1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 *
6 * This file is released under the GPL.
7 */
8
9 #include "dm-core.h"
10 #include "dm-rq.h"
11 #include "dm-uevent.h"
12 #include "dm-ima.h"
13
14 #include <linux/bio-integrity.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/signal.h>
20 #include <linux/blkpg.h>
21 #include <linux/bio.h>
22 #include <linux/mempool.h>
23 #include <linux/dax.h>
24 #include <linux/slab.h>
25 #include <linux/idr.h>
26 #include <linux/uio.h>
27 #include <linux/hdreg.h>
28 #include <linux/delay.h>
29 #include <linux/wait.h>
30 #include <linux/pr.h>
31 #include <linux/refcount.h>
32 #include <linux/part_stat.h>
33 #include <linux/blk-crypto.h>
34 #include <linux/blk-crypto-profile.h>
35
36 #define DM_MSG_PREFIX "core"
37
38 /*
39 * Cookies are numeric values sent with CHANGE and REMOVE
40 * uevents while resuming, removing or renaming the device.
41 */
42 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
43 #define DM_COOKIE_LENGTH 24
44
45 /*
46 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
47 * dm_io into one list, and reuse bio->bi_private as the list head. Before
48 * ending this fs bio, we will recover its ->bi_private.
49 */
50 #define REQ_DM_POLL_LIST REQ_DRV
51
52 static const char *_name = DM_NAME;
53
54 static unsigned int major;
55 static unsigned int _major;
56
57 static DEFINE_IDR(_minor_idr);
58
59 static DEFINE_SPINLOCK(_minor_lock);
60
61 static void do_deferred_remove(struct work_struct *w);
62
63 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
64
65 static struct workqueue_struct *deferred_remove_workqueue;
66
67 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
68 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
69
dm_issue_global_event(void)70 void dm_issue_global_event(void)
71 {
72 atomic_inc(&dm_global_event_nr);
73 wake_up(&dm_global_eventq);
74 }
75
76 DEFINE_STATIC_KEY_FALSE(stats_enabled);
77 DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
78 DEFINE_STATIC_KEY_FALSE(zoned_enabled);
79
80 /*
81 * One of these is allocated (on-stack) per original bio.
82 */
83 struct clone_info {
84 struct dm_table *map;
85 struct bio *bio;
86 struct dm_io *io;
87 sector_t sector;
88 unsigned int sector_count;
89 bool is_abnormal_io:1;
90 bool submit_as_polled:1;
91 };
92
clone_to_tio(struct bio * clone)93 static inline struct dm_target_io *clone_to_tio(struct bio *clone)
94 {
95 return container_of(clone, struct dm_target_io, clone);
96 }
97
dm_per_bio_data(struct bio * bio,size_t data_size)98 void *dm_per_bio_data(struct bio *bio, size_t data_size)
99 {
100 if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
101 return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
102 return (char *)bio - DM_IO_BIO_OFFSET - data_size;
103 }
104 EXPORT_SYMBOL_GPL(dm_per_bio_data);
105
dm_bio_from_per_bio_data(void * data,size_t data_size)106 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
107 {
108 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
109
110 if (io->magic == DM_IO_MAGIC)
111 return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
112 BUG_ON(io->magic != DM_TIO_MAGIC);
113 return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
114 }
115 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
116
dm_bio_get_target_bio_nr(const struct bio * bio)117 unsigned int dm_bio_get_target_bio_nr(const struct bio *bio)
118 {
119 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
120 }
121 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
122
123 #define MINOR_ALLOCED ((void *)-1)
124
125 #define DM_NUMA_NODE NUMA_NO_NODE
126 static int dm_numa_node = DM_NUMA_NODE;
127
128 #define DEFAULT_SWAP_BIOS (8 * 1048576 / PAGE_SIZE)
129 static int swap_bios = DEFAULT_SWAP_BIOS;
get_swap_bios(void)130 static int get_swap_bios(void)
131 {
132 int latch = READ_ONCE(swap_bios);
133
134 if (unlikely(latch <= 0))
135 latch = DEFAULT_SWAP_BIOS;
136 return latch;
137 }
138
139 struct table_device {
140 struct list_head list;
141 refcount_t count;
142 struct dm_dev dm_dev;
143 };
144
145 /*
146 * Bio-based DM's mempools' reserved IOs set by the user.
147 */
148 #define RESERVED_BIO_BASED_IOS 16
149 static unsigned int reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
150
__dm_get_module_param_int(int * module_param,int min,int max)151 static int __dm_get_module_param_int(int *module_param, int min, int max)
152 {
153 int param = READ_ONCE(*module_param);
154 int modified_param = 0;
155 bool modified = true;
156
157 if (param < min)
158 modified_param = min;
159 else if (param > max)
160 modified_param = max;
161 else
162 modified = false;
163
164 if (modified) {
165 (void)cmpxchg(module_param, param, modified_param);
166 param = modified_param;
167 }
168
169 return param;
170 }
171
__dm_get_module_param(unsigned int * module_param,unsigned int def,unsigned int max)172 unsigned int __dm_get_module_param(unsigned int *module_param, unsigned int def, unsigned int max)
173 {
174 unsigned int param = READ_ONCE(*module_param);
175 unsigned int modified_param = 0;
176
177 if (!param)
178 modified_param = def;
179 else if (param > max)
180 modified_param = max;
181
182 if (modified_param) {
183 (void)cmpxchg(module_param, param, modified_param);
184 param = modified_param;
185 }
186
187 return param;
188 }
189
dm_get_reserved_bio_based_ios(void)190 unsigned int dm_get_reserved_bio_based_ios(void)
191 {
192 return __dm_get_module_param(&reserved_bio_based_ios,
193 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
194 }
195 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
196
dm_get_numa_node(void)197 static unsigned int dm_get_numa_node(void)
198 {
199 return __dm_get_module_param_int(&dm_numa_node,
200 DM_NUMA_NODE, num_online_nodes() - 1);
201 }
202
local_init(void)203 static int __init local_init(void)
204 {
205 int r;
206
207 r = dm_uevent_init();
208 if (r)
209 return r;
210
211 deferred_remove_workqueue = alloc_ordered_workqueue("kdmremove", 0);
212 if (!deferred_remove_workqueue) {
213 r = -ENOMEM;
214 goto out_uevent_exit;
215 }
216
217 _major = major;
218 r = register_blkdev(_major, _name);
219 if (r < 0)
220 goto out_free_workqueue;
221
222 if (!_major)
223 _major = r;
224
225 return 0;
226
227 out_free_workqueue:
228 destroy_workqueue(deferred_remove_workqueue);
229 out_uevent_exit:
230 dm_uevent_exit();
231
232 return r;
233 }
234
local_exit(void)235 static void local_exit(void)
236 {
237 destroy_workqueue(deferred_remove_workqueue);
238
239 unregister_blkdev(_major, _name);
240 dm_uevent_exit();
241
242 _major = 0;
243
244 DMINFO("cleaned up");
245 }
246
247 static int (*_inits[])(void) __initdata = {
248 local_init,
249 dm_target_init,
250 dm_linear_init,
251 dm_stripe_init,
252 dm_io_init,
253 dm_kcopyd_init,
254 dm_interface_init,
255 dm_statistics_init,
256 };
257
258 static void (*_exits[])(void) = {
259 local_exit,
260 dm_target_exit,
261 dm_linear_exit,
262 dm_stripe_exit,
263 dm_io_exit,
264 dm_kcopyd_exit,
265 dm_interface_exit,
266 dm_statistics_exit,
267 };
268
dm_init(void)269 static int __init dm_init(void)
270 {
271 const int count = ARRAY_SIZE(_inits);
272 int r, i;
273
274 #if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
275 DMINFO("CONFIG_IMA_DISABLE_HTABLE is disabled."
276 " Duplicate IMA measurements will not be recorded in the IMA log.");
277 #endif
278
279 for (i = 0; i < count; i++) {
280 r = _inits[i]();
281 if (r)
282 goto bad;
283 }
284
285 return 0;
286 bad:
287 while (i--)
288 _exits[i]();
289
290 return r;
291 }
292
dm_exit(void)293 static void __exit dm_exit(void)
294 {
295 int i = ARRAY_SIZE(_exits);
296
297 while (i--)
298 _exits[i]();
299
300 /*
301 * Should be empty by this point.
302 */
303 idr_destroy(&_minor_idr);
304 }
305
306 /*
307 * Block device functions
308 */
dm_deleting_md(struct mapped_device * md)309 int dm_deleting_md(struct mapped_device *md)
310 {
311 return test_bit(DMF_DELETING, &md->flags);
312 }
313
dm_blk_open(struct gendisk * disk,blk_mode_t mode)314 static int dm_blk_open(struct gendisk *disk, blk_mode_t mode)
315 {
316 struct mapped_device *md;
317
318 spin_lock(&_minor_lock);
319
320 md = disk->private_data;
321 if (!md)
322 goto out;
323
324 if (test_bit(DMF_FREEING, &md->flags) ||
325 dm_deleting_md(md)) {
326 md = NULL;
327 goto out;
328 }
329
330 dm_get(md);
331 atomic_inc(&md->open_count);
332 out:
333 spin_unlock(&_minor_lock);
334
335 return md ? 0 : -ENXIO;
336 }
337
dm_blk_close(struct gendisk * disk)338 static void dm_blk_close(struct gendisk *disk)
339 {
340 struct mapped_device *md;
341
342 spin_lock(&_minor_lock);
343
344 md = disk->private_data;
345 if (WARN_ON(!md))
346 goto out;
347
348 if (atomic_dec_and_test(&md->open_count) &&
349 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
350 queue_work(deferred_remove_workqueue, &deferred_remove_work);
351
352 dm_put(md);
353 out:
354 spin_unlock(&_minor_lock);
355 }
356
dm_open_count(struct mapped_device * md)357 int dm_open_count(struct mapped_device *md)
358 {
359 return atomic_read(&md->open_count);
360 }
361
362 /*
363 * Guarantees nothing is using the device before it's deleted.
364 */
dm_lock_for_deletion(struct mapped_device * md,bool mark_deferred,bool only_deferred)365 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
366 {
367 int r = 0;
368
369 spin_lock(&_minor_lock);
370
371 if (dm_open_count(md)) {
372 r = -EBUSY;
373 if (mark_deferred)
374 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
375 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
376 r = -EEXIST;
377 else
378 set_bit(DMF_DELETING, &md->flags);
379
380 spin_unlock(&_minor_lock);
381
382 return r;
383 }
384
dm_cancel_deferred_remove(struct mapped_device * md)385 int dm_cancel_deferred_remove(struct mapped_device *md)
386 {
387 int r = 0;
388
389 spin_lock(&_minor_lock);
390
391 if (test_bit(DMF_DELETING, &md->flags))
392 r = -EBUSY;
393 else
394 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
395
396 spin_unlock(&_minor_lock);
397
398 return r;
399 }
400
do_deferred_remove(struct work_struct * w)401 static void do_deferred_remove(struct work_struct *w)
402 {
403 dm_deferred_remove();
404 }
405
dm_blk_getgeo(struct gendisk * disk,struct hd_geometry * geo)406 static int dm_blk_getgeo(struct gendisk *disk, struct hd_geometry *geo)
407 {
408 struct mapped_device *md = disk->private_data;
409
410 return dm_get_geometry(md, geo);
411 }
412
dm_prepare_ioctl(struct mapped_device * md,int * srcu_idx,struct block_device ** bdev,unsigned int cmd,unsigned long arg,bool * forward)413 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
414 struct block_device **bdev, unsigned int cmd,
415 unsigned long arg, bool *forward)
416 {
417 struct dm_target *ti;
418 struct dm_table *map;
419 int r;
420
421 retry:
422 r = -ENOTTY;
423 map = dm_get_live_table(md, srcu_idx);
424 if (!map || !dm_table_get_size(map))
425 return r;
426
427 /* We only support devices that have a single target */
428 if (map->num_targets != 1)
429 return r;
430
431 ti = dm_table_get_target(map, 0);
432 if (!ti->type->prepare_ioctl)
433 return r;
434
435 if (dm_suspended_md(md))
436 return -EAGAIN;
437
438 r = ti->type->prepare_ioctl(ti, bdev, cmd, arg, forward);
439 if (r == -ENOTCONN && *forward && !fatal_signal_pending(current)) {
440 dm_put_live_table(md, *srcu_idx);
441 fsleep(10000);
442 goto retry;
443 }
444
445 return r;
446 }
447
dm_unprepare_ioctl(struct mapped_device * md,int srcu_idx)448 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
449 {
450 dm_put_live_table(md, srcu_idx);
451 }
452
dm_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)453 static int dm_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
454 unsigned int cmd, unsigned long arg)
455 {
456 struct mapped_device *md = bdev->bd_disk->private_data;
457 int r, srcu_idx;
458 bool forward = true;
459
460 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, cmd, arg, &forward);
461 if (!forward || r < 0)
462 goto out;
463
464 if (r > 0) {
465 /*
466 * Target determined this ioctl is being issued against a
467 * subset of the parent bdev; require extra privileges.
468 */
469 if (!capable(CAP_SYS_RAWIO)) {
470 DMDEBUG_LIMIT(
471 "%s: sending ioctl %x to DM device without required privilege.",
472 current->comm, cmd);
473 r = -ENOIOCTLCMD;
474 goto out;
475 }
476 }
477
478 if (!bdev->bd_disk->fops->ioctl)
479 r = -ENOTTY;
480 else
481 r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
482 out:
483 dm_unprepare_ioctl(md, srcu_idx);
484 return r;
485 }
486
dm_start_time_ns_from_clone(struct bio * bio)487 u64 dm_start_time_ns_from_clone(struct bio *bio)
488 {
489 return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
490 }
491 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
492
dm_io_sectors(struct dm_io * io,struct bio * bio)493 static inline unsigned int dm_io_sectors(struct dm_io *io, struct bio *bio)
494 {
495 /*
496 * If REQ_PREFLUSH set, don't account payload, it will be
497 * submitted (and accounted) after this flush completes.
498 */
499 if (io->requeue_flush_with_data)
500 return 0;
501 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
502 return io->sectors;
503 return bio_sectors(bio);
504 }
505
dm_io_acct(struct dm_io * io,bool end)506 static void dm_io_acct(struct dm_io *io, bool end)
507 {
508 struct bio *bio = io->orig_bio;
509
510 if (dm_io_flagged(io, DM_IO_BLK_STAT)) {
511 if (!end)
512 bdev_start_io_acct(bio->bi_bdev, bio_op(bio),
513 io->start_time);
514 else
515 bdev_end_io_acct(bio->bi_bdev, bio_op(bio),
516 dm_io_sectors(io, bio),
517 io->start_time);
518 }
519
520 if (static_branch_unlikely(&stats_enabled) &&
521 unlikely(dm_stats_used(&io->md->stats))) {
522 sector_t sector;
523
524 if (unlikely(dm_io_flagged(io, DM_IO_WAS_SPLIT)))
525 sector = bio_end_sector(bio) - io->sector_offset;
526 else
527 sector = bio->bi_iter.bi_sector;
528
529 dm_stats_account_io(&io->md->stats, bio_data_dir(bio),
530 sector, dm_io_sectors(io, bio),
531 end, io->start_time, &io->stats_aux);
532 }
533 }
534
__dm_start_io_acct(struct dm_io * io)535 static void __dm_start_io_acct(struct dm_io *io)
536 {
537 dm_io_acct(io, false);
538 }
539
dm_start_io_acct(struct dm_io * io,struct bio * clone)540 static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
541 {
542 /*
543 * Ensure IO accounting is only ever started once.
544 */
545 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
546 return;
547
548 /* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
549 if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
550 dm_io_set_flag(io, DM_IO_ACCOUNTED);
551 } else {
552 unsigned long flags;
553 /* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
554 spin_lock_irqsave(&io->lock, flags);
555 if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
556 spin_unlock_irqrestore(&io->lock, flags);
557 return;
558 }
559 dm_io_set_flag(io, DM_IO_ACCOUNTED);
560 spin_unlock_irqrestore(&io->lock, flags);
561 }
562
563 __dm_start_io_acct(io);
564 }
565
dm_end_io_acct(struct dm_io * io)566 static void dm_end_io_acct(struct dm_io *io)
567 {
568 dm_io_acct(io, true);
569 }
570
alloc_io(struct mapped_device * md,struct bio * bio,gfp_t gfp_mask)571 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio, gfp_t gfp_mask)
572 {
573 struct dm_io *io;
574 struct dm_target_io *tio;
575 struct bio *clone;
576
577 clone = bio_alloc_clone(NULL, bio, gfp_mask, &md->mempools->io_bs);
578 if (unlikely(!clone))
579 return NULL;
580 tio = clone_to_tio(clone);
581 tio->flags = 0;
582 dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
583 tio->io = NULL;
584
585 io = container_of(tio, struct dm_io, tio);
586 io->magic = DM_IO_MAGIC;
587 io->status = BLK_STS_OK;
588 io->requeue_flush_with_data = false;
589
590 /* one ref is for submission, the other is for completion */
591 atomic_set(&io->io_count, 2);
592 this_cpu_inc(*md->pending_io);
593 io->orig_bio = bio;
594 io->md = md;
595 spin_lock_init(&io->lock);
596 io->start_time = jiffies;
597 io->flags = 0;
598 if (blk_queue_io_stat(md->queue))
599 dm_io_set_flag(io, DM_IO_BLK_STAT);
600
601 if (static_branch_unlikely(&stats_enabled) &&
602 unlikely(dm_stats_used(&md->stats)))
603 dm_stats_record_start(&md->stats, &io->stats_aux);
604
605 return io;
606 }
607
free_io(struct dm_io * io)608 static void free_io(struct dm_io *io)
609 {
610 bio_put(&io->tio.clone);
611 }
612
alloc_tio(struct clone_info * ci,struct dm_target * ti,unsigned int target_bio_nr,unsigned int * len,gfp_t gfp_mask)613 static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
614 unsigned int target_bio_nr, unsigned int *len, gfp_t gfp_mask)
615 {
616 struct mapped_device *md = ci->io->md;
617 struct dm_target_io *tio;
618 struct bio *clone;
619
620 if (!ci->io->tio.io) {
621 /* the dm_target_io embedded in ci->io is available */
622 tio = &ci->io->tio;
623 /* alloc_io() already initialized embedded clone */
624 clone = &tio->clone;
625 } else {
626 clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
627 &md->mempools->bs);
628 if (!clone)
629 return NULL;
630
631 /* REQ_DM_POLL_LIST shouldn't be inherited */
632 clone->bi_opf &= ~REQ_DM_POLL_LIST;
633
634 tio = clone_to_tio(clone);
635 tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
636 }
637
638 tio->magic = DM_TIO_MAGIC;
639 tio->io = ci->io;
640 tio->ti = ti;
641 tio->target_bio_nr = target_bio_nr;
642 tio->len_ptr = len;
643 tio->old_sector = 0;
644
645 /* Set default bdev, but target must bio_set_dev() before issuing IO */
646 clone->bi_bdev = md->disk->part0;
647 if (likely(ti != NULL) && unlikely(ti->needs_bio_set_dev))
648 bio_set_dev(clone, md->disk->part0);
649
650 if (len) {
651 clone->bi_iter.bi_size = to_bytes(*len);
652 if (bio_integrity(clone))
653 bio_integrity_trim(clone);
654 }
655
656 return clone;
657 }
658
free_tio(struct bio * clone)659 static void free_tio(struct bio *clone)
660 {
661 if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
662 return;
663 bio_put(clone);
664 }
665
666 /*
667 * Add the bio to the list of deferred io.
668 */
queue_io(struct mapped_device * md,struct bio * bio)669 static void queue_io(struct mapped_device *md, struct bio *bio)
670 {
671 unsigned long flags;
672
673 spin_lock_irqsave(&md->deferred_lock, flags);
674 bio_list_add(&md->deferred, bio);
675 spin_unlock_irqrestore(&md->deferred_lock, flags);
676 queue_work(md->wq, &md->work);
677 }
678
679 /*
680 * Everyone (including functions in this file), should use this
681 * function to access the md->map field, and make sure they call
682 * dm_put_live_table() when finished.
683 */
dm_get_live_table(struct mapped_device * md,int * srcu_idx)684 struct dm_table *dm_get_live_table(struct mapped_device *md,
685 int *srcu_idx) __acquires(md->io_barrier)
686 {
687 *srcu_idx = srcu_read_lock(&md->io_barrier);
688
689 return srcu_dereference(md->map, &md->io_barrier);
690 }
691
dm_put_live_table(struct mapped_device * md,int srcu_idx)692 void dm_put_live_table(struct mapped_device *md,
693 int srcu_idx) __releases(md->io_barrier)
694 {
695 srcu_read_unlock(&md->io_barrier, srcu_idx);
696 }
697
dm_sync_table(struct mapped_device * md)698 void dm_sync_table(struct mapped_device *md)
699 {
700 synchronize_srcu(&md->io_barrier);
701 synchronize_rcu_expedited();
702 }
703
704 /*
705 * A fast alternative to dm_get_live_table/dm_put_live_table.
706 * The caller must not block between these two functions.
707 */
dm_get_live_table_fast(struct mapped_device * md)708 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
709 {
710 rcu_read_lock();
711 return rcu_dereference(md->map);
712 }
713
dm_put_live_table_fast(struct mapped_device * md)714 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
715 {
716 rcu_read_unlock();
717 }
718
719 static char *_dm_claim_ptr = "I belong to device-mapper";
720
721 /*
722 * Open a table device so we can use it as a map destination.
723 */
open_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode)724 static struct table_device *open_table_device(struct mapped_device *md,
725 dev_t dev, blk_mode_t mode)
726 {
727 struct table_device *td;
728 struct file *bdev_file;
729 struct block_device *bdev;
730 u64 part_off;
731 int r;
732
733 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
734 if (!td)
735 return ERR_PTR(-ENOMEM);
736 refcount_set(&td->count, 1);
737
738 bdev_file = bdev_file_open_by_dev(dev, mode, _dm_claim_ptr, NULL);
739 if (IS_ERR(bdev_file)) {
740 r = PTR_ERR(bdev_file);
741 goto out_free_td;
742 }
743
744 bdev = file_bdev(bdev_file);
745
746 /*
747 * We can be called before the dm disk is added. In that case we can't
748 * register the holder relation here. It will be done once add_disk was
749 * called.
750 */
751 if (md->disk->slave_dir) {
752 r = bd_link_disk_holder(bdev, md->disk);
753 if (r)
754 goto out_blkdev_put;
755 }
756
757 td->dm_dev.mode = mode;
758 td->dm_dev.bdev = bdev;
759 td->dm_dev.bdev_file = bdev_file;
760 td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off,
761 NULL, NULL);
762 format_dev_t(td->dm_dev.name, dev);
763 list_add(&td->list, &md->table_devices);
764 return td;
765
766 out_blkdev_put:
767 __fput_sync(bdev_file);
768 out_free_td:
769 kfree(td);
770 return ERR_PTR(r);
771 }
772
773 /*
774 * Close a table device that we've been using.
775 */
close_table_device(struct table_device * td,struct mapped_device * md)776 static void close_table_device(struct table_device *td, struct mapped_device *md)
777 {
778 if (md->disk->slave_dir)
779 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
780
781 /* Leverage async fput() if DMF_DEFERRED_REMOVE set */
782 if (unlikely(test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
783 fput(td->dm_dev.bdev_file);
784 else
785 __fput_sync(td->dm_dev.bdev_file);
786
787 put_dax(td->dm_dev.dax_dev);
788 list_del(&td->list);
789 kfree(td);
790 }
791
find_table_device(struct list_head * l,dev_t dev,blk_mode_t mode)792 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
793 blk_mode_t mode)
794 {
795 struct table_device *td;
796
797 list_for_each_entry(td, l, list)
798 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
799 return td;
800
801 return NULL;
802 }
803
dm_get_table_device(struct mapped_device * md,dev_t dev,blk_mode_t mode,struct dm_dev ** result)804 int dm_get_table_device(struct mapped_device *md, dev_t dev, blk_mode_t mode,
805 struct dm_dev **result)
806 {
807 struct table_device *td;
808
809 mutex_lock(&md->table_devices_lock);
810 td = find_table_device(&md->table_devices, dev, mode);
811 if (!td) {
812 td = open_table_device(md, dev, mode);
813 if (IS_ERR(td)) {
814 mutex_unlock(&md->table_devices_lock);
815 return PTR_ERR(td);
816 }
817 } else {
818 refcount_inc(&td->count);
819 }
820 mutex_unlock(&md->table_devices_lock);
821
822 *result = &td->dm_dev;
823 return 0;
824 }
825
dm_put_table_device(struct mapped_device * md,struct dm_dev * d)826 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
827 {
828 struct table_device *td = container_of(d, struct table_device, dm_dev);
829
830 mutex_lock(&md->table_devices_lock);
831 if (refcount_dec_and_test(&td->count))
832 close_table_device(td, md);
833 mutex_unlock(&md->table_devices_lock);
834 }
835
836 /*
837 * Get the geometry associated with a dm device
838 */
dm_get_geometry(struct mapped_device * md,struct hd_geometry * geo)839 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
840 {
841 *geo = md->geometry;
842
843 return 0;
844 }
845
846 /*
847 * Set the geometry of a device.
848 */
dm_set_geometry(struct mapped_device * md,struct hd_geometry * geo)849 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
850 {
851 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
852
853 if (geo->start > sz) {
854 DMERR("Start sector is beyond the geometry limits.");
855 return -EINVAL;
856 }
857
858 md->geometry = *geo;
859
860 return 0;
861 }
862
__noflush_suspending(struct mapped_device * md)863 static int __noflush_suspending(struct mapped_device *md)
864 {
865 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
866 }
867
dm_requeue_add_io(struct dm_io * io,bool first_stage)868 static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
869 {
870 struct mapped_device *md = io->md;
871
872 if (first_stage) {
873 struct dm_io *next = md->requeue_list;
874
875 md->requeue_list = io;
876 io->next = next;
877 } else {
878 bio_list_add_head(&md->deferred, io->orig_bio);
879 }
880 }
881
dm_kick_requeue(struct mapped_device * md,bool first_stage)882 static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
883 {
884 if (first_stage)
885 queue_work(md->wq, &md->requeue_work);
886 else
887 queue_work(md->wq, &md->work);
888 }
889
890 /*
891 * Return true if the dm_io's original bio is requeued.
892 * io->status is updated with error if requeue disallowed.
893 */
dm_handle_requeue(struct dm_io * io,bool first_stage)894 static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
895 {
896 struct bio *bio = io->orig_bio;
897 bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
898 bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
899 (bio->bi_opf & REQ_POLLED));
900 struct mapped_device *md = io->md;
901 bool requeued = false;
902
903 if (handle_requeue || handle_polled_eagain) {
904 unsigned long flags;
905
906 if (bio->bi_opf & REQ_POLLED) {
907 /*
908 * Upper layer won't help us poll split bio
909 * (io->orig_bio may only reflect a subset of the
910 * pre-split original) so clear REQ_POLLED.
911 */
912 bio_clear_polled(bio);
913 }
914
915 /*
916 * Target requested pushing back the I/O or
917 * polled IO hit BLK_STS_AGAIN.
918 */
919 spin_lock_irqsave(&md->deferred_lock, flags);
920 if ((__noflush_suspending(md) &&
921 !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
922 handle_polled_eagain || first_stage) {
923 dm_requeue_add_io(io, first_stage);
924 requeued = true;
925 } else {
926 /*
927 * noflush suspend was interrupted or this is
928 * a write to a zoned target.
929 */
930 io->status = BLK_STS_IOERR;
931 }
932 spin_unlock_irqrestore(&md->deferred_lock, flags);
933 }
934
935 if (requeued)
936 dm_kick_requeue(md, first_stage);
937
938 return requeued;
939 }
940
__dm_io_complete(struct dm_io * io,bool first_stage)941 static void __dm_io_complete(struct dm_io *io, bool first_stage)
942 {
943 struct bio *bio = io->orig_bio;
944 struct mapped_device *md = io->md;
945 blk_status_t io_error;
946 bool requeued;
947 bool requeue_flush_with_data;
948
949 requeued = dm_handle_requeue(io, first_stage);
950 if (requeued && first_stage)
951 return;
952
953 io_error = io->status;
954 if (dm_io_flagged(io, DM_IO_ACCOUNTED))
955 dm_end_io_acct(io);
956 else if (!io_error) {
957 /*
958 * Must handle target that DM_MAPIO_SUBMITTED only to
959 * then bio_endio() rather than dm_submit_bio_remap()
960 */
961 __dm_start_io_acct(io);
962 dm_end_io_acct(io);
963 }
964 requeue_flush_with_data = io->requeue_flush_with_data;
965 free_io(io);
966 smp_wmb();
967 this_cpu_dec(*md->pending_io);
968
969 /* nudge anyone waiting on suspend queue */
970 if (unlikely(wq_has_sleeper(&md->wait)))
971 wake_up(&md->wait);
972
973 /* Return early if the original bio was requeued */
974 if (requeued)
975 return;
976
977 if (unlikely(requeue_flush_with_data)) {
978 /*
979 * Preflush done for flush with data, reissue
980 * without REQ_PREFLUSH.
981 */
982 bio->bi_opf &= ~REQ_PREFLUSH;
983 queue_io(md, bio);
984 } else {
985 /* done with normal IO or empty flush */
986 if (io_error)
987 bio->bi_status = io_error;
988 bio_endio(bio);
989 }
990 }
991
dm_wq_requeue_work(struct work_struct * work)992 static void dm_wq_requeue_work(struct work_struct *work)
993 {
994 struct mapped_device *md = container_of(work, struct mapped_device,
995 requeue_work);
996 unsigned long flags;
997 struct dm_io *io;
998
999 /* reuse deferred lock to simplify dm_handle_requeue */
1000 spin_lock_irqsave(&md->deferred_lock, flags);
1001 io = md->requeue_list;
1002 md->requeue_list = NULL;
1003 spin_unlock_irqrestore(&md->deferred_lock, flags);
1004
1005 while (io) {
1006 struct dm_io *next = io->next;
1007
1008 dm_io_rewind(io, &md->disk->bio_split);
1009
1010 io->next = NULL;
1011 __dm_io_complete(io, false);
1012 io = next;
1013 cond_resched();
1014 }
1015 }
1016
1017 /*
1018 * Two staged requeue:
1019 *
1020 * 1) io->orig_bio points to the real original bio, and the part mapped to
1021 * this io must be requeued, instead of other parts of the original bio.
1022 *
1023 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1024 */
dm_io_complete(struct dm_io * io)1025 static inline void dm_io_complete(struct dm_io *io)
1026 {
1027 /*
1028 * Only dm_io that has been split needs two stage requeue, otherwise
1029 * we may run into long bio clone chain during suspend and OOM could
1030 * be triggered.
1031 *
1032 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1033 * also aren't handled via the first stage requeue.
1034 */
1035 __dm_io_complete(io, dm_io_flagged(io, DM_IO_WAS_SPLIT));
1036 }
1037
1038 /*
1039 * Decrements the number of outstanding ios that a bio has been
1040 * cloned into, completing the original io if necc.
1041 */
__dm_io_dec_pending(struct dm_io * io)1042 static inline void __dm_io_dec_pending(struct dm_io *io)
1043 {
1044 if (atomic_dec_and_test(&io->io_count))
1045 dm_io_complete(io);
1046 }
1047
dm_io_set_error(struct dm_io * io,blk_status_t error)1048 static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1049 {
1050 unsigned long flags;
1051
1052 /* Push-back supersedes any I/O errors */
1053 spin_lock_irqsave(&io->lock, flags);
1054 if (!(io->status == BLK_STS_DM_REQUEUE &&
1055 __noflush_suspending(io->md))) {
1056 io->status = error;
1057 }
1058 spin_unlock_irqrestore(&io->lock, flags);
1059 }
1060
dm_io_dec_pending(struct dm_io * io,blk_status_t error)1061 static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1062 {
1063 if (unlikely(error))
1064 dm_io_set_error(io, error);
1065
1066 __dm_io_dec_pending(io);
1067 }
1068
1069 /*
1070 * The queue_limits are only valid as long as you have a reference
1071 * count on 'md'. But _not_ imposing verification to avoid atomic_read(),
1072 */
dm_get_queue_limits(struct mapped_device * md)1073 static inline struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1074 {
1075 return &md->queue->limits;
1076 }
1077
swap_bios_limit(struct dm_target * ti,struct bio * bio)1078 static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1079 {
1080 return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1081 }
1082
clone_endio(struct bio * bio)1083 static void clone_endio(struct bio *bio)
1084 {
1085 blk_status_t error = bio->bi_status;
1086 struct dm_target_io *tio = clone_to_tio(bio);
1087 struct dm_target *ti = tio->ti;
1088 dm_endio_fn endio = likely(ti != NULL) ? ti->type->end_io : NULL;
1089 struct dm_io *io = tio->io;
1090 struct mapped_device *md = io->md;
1091
1092 if (unlikely(error == BLK_STS_TARGET)) {
1093 if (bio_op(bio) == REQ_OP_DISCARD &&
1094 !bdev_max_discard_sectors(bio->bi_bdev))
1095 blk_queue_disable_discard(md->queue);
1096 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1097 !bdev_write_zeroes_sectors(bio->bi_bdev))
1098 blk_queue_disable_write_zeroes(md->queue);
1099 }
1100
1101 if (static_branch_unlikely(&zoned_enabled) &&
1102 unlikely(bdev_is_zoned(bio->bi_bdev)))
1103 dm_zone_endio(io, bio);
1104
1105 if (endio) {
1106 int r = endio(ti, bio, &error);
1107
1108 switch (r) {
1109 case DM_ENDIO_REQUEUE:
1110 if (static_branch_unlikely(&zoned_enabled)) {
1111 /*
1112 * Requeuing writes to a sequential zone of a zoned
1113 * target will break the sequential write pattern:
1114 * fail such IO.
1115 */
1116 if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1117 error = BLK_STS_IOERR;
1118 else
1119 error = BLK_STS_DM_REQUEUE;
1120 } else
1121 error = BLK_STS_DM_REQUEUE;
1122 fallthrough;
1123 case DM_ENDIO_DONE:
1124 break;
1125 case DM_ENDIO_INCOMPLETE:
1126 /* The target will handle the io */
1127 return;
1128 default:
1129 DMCRIT("unimplemented target endio return value: %d", r);
1130 BUG();
1131 }
1132 }
1133
1134 if (static_branch_unlikely(&swap_bios_enabled) &&
1135 likely(ti != NULL) && unlikely(swap_bios_limit(ti, bio)))
1136 up(&md->swap_bios_semaphore);
1137
1138 free_tio(bio);
1139 dm_io_dec_pending(io, error);
1140 }
1141
1142 /*
1143 * Return maximum size of I/O possible at the supplied sector up to the current
1144 * target boundary.
1145 */
max_io_len_target_boundary(struct dm_target * ti,sector_t target_offset)1146 static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1147 sector_t target_offset)
1148 {
1149 return ti->len - target_offset;
1150 }
1151
__max_io_len(struct dm_target * ti,sector_t sector,unsigned int max_granularity,unsigned int max_sectors)1152 static sector_t __max_io_len(struct dm_target *ti, sector_t sector,
1153 unsigned int max_granularity,
1154 unsigned int max_sectors)
1155 {
1156 sector_t target_offset = dm_target_offset(ti, sector);
1157 sector_t len = max_io_len_target_boundary(ti, target_offset);
1158
1159 /*
1160 * Does the target need to split IO even further?
1161 * - varied (per target) IO splitting is a tenet of DM; this
1162 * explains why stacked chunk_sectors based splitting via
1163 * bio_split_to_limits() isn't possible here.
1164 */
1165 if (!max_granularity)
1166 return len;
1167 return min_t(sector_t, len,
1168 min(max_sectors ? : queue_max_sectors(ti->table->md->queue),
1169 blk_boundary_sectors_left(target_offset, max_granularity)));
1170 }
1171
max_io_len(struct dm_target * ti,sector_t sector)1172 static inline sector_t max_io_len(struct dm_target *ti, sector_t sector)
1173 {
1174 return __max_io_len(ti, sector, ti->max_io_len, 0);
1175 }
1176
dm_set_target_max_io_len(struct dm_target * ti,sector_t len)1177 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1178 {
1179 if (len > UINT_MAX) {
1180 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1181 (unsigned long long)len, UINT_MAX);
1182 ti->error = "Maximum size of target IO is too large";
1183 return -EINVAL;
1184 }
1185
1186 ti->max_io_len = (uint32_t) len;
1187
1188 return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1191
dm_dax_get_live_target(struct mapped_device * md,sector_t sector,int * srcu_idx)1192 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1193 sector_t sector, int *srcu_idx)
1194 __acquires(md->io_barrier)
1195 {
1196 struct dm_table *map;
1197 struct dm_target *ti;
1198
1199 map = dm_get_live_table(md, srcu_idx);
1200 if (!map)
1201 return NULL;
1202
1203 ti = dm_table_find_target(map, sector);
1204 if (!ti)
1205 return NULL;
1206
1207 return ti;
1208 }
1209
dm_dax_direct_access(struct dax_device * dax_dev,pgoff_t pgoff,long nr_pages,enum dax_access_mode mode,void ** kaddr,unsigned long * pfn)1210 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1211 long nr_pages, enum dax_access_mode mode, void **kaddr,
1212 unsigned long *pfn)
1213 {
1214 struct mapped_device *md = dax_get_private(dax_dev);
1215 sector_t sector = pgoff * PAGE_SECTORS;
1216 struct dm_target *ti;
1217 long len, ret = -EIO;
1218 int srcu_idx;
1219
1220 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1221
1222 if (!ti)
1223 goto out;
1224 if (!ti->type->direct_access)
1225 goto out;
1226 len = max_io_len(ti, sector) / PAGE_SECTORS;
1227 if (len < 1)
1228 goto out;
1229 nr_pages = min(len, nr_pages);
1230 ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1231
1232 out:
1233 dm_put_live_table(md, srcu_idx);
1234
1235 return ret;
1236 }
1237
dm_dax_zero_page_range(struct dax_device * dax_dev,pgoff_t pgoff,size_t nr_pages)1238 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1239 size_t nr_pages)
1240 {
1241 struct mapped_device *md = dax_get_private(dax_dev);
1242 sector_t sector = pgoff * PAGE_SECTORS;
1243 struct dm_target *ti;
1244 int ret = -EIO;
1245 int srcu_idx;
1246
1247 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1248
1249 if (!ti)
1250 goto out;
1251 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1252 /*
1253 * ->zero_page_range() is mandatory dax operation. If we are
1254 * here, something is wrong.
1255 */
1256 goto out;
1257 }
1258 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1259 out:
1260 dm_put_live_table(md, srcu_idx);
1261
1262 return ret;
1263 }
1264
dm_dax_recovery_write(struct dax_device * dax_dev,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)1265 static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1266 void *addr, size_t bytes, struct iov_iter *i)
1267 {
1268 struct mapped_device *md = dax_get_private(dax_dev);
1269 sector_t sector = pgoff * PAGE_SECTORS;
1270 struct dm_target *ti;
1271 int srcu_idx;
1272 long ret = 0;
1273
1274 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1275 if (!ti || !ti->type->dax_recovery_write)
1276 goto out;
1277
1278 ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1279 out:
1280 dm_put_live_table(md, srcu_idx);
1281 return ret;
1282 }
1283
1284 /*
1285 * A target may call dm_accept_partial_bio only from the map routine. It is
1286 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1287 * operations, zone append writes (native with REQ_OP_ZONE_APPEND or emulated
1288 * with write BIOs flagged with BIO_EMULATES_ZONE_APPEND) and any bio serviced
1289 * by __send_duplicate_bios().
1290 *
1291 * dm_accept_partial_bio informs the dm that the target only wants to process
1292 * additional n_sectors sectors of the bio and the rest of the data should be
1293 * sent in a next bio.
1294 *
1295 * A diagram that explains the arithmetics:
1296 * +--------------------+---------------+-------+
1297 * | 1 | 2 | 3 |
1298 * +--------------------+---------------+-------+
1299 *
1300 * <-------------- *tio->len_ptr --------------->
1301 * <----- bio_sectors ----->
1302 * <-- n_sectors -->
1303 *
1304 * Region 1 was already iterated over with bio_advance or similar function.
1305 * (it may be empty if the target doesn't use bio_advance)
1306 * Region 2 is the remaining bio size that the target wants to process.
1307 * (it may be empty if region 1 is non-empty, although there is no reason
1308 * to make it empty)
1309 * The target requires that region 3 is to be sent in the next bio.
1310 *
1311 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1312 * the partially processed part (the sum of regions 1+2) must be the same for all
1313 * copies of the bio.
1314 */
dm_accept_partial_bio(struct bio * bio,unsigned int n_sectors)1315 void dm_accept_partial_bio(struct bio *bio, unsigned int n_sectors)
1316 {
1317 struct dm_target_io *tio = clone_to_tio(bio);
1318 struct dm_io *io = tio->io;
1319 unsigned int bio_sectors = bio_sectors(bio);
1320
1321 BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1322 BUG_ON(bio_sectors > *tio->len_ptr);
1323 BUG_ON(n_sectors > bio_sectors);
1324 BUG_ON(bio->bi_opf & REQ_ATOMIC);
1325
1326 if (static_branch_unlikely(&zoned_enabled) &&
1327 unlikely(bdev_is_zoned(bio->bi_bdev))) {
1328 enum req_op op = bio_op(bio);
1329
1330 BUG_ON(op_is_zone_mgmt(op));
1331 BUG_ON(op == REQ_OP_WRITE);
1332 BUG_ON(op == REQ_OP_WRITE_ZEROES);
1333 BUG_ON(op == REQ_OP_ZONE_APPEND);
1334 }
1335
1336 *tio->len_ptr -= bio_sectors - n_sectors;
1337 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1338
1339 /*
1340 * __split_and_process_bio() may have already saved mapped part
1341 * for accounting but it is being reduced so update accordingly.
1342 */
1343 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1344 io->sectors = n_sectors;
1345 io->sector_offset = bio_sectors(io->orig_bio);
1346 }
1347 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1348
1349 /*
1350 * @clone: clone bio that DM core passed to target's .map function
1351 * @tgt_clone: clone of @clone bio that target needs submitted
1352 *
1353 * Targets should use this interface to submit bios they take
1354 * ownership of when returning DM_MAPIO_SUBMITTED.
1355 *
1356 * Target should also enable ti->accounts_remapped_io
1357 */
dm_submit_bio_remap(struct bio * clone,struct bio * tgt_clone)1358 void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1359 {
1360 struct dm_target_io *tio = clone_to_tio(clone);
1361 struct dm_io *io = tio->io;
1362
1363 /* establish bio that will get submitted */
1364 if (!tgt_clone)
1365 tgt_clone = clone;
1366
1367 /*
1368 * Account io->origin_bio to DM dev on behalf of target
1369 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1370 */
1371 dm_start_io_acct(io, clone);
1372
1373 trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1374 tio->old_sector);
1375 submit_bio_noacct(tgt_clone);
1376 }
1377 EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1378
__set_swap_bios_limit(struct mapped_device * md,int latch)1379 static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1380 {
1381 mutex_lock(&md->swap_bios_lock);
1382 while (latch < md->swap_bios) {
1383 cond_resched();
1384 down(&md->swap_bios_semaphore);
1385 md->swap_bios--;
1386 }
1387 while (latch > md->swap_bios) {
1388 cond_resched();
1389 up(&md->swap_bios_semaphore);
1390 md->swap_bios++;
1391 }
1392 mutex_unlock(&md->swap_bios_lock);
1393 }
1394
__map_bio(struct bio * clone)1395 static void __map_bio(struct bio *clone)
1396 {
1397 struct dm_target_io *tio = clone_to_tio(clone);
1398 struct dm_target *ti = tio->ti;
1399 struct dm_io *io = tio->io;
1400 struct mapped_device *md = io->md;
1401 int r;
1402
1403 clone->bi_end_io = clone_endio;
1404
1405 /*
1406 * Map the clone.
1407 */
1408 tio->old_sector = clone->bi_iter.bi_sector;
1409
1410 if (static_branch_unlikely(&swap_bios_enabled) &&
1411 unlikely(swap_bios_limit(ti, clone))) {
1412 int latch = get_swap_bios();
1413
1414 if (unlikely(latch != md->swap_bios))
1415 __set_swap_bios_limit(md, latch);
1416 down(&md->swap_bios_semaphore);
1417 }
1418
1419 if (likely(ti->type->map == linear_map))
1420 r = linear_map(ti, clone);
1421 else if (ti->type->map == stripe_map)
1422 r = stripe_map(ti, clone);
1423 else
1424 r = ti->type->map(ti, clone);
1425
1426 switch (r) {
1427 case DM_MAPIO_SUBMITTED:
1428 /* target has assumed ownership of this io */
1429 if (!ti->accounts_remapped_io)
1430 dm_start_io_acct(io, clone);
1431 break;
1432 case DM_MAPIO_REMAPPED:
1433 dm_submit_bio_remap(clone, NULL);
1434 break;
1435 case DM_MAPIO_KILL:
1436 case DM_MAPIO_REQUEUE:
1437 if (static_branch_unlikely(&swap_bios_enabled) &&
1438 unlikely(swap_bios_limit(ti, clone)))
1439 up(&md->swap_bios_semaphore);
1440 free_tio(clone);
1441 if (r == DM_MAPIO_KILL)
1442 dm_io_dec_pending(io, BLK_STS_IOERR);
1443 else
1444 dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1445 break;
1446 default:
1447 DMCRIT("unimplemented target map return value: %d", r);
1448 BUG();
1449 }
1450 }
1451
setup_split_accounting(struct clone_info * ci,unsigned int len)1452 static void setup_split_accounting(struct clone_info *ci, unsigned int len)
1453 {
1454 struct dm_io *io = ci->io;
1455
1456 if (ci->sector_count > len) {
1457 /*
1458 * Split needed, save the mapped part for accounting.
1459 * NOTE: dm_accept_partial_bio() will update accordingly.
1460 */
1461 dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1462 io->sectors = len;
1463 io->sector_offset = bio_sectors(ci->bio);
1464 }
1465 }
1466
alloc_multiple_bios(struct bio_list * blist,struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned * len)1467 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1468 struct dm_target *ti, unsigned int num_bios,
1469 unsigned *len)
1470 {
1471 struct bio *bio;
1472 int try;
1473
1474 for (try = 0; try < 2; try++) {
1475 int bio_nr;
1476
1477 if (try && num_bios > 1)
1478 mutex_lock(&ci->io->md->table_devices_lock);
1479 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1480 bio = alloc_tio(ci, ti, bio_nr, len,
1481 try ? GFP_NOIO : GFP_NOWAIT);
1482 if (!bio)
1483 break;
1484
1485 bio_list_add(blist, bio);
1486 }
1487 if (try && num_bios > 1)
1488 mutex_unlock(&ci->io->md->table_devices_lock);
1489 if (bio_nr == num_bios)
1490 return;
1491
1492 while ((bio = bio_list_pop(blist)))
1493 free_tio(bio);
1494 }
1495 }
1496
__send_duplicate_bios(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int * len)1497 static unsigned int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1498 unsigned int num_bios, unsigned int *len)
1499 {
1500 struct bio_list blist = BIO_EMPTY_LIST;
1501 struct bio *clone;
1502 unsigned int ret = 0;
1503
1504 if (WARN_ON_ONCE(num_bios == 0)) /* num_bios = 0 is a bug in caller */
1505 return 0;
1506
1507 /* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1508 if (len)
1509 setup_split_accounting(ci, *len);
1510
1511 /*
1512 * Using alloc_multiple_bios(), even if num_bios is 1, to consistently
1513 * support allocating using GFP_NOWAIT with GFP_NOIO fallback.
1514 */
1515 alloc_multiple_bios(&blist, ci, ti, num_bios, len);
1516 while ((clone = bio_list_pop(&blist))) {
1517 if (num_bios > 1)
1518 dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1519 __map_bio(clone);
1520 ret += 1;
1521 }
1522
1523 return ret;
1524 }
1525
__send_empty_flush(struct clone_info * ci)1526 static void __send_empty_flush(struct clone_info *ci)
1527 {
1528 struct dm_table *t = ci->map;
1529 struct bio flush_bio;
1530 blk_opf_t opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1531
1532 if ((ci->io->orig_bio->bi_opf & (REQ_IDLE | REQ_SYNC)) ==
1533 (REQ_IDLE | REQ_SYNC))
1534 opf |= REQ_IDLE;
1535
1536 /*
1537 * Use an on-stack bio for this, it's safe since we don't
1538 * need to reference it after submit. It's just used as
1539 * the basis for the clone(s).
1540 */
1541 bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0, opf);
1542
1543 ci->bio = &flush_bio;
1544 ci->sector_count = 0;
1545 ci->io->tio.clone.bi_iter.bi_size = 0;
1546
1547 if (!t->flush_bypasses_map) {
1548 for (unsigned int i = 0; i < t->num_targets; i++) {
1549 unsigned int bios;
1550 struct dm_target *ti = dm_table_get_target(t, i);
1551
1552 if (unlikely(ti->num_flush_bios == 0))
1553 continue;
1554
1555 atomic_add(ti->num_flush_bios, &ci->io->io_count);
1556 bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios,
1557 NULL);
1558 atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1559 }
1560 } else {
1561 /*
1562 * Note that there's no need to grab t->devices_lock here
1563 * because the targets that support flush optimization don't
1564 * modify the list of devices.
1565 */
1566 struct list_head *devices = dm_table_get_devices(t);
1567 unsigned int len = 0;
1568 struct dm_dev_internal *dd;
1569 list_for_each_entry(dd, devices, list) {
1570 struct bio *clone;
1571 /*
1572 * Note that the structure dm_target_io is not
1573 * associated with any target (because the device may be
1574 * used by multiple targets), so we set tio->ti = NULL.
1575 * We must check for NULL in the I/O processing path, to
1576 * avoid NULL pointer dereference.
1577 */
1578 clone = alloc_tio(ci, NULL, 0, &len, GFP_NOIO);
1579 atomic_add(1, &ci->io->io_count);
1580 bio_set_dev(clone, dd->dm_dev->bdev);
1581 clone->bi_end_io = clone_endio;
1582 dm_submit_bio_remap(clone, NULL);
1583 }
1584 }
1585
1586 /*
1587 * alloc_io() takes one extra reference for submission, so the
1588 * reference won't reach 0 without the following subtraction
1589 */
1590 atomic_sub(1, &ci->io->io_count);
1591
1592 bio_uninit(ci->bio);
1593 }
1594
__send_abnormal_io(struct clone_info * ci,struct dm_target * ti,unsigned int num_bios,unsigned int max_granularity,unsigned int max_sectors)1595 static void __send_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1596 unsigned int num_bios, unsigned int max_granularity,
1597 unsigned int max_sectors)
1598 {
1599 unsigned int len, bios;
1600
1601 len = min_t(sector_t, ci->sector_count,
1602 __max_io_len(ti, ci->sector, max_granularity, max_sectors));
1603
1604 atomic_add(num_bios, &ci->io->io_count);
1605 bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1606 /*
1607 * alloc_io() takes one extra reference for submission, so the
1608 * reference won't reach 0 without the following (+1) subtraction
1609 */
1610 atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1611
1612 ci->sector += len;
1613 ci->sector_count -= len;
1614 }
1615
is_abnormal_io(struct bio * bio)1616 static bool is_abnormal_io(struct bio *bio)
1617 {
1618 switch (bio_op(bio)) {
1619 case REQ_OP_READ:
1620 case REQ_OP_WRITE:
1621 case REQ_OP_FLUSH:
1622 return false;
1623 case REQ_OP_DISCARD:
1624 case REQ_OP_SECURE_ERASE:
1625 case REQ_OP_WRITE_ZEROES:
1626 case REQ_OP_ZONE_RESET_ALL:
1627 return true;
1628 default:
1629 return false;
1630 }
1631 }
1632
__process_abnormal_io(struct clone_info * ci,struct dm_target * ti)1633 static blk_status_t __process_abnormal_io(struct clone_info *ci,
1634 struct dm_target *ti)
1635 {
1636 unsigned int num_bios = 0;
1637 unsigned int max_granularity = 0;
1638 unsigned int max_sectors = 0;
1639 struct queue_limits *limits = dm_get_queue_limits(ti->table->md);
1640
1641 switch (bio_op(ci->bio)) {
1642 case REQ_OP_DISCARD:
1643 num_bios = ti->num_discard_bios;
1644 max_sectors = limits->max_discard_sectors;
1645 if (ti->max_discard_granularity)
1646 max_granularity = max_sectors;
1647 break;
1648 case REQ_OP_SECURE_ERASE:
1649 num_bios = ti->num_secure_erase_bios;
1650 max_sectors = limits->max_secure_erase_sectors;
1651 break;
1652 case REQ_OP_WRITE_ZEROES:
1653 num_bios = ti->num_write_zeroes_bios;
1654 max_sectors = limits->max_write_zeroes_sectors;
1655 break;
1656 default:
1657 break;
1658 }
1659
1660 /*
1661 * Even though the device advertised support for this type of
1662 * request, that does not mean every target supports it, and
1663 * reconfiguration might also have changed that since the
1664 * check was performed.
1665 */
1666 if (unlikely(!num_bios))
1667 return BLK_STS_NOTSUPP;
1668
1669 __send_abnormal_io(ci, ti, num_bios, max_granularity, max_sectors);
1670
1671 return BLK_STS_OK;
1672 }
1673
1674 /*
1675 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1676 * associated with this bio, and this bio's bi_private needs to be
1677 * stored in dm_io->data before the reuse.
1678 *
1679 * bio->bi_private is owned by fs or upper layer, so block layer won't
1680 * touch it after splitting. Meantime it won't be changed by anyone after
1681 * bio is submitted. So this reuse is safe.
1682 */
dm_poll_list_head(struct bio * bio)1683 static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1684 {
1685 return (struct dm_io **)&bio->bi_private;
1686 }
1687
dm_queue_poll_io(struct bio * bio,struct dm_io * io)1688 static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1689 {
1690 struct dm_io **head = dm_poll_list_head(bio);
1691
1692 if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1693 bio->bi_opf |= REQ_DM_POLL_LIST;
1694 /*
1695 * Save .bi_private into dm_io, so that we can reuse
1696 * .bi_private as dm_io list head for storing dm_io list
1697 */
1698 io->data = bio->bi_private;
1699
1700 /* tell block layer to poll for completion */
1701 bio->bi_cookie = ~BLK_QC_T_NONE;
1702
1703 io->next = NULL;
1704 } else {
1705 /*
1706 * bio recursed due to split, reuse original poll list,
1707 * and save bio->bi_private too.
1708 */
1709 io->data = (*head)->data;
1710 io->next = *head;
1711 }
1712
1713 *head = io;
1714 }
1715
1716 /*
1717 * Select the correct strategy for processing a non-flush bio.
1718 */
__split_and_process_bio(struct clone_info * ci)1719 static blk_status_t __split_and_process_bio(struct clone_info *ci)
1720 {
1721 struct bio *clone;
1722 struct dm_target *ti;
1723 unsigned int len;
1724
1725 ti = dm_table_find_target(ci->map, ci->sector);
1726 if (unlikely(!ti))
1727 return BLK_STS_IOERR;
1728
1729 if (unlikely(ci->is_abnormal_io))
1730 return __process_abnormal_io(ci, ti);
1731
1732 /*
1733 * Only support bio polling for normal IO, and the target io is
1734 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1735 */
1736 ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1737
1738 len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1739 if (ci->bio->bi_opf & REQ_ATOMIC) {
1740 if (unlikely(!dm_target_supports_atomic_writes(ti->type)))
1741 return BLK_STS_IOERR;
1742 if (unlikely(len != ci->sector_count))
1743 return BLK_STS_IOERR;
1744 }
1745
1746 setup_split_accounting(ci, len);
1747
1748 if (unlikely(ci->bio->bi_opf & REQ_NOWAIT)) {
1749 if (unlikely(!dm_target_supports_nowait(ti->type)))
1750 return BLK_STS_NOTSUPP;
1751
1752 clone = alloc_tio(ci, ti, 0, &len, GFP_NOWAIT);
1753 if (unlikely(!clone))
1754 return BLK_STS_AGAIN;
1755 } else {
1756 clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1757 }
1758 __map_bio(clone);
1759
1760 ci->sector += len;
1761 ci->sector_count -= len;
1762
1763 return BLK_STS_OK;
1764 }
1765
init_clone_info(struct clone_info * ci,struct dm_io * io,struct dm_table * map,struct bio * bio,bool is_abnormal)1766 static void init_clone_info(struct clone_info *ci, struct dm_io *io,
1767 struct dm_table *map, struct bio *bio, bool is_abnormal)
1768 {
1769 ci->map = map;
1770 ci->io = io;
1771 ci->bio = bio;
1772 ci->is_abnormal_io = is_abnormal;
1773 ci->submit_as_polled = false;
1774 ci->sector = bio->bi_iter.bi_sector;
1775 ci->sector_count = bio_sectors(bio);
1776
1777 /* Shouldn't happen but sector_count was being set to 0 so... */
1778 if (static_branch_unlikely(&zoned_enabled) &&
1779 WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1780 ci->sector_count = 0;
1781 }
1782
1783 #ifdef CONFIG_BLK_DEV_ZONED
dm_zone_bio_needs_split(struct bio * bio)1784 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1785 {
1786 /*
1787 * Special case the zone operations that cannot or should not be split.
1788 */
1789 switch (bio_op(bio)) {
1790 case REQ_OP_ZONE_APPEND:
1791 case REQ_OP_ZONE_FINISH:
1792 case REQ_OP_ZONE_RESET:
1793 case REQ_OP_ZONE_RESET_ALL:
1794 return false;
1795 default:
1796 break;
1797 }
1798
1799 /*
1800 * When mapped devices use the block layer zone write plugging, we must
1801 * split any large BIO to the mapped device limits to not submit BIOs
1802 * that span zone boundaries and to avoid potential deadlocks with
1803 * queue freeze operations.
1804 */
1805 return bio_needs_zone_write_plugging(bio) || bio_straddles_zones(bio);
1806 }
1807
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1808 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1809 {
1810 if (!bio_needs_zone_write_plugging(bio))
1811 return false;
1812 return blk_zone_plug_bio(bio, 0);
1813 }
1814
__send_zone_reset_all_emulated(struct clone_info * ci,struct dm_target * ti)1815 static blk_status_t __send_zone_reset_all_emulated(struct clone_info *ci,
1816 struct dm_target *ti)
1817 {
1818 struct bio_list blist = BIO_EMPTY_LIST;
1819 struct mapped_device *md = ci->io->md;
1820 unsigned int zone_sectors = md->disk->queue->limits.chunk_sectors;
1821 unsigned long *need_reset;
1822 unsigned int i, nr_zones, nr_reset;
1823 unsigned int num_bios = 0;
1824 blk_status_t sts = BLK_STS_OK;
1825 sector_t sector = ti->begin;
1826 struct bio *clone;
1827 int ret;
1828
1829 nr_zones = ti->len >> ilog2(zone_sectors);
1830 need_reset = bitmap_zalloc(nr_zones, GFP_NOIO);
1831 if (!need_reset)
1832 return BLK_STS_RESOURCE;
1833
1834 ret = dm_zone_get_reset_bitmap(md, ci->map, ti->begin,
1835 nr_zones, need_reset);
1836 if (ret) {
1837 sts = BLK_STS_IOERR;
1838 goto free_bitmap;
1839 }
1840
1841 /* If we have no zone to reset, we are done. */
1842 nr_reset = bitmap_weight(need_reset, nr_zones);
1843 if (!nr_reset)
1844 goto free_bitmap;
1845
1846 atomic_add(nr_zones, &ci->io->io_count);
1847
1848 for (i = 0; i < nr_zones; i++) {
1849
1850 if (!test_bit(i, need_reset)) {
1851 sector += zone_sectors;
1852 continue;
1853 }
1854
1855 if (bio_list_empty(&blist)) {
1856 /* This may take a while, so be nice to others */
1857 if (num_bios)
1858 cond_resched();
1859
1860 /*
1861 * We may need to reset thousands of zones, so let's
1862 * not go crazy with the clone allocation.
1863 */
1864 alloc_multiple_bios(&blist, ci, ti, min(nr_reset, 32),
1865 NULL);
1866 }
1867
1868 /* Get a clone and change it to a regular reset operation. */
1869 clone = bio_list_pop(&blist);
1870 clone->bi_opf &= ~REQ_OP_MASK;
1871 clone->bi_opf |= REQ_OP_ZONE_RESET | REQ_SYNC;
1872 clone->bi_iter.bi_sector = sector;
1873 clone->bi_iter.bi_size = 0;
1874 __map_bio(clone);
1875
1876 sector += zone_sectors;
1877 num_bios++;
1878 nr_reset--;
1879 }
1880
1881 WARN_ON_ONCE(!bio_list_empty(&blist));
1882 atomic_sub(nr_zones - num_bios, &ci->io->io_count);
1883 ci->sector_count = 0;
1884
1885 free_bitmap:
1886 bitmap_free(need_reset);
1887
1888 return sts;
1889 }
1890
__send_zone_reset_all_native(struct clone_info * ci,struct dm_target * ti)1891 static void __send_zone_reset_all_native(struct clone_info *ci,
1892 struct dm_target *ti)
1893 {
1894 unsigned int bios;
1895
1896 atomic_add(1, &ci->io->io_count);
1897 bios = __send_duplicate_bios(ci, ti, 1, NULL);
1898 atomic_sub(1 - bios, &ci->io->io_count);
1899
1900 ci->sector_count = 0;
1901 }
1902
__send_zone_reset_all(struct clone_info * ci)1903 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1904 {
1905 struct dm_table *t = ci->map;
1906 blk_status_t sts = BLK_STS_OK;
1907
1908 for (unsigned int i = 0; i < t->num_targets; i++) {
1909 struct dm_target *ti = dm_table_get_target(t, i);
1910
1911 if (ti->zone_reset_all_supported) {
1912 __send_zone_reset_all_native(ci, ti);
1913 continue;
1914 }
1915
1916 sts = __send_zone_reset_all_emulated(ci, ti);
1917 if (sts != BLK_STS_OK)
1918 break;
1919 }
1920
1921 /* Release the reference that alloc_io() took for submission. */
1922 atomic_sub(1, &ci->io->io_count);
1923
1924 return sts;
1925 }
1926
1927 #else
dm_zone_bio_needs_split(struct bio * bio)1928 static inline bool dm_zone_bio_needs_split(struct bio *bio)
1929 {
1930 return false;
1931 }
dm_zone_plug_bio(struct mapped_device * md,struct bio * bio)1932 static inline bool dm_zone_plug_bio(struct mapped_device *md, struct bio *bio)
1933 {
1934 return false;
1935 }
__send_zone_reset_all(struct clone_info * ci)1936 static blk_status_t __send_zone_reset_all(struct clone_info *ci)
1937 {
1938 return BLK_STS_NOTSUPP;
1939 }
1940 #endif
1941
1942 /*
1943 * Entry point to split a bio into clones and submit them to the targets.
1944 */
dm_split_and_process_bio(struct mapped_device * md,struct dm_table * map,struct bio * bio)1945 static void dm_split_and_process_bio(struct mapped_device *md,
1946 struct dm_table *map, struct bio *bio)
1947 {
1948 struct clone_info ci;
1949 struct dm_io *io;
1950 blk_status_t error = BLK_STS_OK;
1951 bool is_abnormal, need_split;
1952
1953 is_abnormal = is_abnormal_io(bio);
1954 if (static_branch_unlikely(&zoned_enabled)) {
1955 need_split = is_abnormal || dm_zone_bio_needs_split(bio);
1956 } else {
1957 need_split = is_abnormal;
1958 }
1959
1960 if (unlikely(need_split)) {
1961 /*
1962 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1963 * otherwise associated queue_limits won't be imposed.
1964 * Also split the BIO for mapped devices needing zone append
1965 * emulation to ensure that the BIO does not cross zone
1966 * boundaries.
1967 */
1968 bio = bio_split_to_limits(bio);
1969 if (!bio)
1970 return;
1971 }
1972
1973 /*
1974 * Use the block layer zone write plugging for mapped devices that
1975 * need zone append emulation (e.g. dm-crypt).
1976 */
1977 if (static_branch_unlikely(&zoned_enabled) && dm_zone_plug_bio(md, bio))
1978 return;
1979
1980 /* Only support nowait for normal IO */
1981 if (unlikely(bio->bi_opf & REQ_NOWAIT) && !is_abnormal) {
1982 /*
1983 * Don't support NOWAIT for FLUSH because it may allocate
1984 * multiple bios and there's no easy way how to undo the
1985 * allocations.
1986 */
1987 if (bio->bi_opf & REQ_PREFLUSH) {
1988 bio_wouldblock_error(bio);
1989 return;
1990 }
1991 io = alloc_io(md, bio, GFP_NOWAIT);
1992 if (unlikely(!io)) {
1993 /* Unable to do anything without dm_io. */
1994 bio_wouldblock_error(bio);
1995 return;
1996 }
1997 } else {
1998 io = alloc_io(md, bio, GFP_NOIO);
1999 }
2000 init_clone_info(&ci, io, map, bio, is_abnormal);
2001
2002 if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0)) {
2003 /*
2004 * The "flush_bypasses_map" is set on targets where it is safe
2005 * to skip the map function and submit bios directly to the
2006 * underlying block devices - currently, it is set for dm-linear
2007 * and dm-stripe.
2008 *
2009 * If we have just one underlying device (i.e. there is one
2010 * linear target or multiple linear targets pointing to the same
2011 * device), we can send the flush with data directly to it.
2012 */
2013 if (bio->bi_iter.bi_size && map->flush_bypasses_map) {
2014 struct list_head *devices = dm_table_get_devices(map);
2015 if (devices->next == devices->prev)
2016 goto send_preflush_with_data;
2017 }
2018 if (bio->bi_iter.bi_size)
2019 io->requeue_flush_with_data = true;
2020 __send_empty_flush(&ci);
2021 /* dm_io_complete submits any data associated with flush */
2022 goto out;
2023 }
2024
2025 send_preflush_with_data:
2026 if (static_branch_unlikely(&zoned_enabled) &&
2027 (bio_op(bio) == REQ_OP_ZONE_RESET_ALL)) {
2028 error = __send_zone_reset_all(&ci);
2029 goto out;
2030 }
2031
2032 error = __split_and_process_bio(&ci);
2033 if (error || !ci.sector_count)
2034 goto out;
2035 /*
2036 * Remainder must be passed to submit_bio_noacct() so it gets handled
2037 * *after* bios already submitted have been completely processed.
2038 */
2039 bio_trim(bio, io->sectors, ci.sector_count);
2040 trace_block_split(bio, bio->bi_iter.bi_sector);
2041 bio_inc_remaining(bio);
2042 submit_bio_noacct(bio);
2043 out:
2044 /*
2045 * Drop the extra reference count for non-POLLED bio, and hold one
2046 * reference for POLLED bio, which will be released in dm_poll_bio
2047 *
2048 * Add every dm_io instance into the dm_io list head which is stored
2049 * in bio->bi_private, so that dm_poll_bio can poll them all.
2050 */
2051 if (error || !ci.submit_as_polled) {
2052 /*
2053 * In case of submission failure, the extra reference for
2054 * submitting io isn't consumed yet
2055 */
2056 if (error)
2057 atomic_dec(&io->io_count);
2058 dm_io_dec_pending(io, error);
2059 } else
2060 dm_queue_poll_io(bio, io);
2061 }
2062
dm_submit_bio(struct bio * bio)2063 static void dm_submit_bio(struct bio *bio)
2064 {
2065 struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
2066 int srcu_idx;
2067 struct dm_table *map;
2068
2069 map = dm_get_live_table(md, &srcu_idx);
2070 if (unlikely(!map)) {
2071 DMERR_LIMIT("%s: mapping table unavailable, erroring io",
2072 dm_device_name(md));
2073 bio_io_error(bio);
2074 goto out;
2075 }
2076
2077 /* If suspended, queue this IO for later */
2078 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
2079 if (bio->bi_opf & REQ_NOWAIT)
2080 bio_wouldblock_error(bio);
2081 else if (bio->bi_opf & REQ_RAHEAD)
2082 bio_io_error(bio);
2083 else
2084 queue_io(md, bio);
2085 goto out;
2086 }
2087
2088 dm_split_and_process_bio(md, map, bio);
2089 out:
2090 dm_put_live_table(md, srcu_idx);
2091 }
2092
dm_poll_dm_io(struct dm_io * io,struct io_comp_batch * iob,unsigned int flags)2093 static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
2094 unsigned int flags)
2095 {
2096 WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
2097
2098 /* don't poll if the mapped io is done */
2099 if (atomic_read(&io->io_count) > 1)
2100 bio_poll(&io->tio.clone, iob, flags);
2101
2102 /* bio_poll holds the last reference */
2103 return atomic_read(&io->io_count) == 1;
2104 }
2105
dm_poll_bio(struct bio * bio,struct io_comp_batch * iob,unsigned int flags)2106 static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
2107 unsigned int flags)
2108 {
2109 struct dm_io **head = dm_poll_list_head(bio);
2110 struct dm_io *list = *head;
2111 struct dm_io *tmp = NULL;
2112 struct dm_io *curr, *next;
2113
2114 /* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
2115 if (!(bio->bi_opf & REQ_DM_POLL_LIST))
2116 return 0;
2117
2118 WARN_ON_ONCE(!list);
2119
2120 /*
2121 * Restore .bi_private before possibly completing dm_io.
2122 *
2123 * bio_poll() is only possible once @bio has been completely
2124 * submitted via submit_bio_noacct()'s depth-first submission.
2125 * So there is no dm_queue_poll_io() race associated with
2126 * clearing REQ_DM_POLL_LIST here.
2127 */
2128 bio->bi_opf &= ~REQ_DM_POLL_LIST;
2129 bio->bi_private = list->data;
2130
2131 for (curr = list, next = curr->next; curr; curr = next, next =
2132 curr ? curr->next : NULL) {
2133 if (dm_poll_dm_io(curr, iob, flags)) {
2134 /*
2135 * clone_endio() has already occurred, so no
2136 * error handling is needed here.
2137 */
2138 __dm_io_dec_pending(curr);
2139 } else {
2140 curr->next = tmp;
2141 tmp = curr;
2142 }
2143 }
2144
2145 /* Not done? */
2146 if (tmp) {
2147 bio->bi_opf |= REQ_DM_POLL_LIST;
2148 /* Reset bio->bi_private to dm_io list head */
2149 *head = tmp;
2150 return 0;
2151 }
2152 return 1;
2153 }
2154
2155 /*
2156 *---------------------------------------------------------------
2157 * An IDR is used to keep track of allocated minor numbers.
2158 *---------------------------------------------------------------
2159 */
free_minor(int minor)2160 static void free_minor(int minor)
2161 {
2162 spin_lock(&_minor_lock);
2163 idr_remove(&_minor_idr, minor);
2164 spin_unlock(&_minor_lock);
2165 }
2166
2167 /*
2168 * See if the device with a specific minor # is free.
2169 */
specific_minor(int minor)2170 static int specific_minor(int minor)
2171 {
2172 int r;
2173
2174 if (minor >= (1 << MINORBITS))
2175 return -EINVAL;
2176
2177 idr_preload(GFP_KERNEL);
2178 spin_lock(&_minor_lock);
2179
2180 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2181
2182 spin_unlock(&_minor_lock);
2183 idr_preload_end();
2184 if (r < 0)
2185 return r == -ENOSPC ? -EBUSY : r;
2186 return 0;
2187 }
2188
next_free_minor(int * minor)2189 static int next_free_minor(int *minor)
2190 {
2191 int r;
2192
2193 idr_preload(GFP_KERNEL);
2194 spin_lock(&_minor_lock);
2195
2196 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2197
2198 spin_unlock(&_minor_lock);
2199 idr_preload_end();
2200 if (r < 0)
2201 return r;
2202 *minor = r;
2203 return 0;
2204 }
2205
2206 static const struct block_device_operations dm_blk_dops;
2207 static const struct block_device_operations dm_rq_blk_dops;
2208 static const struct dax_operations dm_dax_ops;
2209
2210 static void dm_wq_work(struct work_struct *work);
2211
2212 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
dm_queue_destroy_crypto_profile(struct request_queue * q)2213 static void dm_queue_destroy_crypto_profile(struct request_queue *q)
2214 {
2215 dm_destroy_crypto_profile(q->crypto_profile);
2216 }
2217
2218 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
2219
dm_queue_destroy_crypto_profile(struct request_queue * q)2220 static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
2221 {
2222 }
2223 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
2224
cleanup_mapped_device(struct mapped_device * md)2225 static void cleanup_mapped_device(struct mapped_device *md)
2226 {
2227 if (md->wq)
2228 destroy_workqueue(md->wq);
2229 dm_free_md_mempools(md->mempools);
2230
2231 if (md->dax_dev) {
2232 dax_remove_host(md->disk);
2233 kill_dax(md->dax_dev);
2234 put_dax(md->dax_dev);
2235 md->dax_dev = NULL;
2236 }
2237
2238 if (md->disk) {
2239 spin_lock(&_minor_lock);
2240 md->disk->private_data = NULL;
2241 spin_unlock(&_minor_lock);
2242 if (dm_get_md_type(md) != DM_TYPE_NONE) {
2243 struct table_device *td;
2244
2245 dm_sysfs_exit(md);
2246 list_for_each_entry(td, &md->table_devices, list) {
2247 bd_unlink_disk_holder(td->dm_dev.bdev,
2248 md->disk);
2249 }
2250
2251 /*
2252 * Hold lock to make sure del_gendisk() won't concurrent
2253 * with open/close_table_device().
2254 */
2255 mutex_lock(&md->table_devices_lock);
2256 del_gendisk(md->disk);
2257 mutex_unlock(&md->table_devices_lock);
2258 }
2259 dm_queue_destroy_crypto_profile(md->queue);
2260 put_disk(md->disk);
2261 }
2262
2263 if (md->pending_io) {
2264 free_percpu(md->pending_io);
2265 md->pending_io = NULL;
2266 }
2267
2268 cleanup_srcu_struct(&md->io_barrier);
2269
2270 mutex_destroy(&md->suspend_lock);
2271 mutex_destroy(&md->type_lock);
2272 mutex_destroy(&md->table_devices_lock);
2273 mutex_destroy(&md->swap_bios_lock);
2274
2275 dm_mq_cleanup_mapped_device(md);
2276 }
2277
2278 /*
2279 * Allocate and initialise a blank device with a given minor.
2280 */
alloc_dev(int minor)2281 static struct mapped_device *alloc_dev(int minor)
2282 {
2283 int r, numa_node_id = dm_get_numa_node();
2284 struct dax_device *dax_dev;
2285 struct mapped_device *md;
2286 void *old_md;
2287
2288 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2289 if (!md) {
2290 DMERR("unable to allocate device, out of memory.");
2291 return NULL;
2292 }
2293
2294 if (!try_module_get(THIS_MODULE))
2295 goto bad_module_get;
2296
2297 /* get a minor number for the dev */
2298 if (minor == DM_ANY_MINOR)
2299 r = next_free_minor(&minor);
2300 else
2301 r = specific_minor(minor);
2302 if (r < 0)
2303 goto bad_minor;
2304
2305 r = init_srcu_struct(&md->io_barrier);
2306 if (r < 0)
2307 goto bad_io_barrier;
2308
2309 md->numa_node_id = numa_node_id;
2310 md->init_tio_pdu = false;
2311 md->type = DM_TYPE_NONE;
2312 mutex_init(&md->suspend_lock);
2313 mutex_init(&md->type_lock);
2314 mutex_init(&md->table_devices_lock);
2315 spin_lock_init(&md->deferred_lock);
2316 atomic_set(&md->holders, 1);
2317 atomic_set(&md->open_count, 0);
2318 atomic_set(&md->event_nr, 0);
2319 atomic_set(&md->uevent_seq, 0);
2320 INIT_LIST_HEAD(&md->uevent_list);
2321 INIT_LIST_HEAD(&md->table_devices);
2322 spin_lock_init(&md->uevent_lock);
2323
2324 /*
2325 * default to bio-based until DM table is loaded and md->type
2326 * established. If request-based table is loaded: blk-mq will
2327 * override accordingly.
2328 */
2329 md->disk = blk_alloc_disk(NULL, md->numa_node_id);
2330 if (IS_ERR(md->disk)) {
2331 md->disk = NULL;
2332 goto bad;
2333 }
2334 md->queue = md->disk->queue;
2335
2336 init_waitqueue_head(&md->wait);
2337 INIT_WORK(&md->work, dm_wq_work);
2338 INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2339 init_waitqueue_head(&md->eventq);
2340 init_completion(&md->kobj_holder.completion);
2341
2342 md->requeue_list = NULL;
2343 md->swap_bios = get_swap_bios();
2344 sema_init(&md->swap_bios_semaphore, md->swap_bios);
2345 mutex_init(&md->swap_bios_lock);
2346
2347 md->disk->major = _major;
2348 md->disk->first_minor = minor;
2349 md->disk->minors = 1;
2350 md->disk->flags |= GENHD_FL_NO_PART;
2351 md->disk->fops = &dm_blk_dops;
2352 md->disk->private_data = md;
2353 sprintf(md->disk->disk_name, "dm-%d", minor);
2354
2355 dax_dev = alloc_dax(md, &dm_dax_ops);
2356 if (IS_ERR(dax_dev)) {
2357 if (PTR_ERR(dax_dev) != -EOPNOTSUPP)
2358 goto bad;
2359 } else {
2360 set_dax_nocache(dax_dev);
2361 set_dax_nomc(dax_dev);
2362 md->dax_dev = dax_dev;
2363 if (dax_add_host(dax_dev, md->disk))
2364 goto bad;
2365 }
2366
2367 format_dev_t(md->name, MKDEV(_major, minor));
2368
2369 md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2370 if (!md->wq)
2371 goto bad;
2372
2373 md->pending_io = alloc_percpu(unsigned long);
2374 if (!md->pending_io)
2375 goto bad;
2376
2377 r = dm_stats_init(&md->stats);
2378 if (r < 0)
2379 goto bad;
2380
2381 /* Populate the mapping, nobody knows we exist yet */
2382 spin_lock(&_minor_lock);
2383 old_md = idr_replace(&_minor_idr, md, minor);
2384 spin_unlock(&_minor_lock);
2385
2386 BUG_ON(old_md != MINOR_ALLOCED);
2387
2388 return md;
2389
2390 bad:
2391 cleanup_mapped_device(md);
2392 bad_io_barrier:
2393 free_minor(minor);
2394 bad_minor:
2395 module_put(THIS_MODULE);
2396 bad_module_get:
2397 kvfree(md);
2398 return NULL;
2399 }
2400
2401 static void unlock_fs(struct mapped_device *md);
2402
free_dev(struct mapped_device * md)2403 static void free_dev(struct mapped_device *md)
2404 {
2405 int minor = MINOR(disk_devt(md->disk));
2406
2407 unlock_fs(md);
2408
2409 cleanup_mapped_device(md);
2410
2411 WARN_ON_ONCE(!list_empty(&md->table_devices));
2412 dm_stats_cleanup(&md->stats);
2413 free_minor(minor);
2414
2415 module_put(THIS_MODULE);
2416 kvfree(md);
2417 }
2418
2419 /*
2420 * Bind a table to the device.
2421 */
event_callback(void * context)2422 static void event_callback(void *context)
2423 {
2424 unsigned long flags;
2425 LIST_HEAD(uevents);
2426 struct mapped_device *md = context;
2427
2428 spin_lock_irqsave(&md->uevent_lock, flags);
2429 list_splice_init(&md->uevent_list, &uevents);
2430 spin_unlock_irqrestore(&md->uevent_lock, flags);
2431
2432 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2433
2434 atomic_inc(&md->event_nr);
2435 wake_up(&md->eventq);
2436 dm_issue_global_event();
2437 }
2438
2439 /*
2440 * Returns old map, which caller must destroy.
2441 */
__bind(struct mapped_device * md,struct dm_table * t,struct queue_limits * limits)2442 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2443 struct queue_limits *limits)
2444 {
2445 struct dm_table *old_map;
2446 sector_t size, old_size;
2447
2448 lockdep_assert_held(&md->suspend_lock);
2449
2450 size = dm_table_get_size(t);
2451
2452 old_size = dm_get_size(md);
2453
2454 if (!dm_table_supports_size_change(t, old_size, size)) {
2455 old_map = ERR_PTR(-EINVAL);
2456 goto out;
2457 }
2458
2459 set_capacity(md->disk, size);
2460
2461 if (limits) {
2462 int ret = dm_table_set_restrictions(t, md->queue, limits);
2463 if (ret) {
2464 set_capacity(md->disk, old_size);
2465 old_map = ERR_PTR(ret);
2466 goto out;
2467 }
2468 }
2469
2470 /*
2471 * Wipe any geometry if the size of the table changed.
2472 */
2473 if (size != old_size)
2474 memset(&md->geometry, 0, sizeof(md->geometry));
2475
2476 dm_table_event_callback(t, event_callback, md);
2477
2478 if (dm_table_request_based(t)) {
2479 /*
2480 * Leverage the fact that request-based DM targets are
2481 * immutable singletons - used to optimize dm_mq_queue_rq.
2482 */
2483 md->immutable_target = dm_table_get_immutable_target(t);
2484
2485 /*
2486 * There is no need to reload with request-based dm because the
2487 * size of front_pad doesn't change.
2488 *
2489 * Note for future: If you are to reload bioset, prep-ed
2490 * requests in the queue may refer to bio from the old bioset,
2491 * so you must walk through the queue to unprep.
2492 */
2493 if (!md->mempools)
2494 md->mempools = t->mempools;
2495 else
2496 dm_free_md_mempools(t->mempools);
2497 } else {
2498 /*
2499 * The md may already have mempools that need changing.
2500 * If so, reload bioset because front_pad may have changed
2501 * because a different table was loaded.
2502 */
2503 dm_free_md_mempools(md->mempools);
2504 md->mempools = t->mempools;
2505 }
2506 t->mempools = NULL;
2507
2508 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2509 rcu_assign_pointer(md->map, (void *)t);
2510 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2511
2512 if (old_map)
2513 dm_sync_table(md);
2514 out:
2515 return old_map;
2516 }
2517
2518 /*
2519 * Returns unbound table for the caller to free.
2520 */
__unbind(struct mapped_device * md)2521 static struct dm_table *__unbind(struct mapped_device *md)
2522 {
2523 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2524
2525 if (!map)
2526 return NULL;
2527
2528 dm_table_event_callback(map, NULL, NULL);
2529 RCU_INIT_POINTER(md->map, NULL);
2530 dm_sync_table(md);
2531
2532 return map;
2533 }
2534
2535 /*
2536 * Constructor for a new device.
2537 */
dm_create(int minor,struct mapped_device ** result)2538 int dm_create(int minor, struct mapped_device **result)
2539 {
2540 struct mapped_device *md;
2541
2542 md = alloc_dev(minor);
2543 if (!md)
2544 return -ENXIO;
2545
2546 dm_ima_reset_data(md);
2547
2548 *result = md;
2549 return 0;
2550 }
2551
2552 /*
2553 * Functions to manage md->type.
2554 * All are required to hold md->type_lock.
2555 */
dm_lock_md_type(struct mapped_device * md)2556 void dm_lock_md_type(struct mapped_device *md)
2557 {
2558 mutex_lock(&md->type_lock);
2559 }
2560
dm_unlock_md_type(struct mapped_device * md)2561 void dm_unlock_md_type(struct mapped_device *md)
2562 {
2563 mutex_unlock(&md->type_lock);
2564 }
2565
dm_get_md_type(struct mapped_device * md)2566 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2567 {
2568 return md->type;
2569 }
2570
dm_get_immutable_target_type(struct mapped_device * md)2571 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2572 {
2573 return md->immutable_target_type;
2574 }
2575
2576 /*
2577 * Setup the DM device's queue based on md's type
2578 */
dm_setup_md_queue(struct mapped_device * md,struct dm_table * t)2579 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2580 {
2581 enum dm_queue_mode type = dm_table_get_type(t);
2582 struct queue_limits limits;
2583 struct table_device *td;
2584 int r;
2585
2586 WARN_ON_ONCE(type == DM_TYPE_NONE);
2587
2588 if (type == DM_TYPE_REQUEST_BASED) {
2589 md->disk->fops = &dm_rq_blk_dops;
2590 r = dm_mq_init_request_queue(md, t);
2591 if (r) {
2592 DMERR("Cannot initialize queue for request-based dm mapped device");
2593 return r;
2594 }
2595 }
2596
2597 r = dm_calculate_queue_limits(t, &limits);
2598 if (r) {
2599 DMERR("Cannot calculate initial queue limits");
2600 return r;
2601 }
2602 r = dm_table_set_restrictions(t, md->queue, &limits);
2603 if (r)
2604 return r;
2605
2606 /*
2607 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2608 * with open_table_device() and close_table_device().
2609 */
2610 mutex_lock(&md->table_devices_lock);
2611 r = add_disk(md->disk);
2612 mutex_unlock(&md->table_devices_lock);
2613 if (r)
2614 return r;
2615
2616 /*
2617 * Register the holder relationship for devices added before the disk
2618 * was live.
2619 */
2620 list_for_each_entry(td, &md->table_devices, list) {
2621 r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2622 if (r)
2623 goto out_undo_holders;
2624 }
2625
2626 r = dm_sysfs_init(md);
2627 if (r)
2628 goto out_undo_holders;
2629
2630 md->type = type;
2631 return 0;
2632
2633 out_undo_holders:
2634 list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2635 bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2636 mutex_lock(&md->table_devices_lock);
2637 del_gendisk(md->disk);
2638 mutex_unlock(&md->table_devices_lock);
2639 return r;
2640 }
2641
dm_get_md(dev_t dev)2642 struct mapped_device *dm_get_md(dev_t dev)
2643 {
2644 struct mapped_device *md;
2645 unsigned int minor = MINOR(dev);
2646
2647 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2648 return NULL;
2649
2650 spin_lock(&_minor_lock);
2651
2652 md = idr_find(&_minor_idr, minor);
2653 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2654 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2655 md = NULL;
2656 goto out;
2657 }
2658 dm_get(md);
2659 out:
2660 spin_unlock(&_minor_lock);
2661
2662 return md;
2663 }
2664 EXPORT_SYMBOL_GPL(dm_get_md);
2665
dm_get_mdptr(struct mapped_device * md)2666 void *dm_get_mdptr(struct mapped_device *md)
2667 {
2668 return md->interface_ptr;
2669 }
2670
dm_set_mdptr(struct mapped_device * md,void * ptr)2671 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2672 {
2673 md->interface_ptr = ptr;
2674 }
2675
dm_get(struct mapped_device * md)2676 void dm_get(struct mapped_device *md)
2677 {
2678 atomic_inc(&md->holders);
2679 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2680 }
2681
dm_hold(struct mapped_device * md)2682 int dm_hold(struct mapped_device *md)
2683 {
2684 spin_lock(&_minor_lock);
2685 if (test_bit(DMF_FREEING, &md->flags)) {
2686 spin_unlock(&_minor_lock);
2687 return -EBUSY;
2688 }
2689 dm_get(md);
2690 spin_unlock(&_minor_lock);
2691 return 0;
2692 }
2693 EXPORT_SYMBOL_GPL(dm_hold);
2694
dm_device_name(struct mapped_device * md)2695 const char *dm_device_name(struct mapped_device *md)
2696 {
2697 return md->name;
2698 }
2699 EXPORT_SYMBOL_GPL(dm_device_name);
2700
__dm_destroy(struct mapped_device * md,bool wait)2701 static void __dm_destroy(struct mapped_device *md, bool wait)
2702 {
2703 struct dm_table *map;
2704 int srcu_idx;
2705
2706 might_sleep();
2707
2708 spin_lock(&_minor_lock);
2709 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2710 set_bit(DMF_FREEING, &md->flags);
2711 spin_unlock(&_minor_lock);
2712
2713 blk_mark_disk_dead(md->disk);
2714
2715 /*
2716 * Take suspend_lock so that presuspend and postsuspend methods
2717 * do not race with internal suspend.
2718 */
2719 mutex_lock(&md->suspend_lock);
2720 map = dm_get_live_table(md, &srcu_idx);
2721 if (!dm_suspended_md(md)) {
2722 dm_table_presuspend_targets(map);
2723 set_bit(DMF_SUSPENDED, &md->flags);
2724 set_bit(DMF_POST_SUSPENDING, &md->flags);
2725 dm_table_postsuspend_targets(map);
2726 }
2727 /* dm_put_live_table must be before fsleep, otherwise deadlock is possible */
2728 dm_put_live_table(md, srcu_idx);
2729 mutex_unlock(&md->suspend_lock);
2730
2731 /*
2732 * Rare, but there may be I/O requests still going to complete,
2733 * for example. Wait for all references to disappear.
2734 * No one should increment the reference count of the mapped_device,
2735 * after the mapped_device state becomes DMF_FREEING.
2736 */
2737 if (wait)
2738 while (atomic_read(&md->holders))
2739 fsleep(1000);
2740 else if (atomic_read(&md->holders))
2741 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2742 dm_device_name(md), atomic_read(&md->holders));
2743
2744 dm_table_destroy(__unbind(md));
2745 free_dev(md);
2746 }
2747
dm_destroy(struct mapped_device * md)2748 void dm_destroy(struct mapped_device *md)
2749 {
2750 __dm_destroy(md, true);
2751 }
2752
dm_destroy_immediate(struct mapped_device * md)2753 void dm_destroy_immediate(struct mapped_device *md)
2754 {
2755 __dm_destroy(md, false);
2756 }
2757
dm_put(struct mapped_device * md)2758 void dm_put(struct mapped_device *md)
2759 {
2760 atomic_dec(&md->holders);
2761 }
2762 EXPORT_SYMBOL_GPL(dm_put);
2763
dm_in_flight_bios(struct mapped_device * md)2764 static bool dm_in_flight_bios(struct mapped_device *md)
2765 {
2766 int cpu;
2767 unsigned long sum = 0;
2768
2769 for_each_possible_cpu(cpu)
2770 sum += *per_cpu_ptr(md->pending_io, cpu);
2771
2772 return sum != 0;
2773 }
2774
dm_wait_for_bios_completion(struct mapped_device * md,unsigned int task_state)2775 static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2776 {
2777 int r = 0;
2778 DEFINE_WAIT(wait);
2779
2780 while (true) {
2781 prepare_to_wait(&md->wait, &wait, task_state);
2782
2783 if (!dm_in_flight_bios(md))
2784 break;
2785
2786 if (signal_pending_state(task_state, current)) {
2787 r = -ERESTARTSYS;
2788 break;
2789 }
2790
2791 io_schedule();
2792 }
2793 finish_wait(&md->wait, &wait);
2794
2795 smp_rmb();
2796
2797 return r;
2798 }
2799
dm_wait_for_completion(struct mapped_device * md,unsigned int task_state)2800 static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2801 {
2802 int r = 0;
2803
2804 if (!queue_is_mq(md->queue))
2805 return dm_wait_for_bios_completion(md, task_state);
2806
2807 while (true) {
2808 if (!blk_mq_queue_inflight(md->queue))
2809 break;
2810
2811 if (signal_pending_state(task_state, current)) {
2812 r = -ERESTARTSYS;
2813 break;
2814 }
2815
2816 fsleep(5000);
2817 }
2818
2819 return r;
2820 }
2821
2822 /*
2823 * Process the deferred bios
2824 */
dm_wq_work(struct work_struct * work)2825 static void dm_wq_work(struct work_struct *work)
2826 {
2827 struct mapped_device *md = container_of(work, struct mapped_device, work);
2828 struct bio *bio;
2829
2830 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2831 spin_lock_irq(&md->deferred_lock);
2832 bio = bio_list_pop(&md->deferred);
2833 spin_unlock_irq(&md->deferred_lock);
2834
2835 if (!bio)
2836 break;
2837
2838 submit_bio_noacct(bio);
2839 cond_resched();
2840 }
2841 }
2842
dm_queue_flush(struct mapped_device * md)2843 static void dm_queue_flush(struct mapped_device *md)
2844 {
2845 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2846 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2847 smp_mb__after_atomic();
2848 queue_work(md->wq, &md->work);
2849 }
2850
2851 /*
2852 * Swap in a new table, returning the old one for the caller to destroy.
2853 */
dm_swap_table(struct mapped_device * md,struct dm_table * table)2854 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2855 {
2856 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2857 struct queue_limits limits;
2858 bool update_limits = true;
2859 int r;
2860
2861 mutex_lock(&md->suspend_lock);
2862
2863 /* device must be suspended */
2864 if (!dm_suspended_md(md))
2865 goto out;
2866
2867 /*
2868 * To avoid a potential deadlock locking the queue limits, disallow
2869 * updating the queue limits during a table swap, when updating an
2870 * immutable request-based dm device (dm-multipath) during a noflush
2871 * suspend. It is userspace's responsibility to make sure that the new
2872 * table uses the same limits as the existing table, if it asks for a
2873 * noflush suspend.
2874 */
2875 if (dm_request_based(md) && md->immutable_target &&
2876 __noflush_suspending(md))
2877 update_limits = false;
2878 /*
2879 * If the new table has no data devices, retain the existing limits.
2880 * This helps multipath with queue_if_no_path if all paths disappear,
2881 * then new I/O is queued based on these limits, and then some paths
2882 * reappear.
2883 */
2884 else if (dm_table_has_no_data_devices(table)) {
2885 live_map = dm_get_live_table_fast(md);
2886 if (live_map)
2887 limits = md->queue->limits;
2888 dm_put_live_table_fast(md);
2889 }
2890
2891 if (update_limits && !live_map) {
2892 r = dm_calculate_queue_limits(table, &limits);
2893 if (r) {
2894 map = ERR_PTR(r);
2895 goto out;
2896 }
2897 }
2898
2899 map = __bind(md, table, update_limits ? &limits : NULL);
2900 dm_issue_global_event();
2901
2902 out:
2903 mutex_unlock(&md->suspend_lock);
2904 return map;
2905 }
2906
2907 /*
2908 * Functions to lock and unlock any filesystem running on the
2909 * device.
2910 */
lock_fs(struct mapped_device * md)2911 static int lock_fs(struct mapped_device *md)
2912 {
2913 int r;
2914
2915 WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2916
2917 r = bdev_freeze(md->disk->part0);
2918 if (!r)
2919 set_bit(DMF_FROZEN, &md->flags);
2920 return r;
2921 }
2922
unlock_fs(struct mapped_device * md)2923 static void unlock_fs(struct mapped_device *md)
2924 {
2925 if (!test_bit(DMF_FROZEN, &md->flags))
2926 return;
2927 bdev_thaw(md->disk->part0);
2928 clear_bit(DMF_FROZEN, &md->flags);
2929 }
2930
2931 /*
2932 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2933 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2934 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2935 *
2936 * If __dm_suspend returns 0, the device is completely quiescent
2937 * now. There is no request-processing activity. All new requests
2938 * are being added to md->deferred list.
2939 */
__dm_suspend(struct mapped_device * md,struct dm_table * map,unsigned int suspend_flags,unsigned int task_state,int dmf_suspended_flag)2940 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2941 unsigned int suspend_flags, unsigned int task_state,
2942 int dmf_suspended_flag)
2943 {
2944 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2945 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2946 int r = 0;
2947
2948 lockdep_assert_held(&md->suspend_lock);
2949
2950 /*
2951 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2952 */
2953 if (noflush)
2954 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2955 else
2956 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2957
2958 /*
2959 * This gets reverted if there's an error later and the targets
2960 * provide the .presuspend_undo hook.
2961 */
2962 dm_table_presuspend_targets(map);
2963
2964 /*
2965 * Flush I/O to the device.
2966 * Any I/O submitted after lock_fs() may not be flushed.
2967 * noflush takes precedence over do_lockfs.
2968 * (lock_fs() flushes I/Os and waits for them to complete.)
2969 */
2970 if (!noflush && do_lockfs) {
2971 r = lock_fs(md);
2972 if (r) {
2973 dm_table_presuspend_undo_targets(map);
2974 return r;
2975 }
2976 }
2977
2978 /*
2979 * Here we must make sure that no processes are submitting requests
2980 * to target drivers i.e. no one may be executing
2981 * dm_split_and_process_bio from dm_submit_bio.
2982 *
2983 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2984 * we take the write lock. To prevent any process from reentering
2985 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2986 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2987 * flush_workqueue(md->wq).
2988 */
2989 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2990 if (map)
2991 synchronize_srcu(&md->io_barrier);
2992
2993 /*
2994 * Stop md->queue before flushing md->wq in case request-based
2995 * dm defers requests to md->wq from md->queue.
2996 */
2997 if (map && dm_request_based(md)) {
2998 dm_stop_queue(md->queue);
2999 set_bit(DMF_QUEUE_STOPPED, &md->flags);
3000 }
3001
3002 flush_workqueue(md->wq);
3003
3004 /*
3005 * At this point no more requests are entering target request routines.
3006 * We call dm_wait_for_completion to wait for all existing requests
3007 * to finish.
3008 */
3009 if (map)
3010 r = dm_wait_for_completion(md, task_state);
3011 if (!r)
3012 set_bit(dmf_suspended_flag, &md->flags);
3013
3014 if (map)
3015 synchronize_srcu(&md->io_barrier);
3016
3017 /* were we interrupted ? */
3018 if (r < 0) {
3019 dm_queue_flush(md);
3020
3021 if (test_and_clear_bit(DMF_QUEUE_STOPPED, &md->flags))
3022 dm_start_queue(md->queue);
3023
3024 unlock_fs(md);
3025 dm_table_presuspend_undo_targets(map);
3026 /* pushback list is already flushed, so skip flush */
3027 }
3028
3029 return r;
3030 }
3031
3032 /*
3033 * We need to be able to change a mapping table under a mounted
3034 * filesystem. For example we might want to move some data in
3035 * the background. Before the table can be swapped with
3036 * dm_bind_table, dm_suspend must be called to flush any in
3037 * flight bios and ensure that any further io gets deferred.
3038 */
3039 /*
3040 * Suspend mechanism in request-based dm.
3041 *
3042 * 1. Flush all I/Os by lock_fs() if needed.
3043 * 2. Stop dispatching any I/O by stopping the request_queue.
3044 * 3. Wait for all in-flight I/Os to be completed or requeued.
3045 *
3046 * To abort suspend, start the request_queue.
3047 */
dm_suspend(struct mapped_device * md,unsigned int suspend_flags)3048 int dm_suspend(struct mapped_device *md, unsigned int suspend_flags)
3049 {
3050 struct dm_table *map = NULL;
3051 int r = 0;
3052
3053 retry:
3054 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3055
3056 if (dm_suspended_md(md)) {
3057 r = -EINVAL;
3058 goto out_unlock;
3059 }
3060
3061 if (dm_suspended_internally_md(md)) {
3062 /* already internally suspended, wait for internal resume */
3063 mutex_unlock(&md->suspend_lock);
3064 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3065 if (r)
3066 return r;
3067 goto retry;
3068 }
3069
3070 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3071 if (!map) {
3072 /* avoid deadlock with fs/namespace.c:do_mount() */
3073 suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
3074 }
3075
3076 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
3077 if (r)
3078 goto out_unlock;
3079
3080 set_bit(DMF_POST_SUSPENDING, &md->flags);
3081 dm_table_postsuspend_targets(map);
3082 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3083
3084 out_unlock:
3085 mutex_unlock(&md->suspend_lock);
3086 return r;
3087 }
3088
__dm_resume(struct mapped_device * md,struct dm_table * map)3089 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3090 {
3091 if (map) {
3092 int r = dm_table_resume_targets(map);
3093
3094 if (r)
3095 return r;
3096 }
3097
3098 dm_queue_flush(md);
3099
3100 /*
3101 * Flushing deferred I/Os must be done after targets are resumed
3102 * so that mapping of targets can work correctly.
3103 * Request-based dm is queueing the deferred I/Os in its request_queue.
3104 */
3105 if (test_and_clear_bit(DMF_QUEUE_STOPPED, &md->flags))
3106 dm_start_queue(md->queue);
3107
3108 unlock_fs(md);
3109
3110 return 0;
3111 }
3112
dm_resume(struct mapped_device * md)3113 int dm_resume(struct mapped_device *md)
3114 {
3115 int r;
3116 struct dm_table *map = NULL;
3117
3118 retry:
3119 r = -EINVAL;
3120 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3121
3122 if (!dm_suspended_md(md))
3123 goto out;
3124
3125 if (dm_suspended_internally_md(md)) {
3126 /* already internally suspended, wait for internal resume */
3127 mutex_unlock(&md->suspend_lock);
3128 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3129 if (r)
3130 return r;
3131 goto retry;
3132 }
3133
3134 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3135 if (!map || !dm_table_get_size(map))
3136 goto out;
3137
3138 r = __dm_resume(md, map);
3139 if (r)
3140 goto out;
3141
3142 clear_bit(DMF_SUSPENDED, &md->flags);
3143 out:
3144 mutex_unlock(&md->suspend_lock);
3145
3146 return r;
3147 }
3148
3149 /*
3150 * Internal suspend/resume works like userspace-driven suspend. It waits
3151 * until all bios finish and prevents issuing new bios to the target drivers.
3152 * It may be used only from the kernel.
3153 */
3154
__dm_internal_suspend(struct mapped_device * md,unsigned int suspend_flags)3155 static void __dm_internal_suspend(struct mapped_device *md, unsigned int suspend_flags)
3156 {
3157 struct dm_table *map = NULL;
3158
3159 lockdep_assert_held(&md->suspend_lock);
3160
3161 if (md->internal_suspend_count++)
3162 return; /* nested internal suspend */
3163
3164 if (dm_suspended_md(md)) {
3165 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3166 return; /* nest suspend */
3167 }
3168
3169 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3170
3171 /*
3172 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3173 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
3174 * would require changing .presuspend to return an error -- avoid this
3175 * until there is a need for more elaborate variants of internal suspend.
3176 */
3177 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
3178 DMF_SUSPENDED_INTERNALLY);
3179
3180 set_bit(DMF_POST_SUSPENDING, &md->flags);
3181 dm_table_postsuspend_targets(map);
3182 clear_bit(DMF_POST_SUSPENDING, &md->flags);
3183 }
3184
__dm_internal_resume(struct mapped_device * md)3185 static void __dm_internal_resume(struct mapped_device *md)
3186 {
3187 int r;
3188 struct dm_table *map;
3189
3190 BUG_ON(!md->internal_suspend_count);
3191
3192 if (--md->internal_suspend_count)
3193 return; /* resume from nested internal suspend */
3194
3195 if (dm_suspended_md(md))
3196 goto done; /* resume from nested suspend */
3197
3198 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3199 r = __dm_resume(md, map);
3200 if (r) {
3201 /*
3202 * If a preresume method of some target failed, we are in a
3203 * tricky situation. We can't return an error to the caller. We
3204 * can't fake success because then the "resume" and
3205 * "postsuspend" methods would not be paired correctly, and it
3206 * would break various targets, for example it would cause list
3207 * corruption in the "origin" target.
3208 *
3209 * So, we fake normal suspend here, to make sure that the
3210 * "resume" and "postsuspend" methods will be paired correctly.
3211 */
3212 DMERR("Preresume method failed: %d", r);
3213 set_bit(DMF_SUSPENDED, &md->flags);
3214 }
3215 done:
3216 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3217 smp_mb__after_atomic();
3218 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3219 }
3220
dm_internal_suspend_noflush(struct mapped_device * md)3221 void dm_internal_suspend_noflush(struct mapped_device *md)
3222 {
3223 mutex_lock(&md->suspend_lock);
3224 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3225 mutex_unlock(&md->suspend_lock);
3226 }
3227 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3228
dm_internal_resume(struct mapped_device * md)3229 void dm_internal_resume(struct mapped_device *md)
3230 {
3231 mutex_lock(&md->suspend_lock);
3232 __dm_internal_resume(md);
3233 mutex_unlock(&md->suspend_lock);
3234 }
3235 EXPORT_SYMBOL_GPL(dm_internal_resume);
3236
3237 /*
3238 * Fast variants of internal suspend/resume hold md->suspend_lock,
3239 * which prevents interaction with userspace-driven suspend.
3240 */
3241
dm_internal_suspend_fast(struct mapped_device * md)3242 void dm_internal_suspend_fast(struct mapped_device *md)
3243 {
3244 mutex_lock(&md->suspend_lock);
3245 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3246 return;
3247
3248 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3249 synchronize_srcu(&md->io_barrier);
3250 flush_workqueue(md->wq);
3251 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3252 }
3253 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3254
dm_internal_resume_fast(struct mapped_device * md)3255 void dm_internal_resume_fast(struct mapped_device *md)
3256 {
3257 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3258 goto done;
3259
3260 dm_queue_flush(md);
3261
3262 done:
3263 mutex_unlock(&md->suspend_lock);
3264 }
3265 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3266
3267 /*
3268 *---------------------------------------------------------------
3269 * Event notification.
3270 *---------------------------------------------------------------
3271 */
dm_kobject_uevent(struct mapped_device * md,enum kobject_action action,unsigned int cookie,bool need_resize_uevent)3272 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3273 unsigned int cookie, bool need_resize_uevent)
3274 {
3275 int r;
3276 unsigned int noio_flag;
3277 char udev_cookie[DM_COOKIE_LENGTH];
3278 char *envp[3] = { NULL, NULL, NULL };
3279 char **envpp = envp;
3280 if (cookie) {
3281 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3282 DM_COOKIE_ENV_VAR_NAME, cookie);
3283 *envpp++ = udev_cookie;
3284 }
3285 if (need_resize_uevent) {
3286 *envpp++ = "RESIZE=1";
3287 }
3288
3289 noio_flag = memalloc_noio_save();
3290
3291 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj, action, envp);
3292
3293 memalloc_noio_restore(noio_flag);
3294
3295 return r;
3296 }
3297
dm_next_uevent_seq(struct mapped_device * md)3298 uint32_t dm_next_uevent_seq(struct mapped_device *md)
3299 {
3300 return atomic_add_return(1, &md->uevent_seq);
3301 }
3302
dm_get_event_nr(struct mapped_device * md)3303 uint32_t dm_get_event_nr(struct mapped_device *md)
3304 {
3305 return atomic_read(&md->event_nr);
3306 }
3307
dm_wait_event(struct mapped_device * md,int event_nr)3308 int dm_wait_event(struct mapped_device *md, int event_nr)
3309 {
3310 return wait_event_interruptible(md->eventq,
3311 (event_nr != atomic_read(&md->event_nr)));
3312 }
3313
dm_uevent_add(struct mapped_device * md,struct list_head * elist)3314 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3315 {
3316 unsigned long flags;
3317
3318 spin_lock_irqsave(&md->uevent_lock, flags);
3319 list_add(elist, &md->uevent_list);
3320 spin_unlock_irqrestore(&md->uevent_lock, flags);
3321 }
3322
3323 /*
3324 * The gendisk is only valid as long as you have a reference
3325 * count on 'md'.
3326 */
dm_disk(struct mapped_device * md)3327 struct gendisk *dm_disk(struct mapped_device *md)
3328 {
3329 return md->disk;
3330 }
3331 EXPORT_SYMBOL_GPL(dm_disk);
3332
dm_kobject(struct mapped_device * md)3333 struct kobject *dm_kobject(struct mapped_device *md)
3334 {
3335 return &md->kobj_holder.kobj;
3336 }
3337
dm_get_from_kobject(struct kobject * kobj)3338 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3339 {
3340 struct mapped_device *md;
3341
3342 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3343
3344 spin_lock(&_minor_lock);
3345 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3346 md = NULL;
3347 goto out;
3348 }
3349 dm_get(md);
3350 out:
3351 spin_unlock(&_minor_lock);
3352
3353 return md;
3354 }
3355
dm_suspended_md(struct mapped_device * md)3356 int dm_suspended_md(struct mapped_device *md)
3357 {
3358 return test_bit(DMF_SUSPENDED, &md->flags);
3359 }
3360
dm_post_suspending_md(struct mapped_device * md)3361 static int dm_post_suspending_md(struct mapped_device *md)
3362 {
3363 return test_bit(DMF_POST_SUSPENDING, &md->flags);
3364 }
3365
dm_suspended_internally_md(struct mapped_device * md)3366 int dm_suspended_internally_md(struct mapped_device *md)
3367 {
3368 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3369 }
3370
dm_test_deferred_remove_flag(struct mapped_device * md)3371 int dm_test_deferred_remove_flag(struct mapped_device *md)
3372 {
3373 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3374 }
3375
dm_suspended(struct dm_target * ti)3376 int dm_suspended(struct dm_target *ti)
3377 {
3378 return dm_suspended_md(ti->table->md);
3379 }
3380 EXPORT_SYMBOL_GPL(dm_suspended);
3381
dm_post_suspending(struct dm_target * ti)3382 int dm_post_suspending(struct dm_target *ti)
3383 {
3384 return dm_post_suspending_md(ti->table->md);
3385 }
3386 EXPORT_SYMBOL_GPL(dm_post_suspending);
3387
dm_noflush_suspending(struct dm_target * ti)3388 int dm_noflush_suspending(struct dm_target *ti)
3389 {
3390 return __noflush_suspending(ti->table->md);
3391 }
3392 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3393
dm_free_md_mempools(struct dm_md_mempools * pools)3394 void dm_free_md_mempools(struct dm_md_mempools *pools)
3395 {
3396 if (!pools)
3397 return;
3398
3399 bioset_exit(&pools->bs);
3400 bioset_exit(&pools->io_bs);
3401
3402 kfree(pools);
3403 }
3404
3405 struct dm_blkdev_id {
3406 u8 *id;
3407 enum blk_unique_id type;
3408 };
3409
__dm_get_unique_id(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3410 static int __dm_get_unique_id(struct dm_target *ti, struct dm_dev *dev,
3411 sector_t start, sector_t len, void *data)
3412 {
3413 struct dm_blkdev_id *dm_id = data;
3414 const struct block_device_operations *fops = dev->bdev->bd_disk->fops;
3415
3416 if (!fops->get_unique_id)
3417 return 0;
3418
3419 return fops->get_unique_id(dev->bdev->bd_disk, dm_id->id, dm_id->type);
3420 }
3421
3422 /*
3423 * Allow access to get_unique_id() for the first device returning a
3424 * non-zero result. Reasonable use expects all devices to have the
3425 * same unique id.
3426 */
dm_blk_get_unique_id(struct gendisk * disk,u8 * id,enum blk_unique_id type)3427 static int dm_blk_get_unique_id(struct gendisk *disk, u8 *id,
3428 enum blk_unique_id type)
3429 {
3430 struct mapped_device *md = disk->private_data;
3431 struct dm_table *table;
3432 struct dm_target *ti;
3433 int ret = 0, srcu_idx;
3434
3435 struct dm_blkdev_id dm_id = {
3436 .id = id,
3437 .type = type,
3438 };
3439
3440 table = dm_get_live_table(md, &srcu_idx);
3441 if (!table || !dm_table_get_size(table))
3442 goto out;
3443
3444 /* We only support devices that have a single target */
3445 if (table->num_targets != 1)
3446 goto out;
3447 ti = dm_table_get_target(table, 0);
3448
3449 if (!ti->type->iterate_devices)
3450 goto out;
3451
3452 ret = ti->type->iterate_devices(ti, __dm_get_unique_id, &dm_id);
3453 out:
3454 dm_put_live_table(md, srcu_idx);
3455 return ret;
3456 }
3457
3458 struct dm_pr {
3459 u64 old_key;
3460 u64 new_key;
3461 u32 flags;
3462 bool abort;
3463 bool fail_early;
3464 int ret;
3465 enum pr_type type;
3466 struct pr_keys *read_keys;
3467 struct pr_held_reservation *rsv;
3468 };
3469
dm_call_pr(struct block_device * bdev,iterate_devices_callout_fn fn,struct dm_pr * pr)3470 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3471 struct dm_pr *pr)
3472 {
3473 struct mapped_device *md = bdev->bd_disk->private_data;
3474 struct dm_table *table;
3475 struct dm_target *ti;
3476 int ret = -ENOTTY, srcu_idx;
3477
3478 table = dm_get_live_table(md, &srcu_idx);
3479 if (!table || !dm_table_get_size(table))
3480 goto out;
3481
3482 /* We only support devices that have a single target */
3483 if (table->num_targets != 1)
3484 goto out;
3485 ti = dm_table_get_target(table, 0);
3486
3487 if (dm_suspended_md(md)) {
3488 ret = -EAGAIN;
3489 goto out;
3490 }
3491
3492 ret = -EINVAL;
3493 if (!ti->type->iterate_devices)
3494 goto out;
3495
3496 ti->type->iterate_devices(ti, fn, pr);
3497 ret = 0;
3498 out:
3499 dm_put_live_table(md, srcu_idx);
3500 return ret;
3501 }
3502
3503 /*
3504 * For register / unregister we need to manually call out to every path.
3505 */
__dm_pr_register(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3506 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3507 sector_t start, sector_t len, void *data)
3508 {
3509 struct dm_pr *pr = data;
3510 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3511 int ret;
3512
3513 if (!ops || !ops->pr_register) {
3514 pr->ret = -EOPNOTSUPP;
3515 return -1;
3516 }
3517
3518 ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3519 if (!ret)
3520 return 0;
3521
3522 if (!pr->ret)
3523 pr->ret = ret;
3524
3525 if (pr->fail_early)
3526 return -1;
3527
3528 return 0;
3529 }
3530
dm_pr_register(struct block_device * bdev,u64 old_key,u64 new_key,u32 flags)3531 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3532 u32 flags)
3533 {
3534 struct dm_pr pr = {
3535 .old_key = old_key,
3536 .new_key = new_key,
3537 .flags = flags,
3538 .fail_early = true,
3539 .ret = 0,
3540 };
3541 int ret;
3542
3543 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3544 if (ret) {
3545 /* Didn't even get to register a path */
3546 return ret;
3547 }
3548
3549 if (!pr.ret)
3550 return 0;
3551 ret = pr.ret;
3552
3553 if (!new_key)
3554 return ret;
3555
3556 /* unregister all paths if we failed to register any path */
3557 pr.old_key = new_key;
3558 pr.new_key = 0;
3559 pr.flags = 0;
3560 pr.fail_early = false;
3561 (void) dm_call_pr(bdev, __dm_pr_register, &pr);
3562 return ret;
3563 }
3564
3565
__dm_pr_reserve(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3566 static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3567 sector_t start, sector_t len, void *data)
3568 {
3569 struct dm_pr *pr = data;
3570 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3571
3572 if (!ops || !ops->pr_reserve) {
3573 pr->ret = -EOPNOTSUPP;
3574 return -1;
3575 }
3576
3577 pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3578 if (!pr->ret)
3579 return -1;
3580
3581 return 0;
3582 }
3583
dm_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,u32 flags)3584 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3585 u32 flags)
3586 {
3587 struct dm_pr pr = {
3588 .old_key = key,
3589 .flags = flags,
3590 .type = type,
3591 .fail_early = false,
3592 .ret = 0,
3593 };
3594 int ret;
3595
3596 ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3597 if (ret)
3598 return ret;
3599
3600 return pr.ret;
3601 }
3602
3603 /*
3604 * If there is a non-All Registrants type of reservation, the release must be
3605 * sent down the holding path. For the cases where there is no reservation or
3606 * the path is not the holder the device will also return success, so we must
3607 * try each path to make sure we got the correct path.
3608 */
__dm_pr_release(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3609 static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3610 sector_t start, sector_t len, void *data)
3611 {
3612 struct dm_pr *pr = data;
3613 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3614
3615 if (!ops || !ops->pr_release) {
3616 pr->ret = -EOPNOTSUPP;
3617 return -1;
3618 }
3619
3620 pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3621 if (pr->ret)
3622 return -1;
3623
3624 return 0;
3625 }
3626
dm_pr_release(struct block_device * bdev,u64 key,enum pr_type type)3627 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3628 {
3629 struct dm_pr pr = {
3630 .old_key = key,
3631 .type = type,
3632 .fail_early = false,
3633 };
3634 int ret;
3635
3636 ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3637 if (ret)
3638 return ret;
3639
3640 return pr.ret;
3641 }
3642
__dm_pr_preempt(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3643 static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3644 sector_t start, sector_t len, void *data)
3645 {
3646 struct dm_pr *pr = data;
3647 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3648
3649 if (!ops || !ops->pr_preempt) {
3650 pr->ret = -EOPNOTSUPP;
3651 return -1;
3652 }
3653
3654 pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3655 pr->abort);
3656 if (!pr->ret)
3657 return -1;
3658
3659 return 0;
3660 }
3661
dm_pr_preempt(struct block_device * bdev,u64 old_key,u64 new_key,enum pr_type type,bool abort)3662 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3663 enum pr_type type, bool abort)
3664 {
3665 struct dm_pr pr = {
3666 .new_key = new_key,
3667 .old_key = old_key,
3668 .type = type,
3669 .fail_early = false,
3670 };
3671 int ret;
3672
3673 ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3674 if (ret)
3675 return ret;
3676
3677 return pr.ret;
3678 }
3679
dm_pr_clear(struct block_device * bdev,u64 key)3680 static int dm_pr_clear(struct block_device *bdev, u64 key)
3681 {
3682 struct mapped_device *md = bdev->bd_disk->private_data;
3683 const struct pr_ops *ops;
3684 int r, srcu_idx;
3685 bool forward = true;
3686
3687 /* Not a real ioctl, but targets must not interpret non-DM ioctls */
3688 r = dm_prepare_ioctl(md, &srcu_idx, &bdev, 0, 0, &forward);
3689 if (r < 0)
3690 goto out;
3691 WARN_ON_ONCE(!forward);
3692
3693 ops = bdev->bd_disk->fops->pr_ops;
3694 if (ops && ops->pr_clear)
3695 r = ops->pr_clear(bdev, key);
3696 else
3697 r = -EOPNOTSUPP;
3698 out:
3699 dm_unprepare_ioctl(md, srcu_idx);
3700 return r;
3701 }
3702
__dm_pr_read_keys(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3703 static int __dm_pr_read_keys(struct dm_target *ti, struct dm_dev *dev,
3704 sector_t start, sector_t len, void *data)
3705 {
3706 struct dm_pr *pr = data;
3707 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3708
3709 if (!ops || !ops->pr_read_keys) {
3710 pr->ret = -EOPNOTSUPP;
3711 return -1;
3712 }
3713
3714 pr->ret = ops->pr_read_keys(dev->bdev, pr->read_keys);
3715 if (!pr->ret)
3716 return -1;
3717
3718 return 0;
3719 }
3720
dm_pr_read_keys(struct block_device * bdev,struct pr_keys * keys)3721 static int dm_pr_read_keys(struct block_device *bdev, struct pr_keys *keys)
3722 {
3723 struct dm_pr pr = {
3724 .read_keys = keys,
3725 };
3726 int ret;
3727
3728 ret = dm_call_pr(bdev, __dm_pr_read_keys, &pr);
3729 if (ret)
3730 return ret;
3731
3732 return pr.ret;
3733 }
3734
__dm_pr_read_reservation(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)3735 static int __dm_pr_read_reservation(struct dm_target *ti, struct dm_dev *dev,
3736 sector_t start, sector_t len, void *data)
3737 {
3738 struct dm_pr *pr = data;
3739 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3740
3741 if (!ops || !ops->pr_read_reservation) {
3742 pr->ret = -EOPNOTSUPP;
3743 return -1;
3744 }
3745
3746 pr->ret = ops->pr_read_reservation(dev->bdev, pr->rsv);
3747 if (!pr->ret)
3748 return -1;
3749
3750 return 0;
3751 }
3752
dm_pr_read_reservation(struct block_device * bdev,struct pr_held_reservation * rsv)3753 static int dm_pr_read_reservation(struct block_device *bdev,
3754 struct pr_held_reservation *rsv)
3755 {
3756 struct dm_pr pr = {
3757 .rsv = rsv,
3758 };
3759 int ret;
3760
3761 ret = dm_call_pr(bdev, __dm_pr_read_reservation, &pr);
3762 if (ret)
3763 return ret;
3764
3765 return pr.ret;
3766 }
3767
3768 static const struct pr_ops dm_pr_ops = {
3769 .pr_register = dm_pr_register,
3770 .pr_reserve = dm_pr_reserve,
3771 .pr_release = dm_pr_release,
3772 .pr_preempt = dm_pr_preempt,
3773 .pr_clear = dm_pr_clear,
3774 .pr_read_keys = dm_pr_read_keys,
3775 .pr_read_reservation = dm_pr_read_reservation,
3776 };
3777
3778 static const struct block_device_operations dm_blk_dops = {
3779 .submit_bio = dm_submit_bio,
3780 .poll_bio = dm_poll_bio,
3781 .open = dm_blk_open,
3782 .release = dm_blk_close,
3783 .ioctl = dm_blk_ioctl,
3784 .getgeo = dm_blk_getgeo,
3785 .report_zones = dm_blk_report_zones,
3786 .get_unique_id = dm_blk_get_unique_id,
3787 .pr_ops = &dm_pr_ops,
3788 .owner = THIS_MODULE
3789 };
3790
3791 static const struct block_device_operations dm_rq_blk_dops = {
3792 .open = dm_blk_open,
3793 .release = dm_blk_close,
3794 .ioctl = dm_blk_ioctl,
3795 .getgeo = dm_blk_getgeo,
3796 .get_unique_id = dm_blk_get_unique_id,
3797 .pr_ops = &dm_pr_ops,
3798 .owner = THIS_MODULE
3799 };
3800
3801 static const struct dax_operations dm_dax_ops = {
3802 .direct_access = dm_dax_direct_access,
3803 .zero_page_range = dm_dax_zero_page_range,
3804 .recovery_write = dm_dax_recovery_write,
3805 };
3806
3807 /*
3808 * module hooks
3809 */
3810 module_init(dm_init);
3811 module_exit(dm_exit);
3812
3813 module_param(major, uint, 0);
3814 MODULE_PARM_DESC(major, "The major number of the device mapper");
3815
3816 module_param(reserved_bio_based_ios, uint, 0644);
3817 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3818
3819 module_param(dm_numa_node, int, 0644);
3820 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3821
3822 module_param(swap_bios, int, 0644);
3823 MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3824
3825 MODULE_DESCRIPTION(DM_NAME " driver");
3826 MODULE_AUTHOR("Joe Thornber <dm-devel@lists.linux.dev>");
3827 MODULE_LICENSE("GPL");
3828