1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11
12 #include <linux/module.h>
13 #include <linux/vmalloc.h>
14 #include <linux/blkdev.h>
15 #include <linux/blk-integrity.h>
16 #include <linux/namei.h>
17 #include <linux/ctype.h>
18 #include <linux/string.h>
19 #include <linux/slab.h>
20 #include <linux/interrupt.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/atomic.h>
24 #include <linux/blk-mq.h>
25 #include <linux/mount.h>
26 #include <linux/dax.h>
27
28 #define DM_MSG_PREFIX "table"
29
30 #define NODE_SIZE L1_CACHE_BYTES
31 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
32 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
33
34 /*
35 * Similar to ceiling(log_size(n))
36 */
int_log(unsigned int n,unsigned int base)37 static unsigned int int_log(unsigned int n, unsigned int base)
38 {
39 int result = 0;
40
41 while (n > 1) {
42 n = dm_div_up(n, base);
43 result++;
44 }
45
46 return result;
47 }
48
49 /*
50 * Calculate the index of the child node of the n'th node k'th key.
51 */
get_child(unsigned int n,unsigned int k)52 static inline unsigned int get_child(unsigned int n, unsigned int k)
53 {
54 return (n * CHILDREN_PER_NODE) + k;
55 }
56
57 /*
58 * Return the n'th node of level l from table t.
59 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)60 static inline sector_t *get_node(struct dm_table *t,
61 unsigned int l, unsigned int n)
62 {
63 return t->index[l] + (n * KEYS_PER_NODE);
64 }
65
66 /*
67 * Return the highest key that you could lookup from the n'th
68 * node on level l of the btree.
69 */
high(struct dm_table * t,unsigned int l,unsigned int n)70 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
71 {
72 for (; l < t->depth - 1; l++)
73 n = get_child(n, CHILDREN_PER_NODE - 1);
74
75 if (n >= t->counts[l])
76 return (sector_t) -1;
77
78 return get_node(t, l, n)[KEYS_PER_NODE - 1];
79 }
80
81 /*
82 * Fills in a level of the btree based on the highs of the level
83 * below it.
84 */
setup_btree_index(unsigned int l,struct dm_table * t)85 static int setup_btree_index(unsigned int l, struct dm_table *t)
86 {
87 unsigned int n, k;
88 sector_t *node;
89
90 for (n = 0U; n < t->counts[l]; n++) {
91 node = get_node(t, l, n);
92
93 for (k = 0U; k < KEYS_PER_NODE; k++)
94 node[k] = high(t, l + 1, get_child(n, k));
95 }
96
97 return 0;
98 }
99
100 /*
101 * highs, and targets are managed as dynamic arrays during a
102 * table load.
103 */
alloc_targets(struct dm_table * t,unsigned int num)104 static int alloc_targets(struct dm_table *t, unsigned int num)
105 {
106 sector_t *n_highs;
107 struct dm_target *n_targets;
108
109 /*
110 * Allocate both the target array and offset array at once.
111 */
112 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
113 GFP_KERNEL);
114 if (!n_highs)
115 return -ENOMEM;
116
117 n_targets = (struct dm_target *) (n_highs + num);
118
119 memset(n_highs, -1, sizeof(*n_highs) * num);
120 kvfree(t->highs);
121
122 t->num_allocated = num;
123 t->highs = n_highs;
124 t->targets = n_targets;
125
126 return 0;
127 }
128
dm_table_create(struct dm_table ** result,blk_mode_t mode,unsigned int num_targets,struct mapped_device * md)129 int dm_table_create(struct dm_table **result, blk_mode_t mode,
130 unsigned int num_targets, struct mapped_device *md)
131 {
132 struct dm_table *t;
133
134 if (num_targets > DM_MAX_TARGETS)
135 return -EOVERFLOW;
136
137 t = kzalloc(sizeof(*t), GFP_KERNEL);
138
139 if (!t)
140 return -ENOMEM;
141
142 INIT_LIST_HEAD(&t->devices);
143 init_rwsem(&t->devices_lock);
144
145 if (!num_targets)
146 num_targets = KEYS_PER_NODE;
147
148 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
149
150 if (!num_targets) {
151 kfree(t);
152 return -EOVERFLOW;
153 }
154
155 if (alloc_targets(t, num_targets)) {
156 kfree(t);
157 return -ENOMEM;
158 }
159
160 t->type = DM_TYPE_NONE;
161 t->mode = mode;
162 t->md = md;
163 t->flush_bypasses_map = true;
164 *result = t;
165 return 0;
166 }
167
free_devices(struct list_head * devices,struct mapped_device * md)168 static void free_devices(struct list_head *devices, struct mapped_device *md)
169 {
170 struct list_head *tmp, *next;
171
172 list_for_each_safe(tmp, next, devices) {
173 struct dm_dev_internal *dd =
174 list_entry(tmp, struct dm_dev_internal, list);
175 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
176 dm_device_name(md), dd->dm_dev->name);
177 dm_put_table_device(md, dd->dm_dev);
178 kfree(dd);
179 }
180 }
181
182 static void dm_table_destroy_crypto_profile(struct dm_table *t);
183
dm_table_destroy(struct dm_table * t)184 void dm_table_destroy(struct dm_table *t)
185 {
186 if (!t)
187 return;
188
189 /* free the indexes */
190 if (t->depth >= 2)
191 kvfree(t->index[t->depth - 2]);
192
193 /* free the targets */
194 for (unsigned int i = 0; i < t->num_targets; i++) {
195 struct dm_target *ti = dm_table_get_target(t, i);
196
197 if (ti->type->dtr)
198 ti->type->dtr(ti);
199
200 dm_put_target_type(ti->type);
201 }
202
203 kvfree(t->highs);
204
205 /* free the device list */
206 free_devices(&t->devices, t->md);
207
208 dm_free_md_mempools(t->mempools);
209
210 dm_table_destroy_crypto_profile(t);
211
212 kfree(t);
213 }
214
215 /*
216 * See if we've already got a device in the list.
217 */
find_device(struct list_head * l,dev_t dev)218 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
219 {
220 struct dm_dev_internal *dd;
221
222 list_for_each_entry(dd, l, list)
223 if (dd->dm_dev->bdev->bd_dev == dev)
224 return dd;
225
226 return NULL;
227 }
228
229 /*
230 * If possible, this checks an area of a destination device is invalid.
231 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)232 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
233 sector_t start, sector_t len, void *data)
234 {
235 struct queue_limits *limits = data;
236 struct block_device *bdev = dev->bdev;
237 sector_t dev_size = bdev_nr_sectors(bdev);
238 unsigned short logical_block_size_sectors =
239 limits->logical_block_size >> SECTOR_SHIFT;
240
241 if (!dev_size)
242 return 0;
243
244 if ((start >= dev_size) || (start + len > dev_size)) {
245 DMERR("%s: %pg too small for target: start=%llu, len=%llu, dev_size=%llu",
246 dm_device_name(ti->table->md), bdev,
247 (unsigned long long)start,
248 (unsigned long long)len,
249 (unsigned long long)dev_size);
250 return 1;
251 }
252
253 /*
254 * If the target is mapped to zoned block device(s), check
255 * that the zones are not partially mapped.
256 */
257 if (bdev_is_zoned(bdev)) {
258 unsigned int zone_sectors = bdev_zone_sectors(bdev);
259
260 if (start & (zone_sectors - 1)) {
261 DMERR("%s: start=%llu not aligned to h/w zone size %u of %pg",
262 dm_device_name(ti->table->md),
263 (unsigned long long)start,
264 zone_sectors, bdev);
265 return 1;
266 }
267
268 /*
269 * Note: The last zone of a zoned block device may be smaller
270 * than other zones. So for a target mapping the end of a
271 * zoned block device with such a zone, len would not be zone
272 * aligned. We do not allow such last smaller zone to be part
273 * of the mapping here to ensure that mappings with multiple
274 * devices do not end up with a smaller zone in the middle of
275 * the sector range.
276 */
277 if (len & (zone_sectors - 1)) {
278 DMERR("%s: len=%llu not aligned to h/w zone size %u of %pg",
279 dm_device_name(ti->table->md),
280 (unsigned long long)len,
281 zone_sectors, bdev);
282 return 1;
283 }
284 }
285
286 if (logical_block_size_sectors <= 1)
287 return 0;
288
289 if (start & (logical_block_size_sectors - 1)) {
290 DMERR("%s: start=%llu not aligned to h/w logical block size %u of %pg",
291 dm_device_name(ti->table->md),
292 (unsigned long long)start,
293 limits->logical_block_size, bdev);
294 return 1;
295 }
296
297 if (len & (logical_block_size_sectors - 1)) {
298 DMERR("%s: len=%llu not aligned to h/w logical block size %u of %pg",
299 dm_device_name(ti->table->md),
300 (unsigned long long)len,
301 limits->logical_block_size, bdev);
302 return 1;
303 }
304
305 return 0;
306 }
307
308 /*
309 * This upgrades the mode on an already open dm_dev, being
310 * careful to leave things as they were if we fail to reopen the
311 * device and not to touch the existing bdev field in case
312 * it is accessed concurrently.
313 */
upgrade_mode(struct dm_dev_internal * dd,blk_mode_t new_mode,struct mapped_device * md)314 static int upgrade_mode(struct dm_dev_internal *dd, blk_mode_t new_mode,
315 struct mapped_device *md)
316 {
317 int r;
318 struct dm_dev *old_dev, *new_dev;
319
320 old_dev = dd->dm_dev;
321
322 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
323 dd->dm_dev->mode | new_mode, &new_dev);
324 if (r)
325 return r;
326
327 dd->dm_dev = new_dev;
328 dm_put_table_device(md, old_dev);
329
330 return 0;
331 }
332
333 /*
334 * Note: the __ref annotation is because this function can call the __init
335 * marked early_lookup_bdev when called during early boot code from dm-init.c.
336 */
dm_devt_from_path(const char * path,dev_t * dev_p)337 int __ref dm_devt_from_path(const char *path, dev_t *dev_p)
338 {
339 int r;
340 dev_t dev;
341 unsigned int major, minor;
342 char dummy;
343
344 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
345 /* Extract the major/minor numbers */
346 dev = MKDEV(major, minor);
347 if (MAJOR(dev) != major || MINOR(dev) != minor)
348 return -EOVERFLOW;
349 } else {
350 r = lookup_bdev(path, &dev);
351 #ifndef MODULE
352 if (r && system_state < SYSTEM_RUNNING)
353 r = early_lookup_bdev(path, &dev);
354 #endif
355 if (r)
356 return r;
357 }
358 *dev_p = dev;
359 return 0;
360 }
361 EXPORT_SYMBOL(dm_devt_from_path);
362
363 /*
364 * Add a device to the list, or just increment the usage count if
365 * it's already present.
366 */
dm_get_device(struct dm_target * ti,const char * path,blk_mode_t mode,struct dm_dev ** result)367 int dm_get_device(struct dm_target *ti, const char *path, blk_mode_t mode,
368 struct dm_dev **result)
369 {
370 int r;
371 dev_t dev;
372 struct dm_dev_internal *dd;
373 struct dm_table *t = ti->table;
374
375 BUG_ON(!t);
376
377 r = dm_devt_from_path(path, &dev);
378 if (r)
379 return r;
380
381 if (dev == disk_devt(t->md->disk))
382 return -EINVAL;
383
384 down_write(&t->devices_lock);
385
386 dd = find_device(&t->devices, dev);
387 if (!dd) {
388 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
389 if (!dd) {
390 r = -ENOMEM;
391 goto unlock_ret_r;
392 }
393
394 r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev);
395 if (r) {
396 kfree(dd);
397 goto unlock_ret_r;
398 }
399
400 refcount_set(&dd->count, 1);
401 list_add(&dd->list, &t->devices);
402 goto out;
403
404 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
405 r = upgrade_mode(dd, mode, t->md);
406 if (r)
407 goto unlock_ret_r;
408 }
409 refcount_inc(&dd->count);
410 out:
411 up_write(&t->devices_lock);
412 *result = dd->dm_dev;
413 return 0;
414
415 unlock_ret_r:
416 up_write(&t->devices_lock);
417 return r;
418 }
419 EXPORT_SYMBOL(dm_get_device);
420
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)421 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
422 sector_t start, sector_t len, void *data)
423 {
424 struct queue_limits *limits = data;
425 struct block_device *bdev = dev->bdev;
426 struct request_queue *q = bdev_get_queue(bdev);
427
428 if (unlikely(!q)) {
429 DMWARN("%s: Cannot set limits for nonexistent device %pg",
430 dm_device_name(ti->table->md), bdev);
431 return 0;
432 }
433
434 if (blk_stack_limits(limits, &q->limits,
435 get_start_sect(bdev) + start) < 0)
436 DMWARN("%s: adding target device %pg caused an alignment inconsistency: "
437 "physical_block_size=%u, logical_block_size=%u, "
438 "alignment_offset=%u, start=%llu",
439 dm_device_name(ti->table->md), bdev,
440 q->limits.physical_block_size,
441 q->limits.logical_block_size,
442 q->limits.alignment_offset,
443 (unsigned long long) start << SECTOR_SHIFT);
444
445 /*
446 * Only stack the integrity profile if the target doesn't have native
447 * integrity support.
448 */
449 if (!dm_target_has_integrity(ti->type))
450 queue_limits_stack_integrity_bdev(limits, bdev);
451 return 0;
452 }
453
454 /*
455 * Decrement a device's use count and remove it if necessary.
456 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)457 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
458 {
459 int found = 0;
460 struct dm_table *t = ti->table;
461 struct list_head *devices = &t->devices;
462 struct dm_dev_internal *dd;
463
464 down_write(&t->devices_lock);
465
466 list_for_each_entry(dd, devices, list) {
467 if (dd->dm_dev == d) {
468 found = 1;
469 break;
470 }
471 }
472 if (!found) {
473 DMERR("%s: device %s not in table devices list",
474 dm_device_name(t->md), d->name);
475 goto unlock_ret;
476 }
477 if (refcount_dec_and_test(&dd->count)) {
478 dm_put_table_device(t->md, d);
479 list_del(&dd->list);
480 kfree(dd);
481 }
482
483 unlock_ret:
484 up_write(&t->devices_lock);
485 }
486 EXPORT_SYMBOL(dm_put_device);
487
488 /*
489 * Checks to see if the target joins onto the end of the table.
490 */
adjoin(struct dm_table * t,struct dm_target * ti)491 static int adjoin(struct dm_table *t, struct dm_target *ti)
492 {
493 struct dm_target *prev;
494
495 if (!t->num_targets)
496 return !ti->begin;
497
498 prev = &t->targets[t->num_targets - 1];
499 return (ti->begin == (prev->begin + prev->len));
500 }
501
502 /*
503 * Used to dynamically allocate the arg array.
504 *
505 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
506 * process messages even if some device is suspended. These messages have a
507 * small fixed number of arguments.
508 *
509 * On the other hand, dm-switch needs to process bulk data using messages and
510 * excessive use of GFP_NOIO could cause trouble.
511 */
realloc_argv(unsigned int * size,char ** old_argv)512 static char **realloc_argv(unsigned int *size, char **old_argv)
513 {
514 char **argv;
515 unsigned int new_size;
516 gfp_t gfp;
517
518 if (*size) {
519 new_size = *size * 2;
520 gfp = GFP_KERNEL;
521 } else {
522 new_size = 8;
523 gfp = GFP_NOIO;
524 }
525 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
526 if (argv && old_argv) {
527 memcpy(argv, old_argv, *size * sizeof(*argv));
528 *size = new_size;
529 }
530
531 kfree(old_argv);
532 return argv;
533 }
534
535 /*
536 * Destructively splits up the argument list to pass to ctr.
537 */
dm_split_args(int * argc,char *** argvp,char * input)538 int dm_split_args(int *argc, char ***argvp, char *input)
539 {
540 char *start, *end = input, *out, **argv = NULL;
541 unsigned int array_size = 0;
542
543 *argc = 0;
544
545 if (!input) {
546 *argvp = NULL;
547 return 0;
548 }
549
550 argv = realloc_argv(&array_size, argv);
551 if (!argv)
552 return -ENOMEM;
553
554 while (1) {
555 /* Skip whitespace */
556 start = skip_spaces(end);
557
558 if (!*start)
559 break; /* success, we hit the end */
560
561 /* 'out' is used to remove any back-quotes */
562 end = out = start;
563 while (*end) {
564 /* Everything apart from '\0' can be quoted */
565 if (*end == '\\' && *(end + 1)) {
566 *out++ = *(end + 1);
567 end += 2;
568 continue;
569 }
570
571 if (isspace(*end))
572 break; /* end of token */
573
574 *out++ = *end++;
575 }
576
577 /* have we already filled the array ? */
578 if ((*argc + 1) > array_size) {
579 argv = realloc_argv(&array_size, argv);
580 if (!argv)
581 return -ENOMEM;
582 }
583
584 /* we know this is whitespace */
585 if (*end)
586 end++;
587
588 /* terminate the string and put it in the array */
589 *out = '\0';
590 argv[*argc] = start;
591 (*argc)++;
592 }
593
594 *argvp = argv;
595 return 0;
596 }
597
dm_set_stacking_limits(struct queue_limits * limits)598 static void dm_set_stacking_limits(struct queue_limits *limits)
599 {
600 blk_set_stacking_limits(limits);
601 limits->features |= BLK_FEAT_IO_STAT | BLK_FEAT_NOWAIT | BLK_FEAT_POLL;
602 }
603
604 /*
605 * Impose necessary and sufficient conditions on a devices's table such
606 * that any incoming bio which respects its logical_block_size can be
607 * processed successfully. If it falls across the boundary between
608 * two or more targets, the size of each piece it gets split into must
609 * be compatible with the logical_block_size of the target processing it.
610 */
validate_hardware_logical_block_alignment(struct dm_table * t,struct queue_limits * limits)611 static int validate_hardware_logical_block_alignment(struct dm_table *t,
612 struct queue_limits *limits)
613 {
614 /*
615 * This function uses arithmetic modulo the logical_block_size
616 * (in units of 512-byte sectors).
617 */
618 unsigned short device_logical_block_size_sects =
619 limits->logical_block_size >> SECTOR_SHIFT;
620
621 /*
622 * Offset of the start of the next table entry, mod logical_block_size.
623 */
624 unsigned short next_target_start = 0;
625
626 /*
627 * Given an aligned bio that extends beyond the end of a
628 * target, how many sectors must the next target handle?
629 */
630 unsigned short remaining = 0;
631
632 struct dm_target *ti;
633 struct queue_limits ti_limits;
634 unsigned int i;
635
636 /*
637 * Check each entry in the table in turn.
638 */
639 for (i = 0; i < t->num_targets; i++) {
640 ti = dm_table_get_target(t, i);
641
642 dm_set_stacking_limits(&ti_limits);
643
644 /* combine all target devices' limits */
645 if (ti->type->iterate_devices)
646 ti->type->iterate_devices(ti, dm_set_device_limits,
647 &ti_limits);
648
649 /*
650 * If the remaining sectors fall entirely within this
651 * table entry are they compatible with its logical_block_size?
652 */
653 if (remaining < ti->len &&
654 remaining & ((ti_limits.logical_block_size >>
655 SECTOR_SHIFT) - 1))
656 break; /* Error */
657
658 next_target_start =
659 (unsigned short) ((next_target_start + ti->len) &
660 (device_logical_block_size_sects - 1));
661 remaining = next_target_start ?
662 device_logical_block_size_sects - next_target_start : 0;
663 }
664
665 if (remaining) {
666 DMERR("%s: table line %u (start sect %llu len %llu) "
667 "not aligned to h/w logical block size %u",
668 dm_device_name(t->md), i,
669 (unsigned long long) ti->begin,
670 (unsigned long long) ti->len,
671 limits->logical_block_size);
672 return -EINVAL;
673 }
674
675 return 0;
676 }
677
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)678 int dm_table_add_target(struct dm_table *t, const char *type,
679 sector_t start, sector_t len, char *params)
680 {
681 int r = -EINVAL, argc;
682 char **argv;
683 struct dm_target *ti;
684
685 if (t->singleton) {
686 DMERR("%s: target type %s must appear alone in table",
687 dm_device_name(t->md), t->targets->type->name);
688 return -EINVAL;
689 }
690
691 BUG_ON(t->num_targets >= t->num_allocated);
692
693 ti = t->targets + t->num_targets;
694 memset(ti, 0, sizeof(*ti));
695
696 if (!len) {
697 DMERR("%s: zero-length target", dm_device_name(t->md));
698 return -EINVAL;
699 }
700
701 ti->type = dm_get_target_type(type);
702 if (!ti->type) {
703 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
704 return -EINVAL;
705 }
706
707 if (dm_target_needs_singleton(ti->type)) {
708 if (t->num_targets) {
709 ti->error = "singleton target type must appear alone in table";
710 goto bad;
711 }
712 t->singleton = true;
713 }
714
715 if (dm_target_always_writeable(ti->type) &&
716 !(t->mode & BLK_OPEN_WRITE)) {
717 ti->error = "target type may not be included in a read-only table";
718 goto bad;
719 }
720
721 if (t->immutable_target_type) {
722 if (t->immutable_target_type != ti->type) {
723 ti->error = "immutable target type cannot be mixed with other target types";
724 goto bad;
725 }
726 } else if (dm_target_is_immutable(ti->type)) {
727 if (t->num_targets) {
728 ti->error = "immutable target type cannot be mixed with other target types";
729 goto bad;
730 }
731 t->immutable_target_type = ti->type;
732 }
733
734 ti->table = t;
735 ti->begin = start;
736 ti->len = len;
737 ti->error = "Unknown error";
738
739 /*
740 * Does this target adjoin the previous one ?
741 */
742 if (!adjoin(t, ti)) {
743 ti->error = "Gap in table";
744 goto bad;
745 }
746
747 r = dm_split_args(&argc, &argv, params);
748 if (r) {
749 ti->error = "couldn't split parameters";
750 goto bad;
751 }
752
753 r = ti->type->ctr(ti, argc, argv);
754 kfree(argv);
755 if (r)
756 goto bad;
757
758 t->highs[t->num_targets++] = ti->begin + ti->len - 1;
759
760 if (!ti->num_discard_bios && ti->discards_supported)
761 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
762 dm_device_name(t->md), type);
763
764 if (ti->limit_swap_bios && !static_key_enabled(&swap_bios_enabled.key))
765 static_branch_enable(&swap_bios_enabled);
766
767 if (!ti->flush_bypasses_map)
768 t->flush_bypasses_map = false;
769
770 return 0;
771
772 bad:
773 DMERR("%s: %s: %s (%pe)", dm_device_name(t->md), type, ti->error, ERR_PTR(r));
774 dm_put_target_type(ti->type);
775 return r;
776 }
777
778 /*
779 * Target argument parsing helpers.
780 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error,unsigned int grouped)781 static int validate_next_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
782 unsigned int *value, char **error, unsigned int grouped)
783 {
784 const char *arg_str = dm_shift_arg(arg_set);
785 char dummy;
786
787 if (!arg_str ||
788 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
789 (*value < arg->min) ||
790 (*value > arg->max) ||
791 (grouped && arg_set->argc < *value)) {
792 *error = arg->error;
793 return -EINVAL;
794 }
795
796 return 0;
797 }
798
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)799 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
800 unsigned int *value, char **error)
801 {
802 return validate_next_arg(arg, arg_set, value, error, 0);
803 }
804 EXPORT_SYMBOL(dm_read_arg);
805
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned int * value,char ** error)806 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
807 unsigned int *value, char **error)
808 {
809 return validate_next_arg(arg, arg_set, value, error, 1);
810 }
811 EXPORT_SYMBOL(dm_read_arg_group);
812
dm_shift_arg(struct dm_arg_set * as)813 const char *dm_shift_arg(struct dm_arg_set *as)
814 {
815 char *r;
816
817 if (as->argc) {
818 as->argc--;
819 r = *as->argv;
820 as->argv++;
821 return r;
822 }
823
824 return NULL;
825 }
826 EXPORT_SYMBOL(dm_shift_arg);
827
dm_consume_args(struct dm_arg_set * as,unsigned int num_args)828 void dm_consume_args(struct dm_arg_set *as, unsigned int num_args)
829 {
830 BUG_ON(as->argc < num_args);
831 as->argc -= num_args;
832 as->argv += num_args;
833 }
834 EXPORT_SYMBOL(dm_consume_args);
835
__table_type_bio_based(enum dm_queue_mode table_type)836 static bool __table_type_bio_based(enum dm_queue_mode table_type)
837 {
838 return (table_type == DM_TYPE_BIO_BASED ||
839 table_type == DM_TYPE_DAX_BIO_BASED);
840 }
841
__table_type_request_based(enum dm_queue_mode table_type)842 static bool __table_type_request_based(enum dm_queue_mode table_type)
843 {
844 return table_type == DM_TYPE_REQUEST_BASED;
845 }
846
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)847 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
848 {
849 t->type = type;
850 }
851 EXPORT_SYMBOL_GPL(dm_table_set_type);
852
853 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)854 static int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
855 sector_t start, sector_t len, void *data)
856 {
857 if (dev->dax_dev)
858 return false;
859
860 DMDEBUG("%pg: error: dax unsupported by block device", dev->bdev);
861 return true;
862 }
863
864 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)865 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
866 sector_t start, sector_t len, void *data)
867 {
868 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
869 }
870
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn)871 static bool dm_table_supports_dax(struct dm_table *t,
872 iterate_devices_callout_fn iterate_fn)
873 {
874 /* Ensure that all targets support DAX. */
875 for (unsigned int i = 0; i < t->num_targets; i++) {
876 struct dm_target *ti = dm_table_get_target(t, i);
877
878 if (!ti->type->direct_access)
879 return false;
880
881 if (dm_target_is_wildcard(ti->type) ||
882 !ti->type->iterate_devices ||
883 ti->type->iterate_devices(ti, iterate_fn, NULL))
884 return false;
885 }
886
887 return true;
888 }
889
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)890 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
891 sector_t start, sector_t len, void *data)
892 {
893 struct block_device *bdev = dev->bdev;
894 struct request_queue *q = bdev_get_queue(bdev);
895
896 /* request-based cannot stack on partitions! */
897 if (bdev_is_partition(bdev))
898 return false;
899
900 return queue_is_mq(q);
901 }
902
dm_table_determine_type(struct dm_table * t)903 static int dm_table_determine_type(struct dm_table *t)
904 {
905 unsigned int bio_based = 0, request_based = 0, hybrid = 0;
906 struct dm_target *ti;
907 struct list_head *devices = dm_table_get_devices(t);
908 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
909
910 if (t->type != DM_TYPE_NONE) {
911 /* target already set the table's type */
912 if (t->type == DM_TYPE_BIO_BASED) {
913 /* possibly upgrade to a variant of bio-based */
914 goto verify_bio_based;
915 }
916 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
917 goto verify_rq_based;
918 }
919
920 for (unsigned int i = 0; i < t->num_targets; i++) {
921 ti = dm_table_get_target(t, i);
922 if (dm_target_hybrid(ti))
923 hybrid = 1;
924 else if (dm_target_request_based(ti))
925 request_based = 1;
926 else
927 bio_based = 1;
928
929 if (bio_based && request_based) {
930 DMERR("Inconsistent table: different target types can't be mixed up");
931 return -EINVAL;
932 }
933 }
934
935 if (hybrid && !bio_based && !request_based) {
936 /*
937 * The targets can work either way.
938 * Determine the type from the live device.
939 * Default to bio-based if device is new.
940 */
941 if (__table_type_request_based(live_md_type))
942 request_based = 1;
943 else
944 bio_based = 1;
945 }
946
947 if (bio_based) {
948 verify_bio_based:
949 /* We must use this table as bio-based */
950 t->type = DM_TYPE_BIO_BASED;
951 if (dm_table_supports_dax(t, device_not_dax_capable) ||
952 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
953 t->type = DM_TYPE_DAX_BIO_BASED;
954 }
955 return 0;
956 }
957
958 BUG_ON(!request_based); /* No targets in this table */
959
960 t->type = DM_TYPE_REQUEST_BASED;
961
962 verify_rq_based:
963 /*
964 * Request-based dm supports only tables that have a single target now.
965 * To support multiple targets, request splitting support is needed,
966 * and that needs lots of changes in the block-layer.
967 * (e.g. request completion process for partial completion.)
968 */
969 if (t->num_targets > 1) {
970 DMERR("request-based DM doesn't support multiple targets");
971 return -EINVAL;
972 }
973
974 if (list_empty(devices)) {
975 int srcu_idx;
976 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
977
978 /* inherit live table's type */
979 if (live_table)
980 t->type = live_table->type;
981 dm_put_live_table(t->md, srcu_idx);
982 return 0;
983 }
984
985 ti = dm_table_get_immutable_target(t);
986 if (!ti) {
987 DMERR("table load rejected: immutable target is required");
988 return -EINVAL;
989 } else if (ti->max_io_len) {
990 DMERR("table load rejected: immutable target that splits IO is not supported");
991 return -EINVAL;
992 }
993
994 /* Non-request-stackable devices can't be used for request-based dm */
995 if (!ti->type->iterate_devices ||
996 !ti->type->iterate_devices(ti, device_is_rq_stackable, NULL)) {
997 DMERR("table load rejected: including non-request-stackable devices");
998 return -EINVAL;
999 }
1000
1001 return 0;
1002 }
1003
dm_table_get_type(struct dm_table * t)1004 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
1005 {
1006 return t->type;
1007 }
1008
dm_table_get_immutable_target_type(struct dm_table * t)1009 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
1010 {
1011 return t->immutable_target_type;
1012 }
1013
dm_table_get_immutable_target(struct dm_table * t)1014 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
1015 {
1016 /* Immutable target is implicitly a singleton */
1017 if (t->num_targets > 1 ||
1018 !dm_target_is_immutable(t->targets[0].type))
1019 return NULL;
1020
1021 return t->targets;
1022 }
1023
dm_table_get_wildcard_target(struct dm_table * t)1024 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
1025 {
1026 for (unsigned int i = 0; i < t->num_targets; i++) {
1027 struct dm_target *ti = dm_table_get_target(t, i);
1028
1029 if (dm_target_is_wildcard(ti->type))
1030 return ti;
1031 }
1032
1033 return NULL;
1034 }
1035
dm_table_bio_based(struct dm_table * t)1036 bool dm_table_bio_based(struct dm_table *t)
1037 {
1038 return __table_type_bio_based(dm_table_get_type(t));
1039 }
1040
dm_table_request_based(struct dm_table * t)1041 bool dm_table_request_based(struct dm_table *t)
1042 {
1043 return __table_type_request_based(dm_table_get_type(t));
1044 }
1045
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1046 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1047 {
1048 enum dm_queue_mode type = dm_table_get_type(t);
1049 unsigned int per_io_data_size = 0, front_pad, io_front_pad;
1050 unsigned int min_pool_size = 0, pool_size;
1051 struct dm_md_mempools *pools;
1052 unsigned int bioset_flags = 0;
1053 bool mempool_needs_integrity = t->integrity_supported;
1054
1055 if (unlikely(type == DM_TYPE_NONE)) {
1056 DMERR("no table type is set, can't allocate mempools");
1057 return -EINVAL;
1058 }
1059
1060 pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
1061 if (!pools)
1062 return -ENOMEM;
1063
1064 if (type == DM_TYPE_REQUEST_BASED) {
1065 pool_size = dm_get_reserved_rq_based_ios();
1066 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
1067 goto init_bs;
1068 }
1069
1070 if (md->queue->limits.features & BLK_FEAT_POLL)
1071 bioset_flags |= BIOSET_PERCPU_CACHE;
1072
1073 for (unsigned int i = 0; i < t->num_targets; i++) {
1074 struct dm_target *ti = dm_table_get_target(t, i);
1075
1076 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1077 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1078
1079 mempool_needs_integrity |= ti->mempool_needs_integrity;
1080 }
1081 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
1082 front_pad = roundup(per_io_data_size,
1083 __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
1084
1085 io_front_pad = roundup(per_io_data_size,
1086 __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
1087 if (bioset_init(&pools->io_bs, pool_size, io_front_pad, bioset_flags))
1088 goto out_free_pools;
1089 if (mempool_needs_integrity &&
1090 bioset_integrity_create(&pools->io_bs, pool_size))
1091 goto out_free_pools;
1092 init_bs:
1093 if (bioset_init(&pools->bs, pool_size, front_pad, 0))
1094 goto out_free_pools;
1095 if (mempool_needs_integrity &&
1096 bioset_integrity_create(&pools->bs, pool_size))
1097 goto out_free_pools;
1098
1099 t->mempools = pools;
1100 return 0;
1101
1102 out_free_pools:
1103 dm_free_md_mempools(pools);
1104 return -ENOMEM;
1105 }
1106
setup_indexes(struct dm_table * t)1107 static int setup_indexes(struct dm_table *t)
1108 {
1109 int i;
1110 unsigned int total = 0;
1111 sector_t *indexes;
1112
1113 /* allocate the space for *all* the indexes */
1114 for (i = t->depth - 2; i >= 0; i--) {
1115 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1116 total += t->counts[i];
1117 }
1118
1119 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1120 if (!indexes)
1121 return -ENOMEM;
1122
1123 /* set up internal nodes, bottom-up */
1124 for (i = t->depth - 2; i >= 0; i--) {
1125 t->index[i] = indexes;
1126 indexes += (KEYS_PER_NODE * t->counts[i]);
1127 setup_btree_index(i, t);
1128 }
1129
1130 return 0;
1131 }
1132
1133 /*
1134 * Builds the btree to index the map.
1135 */
dm_table_build_index(struct dm_table * t)1136 static int dm_table_build_index(struct dm_table *t)
1137 {
1138 int r = 0;
1139 unsigned int leaf_nodes;
1140
1141 /* how many indexes will the btree have ? */
1142 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1143 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1144
1145 /* leaf layer has already been set up */
1146 t->counts[t->depth - 1] = leaf_nodes;
1147 t->index[t->depth - 1] = t->highs;
1148
1149 if (t->depth >= 2)
1150 r = setup_indexes(t);
1151
1152 return r;
1153 }
1154
1155 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1156
1157 struct dm_crypto_profile {
1158 struct blk_crypto_profile profile;
1159 struct mapped_device *md;
1160 };
1161
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1162 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1163 sector_t start, sector_t len, void *data)
1164 {
1165 const struct blk_crypto_key *key = data;
1166
1167 blk_crypto_evict_key(dev->bdev, key);
1168 return 0;
1169 }
1170
1171 /*
1172 * When an inline encryption key is evicted from a device-mapper device, evict
1173 * it from all the underlying devices.
1174 */
dm_keyslot_evict(struct blk_crypto_profile * profile,const struct blk_crypto_key * key,unsigned int slot)1175 static int dm_keyslot_evict(struct blk_crypto_profile *profile,
1176 const struct blk_crypto_key *key, unsigned int slot)
1177 {
1178 struct mapped_device *md =
1179 container_of(profile, struct dm_crypto_profile, profile)->md;
1180 struct dm_table *t;
1181 int srcu_idx;
1182
1183 t = dm_get_live_table(md, &srcu_idx);
1184 if (!t)
1185 return 0;
1186
1187 for (unsigned int i = 0; i < t->num_targets; i++) {
1188 struct dm_target *ti = dm_table_get_target(t, i);
1189
1190 if (!ti->type->iterate_devices)
1191 continue;
1192 ti->type->iterate_devices(ti, dm_keyslot_evict_callback,
1193 (void *)key);
1194 }
1195
1196 dm_put_live_table(md, srcu_idx);
1197 return 0;
1198 }
1199
1200 static int
device_intersect_crypto_capabilities(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1201 device_intersect_crypto_capabilities(struct dm_target *ti, struct dm_dev *dev,
1202 sector_t start, sector_t len, void *data)
1203 {
1204 struct blk_crypto_profile *parent = data;
1205 struct blk_crypto_profile *child =
1206 bdev_get_queue(dev->bdev)->crypto_profile;
1207
1208 blk_crypto_intersect_capabilities(parent, child);
1209 return 0;
1210 }
1211
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1212 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1213 {
1214 struct dm_crypto_profile *dmcp = container_of(profile,
1215 struct dm_crypto_profile,
1216 profile);
1217
1218 if (!profile)
1219 return;
1220
1221 blk_crypto_profile_destroy(profile);
1222 kfree(dmcp);
1223 }
1224
dm_table_destroy_crypto_profile(struct dm_table * t)1225 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1226 {
1227 dm_destroy_crypto_profile(t->crypto_profile);
1228 t->crypto_profile = NULL;
1229 }
1230
1231 /*
1232 * Constructs and initializes t->crypto_profile with a crypto profile that
1233 * represents the common set of crypto capabilities of the devices described by
1234 * the dm_table. However, if the constructed crypto profile doesn't support all
1235 * crypto capabilities that are supported by the current mapped_device, it
1236 * returns an error instead, since we don't support removing crypto capabilities
1237 * on table changes. Finally, if the constructed crypto profile is "empty" (has
1238 * no crypto capabilities at all), it just sets t->crypto_profile to NULL.
1239 */
dm_table_construct_crypto_profile(struct dm_table * t)1240 static int dm_table_construct_crypto_profile(struct dm_table *t)
1241 {
1242 struct dm_crypto_profile *dmcp;
1243 struct blk_crypto_profile *profile;
1244 unsigned int i;
1245 bool empty_profile = true;
1246
1247 dmcp = kmalloc(sizeof(*dmcp), GFP_KERNEL);
1248 if (!dmcp)
1249 return -ENOMEM;
1250 dmcp->md = t->md;
1251
1252 profile = &dmcp->profile;
1253 blk_crypto_profile_init(profile, 0);
1254 profile->ll_ops.keyslot_evict = dm_keyslot_evict;
1255 profile->max_dun_bytes_supported = UINT_MAX;
1256 memset(profile->modes_supported, 0xFF,
1257 sizeof(profile->modes_supported));
1258
1259 for (i = 0; i < t->num_targets; i++) {
1260 struct dm_target *ti = dm_table_get_target(t, i);
1261
1262 if (!dm_target_passes_crypto(ti->type)) {
1263 blk_crypto_intersect_capabilities(profile, NULL);
1264 break;
1265 }
1266 if (!ti->type->iterate_devices)
1267 continue;
1268 ti->type->iterate_devices(ti,
1269 device_intersect_crypto_capabilities,
1270 profile);
1271 }
1272
1273 if (t->md->queue &&
1274 !blk_crypto_has_capabilities(profile,
1275 t->md->queue->crypto_profile)) {
1276 DMERR("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1277 dm_destroy_crypto_profile(profile);
1278 return -EINVAL;
1279 }
1280
1281 /*
1282 * If the new profile doesn't actually support any crypto capabilities,
1283 * we may as well represent it with a NULL profile.
1284 */
1285 for (i = 0; i < ARRAY_SIZE(profile->modes_supported); i++) {
1286 if (profile->modes_supported[i]) {
1287 empty_profile = false;
1288 break;
1289 }
1290 }
1291
1292 if (empty_profile) {
1293 dm_destroy_crypto_profile(profile);
1294 profile = NULL;
1295 }
1296
1297 /*
1298 * t->crypto_profile is only set temporarily while the table is being
1299 * set up, and it gets set to NULL after the profile has been
1300 * transferred to the request_queue.
1301 */
1302 t->crypto_profile = profile;
1303
1304 return 0;
1305 }
1306
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1307 static void dm_update_crypto_profile(struct request_queue *q,
1308 struct dm_table *t)
1309 {
1310 if (!t->crypto_profile)
1311 return;
1312
1313 /* Make the crypto profile less restrictive. */
1314 if (!q->crypto_profile) {
1315 blk_crypto_register(t->crypto_profile, q);
1316 } else {
1317 blk_crypto_update_capabilities(q->crypto_profile,
1318 t->crypto_profile);
1319 dm_destroy_crypto_profile(t->crypto_profile);
1320 }
1321 t->crypto_profile = NULL;
1322 }
1323
1324 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1325
dm_table_construct_crypto_profile(struct dm_table * t)1326 static int dm_table_construct_crypto_profile(struct dm_table *t)
1327 {
1328 return 0;
1329 }
1330
dm_destroy_crypto_profile(struct blk_crypto_profile * profile)1331 void dm_destroy_crypto_profile(struct blk_crypto_profile *profile)
1332 {
1333 }
1334
dm_table_destroy_crypto_profile(struct dm_table * t)1335 static void dm_table_destroy_crypto_profile(struct dm_table *t)
1336 {
1337 }
1338
dm_update_crypto_profile(struct request_queue * q,struct dm_table * t)1339 static void dm_update_crypto_profile(struct request_queue *q,
1340 struct dm_table *t)
1341 {
1342 }
1343
1344 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1345
1346 /*
1347 * Prepares the table for use by building the indices,
1348 * setting the type, and allocating mempools.
1349 */
dm_table_complete(struct dm_table * t)1350 int dm_table_complete(struct dm_table *t)
1351 {
1352 int r;
1353
1354 r = dm_table_determine_type(t);
1355 if (r) {
1356 DMERR("unable to determine table type");
1357 return r;
1358 }
1359
1360 r = dm_table_build_index(t);
1361 if (r) {
1362 DMERR("unable to build btrees");
1363 return r;
1364 }
1365
1366 r = dm_table_construct_crypto_profile(t);
1367 if (r) {
1368 DMERR("could not construct crypto profile.");
1369 return r;
1370 }
1371
1372 r = dm_table_alloc_md_mempools(t, t->md);
1373 if (r)
1374 DMERR("unable to allocate mempools");
1375
1376 return r;
1377 }
1378
1379 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1380 void dm_table_event_callback(struct dm_table *t,
1381 void (*fn)(void *), void *context)
1382 {
1383 mutex_lock(&_event_lock);
1384 t->event_fn = fn;
1385 t->event_context = context;
1386 mutex_unlock(&_event_lock);
1387 }
1388
dm_table_event(struct dm_table * t)1389 void dm_table_event(struct dm_table *t)
1390 {
1391 mutex_lock(&_event_lock);
1392 if (t->event_fn)
1393 t->event_fn(t->event_context);
1394 mutex_unlock(&_event_lock);
1395 }
1396 EXPORT_SYMBOL(dm_table_event);
1397
dm_table_get_size(struct dm_table * t)1398 inline sector_t dm_table_get_size(struct dm_table *t)
1399 {
1400 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1401 }
1402 EXPORT_SYMBOL(dm_table_get_size);
1403
1404 /*
1405 * Search the btree for the correct target.
1406 *
1407 * Caller should check returned pointer for NULL
1408 * to trap I/O beyond end of device.
1409 */
dm_table_find_target(struct dm_table * t,sector_t sector)1410 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1411 {
1412 unsigned int l, n = 0, k = 0;
1413 sector_t *node;
1414
1415 if (unlikely(sector >= dm_table_get_size(t)))
1416 return NULL;
1417
1418 for (l = 0; l < t->depth; l++) {
1419 n = get_child(n, k);
1420 node = get_node(t, l, n);
1421
1422 for (k = 0; k < KEYS_PER_NODE; k++)
1423 if (node[k] >= sector)
1424 break;
1425 }
1426
1427 return &t->targets[(KEYS_PER_NODE * n) + k];
1428 }
1429
1430 /*
1431 * type->iterate_devices() should be called when the sanity check needs to
1432 * iterate and check all underlying data devices. iterate_devices() will
1433 * iterate all underlying data devices until it encounters a non-zero return
1434 * code, returned by whether the input iterate_devices_callout_fn, or
1435 * iterate_devices() itself internally.
1436 *
1437 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1438 * iterate multiple underlying devices internally, in which case a non-zero
1439 * return code returned by iterate_devices_callout_fn will stop the iteration
1440 * in advance.
1441 *
1442 * Cases requiring _any_ underlying device supporting some kind of attribute,
1443 * should use the iteration structure like dm_table_any_dev_attr(), or call
1444 * it directly. @func should handle semantics of positive examples, e.g.
1445 * capable of something.
1446 *
1447 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1448 * should use the iteration structure like dm_table_supports_nowait() or
1449 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1450 * uses an @anti_func that handle semantics of counter examples, e.g. not
1451 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1452 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1453 static bool dm_table_any_dev_attr(struct dm_table *t,
1454 iterate_devices_callout_fn func, void *data)
1455 {
1456 for (unsigned int i = 0; i < t->num_targets; i++) {
1457 struct dm_target *ti = dm_table_get_target(t, i);
1458
1459 if (ti->type->iterate_devices &&
1460 ti->type->iterate_devices(ti, func, data))
1461 return true;
1462 }
1463
1464 return false;
1465 }
1466
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1467 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1468 sector_t start, sector_t len, void *data)
1469 {
1470 unsigned int *num_devices = data;
1471
1472 (*num_devices)++;
1473
1474 return 0;
1475 }
1476
1477 /*
1478 * Check whether a table has no data devices attached using each
1479 * target's iterate_devices method.
1480 * Returns false if the result is unknown because a target doesn't
1481 * support iterate_devices.
1482 */
dm_table_has_no_data_devices(struct dm_table * t)1483 bool dm_table_has_no_data_devices(struct dm_table *t)
1484 {
1485 for (unsigned int i = 0; i < t->num_targets; i++) {
1486 struct dm_target *ti = dm_table_get_target(t, i);
1487 unsigned int num_devices = 0;
1488
1489 if (!ti->type->iterate_devices)
1490 return false;
1491
1492 ti->type->iterate_devices(ti, count_device, &num_devices);
1493 if (num_devices)
1494 return false;
1495 }
1496
1497 return true;
1498 }
1499
device_not_zoned(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1500 static int device_not_zoned(struct dm_target *ti, struct dm_dev *dev,
1501 sector_t start, sector_t len, void *data)
1502 {
1503 bool *zoned = data;
1504
1505 return bdev_is_zoned(dev->bdev) != *zoned;
1506 }
1507
device_is_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1508 static int device_is_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1509 sector_t start, sector_t len, void *data)
1510 {
1511 return bdev_is_zoned(dev->bdev);
1512 }
1513
1514 /*
1515 * Check the device zoned model based on the target feature flag. If the target
1516 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1517 * also accepted but all devices must have the same zoned model. If the target
1518 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1519 * zoned model with all zoned devices having the same zone size.
1520 */
dm_table_supports_zoned(struct dm_table * t,bool zoned)1521 static bool dm_table_supports_zoned(struct dm_table *t, bool zoned)
1522 {
1523 for (unsigned int i = 0; i < t->num_targets; i++) {
1524 struct dm_target *ti = dm_table_get_target(t, i);
1525
1526 /*
1527 * For the wildcard target (dm-error), if we do not have a
1528 * backing device, we must always return false. If we have a
1529 * backing device, the result must depend on checking zoned
1530 * model, like for any other target. So for this, check directly
1531 * if the target backing device is zoned as we get "false" when
1532 * dm-error was set without a backing device.
1533 */
1534 if (dm_target_is_wildcard(ti->type) &&
1535 !ti->type->iterate_devices(ti, device_is_zoned_model, NULL))
1536 return false;
1537
1538 if (dm_target_supports_zoned_hm(ti->type)) {
1539 if (!ti->type->iterate_devices ||
1540 ti->type->iterate_devices(ti, device_not_zoned,
1541 &zoned))
1542 return false;
1543 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1544 if (zoned)
1545 return false;
1546 }
1547 }
1548
1549 return true;
1550 }
1551
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1552 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1553 sector_t start, sector_t len, void *data)
1554 {
1555 unsigned int *zone_sectors = data;
1556
1557 if (!bdev_is_zoned(dev->bdev))
1558 return 0;
1559 return bdev_zone_sectors(dev->bdev) != *zone_sectors;
1560 }
1561
1562 /*
1563 * Check consistency of zoned model and zone sectors across all targets. For
1564 * zone sectors, if the destination device is a zoned block device, it shall
1565 * have the specified zone_sectors.
1566 */
validate_hardware_zoned(struct dm_table * t,bool zoned,unsigned int zone_sectors)1567 static int validate_hardware_zoned(struct dm_table *t, bool zoned,
1568 unsigned int zone_sectors)
1569 {
1570 if (!zoned)
1571 return 0;
1572
1573 if (!dm_table_supports_zoned(t, zoned)) {
1574 DMERR("%s: zoned model is not consistent across all devices",
1575 dm_device_name(t->md));
1576 return -EINVAL;
1577 }
1578
1579 /* Check zone size validity and compatibility */
1580 if (!zone_sectors || !is_power_of_2(zone_sectors))
1581 return -EINVAL;
1582
1583 if (dm_table_any_dev_attr(t, device_not_matches_zone_sectors, &zone_sectors)) {
1584 DMERR("%s: zone sectors is not consistent across all zoned devices",
1585 dm_device_name(t->md));
1586 return -EINVAL;
1587 }
1588
1589 return 0;
1590 }
1591
1592 /*
1593 * Establish the new table's queue_limits and validate them.
1594 */
dm_calculate_queue_limits(struct dm_table * t,struct queue_limits * limits)1595 int dm_calculate_queue_limits(struct dm_table *t,
1596 struct queue_limits *limits)
1597 {
1598 struct queue_limits ti_limits;
1599 unsigned int zone_sectors = 0;
1600 bool zoned = false;
1601
1602 dm_set_stacking_limits(limits);
1603
1604 t->integrity_supported = true;
1605 for (unsigned int i = 0; i < t->num_targets; i++) {
1606 struct dm_target *ti = dm_table_get_target(t, i);
1607
1608 if (!dm_target_passes_integrity(ti->type))
1609 t->integrity_supported = false;
1610 }
1611
1612 for (unsigned int i = 0; i < t->num_targets; i++) {
1613 struct dm_target *ti = dm_table_get_target(t, i);
1614
1615 dm_set_stacking_limits(&ti_limits);
1616
1617 if (!ti->type->iterate_devices) {
1618 /* Set I/O hints portion of queue limits */
1619 if (ti->type->io_hints)
1620 ti->type->io_hints(ti, &ti_limits);
1621 goto combine_limits;
1622 }
1623
1624 /*
1625 * Combine queue limits of all the devices this target uses.
1626 */
1627 ti->type->iterate_devices(ti, dm_set_device_limits,
1628 &ti_limits);
1629
1630 if (!zoned && (ti_limits.features & BLK_FEAT_ZONED)) {
1631 /*
1632 * After stacking all limits, validate all devices
1633 * in table support this zoned model and zone sectors.
1634 */
1635 zoned = (ti_limits.features & BLK_FEAT_ZONED);
1636 zone_sectors = ti_limits.chunk_sectors;
1637 }
1638
1639 /* Set I/O hints portion of queue limits */
1640 if (ti->type->io_hints)
1641 ti->type->io_hints(ti, &ti_limits);
1642
1643 /*
1644 * Check each device area is consistent with the target's
1645 * overall queue limits.
1646 */
1647 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1648 &ti_limits))
1649 return -EINVAL;
1650
1651 combine_limits:
1652 /*
1653 * Merge this target's queue limits into the overall limits
1654 * for the table.
1655 */
1656 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1657 DMWARN("%s: adding target device (start sect %llu len %llu) "
1658 "caused an alignment inconsistency",
1659 dm_device_name(t->md),
1660 (unsigned long long) ti->begin,
1661 (unsigned long long) ti->len);
1662
1663 if (t->integrity_supported ||
1664 dm_target_has_integrity(ti->type)) {
1665 if (!queue_limits_stack_integrity(limits, &ti_limits)) {
1666 DMWARN("%s: adding target device (start sect %llu len %llu) "
1667 "disabled integrity support due to incompatibility",
1668 dm_device_name(t->md),
1669 (unsigned long long) ti->begin,
1670 (unsigned long long) ti->len);
1671 t->integrity_supported = false;
1672 }
1673 }
1674 }
1675
1676 /*
1677 * Verify that the zoned model and zone sectors, as determined before
1678 * any .io_hints override, are the same across all devices in the table.
1679 * - this is especially relevant if .io_hints is emulating a disk-managed
1680 * zoned model on host-managed zoned block devices.
1681 * BUT...
1682 */
1683 if (limits->features & BLK_FEAT_ZONED) {
1684 /*
1685 * ...IF the above limits stacking determined a zoned model
1686 * validate that all of the table's devices conform to it.
1687 */
1688 zoned = limits->features & BLK_FEAT_ZONED;
1689 zone_sectors = limits->chunk_sectors;
1690 }
1691 if (validate_hardware_zoned(t, zoned, zone_sectors))
1692 return -EINVAL;
1693
1694 return validate_hardware_logical_block_alignment(t, limits);
1695 }
1696
1697 /*
1698 * Check if a target requires flush support even if none of the underlying
1699 * devices need it (e.g. to persist target-specific metadata).
1700 */
dm_table_supports_flush(struct dm_table * t)1701 static bool dm_table_supports_flush(struct dm_table *t)
1702 {
1703 for (unsigned int i = 0; i < t->num_targets; i++) {
1704 struct dm_target *ti = dm_table_get_target(t, i);
1705
1706 if (ti->num_flush_bios && ti->flush_supported)
1707 return true;
1708 }
1709
1710 return false;
1711 }
1712
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1713 static int device_dax_write_cache_enabled(struct dm_target *ti,
1714 struct dm_dev *dev, sector_t start,
1715 sector_t len, void *data)
1716 {
1717 struct dax_device *dax_dev = dev->dax_dev;
1718
1719 if (!dax_dev)
1720 return false;
1721
1722 if (dax_write_cache_enabled(dax_dev))
1723 return true;
1724 return false;
1725 }
1726
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1727 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1728 sector_t start, sector_t len, void *data)
1729 {
1730 struct request_queue *q = bdev_get_queue(dev->bdev);
1731
1732 return !q->limits.max_write_zeroes_sectors;
1733 }
1734
dm_table_supports_write_zeroes(struct dm_table * t)1735 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1736 {
1737 for (unsigned int i = 0; i < t->num_targets; i++) {
1738 struct dm_target *ti = dm_table_get_target(t, i);
1739
1740 if (!ti->num_write_zeroes_bios)
1741 return false;
1742
1743 if (!ti->type->iterate_devices ||
1744 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1745 return false;
1746 }
1747
1748 return true;
1749 }
1750
dm_table_supports_nowait(struct dm_table * t)1751 static bool dm_table_supports_nowait(struct dm_table *t)
1752 {
1753 for (unsigned int i = 0; i < t->num_targets; i++) {
1754 struct dm_target *ti = dm_table_get_target(t, i);
1755
1756 if (!dm_target_supports_nowait(ti->type))
1757 return false;
1758 }
1759
1760 return true;
1761 }
1762
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1763 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1764 sector_t start, sector_t len, void *data)
1765 {
1766 return !bdev_max_discard_sectors(dev->bdev);
1767 }
1768
dm_table_supports_discards(struct dm_table * t)1769 static bool dm_table_supports_discards(struct dm_table *t)
1770 {
1771 for (unsigned int i = 0; i < t->num_targets; i++) {
1772 struct dm_target *ti = dm_table_get_target(t, i);
1773
1774 if (!ti->num_discard_bios)
1775 return false;
1776
1777 /*
1778 * Either the target provides discard support (as implied by setting
1779 * 'discards_supported') or it relies on _all_ data devices having
1780 * discard support.
1781 */
1782 if (!ti->discards_supported &&
1783 (!ti->type->iterate_devices ||
1784 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1785 return false;
1786 }
1787
1788 return true;
1789 }
1790
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1791 static int device_not_secure_erase_capable(struct dm_target *ti,
1792 struct dm_dev *dev, sector_t start,
1793 sector_t len, void *data)
1794 {
1795 return !bdev_max_secure_erase_sectors(dev->bdev);
1796 }
1797
dm_table_supports_secure_erase(struct dm_table * t)1798 static bool dm_table_supports_secure_erase(struct dm_table *t)
1799 {
1800 for (unsigned int i = 0; i < t->num_targets; i++) {
1801 struct dm_target *ti = dm_table_get_target(t, i);
1802
1803 if (!ti->num_secure_erase_bios)
1804 return false;
1805
1806 if (!ti->type->iterate_devices ||
1807 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1808 return false;
1809 }
1810
1811 return true;
1812 }
1813
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1814 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1815 struct queue_limits *limits)
1816 {
1817 int r;
1818
1819 if (!dm_table_supports_nowait(t))
1820 limits->features &= ~BLK_FEAT_NOWAIT;
1821
1822 /*
1823 * The current polling impementation does not support request based
1824 * stacking.
1825 */
1826 if (!__table_type_bio_based(t->type))
1827 limits->features &= ~BLK_FEAT_POLL;
1828
1829 if (!dm_table_supports_discards(t)) {
1830 limits->max_hw_discard_sectors = 0;
1831 limits->discard_granularity = 0;
1832 limits->discard_alignment = 0;
1833 }
1834
1835 if (!dm_table_supports_write_zeroes(t))
1836 limits->max_write_zeroes_sectors = 0;
1837
1838 if (!dm_table_supports_secure_erase(t))
1839 limits->max_secure_erase_sectors = 0;
1840
1841 if (dm_table_supports_flush(t))
1842 limits->features |= BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA;
1843
1844 if (dm_table_supports_dax(t, device_not_dax_capable)) {
1845 limits->features |= BLK_FEAT_DAX;
1846 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable))
1847 set_dax_synchronous(t->md->dax_dev);
1848 } else
1849 limits->features &= ~BLK_FEAT_DAX;
1850
1851 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
1852 dax_write_cache(t->md->dax_dev, true);
1853
1854 /* For a zoned table, setup the zone related queue attributes. */
1855 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1856 (limits->features & BLK_FEAT_ZONED)) {
1857 r = dm_set_zones_restrictions(t, q, limits);
1858 if (r)
1859 return r;
1860 }
1861
1862 r = queue_limits_set(q, limits);
1863 if (r)
1864 return r;
1865
1866 /*
1867 * Now that the limits are set, check the zones mapped by the table
1868 * and setup the resources for zone append emulation if necessary.
1869 */
1870 if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
1871 (limits->features & BLK_FEAT_ZONED)) {
1872 r = dm_revalidate_zones(t, q);
1873 if (r)
1874 return r;
1875 }
1876
1877 dm_update_crypto_profile(q, t);
1878 return 0;
1879 }
1880
dm_table_get_devices(struct dm_table * t)1881 struct list_head *dm_table_get_devices(struct dm_table *t)
1882 {
1883 return &t->devices;
1884 }
1885
dm_table_get_mode(struct dm_table * t)1886 blk_mode_t dm_table_get_mode(struct dm_table *t)
1887 {
1888 return t->mode;
1889 }
1890 EXPORT_SYMBOL(dm_table_get_mode);
1891
1892 enum suspend_mode {
1893 PRESUSPEND,
1894 PRESUSPEND_UNDO,
1895 POSTSUSPEND,
1896 };
1897
suspend_targets(struct dm_table * t,enum suspend_mode mode)1898 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
1899 {
1900 lockdep_assert_held(&t->md->suspend_lock);
1901
1902 for (unsigned int i = 0; i < t->num_targets; i++) {
1903 struct dm_target *ti = dm_table_get_target(t, i);
1904
1905 switch (mode) {
1906 case PRESUSPEND:
1907 if (ti->type->presuspend)
1908 ti->type->presuspend(ti);
1909 break;
1910 case PRESUSPEND_UNDO:
1911 if (ti->type->presuspend_undo)
1912 ti->type->presuspend_undo(ti);
1913 break;
1914 case POSTSUSPEND:
1915 if (ti->type->postsuspend)
1916 ti->type->postsuspend(ti);
1917 break;
1918 }
1919 }
1920 }
1921
dm_table_presuspend_targets(struct dm_table * t)1922 void dm_table_presuspend_targets(struct dm_table *t)
1923 {
1924 if (!t)
1925 return;
1926
1927 suspend_targets(t, PRESUSPEND);
1928 }
1929
dm_table_presuspend_undo_targets(struct dm_table * t)1930 void dm_table_presuspend_undo_targets(struct dm_table *t)
1931 {
1932 if (!t)
1933 return;
1934
1935 suspend_targets(t, PRESUSPEND_UNDO);
1936 }
1937
dm_table_postsuspend_targets(struct dm_table * t)1938 void dm_table_postsuspend_targets(struct dm_table *t)
1939 {
1940 if (!t)
1941 return;
1942
1943 suspend_targets(t, POSTSUSPEND);
1944 }
1945
dm_table_resume_targets(struct dm_table * t)1946 int dm_table_resume_targets(struct dm_table *t)
1947 {
1948 unsigned int i;
1949 int r = 0;
1950
1951 lockdep_assert_held(&t->md->suspend_lock);
1952
1953 for (i = 0; i < t->num_targets; i++) {
1954 struct dm_target *ti = dm_table_get_target(t, i);
1955
1956 if (!ti->type->preresume)
1957 continue;
1958
1959 r = ti->type->preresume(ti);
1960 if (r) {
1961 DMERR("%s: %s: preresume failed, error = %d",
1962 dm_device_name(t->md), ti->type->name, r);
1963 return r;
1964 }
1965 }
1966
1967 for (i = 0; i < t->num_targets; i++) {
1968 struct dm_target *ti = dm_table_get_target(t, i);
1969
1970 if (ti->type->resume)
1971 ti->type->resume(ti);
1972 }
1973
1974 return 0;
1975 }
1976
dm_table_get_md(struct dm_table * t)1977 struct mapped_device *dm_table_get_md(struct dm_table *t)
1978 {
1979 return t->md;
1980 }
1981 EXPORT_SYMBOL(dm_table_get_md);
1982
dm_table_device_name(struct dm_table * t)1983 const char *dm_table_device_name(struct dm_table *t)
1984 {
1985 return dm_device_name(t->md);
1986 }
1987 EXPORT_SYMBOL_GPL(dm_table_device_name);
1988
dm_table_run_md_queue_async(struct dm_table * t)1989 void dm_table_run_md_queue_async(struct dm_table *t)
1990 {
1991 if (!dm_table_request_based(t))
1992 return;
1993
1994 if (t->md->queue)
1995 blk_mq_run_hw_queues(t->md->queue, true);
1996 }
1997 EXPORT_SYMBOL(dm_table_run_md_queue_async);
1998
1999