1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 */
5
6 /*
7 * This code implements the DMA subsystem. It provides a HW-neutral interface
8 * for other kernel code to use asynchronous memory copy capabilities,
9 * if present, and allows different HW DMA drivers to register as providing
10 * this capability.
11 *
12 * Due to the fact we are accelerating what is already a relatively fast
13 * operation, the code goes to great lengths to avoid additional overhead,
14 * such as locking.
15 *
16 * LOCKING:
17 *
18 * The subsystem keeps a global list of dma_device structs it is protected by a
19 * mutex, dma_list_mutex.
20 *
21 * A subsystem can get access to a channel by calling dmaengine_get() followed
22 * by dma_find_channel(), or if it has need for an exclusive channel it can call
23 * dma_request_channel(). Once a channel is allocated a reference is taken
24 * against its corresponding driver to disable removal.
25 *
26 * Each device has a channels list, which runs unlocked but is never modified
27 * once the device is registered, it's just setup by the driver.
28 *
29 * See Documentation/driver-api/dmaengine for more details
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/mm.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/of.h>
44 #include <linux/property.h>
45 #include <linux/percpu.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/jiffies.h>
49 #include <linux/rculist.h>
50 #include <linux/idr.h>
51 #include <linux/slab.h>
52 #include <linux/acpi.h>
53 #include <linux/acpi_dma.h>
54 #include <linux/of_dma.h>
55 #include <linux/mempool.h>
56 #include <linux/numa.h>
57
58 #include "dmaengine.h"
59
60 static DEFINE_MUTEX(dma_list_mutex);
61 static DEFINE_IDA(dma_ida);
62 static LIST_HEAD(dma_device_list);
63 static long dmaengine_ref_count;
64
65 /* --- debugfs implementation --- */
66 #ifdef CONFIG_DEBUG_FS
67 #include <linux/debugfs.h>
68
69 static struct dentry *rootdir;
70
dmaengine_debug_register(struct dma_device * dma_dev)71 static void dmaengine_debug_register(struct dma_device *dma_dev)
72 {
73 dma_dev->dbg_dev_root = debugfs_create_dir(dev_name(dma_dev->dev),
74 rootdir);
75 if (IS_ERR(dma_dev->dbg_dev_root))
76 dma_dev->dbg_dev_root = NULL;
77 }
78
dmaengine_debug_unregister(struct dma_device * dma_dev)79 static void dmaengine_debug_unregister(struct dma_device *dma_dev)
80 {
81 debugfs_remove_recursive(dma_dev->dbg_dev_root);
82 dma_dev->dbg_dev_root = NULL;
83 }
84
dmaengine_dbg_summary_show(struct seq_file * s,struct dma_device * dma_dev)85 static void dmaengine_dbg_summary_show(struct seq_file *s,
86 struct dma_device *dma_dev)
87 {
88 struct dma_chan *chan;
89
90 list_for_each_entry(chan, &dma_dev->channels, device_node) {
91 if (chan->client_count) {
92 seq_printf(s, " %-13s| %s", dma_chan_name(chan),
93 chan->dbg_client_name ?: "in-use");
94
95 if (chan->router)
96 seq_printf(s, " (via router: %s)\n",
97 dev_name(chan->router->dev));
98 else
99 seq_puts(s, "\n");
100 }
101 }
102 }
103
dmaengine_summary_show(struct seq_file * s,void * data)104 static int dmaengine_summary_show(struct seq_file *s, void *data)
105 {
106 struct dma_device *dma_dev = NULL;
107
108 mutex_lock(&dma_list_mutex);
109 list_for_each_entry(dma_dev, &dma_device_list, global_node) {
110 seq_printf(s, "dma%d (%s): number of channels: %u\n",
111 dma_dev->dev_id, dev_name(dma_dev->dev),
112 dma_dev->chancnt);
113
114 if (dma_dev->dbg_summary_show)
115 dma_dev->dbg_summary_show(s, dma_dev);
116 else
117 dmaengine_dbg_summary_show(s, dma_dev);
118
119 if (!list_is_last(&dma_dev->global_node, &dma_device_list))
120 seq_puts(s, "\n");
121 }
122 mutex_unlock(&dma_list_mutex);
123
124 return 0;
125 }
126 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary);
127
dmaengine_debugfs_init(void)128 static void __init dmaengine_debugfs_init(void)
129 {
130 rootdir = debugfs_create_dir("dmaengine", NULL);
131
132 /* /sys/kernel/debug/dmaengine/summary */
133 debugfs_create_file("summary", 0444, rootdir, NULL,
134 &dmaengine_summary_fops);
135 }
136 #else
dmaengine_debugfs_init(void)137 static inline void dmaengine_debugfs_init(void) { }
dmaengine_debug_register(struct dma_device * dma_dev)138 static inline int dmaengine_debug_register(struct dma_device *dma_dev)
139 {
140 return 0;
141 }
142
dmaengine_debug_unregister(struct dma_device * dma_dev)143 static inline void dmaengine_debug_unregister(struct dma_device *dma_dev) { }
144 #endif /* DEBUG_FS */
145
146 /* --- sysfs implementation --- */
147
148 #define DMA_SLAVE_NAME "slave"
149
150 /**
151 * dev_to_dma_chan - convert a device pointer to its sysfs container object
152 * @dev: device node
153 *
154 * Must be called under dma_list_mutex.
155 */
dev_to_dma_chan(struct device * dev)156 static struct dma_chan *dev_to_dma_chan(struct device *dev)
157 {
158 struct dma_chan_dev *chan_dev;
159
160 chan_dev = container_of(dev, typeof(*chan_dev), device);
161 return chan_dev->chan;
162 }
163
memcpy_count_show(struct device * dev,struct device_attribute * attr,char * buf)164 static ssize_t memcpy_count_show(struct device *dev,
165 struct device_attribute *attr, char *buf)
166 {
167 struct dma_chan *chan;
168 unsigned long count = 0;
169 int i;
170 int err;
171
172 mutex_lock(&dma_list_mutex);
173 chan = dev_to_dma_chan(dev);
174 if (chan) {
175 for_each_possible_cpu(i)
176 count += per_cpu_ptr(chan->local, i)->memcpy_count;
177 err = sysfs_emit(buf, "%lu\n", count);
178 } else
179 err = -ENODEV;
180 mutex_unlock(&dma_list_mutex);
181
182 return err;
183 }
184 static DEVICE_ATTR_RO(memcpy_count);
185
bytes_transferred_show(struct device * dev,struct device_attribute * attr,char * buf)186 static ssize_t bytes_transferred_show(struct device *dev,
187 struct device_attribute *attr, char *buf)
188 {
189 struct dma_chan *chan;
190 unsigned long count = 0;
191 int i;
192 int err;
193
194 mutex_lock(&dma_list_mutex);
195 chan = dev_to_dma_chan(dev);
196 if (chan) {
197 for_each_possible_cpu(i)
198 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
199 err = sysfs_emit(buf, "%lu\n", count);
200 } else
201 err = -ENODEV;
202 mutex_unlock(&dma_list_mutex);
203
204 return err;
205 }
206 static DEVICE_ATTR_RO(bytes_transferred);
207
in_use_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
209 char *buf)
210 {
211 struct dma_chan *chan;
212 int err;
213
214 mutex_lock(&dma_list_mutex);
215 chan = dev_to_dma_chan(dev);
216 if (chan)
217 err = sysfs_emit(buf, "%d\n", chan->client_count);
218 else
219 err = -ENODEV;
220 mutex_unlock(&dma_list_mutex);
221
222 return err;
223 }
224 static DEVICE_ATTR_RO(in_use);
225
226 static struct attribute *dma_dev_attrs[] = {
227 &dev_attr_memcpy_count.attr,
228 &dev_attr_bytes_transferred.attr,
229 &dev_attr_in_use.attr,
230 NULL,
231 };
232 ATTRIBUTE_GROUPS(dma_dev);
233
chan_dev_release(struct device * dev)234 static void chan_dev_release(struct device *dev)
235 {
236 struct dma_chan_dev *chan_dev;
237
238 chan_dev = container_of(dev, typeof(*chan_dev), device);
239 kfree(chan_dev);
240 }
241
242 static struct class dma_devclass = {
243 .name = "dma",
244 .dev_groups = dma_dev_groups,
245 .dev_release = chan_dev_release,
246 };
247
248 /* --- client and device registration --- */
249
250 /* enable iteration over all operation types */
251 static dma_cap_mask_t dma_cap_mask_all;
252
253 /**
254 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
255 * @chan: associated channel for this entry
256 */
257 struct dma_chan_tbl_ent {
258 struct dma_chan *chan;
259 };
260
261 /* percpu lookup table for memory-to-memory offload providers */
262 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
263
dma_channel_table_init(void)264 static int __init dma_channel_table_init(void)
265 {
266 enum dma_transaction_type cap;
267 int err = 0;
268
269 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
270
271 /* 'interrupt', 'private', and 'slave' are channel capabilities,
272 * but are not associated with an operation so they do not need
273 * an entry in the channel_table
274 */
275 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
276 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
277 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
278
279 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
280 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
281 if (!channel_table[cap]) {
282 err = -ENOMEM;
283 break;
284 }
285 }
286
287 if (err) {
288 pr_err("dmaengine dma_channel_table_init failure: %d\n", err);
289 for_each_dma_cap_mask(cap, dma_cap_mask_all)
290 free_percpu(channel_table[cap]);
291 }
292
293 return err;
294 }
295 arch_initcall(dma_channel_table_init);
296
297 /**
298 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
299 * @chan: DMA channel to test
300 * @cpu: CPU index which the channel should be close to
301 *
302 * Returns true if the channel is in the same NUMA-node as the CPU.
303 */
dma_chan_is_local(struct dma_chan * chan,int cpu)304 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
305 {
306 int node = dev_to_node(chan->device->dev);
307 return node == NUMA_NO_NODE ||
308 cpumask_test_cpu(cpu, cpumask_of_node(node));
309 }
310
311 /**
312 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
313 * @cap: capability to match
314 * @cpu: CPU index which the channel should be close to
315 *
316 * If some channels are close to the given CPU, the one with the lowest
317 * reference count is returned. Otherwise, CPU is ignored and only the
318 * reference count is taken into account.
319 *
320 * Must be called under dma_list_mutex.
321 */
min_chan(enum dma_transaction_type cap,int cpu)322 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
323 {
324 struct dma_device *device;
325 struct dma_chan *chan;
326 struct dma_chan *min = NULL;
327 struct dma_chan *localmin = NULL;
328
329 list_for_each_entry(device, &dma_device_list, global_node) {
330 if (!dma_has_cap(cap, device->cap_mask) ||
331 dma_has_cap(DMA_PRIVATE, device->cap_mask))
332 continue;
333 list_for_each_entry(chan, &device->channels, device_node) {
334 if (!chan->client_count)
335 continue;
336 if (!min || chan->table_count < min->table_count)
337 min = chan;
338
339 if (dma_chan_is_local(chan, cpu))
340 if (!localmin ||
341 chan->table_count < localmin->table_count)
342 localmin = chan;
343 }
344 }
345
346 chan = localmin ? localmin : min;
347
348 if (chan)
349 chan->table_count++;
350
351 return chan;
352 }
353
354 /**
355 * dma_channel_rebalance - redistribute the available channels
356 *
357 * Optimize for CPU isolation (each CPU gets a dedicated channel for an
358 * operation type) in the SMP case, and operation isolation (avoid
359 * multi-tasking channels) in the non-SMP case.
360 *
361 * Must be called under dma_list_mutex.
362 */
dma_channel_rebalance(void)363 static void dma_channel_rebalance(void)
364 {
365 struct dma_chan *chan;
366 struct dma_device *device;
367 int cpu;
368 int cap;
369
370 /* undo the last distribution */
371 for_each_dma_cap_mask(cap, dma_cap_mask_all)
372 for_each_possible_cpu(cpu)
373 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
374
375 list_for_each_entry(device, &dma_device_list, global_node) {
376 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
377 continue;
378 list_for_each_entry(chan, &device->channels, device_node)
379 chan->table_count = 0;
380 }
381
382 /* don't populate the channel_table if no clients are available */
383 if (!dmaengine_ref_count)
384 return;
385
386 /* redistribute available channels */
387 for_each_dma_cap_mask(cap, dma_cap_mask_all)
388 for_each_online_cpu(cpu) {
389 chan = min_chan(cap, cpu);
390 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
391 }
392 }
393
dma_device_satisfies_mask(struct dma_device * device,const dma_cap_mask_t * want)394 static int dma_device_satisfies_mask(struct dma_device *device,
395 const dma_cap_mask_t *want)
396 {
397 dma_cap_mask_t has;
398
399 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
400 DMA_TX_TYPE_END);
401 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
402 }
403
dma_chan_to_owner(struct dma_chan * chan)404 static struct module *dma_chan_to_owner(struct dma_chan *chan)
405 {
406 return chan->device->owner;
407 }
408
409 /**
410 * balance_ref_count - catch up the channel reference count
411 * @chan: channel to balance ->client_count versus dmaengine_ref_count
412 *
413 * Must be called under dma_list_mutex.
414 */
balance_ref_count(struct dma_chan * chan)415 static void balance_ref_count(struct dma_chan *chan)
416 {
417 struct module *owner = dma_chan_to_owner(chan);
418
419 while (chan->client_count < dmaengine_ref_count) {
420 __module_get(owner);
421 chan->client_count++;
422 }
423 }
424
dma_device_release(struct kref * ref)425 static void dma_device_release(struct kref *ref)
426 {
427 struct dma_device *device = container_of(ref, struct dma_device, ref);
428
429 list_del_rcu(&device->global_node);
430 dma_channel_rebalance();
431
432 if (device->device_release)
433 device->device_release(device);
434 }
435
dma_device_put(struct dma_device * device)436 static void dma_device_put(struct dma_device *device)
437 {
438 lockdep_assert_held(&dma_list_mutex);
439 kref_put(&device->ref, dma_device_release);
440 }
441
442 /**
443 * dma_chan_get - try to grab a DMA channel's parent driver module
444 * @chan: channel to grab
445 *
446 * Must be called under dma_list_mutex.
447 */
dma_chan_get(struct dma_chan * chan)448 static int dma_chan_get(struct dma_chan *chan)
449 {
450 struct module *owner = dma_chan_to_owner(chan);
451 int ret;
452
453 /* The channel is already in use, update client count */
454 if (chan->client_count) {
455 __module_get(owner);
456 chan->client_count++;
457 return 0;
458 }
459
460 if (!try_module_get(owner))
461 return -ENODEV;
462
463 ret = kref_get_unless_zero(&chan->device->ref);
464 if (!ret) {
465 ret = -ENODEV;
466 goto module_put_out;
467 }
468
469 /* allocate upon first client reference */
470 if (chan->device->device_alloc_chan_resources) {
471 ret = chan->device->device_alloc_chan_resources(chan);
472 if (ret < 0)
473 goto err_out;
474 }
475
476 chan->client_count++;
477
478 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
479 balance_ref_count(chan);
480
481 return 0;
482
483 err_out:
484 dma_device_put(chan->device);
485 module_put_out:
486 module_put(owner);
487 return ret;
488 }
489
490 /**
491 * dma_chan_put - drop a reference to a DMA channel's parent driver module
492 * @chan: channel to release
493 *
494 * Must be called under dma_list_mutex.
495 */
dma_chan_put(struct dma_chan * chan)496 static void dma_chan_put(struct dma_chan *chan)
497 {
498 /* This channel is not in use, bail out */
499 if (!chan->client_count)
500 return;
501
502 chan->client_count--;
503
504 /* This channel is not in use anymore, free it */
505 if (!chan->client_count && chan->device->device_free_chan_resources) {
506 /* Make sure all operations have completed */
507 dmaengine_synchronize(chan);
508 chan->device->device_free_chan_resources(chan);
509 }
510
511 /* If the channel is used via a DMA request router, free the mapping */
512 if (chan->router && chan->router->route_free) {
513 chan->router->route_free(chan->router->dev, chan->route_data);
514 chan->router = NULL;
515 chan->route_data = NULL;
516 }
517
518 dma_device_put(chan->device);
519 module_put(dma_chan_to_owner(chan));
520 }
521
dma_sync_wait(struct dma_chan * chan,dma_cookie_t cookie)522 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
523 {
524 enum dma_status status;
525 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
526
527 dma_async_issue_pending(chan);
528 do {
529 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
530 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
531 dev_err(chan->device->dev, "%s: timeout!\n", __func__);
532 return DMA_ERROR;
533 }
534 if (status != DMA_IN_PROGRESS)
535 break;
536 cpu_relax();
537 } while (1);
538
539 return status;
540 }
541 EXPORT_SYMBOL(dma_sync_wait);
542
543 /**
544 * dma_find_channel - find a channel to carry out the operation
545 * @tx_type: transaction type
546 */
dma_find_channel(enum dma_transaction_type tx_type)547 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
548 {
549 return this_cpu_read(channel_table[tx_type]->chan);
550 }
551 EXPORT_SYMBOL(dma_find_channel);
552
553 /**
554 * dma_issue_pending_all - flush all pending operations across all channels
555 */
dma_issue_pending_all(void)556 void dma_issue_pending_all(void)
557 {
558 struct dma_device *device;
559 struct dma_chan *chan;
560
561 rcu_read_lock();
562 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
563 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
564 continue;
565 list_for_each_entry(chan, &device->channels, device_node)
566 if (chan->client_count)
567 device->device_issue_pending(chan);
568 }
569 rcu_read_unlock();
570 }
571 EXPORT_SYMBOL(dma_issue_pending_all);
572
dma_get_slave_caps(struct dma_chan * chan,struct dma_slave_caps * caps)573 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
574 {
575 struct dma_device *device;
576
577 if (!chan || !caps)
578 return -EINVAL;
579
580 device = chan->device;
581
582 /* check if the channel supports slave transactions */
583 if (!(test_bit(DMA_SLAVE, device->cap_mask.bits) ||
584 test_bit(DMA_CYCLIC, device->cap_mask.bits)))
585 return -ENXIO;
586
587 /*
588 * Check whether it reports it uses the generic slave
589 * capabilities, if not, that means it doesn't support any
590 * kind of slave capabilities reporting.
591 */
592 if (!device->directions)
593 return -ENXIO;
594
595 caps->src_addr_widths = device->src_addr_widths;
596 caps->dst_addr_widths = device->dst_addr_widths;
597 caps->directions = device->directions;
598 caps->min_burst = device->min_burst;
599 caps->max_burst = device->max_burst;
600 caps->max_sg_burst = device->max_sg_burst;
601 caps->residue_granularity = device->residue_granularity;
602 caps->descriptor_reuse = device->descriptor_reuse;
603 caps->cmd_pause = !!device->device_pause;
604 caps->cmd_resume = !!device->device_resume;
605 caps->cmd_terminate = !!device->device_terminate_all;
606
607 /*
608 * DMA engine device might be configured with non-uniformly
609 * distributed slave capabilities per device channels. In this
610 * case the corresponding driver may provide the device_caps
611 * callback to override the generic capabilities with
612 * channel-specific ones.
613 */
614 if (device->device_caps)
615 device->device_caps(chan, caps);
616
617 return 0;
618 }
619 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
620
private_candidate(const dma_cap_mask_t * mask,struct dma_device * dev,dma_filter_fn fn,void * fn_param)621 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
622 struct dma_device *dev,
623 dma_filter_fn fn, void *fn_param)
624 {
625 struct dma_chan *chan;
626
627 if (mask && !dma_device_satisfies_mask(dev, mask)) {
628 dev_dbg(dev->dev, "%s: wrong capabilities\n", __func__);
629 return NULL;
630 }
631 /* devices with multiple channels need special handling as we need to
632 * ensure that all channels are either private or public.
633 */
634 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
635 list_for_each_entry(chan, &dev->channels, device_node) {
636 /* some channels are already publicly allocated */
637 if (chan->client_count)
638 return NULL;
639 }
640
641 list_for_each_entry(chan, &dev->channels, device_node) {
642 if (chan->client_count) {
643 dev_dbg(dev->dev, "%s: %s busy\n",
644 __func__, dma_chan_name(chan));
645 continue;
646 }
647 if (fn && !fn(chan, fn_param)) {
648 dev_dbg(dev->dev, "%s: %s filter said false\n",
649 __func__, dma_chan_name(chan));
650 continue;
651 }
652 return chan;
653 }
654
655 return NULL;
656 }
657
find_candidate(struct dma_device * device,const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param)658 static struct dma_chan *find_candidate(struct dma_device *device,
659 const dma_cap_mask_t *mask,
660 dma_filter_fn fn, void *fn_param)
661 {
662 struct dma_chan *chan = private_candidate(mask, device, fn, fn_param);
663 int err;
664
665 if (chan) {
666 /* Found a suitable channel, try to grab, prep, and return it.
667 * We first set DMA_PRIVATE to disable balance_ref_count as this
668 * channel will not be published in the general-purpose
669 * allocator
670 */
671 dma_cap_set(DMA_PRIVATE, device->cap_mask);
672 device->privatecnt++;
673 err = dma_chan_get(chan);
674
675 if (err) {
676 if (err == -ENODEV) {
677 dev_dbg(device->dev, "%s: %s module removed\n",
678 __func__, dma_chan_name(chan));
679 list_del_rcu(&device->global_node);
680 } else
681 dev_dbg(device->dev,
682 "%s: failed to get %s: (%d)\n",
683 __func__, dma_chan_name(chan), err);
684
685 if (--device->privatecnt == 0)
686 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
687
688 chan = ERR_PTR(err);
689 }
690 }
691
692 return chan ? chan : ERR_PTR(-EPROBE_DEFER);
693 }
694
695 /**
696 * dma_get_slave_channel - try to get specific channel exclusively
697 * @chan: target channel
698 */
dma_get_slave_channel(struct dma_chan * chan)699 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
700 {
701 /* lock against __dma_request_channel */
702 mutex_lock(&dma_list_mutex);
703
704 if (chan->client_count == 0) {
705 struct dma_device *device = chan->device;
706 int err;
707
708 dma_cap_set(DMA_PRIVATE, device->cap_mask);
709 device->privatecnt++;
710 err = dma_chan_get(chan);
711 if (err) {
712 dev_dbg(chan->device->dev,
713 "%s: failed to get %s: (%d)\n",
714 __func__, dma_chan_name(chan), err);
715 chan = NULL;
716 if (--device->privatecnt == 0)
717 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
718 }
719 } else
720 chan = NULL;
721
722 mutex_unlock(&dma_list_mutex);
723
724
725 return chan;
726 }
727 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
728
dma_get_any_slave_channel(struct dma_device * device)729 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
730 {
731 dma_cap_mask_t mask;
732 struct dma_chan *chan;
733
734 dma_cap_zero(mask);
735 dma_cap_set(DMA_SLAVE, mask);
736
737 /* lock against __dma_request_channel */
738 mutex_lock(&dma_list_mutex);
739
740 chan = find_candidate(device, &mask, NULL, NULL);
741
742 mutex_unlock(&dma_list_mutex);
743
744 return IS_ERR(chan) ? NULL : chan;
745 }
746 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
747
748 /**
749 * __dma_request_channel - try to allocate an exclusive channel
750 * @mask: capabilities that the channel must satisfy
751 * @fn: optional callback to disposition available channels
752 * @fn_param: opaque parameter to pass to dma_filter_fn()
753 * @np: device node to look for DMA channels
754 *
755 * Returns pointer to appropriate DMA channel on success or NULL.
756 */
__dma_request_channel(const dma_cap_mask_t * mask,dma_filter_fn fn,void * fn_param,struct device_node * np)757 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
758 dma_filter_fn fn, void *fn_param,
759 struct device_node *np)
760 {
761 struct dma_device *device, *_d;
762 struct dma_chan *chan = NULL;
763
764 /* Find a channel */
765 mutex_lock(&dma_list_mutex);
766 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
767 /* Finds a DMA controller with matching device node */
768 if (np && device->dev->of_node && np != device->dev->of_node)
769 continue;
770
771 chan = find_candidate(device, mask, fn, fn_param);
772 if (!IS_ERR(chan))
773 break;
774
775 chan = NULL;
776 }
777 mutex_unlock(&dma_list_mutex);
778
779 pr_debug("%s: %s (%s)\n",
780 __func__,
781 chan ? "success" : "fail",
782 chan ? dma_chan_name(chan) : NULL);
783
784 return chan;
785 }
786 EXPORT_SYMBOL_GPL(__dma_request_channel);
787
dma_filter_match(struct dma_device * device,const char * name,struct device * dev)788 static const struct dma_slave_map *dma_filter_match(struct dma_device *device,
789 const char *name,
790 struct device *dev)
791 {
792 int i;
793
794 if (!device->filter.mapcnt)
795 return NULL;
796
797 for (i = 0; i < device->filter.mapcnt; i++) {
798 const struct dma_slave_map *map = &device->filter.map[i];
799
800 if (!strcmp(map->devname, dev_name(dev)) &&
801 !strcmp(map->slave, name))
802 return map;
803 }
804
805 return NULL;
806 }
807
808 /**
809 * dma_request_chan - try to allocate an exclusive slave channel
810 * @dev: pointer to client device structure
811 * @name: slave channel name
812 *
813 * Returns pointer to appropriate DMA channel on success or an error pointer.
814 */
dma_request_chan(struct device * dev,const char * name)815 struct dma_chan *dma_request_chan(struct device *dev, const char *name)
816 {
817 struct fwnode_handle *fwnode = dev_fwnode(dev);
818 struct dma_device *d, *_d;
819 struct dma_chan *chan = NULL;
820
821 if (is_of_node(fwnode))
822 chan = of_dma_request_slave_channel(to_of_node(fwnode), name);
823 else if (is_acpi_device_node(fwnode))
824 chan = acpi_dma_request_slave_chan_by_name(dev, name);
825
826 if (PTR_ERR(chan) == -EPROBE_DEFER)
827 return chan;
828
829 if (!IS_ERR_OR_NULL(chan))
830 goto found;
831
832 /* Try to find the channel via the DMA filter map(s) */
833 mutex_lock(&dma_list_mutex);
834 list_for_each_entry_safe(d, _d, &dma_device_list, global_node) {
835 dma_cap_mask_t mask;
836 const struct dma_slave_map *map = dma_filter_match(d, name, dev);
837
838 if (!map)
839 continue;
840
841 dma_cap_zero(mask);
842 dma_cap_set(DMA_SLAVE, mask);
843
844 chan = find_candidate(d, &mask, d->filter.fn, map->param);
845 if (!IS_ERR(chan))
846 break;
847 }
848 mutex_unlock(&dma_list_mutex);
849
850 if (IS_ERR(chan))
851 return chan;
852 if (!chan)
853 return ERR_PTR(-EPROBE_DEFER);
854
855 found:
856 #ifdef CONFIG_DEBUG_FS
857 chan->dbg_client_name = kasprintf(GFP_KERNEL, "%s:%s", dev_name(dev), name);
858 /* No functional issue if it fails, users are supposed to test before use */
859 #endif
860
861 chan->name = kasprintf(GFP_KERNEL, "dma:%s", name);
862 if (!chan->name)
863 return chan;
864 chan->slave = dev;
865
866 if (sysfs_create_link(&chan->dev->device.kobj, &dev->kobj,
867 DMA_SLAVE_NAME))
868 dev_warn(dev, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME);
869 if (sysfs_create_link(&dev->kobj, &chan->dev->device.kobj, chan->name))
870 dev_warn(dev, "Cannot create DMA %s symlink\n", chan->name);
871
872 return chan;
873 }
874 EXPORT_SYMBOL_GPL(dma_request_chan);
875
876 /**
877 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
878 * @mask: capabilities that the channel must satisfy
879 *
880 * Returns pointer to appropriate DMA channel on success or an error pointer.
881 */
dma_request_chan_by_mask(const dma_cap_mask_t * mask)882 struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask)
883 {
884 struct dma_chan *chan;
885
886 if (!mask)
887 return ERR_PTR(-ENODEV);
888
889 chan = __dma_request_channel(mask, NULL, NULL, NULL);
890 if (!chan) {
891 mutex_lock(&dma_list_mutex);
892 if (list_empty(&dma_device_list))
893 chan = ERR_PTR(-EPROBE_DEFER);
894 else
895 chan = ERR_PTR(-ENODEV);
896 mutex_unlock(&dma_list_mutex);
897 }
898
899 return chan;
900 }
901 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask);
902
dma_release_channel(struct dma_chan * chan)903 void dma_release_channel(struct dma_chan *chan)
904 {
905 mutex_lock(&dma_list_mutex);
906 WARN_ONCE(chan->client_count != 1,
907 "chan reference count %d != 1\n", chan->client_count);
908 dma_chan_put(chan);
909 /* drop PRIVATE cap enabled by __dma_request_channel() */
910 if (--chan->device->privatecnt == 0)
911 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
912
913 if (chan->slave) {
914 sysfs_remove_link(&chan->dev->device.kobj, DMA_SLAVE_NAME);
915 sysfs_remove_link(&chan->slave->kobj, chan->name);
916 kfree(chan->name);
917 chan->name = NULL;
918 chan->slave = NULL;
919 }
920
921 #ifdef CONFIG_DEBUG_FS
922 kfree(chan->dbg_client_name);
923 chan->dbg_client_name = NULL;
924 #endif
925 mutex_unlock(&dma_list_mutex);
926 }
927 EXPORT_SYMBOL_GPL(dma_release_channel);
928
dmaenginem_release_channel(void * chan)929 static void dmaenginem_release_channel(void *chan)
930 {
931 dma_release_channel(chan);
932 }
933
934 /**
935 * devm_dma_request_chan - try to allocate an exclusive slave channel
936 * @dev: pointer to client device structure
937 * @name: slave channel name
938 *
939 * Returns pointer to appropriate DMA channel on success or an error pointer.
940 *
941 * The operation is managed and will be undone on driver detach.
942 */
943
devm_dma_request_chan(struct device * dev,const char * name)944 struct dma_chan *devm_dma_request_chan(struct device *dev, const char *name)
945 {
946 struct dma_chan *chan = dma_request_chan(dev, name);
947 int ret = 0;
948
949 if (!IS_ERR(chan))
950 ret = devm_add_action_or_reset(dev, dmaenginem_release_channel, chan);
951
952 if (ret)
953 return ERR_PTR(ret);
954
955 return chan;
956 }
957 EXPORT_SYMBOL_GPL(devm_dma_request_chan);
958
959 /**
960 * dmaengine_get - register interest in dma_channels
961 */
dmaengine_get(void)962 void dmaengine_get(void)
963 {
964 struct dma_device *device, *_d;
965 struct dma_chan *chan;
966 int err;
967
968 mutex_lock(&dma_list_mutex);
969 dmaengine_ref_count++;
970
971 /* try to grab channels */
972 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
973 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
974 continue;
975 list_for_each_entry(chan, &device->channels, device_node) {
976 err = dma_chan_get(chan);
977 if (err == -ENODEV) {
978 /* module removed before we could use it */
979 list_del_rcu(&device->global_node);
980 break;
981 } else if (err)
982 dev_dbg(chan->device->dev,
983 "%s: failed to get %s: (%d)\n",
984 __func__, dma_chan_name(chan), err);
985 }
986 }
987
988 /* if this is the first reference and there were channels
989 * waiting we need to rebalance to get those channels
990 * incorporated into the channel table
991 */
992 if (dmaengine_ref_count == 1)
993 dma_channel_rebalance();
994 mutex_unlock(&dma_list_mutex);
995 }
996 EXPORT_SYMBOL(dmaengine_get);
997
998 /**
999 * dmaengine_put - let DMA drivers be removed when ref_count == 0
1000 */
dmaengine_put(void)1001 void dmaengine_put(void)
1002 {
1003 struct dma_device *device, *_d;
1004 struct dma_chan *chan;
1005
1006 mutex_lock(&dma_list_mutex);
1007 dmaengine_ref_count--;
1008 BUG_ON(dmaengine_ref_count < 0);
1009 /* drop channel references */
1010 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
1011 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1012 continue;
1013 list_for_each_entry(chan, &device->channels, device_node)
1014 dma_chan_put(chan);
1015 }
1016 mutex_unlock(&dma_list_mutex);
1017 }
1018 EXPORT_SYMBOL(dmaengine_put);
1019
device_has_all_tx_types(struct dma_device * device)1020 static bool device_has_all_tx_types(struct dma_device *device)
1021 {
1022 /* A device that satisfies this test has channels that will never cause
1023 * an async_tx channel switch event as all possible operation types can
1024 * be handled.
1025 */
1026 #ifdef CONFIG_ASYNC_TX_DMA
1027 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
1028 return false;
1029 #endif
1030
1031 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1032 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
1033 return false;
1034 #endif
1035
1036 #if IS_ENABLED(CONFIG_ASYNC_XOR)
1037 if (!dma_has_cap(DMA_XOR, device->cap_mask))
1038 return false;
1039
1040 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1041 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
1042 return false;
1043 #endif
1044 #endif
1045
1046 #if IS_ENABLED(CONFIG_ASYNC_PQ)
1047 if (!dma_has_cap(DMA_PQ, device->cap_mask))
1048 return false;
1049
1050 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1051 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
1052 return false;
1053 #endif
1054 #endif
1055
1056 return true;
1057 }
1058
get_dma_id(struct dma_device * device)1059 static int get_dma_id(struct dma_device *device)
1060 {
1061 int rc = ida_alloc(&dma_ida, GFP_KERNEL);
1062
1063 if (rc < 0)
1064 return rc;
1065 device->dev_id = rc;
1066 return 0;
1067 }
1068
__dma_async_device_channel_register(struct dma_device * device,struct dma_chan * chan,const char * name)1069 static int __dma_async_device_channel_register(struct dma_device *device,
1070 struct dma_chan *chan,
1071 const char *name)
1072 {
1073 int rc;
1074
1075 chan->local = alloc_percpu(typeof(*chan->local));
1076 if (!chan->local)
1077 return -ENOMEM;
1078 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
1079 if (!chan->dev) {
1080 rc = -ENOMEM;
1081 goto err_free_local;
1082 }
1083
1084 /*
1085 * When the chan_id is a negative value, we are dynamically adding
1086 * the channel. Otherwise we are static enumerating.
1087 */
1088 chan->chan_id = ida_alloc(&device->chan_ida, GFP_KERNEL);
1089 if (chan->chan_id < 0) {
1090 pr_err("%s: unable to alloc ida for chan: %d\n",
1091 __func__, chan->chan_id);
1092 rc = chan->chan_id;
1093 goto err_free_dev;
1094 }
1095
1096 chan->dev->device.class = &dma_devclass;
1097 chan->dev->device.parent = device->dev;
1098 chan->dev->chan = chan;
1099 chan->dev->dev_id = device->dev_id;
1100 if (!name)
1101 dev_set_name(&chan->dev->device, "dma%dchan%d", device->dev_id, chan->chan_id);
1102 else
1103 dev_set_name(&chan->dev->device, "%s", name);
1104 rc = device_register(&chan->dev->device);
1105 if (rc)
1106 goto err_out_ida;
1107 chan->client_count = 0;
1108 device->chancnt++;
1109
1110 return 0;
1111
1112 err_out_ida:
1113 ida_free(&device->chan_ida, chan->chan_id);
1114 err_free_dev:
1115 kfree(chan->dev);
1116 err_free_local:
1117 free_percpu(chan->local);
1118 chan->local = NULL;
1119 return rc;
1120 }
1121
dma_async_device_channel_register(struct dma_device * device,struct dma_chan * chan,const char * name)1122 int dma_async_device_channel_register(struct dma_device *device,
1123 struct dma_chan *chan,
1124 const char *name)
1125 {
1126 int rc;
1127
1128 rc = __dma_async_device_channel_register(device, chan, name);
1129 if (rc < 0)
1130 return rc;
1131
1132 dma_channel_rebalance();
1133 return 0;
1134 }
1135 EXPORT_SYMBOL_GPL(dma_async_device_channel_register);
1136
__dma_async_device_channel_unregister(struct dma_device * device,struct dma_chan * chan)1137 static void __dma_async_device_channel_unregister(struct dma_device *device,
1138 struct dma_chan *chan)
1139 {
1140 if (chan->local == NULL)
1141 return;
1142
1143 WARN_ONCE(!device->device_release && chan->client_count,
1144 "%s called while %d clients hold a reference\n",
1145 __func__, chan->client_count);
1146 mutex_lock(&dma_list_mutex);
1147 device->chancnt--;
1148 chan->dev->chan = NULL;
1149 mutex_unlock(&dma_list_mutex);
1150 ida_free(&device->chan_ida, chan->chan_id);
1151 device_unregister(&chan->dev->device);
1152 free_percpu(chan->local);
1153 }
1154
dma_async_device_channel_unregister(struct dma_device * device,struct dma_chan * chan)1155 void dma_async_device_channel_unregister(struct dma_device *device,
1156 struct dma_chan *chan)
1157 {
1158 __dma_async_device_channel_unregister(device, chan);
1159 dma_channel_rebalance();
1160 }
1161 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister);
1162
1163 /**
1164 * dma_async_device_register - registers DMA devices found
1165 * @device: pointer to &struct dma_device
1166 *
1167 * After calling this routine the structure should not be freed except in the
1168 * device_release() callback which will be called after
1169 * dma_async_device_unregister() is called and no further references are taken.
1170 */
dma_async_device_register(struct dma_device * device)1171 int dma_async_device_register(struct dma_device *device)
1172 {
1173 int rc;
1174 struct dma_chan* chan;
1175
1176 if (!device)
1177 return -ENODEV;
1178
1179 /* validate device routines */
1180 if (!device->dev) {
1181 pr_err("DMAdevice must have dev\n");
1182 return -EIO;
1183 }
1184
1185 device->owner = device->dev->driver->owner;
1186
1187 #define CHECK_CAP(_name, _type) \
1188 { \
1189 if (dma_has_cap(_type, device->cap_mask) && !device->device_prep_##_name) { \
1190 dev_err(device->dev, \
1191 "Device claims capability %s, but op is not defined\n", \
1192 __stringify(_type)); \
1193 return -EIO; \
1194 } \
1195 }
1196
1197 CHECK_CAP(dma_memcpy, DMA_MEMCPY);
1198 CHECK_CAP(dma_xor, DMA_XOR);
1199 CHECK_CAP(dma_xor_val, DMA_XOR_VAL);
1200 CHECK_CAP(dma_pq, DMA_PQ);
1201 CHECK_CAP(dma_pq_val, DMA_PQ_VAL);
1202 CHECK_CAP(dma_memset, DMA_MEMSET);
1203 CHECK_CAP(dma_interrupt, DMA_INTERRUPT);
1204 CHECK_CAP(dma_cyclic, DMA_CYCLIC);
1205 CHECK_CAP(interleaved_dma, DMA_INTERLEAVE);
1206
1207 #undef CHECK_CAP
1208
1209 if (!device->device_tx_status) {
1210 dev_err(device->dev, "Device tx_status is not defined\n");
1211 return -EIO;
1212 }
1213
1214
1215 if (!device->device_issue_pending) {
1216 dev_err(device->dev, "Device issue_pending is not defined\n");
1217 return -EIO;
1218 }
1219
1220 if (!device->device_release)
1221 dev_dbg(device->dev,
1222 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1223
1224 kref_init(&device->ref);
1225
1226 /* note: this only matters in the
1227 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1228 */
1229 if (device_has_all_tx_types(device))
1230 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
1231
1232 rc = get_dma_id(device);
1233 if (rc != 0)
1234 return rc;
1235
1236 ida_init(&device->chan_ida);
1237
1238 /* represent channels in sysfs. Probably want devs too */
1239 list_for_each_entry(chan, &device->channels, device_node) {
1240 rc = __dma_async_device_channel_register(device, chan, NULL);
1241 if (rc < 0)
1242 goto err_out;
1243 }
1244
1245 mutex_lock(&dma_list_mutex);
1246 /* take references on public channels */
1247 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
1248 list_for_each_entry(chan, &device->channels, device_node) {
1249 /* if clients are already waiting for channels we need
1250 * to take references on their behalf
1251 */
1252 if (dma_chan_get(chan) == -ENODEV) {
1253 /* note we can only get here for the first
1254 * channel as the remaining channels are
1255 * guaranteed to get a reference
1256 */
1257 rc = -ENODEV;
1258 mutex_unlock(&dma_list_mutex);
1259 goto err_out;
1260 }
1261 }
1262 list_add_tail_rcu(&device->global_node, &dma_device_list);
1263 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
1264 device->privatecnt++; /* Always private */
1265 dma_channel_rebalance();
1266 mutex_unlock(&dma_list_mutex);
1267
1268 dmaengine_debug_register(device);
1269
1270 return 0;
1271
1272 err_out:
1273 /* if we never registered a channel just release the idr */
1274 if (!device->chancnt) {
1275 ida_free(&dma_ida, device->dev_id);
1276 return rc;
1277 }
1278
1279 list_for_each_entry(chan, &device->channels, device_node) {
1280 if (chan->local == NULL)
1281 continue;
1282 mutex_lock(&dma_list_mutex);
1283 chan->dev->chan = NULL;
1284 mutex_unlock(&dma_list_mutex);
1285 device_unregister(&chan->dev->device);
1286 free_percpu(chan->local);
1287 }
1288 return rc;
1289 }
1290 EXPORT_SYMBOL(dma_async_device_register);
1291
1292 /**
1293 * dma_async_device_unregister - unregister a DMA device
1294 * @device: pointer to &struct dma_device
1295 *
1296 * This routine is called by dma driver exit routines, dmaengine holds module
1297 * references to prevent it being called while channels are in use.
1298 */
dma_async_device_unregister(struct dma_device * device)1299 void dma_async_device_unregister(struct dma_device *device)
1300 {
1301 struct dma_chan *chan, *n;
1302
1303 dmaengine_debug_unregister(device);
1304
1305 list_for_each_entry_safe(chan, n, &device->channels, device_node)
1306 __dma_async_device_channel_unregister(device, chan);
1307
1308 mutex_lock(&dma_list_mutex);
1309 /*
1310 * setting DMA_PRIVATE ensures the device being torn down will not
1311 * be used in the channel_table
1312 */
1313 dma_cap_set(DMA_PRIVATE, device->cap_mask);
1314 dma_channel_rebalance();
1315 ida_free(&dma_ida, device->dev_id);
1316 dma_device_put(device);
1317 mutex_unlock(&dma_list_mutex);
1318 }
1319 EXPORT_SYMBOL(dma_async_device_unregister);
1320
dmaenginem_async_device_unregister(void * device)1321 static void dmaenginem_async_device_unregister(void *device)
1322 {
1323 dma_async_device_unregister(device);
1324 }
1325
1326 /**
1327 * dmaenginem_async_device_register - registers DMA devices found
1328 * @device: pointer to &struct dma_device
1329 *
1330 * The operation is managed and will be undone on driver detach.
1331 */
dmaenginem_async_device_register(struct dma_device * device)1332 int dmaenginem_async_device_register(struct dma_device *device)
1333 {
1334 int ret;
1335
1336 ret = dma_async_device_register(device);
1337 if (ret)
1338 return ret;
1339
1340 return devm_add_action_or_reset(device->dev, dmaenginem_async_device_unregister, device);
1341 }
1342 EXPORT_SYMBOL(dmaenginem_async_device_register);
1343
1344 struct dmaengine_unmap_pool {
1345 struct kmem_cache *cache;
1346 const char *name;
1347 mempool_t *pool;
1348 size_t size;
1349 };
1350
1351 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1352 static struct dmaengine_unmap_pool unmap_pool[] = {
1353 __UNMAP_POOL(2),
1354 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1355 __UNMAP_POOL(16),
1356 __UNMAP_POOL(128),
1357 __UNMAP_POOL(256),
1358 #endif
1359 };
1360
__get_unmap_pool(int nr)1361 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
1362 {
1363 int order = get_count_order(nr);
1364
1365 switch (order) {
1366 case 0 ... 1:
1367 return &unmap_pool[0];
1368 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1369 case 2 ... 4:
1370 return &unmap_pool[1];
1371 case 5 ... 7:
1372 return &unmap_pool[2];
1373 case 8:
1374 return &unmap_pool[3];
1375 #endif
1376 default:
1377 BUG();
1378 return NULL;
1379 }
1380 }
1381
dmaengine_unmap(struct kref * kref)1382 static void dmaengine_unmap(struct kref *kref)
1383 {
1384 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1385 struct device *dev = unmap->dev;
1386 int cnt, i;
1387
1388 cnt = unmap->to_cnt;
1389 for (i = 0; i < cnt; i++)
1390 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1391 DMA_TO_DEVICE);
1392 cnt += unmap->from_cnt;
1393 for (; i < cnt; i++)
1394 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1395 DMA_FROM_DEVICE);
1396 cnt += unmap->bidi_cnt;
1397 for (; i < cnt; i++) {
1398 if (unmap->addr[i] == 0)
1399 continue;
1400 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1401 DMA_BIDIRECTIONAL);
1402 }
1403 cnt = unmap->map_cnt;
1404 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1405 }
1406
dmaengine_unmap_put(struct dmaengine_unmap_data * unmap)1407 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1408 {
1409 if (unmap)
1410 kref_put(&unmap->kref, dmaengine_unmap);
1411 }
1412 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1413
dmaengine_destroy_unmap_pool(void)1414 static void dmaengine_destroy_unmap_pool(void)
1415 {
1416 int i;
1417
1418 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1419 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1420
1421 mempool_destroy(p->pool);
1422 p->pool = NULL;
1423 kmem_cache_destroy(p->cache);
1424 p->cache = NULL;
1425 }
1426 }
1427
dmaengine_init_unmap_pool(void)1428 static int __init dmaengine_init_unmap_pool(void)
1429 {
1430 int i;
1431
1432 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1433 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1434 size_t size;
1435
1436 size = sizeof(struct dmaengine_unmap_data) +
1437 sizeof(dma_addr_t) * p->size;
1438
1439 p->cache = kmem_cache_create(p->name, size, 0,
1440 SLAB_HWCACHE_ALIGN, NULL);
1441 if (!p->cache)
1442 break;
1443 p->pool = mempool_create_slab_pool(1, p->cache);
1444 if (!p->pool)
1445 break;
1446 }
1447
1448 if (i == ARRAY_SIZE(unmap_pool))
1449 return 0;
1450
1451 dmaengine_destroy_unmap_pool();
1452 return -ENOMEM;
1453 }
1454
1455 struct dmaengine_unmap_data *
dmaengine_get_unmap_data(struct device * dev,int nr,gfp_t flags)1456 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1457 {
1458 struct dmaengine_unmap_data *unmap;
1459
1460 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1461 if (!unmap)
1462 return NULL;
1463
1464 memset(unmap, 0, sizeof(*unmap));
1465 kref_init(&unmap->kref);
1466 unmap->dev = dev;
1467 unmap->map_cnt = nr;
1468
1469 return unmap;
1470 }
1471 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1472
dma_async_tx_descriptor_init(struct dma_async_tx_descriptor * tx,struct dma_chan * chan)1473 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1474 struct dma_chan *chan)
1475 {
1476 tx->chan = chan;
1477 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1478 spin_lock_init(&tx->lock);
1479 #endif
1480 }
1481 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1482
desc_check_and_set_metadata_mode(struct dma_async_tx_descriptor * desc,enum dma_desc_metadata_mode mode)1483 static inline int desc_check_and_set_metadata_mode(
1484 struct dma_async_tx_descriptor *desc, enum dma_desc_metadata_mode mode)
1485 {
1486 /* Make sure that the metadata mode is not mixed */
1487 if (!desc->desc_metadata_mode) {
1488 if (dmaengine_is_metadata_mode_supported(desc->chan, mode))
1489 desc->desc_metadata_mode = mode;
1490 else
1491 return -ENOTSUPP;
1492 } else if (desc->desc_metadata_mode != mode) {
1493 return -EINVAL;
1494 }
1495
1496 return 0;
1497 }
1498
dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor * desc,void * data,size_t len)1499 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1500 void *data, size_t len)
1501 {
1502 int ret;
1503
1504 if (!desc)
1505 return -EINVAL;
1506
1507 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_CLIENT);
1508 if (ret)
1509 return ret;
1510
1511 if (!desc->metadata_ops || !desc->metadata_ops->attach)
1512 return -ENOTSUPP;
1513
1514 return desc->metadata_ops->attach(desc, data, len);
1515 }
1516 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata);
1517
dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor * desc,size_t * payload_len,size_t * max_len)1518 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1519 size_t *payload_len, size_t *max_len)
1520 {
1521 int ret;
1522
1523 if (!desc)
1524 return ERR_PTR(-EINVAL);
1525
1526 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1527 if (ret)
1528 return ERR_PTR(ret);
1529
1530 if (!desc->metadata_ops || !desc->metadata_ops->get_ptr)
1531 return ERR_PTR(-ENOTSUPP);
1532
1533 return desc->metadata_ops->get_ptr(desc, payload_len, max_len);
1534 }
1535 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr);
1536
dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor * desc,size_t payload_len)1537 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1538 size_t payload_len)
1539 {
1540 int ret;
1541
1542 if (!desc)
1543 return -EINVAL;
1544
1545 ret = desc_check_and_set_metadata_mode(desc, DESC_METADATA_ENGINE);
1546 if (ret)
1547 return ret;
1548
1549 if (!desc->metadata_ops || !desc->metadata_ops->set_len)
1550 return -ENOTSUPP;
1551
1552 return desc->metadata_ops->set_len(desc, payload_len);
1553 }
1554 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len);
1555
1556 /**
1557 * dma_wait_for_async_tx - spin wait for a transaction to complete
1558 * @tx: in-flight transaction to wait on
1559 */
1560 enum dma_status
dma_wait_for_async_tx(struct dma_async_tx_descriptor * tx)1561 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1562 {
1563 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1564
1565 if (!tx)
1566 return DMA_COMPLETE;
1567
1568 while (tx->cookie == -EBUSY) {
1569 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1570 dev_err(tx->chan->device->dev,
1571 "%s timeout waiting for descriptor submission\n",
1572 __func__);
1573 return DMA_ERROR;
1574 }
1575 cpu_relax();
1576 }
1577 return dma_sync_wait(tx->chan, tx->cookie);
1578 }
1579 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1580
1581 /**
1582 * dma_run_dependencies - process dependent operations on the target channel
1583 * @tx: transaction with dependencies
1584 *
1585 * Helper routine for DMA drivers to process (start) dependent operations
1586 * on their target channel.
1587 */
dma_run_dependencies(struct dma_async_tx_descriptor * tx)1588 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1589 {
1590 struct dma_async_tx_descriptor *dep = txd_next(tx);
1591 struct dma_async_tx_descriptor *dep_next;
1592 struct dma_chan *chan;
1593
1594 if (!dep)
1595 return;
1596
1597 /* we'll submit tx->next now, so clear the link */
1598 txd_clear_next(tx);
1599 chan = dep->chan;
1600
1601 /* keep submitting up until a channel switch is detected
1602 * in that case we will be called again as a result of
1603 * processing the interrupt from async_tx_channel_switch
1604 */
1605 for (; dep; dep = dep_next) {
1606 txd_lock(dep);
1607 txd_clear_parent(dep);
1608 dep_next = txd_next(dep);
1609 if (dep_next && dep_next->chan == chan)
1610 txd_clear_next(dep); /* ->next will be submitted */
1611 else
1612 dep_next = NULL; /* submit current dep and terminate */
1613 txd_unlock(dep);
1614
1615 dep->tx_submit(dep);
1616 }
1617
1618 chan->device->device_issue_pending(chan);
1619 }
1620 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1621
dma_bus_init(void)1622 static int __init dma_bus_init(void)
1623 {
1624 int err = dmaengine_init_unmap_pool();
1625
1626 if (err)
1627 return err;
1628
1629 err = class_register(&dma_devclass);
1630 if (!err)
1631 dmaengine_debugfs_init();
1632
1633 return err;
1634 }
1635 arch_initcall(dma_bus_init);
1636