1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2018-2020 Christoph Hellwig.
4 *
5 * DMA operations that map physical memory directly without using an IOMMU.
6 */
7 #include <linux/memblock.h> /* for max_pfn */
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/dma-map-ops.h>
11 #include <linux/scatterlist.h>
12 #include <linux/pfn.h>
13 #include <linux/vmalloc.h>
14 #include <linux/set_memory.h>
15 #include <linux/slab.h>
16 #include <linux/pci-p2pdma.h>
17 #include "direct.h"
18
19 /*
20 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
21 * it for entirely different regions. In that case the arch code needs to
22 * override the variable below for dma-direct to work properly.
23 */
24 u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
25
phys_to_dma_direct(struct device * dev,phys_addr_t phys)26 static inline dma_addr_t phys_to_dma_direct(struct device *dev,
27 phys_addr_t phys)
28 {
29 if (force_dma_unencrypted(dev))
30 return phys_to_dma_unencrypted(dev, phys);
31 return phys_to_dma(dev, phys);
32 }
33
dma_direct_to_page(struct device * dev,dma_addr_t dma_addr)34 static inline struct page *dma_direct_to_page(struct device *dev,
35 dma_addr_t dma_addr)
36 {
37 return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
38 }
39
dma_direct_get_required_mask(struct device * dev)40 u64 dma_direct_get_required_mask(struct device *dev)
41 {
42 phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
43 u64 max_dma = phys_to_dma_direct(dev, phys);
44
45 return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
46 }
47
dma_direct_optimal_gfp_mask(struct device * dev,u64 * phys_limit)48 static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
49 {
50 u64 dma_limit = min_not_zero(
51 dev->coherent_dma_mask,
52 dev->bus_dma_limit);
53
54 /*
55 * Optimistically try the zone that the physical address mask falls
56 * into first. If that returns memory that isn't actually addressable
57 * we will fallback to the next lower zone and try again.
58 *
59 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
60 * zones.
61 */
62 *phys_limit = dma_to_phys(dev, dma_limit);
63 if (*phys_limit <= zone_dma_limit)
64 return GFP_DMA;
65 if (*phys_limit <= DMA_BIT_MASK(32))
66 return GFP_DMA32;
67 return 0;
68 }
69
dma_coherent_ok(struct device * dev,phys_addr_t phys,size_t size)70 bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
71 {
72 dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
73
74 if (dma_addr == DMA_MAPPING_ERROR)
75 return false;
76 return dma_addr + size - 1 <=
77 min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
78 }
79
dma_set_decrypted(struct device * dev,void * vaddr,size_t size)80 static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
81 {
82 if (!force_dma_unencrypted(dev))
83 return 0;
84 return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
85 }
86
dma_set_encrypted(struct device * dev,void * vaddr,size_t size)87 static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
88 {
89 int ret;
90
91 if (!force_dma_unencrypted(dev))
92 return 0;
93 ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
94 if (ret)
95 pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
96 return ret;
97 }
98
__dma_direct_free_pages(struct device * dev,struct page * page,size_t size)99 static void __dma_direct_free_pages(struct device *dev, struct page *page,
100 size_t size)
101 {
102 if (swiotlb_free(dev, page, size))
103 return;
104 dma_free_contiguous(dev, page, size);
105 }
106
dma_direct_alloc_swiotlb(struct device * dev,size_t size)107 static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
108 {
109 struct page *page = swiotlb_alloc(dev, size);
110
111 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
112 swiotlb_free(dev, page, size);
113 return NULL;
114 }
115
116 return page;
117 }
118
__dma_direct_alloc_pages(struct device * dev,size_t size,gfp_t gfp,bool allow_highmem)119 static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
120 gfp_t gfp, bool allow_highmem)
121 {
122 int node = dev_to_node(dev);
123 struct page *page = NULL;
124 u64 phys_limit;
125
126 WARN_ON_ONCE(!PAGE_ALIGNED(size));
127
128 if (is_swiotlb_for_alloc(dev))
129 return dma_direct_alloc_swiotlb(dev, size);
130
131 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
132 page = dma_alloc_contiguous(dev, size, gfp);
133 if (page) {
134 if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
135 (!allow_highmem && PageHighMem(page))) {
136 dma_free_contiguous(dev, page, size);
137 page = NULL;
138 }
139 }
140 again:
141 if (!page)
142 page = alloc_pages_node(node, gfp, get_order(size));
143 if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
144 __free_pages(page, get_order(size));
145 page = NULL;
146
147 if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
148 phys_limit < DMA_BIT_MASK(64) &&
149 !(gfp & (GFP_DMA32 | GFP_DMA))) {
150 gfp |= GFP_DMA32;
151 goto again;
152 }
153
154 if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
155 gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
156 goto again;
157 }
158 }
159
160 return page;
161 }
162
163 /*
164 * Check if a potentially blocking operations needs to dip into the atomic
165 * pools for the given device/gfp.
166 */
dma_direct_use_pool(struct device * dev,gfp_t gfp)167 static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
168 {
169 return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
170 }
171
dma_direct_alloc_from_pool(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)172 static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
173 dma_addr_t *dma_handle, gfp_t gfp)
174 {
175 struct page *page;
176 u64 phys_limit;
177 void *ret;
178
179 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
180 return NULL;
181
182 gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
183 page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
184 if (!page)
185 return NULL;
186 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
187 return ret;
188 }
189
dma_direct_alloc_no_mapping(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)190 static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
191 dma_addr_t *dma_handle, gfp_t gfp)
192 {
193 struct page *page;
194
195 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
196 if (!page)
197 return NULL;
198
199 /* remove any dirty cache lines on the kernel alias */
200 if (!PageHighMem(page))
201 arch_dma_prep_coherent(page, size);
202
203 /* return the page pointer as the opaque cookie */
204 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
205 return page;
206 }
207
dma_direct_alloc(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp,unsigned long attrs)208 void *dma_direct_alloc(struct device *dev, size_t size,
209 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
210 {
211 bool remap = false, set_uncached = false;
212 struct page *page;
213 void *ret;
214
215 size = PAGE_ALIGN(size);
216 if (attrs & DMA_ATTR_NO_WARN)
217 gfp |= __GFP_NOWARN;
218
219 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
220 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
221 return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
222
223 if (!dev_is_dma_coherent(dev)) {
224 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
225 !is_swiotlb_for_alloc(dev))
226 return arch_dma_alloc(dev, size, dma_handle, gfp,
227 attrs);
228
229 /*
230 * If there is a global pool, always allocate from it for
231 * non-coherent devices.
232 */
233 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
234 return dma_alloc_from_global_coherent(dev, size,
235 dma_handle);
236
237 /*
238 * Otherwise we require the architecture to either be able to
239 * mark arbitrary parts of the kernel direct mapping uncached,
240 * or remapped it uncached.
241 */
242 set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
243 remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
244 if (!set_uncached && !remap) {
245 pr_warn_once("coherent DMA allocations not supported on this platform.\n");
246 return NULL;
247 }
248 }
249
250 /*
251 * Remapping or decrypting memory may block, allocate the memory from
252 * the atomic pools instead if we aren't allowed block.
253 */
254 if ((remap || force_dma_unencrypted(dev)) &&
255 dma_direct_use_pool(dev, gfp))
256 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
257
258 /* we always manually zero the memory once we are done */
259 page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
260 if (!page)
261 return NULL;
262
263 /*
264 * dma_alloc_contiguous can return highmem pages depending on a
265 * combination the cma= arguments and per-arch setup. These need to be
266 * remapped to return a kernel virtual address.
267 */
268 if (PageHighMem(page)) {
269 remap = true;
270 set_uncached = false;
271 }
272
273 if (remap) {
274 pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
275
276 if (force_dma_unencrypted(dev))
277 prot = pgprot_decrypted(prot);
278
279 /* remove any dirty cache lines on the kernel alias */
280 arch_dma_prep_coherent(page, size);
281
282 /* create a coherent mapping */
283 ret = dma_common_contiguous_remap(page, size, prot,
284 __builtin_return_address(0));
285 if (!ret)
286 goto out_free_pages;
287 } else {
288 ret = page_address(page);
289 if (dma_set_decrypted(dev, ret, size))
290 goto out_leak_pages;
291 }
292
293 memset(ret, 0, size);
294
295 if (set_uncached) {
296 arch_dma_prep_coherent(page, size);
297 ret = arch_dma_set_uncached(ret, size);
298 if (IS_ERR(ret))
299 goto out_encrypt_pages;
300 }
301
302 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
303 return ret;
304
305 out_encrypt_pages:
306 if (dma_set_encrypted(dev, page_address(page), size))
307 return NULL;
308 out_free_pages:
309 __dma_direct_free_pages(dev, page, size);
310 return NULL;
311 out_leak_pages:
312 return NULL;
313 }
314
dma_direct_free(struct device * dev,size_t size,void * cpu_addr,dma_addr_t dma_addr,unsigned long attrs)315 void dma_direct_free(struct device *dev, size_t size,
316 void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
317 {
318 unsigned int page_order = get_order(size);
319
320 if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
321 !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
322 /* cpu_addr is a struct page cookie, not a kernel address */
323 dma_free_contiguous(dev, cpu_addr, size);
324 return;
325 }
326
327 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
328 !dev_is_dma_coherent(dev) &&
329 !is_swiotlb_for_alloc(dev)) {
330 arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
331 return;
332 }
333
334 if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
335 !dev_is_dma_coherent(dev)) {
336 if (!dma_release_from_global_coherent(page_order, cpu_addr))
337 WARN_ON_ONCE(1);
338 return;
339 }
340
341 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
342 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
343 dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
344 return;
345
346 if (is_vmalloc_addr(cpu_addr)) {
347 vunmap(cpu_addr);
348 } else {
349 if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
350 arch_dma_clear_uncached(cpu_addr, size);
351 if (dma_set_encrypted(dev, cpu_addr, size))
352 return;
353 }
354
355 __dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
356 }
357
dma_direct_alloc_pages(struct device * dev,size_t size,dma_addr_t * dma_handle,enum dma_data_direction dir,gfp_t gfp)358 struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
359 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
360 {
361 struct page *page;
362 void *ret;
363
364 if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
365 return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
366
367 page = __dma_direct_alloc_pages(dev, size, gfp, false);
368 if (!page)
369 return NULL;
370
371 ret = page_address(page);
372 if (dma_set_decrypted(dev, ret, size))
373 goto out_leak_pages;
374 memset(ret, 0, size);
375 *dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
376 return page;
377 out_leak_pages:
378 return NULL;
379 }
380
dma_direct_free_pages(struct device * dev,size_t size,struct page * page,dma_addr_t dma_addr,enum dma_data_direction dir)381 void dma_direct_free_pages(struct device *dev, size_t size,
382 struct page *page, dma_addr_t dma_addr,
383 enum dma_data_direction dir)
384 {
385 void *vaddr = page_address(page);
386
387 /* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
388 if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
389 dma_free_from_pool(dev, vaddr, size))
390 return;
391
392 if (dma_set_encrypted(dev, vaddr, size))
393 return;
394 __dma_direct_free_pages(dev, page, size);
395 }
396
397 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
398 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_device(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)399 void dma_direct_sync_sg_for_device(struct device *dev,
400 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
401 {
402 struct scatterlist *sg;
403 int i;
404
405 for_each_sg(sgl, sg, nents, i) {
406 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
407
408 swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
409
410 if (!dev_is_dma_coherent(dev))
411 arch_sync_dma_for_device(paddr, sg->length,
412 dir);
413 }
414 }
415 #endif
416
417 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
418 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
419 defined(CONFIG_SWIOTLB)
dma_direct_sync_sg_for_cpu(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir)420 void dma_direct_sync_sg_for_cpu(struct device *dev,
421 struct scatterlist *sgl, int nents, enum dma_data_direction dir)
422 {
423 struct scatterlist *sg;
424 int i;
425
426 for_each_sg(sgl, sg, nents, i) {
427 phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
428
429 if (!dev_is_dma_coherent(dev))
430 arch_sync_dma_for_cpu(paddr, sg->length, dir);
431
432 swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
433
434 if (dir == DMA_FROM_DEVICE)
435 arch_dma_mark_clean(paddr, sg->length);
436 }
437
438 if (!dev_is_dma_coherent(dev))
439 arch_sync_dma_for_cpu_all();
440 }
441
442 /*
443 * Unmaps segments, except for ones marked as pci_p2pdma which do not
444 * require any further action as they contain a bus address.
445 */
dma_direct_unmap_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)446 void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
447 int nents, enum dma_data_direction dir, unsigned long attrs)
448 {
449 struct scatterlist *sg;
450 int i;
451
452 for_each_sg(sgl, sg, nents, i) {
453 if (sg_dma_is_bus_address(sg))
454 sg_dma_unmark_bus_address(sg);
455 else
456 dma_direct_unmap_page(dev, sg->dma_address,
457 sg_dma_len(sg), dir, attrs);
458 }
459 }
460 #endif
461
dma_direct_map_sg(struct device * dev,struct scatterlist * sgl,int nents,enum dma_data_direction dir,unsigned long attrs)462 int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
463 enum dma_data_direction dir, unsigned long attrs)
464 {
465 struct pci_p2pdma_map_state p2pdma_state = {};
466 struct scatterlist *sg;
467 int i, ret;
468
469 for_each_sg(sgl, sg, nents, i) {
470 switch (pci_p2pdma_state(&p2pdma_state, dev, sg_page(sg))) {
471 case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
472 /*
473 * Any P2P mapping that traverses the PCI host bridge
474 * must be mapped with CPU physical address and not PCI
475 * bus addresses.
476 */
477 break;
478 case PCI_P2PDMA_MAP_NONE:
479 sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
480 sg->offset, sg->length, dir, attrs);
481 if (sg->dma_address == DMA_MAPPING_ERROR) {
482 ret = -EIO;
483 goto out_unmap;
484 }
485 break;
486 case PCI_P2PDMA_MAP_BUS_ADDR:
487 sg->dma_address = pci_p2pdma_bus_addr_map(&p2pdma_state,
488 sg_phys(sg));
489 sg_dma_mark_bus_address(sg);
490 continue;
491 default:
492 ret = -EREMOTEIO;
493 goto out_unmap;
494 }
495 sg_dma_len(sg) = sg->length;
496 }
497
498 return nents;
499
500 out_unmap:
501 dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502 return ret;
503 }
504
dma_direct_map_resource(struct device * dev,phys_addr_t paddr,size_t size,enum dma_data_direction dir,unsigned long attrs)505 dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506 size_t size, enum dma_data_direction dir, unsigned long attrs)
507 {
508 dma_addr_t dma_addr = paddr;
509
510 if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511 dev_err_once(dev,
512 "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513 &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514 WARN_ON_ONCE(1);
515 return DMA_MAPPING_ERROR;
516 }
517
518 return dma_addr;
519 }
520
dma_direct_get_sgtable(struct device * dev,struct sg_table * sgt,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)521 int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522 void *cpu_addr, dma_addr_t dma_addr, size_t size,
523 unsigned long attrs)
524 {
525 struct page *page = dma_direct_to_page(dev, dma_addr);
526 int ret;
527
528 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529 if (!ret)
530 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531 return ret;
532 }
533
dma_direct_can_mmap(struct device * dev)534 bool dma_direct_can_mmap(struct device *dev)
535 {
536 return dev_is_dma_coherent(dev) ||
537 IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538 }
539
dma_direct_mmap(struct device * dev,struct vm_area_struct * vma,void * cpu_addr,dma_addr_t dma_addr,size_t size,unsigned long attrs)540 int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541 void *cpu_addr, dma_addr_t dma_addr, size_t size,
542 unsigned long attrs)
543 {
544 unsigned long user_count = vma_pages(vma);
545 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546 unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547 int ret = -ENXIO;
548
549 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550 if (force_dma_unencrypted(dev))
551 vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
552
553 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554 return ret;
555 if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
556 return ret;
557
558 if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559 return -ENXIO;
560 return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561 user_count << PAGE_SHIFT, vma->vm_page_prot);
562 }
563
dma_direct_supported(struct device * dev,u64 mask)564 int dma_direct_supported(struct device *dev, u64 mask)
565 {
566 u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567
568 /*
569 * Because 32-bit DMA masks are so common we expect every architecture
570 * to be able to satisfy them - either by not supporting more physical
571 * memory, or by providing a ZONE_DMA32. If neither is the case, the
572 * architecture needs to use an IOMMU instead of the direct mapping.
573 */
574 if (mask >= DMA_BIT_MASK(32))
575 return 1;
576
577 /*
578 * This check needs to be against the actual bit mask value, so use
579 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
580 * part of the check.
581 */
582 if (IS_ENABLED(CONFIG_ZONE_DMA))
583 min_mask = min_t(u64, min_mask, zone_dma_limit);
584 return mask >= phys_to_dma_unencrypted(dev, min_mask);
585 }
586
dma_find_range(struct device * dev,unsigned long start_pfn)587 static const struct bus_dma_region *dma_find_range(struct device *dev,
588 unsigned long start_pfn)
589 {
590 const struct bus_dma_region *m;
591
592 for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
593 unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
594
595 if (start_pfn >= cpu_start_pfn &&
596 start_pfn - cpu_start_pfn < PFN_DOWN(m->size))
597 return m;
598 }
599
600 return NULL;
601 }
602
603 /*
604 * To check whether all ram resource ranges are covered by dma range map
605 * Returns 0 when further check is needed
606 * Returns 1 if there is some RAM range can't be covered by dma_range_map
607 */
check_ram_in_range_map(unsigned long start_pfn,unsigned long nr_pages,void * data)608 static int check_ram_in_range_map(unsigned long start_pfn,
609 unsigned long nr_pages, void *data)
610 {
611 unsigned long end_pfn = start_pfn + nr_pages;
612 struct device *dev = data;
613
614 while (start_pfn < end_pfn) {
615 const struct bus_dma_region *bdr;
616
617 bdr = dma_find_range(dev, start_pfn);
618 if (!bdr)
619 return 1;
620
621 start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
622 }
623
624 return 0;
625 }
626
dma_direct_all_ram_mapped(struct device * dev)627 bool dma_direct_all_ram_mapped(struct device *dev)
628 {
629 if (!dev->dma_range_map)
630 return true;
631 return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
632 check_ram_in_range_map);
633 }
634
dma_direct_max_mapping_size(struct device * dev)635 size_t dma_direct_max_mapping_size(struct device *dev)
636 {
637 /* If SWIOTLB is active, use its maximum mapping size */
638 if (is_swiotlb_active(dev) &&
639 (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
640 return swiotlb_max_mapping_size(dev);
641 return SIZE_MAX;
642 }
643
dma_direct_need_sync(struct device * dev,dma_addr_t dma_addr)644 bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
645 {
646 return !dev_is_dma_coherent(dev) ||
647 swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
648 }
649
650 /**
651 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
652 * @dev: device pointer; needed to "own" the alloced memory.
653 * @cpu_start: beginning of memory region covered by this offset.
654 * @dma_start: beginning of DMA/PCI region covered by this offset.
655 * @size: size of the region.
656 *
657 * This is for the simple case of a uniform offset which cannot
658 * be discovered by "dma-ranges".
659 *
660 * It returns -ENOMEM if out of memory, -EINVAL if a map
661 * already exists, 0 otherwise.
662 *
663 * Note: any call to this from a driver is a bug. The mapping needs
664 * to be described by the device tree or other firmware interfaces.
665 */
dma_direct_set_offset(struct device * dev,phys_addr_t cpu_start,dma_addr_t dma_start,u64 size)666 int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
667 dma_addr_t dma_start, u64 size)
668 {
669 struct bus_dma_region *map;
670 u64 offset = (u64)cpu_start - (u64)dma_start;
671
672 if (dev->dma_range_map) {
673 dev_err(dev, "attempt to add DMA range to existing map\n");
674 return -EINVAL;
675 }
676
677 if (!offset)
678 return 0;
679
680 map = kcalloc(2, sizeof(*map), GFP_KERNEL);
681 if (!map)
682 return -ENOMEM;
683 map[0].cpu_start = cpu_start;
684 map[0].dma_start = dma_start;
685 map[0].size = size;
686 dev->dma_range_map = map;
687 return 0;
688 }
689