xref: /linux/kernel/dma/direct.c (revision 6ef04555b252e60913d3dc80b45f048bfef33d0f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2018-2020 Christoph Hellwig.
4  *
5  * DMA operations that map physical memory directly without using an IOMMU.
6  */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include <linux/pci-p2pdma.h>
17 #include "direct.h"
18 
19 /*
20  * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
21  * it for entirely different regions. In that case the arch code needs to
22  * override the variable below for dma-direct to work properly.
23  */
24 u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
25 
phys_to_dma_direct(struct device * dev,phys_addr_t phys)26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27 		phys_addr_t phys)
28 {
29 	if (force_dma_unencrypted(dev))
30 		return phys_to_dma_unencrypted(dev, phys);
31 	return phys_to_dma(dev, phys);
32 }
33 
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)34 static inline struct page *dma_direct_to_page(struct device *dev,
35 		dma_addr_t dma_addr)
36 {
37 	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38 }
39 
dma_direct_get_required_mask(struct device * dev)40 u64 dma_direct_get_required_mask(struct device *dev)
41 {
42 	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43 	u64 max_dma = phys_to_dma_direct(dev, phys);
44 
45 	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46 }
47 
dma_direct_optimal_gfp_mask(struct device * dev,u64 * phys_limit)48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
49 {
50 	u64 dma_limit = min_not_zero(
51 		dev->coherent_dma_mask,
52 		dev->bus_dma_limit);
53 
54 	/*
55 	 * Optimistically try the zone that the physical address mask falls
56 	 * into first.  If that returns memory that isn't actually addressable
57 	 * we will fallback to the next lower zone and try again.
58 	 *
59 	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
60 	 * zones.
61 	 */
62 	*phys_limit = dma_to_phys(dev, dma_limit);
63 	if (*phys_limit <= zone_dma_limit)
64 		return GFP_DMA;
65 	if (*phys_limit <= DMA_BIT_MASK(32))
66 		return GFP_DMA32;
67 	return 0;
68 }
69 
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)70 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
71 {
72 	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
73 
74 	if (dma_addr == DMA_MAPPING_ERROR)
75 		return false;
76 	return dma_addr + size - 1 <=
77 		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
78 }
79 
dma_set_decrypted(struct device * dev,void * vaddr,size_t size)80 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
81 {
82 	if (!force_dma_unencrypted(dev))
83 		return 0;
84 	return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
85 }
86 
dma_set_encrypted(struct device * dev,void * vaddr,size_t size)87 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
88 {
89 	int ret;
90 
91 	if (!force_dma_unencrypted(dev))
92 		return 0;
93 	ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
94 	if (ret)
95 		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
96 	return ret;
97 }
98 
__dma_direct_free_pages(struct device * dev,struct page * page,size_t size)99 static void __dma_direct_free_pages(struct device *dev, struct page *page,
100 				    size_t size)
101 {
102 	if (swiotlb_free(dev, page, size))
103 		return;
104 	dma_free_contiguous(dev, page, size);
105 }
106 
dma_direct_alloc_swiotlb(struct device * dev,size_t size)107 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
108 {
109 	struct page *page = swiotlb_alloc(dev, size);
110 
111 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
112 		swiotlb_free(dev, page, size);
113 		return NULL;
114 	}
115 
116 	return page;
117 }
118 
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp,bool allow_highmem)119 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
120 		gfp_t gfp, bool allow_highmem)
121 {
122 	int node = dev_to_node(dev);
123 	struct page *page = NULL;
124 	u64 phys_limit;
125 
126 	WARN_ON_ONCE(!PAGE_ALIGNED(size));
127 
128 	if (is_swiotlb_for_alloc(dev))
129 		return dma_direct_alloc_swiotlb(dev, size);
130 
131 	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
132 	page = dma_alloc_contiguous(dev, size, gfp);
133 	if (page) {
134 		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
135 		    (!allow_highmem && PageHighMem(page))) {
136 			dma_free_contiguous(dev, page, size);
137 			page = NULL;
138 		}
139 	}
140 again:
141 	if (!page)
142 		page = alloc_pages_node(node, gfp, get_order(size));
143 	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
144 		__free_pages(page, get_order(size));
145 		page = NULL;
146 
147 		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
148 		    phys_limit < DMA_BIT_MASK(64) &&
149 		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
150 			gfp |= GFP_DMA32;
151 			goto again;
152 		}
153 
154 		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
155 			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
156 			goto again;
157 		}
158 	}
159 
160 	return page;
161 }
162 
163 /*
164  * Check if a potentially blocking operations needs to dip into the atomic
165  * pools for the given device/gfp.
166  */
dma_direct_use_pool(struct device * dev,gfp_t gfp)167 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
168 {
169 	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
170 }
171 
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)172 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
173 		dma_addr_t *dma_handle, gfp_t gfp)
174 {
175 	struct page *page;
176 	u64 phys_limit;
177 	void *ret;
178 
179 	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
180 		return NULL;
181 
182 	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
183 	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
184 	if (!page)
185 		return NULL;
186 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
187 	return ret;
188 }
189 
dma_direct_alloc_no_mapping(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)190 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
191 		dma_addr_t *dma_handle, gfp_t gfp)
192 {
193 	struct page *page;
194 
195 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
196 	if (!page)
197 		return NULL;
198 
199 	/* remove any dirty cache lines on the kernel alias */
200 	if (!PageHighMem(page))
201 		arch_dma_prep_coherent(page, size);
202 
203 	/* return the page pointer as the opaque cookie */
204 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
205 	return page;
206 }
207 
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)208 void *dma_direct_alloc(struct device *dev, size_t size,
209 		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
210 {
211 	bool remap = false, set_uncached = false;
212 	struct page *page;
213 	void *ret;
214 
215 	size = PAGE_ALIGN(size);
216 	if (attrs & DMA_ATTR_NO_WARN)
217 		gfp |= __GFP_NOWARN;
218 
219 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
220 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
221 		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
222 
223 	if (!dev_is_dma_coherent(dev)) {
224 		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
225 		    !is_swiotlb_for_alloc(dev))
226 			return arch_dma_alloc(dev, size, dma_handle, gfp,
227 					      attrs);
228 
229 		/*
230 		 * If there is a global pool, always allocate from it for
231 		 * non-coherent devices.
232 		 */
233 		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
234 			return dma_alloc_from_global_coherent(dev, size,
235 					dma_handle);
236 
237 		/*
238 		 * Otherwise we require the architecture to either be able to
239 		 * mark arbitrary parts of the kernel direct mapping uncached,
240 		 * or remapped it uncached.
241 		 */
242 		set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
243 		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
244 		if (!set_uncached && !remap) {
245 			pr_warn_once("coherent DMA allocations not supported on this platform.\n");
246 			return NULL;
247 		}
248 	}
249 
250 	/*
251 	 * Remapping or decrypting memory may block, allocate the memory from
252 	 * the atomic pools instead if we aren't allowed block.
253 	 */
254 	if ((remap || force_dma_unencrypted(dev)) &&
255 	    dma_direct_use_pool(dev, gfp))
256 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
257 
258 	/* we always manually zero the memory once we are done */
259 	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
260 	if (!page)
261 		return NULL;
262 
263 	/*
264 	 * dma_alloc_contiguous can return highmem pages depending on a
265 	 * combination the cma= arguments and per-arch setup.  These need to be
266 	 * remapped to return a kernel virtual address.
267 	 */
268 	if (PageHighMem(page)) {
269 		remap = true;
270 		set_uncached = false;
271 	}
272 
273 	if (remap) {
274 		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
275 
276 		if (force_dma_unencrypted(dev))
277 			prot = pgprot_decrypted(prot);
278 
279 		/* remove any dirty cache lines on the kernel alias */
280 		arch_dma_prep_coherent(page, size);
281 
282 		/* create a coherent mapping */
283 		ret = dma_common_contiguous_remap(page, size, prot,
284 				__builtin_return_address(0));
285 		if (!ret)
286 			goto out_free_pages;
287 	} else {
288 		ret = page_address(page);
289 		if (dma_set_decrypted(dev, ret, size))
290 			goto out_leak_pages;
291 	}
292 
293 	memset(ret, 0, size);
294 
295 	if (set_uncached) {
296 		arch_dma_prep_coherent(page, size);
297 		ret = arch_dma_set_uncached(ret, size);
298 		if (IS_ERR(ret))
299 			goto out_encrypt_pages;
300 	}
301 
302 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
303 	return ret;
304 
305 out_encrypt_pages:
306 	if (dma_set_encrypted(dev, page_address(page), size))
307 		return NULL;
308 out_free_pages:
309 	__dma_direct_free_pages(dev, page, size);
310 	return NULL;
311 out_leak_pages:
312 	return NULL;
313 }
314 
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)315 void dma_direct_free(struct device *dev, size_t size,
316 		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
317 {
318 	unsigned int page_order = get_order(size);
319 
320 	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
321 	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
322 		/* cpu_addr is a struct page cookie, not a kernel address */
323 		dma_free_contiguous(dev, cpu_addr, size);
324 		return;
325 	}
326 
327 	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
328 	    !dev_is_dma_coherent(dev) &&
329 	    !is_swiotlb_for_alloc(dev)) {
330 		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
331 		return;
332 	}
333 
334 	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
335 	    !dev_is_dma_coherent(dev)) {
336 		if (!dma_release_from_global_coherent(page_order, cpu_addr))
337 			WARN_ON_ONCE(1);
338 		return;
339 	}
340 
341 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
342 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
343 	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
344 		return;
345 
346 	if (is_vmalloc_addr(cpu_addr)) {
347 		vunmap(cpu_addr);
348 	} else {
349 		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
350 			arch_dma_clear_uncached(cpu_addr, size);
351 		if (dma_set_encrypted(dev, cpu_addr, size))
352 			return;
353 	}
354 
355 	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
356 }
357 
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)358 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
359 		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
360 {
361 	struct page *page;
362 	void *ret;
363 
364 	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
365 		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
366 
367 	page = __dma_direct_alloc_pages(dev, size, gfp, false);
368 	if (!page)
369 		return NULL;
370 
371 	ret = page_address(page);
372 	if (dma_set_decrypted(dev, ret, size))
373 		goto out_leak_pages;
374 	memset(ret, 0, size);
375 	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
376 	return page;
377 out_leak_pages:
378 	return NULL;
379 }
380 
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)381 void dma_direct_free_pages(struct device *dev, size_t size,
382 		struct page *page, dma_addr_t dma_addr,
383 		enum dma_data_direction dir)
384 {
385 	void *vaddr = page_address(page);
386 
387 	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
388 	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
389 	    dma_free_from_pool(dev, vaddr, size))
390 		return;
391 
392 	if (dma_set_encrypted(dev, vaddr, size))
393 		return;
394 	__dma_direct_free_pages(dev, page, size);
395 }
396 
397 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
398     defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)399 void dma_direct_sync_sg_for_device(struct device *dev,
400 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
401 {
402 	struct scatterlist *sg;
403 	int i;
404 
405 	for_each_sg(sgl, sg, nents, i) {
406 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
407 
408 		swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
409 
410 		if (!dev_is_dma_coherent(dev))
411 			arch_sync_dma_for_device(paddr, sg->length,
412 					dir);
413 	}
414 }
415 #endif
416 
417 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
418     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
419     defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)420 void dma_direct_sync_sg_for_cpu(struct device *dev,
421 		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
422 {
423 	struct scatterlist *sg;
424 	int i;
425 
426 	for_each_sg(sgl, sg, nents, i) {
427 		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
428 
429 		if (!dev_is_dma_coherent(dev))
430 			arch_sync_dma_for_cpu(paddr, sg->length, dir);
431 
432 		swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
433 
434 		if (dir == DMA_FROM_DEVICE)
435 			arch_dma_mark_clean(paddr, sg->length);
436 	}
437 
438 	if (!dev_is_dma_coherent(dev))
439 		arch_sync_dma_for_cpu_all();
440 }
441 
442 /*
443  * Unmaps segments, except for ones marked as pci_p2pdma which do not
444  * require any further action as they contain a bus address.
445  */
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)446 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
447 		int nents, enum dma_data_direction dir, unsigned long attrs)
448 {
449 	struct scatterlist *sg;
450 	int i;
451 
452 	for_each_sg(sgl,  sg, nents, i) {
453 		if (sg_dma_is_bus_address(sg))
454 			sg_dma_unmark_bus_address(sg);
455 		else
456 			dma_direct_unmap_page(dev, sg->dma_address,
457 					      sg_dma_len(sg), dir, attrs);
458 	}
459 }
460 #endif
461 
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)462 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
463 		enum dma_data_direction dir, unsigned long attrs)
464 {
465 	struct pci_p2pdma_map_state p2pdma_state = {};
466 	struct scatterlist *sg;
467 	int i, ret;
468 
469 	for_each_sg(sgl, sg, nents, i) {
470 		switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(sg))) {
471 		case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
472 			/*
473 			 * Any P2P mapping that traverses the PCI host bridge
474 			 * must be mapped with CPU physical address and not PCI
475 			 * bus addresses.
476 			 */
477 			break;
478 		case PCI_P2PDMA_MAP_NONE:
479 			sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
480 					sg->offset, sg->length, dir, attrs);
481 			if (sg->dma_address == DMA_MAPPING_ERROR) {
482 				ret = -EIO;
483 				goto out_unmap;
484 			}
485 			break;
486 		case PCI_P2PDMA_MAP_BUS_ADDR:
487 			sg->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state,
488 					sg_phys(sg));
489 			sg_dma_mark_bus_address(sg);
490 			continue;
491 		default:
492 			ret = -EREMOTEIO;
493 			goto out_unmap;
494 		}
495 		sg_dma_len(sg) = sg->length;
496 	}
497 
498 	return nents;
499 
500 out_unmap:
501 	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502 	return ret;
503 }
504 
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)505 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506 		size_t size, enum dma_data_direction dir, unsigned long attrs)
507 {
508 	dma_addr_t dma_addr = paddr;
509 
510 	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511 		dev_err_once(dev,
512 			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513 			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514 		WARN_ON_ONCE(1);
515 		return DMA_MAPPING_ERROR;
516 	}
517 
518 	return dma_addr;
519 }
520 
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)521 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
523 		unsigned long attrs)
524 {
525 	struct page *page = dma_direct_to_page(dev, dma_addr);
526 	int ret;
527 
528 	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529 	if (!ret)
530 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531 	return ret;
532 }
533 
dma_direct_can_mmap(struct device * dev)534 bool dma_direct_can_mmap(struct device *dev)
535 {
536 	return dev_is_dma_coherent(dev) ||
537 		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538 }
539 
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)540 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541 		void *cpu_addr, dma_addr_t dma_addr, size_t size,
542 		unsigned long attrs)
543 {
544 	unsigned long user_count = vma_pages(vma);
545 	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546 	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547 	int ret = -ENXIO;
548 
549 	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550 	if (force_dma_unencrypted(dev))
551 		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
552 
553 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554 		return ret;
555 	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
556 		return ret;
557 
558 	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559 		return -ENXIO;
560 	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561 			user_count << PAGE_SHIFT, vma->vm_page_prot);
562 }
563 
dma_direct_supported(struct device * dev,u64 mask)564 int dma_direct_supported(struct device *dev, u64 mask)
565 {
566 	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567 
568 	/*
569 	 * Because 32-bit DMA masks are so common we expect every architecture
570 	 * to be able to satisfy them - either by not supporting more physical
571 	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
572 	 * architecture needs to use an IOMMU instead of the direct mapping.
573 	 */
574 	if (mask >= DMA_BIT_MASK(32))
575 		return 1;
576 
577 	/*
578 	 * This check needs to be against the actual bit mask value, so use
579 	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
580 	 * part of the check.
581 	 */
582 	if (IS_ENABLED(CONFIG_ZONE_DMA))
583 		min_mask = min_t(u64, min_mask, zone_dma_limit);
584 	return mask >= phys_to_dma_unencrypted(dev, min_mask);
585 }
586 
dma_find_range(struct device * dev,unsigned long start_pfn)587 static const struct bus_dma_region *dma_find_range(struct device *dev,
588 						   unsigned long start_pfn)
589 {
590 	const struct bus_dma_region *m;
591 
592 	for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
593 		unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
594 
595 		if (start_pfn >= cpu_start_pfn &&
596 		    start_pfn - cpu_start_pfn < PFN_DOWN(m->size))
597 			return m;
598 	}
599 
600 	return NULL;
601 }
602 
603 /*
604  * To check whether all ram resource ranges are covered by dma range map
605  * Returns 0 when further check is needed
606  * Returns 1 if there is some RAM range can't be covered by dma_range_map
607  */
check_ram_in_range_map(unsigned long start_pfn,unsigned long nr_pages,void * data)608 static int check_ram_in_range_map(unsigned long start_pfn,
609 				  unsigned long nr_pages, void *data)
610 {
611 	unsigned long end_pfn = start_pfn + nr_pages;
612 	struct device *dev = data;
613 
614 	while (start_pfn < end_pfn) {
615 		const struct bus_dma_region *bdr;
616 
617 		bdr = dma_find_range(dev, start_pfn);
618 		if (!bdr)
619 			return 1;
620 
621 		start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
622 	}
623 
624 	return 0;
625 }
626 
dma_direct_all_ram_mapped(struct device * dev)627 bool dma_direct_all_ram_mapped(struct device *dev)
628 {
629 	if (!dev->dma_range_map)
630 		return true;
631 	return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
632 				      check_ram_in_range_map);
633 }
634 
dma_direct_max_mapping_size(struct device * dev)635 size_t dma_direct_max_mapping_size(struct device *dev)
636 {
637 	/* If SWIOTLB is active, use its maximum mapping size */
638 	if (is_swiotlb_active(dev) &&
639 	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
640 		return swiotlb_max_mapping_size(dev);
641 	return SIZE_MAX;
642 }
643 
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)644 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
645 {
646 	return !dev_is_dma_coherent(dev) ||
647 	       swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
648 }
649 
650 /**
651  * dma_direct_set_offset - Assign scalar offset for a single DMA range.
652  * @dev:	device pointer; needed to "own" the alloced memory.
653  * @cpu_start:  beginning of memory region covered by this offset.
654  * @dma_start:  beginning of DMA/PCI region covered by this offset.
655  * @size:	size of the region.
656  *
657  * This is for the simple case of a uniform offset which cannot
658  * be discovered by "dma-ranges".
659  *
660  * It returns -ENOMEM if out of memory, -EINVAL if a map
661  * already exists, 0 otherwise.
662  *
663  * Note: any call to this from a driver is a bug.  The mapping needs
664  * to be described by the device tree or other firmware interfaces.
665  */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)666 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
667 			 dma_addr_t dma_start, u64 size)
668 {
669 	struct bus_dma_region *map;
670 	u64 offset = (u64)cpu_start - (u64)dma_start;
671 
672 	if (dev->dma_range_map) {
673 		dev_err(dev, "attempt to add DMA range to existing map\n");
674 		return -EINVAL;
675 	}
676 
677 	if (!offset)
678 		return 0;
679 
680 	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
681 	if (!map)
682 		return -ENOMEM;
683 	map[0].cpu_start = cpu_start;
684 	map[0].dma_start = dma_start;
685 	map[0].size = size;
686 	dev->dma_range_map = map;
687 	return 0;
688 }
689