-api/dma-attributes.rst.
18  */
19 
20 /*
21  * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping
22  * may be weakly ordered, that is that reads and writes may pass each other.
23  */
24 #define DMA_ATTR_WEAK_ORDERING		(1UL << 1)
25 /*
26  * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be
27  * buffered to improve performance.
28  */
29 #define DMA_ATTR_WRITE_COMBINE		(1UL << 2)
30 /*
31  * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel
32  * virtual mapping for the allocated buffer.
33  */
34 #define DMA_ATTR_NO_KERNEL_MAPPING	(1UL << 4)
35 /*
36  * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of
37  * the CPU cache for the given buffer assuming that it has been already
38  * transferred to 'device' domain.
39  */
40 #define DMA_ATTR_SKIP_CPU_SYNC		(1UL << 5)
41 /*
42  * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer
43  * in physical memory.
44  */
45 #define DMA_ATTR_FORCE_CONTIGUOUS	(1UL << 6)
46 /*
47  * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem
48  * that it's probably not worth the time to try to allocate memory to in a way
49  * that gives better TLB efficiency.
50  */
51 #define DMA_ATTR_ALLOC_SINGLE_PAGES	(1UL << 7)
52 /*
53  * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress
54  * allocation failure reports (similarly to __GFP_NOWARN).
55  */
56 #define DMA_ATTR_NO_WARN	(1UL << 8)
57 
58 /*
59  * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully
60  * accessible at an elevated privilege level (and ideally inaccessible or
61  * at least read-only at lesser-privileged levels).
62  */
63 #define DMA_ATTR_PRIVILEGED		(1UL << 9)
64 
65 /*
66  * A dma_addr_t can hold any valid DMA or bus address for the platform.  It can
67  * be given to a device to use as a DMA source or target.  It is specific to a
68  * given device and there may be a translation between the CPU physical address
69  * space and the bus address space.
70  *
71  * DMA_MAPPING_ERROR is the magic error code if a mapping failed.  It should not
72  * be used directly in drivers, but checked for using dma_mapping_error()
73  * instead.
74  */
75 #define DMA_MAPPING_ERROR		(~(dma_addr_t)0)
76 
77 #define DMA_BIT_MASK(n)	(((n) == 64) ? ~0ULL : ((1ULL<<(n))-1))
78 
79 #ifdef CONFIG_DMA_API_DEBUG
80 void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr);
81 void debug_dma_map_single(struct device *dev, const void *addr,
82 		unsigned long len);
83 #else
84 static inline void debug_dma_mapping_error(struct device *dev,
85 		dma_addr_t dma_addr)
86 {
87 }
88 static inline void debug_dma_map_single(struct device *dev, const void *addr,
89 		unsigned long len)
90 {
91 }
92 #endif /* CONFIG_DMA_API_DEBUG */
93 
94 #ifdef CONFIG_HAS_DMA
95 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
96 {
97 	debug_dma_mapping_error(dev, dma_addr);
98 
99 	if (unlikely(dma_addr == DMA_MAPPING_ERROR))
100 		return -ENOMEM;
101 	return 0;
102 }
103 
104 dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page,
105 		size_t offset, size_t size, enum dma_data_direction dir,
106 		unsigned long attrs);
107 void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size,
108 		enum dma_data_direction dir, unsigned long attrs);
109 unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg,
110 		int nents, enum dma_data_direction dir, unsigned long attrs);
111 void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg,
112 				      int nents, enum dma_data_direction dir,
113 				      unsigned long attrs);
114 int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
115 		enum dma_data_direction dir, unsigned long attrs);
116 dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr,
117 		size_t size, enum dma_data_direction dir, unsigned long attrs);
118 void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size,
119 		enum dma_data_direction dir, unsigned long attrs);
120 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
121 		gfp_t flag, unsigned long attrs);
122 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
123 		dma_addr_t dma_handle, unsigned long attrs);
124 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
125 		gfp_t gfp, unsigned long attrs);
126 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
127 		dma_addr_t dma_handle);
128 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
129 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
130 		unsigned long attrs);
131 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
132 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
133 		unsigned long attrs);
134 bool dma_can_mmap(struct device *dev);
135 bool dma_pci_p2pdma_supported(struct device *dev);
136 int dma_set_mask(struct device *dev, u64 mask);
137 int dma_set_coherent_mask(struct device *dev, u64 mask);
138 u64 dma_get_required_mask(struct device *dev);
139 bool dma_addressing_limited(struct device *dev);
140 size_t dma_max_mapping_size(struct device *dev);
141 size_t dma_opt_mapping_size(struct device *dev);
142 unsigned long dma_get_merge_boundary(struct device *dev);
143 struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size,
144 		enum dma_data_direction dir, gfp_t gfp, unsigned long attrs);
145 void dma_free_noncontiguous(struct device *dev, size_t size,
146 		struct sg_table *sgt, enum dma_data_direction dir);
147 void *dma_vmap_noncontiguous(struct device *dev, size_t size,
148 		struct sg_table *sgt);
149 void dma_vunmap_noncontiguous(struct device *dev, void *vaddr);
150 int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma,
151 		size_t size, struct sg_table *sgt);
152 #else /* CONFIG_HAS_DMA */
153 static inline dma_addr_t dma_map_page_attrs(struct device *dev,
154 		struct page *page, size_t offset, size_t size,
155 		enum dma_data_direction dir, unsigned long attrs)
156 {
157 	return DMA_MAPPING_ERROR;
158 }
159 static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr,
160 		size_t size, enum dma_data_direction dir, unsigned long attrs)
161 {
162 }
163 static inline unsigned int dma_map_sg_attrs(struct device *dev,
164 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
165 		unsigned long attrs)
166 {
167 	return 0;
168 }
169 static inline void dma_unmap_sg_attrs(struct device *dev,
170 		struct scatterlist *sg, int nents, enum dma_data_direction dir,
171 		unsigned long attrs)
172 {
173 }
174 static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt,
175 		enum dma_data_direction dir, unsigned long attrs)
176 {
177 	return -EOPNOTSUPP;
178 }
179 static inline dma_addr_t dma_map_resource(struct device *dev,
180 		phys_addr_t phys_addr, size_t size, enum dma_data_direction dir,
181 		unsigned long attrs)
182 {
183 	return DMA_MAPPING_ERROR;
184 }
185 static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr,
186 		size_t size, enum dma_data_direction dir, unsigned long attrs)
187 {
188 }
189 static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
190 {
191 	return -ENOMEM;
192 }
193 static inline void *dma_alloc_attrs(struct device *dev, size_t size,
194 		dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs)
195 {
196 	return NULL;
197 }
198 static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
199 		dma_addr_t dma_handle, unsigned long attrs)
200 {
201 }
202 static inline void *dmam_alloc_attrs(struct device *dev, size_t size,
203 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
204 {
205 	return NULL;
206 }
207 static inline void dmam_free_coherent(struct device *dev, size_t size,
208 		void *vaddr, dma_addr_t dma_handle)
209 {
210 }
211 static inline int dma_get_sgtable_attrs(struct device *dev,
212 		struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr,
213 		size_t size, unsigned long attrs)
214 {
215 	return -ENXIO;
216 }
217 static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
218 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
219 		unsigned long attrs)
220 {
221 	return -ENXIO;
222 }
223 static inline bool dma_can_mmap(struct device *dev)
224 {
225 	return false;
226 }
227 static inline bool dma_pci_p2pdma_supported(struct device *dev)
228 {
229 	return false;
230 }
231 static inline int dma_set_mask(struct device *dev, u64 mask)
232 {
233 	return -EIO;
234 }
235 static inline int dma_set_coherent_mask(struct device *dev, u64 mask)
236 {
237 	return -EIO;
238 }
239 static inline u64 dma_get_required_mask(struct device *dev)
240 {
241 	return 0;
242 }
243 static inline bool dma_addressing_limited(struct device *dev)
244 {
245 	return false;
246 }
247 static inline size_t dma_max_mapping_size(struct device *dev)
248 {
249 	return 0;
250 }
251 static inline size_t dma_opt_mapping_size(struct device *dev)
252 {
253 	return 0;
254 }
255 static inline unsigned long dma_get_merge_boundary(struct device *dev)
256 {
257 	return 0;
258 }
259 static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev,
260 		size_t size, enum dma_data_direction dir, gfp_t gfp,
261 		unsigned long attrs)
262 {
263 	return NULL;
264 }
265 static inline void dma_free_noncontiguous(struct device *dev, size_t size,
266 		struct sg_table *sgt, enum dma_data_direction dir)
267 {
268 }
269 static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size,
270 		struct sg_table *sgt)
271 {
272 	return NULL;
273 }
274 static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr)
275 {
276 }
277 static inline int dma_mmap_noncontiguous(struct device *dev,
278 		struct vm_area_struct *vma, size_t size, struct sg_table *sgt)
279 {
280 	return -EINVAL;
281 }
282 #endif /* CONFIG_HAS_DMA */
283 
284 #if defined(CONFIG_HAS_DMA) && defined(CONFIG_DMA_NEED_SYNC)
285 void __dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
286 		enum dma_data_direction dir);
287 void __dma_sync_single_for_device(struct device *dev, dma_addr_t addr,
288 		size_t size, enum dma_data_direction dir);
289 void __dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
290 		int nelems, enum dma_data_direction dir);
291 void __dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
292 		int nelems, enum dma_data_direction dir);
293 bool __dma_need_sync(struct device *dev, dma_addr_t dma_addr);
294 
295 static inline bool dma_dev_need_sync(const struct device *dev)
296 {
297 	/* Always call DMA sync operations when debugging is enabled */
298 	return !dev->dma_skip_sync || IS_ENABLED(CONFIG_DMA_API_DEBUG);
299 }
300 
301 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
302 		size_t size, enum dma_data_direction dir)
303 {
304 	if (dma_dev_need_sync(dev))
305 		__dma_sync_single_for_cpu(dev, addr, size, dir);
306 }
307 
308 static inline void dma_sync_single_for_device(struct device *dev,
309 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
310 {
311 	if (dma_dev_need_sync(dev))
312 		__dma_sync_single_for_device(dev, addr, size, dir);
313 }
314 
315 static inline void dma_sync_sg_for_cpu(struct device *dev,
316 		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
317 {
318 	if (dma_dev_need_sync(dev))
319 		__dma_sync_sg_for_cpu(dev, sg, nelems, dir);
320 }
321 
322 static inline void dma_sync_sg_for_device(struct device *dev,
323 		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
324 {
325 	if (dma_dev_need_sync(dev))
326 		__dma_sync_sg_for_device(dev, sg, nelems, dir);
327 }
328 
329 static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
330 {
331 	return dma_dev_need_sync(dev) ? __dma_need_sync(dev, dma_addr) : false;
332 }
333 #else /* !CONFIG_HAS_DMA || !CONFIG_DMA_NEED_SYNC */
334 static inline bool dma_dev_need_sync(const struct device *dev)
335 {
336 	return false;
337 }
338 static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
339 		size_t size, enum dma_data_direction dir)
340 {
341 }
342 static inline void dma_sync_single_for_device(struct device *dev,
343 		dma_addr_t addr, size_t size, enum dma_data_direction dir)
344 {
345 }
346 static inline void dma_sync_sg_for_cpu(struct device *dev,
347 		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
348 {
349 }
350 static inline void dma_sync_sg_for_device(struct device *dev,
351 		struct scatterlist *sg, int nelems, enum dma_data_direction dir)
352 {
353 }
354 static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr)
355 {
356 	return false;
357 }
358 #endif /* !CONFIG_HAS_DMA || !CONFIG_DMA_NEED_SYNC */
359 
360 struct page *dma_alloc_pages(struct device *dev, size_t size,
361 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp);
362 void dma_free_pages(struct device *dev, size_t size, struct page *page,
363 		dma_addr_t dma_handle, enum dma_data_direction dir);
364 int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma,
365 		size_t size, struct page *page);
366 
367 static inline void *dma_alloc_noncoherent(struct device *dev, size_t size,
368 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
369 {
370 	struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp);
371 	return page ? page_address(page) : NULL;
372 }
373 
374 static inline void dma_free_noncoherent(struct device *dev, size_t size,
375 		void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir)
376 {
377 	dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir);
378 }
379 
380 static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr,
381 		size_t size, enum dma_data_direction dir, unsigned long attrs)
382 {
383 	/* DMA must never operate on areas that might be remapped. */
384 	if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr),
385 			  "rejecting DMA map of vmalloc memory\n"))
386 		return DMA_MAPPING_ERROR;
387 	debug_dma_map_single(dev, ptr, size);
388 	return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr),
389 			size, dir, attrs);
390 }
391 
392 static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr,
393 		size_t size, enum dma_data_direction dir, unsigned long attrs)
394 {
395 	return dma_unmap_page_attrs(dev, addr, size, dir, attrs);
396 }
397 
398 static inline void dma_sync_single_range_for_cpu(struct device *dev,
399 		dma_addr_t addr, unsigned long offset, size_t size,
400 		enum dma_data_direction dir)
401 {
402 	return dma_sync_single_for_cpu(dev, addr + offset, size, dir);
403 }
404 
405 static inline void dma_sync_single_range_for_device(struct device *dev,
406 		dma_addr_t addr, unsigned long offset, size_t size,
407 		enum dma_data_direction dir)
408 {
409 	return dma_sync_single_for_device(dev, addr + offset, size, dir);
410 }
411 
412 /**
413  * dma_unmap_sgtable - Unmap the given buffer for DMA
414  * @dev:	The device for which to perform the DMA operation
415  * @sgt:	The sg_table object describing the buffer
416  * @dir:	DMA direction
417  * @attrs:	Optional DMA attributes for the unmap operation
418  *
419  * Unmaps a buffer described by a scatterlist stored in the given sg_table
420  * object for the @dir DMA operation by the @dev device. After this function
421  * the ownership of the buffer is transferred back to the CPU domain.
422  */
423 static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt,
424 		enum dma_data_direction dir, unsigned long attrs)
425 {
426 	dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs);
427 }
428 
429 /**
430  * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access
431  * @dev:	The device for which to perform the DMA operation
432  * @sgt:	The sg_table object describing the buffer
433  * @dir:	DMA direction
434  *
435  * Performs the needed cache synchronization and moves the ownership of the
436  * buffer back to the CPU domain, so it is safe to perform any access to it
437  * by the CPU. Before doing any further DMA operations, one has to transfer
438  * the ownership of the buffer back to the DMA domain by calling the
439  * dma_sync_sgtable_for_device().
440  */
441 static inline void dma_sync_sgtable_for_cpu(struct device *dev,
442 		struct sg_table *sgt, enum dma_data_direction dir)
443 {
444 	dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir);
445 }
446 
447 /**
448  * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA
449  * @dev:	The device for which to perform the DMA operation
450  * @sgt:	The sg_table object describing the buffer
451  * @dir:	DMA direction
452  *
453  * Performs the needed cache synchronization and moves the ownership of the
454  * buffer back to the DMA domain, so it is safe to perform the DMA operation.
455  * Once finished, one has to call dma_sync_sgtable_for_cpu() or
456  * dma_unmap_sgtable().
457  */
458 static inline void dma_sync_sgtable_for_device(struct device *dev,
459 		struct sg_table *sgt, enum dma_data_direction dir)
460 {
461 	dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir);
462 }
463 
464 #define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0)
465 #define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0)
466 #define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0)
467 #define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0)
468 #define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0)
469 #define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0)
470 #define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0)
471 #define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0)
472 
473 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size);
474 
475 static inline void *dma_alloc_coherent(struct device *dev, size_t size,
476 		dma_addr_t *dma_handle, gfp_t gfp)
477 {
478 	return dma_alloc_attrs(dev, size, dma_handle, gfp,
479 			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
480 }
481 
482 static inline void dma_free_coherent(struct device *dev, size_t size,
483 		void *cpu_addr, dma_addr_t dma_handle)
484 {
485 	return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0);
486 }
487 
488 
489 static inline u64 dma_get_mask(struct device *dev)
490 {
491 	if (dev->dma_mask && *dev->dma_mask)
492 		return *dev->dma_mask;
493 	return DMA_BIT_MASK(32);
494 }
495 
496 /*
497  * Set both the DMA mask and the coherent DMA mask to the same thing.
498  * Note that we don't check the return value from dma_set_coherent_mask()
499  * as the DMA API guarantees that the coherent DMA mask can be set to
500  * the same or smaller than the streaming DMA mask.
501  */
502 static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask)
503 {
504 	int rc = dma_set_mask(dev, mask);
505 	if (rc == 0)
506 		dma_set_coherent_mask(dev, mask);
507 	return rc;
508 }
509 
510 /*
511  * Similar to the above, except it deals with the case where the device
512  * does not have dev->dma_mask appropriately setup.
513  */
514 static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask)
515 {
516 	dev->dma_mask = &dev->coherent_dma_mask;
517 	return dma_set_mask_and_coherent(dev, mask);
518 }
519 
520 static inline unsigned int dma_get_max_seg_size(struct device *dev)
521 {
522 	if (dev->dma_parms && dev->dma_parms->max_segment_size)
523 		return dev->dma_parms->max_segment_size;
524 	return SZ_64K;
525 }
526 
527 static inline void dma_set_max_seg_size(struct device *dev, unsigned int size)
528 {
529 	if (WARN_ON_ONCE(!dev->dma_parms))
530 		return;
531 	dev->dma_parms->max_segment_size = size;
532 }
533 
534 static inline unsigned long dma_get_seg_boundary(struct device *dev)
535 {
536 	if (dev->dma_parms && dev->dma_parms->segment_boundary_mask)
537 		return dev->dma_parms->segment_boundary_mask;
538 	return ULONG_MAX;
539 }
540 
541 /**
542  * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units
543  * @dev: device to guery the boundary for
544  * @page_shift: ilog() of the IOMMU page size
545  *
546  * Return the segment boundary in IOMMU page units (which may be different from
547  * the CPU page size) for the passed in device.
548  *
549  * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for
550  * non-DMA API callers.
551  */
552 static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev,
553 		unsigned int page_shift)
554 {
555 	if (!dev)
556 		return (U32_MAX >> page_shift) + 1;
557 	return (dma_get_seg_boundary(dev) >> page_shift) + 1;
558 }
559 
560 static inline void dma_set_seg_boundary(struct device *dev, unsigned long mask)
561 {
562 	if (WARN_ON_ONCE(!dev->dma_parms))
563 		return;
564 	dev->dma_parms->segment_boundary_mask = mask;
565 }
566 
567 static inline unsigned int dma_get_min_align_mask(struct device *dev)
568 {
569 	if (dev->dma_parms)
570 		return dev->dma_parms->min_align_mask;
571 	return 0;
572 }
573 
574 static inline void dma_set_min_align_mask(struct device *dev,
575 		unsigned int min_align_mask)
576 {
577 	if (WARN_ON_ONCE(!dev->dma_parms))
578 		return;
579 	dev->dma_parms->min_align_mask = min_align_mask;
580 }
581 
582 #ifndef dma_get_cache_alignment
583 static inline int dma_get_cache_alignment(void)
584 {
585 #ifdef ARCH_HAS_DMA_MINALIGN
586 	return ARCH_DMA_MINALIGN;
587 #endif
588 	return 1;
589 }
590 #endif
591 
592 static inline void *dmam_alloc_coherent(struct device *dev, size_t size,
593 		dma_addr_t *dma_handle, gfp_t gfp)
594 {
595 	return dmam_alloc_attrs(dev, size, dma_handle, gfp,
596 			(gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0);
597 }
598 
599 static inline void *dma_alloc_wc(struct device *dev, size_t size,
600 				 dma_addr_t *dma_addr, gfp_t gfp)
601 {
602 	unsigned long attrs = DMA_ATTR_WRITE_COMBINE;
603 
604 	if (gfp & __GFP_NOWARN)
605 		attrs |= DMA_ATTR_NO_WARN;
606 
607 	return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs);
608 }
609 
610 static inline void dma_free_wc(struct device *dev, size_t size,
611 			       void *cpu_addr, dma_addr_t dma_addr)
612 {
613 	return dma_free_attrs(dev, size, cpu_addr, dma_addr,
614 			      DMA_ATTR_WRITE_COMBINE);
615 }
616 
617 static inline int dma_mmap_wc(struct device *dev,
618 			      struct vm_area_struct *vma,
619 			      void *cpu_addr, dma_addr_t dma_addr,
620 			      size_t size)
621 {
622 	return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size,
623 			      DMA_ATTR_WRITE_COMBINE);
624 }
625 
626 #ifdef CONFIG_NEED_DMA_MAP_STATE
627 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)        dma_addr_t ADDR_NAME
628 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)          __u32 LEN_NAME
629 #define dma_unmap_addr(PTR, ADDR_NAME)           ((PTR)->ADDR_NAME)
630 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  (((PTR)->ADDR_NAME) = (VAL))
631 #define dma_unmap_len(PTR, LEN_NAME)             ((PTR)->LEN_NAME)
632 #define dma_unmap_len_set(PTR, LEN_NAME, VAL)    (((PTR)->LEN_NAME) = (VAL))
633 #else
634 #define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME)
635 #define DEFINE_DMA_UNMAP_LEN(LEN_NAME)
636 #define dma_unmap_addr(PTR, ADDR_NAME)           (0)
637 #define dma_unmap_addr_set(PTR, ADDR_NAME, VAL)  do { } while (0)
638 #define dma_unmap_len(PTR, LEN_NAME)             (0)
639 #define dma_unmap_len_set(PTR, LEN_NAME, VAL)    do { } while (0)
640 #endif
641 
642 #endif /* _LINUX_DMA_MAPPING_H */
643