1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
4 * Copyright (C) 2016-2017 Milan Broz
5 * Copyright (C) 2016-2017 Mikulas Patocka
6 *
7 * This file is released under the GPL.
8 */
9
10 #include "dm-bio-record.h"
11
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/device-mapper.h>
15 #include <linux/dm-io.h>
16 #include <linux/vmalloc.h>
17 #include <linux/sort.h>
18 #include <linux/rbtree.h>
19 #include <linux/delay.h>
20 #include <linux/random.h>
21 #include <linux/reboot.h>
22 #include <crypto/hash.h>
23 #include <crypto/skcipher.h>
24 #include <crypto/utils.h>
25 #include <linux/async_tx.h>
26 #include <linux/dm-bufio.h>
27
28 #include "dm-audit.h"
29
30 #define DM_MSG_PREFIX "integrity"
31
32 #define DEFAULT_INTERLEAVE_SECTORS 32768
33 #define DEFAULT_JOURNAL_SIZE_FACTOR 7
34 #define DEFAULT_SECTORS_PER_BITMAP_BIT 32768
35 #define DEFAULT_BUFFER_SECTORS 128
36 #define DEFAULT_JOURNAL_WATERMARK 50
37 #define DEFAULT_SYNC_MSEC 10000
38 #define DEFAULT_MAX_JOURNAL_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 131072 : 8192)
39 #define MIN_LOG2_INTERLEAVE_SECTORS 3
40 #define MAX_LOG2_INTERLEAVE_SECTORS 31
41 #define METADATA_WORKQUEUE_MAX_ACTIVE 16
42 #define RECALC_SECTORS (IS_ENABLED(CONFIG_64BIT) ? 32768 : 2048)
43 #define RECALC_WRITE_SUPER 16
44 #define BITMAP_BLOCK_SIZE 4096 /* don't change it */
45 #define BITMAP_FLUSH_INTERVAL (10 * HZ)
46 #define DISCARD_FILLER 0xf6
47 #define SALT_SIZE 16
48 #define RECHECK_POOL_SIZE 256
49
50 /*
51 * Warning - DEBUG_PRINT prints security-sensitive data to the log,
52 * so it should not be enabled in the official kernel
53 */
54 //#define DEBUG_PRINT
55 //#define INTERNAL_VERIFY
56
57 /*
58 * On disk structures
59 */
60
61 #define SB_MAGIC "integrt"
62 #define SB_VERSION_1 1
63 #define SB_VERSION_2 2
64 #define SB_VERSION_3 3
65 #define SB_VERSION_4 4
66 #define SB_VERSION_5 5
67 #define SB_VERSION_6 6
68 #define SB_SECTORS 8
69 #define MAX_SECTORS_PER_BLOCK 8
70
71 struct superblock {
72 __u8 magic[8];
73 __u8 version;
74 __u8 log2_interleave_sectors;
75 __le16 integrity_tag_size;
76 __le32 journal_sections;
77 __le64 provided_data_sectors; /* userspace uses this value */
78 __le32 flags;
79 __u8 log2_sectors_per_block;
80 __u8 log2_blocks_per_bitmap_bit;
81 __u8 pad[2];
82 __le64 recalc_sector;
83 __u8 pad2[8];
84 __u8 salt[SALT_SIZE];
85 };
86
87 #define SB_FLAG_HAVE_JOURNAL_MAC 0x1
88 #define SB_FLAG_RECALCULATING 0x2
89 #define SB_FLAG_DIRTY_BITMAP 0x4
90 #define SB_FLAG_FIXED_PADDING 0x8
91 #define SB_FLAG_FIXED_HMAC 0x10
92 #define SB_FLAG_INLINE 0x20
93
94 #define JOURNAL_ENTRY_ROUNDUP 8
95
96 typedef __le64 commit_id_t;
97 #define JOURNAL_MAC_PER_SECTOR 8
98
99 struct journal_entry {
100 union {
101 struct {
102 __le32 sector_lo;
103 __le32 sector_hi;
104 } s;
105 __le64 sector;
106 } u;
107 commit_id_t last_bytes[];
108 /* __u8 tag[0]; */
109 };
110
111 #define journal_entry_tag(ic, je) ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
112
113 #if BITS_PER_LONG == 64
114 #define journal_entry_set_sector(je, x) do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
115 #else
116 #define journal_entry_set_sector(je, x) do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
117 #endif
118 #define journal_entry_get_sector(je) le64_to_cpu((je)->u.sector)
119 #define journal_entry_is_unused(je) ((je)->u.s.sector_hi == cpu_to_le32(-1))
120 #define journal_entry_set_unused(je) ((je)->u.s.sector_hi = cpu_to_le32(-1))
121 #define journal_entry_is_inprogress(je) ((je)->u.s.sector_hi == cpu_to_le32(-2))
122 #define journal_entry_set_inprogress(je) ((je)->u.s.sector_hi = cpu_to_le32(-2))
123
124 #define JOURNAL_BLOCK_SECTORS 8
125 #define JOURNAL_SECTOR_DATA ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
126 #define JOURNAL_MAC_SIZE (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
127
128 struct journal_sector {
129 struct_group(sectors,
130 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
131 __u8 mac[JOURNAL_MAC_PER_SECTOR];
132 );
133 commit_id_t commit_id;
134 };
135
136 #define MAX_TAG_SIZE (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
137
138 #define METADATA_PADDING_SECTORS 8
139
140 #define N_COMMIT_IDS 4
141
prev_commit_seq(unsigned char seq)142 static unsigned char prev_commit_seq(unsigned char seq)
143 {
144 return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
145 }
146
next_commit_seq(unsigned char seq)147 static unsigned char next_commit_seq(unsigned char seq)
148 {
149 return (seq + 1) % N_COMMIT_IDS;
150 }
151
152 /*
153 * In-memory structures
154 */
155
156 struct journal_node {
157 struct rb_node node;
158 sector_t sector;
159 };
160
161 struct alg_spec {
162 char *alg_string;
163 char *key_string;
164 __u8 *key;
165 unsigned int key_size;
166 };
167
168 struct dm_integrity_c {
169 struct dm_dev *dev;
170 struct dm_dev *meta_dev;
171 unsigned int tag_size;
172 __s8 log2_tag_size;
173 unsigned int tuple_size;
174 sector_t start;
175 mempool_t journal_io_mempool;
176 struct dm_io_client *io;
177 struct dm_bufio_client *bufio;
178 struct workqueue_struct *metadata_wq;
179 struct superblock *sb;
180 unsigned int journal_pages;
181 unsigned int n_bitmap_blocks;
182
183 struct page_list *journal;
184 struct page_list *journal_io;
185 struct page_list *journal_xor;
186 struct page_list *recalc_bitmap;
187 struct page_list *may_write_bitmap;
188 struct bitmap_block_status *bbs;
189 unsigned int bitmap_flush_interval;
190 int synchronous_mode;
191 struct bio_list synchronous_bios;
192 struct delayed_work bitmap_flush_work;
193
194 struct crypto_skcipher *journal_crypt;
195 struct scatterlist **journal_scatterlist;
196 struct scatterlist **journal_io_scatterlist;
197 struct skcipher_request **sk_requests;
198
199 struct crypto_shash *journal_mac;
200
201 struct journal_node *journal_tree;
202 struct rb_root journal_tree_root;
203
204 sector_t provided_data_sectors;
205
206 unsigned short journal_entry_size;
207 unsigned char journal_entries_per_sector;
208 unsigned char journal_section_entries;
209 unsigned short journal_section_sectors;
210 unsigned int journal_sections;
211 unsigned int journal_entries;
212 sector_t data_device_sectors;
213 sector_t meta_device_sectors;
214 unsigned int initial_sectors;
215 unsigned int metadata_run;
216 __s8 log2_metadata_run;
217 __u8 log2_buffer_sectors;
218 __u8 sectors_per_block;
219 __u8 log2_blocks_per_bitmap_bit;
220
221 unsigned char mode;
222
223 int failed;
224
225 struct crypto_shash *internal_hash;
226
227 struct dm_target *ti;
228
229 /* these variables are locked with endio_wait.lock */
230 struct rb_root in_progress;
231 struct list_head wait_list;
232 wait_queue_head_t endio_wait;
233 struct workqueue_struct *wait_wq;
234 struct workqueue_struct *offload_wq;
235
236 unsigned char commit_seq;
237 commit_id_t commit_ids[N_COMMIT_IDS];
238
239 unsigned int committed_section;
240 unsigned int n_committed_sections;
241
242 unsigned int uncommitted_section;
243 unsigned int n_uncommitted_sections;
244
245 unsigned int free_section;
246 unsigned char free_section_entry;
247 unsigned int free_sectors;
248
249 unsigned int free_sectors_threshold;
250
251 struct workqueue_struct *commit_wq;
252 struct work_struct commit_work;
253
254 struct workqueue_struct *writer_wq;
255 struct work_struct writer_work;
256
257 struct workqueue_struct *recalc_wq;
258 struct work_struct recalc_work;
259
260 struct bio_list flush_bio_list;
261
262 unsigned long autocommit_jiffies;
263 struct timer_list autocommit_timer;
264 unsigned int autocommit_msec;
265
266 wait_queue_head_t copy_to_journal_wait;
267
268 struct completion crypto_backoff;
269
270 bool wrote_to_journal;
271 bool journal_uptodate;
272 bool just_formatted;
273 bool recalculate_flag;
274 bool reset_recalculate_flag;
275 bool discard;
276 bool fix_padding;
277 bool fix_hmac;
278 bool legacy_recalculate;
279
280 struct alg_spec internal_hash_alg;
281 struct alg_spec journal_crypt_alg;
282 struct alg_spec journal_mac_alg;
283
284 atomic64_t number_of_mismatches;
285
286 mempool_t recheck_pool;
287 struct bio_set recheck_bios;
288 struct bio_set recalc_bios;
289
290 struct notifier_block reboot_notifier;
291 };
292
293 struct dm_integrity_range {
294 sector_t logical_sector;
295 sector_t n_sectors;
296 bool waiting;
297 union {
298 struct rb_node node;
299 struct {
300 struct task_struct *task;
301 struct list_head wait_entry;
302 };
303 };
304 };
305
306 struct dm_integrity_io {
307 struct work_struct work;
308
309 struct dm_integrity_c *ic;
310 enum req_op op;
311 bool fua;
312
313 struct dm_integrity_range range;
314
315 sector_t metadata_block;
316 unsigned int metadata_offset;
317
318 atomic_t in_flight;
319 blk_status_t bi_status;
320
321 struct completion *completion;
322
323 struct dm_bio_details bio_details;
324
325 char *integrity_payload;
326 unsigned payload_len;
327 bool integrity_payload_from_mempool;
328 bool integrity_range_locked;
329 };
330
331 struct journal_completion {
332 struct dm_integrity_c *ic;
333 atomic_t in_flight;
334 struct completion comp;
335 };
336
337 struct journal_io {
338 struct dm_integrity_range range;
339 struct journal_completion *comp;
340 };
341
342 struct bitmap_block_status {
343 struct work_struct work;
344 struct dm_integrity_c *ic;
345 unsigned int idx;
346 unsigned long *bitmap;
347 struct bio_list bio_queue;
348 spinlock_t bio_queue_lock;
349
350 };
351
352 static struct kmem_cache *journal_io_cache;
353
354 #define JOURNAL_IO_MEMPOOL 32
355
356 #ifdef DEBUG_PRINT
357 #define DEBUG_print(x, ...) printk(KERN_DEBUG x, ##__VA_ARGS__)
358 #define DEBUG_bytes(bytes, len, msg, ...) printk(KERN_DEBUG msg "%s%*ph\n", ##__VA_ARGS__, \
359 len ? ": " : "", len, bytes)
360 #else
361 #define DEBUG_print(x, ...) do { } while (0)
362 #define DEBUG_bytes(bytes, len, msg, ...) do { } while (0)
363 #endif
364
365 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
366 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map);
367 static void integrity_bio_wait(struct work_struct *w);
368 static void dm_integrity_dtr(struct dm_target *ti);
369
dm_integrity_io_error(struct dm_integrity_c * ic,const char * msg,int err)370 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
371 {
372 if (err == -EILSEQ)
373 atomic64_inc(&ic->number_of_mismatches);
374 if (!cmpxchg(&ic->failed, 0, err))
375 DMERR("Error on %s: %d", msg, err);
376 }
377
dm_integrity_failed(struct dm_integrity_c * ic)378 static int dm_integrity_failed(struct dm_integrity_c *ic)
379 {
380 return READ_ONCE(ic->failed);
381 }
382
dm_integrity_disable_recalculate(struct dm_integrity_c * ic)383 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
384 {
385 if (ic->legacy_recalculate)
386 return false;
387 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
388 ic->internal_hash_alg.key || ic->journal_mac_alg.key :
389 ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
390 return true;
391 return false;
392 }
393
dm_integrity_commit_id(struct dm_integrity_c * ic,unsigned int i,unsigned int j,unsigned char seq)394 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned int i,
395 unsigned int j, unsigned char seq)
396 {
397 /*
398 * Xor the number with section and sector, so that if a piece of
399 * journal is written at wrong place, it is detected.
400 */
401 return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
402 }
403
get_area_and_offset(struct dm_integrity_c * ic,sector_t data_sector,sector_t * area,sector_t * offset)404 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
405 sector_t *area, sector_t *offset)
406 {
407 if (!ic->meta_dev) {
408 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
409 *area = data_sector >> log2_interleave_sectors;
410 *offset = (unsigned int)data_sector & ((1U << log2_interleave_sectors) - 1);
411 } else {
412 *area = 0;
413 *offset = data_sector;
414 }
415 }
416
417 #define sector_to_block(ic, n) \
418 do { \
419 BUG_ON((n) & (unsigned int)((ic)->sectors_per_block - 1)); \
420 (n) >>= (ic)->sb->log2_sectors_per_block; \
421 } while (0)
422
get_metadata_sector_and_offset(struct dm_integrity_c * ic,sector_t area,sector_t offset,unsigned int * metadata_offset)423 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
424 sector_t offset, unsigned int *metadata_offset)
425 {
426 __u64 ms;
427 unsigned int mo;
428
429 ms = area << ic->sb->log2_interleave_sectors;
430 if (likely(ic->log2_metadata_run >= 0))
431 ms += area << ic->log2_metadata_run;
432 else
433 ms += area * ic->metadata_run;
434 ms >>= ic->log2_buffer_sectors;
435
436 sector_to_block(ic, offset);
437
438 if (likely(ic->log2_tag_size >= 0)) {
439 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
440 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
441 } else {
442 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
443 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
444 }
445 *metadata_offset = mo;
446 return ms;
447 }
448
get_data_sector(struct dm_integrity_c * ic,sector_t area,sector_t offset)449 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
450 {
451 sector_t result;
452
453 if (ic->meta_dev)
454 return offset;
455
456 result = area << ic->sb->log2_interleave_sectors;
457 if (likely(ic->log2_metadata_run >= 0))
458 result += (area + 1) << ic->log2_metadata_run;
459 else
460 result += (area + 1) * ic->metadata_run;
461
462 result += (sector_t)ic->initial_sectors + offset;
463 result += ic->start;
464
465 return result;
466 }
467
wraparound_section(struct dm_integrity_c * ic,unsigned int * sec_ptr)468 static void wraparound_section(struct dm_integrity_c *ic, unsigned int *sec_ptr)
469 {
470 if (unlikely(*sec_ptr >= ic->journal_sections))
471 *sec_ptr -= ic->journal_sections;
472 }
473
sb_set_version(struct dm_integrity_c * ic)474 static void sb_set_version(struct dm_integrity_c *ic)
475 {
476 if (ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE))
477 ic->sb->version = SB_VERSION_6;
478 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
479 ic->sb->version = SB_VERSION_5;
480 else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
481 ic->sb->version = SB_VERSION_4;
482 else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
483 ic->sb->version = SB_VERSION_3;
484 else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
485 ic->sb->version = SB_VERSION_2;
486 else
487 ic->sb->version = SB_VERSION_1;
488 }
489
sb_mac(struct dm_integrity_c * ic,bool wr)490 static int sb_mac(struct dm_integrity_c *ic, bool wr)
491 {
492 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
493 int r;
494 unsigned int mac_size = crypto_shash_digestsize(ic->journal_mac);
495 __u8 *sb = (__u8 *)ic->sb;
496 __u8 *mac = sb + (1 << SECTOR_SHIFT) - mac_size;
497
498 if (sizeof(struct superblock) + mac_size > 1 << SECTOR_SHIFT ||
499 mac_size > HASH_MAX_DIGESTSIZE) {
500 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
501 return -EINVAL;
502 }
503
504 desc->tfm = ic->journal_mac;
505
506 if (likely(wr)) {
507 r = crypto_shash_digest(desc, sb, mac - sb, mac);
508 if (unlikely(r < 0)) {
509 dm_integrity_io_error(ic, "crypto_shash_digest", r);
510 return r;
511 }
512 } else {
513 __u8 actual_mac[HASH_MAX_DIGESTSIZE];
514
515 r = crypto_shash_digest(desc, sb, mac - sb, actual_mac);
516 if (unlikely(r < 0)) {
517 dm_integrity_io_error(ic, "crypto_shash_digest", r);
518 return r;
519 }
520 if (crypto_memneq(mac, actual_mac, mac_size)) {
521 dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
522 dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
523 return -EILSEQ;
524 }
525 }
526
527 return 0;
528 }
529
sync_rw_sb(struct dm_integrity_c * ic,blk_opf_t opf)530 static int sync_rw_sb(struct dm_integrity_c *ic, blk_opf_t opf)
531 {
532 struct dm_io_request io_req;
533 struct dm_io_region io_loc;
534 const enum req_op op = opf & REQ_OP_MASK;
535 int r;
536
537 io_req.bi_opf = opf;
538 io_req.mem.type = DM_IO_KMEM;
539 io_req.mem.ptr.addr = ic->sb;
540 io_req.notify.fn = NULL;
541 io_req.client = ic->io;
542 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
543 io_loc.sector = ic->start;
544 io_loc.count = SB_SECTORS;
545
546 if (op == REQ_OP_WRITE) {
547 sb_set_version(ic);
548 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
549 r = sb_mac(ic, true);
550 if (unlikely(r))
551 return r;
552 }
553 }
554
555 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
556 if (unlikely(r))
557 return r;
558
559 if (op == REQ_OP_READ) {
560 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
561 r = sb_mac(ic, false);
562 if (unlikely(r))
563 return r;
564 }
565 }
566
567 return 0;
568 }
569
570 #define BITMAP_OP_TEST_ALL_SET 0
571 #define BITMAP_OP_TEST_ALL_CLEAR 1
572 #define BITMAP_OP_SET 2
573 #define BITMAP_OP_CLEAR 3
574
block_bitmap_op(struct dm_integrity_c * ic,struct page_list * bitmap,sector_t sector,sector_t n_sectors,int mode)575 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
576 sector_t sector, sector_t n_sectors, int mode)
577 {
578 unsigned long bit, end_bit, this_end_bit, page, end_page;
579 unsigned long *data;
580
581 if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
582 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
583 sector,
584 n_sectors,
585 ic->sb->log2_sectors_per_block,
586 ic->log2_blocks_per_bitmap_bit,
587 mode);
588 BUG();
589 }
590
591 if (unlikely(!n_sectors))
592 return true;
593
594 bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
595 end_bit = (sector + n_sectors - 1) >>
596 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
597
598 page = bit / (PAGE_SIZE * 8);
599 bit %= PAGE_SIZE * 8;
600
601 end_page = end_bit / (PAGE_SIZE * 8);
602 end_bit %= PAGE_SIZE * 8;
603
604 repeat:
605 if (page < end_page)
606 this_end_bit = PAGE_SIZE * 8 - 1;
607 else
608 this_end_bit = end_bit;
609
610 data = lowmem_page_address(bitmap[page].page);
611
612 if (mode == BITMAP_OP_TEST_ALL_SET) {
613 while (bit <= this_end_bit) {
614 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
615 do {
616 if (data[bit / BITS_PER_LONG] != -1)
617 return false;
618 bit += BITS_PER_LONG;
619 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
620 continue;
621 }
622 if (!test_bit(bit, data))
623 return false;
624 bit++;
625 }
626 } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
627 while (bit <= this_end_bit) {
628 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
629 do {
630 if (data[bit / BITS_PER_LONG] != 0)
631 return false;
632 bit += BITS_PER_LONG;
633 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
634 continue;
635 }
636 if (test_bit(bit, data))
637 return false;
638 bit++;
639 }
640 } else if (mode == BITMAP_OP_SET) {
641 while (bit <= this_end_bit) {
642 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
643 do {
644 data[bit / BITS_PER_LONG] = -1;
645 bit += BITS_PER_LONG;
646 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
647 continue;
648 }
649 __set_bit(bit, data);
650 bit++;
651 }
652 } else if (mode == BITMAP_OP_CLEAR) {
653 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
654 clear_page(data);
655 else {
656 while (bit <= this_end_bit) {
657 if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
658 do {
659 data[bit / BITS_PER_LONG] = 0;
660 bit += BITS_PER_LONG;
661 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
662 continue;
663 }
664 __clear_bit(bit, data);
665 bit++;
666 }
667 }
668 } else {
669 BUG();
670 }
671
672 if (unlikely(page < end_page)) {
673 bit = 0;
674 page++;
675 goto repeat;
676 }
677
678 return true;
679 }
680
block_bitmap_copy(struct dm_integrity_c * ic,struct page_list * dst,struct page_list * src)681 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
682 {
683 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
684 unsigned int i;
685
686 for (i = 0; i < n_bitmap_pages; i++) {
687 unsigned long *dst_data = lowmem_page_address(dst[i].page);
688 unsigned long *src_data = lowmem_page_address(src[i].page);
689
690 copy_page(dst_data, src_data);
691 }
692 }
693
sector_to_bitmap_block(struct dm_integrity_c * ic,sector_t sector)694 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
695 {
696 unsigned int bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
697 unsigned int bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
698
699 BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
700 return &ic->bbs[bitmap_block];
701 }
702
access_journal_check(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,bool e,const char * function)703 static void access_journal_check(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
704 bool e, const char *function)
705 {
706 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
707 unsigned int limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
708
709 if (unlikely(section >= ic->journal_sections) ||
710 unlikely(offset >= limit)) {
711 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
712 function, section, offset, ic->journal_sections, limit);
713 BUG();
714 }
715 #endif
716 }
717
page_list_location(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int * pl_index,unsigned int * pl_offset)718 static void page_list_location(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
719 unsigned int *pl_index, unsigned int *pl_offset)
720 {
721 unsigned int sector;
722
723 access_journal_check(ic, section, offset, false, "page_list_location");
724
725 sector = section * ic->journal_section_sectors + offset;
726
727 *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
728 *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
729 }
730
access_page_list(struct dm_integrity_c * ic,struct page_list * pl,unsigned int section,unsigned int offset,unsigned int * n_sectors)731 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
732 unsigned int section, unsigned int offset, unsigned int *n_sectors)
733 {
734 unsigned int pl_index, pl_offset;
735 char *va;
736
737 page_list_location(ic, section, offset, &pl_index, &pl_offset);
738
739 if (n_sectors)
740 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
741
742 va = lowmem_page_address(pl[pl_index].page);
743
744 return (struct journal_sector *)(va + pl_offset);
745 }
746
access_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset)747 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset)
748 {
749 return access_page_list(ic, ic->journal, section, offset, NULL);
750 }
751
access_journal_entry(struct dm_integrity_c * ic,unsigned int section,unsigned int n)752 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
753 {
754 unsigned int rel_sector, offset;
755 struct journal_sector *js;
756
757 access_journal_check(ic, section, n, true, "access_journal_entry");
758
759 rel_sector = n % JOURNAL_BLOCK_SECTORS;
760 offset = n / JOURNAL_BLOCK_SECTORS;
761
762 js = access_journal(ic, section, rel_sector);
763 return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
764 }
765
access_journal_data(struct dm_integrity_c * ic,unsigned int section,unsigned int n)766 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned int section, unsigned int n)
767 {
768 n <<= ic->sb->log2_sectors_per_block;
769
770 n += JOURNAL_BLOCK_SECTORS;
771
772 access_journal_check(ic, section, n, false, "access_journal_data");
773
774 return access_journal(ic, section, n);
775 }
776
section_mac(struct dm_integrity_c * ic,unsigned int section,__u8 result[JOURNAL_MAC_SIZE])777 static void section_mac(struct dm_integrity_c *ic, unsigned int section, __u8 result[JOURNAL_MAC_SIZE])
778 {
779 SHASH_DESC_ON_STACK(desc, ic->journal_mac);
780 int r;
781 unsigned int j, size;
782
783 desc->tfm = ic->journal_mac;
784
785 r = crypto_shash_init(desc);
786 if (unlikely(r < 0)) {
787 dm_integrity_io_error(ic, "crypto_shash_init", r);
788 goto err;
789 }
790
791 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
792 __le64 section_le;
793
794 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
795 if (unlikely(r < 0)) {
796 dm_integrity_io_error(ic, "crypto_shash_update", r);
797 goto err;
798 }
799
800 section_le = cpu_to_le64(section);
801 r = crypto_shash_update(desc, (__u8 *)§ion_le, sizeof(section_le));
802 if (unlikely(r < 0)) {
803 dm_integrity_io_error(ic, "crypto_shash_update", r);
804 goto err;
805 }
806 }
807
808 for (j = 0; j < ic->journal_section_entries; j++) {
809 struct journal_entry *je = access_journal_entry(ic, section, j);
810
811 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof(je->u.sector));
812 if (unlikely(r < 0)) {
813 dm_integrity_io_error(ic, "crypto_shash_update", r);
814 goto err;
815 }
816 }
817
818 size = crypto_shash_digestsize(ic->journal_mac);
819
820 if (likely(size <= JOURNAL_MAC_SIZE)) {
821 r = crypto_shash_final(desc, result);
822 if (unlikely(r < 0)) {
823 dm_integrity_io_error(ic, "crypto_shash_final", r);
824 goto err;
825 }
826 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
827 } else {
828 __u8 digest[HASH_MAX_DIGESTSIZE];
829
830 if (WARN_ON(size > sizeof(digest))) {
831 dm_integrity_io_error(ic, "digest_size", -EINVAL);
832 goto err;
833 }
834 r = crypto_shash_final(desc, digest);
835 if (unlikely(r < 0)) {
836 dm_integrity_io_error(ic, "crypto_shash_final", r);
837 goto err;
838 }
839 memcpy(result, digest, JOURNAL_MAC_SIZE);
840 }
841
842 return;
843 err:
844 memset(result, 0, JOURNAL_MAC_SIZE);
845 }
846
rw_section_mac(struct dm_integrity_c * ic,unsigned int section,bool wr)847 static void rw_section_mac(struct dm_integrity_c *ic, unsigned int section, bool wr)
848 {
849 __u8 result[JOURNAL_MAC_SIZE];
850 unsigned int j;
851
852 if (!ic->journal_mac)
853 return;
854
855 section_mac(ic, section, result);
856
857 for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
858 struct journal_sector *js = access_journal(ic, section, j);
859
860 if (likely(wr))
861 memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
862 else {
863 if (crypto_memneq(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
864 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
865 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
866 }
867 }
868 }
869 }
870
complete_journal_op(void * context)871 static void complete_journal_op(void *context)
872 {
873 struct journal_completion *comp = context;
874
875 BUG_ON(!atomic_read(&comp->in_flight));
876 if (likely(atomic_dec_and_test(&comp->in_flight)))
877 complete(&comp->comp);
878 }
879
xor_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)880 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
881 unsigned int n_sections, struct journal_completion *comp)
882 {
883 struct async_submit_ctl submit;
884 size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
885 unsigned int pl_index, pl_offset, section_index;
886 struct page_list *source_pl, *target_pl;
887
888 if (likely(encrypt)) {
889 source_pl = ic->journal;
890 target_pl = ic->journal_io;
891 } else {
892 source_pl = ic->journal_io;
893 target_pl = ic->journal;
894 }
895
896 page_list_location(ic, section, 0, &pl_index, &pl_offset);
897
898 atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
899
900 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
901
902 section_index = pl_index;
903
904 do {
905 size_t this_step;
906 struct page *src_pages[2];
907 struct page *dst_page;
908
909 while (unlikely(pl_index == section_index)) {
910 unsigned int dummy;
911
912 if (likely(encrypt))
913 rw_section_mac(ic, section, true);
914 section++;
915 n_sections--;
916 if (!n_sections)
917 break;
918 page_list_location(ic, section, 0, §ion_index, &dummy);
919 }
920
921 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
922 dst_page = target_pl[pl_index].page;
923 src_pages[0] = source_pl[pl_index].page;
924 src_pages[1] = ic->journal_xor[pl_index].page;
925
926 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
927
928 pl_index++;
929 pl_offset = 0;
930 n_bytes -= this_step;
931 } while (n_bytes);
932
933 BUG_ON(n_sections);
934
935 async_tx_issue_pending_all();
936 }
937
complete_journal_encrypt(void * data,int err)938 static void complete_journal_encrypt(void *data, int err)
939 {
940 struct journal_completion *comp = data;
941
942 if (unlikely(err)) {
943 if (likely(err == -EINPROGRESS)) {
944 complete(&comp->ic->crypto_backoff);
945 return;
946 }
947 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
948 }
949 complete_journal_op(comp);
950 }
951
do_crypt(bool encrypt,struct skcipher_request * req,struct journal_completion * comp)952 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
953 {
954 int r;
955
956 skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
957 complete_journal_encrypt, comp);
958 if (likely(encrypt))
959 r = crypto_skcipher_encrypt(req);
960 else
961 r = crypto_skcipher_decrypt(req);
962 if (likely(!r))
963 return false;
964 if (likely(r == -EINPROGRESS))
965 return true;
966 if (likely(r == -EBUSY)) {
967 wait_for_completion(&comp->ic->crypto_backoff);
968 reinit_completion(&comp->ic->crypto_backoff);
969 return true;
970 }
971 dm_integrity_io_error(comp->ic, "encrypt", r);
972 return false;
973 }
974
crypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)975 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
976 unsigned int n_sections, struct journal_completion *comp)
977 {
978 struct scatterlist **source_sg;
979 struct scatterlist **target_sg;
980
981 atomic_add(2, &comp->in_flight);
982
983 if (likely(encrypt)) {
984 source_sg = ic->journal_scatterlist;
985 target_sg = ic->journal_io_scatterlist;
986 } else {
987 source_sg = ic->journal_io_scatterlist;
988 target_sg = ic->journal_scatterlist;
989 }
990
991 do {
992 struct skcipher_request *req;
993 unsigned int ivsize;
994 char *iv;
995
996 if (likely(encrypt))
997 rw_section_mac(ic, section, true);
998
999 req = ic->sk_requests[section];
1000 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1001 iv = req->iv;
1002
1003 memcpy(iv, iv + ivsize, ivsize);
1004
1005 req->src = source_sg[section];
1006 req->dst = target_sg[section];
1007
1008 if (unlikely(do_crypt(encrypt, req, comp)))
1009 atomic_inc(&comp->in_flight);
1010
1011 section++;
1012 n_sections--;
1013 } while (n_sections);
1014
1015 atomic_dec(&comp->in_flight);
1016 complete_journal_op(comp);
1017 }
1018
encrypt_journal(struct dm_integrity_c * ic,bool encrypt,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1019 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned int section,
1020 unsigned int n_sections, struct journal_completion *comp)
1021 {
1022 if (ic->journal_xor)
1023 return xor_journal(ic, encrypt, section, n_sections, comp);
1024 else
1025 return crypt_journal(ic, encrypt, section, n_sections, comp);
1026 }
1027
complete_journal_io(unsigned long error,void * context)1028 static void complete_journal_io(unsigned long error, void *context)
1029 {
1030 struct journal_completion *comp = context;
1031
1032 if (unlikely(error != 0))
1033 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1034 complete_journal_op(comp);
1035 }
1036
rw_journal_sectors(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int sector,unsigned int n_sectors,struct journal_completion * comp)1037 static void rw_journal_sectors(struct dm_integrity_c *ic, blk_opf_t opf,
1038 unsigned int sector, unsigned int n_sectors,
1039 struct journal_completion *comp)
1040 {
1041 struct dm_io_request io_req;
1042 struct dm_io_region io_loc;
1043 unsigned int pl_index, pl_offset;
1044 int r;
1045
1046 if (unlikely(dm_integrity_failed(ic))) {
1047 if (comp)
1048 complete_journal_io(-1UL, comp);
1049 return;
1050 }
1051
1052 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1053 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1054
1055 io_req.bi_opf = opf;
1056 io_req.mem.type = DM_IO_PAGE_LIST;
1057 if (ic->journal_io)
1058 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1059 else
1060 io_req.mem.ptr.pl = &ic->journal[pl_index];
1061 io_req.mem.offset = pl_offset;
1062 if (likely(comp != NULL)) {
1063 io_req.notify.fn = complete_journal_io;
1064 io_req.notify.context = comp;
1065 } else {
1066 io_req.notify.fn = NULL;
1067 }
1068 io_req.client = ic->io;
1069 io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1070 io_loc.sector = ic->start + SB_SECTORS + sector;
1071 io_loc.count = n_sectors;
1072
1073 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1074 if (unlikely(r)) {
1075 dm_integrity_io_error(ic, (opf & REQ_OP_MASK) == REQ_OP_READ ?
1076 "reading journal" : "writing journal", r);
1077 if (comp) {
1078 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1079 complete_journal_io(-1UL, comp);
1080 }
1081 }
1082 }
1083
rw_journal(struct dm_integrity_c * ic,blk_opf_t opf,unsigned int section,unsigned int n_sections,struct journal_completion * comp)1084 static void rw_journal(struct dm_integrity_c *ic, blk_opf_t opf,
1085 unsigned int section, unsigned int n_sections,
1086 struct journal_completion *comp)
1087 {
1088 unsigned int sector, n_sectors;
1089
1090 sector = section * ic->journal_section_sectors;
1091 n_sectors = n_sections * ic->journal_section_sectors;
1092
1093 rw_journal_sectors(ic, opf, sector, n_sectors, comp);
1094 }
1095
write_journal(struct dm_integrity_c * ic,unsigned int commit_start,unsigned int commit_sections)1096 static void write_journal(struct dm_integrity_c *ic, unsigned int commit_start, unsigned int commit_sections)
1097 {
1098 struct journal_completion io_comp;
1099 struct journal_completion crypt_comp_1;
1100 struct journal_completion crypt_comp_2;
1101 unsigned int i;
1102
1103 io_comp.ic = ic;
1104 init_completion(&io_comp.comp);
1105
1106 if (commit_start + commit_sections <= ic->journal_sections) {
1107 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1108 if (ic->journal_io) {
1109 crypt_comp_1.ic = ic;
1110 init_completion(&crypt_comp_1.comp);
1111 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1112 encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1113 wait_for_completion_io(&crypt_comp_1.comp);
1114 } else {
1115 for (i = 0; i < commit_sections; i++)
1116 rw_section_mac(ic, commit_start + i, true);
1117 }
1118 rw_journal(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, commit_start,
1119 commit_sections, &io_comp);
1120 } else {
1121 unsigned int to_end;
1122
1123 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1124 to_end = ic->journal_sections - commit_start;
1125 if (ic->journal_io) {
1126 crypt_comp_1.ic = ic;
1127 init_completion(&crypt_comp_1.comp);
1128 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1129 encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1130 if (try_wait_for_completion(&crypt_comp_1.comp)) {
1131 rw_journal(ic, REQ_OP_WRITE | REQ_FUA,
1132 commit_start, to_end, &io_comp);
1133 reinit_completion(&crypt_comp_1.comp);
1134 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1135 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1136 wait_for_completion_io(&crypt_comp_1.comp);
1137 } else {
1138 crypt_comp_2.ic = ic;
1139 init_completion(&crypt_comp_2.comp);
1140 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1141 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1142 wait_for_completion_io(&crypt_comp_1.comp);
1143 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1144 wait_for_completion_io(&crypt_comp_2.comp);
1145 }
1146 } else {
1147 for (i = 0; i < to_end; i++)
1148 rw_section_mac(ic, commit_start + i, true);
1149 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, commit_start, to_end, &io_comp);
1150 for (i = 0; i < commit_sections - to_end; i++)
1151 rw_section_mac(ic, i, true);
1152 }
1153 rw_journal(ic, REQ_OP_WRITE | REQ_FUA, 0, commit_sections - to_end, &io_comp);
1154 }
1155
1156 wait_for_completion_io(&io_comp.comp);
1157 }
1158
copy_from_journal(struct dm_integrity_c * ic,unsigned int section,unsigned int offset,unsigned int n_sectors,sector_t target,io_notify_fn fn,void * data)1159 static void copy_from_journal(struct dm_integrity_c *ic, unsigned int section, unsigned int offset,
1160 unsigned int n_sectors, sector_t target, io_notify_fn fn, void *data)
1161 {
1162 struct dm_io_request io_req;
1163 struct dm_io_region io_loc;
1164 int r;
1165 unsigned int sector, pl_index, pl_offset;
1166
1167 BUG_ON((target | n_sectors | offset) & (unsigned int)(ic->sectors_per_block - 1));
1168
1169 if (unlikely(dm_integrity_failed(ic))) {
1170 fn(-1UL, data);
1171 return;
1172 }
1173
1174 sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1175
1176 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1177 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1178
1179 io_req.bi_opf = REQ_OP_WRITE;
1180 io_req.mem.type = DM_IO_PAGE_LIST;
1181 io_req.mem.ptr.pl = &ic->journal[pl_index];
1182 io_req.mem.offset = pl_offset;
1183 io_req.notify.fn = fn;
1184 io_req.notify.context = data;
1185 io_req.client = ic->io;
1186 io_loc.bdev = ic->dev->bdev;
1187 io_loc.sector = target;
1188 io_loc.count = n_sectors;
1189
1190 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1191 if (unlikely(r)) {
1192 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1193 fn(-1UL, data);
1194 }
1195 }
1196
ranges_overlap(struct dm_integrity_range * range1,struct dm_integrity_range * range2)1197 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1198 {
1199 return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1200 range1->logical_sector + range1->n_sectors > range2->logical_sector;
1201 }
1202
add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range,bool check_waiting)1203 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1204 {
1205 struct rb_node **n = &ic->in_progress.rb_node;
1206 struct rb_node *parent;
1207
1208 BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned int)(ic->sectors_per_block - 1));
1209
1210 if (likely(check_waiting)) {
1211 struct dm_integrity_range *range;
1212
1213 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1214 if (unlikely(ranges_overlap(range, new_range)))
1215 return false;
1216 }
1217 }
1218
1219 parent = NULL;
1220
1221 while (*n) {
1222 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1223
1224 parent = *n;
1225 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector)
1226 n = &range->node.rb_left;
1227 else if (new_range->logical_sector >= range->logical_sector + range->n_sectors)
1228 n = &range->node.rb_right;
1229 else
1230 return false;
1231 }
1232
1233 rb_link_node(&new_range->node, parent, n);
1234 rb_insert_color(&new_range->node, &ic->in_progress);
1235
1236 return true;
1237 }
1238
remove_range_unlocked(struct dm_integrity_c * ic,struct dm_integrity_range * range)1239 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1240 {
1241 rb_erase(&range->node, &ic->in_progress);
1242 while (unlikely(!list_empty(&ic->wait_list))) {
1243 struct dm_integrity_range *last_range =
1244 list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1245 struct task_struct *last_range_task;
1246
1247 last_range_task = last_range->task;
1248 list_del(&last_range->wait_entry);
1249 if (!add_new_range(ic, last_range, false)) {
1250 last_range->task = last_range_task;
1251 list_add(&last_range->wait_entry, &ic->wait_list);
1252 break;
1253 }
1254 last_range->waiting = false;
1255 wake_up_process(last_range_task);
1256 }
1257 }
1258
remove_range(struct dm_integrity_c * ic,struct dm_integrity_range * range)1259 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1260 {
1261 unsigned long flags;
1262
1263 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1264 remove_range_unlocked(ic, range);
1265 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1266 }
1267
wait_and_add_new_range(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1268 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1269 {
1270 new_range->waiting = true;
1271 list_add_tail(&new_range->wait_entry, &ic->wait_list);
1272 new_range->task = current;
1273 do {
1274 __set_current_state(TASK_UNINTERRUPTIBLE);
1275 spin_unlock_irq(&ic->endio_wait.lock);
1276 io_schedule();
1277 spin_lock_irq(&ic->endio_wait.lock);
1278 } while (unlikely(new_range->waiting));
1279 }
1280
add_new_range_and_wait(struct dm_integrity_c * ic,struct dm_integrity_range * new_range)1281 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1282 {
1283 if (unlikely(!add_new_range(ic, new_range, true)))
1284 wait_and_add_new_range(ic, new_range);
1285 }
1286
init_journal_node(struct journal_node * node)1287 static void init_journal_node(struct journal_node *node)
1288 {
1289 RB_CLEAR_NODE(&node->node);
1290 node->sector = (sector_t)-1;
1291 }
1292
add_journal_node(struct dm_integrity_c * ic,struct journal_node * node,sector_t sector)1293 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1294 {
1295 struct rb_node **link;
1296 struct rb_node *parent;
1297
1298 node->sector = sector;
1299 BUG_ON(!RB_EMPTY_NODE(&node->node));
1300
1301 link = &ic->journal_tree_root.rb_node;
1302 parent = NULL;
1303
1304 while (*link) {
1305 struct journal_node *j;
1306
1307 parent = *link;
1308 j = container_of(parent, struct journal_node, node);
1309 if (sector < j->sector)
1310 link = &j->node.rb_left;
1311 else
1312 link = &j->node.rb_right;
1313 }
1314
1315 rb_link_node(&node->node, parent, link);
1316 rb_insert_color(&node->node, &ic->journal_tree_root);
1317 }
1318
remove_journal_node(struct dm_integrity_c * ic,struct journal_node * node)1319 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1320 {
1321 BUG_ON(RB_EMPTY_NODE(&node->node));
1322 rb_erase(&node->node, &ic->journal_tree_root);
1323 init_journal_node(node);
1324 }
1325
1326 #define NOT_FOUND (-1U)
1327
find_journal_node(struct dm_integrity_c * ic,sector_t sector,sector_t * next_sector)1328 static unsigned int find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1329 {
1330 struct rb_node *n = ic->journal_tree_root.rb_node;
1331 unsigned int found = NOT_FOUND;
1332
1333 *next_sector = (sector_t)-1;
1334 while (n) {
1335 struct journal_node *j = container_of(n, struct journal_node, node);
1336
1337 if (sector == j->sector)
1338 found = j - ic->journal_tree;
1339
1340 if (sector < j->sector) {
1341 *next_sector = j->sector;
1342 n = j->node.rb_left;
1343 } else
1344 n = j->node.rb_right;
1345 }
1346
1347 return found;
1348 }
1349
test_journal_node(struct dm_integrity_c * ic,unsigned int pos,sector_t sector)1350 static bool test_journal_node(struct dm_integrity_c *ic, unsigned int pos, sector_t sector)
1351 {
1352 struct journal_node *node, *next_node;
1353 struct rb_node *next;
1354
1355 if (unlikely(pos >= ic->journal_entries))
1356 return false;
1357 node = &ic->journal_tree[pos];
1358 if (unlikely(RB_EMPTY_NODE(&node->node)))
1359 return false;
1360 if (unlikely(node->sector != sector))
1361 return false;
1362
1363 next = rb_next(&node->node);
1364 if (unlikely(!next))
1365 return true;
1366
1367 next_node = container_of(next, struct journal_node, node);
1368 return next_node->sector != sector;
1369 }
1370
find_newer_committed_node(struct dm_integrity_c * ic,struct journal_node * node)1371 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1372 {
1373 struct rb_node *next;
1374 struct journal_node *next_node;
1375 unsigned int next_section;
1376
1377 BUG_ON(RB_EMPTY_NODE(&node->node));
1378
1379 next = rb_next(&node->node);
1380 if (unlikely(!next))
1381 return false;
1382
1383 next_node = container_of(next, struct journal_node, node);
1384
1385 if (next_node->sector != node->sector)
1386 return false;
1387
1388 next_section = (unsigned int)(next_node - ic->journal_tree) / ic->journal_section_entries;
1389 if (next_section >= ic->committed_section &&
1390 next_section < ic->committed_section + ic->n_committed_sections)
1391 return true;
1392 if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1393 return true;
1394
1395 return false;
1396 }
1397
1398 #define TAG_READ 0
1399 #define TAG_WRITE 1
1400 #define TAG_CMP 2
1401
dm_integrity_rw_tag(struct dm_integrity_c * ic,unsigned char * tag,sector_t * metadata_block,unsigned int * metadata_offset,unsigned int total_size,int op)1402 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1403 unsigned int *metadata_offset, unsigned int total_size, int op)
1404 {
1405 unsigned int hash_offset = 0;
1406 unsigned char mismatch_hash = 0;
1407 unsigned char mismatch_filler = !ic->discard;
1408
1409 do {
1410 unsigned char *data, *dp;
1411 struct dm_buffer *b;
1412 unsigned int to_copy;
1413 int r;
1414
1415 r = dm_integrity_failed(ic);
1416 if (unlikely(r))
1417 return r;
1418
1419 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1420 if (IS_ERR(data))
1421 return PTR_ERR(data);
1422
1423 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1424 dp = data + *metadata_offset;
1425 if (op == TAG_READ) {
1426 memcpy(tag, dp, to_copy);
1427 } else if (op == TAG_WRITE) {
1428 if (crypto_memneq(dp, tag, to_copy)) {
1429 memcpy(dp, tag, to_copy);
1430 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1431 }
1432 } else {
1433 /* e.g.: op == TAG_CMP */
1434
1435 if (likely(is_power_of_2(ic->tag_size))) {
1436 if (unlikely(crypto_memneq(dp, tag, to_copy)))
1437 goto thorough_test;
1438 } else {
1439 unsigned int i, ts;
1440 thorough_test:
1441 ts = total_size;
1442
1443 for (i = 0; i < to_copy; i++, ts--) {
1444 /*
1445 * Warning: the control flow must not be
1446 * dependent on match/mismatch of
1447 * individual bytes.
1448 */
1449 mismatch_hash |= dp[i] ^ tag[i];
1450 mismatch_filler |= dp[i] ^ DISCARD_FILLER;
1451 hash_offset++;
1452 if (unlikely(hash_offset == ic->tag_size)) {
1453 if (unlikely(mismatch_hash) && unlikely(mismatch_filler)) {
1454 dm_bufio_release(b);
1455 return ts;
1456 }
1457 hash_offset = 0;
1458 mismatch_hash = 0;
1459 mismatch_filler = !ic->discard;
1460 }
1461 }
1462 }
1463 }
1464 dm_bufio_release(b);
1465
1466 tag += to_copy;
1467 *metadata_offset += to_copy;
1468 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1469 (*metadata_block)++;
1470 *metadata_offset = 0;
1471 }
1472
1473 if (unlikely(!is_power_of_2(ic->tag_size)))
1474 hash_offset = (hash_offset + to_copy) % ic->tag_size;
1475
1476 total_size -= to_copy;
1477 } while (unlikely(total_size));
1478
1479 return 0;
1480 }
1481
1482 struct flush_request {
1483 struct dm_io_request io_req;
1484 struct dm_io_region io_reg;
1485 struct dm_integrity_c *ic;
1486 struct completion comp;
1487 };
1488
flush_notify(unsigned long error,void * fr_)1489 static void flush_notify(unsigned long error, void *fr_)
1490 {
1491 struct flush_request *fr = fr_;
1492
1493 if (unlikely(error != 0))
1494 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1495 complete(&fr->comp);
1496 }
1497
dm_integrity_flush_buffers(struct dm_integrity_c * ic,bool flush_data)1498 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1499 {
1500 int r;
1501 struct flush_request fr;
1502
1503 if (!ic->meta_dev)
1504 flush_data = false;
1505 if (flush_data) {
1506 fr.io_req.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1507 fr.io_req.mem.type = DM_IO_KMEM;
1508 fr.io_req.mem.ptr.addr = NULL;
1509 fr.io_req.notify.fn = flush_notify;
1510 fr.io_req.notify.context = &fr;
1511 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio);
1512 fr.io_reg.bdev = ic->dev->bdev;
1513 fr.io_reg.sector = 0;
1514 fr.io_reg.count = 0;
1515 fr.ic = ic;
1516 init_completion(&fr.comp);
1517 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL, IOPRIO_DEFAULT);
1518 BUG_ON(r);
1519 }
1520
1521 r = dm_bufio_write_dirty_buffers(ic->bufio);
1522 if (unlikely(r))
1523 dm_integrity_io_error(ic, "writing tags", r);
1524
1525 if (flush_data)
1526 wait_for_completion(&fr.comp);
1527 }
1528
sleep_on_endio_wait(struct dm_integrity_c * ic)1529 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1530 {
1531 DECLARE_WAITQUEUE(wait, current);
1532
1533 __add_wait_queue(&ic->endio_wait, &wait);
1534 __set_current_state(TASK_UNINTERRUPTIBLE);
1535 spin_unlock_irq(&ic->endio_wait.lock);
1536 io_schedule();
1537 spin_lock_irq(&ic->endio_wait.lock);
1538 __remove_wait_queue(&ic->endio_wait, &wait);
1539 }
1540
autocommit_fn(struct timer_list * t)1541 static void autocommit_fn(struct timer_list *t)
1542 {
1543 struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1544
1545 if (likely(!dm_integrity_failed(ic)))
1546 queue_work(ic->commit_wq, &ic->commit_work);
1547 }
1548
schedule_autocommit(struct dm_integrity_c * ic)1549 static void schedule_autocommit(struct dm_integrity_c *ic)
1550 {
1551 if (!timer_pending(&ic->autocommit_timer))
1552 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1553 }
1554
submit_flush_bio(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1555 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1556 {
1557 struct bio *bio;
1558 unsigned long flags;
1559
1560 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1561 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1562 bio_list_add(&ic->flush_bio_list, bio);
1563 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1564
1565 queue_work(ic->commit_wq, &ic->commit_work);
1566 }
1567
do_endio(struct dm_integrity_c * ic,struct bio * bio)1568 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1569 {
1570 int r;
1571
1572 r = dm_integrity_failed(ic);
1573 if (unlikely(r) && !bio->bi_status)
1574 bio->bi_status = errno_to_blk_status(r);
1575 if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1576 unsigned long flags;
1577
1578 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1579 bio_list_add(&ic->synchronous_bios, bio);
1580 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1581 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1582 return;
1583 }
1584 bio_endio(bio);
1585 }
1586
do_endio_flush(struct dm_integrity_c * ic,struct dm_integrity_io * dio)1587 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1588 {
1589 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1590
1591 if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1592 submit_flush_bio(ic, dio);
1593 else
1594 do_endio(ic, bio);
1595 }
1596
dec_in_flight(struct dm_integrity_io * dio)1597 static void dec_in_flight(struct dm_integrity_io *dio)
1598 {
1599 if (atomic_dec_and_test(&dio->in_flight)) {
1600 struct dm_integrity_c *ic = dio->ic;
1601 struct bio *bio;
1602
1603 remove_range(ic, &dio->range);
1604
1605 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1606 schedule_autocommit(ic);
1607
1608 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1609 if (unlikely(dio->bi_status) && !bio->bi_status)
1610 bio->bi_status = dio->bi_status;
1611 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1612 dio->range.logical_sector += dio->range.n_sectors;
1613 bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1614 INIT_WORK(&dio->work, integrity_bio_wait);
1615 queue_work(ic->offload_wq, &dio->work);
1616 return;
1617 }
1618 do_endio_flush(ic, dio);
1619 }
1620 }
1621
integrity_end_io(struct bio * bio)1622 static void integrity_end_io(struct bio *bio)
1623 {
1624 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1625
1626 dm_bio_restore(&dio->bio_details, bio);
1627 if (bio->bi_integrity)
1628 bio->bi_opf |= REQ_INTEGRITY;
1629
1630 if (dio->completion)
1631 complete(dio->completion);
1632
1633 dec_in_flight(dio);
1634 }
1635
integrity_sector_checksum(struct dm_integrity_c * ic,sector_t sector,const char * data,char * result)1636 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1637 const char *data, char *result)
1638 {
1639 __le64 sector_le = cpu_to_le64(sector);
1640 SHASH_DESC_ON_STACK(req, ic->internal_hash);
1641 int r;
1642 unsigned int digest_size;
1643
1644 req->tfm = ic->internal_hash;
1645
1646 r = crypto_shash_init(req);
1647 if (unlikely(r < 0)) {
1648 dm_integrity_io_error(ic, "crypto_shash_init", r);
1649 goto failed;
1650 }
1651
1652 if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1653 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1654 if (unlikely(r < 0)) {
1655 dm_integrity_io_error(ic, "crypto_shash_update", r);
1656 goto failed;
1657 }
1658 }
1659
1660 r = crypto_shash_update(req, (const __u8 *)§or_le, sizeof(sector_le));
1661 if (unlikely(r < 0)) {
1662 dm_integrity_io_error(ic, "crypto_shash_update", r);
1663 goto failed;
1664 }
1665
1666 r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1667 if (unlikely(r < 0)) {
1668 dm_integrity_io_error(ic, "crypto_shash_update", r);
1669 goto failed;
1670 }
1671
1672 r = crypto_shash_final(req, result);
1673 if (unlikely(r < 0)) {
1674 dm_integrity_io_error(ic, "crypto_shash_final", r);
1675 goto failed;
1676 }
1677
1678 digest_size = crypto_shash_digestsize(ic->internal_hash);
1679 if (unlikely(digest_size < ic->tag_size))
1680 memset(result + digest_size, 0, ic->tag_size - digest_size);
1681
1682 return;
1683
1684 failed:
1685 /* this shouldn't happen anyway, the hash functions have no reason to fail */
1686 get_random_bytes(result, ic->tag_size);
1687 }
1688
integrity_recheck(struct dm_integrity_io * dio,char * checksum)1689 static noinline void integrity_recheck(struct dm_integrity_io *dio, char *checksum)
1690 {
1691 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1692 struct dm_integrity_c *ic = dio->ic;
1693 struct bvec_iter iter;
1694 struct bio_vec bv;
1695 sector_t sector, logical_sector, area, offset;
1696 struct page *page;
1697
1698 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1699 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset,
1700 &dio->metadata_offset);
1701 sector = get_data_sector(ic, area, offset);
1702 logical_sector = dio->range.logical_sector;
1703
1704 page = mempool_alloc(&ic->recheck_pool, GFP_NOIO);
1705
1706 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1707 unsigned pos = 0;
1708
1709 do {
1710 sector_t alignment;
1711 char *mem;
1712 char *buffer = page_to_virt(page);
1713 int r;
1714 struct dm_io_request io_req;
1715 struct dm_io_region io_loc;
1716 io_req.bi_opf = REQ_OP_READ;
1717 io_req.mem.type = DM_IO_KMEM;
1718 io_req.mem.ptr.addr = buffer;
1719 io_req.notify.fn = NULL;
1720 io_req.client = ic->io;
1721 io_loc.bdev = ic->dev->bdev;
1722 io_loc.sector = sector;
1723 io_loc.count = ic->sectors_per_block;
1724
1725 /* Align the bio to logical block size */
1726 alignment = dio->range.logical_sector | bio_sectors(bio) | (PAGE_SIZE >> SECTOR_SHIFT);
1727 alignment &= -alignment;
1728 io_loc.sector = round_down(io_loc.sector, alignment);
1729 io_loc.count += sector - io_loc.sector;
1730 buffer += (sector - io_loc.sector) << SECTOR_SHIFT;
1731 io_loc.count = round_up(io_loc.count, alignment);
1732
1733 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
1734 if (unlikely(r)) {
1735 dio->bi_status = errno_to_blk_status(r);
1736 goto free_ret;
1737 }
1738
1739 integrity_sector_checksum(ic, logical_sector, buffer, checksum);
1740 r = dm_integrity_rw_tag(ic, checksum, &dio->metadata_block,
1741 &dio->metadata_offset, ic->tag_size, TAG_CMP);
1742 if (r) {
1743 if (r > 0) {
1744 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1745 bio->bi_bdev, logical_sector);
1746 atomic64_inc(&ic->number_of_mismatches);
1747 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1748 bio, logical_sector, 0);
1749 r = -EILSEQ;
1750 }
1751 dio->bi_status = errno_to_blk_status(r);
1752 goto free_ret;
1753 }
1754
1755 mem = bvec_kmap_local(&bv);
1756 memcpy(mem + pos, buffer, ic->sectors_per_block << SECTOR_SHIFT);
1757 kunmap_local(mem);
1758
1759 pos += ic->sectors_per_block << SECTOR_SHIFT;
1760 sector += ic->sectors_per_block;
1761 logical_sector += ic->sectors_per_block;
1762 } while (pos < bv.bv_len);
1763 }
1764 free_ret:
1765 mempool_free(page, &ic->recheck_pool);
1766 }
1767
integrity_metadata(struct work_struct * w)1768 static void integrity_metadata(struct work_struct *w)
1769 {
1770 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1771 struct dm_integrity_c *ic = dio->ic;
1772
1773 int r;
1774
1775 if (ic->internal_hash) {
1776 struct bvec_iter iter;
1777 struct bio_vec bv;
1778 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
1779 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1780 char *checksums;
1781 unsigned int extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1782 char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1783 sector_t sector;
1784 unsigned int sectors_to_process;
1785
1786 if (unlikely(ic->mode == 'R'))
1787 goto skip_io;
1788
1789 if (likely(dio->op != REQ_OP_DISCARD))
1790 checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1791 GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1792 else
1793 checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1794 if (!checksums) {
1795 checksums = checksums_onstack;
1796 if (WARN_ON(extra_space &&
1797 digest_size > sizeof(checksums_onstack))) {
1798 r = -EINVAL;
1799 goto error;
1800 }
1801 }
1802
1803 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1804 unsigned int bi_size = dio->bio_details.bi_iter.bi_size;
1805 unsigned int max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1806 unsigned int max_blocks = max_size / ic->tag_size;
1807
1808 memset(checksums, DISCARD_FILLER, max_size);
1809
1810 while (bi_size) {
1811 unsigned int this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1812
1813 this_step_blocks = min(this_step_blocks, max_blocks);
1814 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1815 this_step_blocks * ic->tag_size, TAG_WRITE);
1816 if (unlikely(r)) {
1817 if (likely(checksums != checksums_onstack))
1818 kfree(checksums);
1819 goto error;
1820 }
1821
1822 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1823 }
1824
1825 if (likely(checksums != checksums_onstack))
1826 kfree(checksums);
1827 goto skip_io;
1828 }
1829
1830 sector = dio->range.logical_sector;
1831 sectors_to_process = dio->range.n_sectors;
1832
1833 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1834 struct bio_vec bv_copy = bv;
1835 unsigned int pos;
1836 char *mem, *checksums_ptr;
1837
1838 again:
1839 mem = bvec_kmap_local(&bv_copy);
1840 pos = 0;
1841 checksums_ptr = checksums;
1842 do {
1843 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1844 checksums_ptr += ic->tag_size;
1845 sectors_to_process -= ic->sectors_per_block;
1846 pos += ic->sectors_per_block << SECTOR_SHIFT;
1847 sector += ic->sectors_per_block;
1848 } while (pos < bv_copy.bv_len && sectors_to_process && checksums != checksums_onstack);
1849 kunmap_local(mem);
1850
1851 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1852 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1853 if (unlikely(r)) {
1854 if (likely(checksums != checksums_onstack))
1855 kfree(checksums);
1856 if (r > 0) {
1857 integrity_recheck(dio, checksums_onstack);
1858 goto skip_io;
1859 }
1860 goto error;
1861 }
1862
1863 if (!sectors_to_process)
1864 break;
1865
1866 if (unlikely(pos < bv_copy.bv_len)) {
1867 bv_copy.bv_offset += pos;
1868 bv_copy.bv_len -= pos;
1869 goto again;
1870 }
1871 }
1872
1873 if (likely(checksums != checksums_onstack))
1874 kfree(checksums);
1875 } else {
1876 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1877
1878 if (bip) {
1879 struct bio_vec biv;
1880 struct bvec_iter iter;
1881 unsigned int data_to_process = dio->range.n_sectors;
1882
1883 sector_to_block(ic, data_to_process);
1884 data_to_process *= ic->tag_size;
1885
1886 bip_for_each_vec(biv, bip, iter) {
1887 unsigned char *tag;
1888 unsigned int this_len;
1889
1890 BUG_ON(PageHighMem(biv.bv_page));
1891 tag = bvec_virt(&biv);
1892 this_len = min(biv.bv_len, data_to_process);
1893 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1894 this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1895 if (unlikely(r))
1896 goto error;
1897 data_to_process -= this_len;
1898 if (!data_to_process)
1899 break;
1900 }
1901 }
1902 }
1903 skip_io:
1904 dec_in_flight(dio);
1905 return;
1906 error:
1907 dio->bi_status = errno_to_blk_status(r);
1908 dec_in_flight(dio);
1909 }
1910
dm_integrity_check_limits(struct dm_integrity_c * ic,sector_t logical_sector,struct bio * bio)1911 static inline bool dm_integrity_check_limits(struct dm_integrity_c *ic, sector_t logical_sector, struct bio *bio)
1912 {
1913 if (unlikely(logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1914 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1915 logical_sector, bio_sectors(bio),
1916 ic->provided_data_sectors);
1917 return false;
1918 }
1919 if (unlikely((logical_sector | bio_sectors(bio)) & (unsigned int)(ic->sectors_per_block - 1))) {
1920 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1921 ic->sectors_per_block,
1922 logical_sector, bio_sectors(bio));
1923 return false;
1924 }
1925 if (ic->sectors_per_block > 1 && likely(bio_op(bio) != REQ_OP_DISCARD)) {
1926 struct bvec_iter iter;
1927 struct bio_vec bv;
1928
1929 bio_for_each_segment(bv, bio, iter) {
1930 if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1931 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1932 bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1933 return false;
1934 }
1935 }
1936 }
1937 return true;
1938 }
1939
dm_integrity_map(struct dm_target * ti,struct bio * bio)1940 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1941 {
1942 struct dm_integrity_c *ic = ti->private;
1943 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1944 struct bio_integrity_payload *bip;
1945
1946 sector_t area, offset;
1947
1948 dio->ic = ic;
1949 dio->bi_status = 0;
1950 dio->op = bio_op(bio);
1951
1952 if (ic->mode == 'I') {
1953 bio->bi_iter.bi_sector = dm_target_offset(ic->ti, bio->bi_iter.bi_sector);
1954 dio->integrity_payload = NULL;
1955 dio->integrity_payload_from_mempool = false;
1956 dio->integrity_range_locked = false;
1957 return dm_integrity_map_inline(dio, true);
1958 }
1959
1960 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1961 if (ti->max_io_len) {
1962 sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1963 unsigned int log2_max_io_len = __fls(ti->max_io_len);
1964 sector_t start_boundary = sec >> log2_max_io_len;
1965 sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1966
1967 if (start_boundary < end_boundary) {
1968 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1969
1970 dm_accept_partial_bio(bio, len);
1971 }
1972 }
1973 }
1974
1975 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1976 submit_flush_bio(ic, dio);
1977 return DM_MAPIO_SUBMITTED;
1978 }
1979
1980 dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1981 dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1982 if (unlikely(dio->fua)) {
1983 /*
1984 * Don't pass down the FUA flag because we have to flush
1985 * disk cache anyway.
1986 */
1987 bio->bi_opf &= ~REQ_FUA;
1988 }
1989 if (unlikely(!dm_integrity_check_limits(ic, dio->range.logical_sector, bio)))
1990 return DM_MAPIO_KILL;
1991
1992 bip = bio_integrity(bio);
1993 if (!ic->internal_hash) {
1994 if (bip) {
1995 unsigned int wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1996
1997 if (ic->log2_tag_size >= 0)
1998 wanted_tag_size <<= ic->log2_tag_size;
1999 else
2000 wanted_tag_size *= ic->tag_size;
2001 if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
2002 DMERR("Invalid integrity data size %u, expected %u",
2003 bip->bip_iter.bi_size, wanted_tag_size);
2004 return DM_MAPIO_KILL;
2005 }
2006 }
2007 } else {
2008 if (unlikely(bip != NULL)) {
2009 DMERR("Unexpected integrity data when using internal hash");
2010 return DM_MAPIO_KILL;
2011 }
2012 }
2013
2014 if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
2015 return DM_MAPIO_KILL;
2016
2017 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2018 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2019 bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
2020
2021 dm_integrity_map_continue(dio, true);
2022 return DM_MAPIO_SUBMITTED;
2023 }
2024
__journal_read_write(struct dm_integrity_io * dio,struct bio * bio,unsigned int journal_section,unsigned int journal_entry)2025 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
2026 unsigned int journal_section, unsigned int journal_entry)
2027 {
2028 struct dm_integrity_c *ic = dio->ic;
2029 sector_t logical_sector;
2030 unsigned int n_sectors;
2031
2032 logical_sector = dio->range.logical_sector;
2033 n_sectors = dio->range.n_sectors;
2034 do {
2035 struct bio_vec bv = bio_iovec(bio);
2036 char *mem;
2037
2038 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
2039 bv.bv_len = n_sectors << SECTOR_SHIFT;
2040 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
2041 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
2042 retry_kmap:
2043 mem = kmap_local_page(bv.bv_page);
2044 if (likely(dio->op == REQ_OP_WRITE))
2045 flush_dcache_page(bv.bv_page);
2046
2047 do {
2048 struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
2049
2050 if (unlikely(dio->op == REQ_OP_READ)) {
2051 struct journal_sector *js;
2052 char *mem_ptr;
2053 unsigned int s;
2054
2055 if (unlikely(journal_entry_is_inprogress(je))) {
2056 flush_dcache_page(bv.bv_page);
2057 kunmap_local(mem);
2058
2059 __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2060 goto retry_kmap;
2061 }
2062 smp_rmb();
2063 BUG_ON(journal_entry_get_sector(je) != logical_sector);
2064 js = access_journal_data(ic, journal_section, journal_entry);
2065 mem_ptr = mem + bv.bv_offset;
2066 s = 0;
2067 do {
2068 memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
2069 *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
2070 js++;
2071 mem_ptr += 1 << SECTOR_SHIFT;
2072 } while (++s < ic->sectors_per_block);
2073 #ifdef INTERNAL_VERIFY
2074 if (ic->internal_hash) {
2075 char checksums_onstack[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2076
2077 integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2078 if (unlikely(crypto_memneq(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2079 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2080 logical_sector);
2081 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2082 bio, logical_sector, 0);
2083 }
2084 }
2085 #endif
2086 }
2087
2088 if (!ic->internal_hash) {
2089 struct bio_integrity_payload *bip = bio_integrity(bio);
2090 unsigned int tag_todo = ic->tag_size;
2091 char *tag_ptr = journal_entry_tag(ic, je);
2092
2093 if (bip) {
2094 do {
2095 struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2096 unsigned int tag_now = min(biv.bv_len, tag_todo);
2097 char *tag_addr;
2098
2099 BUG_ON(PageHighMem(biv.bv_page));
2100 tag_addr = bvec_virt(&biv);
2101 if (likely(dio->op == REQ_OP_WRITE))
2102 memcpy(tag_ptr, tag_addr, tag_now);
2103 else
2104 memcpy(tag_addr, tag_ptr, tag_now);
2105 bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2106 tag_ptr += tag_now;
2107 tag_todo -= tag_now;
2108 } while (unlikely(tag_todo));
2109 } else if (likely(dio->op == REQ_OP_WRITE))
2110 memset(tag_ptr, 0, tag_todo);
2111 }
2112
2113 if (likely(dio->op == REQ_OP_WRITE)) {
2114 struct journal_sector *js;
2115 unsigned int s;
2116
2117 js = access_journal_data(ic, journal_section, journal_entry);
2118 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2119
2120 s = 0;
2121 do {
2122 je->last_bytes[s] = js[s].commit_id;
2123 } while (++s < ic->sectors_per_block);
2124
2125 if (ic->internal_hash) {
2126 unsigned int digest_size = crypto_shash_digestsize(ic->internal_hash);
2127
2128 if (unlikely(digest_size > ic->tag_size)) {
2129 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2130
2131 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2132 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2133 } else
2134 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2135 }
2136
2137 journal_entry_set_sector(je, logical_sector);
2138 }
2139 logical_sector += ic->sectors_per_block;
2140
2141 journal_entry++;
2142 if (unlikely(journal_entry == ic->journal_section_entries)) {
2143 journal_entry = 0;
2144 journal_section++;
2145 wraparound_section(ic, &journal_section);
2146 }
2147
2148 bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2149 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2150
2151 if (unlikely(dio->op == REQ_OP_READ))
2152 flush_dcache_page(bv.bv_page);
2153 kunmap_local(mem);
2154 } while (n_sectors);
2155
2156 if (likely(dio->op == REQ_OP_WRITE)) {
2157 smp_mb();
2158 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2159 wake_up(&ic->copy_to_journal_wait);
2160 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2161 queue_work(ic->commit_wq, &ic->commit_work);
2162 else
2163 schedule_autocommit(ic);
2164 } else
2165 remove_range(ic, &dio->range);
2166
2167 if (unlikely(bio->bi_iter.bi_size)) {
2168 sector_t area, offset;
2169
2170 dio->range.logical_sector = logical_sector;
2171 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2172 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2173 return true;
2174 }
2175
2176 return false;
2177 }
2178
dm_integrity_map_continue(struct dm_integrity_io * dio,bool from_map)2179 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2180 {
2181 struct dm_integrity_c *ic = dio->ic;
2182 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2183 unsigned int journal_section, journal_entry;
2184 unsigned int journal_read_pos;
2185 sector_t recalc_sector;
2186 struct completion read_comp;
2187 bool discard_retried = false;
2188 bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2189
2190 if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2191 need_sync_io = true;
2192
2193 if (need_sync_io && from_map) {
2194 INIT_WORK(&dio->work, integrity_bio_wait);
2195 queue_work(ic->offload_wq, &dio->work);
2196 return;
2197 }
2198
2199 lock_retry:
2200 spin_lock_irq(&ic->endio_wait.lock);
2201 retry:
2202 if (unlikely(dm_integrity_failed(ic))) {
2203 spin_unlock_irq(&ic->endio_wait.lock);
2204 do_endio(ic, bio);
2205 return;
2206 }
2207 dio->range.n_sectors = bio_sectors(bio);
2208 journal_read_pos = NOT_FOUND;
2209 if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2210 if (dio->op == REQ_OP_WRITE) {
2211 unsigned int next_entry, i, pos;
2212 unsigned int ws, we, range_sectors;
2213
2214 dio->range.n_sectors = min(dio->range.n_sectors,
2215 (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2216 if (unlikely(!dio->range.n_sectors)) {
2217 if (from_map)
2218 goto offload_to_thread;
2219 sleep_on_endio_wait(ic);
2220 goto retry;
2221 }
2222 range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2223 ic->free_sectors -= range_sectors;
2224 journal_section = ic->free_section;
2225 journal_entry = ic->free_section_entry;
2226
2227 next_entry = ic->free_section_entry + range_sectors;
2228 ic->free_section_entry = next_entry % ic->journal_section_entries;
2229 ic->free_section += next_entry / ic->journal_section_entries;
2230 ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2231 wraparound_section(ic, &ic->free_section);
2232
2233 pos = journal_section * ic->journal_section_entries + journal_entry;
2234 ws = journal_section;
2235 we = journal_entry;
2236 i = 0;
2237 do {
2238 struct journal_entry *je;
2239
2240 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2241 pos++;
2242 if (unlikely(pos >= ic->journal_entries))
2243 pos = 0;
2244
2245 je = access_journal_entry(ic, ws, we);
2246 BUG_ON(!journal_entry_is_unused(je));
2247 journal_entry_set_inprogress(je);
2248 we++;
2249 if (unlikely(we == ic->journal_section_entries)) {
2250 we = 0;
2251 ws++;
2252 wraparound_section(ic, &ws);
2253 }
2254 } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2255
2256 spin_unlock_irq(&ic->endio_wait.lock);
2257 goto journal_read_write;
2258 } else {
2259 sector_t next_sector;
2260
2261 journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2262 if (likely(journal_read_pos == NOT_FOUND)) {
2263 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2264 dio->range.n_sectors = next_sector - dio->range.logical_sector;
2265 } else {
2266 unsigned int i;
2267 unsigned int jp = journal_read_pos + 1;
2268
2269 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2270 if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2271 break;
2272 }
2273 dio->range.n_sectors = i;
2274 }
2275 }
2276 }
2277 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2278 /*
2279 * We must not sleep in the request routine because it could
2280 * stall bios on current->bio_list.
2281 * So, we offload the bio to a workqueue if we have to sleep.
2282 */
2283 if (from_map) {
2284 offload_to_thread:
2285 spin_unlock_irq(&ic->endio_wait.lock);
2286 INIT_WORK(&dio->work, integrity_bio_wait);
2287 queue_work(ic->wait_wq, &dio->work);
2288 return;
2289 }
2290 if (journal_read_pos != NOT_FOUND)
2291 dio->range.n_sectors = ic->sectors_per_block;
2292 wait_and_add_new_range(ic, &dio->range);
2293 /*
2294 * wait_and_add_new_range drops the spinlock, so the journal
2295 * may have been changed arbitrarily. We need to recheck.
2296 * To simplify the code, we restrict I/O size to just one block.
2297 */
2298 if (journal_read_pos != NOT_FOUND) {
2299 sector_t next_sector;
2300 unsigned int new_pos;
2301
2302 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2303 if (unlikely(new_pos != journal_read_pos)) {
2304 remove_range_unlocked(ic, &dio->range);
2305 goto retry;
2306 }
2307 }
2308 }
2309 if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2310 sector_t next_sector;
2311 unsigned int new_pos;
2312
2313 new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2314 if (unlikely(new_pos != NOT_FOUND) ||
2315 unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2316 remove_range_unlocked(ic, &dio->range);
2317 spin_unlock_irq(&ic->endio_wait.lock);
2318 queue_work(ic->commit_wq, &ic->commit_work);
2319 flush_workqueue(ic->commit_wq);
2320 queue_work(ic->writer_wq, &ic->writer_work);
2321 flush_workqueue(ic->writer_wq);
2322 discard_retried = true;
2323 goto lock_retry;
2324 }
2325 }
2326 recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2327 spin_unlock_irq(&ic->endio_wait.lock);
2328
2329 if (unlikely(journal_read_pos != NOT_FOUND)) {
2330 journal_section = journal_read_pos / ic->journal_section_entries;
2331 journal_entry = journal_read_pos % ic->journal_section_entries;
2332 goto journal_read_write;
2333 }
2334
2335 if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2336 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2337 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2338 struct bitmap_block_status *bbs;
2339
2340 bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2341 spin_lock(&bbs->bio_queue_lock);
2342 bio_list_add(&bbs->bio_queue, bio);
2343 spin_unlock(&bbs->bio_queue_lock);
2344 queue_work(ic->writer_wq, &bbs->work);
2345 return;
2346 }
2347 }
2348
2349 dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2350
2351 if (need_sync_io) {
2352 init_completion(&read_comp);
2353 dio->completion = &read_comp;
2354 } else
2355 dio->completion = NULL;
2356
2357 dm_bio_record(&dio->bio_details, bio);
2358 bio_set_dev(bio, ic->dev->bdev);
2359 bio->bi_integrity = NULL;
2360 bio->bi_opf &= ~REQ_INTEGRITY;
2361 bio->bi_end_io = integrity_end_io;
2362 bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2363
2364 if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2365 integrity_metadata(&dio->work);
2366 dm_integrity_flush_buffers(ic, false);
2367
2368 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2369 dio->completion = NULL;
2370
2371 submit_bio_noacct(bio);
2372
2373 return;
2374 }
2375
2376 submit_bio_noacct(bio);
2377
2378 if (need_sync_io) {
2379 wait_for_completion_io(&read_comp);
2380 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2381 dio->range.logical_sector + dio->range.n_sectors > recalc_sector)
2382 goto skip_check;
2383 if (ic->mode == 'B') {
2384 if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2385 dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2386 goto skip_check;
2387 }
2388
2389 if (likely(!bio->bi_status))
2390 integrity_metadata(&dio->work);
2391 else
2392 skip_check:
2393 dec_in_flight(dio);
2394 } else {
2395 INIT_WORK(&dio->work, integrity_metadata);
2396 queue_work(ic->metadata_wq, &dio->work);
2397 }
2398
2399 return;
2400
2401 journal_read_write:
2402 if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2403 goto lock_retry;
2404
2405 do_endio_flush(ic, dio);
2406 }
2407
dm_integrity_map_inline(struct dm_integrity_io * dio,bool from_map)2408 static int dm_integrity_map_inline(struct dm_integrity_io *dio, bool from_map)
2409 {
2410 struct dm_integrity_c *ic = dio->ic;
2411 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2412 struct bio_integrity_payload *bip;
2413 unsigned ret;
2414 sector_t recalc_sector;
2415
2416 if (unlikely(bio_integrity(bio))) {
2417 bio->bi_status = BLK_STS_NOTSUPP;
2418 bio_endio(bio);
2419 return DM_MAPIO_SUBMITTED;
2420 }
2421
2422 bio_set_dev(bio, ic->dev->bdev);
2423 if (unlikely((bio->bi_opf & REQ_PREFLUSH) != 0))
2424 return DM_MAPIO_REMAPPED;
2425
2426 retry:
2427 if (!dio->integrity_payload) {
2428 unsigned digest_size, extra_size;
2429 dio->payload_len = ic->tuple_size * (bio_sectors(bio) >> ic->sb->log2_sectors_per_block);
2430 digest_size = crypto_shash_digestsize(ic->internal_hash);
2431 extra_size = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
2432 dio->payload_len += extra_size;
2433 dio->integrity_payload = kmalloc(dio->payload_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
2434 if (unlikely(!dio->integrity_payload)) {
2435 const unsigned x_size = PAGE_SIZE << 1;
2436 if (dio->payload_len > x_size) {
2437 unsigned sectors = ((x_size - extra_size) / ic->tuple_size) << ic->sb->log2_sectors_per_block;
2438 if (WARN_ON(!sectors || sectors >= bio_sectors(bio))) {
2439 bio->bi_status = BLK_STS_NOTSUPP;
2440 bio_endio(bio);
2441 return DM_MAPIO_SUBMITTED;
2442 }
2443 dm_accept_partial_bio(bio, sectors);
2444 goto retry;
2445 }
2446 }
2447 }
2448
2449 dio->range.logical_sector = bio->bi_iter.bi_sector;
2450 dio->range.n_sectors = bio_sectors(bio);
2451
2452 if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)))
2453 goto skip_spinlock;
2454 #ifdef CONFIG_64BIT
2455 /*
2456 * On 64-bit CPUs we can optimize the lock away (so that it won't cause
2457 * cache line bouncing) and use acquire/release barriers instead.
2458 *
2459 * Paired with smp_store_release in integrity_recalc_inline.
2460 */
2461 recalc_sector = le64_to_cpu(smp_load_acquire(&ic->sb->recalc_sector));
2462 if (likely(dio->range.logical_sector + dio->range.n_sectors <= recalc_sector))
2463 goto skip_spinlock;
2464 #endif
2465 spin_lock_irq(&ic->endio_wait.lock);
2466 recalc_sector = le64_to_cpu(ic->sb->recalc_sector);
2467 if (dio->range.logical_sector + dio->range.n_sectors <= recalc_sector)
2468 goto skip_unlock;
2469 if (unlikely(!add_new_range(ic, &dio->range, true))) {
2470 if (from_map) {
2471 spin_unlock_irq(&ic->endio_wait.lock);
2472 INIT_WORK(&dio->work, integrity_bio_wait);
2473 queue_work(ic->wait_wq, &dio->work);
2474 return DM_MAPIO_SUBMITTED;
2475 }
2476 wait_and_add_new_range(ic, &dio->range);
2477 }
2478 dio->integrity_range_locked = true;
2479 skip_unlock:
2480 spin_unlock_irq(&ic->endio_wait.lock);
2481 skip_spinlock:
2482
2483 if (unlikely(!dio->integrity_payload)) {
2484 dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2485 dio->integrity_payload_from_mempool = true;
2486 }
2487
2488 dio->bio_details.bi_iter = bio->bi_iter;
2489
2490 if (unlikely(!dm_integrity_check_limits(ic, bio->bi_iter.bi_sector, bio))) {
2491 return DM_MAPIO_KILL;
2492 }
2493
2494 bio->bi_iter.bi_sector += ic->start + SB_SECTORS;
2495
2496 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
2497 if (IS_ERR(bip)) {
2498 bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2499 bio_endio(bio);
2500 return DM_MAPIO_SUBMITTED;
2501 }
2502
2503 if (dio->op == REQ_OP_WRITE) {
2504 unsigned pos = 0;
2505 while (dio->bio_details.bi_iter.bi_size) {
2506 struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2507 const char *mem = bvec_kmap_local(&bv);
2508 if (ic->tag_size < ic->tuple_size)
2509 memset(dio->integrity_payload + pos + ic->tag_size, 0, ic->tuple_size - ic->tuple_size);
2510 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, dio->integrity_payload + pos);
2511 kunmap_local(mem);
2512 pos += ic->tuple_size;
2513 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2514 }
2515 }
2516
2517 ret = bio_integrity_add_page(bio, virt_to_page(dio->integrity_payload),
2518 dio->payload_len, offset_in_page(dio->integrity_payload));
2519 if (unlikely(ret != dio->payload_len)) {
2520 bio->bi_status = BLK_STS_RESOURCE;
2521 bio_endio(bio);
2522 return DM_MAPIO_SUBMITTED;
2523 }
2524
2525 return DM_MAPIO_REMAPPED;
2526 }
2527
dm_integrity_free_payload(struct dm_integrity_io * dio)2528 static inline void dm_integrity_free_payload(struct dm_integrity_io *dio)
2529 {
2530 struct dm_integrity_c *ic = dio->ic;
2531 if (unlikely(dio->integrity_payload_from_mempool))
2532 mempool_free(virt_to_page(dio->integrity_payload), &ic->recheck_pool);
2533 else
2534 kfree(dio->integrity_payload);
2535 dio->integrity_payload = NULL;
2536 dio->integrity_payload_from_mempool = false;
2537 }
2538
dm_integrity_inline_recheck(struct work_struct * w)2539 static void dm_integrity_inline_recheck(struct work_struct *w)
2540 {
2541 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2542 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2543 struct dm_integrity_c *ic = dio->ic;
2544 struct bio *outgoing_bio;
2545 void *outgoing_data;
2546
2547 dio->integrity_payload = page_to_virt((struct page *)mempool_alloc(&ic->recheck_pool, GFP_NOIO));
2548 dio->integrity_payload_from_mempool = true;
2549
2550 outgoing_data = dio->integrity_payload + PAGE_SIZE;
2551
2552 while (dio->bio_details.bi_iter.bi_size) {
2553 char digest[HASH_MAX_DIGESTSIZE];
2554 int r;
2555 struct bio_integrity_payload *bip;
2556 struct bio_vec bv;
2557 char *mem;
2558
2559 outgoing_bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recheck_bios);
2560
2561 r = bio_add_page(outgoing_bio, virt_to_page(outgoing_data), ic->sectors_per_block << SECTOR_SHIFT, 0);
2562 if (unlikely(r != (ic->sectors_per_block << SECTOR_SHIFT))) {
2563 bio_put(outgoing_bio);
2564 bio->bi_status = BLK_STS_RESOURCE;
2565 bio_endio(bio);
2566 return;
2567 }
2568
2569 bip = bio_integrity_alloc(outgoing_bio, GFP_NOIO, 1);
2570 if (IS_ERR(bip)) {
2571 bio_put(outgoing_bio);
2572 bio->bi_status = errno_to_blk_status(PTR_ERR(bip));
2573 bio_endio(bio);
2574 return;
2575 }
2576
2577 r = bio_integrity_add_page(outgoing_bio, virt_to_page(dio->integrity_payload), ic->tuple_size, 0);
2578 if (unlikely(r != ic->tuple_size)) {
2579 bio_put(outgoing_bio);
2580 bio->bi_status = BLK_STS_RESOURCE;
2581 bio_endio(bio);
2582 return;
2583 }
2584
2585 outgoing_bio->bi_iter.bi_sector = dio->bio_details.bi_iter.bi_sector + ic->start + SB_SECTORS;
2586
2587 r = submit_bio_wait(outgoing_bio);
2588 if (unlikely(r != 0)) {
2589 bio_put(outgoing_bio);
2590 bio->bi_status = errno_to_blk_status(r);
2591 bio_endio(bio);
2592 return;
2593 }
2594 bio_put(outgoing_bio);
2595
2596 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, outgoing_data, digest);
2597 if (unlikely(crypto_memneq(digest, dio->integrity_payload, min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2598 DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
2599 ic->dev->bdev, dio->bio_details.bi_iter.bi_sector);
2600 atomic64_inc(&ic->number_of_mismatches);
2601 dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
2602 bio, dio->bio_details.bi_iter.bi_sector, 0);
2603
2604 bio->bi_status = BLK_STS_PROTECTION;
2605 bio_endio(bio);
2606 return;
2607 }
2608
2609 bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2610 mem = bvec_kmap_local(&bv);
2611 memcpy(mem, outgoing_data, ic->sectors_per_block << SECTOR_SHIFT);
2612 kunmap_local(mem);
2613
2614 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2615 }
2616
2617 bio_endio(bio);
2618 }
2619
dm_integrity_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * status)2620 static int dm_integrity_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *status)
2621 {
2622 struct dm_integrity_c *ic = ti->private;
2623 if (ic->mode == 'I') {
2624 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2625 if (dio->op == REQ_OP_READ && likely(*status == BLK_STS_OK)) {
2626 unsigned pos = 0;
2627 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2628 unlikely(dio->integrity_range_locked))
2629 goto skip_check;
2630 while (dio->bio_details.bi_iter.bi_size) {
2631 char digest[HASH_MAX_DIGESTSIZE];
2632 struct bio_vec bv = bio_iter_iovec(bio, dio->bio_details.bi_iter);
2633 char *mem = bvec_kmap_local(&bv);
2634 //memset(mem, 0xff, ic->sectors_per_block << SECTOR_SHIFT);
2635 integrity_sector_checksum(ic, dio->bio_details.bi_iter.bi_sector, mem, digest);
2636 if (unlikely(crypto_memneq(digest, dio->integrity_payload + pos,
2637 min(crypto_shash_digestsize(ic->internal_hash), ic->tag_size)))) {
2638 kunmap_local(mem);
2639 dm_integrity_free_payload(dio);
2640 INIT_WORK(&dio->work, dm_integrity_inline_recheck);
2641 queue_work(ic->offload_wq, &dio->work);
2642 return DM_ENDIO_INCOMPLETE;
2643 }
2644 kunmap_local(mem);
2645 pos += ic->tuple_size;
2646 bio_advance_iter_single(bio, &dio->bio_details.bi_iter, ic->sectors_per_block << SECTOR_SHIFT);
2647 }
2648 }
2649 skip_check:
2650 dm_integrity_free_payload(dio);
2651 if (unlikely(dio->integrity_range_locked))
2652 remove_range(ic, &dio->range);
2653 }
2654 return DM_ENDIO_DONE;
2655 }
2656
integrity_bio_wait(struct work_struct * w)2657 static void integrity_bio_wait(struct work_struct *w)
2658 {
2659 struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2660 struct dm_integrity_c *ic = dio->ic;
2661
2662 if (ic->mode == 'I') {
2663 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2664 int r = dm_integrity_map_inline(dio, false);
2665 switch (r) {
2666 case DM_MAPIO_KILL:
2667 bio->bi_status = BLK_STS_IOERR;
2668 fallthrough;
2669 case DM_MAPIO_REMAPPED:
2670 submit_bio_noacct(bio);
2671 fallthrough;
2672 case DM_MAPIO_SUBMITTED:
2673 return;
2674 default:
2675 BUG();
2676 }
2677 } else {
2678 dm_integrity_map_continue(dio, false);
2679 }
2680 }
2681
pad_uncommitted(struct dm_integrity_c * ic)2682 static void pad_uncommitted(struct dm_integrity_c *ic)
2683 {
2684 if (ic->free_section_entry) {
2685 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2686 ic->free_section_entry = 0;
2687 ic->free_section++;
2688 wraparound_section(ic, &ic->free_section);
2689 ic->n_uncommitted_sections++;
2690 }
2691 if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2692 (ic->n_uncommitted_sections + ic->n_committed_sections) *
2693 ic->journal_section_entries + ic->free_sectors)) {
2694 DMCRIT("journal_sections %u, journal_section_entries %u, "
2695 "n_uncommitted_sections %u, n_committed_sections %u, "
2696 "journal_section_entries %u, free_sectors %u",
2697 ic->journal_sections, ic->journal_section_entries,
2698 ic->n_uncommitted_sections, ic->n_committed_sections,
2699 ic->journal_section_entries, ic->free_sectors);
2700 }
2701 }
2702
integrity_commit(struct work_struct * w)2703 static void integrity_commit(struct work_struct *w)
2704 {
2705 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2706 unsigned int commit_start, commit_sections;
2707 unsigned int i, j, n;
2708 struct bio *flushes;
2709
2710 timer_delete(&ic->autocommit_timer);
2711
2712 if (ic->mode == 'I')
2713 return;
2714
2715 spin_lock_irq(&ic->endio_wait.lock);
2716 flushes = bio_list_get(&ic->flush_bio_list);
2717 if (unlikely(ic->mode != 'J')) {
2718 spin_unlock_irq(&ic->endio_wait.lock);
2719 dm_integrity_flush_buffers(ic, true);
2720 goto release_flush_bios;
2721 }
2722
2723 pad_uncommitted(ic);
2724 commit_start = ic->uncommitted_section;
2725 commit_sections = ic->n_uncommitted_sections;
2726 spin_unlock_irq(&ic->endio_wait.lock);
2727
2728 if (!commit_sections)
2729 goto release_flush_bios;
2730
2731 ic->wrote_to_journal = true;
2732
2733 i = commit_start;
2734 for (n = 0; n < commit_sections; n++) {
2735 for (j = 0; j < ic->journal_section_entries; j++) {
2736 struct journal_entry *je;
2737
2738 je = access_journal_entry(ic, i, j);
2739 io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2740 }
2741 for (j = 0; j < ic->journal_section_sectors; j++) {
2742 struct journal_sector *js;
2743
2744 js = access_journal(ic, i, j);
2745 js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2746 }
2747 i++;
2748 if (unlikely(i >= ic->journal_sections))
2749 ic->commit_seq = next_commit_seq(ic->commit_seq);
2750 wraparound_section(ic, &i);
2751 }
2752 smp_rmb();
2753
2754 write_journal(ic, commit_start, commit_sections);
2755
2756 spin_lock_irq(&ic->endio_wait.lock);
2757 ic->uncommitted_section += commit_sections;
2758 wraparound_section(ic, &ic->uncommitted_section);
2759 ic->n_uncommitted_sections -= commit_sections;
2760 ic->n_committed_sections += commit_sections;
2761 spin_unlock_irq(&ic->endio_wait.lock);
2762
2763 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2764 queue_work(ic->writer_wq, &ic->writer_work);
2765
2766 release_flush_bios:
2767 while (flushes) {
2768 struct bio *next = flushes->bi_next;
2769
2770 flushes->bi_next = NULL;
2771 do_endio(ic, flushes);
2772 flushes = next;
2773 }
2774 }
2775
complete_copy_from_journal(unsigned long error,void * context)2776 static void complete_copy_from_journal(unsigned long error, void *context)
2777 {
2778 struct journal_io *io = context;
2779 struct journal_completion *comp = io->comp;
2780 struct dm_integrity_c *ic = comp->ic;
2781
2782 remove_range(ic, &io->range);
2783 mempool_free(io, &ic->journal_io_mempool);
2784 if (unlikely(error != 0))
2785 dm_integrity_io_error(ic, "copying from journal", -EIO);
2786 complete_journal_op(comp);
2787 }
2788
restore_last_bytes(struct dm_integrity_c * ic,struct journal_sector * js,struct journal_entry * je)2789 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2790 struct journal_entry *je)
2791 {
2792 unsigned int s = 0;
2793
2794 do {
2795 js->commit_id = je->last_bytes[s];
2796 js++;
2797 } while (++s < ic->sectors_per_block);
2798 }
2799
do_journal_write(struct dm_integrity_c * ic,unsigned int write_start,unsigned int write_sections,bool from_replay)2800 static void do_journal_write(struct dm_integrity_c *ic, unsigned int write_start,
2801 unsigned int write_sections, bool from_replay)
2802 {
2803 unsigned int i, j, n;
2804 struct journal_completion comp;
2805 struct blk_plug plug;
2806
2807 blk_start_plug(&plug);
2808
2809 comp.ic = ic;
2810 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2811 init_completion(&comp.comp);
2812
2813 i = write_start;
2814 for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2815 #ifndef INTERNAL_VERIFY
2816 if (unlikely(from_replay))
2817 #endif
2818 rw_section_mac(ic, i, false);
2819 for (j = 0; j < ic->journal_section_entries; j++) {
2820 struct journal_entry *je = access_journal_entry(ic, i, j);
2821 sector_t sec, area, offset;
2822 unsigned int k, l, next_loop;
2823 sector_t metadata_block;
2824 unsigned int metadata_offset;
2825 struct journal_io *io;
2826
2827 if (journal_entry_is_unused(je))
2828 continue;
2829 BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2830 sec = journal_entry_get_sector(je);
2831 if (unlikely(from_replay)) {
2832 if (unlikely(sec & (unsigned int)(ic->sectors_per_block - 1))) {
2833 dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2834 sec &= ~(sector_t)(ic->sectors_per_block - 1);
2835 }
2836 if (unlikely(sec >= ic->provided_data_sectors)) {
2837 journal_entry_set_unused(je);
2838 continue;
2839 }
2840 }
2841 get_area_and_offset(ic, sec, &area, &offset);
2842 restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2843 for (k = j + 1; k < ic->journal_section_entries; k++) {
2844 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2845 sector_t sec2, area2, offset2;
2846
2847 if (journal_entry_is_unused(je2))
2848 break;
2849 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2850 sec2 = journal_entry_get_sector(je2);
2851 if (unlikely(sec2 >= ic->provided_data_sectors))
2852 break;
2853 get_area_and_offset(ic, sec2, &area2, &offset2);
2854 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2855 break;
2856 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2857 }
2858 next_loop = k - 1;
2859
2860 io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2861 io->comp = ∁
2862 io->range.logical_sector = sec;
2863 io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2864
2865 spin_lock_irq(&ic->endio_wait.lock);
2866 add_new_range_and_wait(ic, &io->range);
2867
2868 if (likely(!from_replay)) {
2869 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2870
2871 /* don't write if there is newer committed sector */
2872 while (j < k && find_newer_committed_node(ic, §ion_node[j])) {
2873 struct journal_entry *je2 = access_journal_entry(ic, i, j);
2874
2875 journal_entry_set_unused(je2);
2876 remove_journal_node(ic, §ion_node[j]);
2877 j++;
2878 sec += ic->sectors_per_block;
2879 offset += ic->sectors_per_block;
2880 }
2881 while (j < k && find_newer_committed_node(ic, §ion_node[k - 1])) {
2882 struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2883
2884 journal_entry_set_unused(je2);
2885 remove_journal_node(ic, §ion_node[k - 1]);
2886 k--;
2887 }
2888 if (j == k) {
2889 remove_range_unlocked(ic, &io->range);
2890 spin_unlock_irq(&ic->endio_wait.lock);
2891 mempool_free(io, &ic->journal_io_mempool);
2892 goto skip_io;
2893 }
2894 for (l = j; l < k; l++)
2895 remove_journal_node(ic, §ion_node[l]);
2896 }
2897 spin_unlock_irq(&ic->endio_wait.lock);
2898
2899 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2900 for (l = j; l < k; l++) {
2901 int r;
2902 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2903
2904 if (
2905 #ifndef INTERNAL_VERIFY
2906 unlikely(from_replay) &&
2907 #endif
2908 ic->internal_hash) {
2909 char test_tag[MAX_T(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2910
2911 integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2912 (char *)access_journal_data(ic, i, l), test_tag);
2913 if (unlikely(crypto_memneq(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2914 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2915 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2916 }
2917 }
2918
2919 journal_entry_set_unused(je2);
2920 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2921 ic->tag_size, TAG_WRITE);
2922 if (unlikely(r))
2923 dm_integrity_io_error(ic, "reading tags", r);
2924 }
2925
2926 atomic_inc(&comp.in_flight);
2927 copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2928 (k - j) << ic->sb->log2_sectors_per_block,
2929 get_data_sector(ic, area, offset),
2930 complete_copy_from_journal, io);
2931 skip_io:
2932 j = next_loop;
2933 }
2934 }
2935
2936 dm_bufio_write_dirty_buffers_async(ic->bufio);
2937
2938 blk_finish_plug(&plug);
2939
2940 complete_journal_op(&comp);
2941 wait_for_completion_io(&comp.comp);
2942
2943 dm_integrity_flush_buffers(ic, true);
2944 }
2945
integrity_writer(struct work_struct * w)2946 static void integrity_writer(struct work_struct *w)
2947 {
2948 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2949 unsigned int write_start, write_sections;
2950 unsigned int prev_free_sectors;
2951
2952 spin_lock_irq(&ic->endio_wait.lock);
2953 write_start = ic->committed_section;
2954 write_sections = ic->n_committed_sections;
2955 spin_unlock_irq(&ic->endio_wait.lock);
2956
2957 if (!write_sections)
2958 return;
2959
2960 do_journal_write(ic, write_start, write_sections, false);
2961
2962 spin_lock_irq(&ic->endio_wait.lock);
2963
2964 ic->committed_section += write_sections;
2965 wraparound_section(ic, &ic->committed_section);
2966 ic->n_committed_sections -= write_sections;
2967
2968 prev_free_sectors = ic->free_sectors;
2969 ic->free_sectors += write_sections * ic->journal_section_entries;
2970 if (unlikely(!prev_free_sectors))
2971 wake_up_locked(&ic->endio_wait);
2972
2973 spin_unlock_irq(&ic->endio_wait.lock);
2974 }
2975
recalc_write_super(struct dm_integrity_c * ic)2976 static void recalc_write_super(struct dm_integrity_c *ic)
2977 {
2978 int r;
2979
2980 dm_integrity_flush_buffers(ic, false);
2981 if (dm_integrity_failed(ic))
2982 return;
2983
2984 r = sync_rw_sb(ic, REQ_OP_WRITE);
2985 if (unlikely(r))
2986 dm_integrity_io_error(ic, "writing superblock", r);
2987 }
2988
integrity_recalc(struct work_struct * w)2989 static void integrity_recalc(struct work_struct *w)
2990 {
2991 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2992 size_t recalc_tags_size;
2993 u8 *recalc_buffer = NULL;
2994 u8 *recalc_tags = NULL;
2995 struct dm_integrity_range range;
2996 struct dm_io_request io_req;
2997 struct dm_io_region io_loc;
2998 sector_t area, offset;
2999 sector_t metadata_block;
3000 unsigned int metadata_offset;
3001 sector_t logical_sector, n_sectors;
3002 __u8 *t;
3003 unsigned int i;
3004 int r;
3005 unsigned int super_counter = 0;
3006 unsigned recalc_sectors = RECALC_SECTORS;
3007
3008 retry:
3009 recalc_buffer = __vmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO);
3010 if (!recalc_buffer) {
3011 oom:
3012 recalc_sectors >>= 1;
3013 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3014 goto retry;
3015 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3016 goto free_ret;
3017 }
3018 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3019 if (crypto_shash_digestsize(ic->internal_hash) > ic->tag_size)
3020 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tag_size;
3021 recalc_tags = kvmalloc(recalc_tags_size, GFP_NOIO);
3022 if (!recalc_tags) {
3023 vfree(recalc_buffer);
3024 recalc_buffer = NULL;
3025 goto oom;
3026 }
3027
3028 DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
3029
3030 spin_lock_irq(&ic->endio_wait.lock);
3031
3032 next_chunk:
3033
3034 if (unlikely(dm_post_suspending(ic->ti)))
3035 goto unlock_ret;
3036
3037 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3038 if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
3039 if (ic->mode == 'B') {
3040 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3041 DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
3042 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3043 }
3044 goto unlock_ret;
3045 }
3046
3047 get_area_and_offset(ic, range.logical_sector, &area, &offset);
3048 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3049 if (!ic->meta_dev)
3050 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned int)offset);
3051
3052 add_new_range_and_wait(ic, &range);
3053 spin_unlock_irq(&ic->endio_wait.lock);
3054 logical_sector = range.logical_sector;
3055 n_sectors = range.n_sectors;
3056
3057 if (ic->mode == 'B') {
3058 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
3059 goto advance_and_next;
3060
3061 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
3062 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3063 logical_sector += ic->sectors_per_block;
3064 n_sectors -= ic->sectors_per_block;
3065 cond_resched();
3066 }
3067 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
3068 ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
3069 n_sectors -= ic->sectors_per_block;
3070 cond_resched();
3071 }
3072 get_area_and_offset(ic, logical_sector, &area, &offset);
3073 }
3074
3075 DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
3076
3077 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3078 recalc_write_super(ic);
3079 if (ic->mode == 'B')
3080 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3081
3082 super_counter = 0;
3083 }
3084
3085 if (unlikely(dm_integrity_failed(ic)))
3086 goto err;
3087
3088 io_req.bi_opf = REQ_OP_READ;
3089 io_req.mem.type = DM_IO_VMA;
3090 io_req.mem.ptr.addr = recalc_buffer;
3091 io_req.notify.fn = NULL;
3092 io_req.client = ic->io;
3093 io_loc.bdev = ic->dev->bdev;
3094 io_loc.sector = get_data_sector(ic, area, offset);
3095 io_loc.count = n_sectors;
3096
3097 r = dm_io(&io_req, 1, &io_loc, NULL, IOPRIO_DEFAULT);
3098 if (unlikely(r)) {
3099 dm_integrity_io_error(ic, "reading data", r);
3100 goto err;
3101 }
3102
3103 t = recalc_tags;
3104 for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
3105 integrity_sector_checksum(ic, logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3106 t += ic->tag_size;
3107 }
3108
3109 metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
3110
3111 r = dm_integrity_rw_tag(ic, recalc_tags, &metadata_block, &metadata_offset, t - recalc_tags, TAG_WRITE);
3112 if (unlikely(r)) {
3113 dm_integrity_io_error(ic, "writing tags", r);
3114 goto err;
3115 }
3116
3117 if (ic->mode == 'B') {
3118 sector_t start, end;
3119
3120 start = (range.logical_sector >>
3121 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3122 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3123 end = ((range.logical_sector + range.n_sectors) >>
3124 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
3125 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3126 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
3127 }
3128
3129 advance_and_next:
3130 cond_resched();
3131
3132 spin_lock_irq(&ic->endio_wait.lock);
3133 remove_range_unlocked(ic, &range);
3134 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3135 goto next_chunk;
3136
3137 err:
3138 remove_range(ic, &range);
3139 goto free_ret;
3140
3141 unlock_ret:
3142 spin_unlock_irq(&ic->endio_wait.lock);
3143
3144 recalc_write_super(ic);
3145
3146 free_ret:
3147 vfree(recalc_buffer);
3148 kvfree(recalc_tags);
3149 }
3150
integrity_recalc_inline(struct work_struct * w)3151 static void integrity_recalc_inline(struct work_struct *w)
3152 {
3153 struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
3154 size_t recalc_tags_size;
3155 u8 *recalc_buffer = NULL;
3156 u8 *recalc_tags = NULL;
3157 struct dm_integrity_range range;
3158 struct bio *bio;
3159 struct bio_integrity_payload *bip;
3160 __u8 *t;
3161 unsigned int i;
3162 int r;
3163 unsigned ret;
3164 unsigned int super_counter = 0;
3165 unsigned recalc_sectors = RECALC_SECTORS;
3166
3167 retry:
3168 recalc_buffer = kmalloc(recalc_sectors << SECTOR_SHIFT, GFP_NOIO | __GFP_NOWARN);
3169 if (!recalc_buffer) {
3170 oom:
3171 recalc_sectors >>= 1;
3172 if (recalc_sectors >= 1U << ic->sb->log2_sectors_per_block)
3173 goto retry;
3174 DMCRIT("out of memory for recalculate buffer - recalculation disabled");
3175 goto free_ret;
3176 }
3177
3178 recalc_tags_size = (recalc_sectors >> ic->sb->log2_sectors_per_block) * ic->tuple_size;
3179 if (crypto_shash_digestsize(ic->internal_hash) > ic->tuple_size)
3180 recalc_tags_size += crypto_shash_digestsize(ic->internal_hash) - ic->tuple_size;
3181 recalc_tags = kmalloc(recalc_tags_size, GFP_NOIO | __GFP_NOWARN);
3182 if (!recalc_tags) {
3183 kfree(recalc_buffer);
3184 recalc_buffer = NULL;
3185 goto oom;
3186 }
3187
3188 spin_lock_irq(&ic->endio_wait.lock);
3189
3190 next_chunk:
3191 if (unlikely(dm_post_suspending(ic->ti)))
3192 goto unlock_ret;
3193
3194 range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
3195 if (unlikely(range.logical_sector >= ic->provided_data_sectors))
3196 goto unlock_ret;
3197 range.n_sectors = min((sector_t)recalc_sectors, ic->provided_data_sectors - range.logical_sector);
3198
3199 add_new_range_and_wait(ic, &range);
3200 spin_unlock_irq(&ic->endio_wait.lock);
3201
3202 if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
3203 recalc_write_super(ic);
3204 super_counter = 0;
3205 }
3206
3207 if (unlikely(dm_integrity_failed(ic)))
3208 goto err;
3209
3210 DEBUG_print("recalculating: %llx - %llx\n", range.logical_sector, range.n_sectors);
3211
3212 bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_READ, GFP_NOIO, &ic->recalc_bios);
3213 bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3214 __bio_add_page(bio, virt_to_page(recalc_buffer), range.n_sectors << SECTOR_SHIFT, offset_in_page(recalc_buffer));
3215 r = submit_bio_wait(bio);
3216 bio_put(bio);
3217 if (unlikely(r)) {
3218 dm_integrity_io_error(ic, "reading data", r);
3219 goto err;
3220 }
3221
3222 t = recalc_tags;
3223 for (i = 0; i < range.n_sectors; i += ic->sectors_per_block) {
3224 memset(t, 0, ic->tuple_size);
3225 integrity_sector_checksum(ic, range.logical_sector + i, recalc_buffer + (i << SECTOR_SHIFT), t);
3226 t += ic->tuple_size;
3227 }
3228
3229 bio = bio_alloc_bioset(ic->dev->bdev, 1, REQ_OP_WRITE, GFP_NOIO, &ic->recalc_bios);
3230 bio->bi_iter.bi_sector = ic->start + SB_SECTORS + range.logical_sector;
3231 __bio_add_page(bio, virt_to_page(recalc_buffer), range.n_sectors << SECTOR_SHIFT, offset_in_page(recalc_buffer));
3232
3233 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
3234 if (unlikely(IS_ERR(bip))) {
3235 bio_put(bio);
3236 DMCRIT("out of memory for bio integrity payload - recalculation disabled");
3237 goto err;
3238 }
3239 ret = bio_integrity_add_page(bio, virt_to_page(recalc_tags), t - recalc_tags, offset_in_page(recalc_tags));
3240 if (unlikely(ret != t - recalc_tags)) {
3241 bio_put(bio);
3242 dm_integrity_io_error(ic, "attaching integrity tags", -ENOMEM);
3243 goto err;
3244 }
3245
3246 r = submit_bio_wait(bio);
3247 bio_put(bio);
3248 if (unlikely(r)) {
3249 dm_integrity_io_error(ic, "writing data", r);
3250 goto err;
3251 }
3252
3253 cond_resched();
3254 spin_lock_irq(&ic->endio_wait.lock);
3255 remove_range_unlocked(ic, &range);
3256 #ifdef CONFIG_64BIT
3257 /* Paired with smp_load_acquire in dm_integrity_map_inline. */
3258 smp_store_release(&ic->sb->recalc_sector, cpu_to_le64(range.logical_sector + range.n_sectors));
3259 #else
3260 ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
3261 #endif
3262 goto next_chunk;
3263
3264 err:
3265 remove_range(ic, &range);
3266 goto free_ret;
3267
3268 unlock_ret:
3269 spin_unlock_irq(&ic->endio_wait.lock);
3270
3271 recalc_write_super(ic);
3272
3273 free_ret:
3274 kfree(recalc_buffer);
3275 kfree(recalc_tags);
3276 }
3277
bitmap_block_work(struct work_struct * w)3278 static void bitmap_block_work(struct work_struct *w)
3279 {
3280 struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
3281 struct dm_integrity_c *ic = bbs->ic;
3282 struct bio *bio;
3283 struct bio_list bio_queue;
3284 struct bio_list waiting;
3285
3286 bio_list_init(&waiting);
3287
3288 spin_lock(&bbs->bio_queue_lock);
3289 bio_queue = bbs->bio_queue;
3290 bio_list_init(&bbs->bio_queue);
3291 spin_unlock(&bbs->bio_queue_lock);
3292
3293 while ((bio = bio_list_pop(&bio_queue))) {
3294 struct dm_integrity_io *dio;
3295
3296 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3297
3298 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3299 dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
3300 remove_range(ic, &dio->range);
3301 INIT_WORK(&dio->work, integrity_bio_wait);
3302 queue_work(ic->offload_wq, &dio->work);
3303 } else {
3304 block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
3305 dio->range.n_sectors, BITMAP_OP_SET);
3306 bio_list_add(&waiting, bio);
3307 }
3308 }
3309
3310 if (bio_list_empty(&waiting))
3311 return;
3312
3313 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC,
3314 bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
3315 BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
3316
3317 while ((bio = bio_list_pop(&waiting))) {
3318 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
3319
3320 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
3321 dio->range.n_sectors, BITMAP_OP_SET);
3322
3323 remove_range(ic, &dio->range);
3324 INIT_WORK(&dio->work, integrity_bio_wait);
3325 queue_work(ic->offload_wq, &dio->work);
3326 }
3327
3328 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
3329 }
3330
bitmap_flush_work(struct work_struct * work)3331 static void bitmap_flush_work(struct work_struct *work)
3332 {
3333 struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
3334 struct dm_integrity_range range;
3335 unsigned long limit;
3336 struct bio *bio;
3337
3338 dm_integrity_flush_buffers(ic, false);
3339
3340 range.logical_sector = 0;
3341 range.n_sectors = ic->provided_data_sectors;
3342
3343 spin_lock_irq(&ic->endio_wait.lock);
3344 add_new_range_and_wait(ic, &range);
3345 spin_unlock_irq(&ic->endio_wait.lock);
3346
3347 dm_integrity_flush_buffers(ic, true);
3348
3349 limit = ic->provided_data_sectors;
3350 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3351 limit = le64_to_cpu(ic->sb->recalc_sector)
3352 >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
3353 << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
3354 }
3355 /*DEBUG_print("zeroing journal\n");*/
3356 block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
3357 block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
3358
3359 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3360 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3361
3362 spin_lock_irq(&ic->endio_wait.lock);
3363 remove_range_unlocked(ic, &range);
3364 while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
3365 bio_endio(bio);
3366 spin_unlock_irq(&ic->endio_wait.lock);
3367 spin_lock_irq(&ic->endio_wait.lock);
3368 }
3369 spin_unlock_irq(&ic->endio_wait.lock);
3370 }
3371
3372
init_journal(struct dm_integrity_c * ic,unsigned int start_section,unsigned int n_sections,unsigned char commit_seq)3373 static void init_journal(struct dm_integrity_c *ic, unsigned int start_section,
3374 unsigned int n_sections, unsigned char commit_seq)
3375 {
3376 unsigned int i, j, n;
3377
3378 if (!n_sections)
3379 return;
3380
3381 for (n = 0; n < n_sections; n++) {
3382 i = start_section + n;
3383 wraparound_section(ic, &i);
3384 for (j = 0; j < ic->journal_section_sectors; j++) {
3385 struct journal_sector *js = access_journal(ic, i, j);
3386
3387 BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
3388 memset(&js->sectors, 0, sizeof(js->sectors));
3389 js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
3390 }
3391 for (j = 0; j < ic->journal_section_entries; j++) {
3392 struct journal_entry *je = access_journal_entry(ic, i, j);
3393
3394 journal_entry_set_unused(je);
3395 }
3396 }
3397
3398 write_journal(ic, start_section, n_sections);
3399 }
3400
find_commit_seq(struct dm_integrity_c * ic,unsigned int i,unsigned int j,commit_id_t id)3401 static int find_commit_seq(struct dm_integrity_c *ic, unsigned int i, unsigned int j, commit_id_t id)
3402 {
3403 unsigned char k;
3404
3405 for (k = 0; k < N_COMMIT_IDS; k++) {
3406 if (dm_integrity_commit_id(ic, i, j, k) == id)
3407 return k;
3408 }
3409 dm_integrity_io_error(ic, "journal commit id", -EIO);
3410 return -EIO;
3411 }
3412
replay_journal(struct dm_integrity_c * ic)3413 static void replay_journal(struct dm_integrity_c *ic)
3414 {
3415 unsigned int i, j;
3416 bool used_commit_ids[N_COMMIT_IDS];
3417 unsigned int max_commit_id_sections[N_COMMIT_IDS];
3418 unsigned int write_start, write_sections;
3419 unsigned int continue_section;
3420 bool journal_empty;
3421 unsigned char unused, last_used, want_commit_seq;
3422
3423 if (ic->mode == 'R')
3424 return;
3425
3426 if (ic->journal_uptodate)
3427 return;
3428
3429 last_used = 0;
3430 write_start = 0;
3431
3432 if (!ic->just_formatted) {
3433 DEBUG_print("reading journal\n");
3434 rw_journal(ic, REQ_OP_READ, 0, ic->journal_sections, NULL);
3435 if (ic->journal_io)
3436 DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
3437 if (ic->journal_io) {
3438 struct journal_completion crypt_comp;
3439
3440 crypt_comp.ic = ic;
3441 init_completion(&crypt_comp.comp);
3442 crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
3443 encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
3444 wait_for_completion(&crypt_comp.comp);
3445 }
3446 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
3447 }
3448
3449 if (dm_integrity_failed(ic))
3450 goto clear_journal;
3451
3452 journal_empty = true;
3453 memset(used_commit_ids, 0, sizeof(used_commit_ids));
3454 memset(max_commit_id_sections, 0, sizeof(max_commit_id_sections));
3455 for (i = 0; i < ic->journal_sections; i++) {
3456 for (j = 0; j < ic->journal_section_sectors; j++) {
3457 int k;
3458 struct journal_sector *js = access_journal(ic, i, j);
3459
3460 k = find_commit_seq(ic, i, j, js->commit_id);
3461 if (k < 0)
3462 goto clear_journal;
3463 used_commit_ids[k] = true;
3464 max_commit_id_sections[k] = i;
3465 }
3466 if (journal_empty) {
3467 for (j = 0; j < ic->journal_section_entries; j++) {
3468 struct journal_entry *je = access_journal_entry(ic, i, j);
3469
3470 if (!journal_entry_is_unused(je)) {
3471 journal_empty = false;
3472 break;
3473 }
3474 }
3475 }
3476 }
3477
3478 if (!used_commit_ids[N_COMMIT_IDS - 1]) {
3479 unused = N_COMMIT_IDS - 1;
3480 while (unused && !used_commit_ids[unused - 1])
3481 unused--;
3482 } else {
3483 for (unused = 0; unused < N_COMMIT_IDS; unused++)
3484 if (!used_commit_ids[unused])
3485 break;
3486 if (unused == N_COMMIT_IDS) {
3487 dm_integrity_io_error(ic, "journal commit ids", -EIO);
3488 goto clear_journal;
3489 }
3490 }
3491 DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
3492 unused, used_commit_ids[0], used_commit_ids[1],
3493 used_commit_ids[2], used_commit_ids[3]);
3494
3495 last_used = prev_commit_seq(unused);
3496 want_commit_seq = prev_commit_seq(last_used);
3497
3498 if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
3499 journal_empty = true;
3500
3501 write_start = max_commit_id_sections[last_used] + 1;
3502 if (unlikely(write_start >= ic->journal_sections))
3503 want_commit_seq = next_commit_seq(want_commit_seq);
3504 wraparound_section(ic, &write_start);
3505
3506 i = write_start;
3507 for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
3508 for (j = 0; j < ic->journal_section_sectors; j++) {
3509 struct journal_sector *js = access_journal(ic, i, j);
3510
3511 if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
3512 /*
3513 * This could be caused by crash during writing.
3514 * We won't replay the inconsistent part of the
3515 * journal.
3516 */
3517 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3518 i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3519 goto brk;
3520 }
3521 }
3522 i++;
3523 if (unlikely(i >= ic->journal_sections))
3524 want_commit_seq = next_commit_seq(want_commit_seq);
3525 wraparound_section(ic, &i);
3526 }
3527 brk:
3528
3529 if (!journal_empty) {
3530 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3531 write_sections, write_start, want_commit_seq);
3532 do_journal_write(ic, write_start, write_sections, true);
3533 }
3534
3535 if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3536 continue_section = write_start;
3537 ic->commit_seq = want_commit_seq;
3538 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3539 } else {
3540 unsigned int s;
3541 unsigned char erase_seq;
3542
3543 clear_journal:
3544 DEBUG_print("clearing journal\n");
3545
3546 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3547 s = write_start;
3548 init_journal(ic, s, 1, erase_seq);
3549 s++;
3550 wraparound_section(ic, &s);
3551 if (ic->journal_sections >= 2) {
3552 init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3553 s += ic->journal_sections - 2;
3554 wraparound_section(ic, &s);
3555 init_journal(ic, s, 1, erase_seq);
3556 }
3557
3558 continue_section = 0;
3559 ic->commit_seq = next_commit_seq(erase_seq);
3560 }
3561
3562 ic->committed_section = continue_section;
3563 ic->n_committed_sections = 0;
3564
3565 ic->uncommitted_section = continue_section;
3566 ic->n_uncommitted_sections = 0;
3567
3568 ic->free_section = continue_section;
3569 ic->free_section_entry = 0;
3570 ic->free_sectors = ic->journal_entries;
3571
3572 ic->journal_tree_root = RB_ROOT;
3573 for (i = 0; i < ic->journal_entries; i++)
3574 init_journal_node(&ic->journal_tree[i]);
3575 }
3576
dm_integrity_enter_synchronous_mode(struct dm_integrity_c * ic)3577 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3578 {
3579 DEBUG_print("%s\n", __func__);
3580
3581 if (ic->mode == 'B') {
3582 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3583 ic->synchronous_mode = 1;
3584
3585 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3586 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3587 flush_workqueue(ic->commit_wq);
3588 }
3589 }
3590
dm_integrity_reboot(struct notifier_block * n,unsigned long code,void * x)3591 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3592 {
3593 struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3594
3595 DEBUG_print("%s\n", __func__);
3596
3597 dm_integrity_enter_synchronous_mode(ic);
3598
3599 return NOTIFY_DONE;
3600 }
3601
dm_integrity_postsuspend(struct dm_target * ti)3602 static void dm_integrity_postsuspend(struct dm_target *ti)
3603 {
3604 struct dm_integrity_c *ic = ti->private;
3605 int r;
3606
3607 WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3608
3609 timer_delete_sync(&ic->autocommit_timer);
3610
3611 if (ic->recalc_wq)
3612 drain_workqueue(ic->recalc_wq);
3613
3614 if (ic->mode == 'B')
3615 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3616
3617 queue_work(ic->commit_wq, &ic->commit_work);
3618 drain_workqueue(ic->commit_wq);
3619
3620 if (ic->mode == 'J') {
3621 queue_work(ic->writer_wq, &ic->writer_work);
3622 drain_workqueue(ic->writer_wq);
3623 dm_integrity_flush_buffers(ic, true);
3624 if (ic->wrote_to_journal) {
3625 init_journal(ic, ic->free_section,
3626 ic->journal_sections - ic->free_section, ic->commit_seq);
3627 if (ic->free_section) {
3628 init_journal(ic, 0, ic->free_section,
3629 next_commit_seq(ic->commit_seq));
3630 }
3631 }
3632 }
3633
3634 if (ic->mode == 'B') {
3635 dm_integrity_flush_buffers(ic, true);
3636 #if 1
3637 /* set to 0 to test bitmap replay code */
3638 init_journal(ic, 0, ic->journal_sections, 0);
3639 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3640 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3641 if (unlikely(r))
3642 dm_integrity_io_error(ic, "writing superblock", r);
3643 #endif
3644 }
3645
3646 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3647
3648 ic->journal_uptodate = true;
3649 }
3650
dm_integrity_resume(struct dm_target * ti)3651 static void dm_integrity_resume(struct dm_target *ti)
3652 {
3653 struct dm_integrity_c *ic = ti->private;
3654 __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3655 int r;
3656
3657 DEBUG_print("resume\n");
3658
3659 ic->wrote_to_journal = false;
3660
3661 if (ic->provided_data_sectors != old_provided_data_sectors) {
3662 if (ic->provided_data_sectors > old_provided_data_sectors &&
3663 ic->mode == 'B' &&
3664 ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3665 rw_journal_sectors(ic, REQ_OP_READ, 0,
3666 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3667 block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3668 ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3669 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3670 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3671 }
3672
3673 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3674 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3675 if (unlikely(r))
3676 dm_integrity_io_error(ic, "writing superblock", r);
3677 }
3678
3679 if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3680 DEBUG_print("resume dirty_bitmap\n");
3681 rw_journal_sectors(ic, REQ_OP_READ, 0,
3682 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3683 if (ic->mode == 'B') {
3684 if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3685 !ic->reset_recalculate_flag) {
3686 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3687 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3688 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3689 BITMAP_OP_TEST_ALL_CLEAR)) {
3690 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3691 ic->sb->recalc_sector = cpu_to_le64(0);
3692 }
3693 } else {
3694 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3695 ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3696 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3697 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3698 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3699 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3700 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3701 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3702 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3703 ic->sb->recalc_sector = cpu_to_le64(0);
3704 }
3705 } else {
3706 if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3707 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3708 ic->reset_recalculate_flag) {
3709 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3710 ic->sb->recalc_sector = cpu_to_le64(0);
3711 }
3712 init_journal(ic, 0, ic->journal_sections, 0);
3713 replay_journal(ic);
3714 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3715 }
3716 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3717 if (unlikely(r))
3718 dm_integrity_io_error(ic, "writing superblock", r);
3719 } else {
3720 replay_journal(ic);
3721 if (ic->reset_recalculate_flag) {
3722 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3723 ic->sb->recalc_sector = cpu_to_le64(0);
3724 }
3725 if (ic->mode == 'B') {
3726 ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3727 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3728 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
3729 if (unlikely(r))
3730 dm_integrity_io_error(ic, "writing superblock", r);
3731
3732 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3733 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3734 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3735 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3736 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3737 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3738 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3739 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3740 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3741 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3742 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3743 }
3744 rw_journal_sectors(ic, REQ_OP_WRITE | REQ_FUA | REQ_SYNC, 0,
3745 ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3746 }
3747 }
3748
3749 DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3750 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3751 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3752
3753 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3754 if (recalc_pos < ic->provided_data_sectors) {
3755 queue_work(ic->recalc_wq, &ic->recalc_work);
3756 } else if (recalc_pos > ic->provided_data_sectors) {
3757 ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3758 recalc_write_super(ic);
3759 }
3760 }
3761
3762 ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3763 ic->reboot_notifier.next = NULL;
3764 ic->reboot_notifier.priority = INT_MAX - 1; /* be notified after md and before hardware drivers */
3765 WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3766
3767 #if 0
3768 /* set to 1 to stress test synchronous mode */
3769 dm_integrity_enter_synchronous_mode(ic);
3770 #endif
3771 }
3772
dm_integrity_status(struct dm_target * ti,status_type_t type,unsigned int status_flags,char * result,unsigned int maxlen)3773 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3774 unsigned int status_flags, char *result, unsigned int maxlen)
3775 {
3776 struct dm_integrity_c *ic = ti->private;
3777 unsigned int arg_count;
3778 size_t sz = 0;
3779
3780 switch (type) {
3781 case STATUSTYPE_INFO:
3782 DMEMIT("%llu %llu",
3783 (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3784 ic->provided_data_sectors);
3785 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3786 DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3787 else
3788 DMEMIT(" -");
3789 break;
3790
3791 case STATUSTYPE_TABLE: {
3792 arg_count = 1; /* buffer_sectors */
3793 arg_count += !!ic->meta_dev;
3794 arg_count += ic->sectors_per_block != 1;
3795 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3796 arg_count += ic->reset_recalculate_flag;
3797 arg_count += ic->discard;
3798 arg_count += ic->mode != 'I'; /* interleave_sectors */
3799 arg_count += ic->mode == 'J'; /* journal_sectors */
3800 arg_count += ic->mode == 'J'; /* journal_watermark */
3801 arg_count += ic->mode == 'J'; /* commit_time */
3802 arg_count += ic->mode == 'B'; /* sectors_per_bit */
3803 arg_count += ic->mode == 'B'; /* bitmap_flush_interval */
3804 arg_count += !!ic->internal_hash_alg.alg_string;
3805 arg_count += !!ic->journal_crypt_alg.alg_string;
3806 arg_count += !!ic->journal_mac_alg.alg_string;
3807 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3808 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3809 arg_count += ic->legacy_recalculate;
3810 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3811 ic->tag_size, ic->mode, arg_count);
3812 if (ic->meta_dev)
3813 DMEMIT(" meta_device:%s", ic->meta_dev->name);
3814 if (ic->sectors_per_block != 1)
3815 DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3816 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3817 DMEMIT(" recalculate");
3818 if (ic->reset_recalculate_flag)
3819 DMEMIT(" reset_recalculate");
3820 if (ic->discard)
3821 DMEMIT(" allow_discards");
3822 if (ic->mode != 'I')
3823 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3824 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3825 if (ic->mode == 'J') {
3826 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3827
3828 watermark_percentage += ic->journal_entries / 2;
3829 do_div(watermark_percentage, ic->journal_entries);
3830 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3831 DMEMIT(" journal_watermark:%u", (unsigned int)watermark_percentage);
3832 DMEMIT(" commit_time:%u", ic->autocommit_msec);
3833 }
3834 if (ic->mode == 'B') {
3835 DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3836 DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3837 }
3838 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3839 DMEMIT(" fix_padding");
3840 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3841 DMEMIT(" fix_hmac");
3842 if (ic->legacy_recalculate)
3843 DMEMIT(" legacy_recalculate");
3844
3845 #define EMIT_ALG(a, n) \
3846 do { \
3847 if (ic->a.alg_string) { \
3848 DMEMIT(" %s:%s", n, ic->a.alg_string); \
3849 if (ic->a.key_string) \
3850 DMEMIT(":%s", ic->a.key_string);\
3851 } \
3852 } while (0)
3853 EMIT_ALG(internal_hash_alg, "internal_hash");
3854 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3855 EMIT_ALG(journal_mac_alg, "journal_mac");
3856 break;
3857 }
3858 case STATUSTYPE_IMA:
3859 DMEMIT_TARGET_NAME_VERSION(ti->type);
3860 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3861 ic->dev->name, ic->start, ic->tag_size, ic->mode);
3862
3863 if (ic->meta_dev)
3864 DMEMIT(",meta_device=%s", ic->meta_dev->name);
3865 if (ic->sectors_per_block != 1)
3866 DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3867
3868 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3869 'y' : 'n');
3870 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3871 DMEMIT(",fix_padding=%c",
3872 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3873 DMEMIT(",fix_hmac=%c",
3874 ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3875 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3876
3877 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3878 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3879 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3880 DMEMIT(";");
3881 break;
3882 }
3883 }
3884
dm_integrity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3885 static int dm_integrity_iterate_devices(struct dm_target *ti,
3886 iterate_devices_callout_fn fn, void *data)
3887 {
3888 struct dm_integrity_c *ic = ti->private;
3889
3890 if (!ic->meta_dev)
3891 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3892 else
3893 return fn(ti, ic->dev, 0, ti->len, data);
3894 }
3895
dm_integrity_io_hints(struct dm_target * ti,struct queue_limits * limits)3896 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3897 {
3898 struct dm_integrity_c *ic = ti->private;
3899
3900 if (ic->sectors_per_block > 1) {
3901 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3902 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3903 limits->io_min = ic->sectors_per_block << SECTOR_SHIFT;
3904 limits->dma_alignment = limits->logical_block_size - 1;
3905 limits->discard_granularity = ic->sectors_per_block << SECTOR_SHIFT;
3906 }
3907
3908 if (!ic->internal_hash) {
3909 struct blk_integrity *bi = &limits->integrity;
3910
3911 memset(bi, 0, sizeof(*bi));
3912 bi->tuple_size = ic->tag_size;
3913 bi->tag_size = bi->tuple_size;
3914 bi->interval_exp =
3915 ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3916 }
3917
3918 limits->max_integrity_segments = USHRT_MAX;
3919 }
3920
calculate_journal_section_size(struct dm_integrity_c * ic)3921 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3922 {
3923 unsigned int sector_space = JOURNAL_SECTOR_DATA;
3924
3925 ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3926 ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3927 JOURNAL_ENTRY_ROUNDUP);
3928
3929 if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3930 sector_space -= JOURNAL_MAC_PER_SECTOR;
3931 ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3932 ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3933 ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3934 ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3935 }
3936
calculate_device_limits(struct dm_integrity_c * ic)3937 static int calculate_device_limits(struct dm_integrity_c *ic)
3938 {
3939 __u64 initial_sectors;
3940
3941 calculate_journal_section_size(ic);
3942 initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3943 if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3944 return -EINVAL;
3945 ic->initial_sectors = initial_sectors;
3946
3947 if (ic->mode == 'I') {
3948 if (ic->initial_sectors + ic->provided_data_sectors > ic->meta_device_sectors)
3949 return -EINVAL;
3950 } else if (!ic->meta_dev) {
3951 sector_t last_sector, last_area, last_offset;
3952
3953 /* we have to maintain excessive padding for compatibility with existing volumes */
3954 __u64 metadata_run_padding =
3955 ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3956 (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3957 (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3958
3959 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3960 metadata_run_padding) >> SECTOR_SHIFT;
3961 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3962 ic->log2_metadata_run = __ffs(ic->metadata_run);
3963 else
3964 ic->log2_metadata_run = -1;
3965
3966 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3967 last_sector = get_data_sector(ic, last_area, last_offset);
3968 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3969 return -EINVAL;
3970 } else {
3971 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3972
3973 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3974 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3975 meta_size <<= ic->log2_buffer_sectors;
3976 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3977 ic->initial_sectors + meta_size > ic->meta_device_sectors)
3978 return -EINVAL;
3979 ic->metadata_run = 1;
3980 ic->log2_metadata_run = 0;
3981 }
3982
3983 return 0;
3984 }
3985
get_provided_data_sectors(struct dm_integrity_c * ic)3986 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3987 {
3988 if (!ic->meta_dev) {
3989 int test_bit;
3990
3991 ic->provided_data_sectors = 0;
3992 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3993 __u64 prev_data_sectors = ic->provided_data_sectors;
3994
3995 ic->provided_data_sectors |= (sector_t)1 << test_bit;
3996 if (calculate_device_limits(ic))
3997 ic->provided_data_sectors = prev_data_sectors;
3998 }
3999 } else {
4000 ic->provided_data_sectors = ic->data_device_sectors;
4001 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
4002 }
4003 }
4004
initialize_superblock(struct dm_integrity_c * ic,unsigned int journal_sectors,unsigned int interleave_sectors)4005 static int initialize_superblock(struct dm_integrity_c *ic,
4006 unsigned int journal_sectors, unsigned int interleave_sectors)
4007 {
4008 unsigned int journal_sections;
4009 int test_bit;
4010
4011 memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
4012 memcpy(ic->sb->magic, SB_MAGIC, 8);
4013 if (ic->mode == 'I')
4014 ic->sb->flags |= cpu_to_le32(SB_FLAG_INLINE);
4015 ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
4016 ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
4017 if (ic->journal_mac_alg.alg_string)
4018 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
4019
4020 calculate_journal_section_size(ic);
4021 journal_sections = journal_sectors / ic->journal_section_sectors;
4022 if (!journal_sections)
4023 journal_sections = 1;
4024 if (ic->mode == 'I')
4025 journal_sections = 0;
4026
4027 if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
4028 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
4029 get_random_bytes(ic->sb->salt, SALT_SIZE);
4030 }
4031
4032 if (!ic->meta_dev) {
4033 if (ic->fix_padding)
4034 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
4035 ic->sb->journal_sections = cpu_to_le32(journal_sections);
4036 if (!interleave_sectors)
4037 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4038 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
4039 ic->sb->log2_interleave_sectors = max_t(__u8, MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4040 ic->sb->log2_interleave_sectors = min_t(__u8, MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
4041
4042 get_provided_data_sectors(ic);
4043 if (!ic->provided_data_sectors)
4044 return -EINVAL;
4045 } else {
4046 ic->sb->log2_interleave_sectors = 0;
4047
4048 get_provided_data_sectors(ic);
4049 if (!ic->provided_data_sectors)
4050 return -EINVAL;
4051
4052 try_smaller_buffer:
4053 ic->sb->journal_sections = cpu_to_le32(0);
4054 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
4055 __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
4056 __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
4057
4058 if (test_journal_sections > journal_sections)
4059 continue;
4060 ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
4061 if (calculate_device_limits(ic))
4062 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
4063
4064 }
4065 if (!le32_to_cpu(ic->sb->journal_sections)) {
4066 if (ic->log2_buffer_sectors > 3) {
4067 ic->log2_buffer_sectors--;
4068 goto try_smaller_buffer;
4069 }
4070 return -EINVAL;
4071 }
4072 }
4073
4074 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
4075
4076 sb_set_version(ic);
4077
4078 return 0;
4079 }
4080
dm_integrity_free_page_list(struct page_list * pl)4081 static void dm_integrity_free_page_list(struct page_list *pl)
4082 {
4083 unsigned int i;
4084
4085 if (!pl)
4086 return;
4087 for (i = 0; pl[i].page; i++)
4088 __free_page(pl[i].page);
4089 kvfree(pl);
4090 }
4091
dm_integrity_alloc_page_list(unsigned int n_pages)4092 static struct page_list *dm_integrity_alloc_page_list(unsigned int n_pages)
4093 {
4094 struct page_list *pl;
4095 unsigned int i;
4096
4097 pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
4098 if (!pl)
4099 return NULL;
4100
4101 for (i = 0; i < n_pages; i++) {
4102 pl[i].page = alloc_page(GFP_KERNEL);
4103 if (!pl[i].page) {
4104 dm_integrity_free_page_list(pl);
4105 return NULL;
4106 }
4107 if (i)
4108 pl[i - 1].next = &pl[i];
4109 }
4110 pl[i].page = NULL;
4111 pl[i].next = NULL;
4112
4113 return pl;
4114 }
4115
dm_integrity_free_journal_scatterlist(struct dm_integrity_c * ic,struct scatterlist ** sl)4116 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
4117 {
4118 unsigned int i;
4119
4120 for (i = 0; i < ic->journal_sections; i++)
4121 kvfree(sl[i]);
4122 kvfree(sl);
4123 }
4124
dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c * ic,struct page_list * pl)4125 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
4126 struct page_list *pl)
4127 {
4128 struct scatterlist **sl;
4129 unsigned int i;
4130
4131 sl = kvmalloc_array(ic->journal_sections,
4132 sizeof(struct scatterlist *),
4133 GFP_KERNEL | __GFP_ZERO);
4134 if (!sl)
4135 return NULL;
4136
4137 for (i = 0; i < ic->journal_sections; i++) {
4138 struct scatterlist *s;
4139 unsigned int start_index, start_offset;
4140 unsigned int end_index, end_offset;
4141 unsigned int n_pages;
4142 unsigned int idx;
4143
4144 page_list_location(ic, i, 0, &start_index, &start_offset);
4145 page_list_location(ic, i, ic->journal_section_sectors - 1,
4146 &end_index, &end_offset);
4147
4148 n_pages = (end_index - start_index + 1);
4149
4150 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
4151 GFP_KERNEL);
4152 if (!s) {
4153 dm_integrity_free_journal_scatterlist(ic, sl);
4154 return NULL;
4155 }
4156
4157 sg_init_table(s, n_pages);
4158 for (idx = start_index; idx <= end_index; idx++) {
4159 char *va = lowmem_page_address(pl[idx].page);
4160 unsigned int start = 0, end = PAGE_SIZE;
4161
4162 if (idx == start_index)
4163 start = start_offset;
4164 if (idx == end_index)
4165 end = end_offset + (1 << SECTOR_SHIFT);
4166 sg_set_buf(&s[idx - start_index], va + start, end - start);
4167 }
4168
4169 sl[i] = s;
4170 }
4171
4172 return sl;
4173 }
4174
free_alg(struct alg_spec * a)4175 static void free_alg(struct alg_spec *a)
4176 {
4177 kfree_sensitive(a->alg_string);
4178 kfree_sensitive(a->key);
4179 memset(a, 0, sizeof(*a));
4180 }
4181
get_alg_and_key(const char * arg,struct alg_spec * a,char ** error,char * error_inval)4182 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
4183 {
4184 char *k;
4185
4186 free_alg(a);
4187
4188 a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
4189 if (!a->alg_string)
4190 goto nomem;
4191
4192 k = strchr(a->alg_string, ':');
4193 if (k) {
4194 *k = 0;
4195 a->key_string = k + 1;
4196 if (strlen(a->key_string) & 1)
4197 goto inval;
4198
4199 a->key_size = strlen(a->key_string) / 2;
4200 a->key = kmalloc(a->key_size, GFP_KERNEL);
4201 if (!a->key)
4202 goto nomem;
4203 if (hex2bin(a->key, a->key_string, a->key_size))
4204 goto inval;
4205 }
4206
4207 return 0;
4208 inval:
4209 *error = error_inval;
4210 return -EINVAL;
4211 nomem:
4212 *error = "Out of memory for an argument";
4213 return -ENOMEM;
4214 }
4215
get_mac(struct crypto_shash ** hash,struct alg_spec * a,char ** error,char * error_alg,char * error_key)4216 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
4217 char *error_alg, char *error_key)
4218 {
4219 int r;
4220
4221 if (a->alg_string) {
4222 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4223 if (IS_ERR(*hash)) {
4224 *error = error_alg;
4225 r = PTR_ERR(*hash);
4226 *hash = NULL;
4227 return r;
4228 }
4229
4230 if (a->key) {
4231 r = crypto_shash_setkey(*hash, a->key, a->key_size);
4232 if (r) {
4233 *error = error_key;
4234 return r;
4235 }
4236 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
4237 *error = error_key;
4238 return -ENOKEY;
4239 }
4240 }
4241
4242 return 0;
4243 }
4244
create_journal(struct dm_integrity_c * ic,char ** error)4245 static int create_journal(struct dm_integrity_c *ic, char **error)
4246 {
4247 int r = 0;
4248 unsigned int i;
4249 __u64 journal_pages, journal_desc_size, journal_tree_size;
4250 unsigned char *crypt_data = NULL, *crypt_iv = NULL;
4251 struct skcipher_request *req = NULL;
4252
4253 ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
4254 ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
4255 ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
4256 ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
4257
4258 journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
4259 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
4260 journal_desc_size = journal_pages * sizeof(struct page_list);
4261 if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
4262 *error = "Journal doesn't fit into memory";
4263 r = -ENOMEM;
4264 goto bad;
4265 }
4266 ic->journal_pages = journal_pages;
4267
4268 ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
4269 if (!ic->journal) {
4270 *error = "Could not allocate memory for journal";
4271 r = -ENOMEM;
4272 goto bad;
4273 }
4274 if (ic->journal_crypt_alg.alg_string) {
4275 unsigned int ivsize, blocksize;
4276 struct journal_completion comp;
4277
4278 comp.ic = ic;
4279 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
4280 if (IS_ERR(ic->journal_crypt)) {
4281 *error = "Invalid journal cipher";
4282 r = PTR_ERR(ic->journal_crypt);
4283 ic->journal_crypt = NULL;
4284 goto bad;
4285 }
4286 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
4287 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
4288
4289 if (ic->journal_crypt_alg.key) {
4290 r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
4291 ic->journal_crypt_alg.key_size);
4292 if (r) {
4293 *error = "Error setting encryption key";
4294 goto bad;
4295 }
4296 }
4297 DEBUG_print("cipher %s, block size %u iv size %u\n",
4298 ic->journal_crypt_alg.alg_string, blocksize, ivsize);
4299
4300 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
4301 if (!ic->journal_io) {
4302 *error = "Could not allocate memory for journal io";
4303 r = -ENOMEM;
4304 goto bad;
4305 }
4306
4307 if (blocksize == 1) {
4308 struct scatterlist *sg;
4309
4310 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4311 if (!req) {
4312 *error = "Could not allocate crypt request";
4313 r = -ENOMEM;
4314 goto bad;
4315 }
4316
4317 crypt_iv = kzalloc(ivsize, GFP_KERNEL);
4318 if (!crypt_iv) {
4319 *error = "Could not allocate iv";
4320 r = -ENOMEM;
4321 goto bad;
4322 }
4323
4324 ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
4325 if (!ic->journal_xor) {
4326 *error = "Could not allocate memory for journal xor";
4327 r = -ENOMEM;
4328 goto bad;
4329 }
4330
4331 sg = kvmalloc_array(ic->journal_pages + 1,
4332 sizeof(struct scatterlist),
4333 GFP_KERNEL);
4334 if (!sg) {
4335 *error = "Unable to allocate sg list";
4336 r = -ENOMEM;
4337 goto bad;
4338 }
4339 sg_init_table(sg, ic->journal_pages + 1);
4340 for (i = 0; i < ic->journal_pages; i++) {
4341 char *va = lowmem_page_address(ic->journal_xor[i].page);
4342
4343 clear_page(va);
4344 sg_set_buf(&sg[i], va, PAGE_SIZE);
4345 }
4346 sg_set_buf(&sg[i], &ic->commit_ids, sizeof(ic->commit_ids));
4347
4348 skcipher_request_set_crypt(req, sg, sg,
4349 PAGE_SIZE * ic->journal_pages + sizeof(ic->commit_ids), crypt_iv);
4350 init_completion(&comp.comp);
4351 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4352 if (do_crypt(true, req, &comp))
4353 wait_for_completion(&comp.comp);
4354 kvfree(sg);
4355 r = dm_integrity_failed(ic);
4356 if (r) {
4357 *error = "Unable to encrypt journal";
4358 goto bad;
4359 }
4360 DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
4361
4362 crypto_free_skcipher(ic->journal_crypt);
4363 ic->journal_crypt = NULL;
4364 } else {
4365 unsigned int crypt_len = roundup(ivsize, blocksize);
4366
4367 req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4368 if (!req) {
4369 *error = "Could not allocate crypt request";
4370 r = -ENOMEM;
4371 goto bad;
4372 }
4373
4374 crypt_iv = kmalloc(ivsize, GFP_KERNEL);
4375 if (!crypt_iv) {
4376 *error = "Could not allocate iv";
4377 r = -ENOMEM;
4378 goto bad;
4379 }
4380
4381 crypt_data = kmalloc(crypt_len, GFP_KERNEL);
4382 if (!crypt_data) {
4383 *error = "Unable to allocate crypt data";
4384 r = -ENOMEM;
4385 goto bad;
4386 }
4387
4388 ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
4389 if (!ic->journal_scatterlist) {
4390 *error = "Unable to allocate sg list";
4391 r = -ENOMEM;
4392 goto bad;
4393 }
4394 ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
4395 if (!ic->journal_io_scatterlist) {
4396 *error = "Unable to allocate sg list";
4397 r = -ENOMEM;
4398 goto bad;
4399 }
4400 ic->sk_requests = kvmalloc_array(ic->journal_sections,
4401 sizeof(struct skcipher_request *),
4402 GFP_KERNEL | __GFP_ZERO);
4403 if (!ic->sk_requests) {
4404 *error = "Unable to allocate sk requests";
4405 r = -ENOMEM;
4406 goto bad;
4407 }
4408 for (i = 0; i < ic->journal_sections; i++) {
4409 struct scatterlist sg;
4410 struct skcipher_request *section_req;
4411 __le32 section_le = cpu_to_le32(i);
4412
4413 memset(crypt_iv, 0x00, ivsize);
4414 memset(crypt_data, 0x00, crypt_len);
4415 memcpy(crypt_data, §ion_le, min_t(size_t, crypt_len, sizeof(section_le)));
4416
4417 sg_init_one(&sg, crypt_data, crypt_len);
4418 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
4419 init_completion(&comp.comp);
4420 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
4421 if (do_crypt(true, req, &comp))
4422 wait_for_completion(&comp.comp);
4423
4424 r = dm_integrity_failed(ic);
4425 if (r) {
4426 *error = "Unable to generate iv";
4427 goto bad;
4428 }
4429
4430 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
4431 if (!section_req) {
4432 *error = "Unable to allocate crypt request";
4433 r = -ENOMEM;
4434 goto bad;
4435 }
4436 section_req->iv = kmalloc_array(ivsize, 2,
4437 GFP_KERNEL);
4438 if (!section_req->iv) {
4439 skcipher_request_free(section_req);
4440 *error = "Unable to allocate iv";
4441 r = -ENOMEM;
4442 goto bad;
4443 }
4444 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
4445 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
4446 ic->sk_requests[i] = section_req;
4447 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
4448 }
4449 }
4450 }
4451
4452 for (i = 0; i < N_COMMIT_IDS; i++) {
4453 unsigned int j;
4454
4455 retest_commit_id:
4456 for (j = 0; j < i; j++) {
4457 if (ic->commit_ids[j] == ic->commit_ids[i]) {
4458 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
4459 goto retest_commit_id;
4460 }
4461 }
4462 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
4463 }
4464
4465 journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
4466 if (journal_tree_size > ULONG_MAX) {
4467 *error = "Journal doesn't fit into memory";
4468 r = -ENOMEM;
4469 goto bad;
4470 }
4471 ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
4472 if (!ic->journal_tree) {
4473 *error = "Could not allocate memory for journal tree";
4474 r = -ENOMEM;
4475 }
4476 bad:
4477 kfree(crypt_data);
4478 kfree(crypt_iv);
4479 skcipher_request_free(req);
4480
4481 return r;
4482 }
4483
4484 /*
4485 * Construct a integrity mapping
4486 *
4487 * Arguments:
4488 * device
4489 * offset from the start of the device
4490 * tag size
4491 * D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
4492 * number of optional arguments
4493 * optional arguments:
4494 * journal_sectors
4495 * interleave_sectors
4496 * buffer_sectors
4497 * journal_watermark
4498 * commit_time
4499 * meta_device
4500 * block_size
4501 * sectors_per_bit
4502 * bitmap_flush_interval
4503 * internal_hash
4504 * journal_crypt
4505 * journal_mac
4506 * recalculate
4507 */
dm_integrity_ctr(struct dm_target * ti,unsigned int argc,char ** argv)4508 static int dm_integrity_ctr(struct dm_target *ti, unsigned int argc, char **argv)
4509 {
4510 struct dm_integrity_c *ic;
4511 char dummy;
4512 int r;
4513 unsigned int extra_args;
4514 struct dm_arg_set as;
4515 static const struct dm_arg _args[] = {
4516 {0, 18, "Invalid number of feature args"},
4517 };
4518 unsigned int journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
4519 bool should_write_sb;
4520 __u64 threshold;
4521 unsigned long long start;
4522 __s8 log2_sectors_per_bitmap_bit = -1;
4523 __s8 log2_blocks_per_bitmap_bit;
4524 __u64 bits_in_journal;
4525 __u64 n_bitmap_bits;
4526
4527 #define DIRECT_ARGUMENTS 4
4528
4529 if (argc <= DIRECT_ARGUMENTS) {
4530 ti->error = "Invalid argument count";
4531 return -EINVAL;
4532 }
4533
4534 ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
4535 if (!ic) {
4536 ti->error = "Cannot allocate integrity context";
4537 return -ENOMEM;
4538 }
4539 ti->private = ic;
4540 ti->per_io_data_size = sizeof(struct dm_integrity_io);
4541 ic->ti = ti;
4542
4543 ic->in_progress = RB_ROOT;
4544 INIT_LIST_HEAD(&ic->wait_list);
4545 init_waitqueue_head(&ic->endio_wait);
4546 bio_list_init(&ic->flush_bio_list);
4547 init_waitqueue_head(&ic->copy_to_journal_wait);
4548 init_completion(&ic->crypto_backoff);
4549 atomic64_set(&ic->number_of_mismatches, 0);
4550 ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4551
4552 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4553 if (r) {
4554 ti->error = "Device lookup failed";
4555 goto bad;
4556 }
4557
4558 if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4559 ti->error = "Invalid starting offset";
4560 r = -EINVAL;
4561 goto bad;
4562 }
4563 ic->start = start;
4564
4565 if (strcmp(argv[2], "-")) {
4566 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4567 ti->error = "Invalid tag size";
4568 r = -EINVAL;
4569 goto bad;
4570 }
4571 }
4572
4573 if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4574 !strcmp(argv[3], "D") || !strcmp(argv[3], "R") ||
4575 !strcmp(argv[3], "I")) {
4576 ic->mode = argv[3][0];
4577 } else {
4578 ti->error = "Invalid mode (expecting J, B, D, R, I)";
4579 r = -EINVAL;
4580 goto bad;
4581 }
4582
4583 journal_sectors = 0;
4584 interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4585 buffer_sectors = DEFAULT_BUFFER_SECTORS;
4586 journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4587 sync_msec = DEFAULT_SYNC_MSEC;
4588 ic->sectors_per_block = 1;
4589
4590 as.argc = argc - DIRECT_ARGUMENTS;
4591 as.argv = argv + DIRECT_ARGUMENTS;
4592 r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4593 if (r)
4594 goto bad;
4595
4596 while (extra_args--) {
4597 const char *opt_string;
4598 unsigned int val;
4599 unsigned long long llval;
4600
4601 opt_string = dm_shift_arg(&as);
4602 if (!opt_string) {
4603 r = -EINVAL;
4604 ti->error = "Not enough feature arguments";
4605 goto bad;
4606 }
4607 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4608 journal_sectors = val ? val : 1;
4609 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4610 interleave_sectors = val;
4611 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4612 buffer_sectors = val;
4613 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4614 journal_watermark = val;
4615 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4616 sync_msec = val;
4617 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4618 if (ic->meta_dev) {
4619 dm_put_device(ti, ic->meta_dev);
4620 ic->meta_dev = NULL;
4621 }
4622 r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4623 dm_table_get_mode(ti->table), &ic->meta_dev);
4624 if (r) {
4625 ti->error = "Device lookup failed";
4626 goto bad;
4627 }
4628 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4629 if (val < 1 << SECTOR_SHIFT ||
4630 val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4631 (val & (val - 1))) {
4632 r = -EINVAL;
4633 ti->error = "Invalid block_size argument";
4634 goto bad;
4635 }
4636 ic->sectors_per_block = val >> SECTOR_SHIFT;
4637 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4638 log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4639 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4640 if ((uint64_t)val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4641 r = -EINVAL;
4642 ti->error = "Invalid bitmap_flush_interval argument";
4643 goto bad;
4644 }
4645 ic->bitmap_flush_interval = msecs_to_jiffies(val);
4646 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4647 r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4648 "Invalid internal_hash argument");
4649 if (r)
4650 goto bad;
4651 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4652 r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4653 "Invalid journal_crypt argument");
4654 if (r)
4655 goto bad;
4656 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4657 r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4658 "Invalid journal_mac argument");
4659 if (r)
4660 goto bad;
4661 } else if (!strcmp(opt_string, "recalculate")) {
4662 ic->recalculate_flag = true;
4663 } else if (!strcmp(opt_string, "reset_recalculate")) {
4664 ic->recalculate_flag = true;
4665 ic->reset_recalculate_flag = true;
4666 } else if (!strcmp(opt_string, "allow_discards")) {
4667 ic->discard = true;
4668 } else if (!strcmp(opt_string, "fix_padding")) {
4669 ic->fix_padding = true;
4670 } else if (!strcmp(opt_string, "fix_hmac")) {
4671 ic->fix_hmac = true;
4672 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4673 ic->legacy_recalculate = true;
4674 } else {
4675 r = -EINVAL;
4676 ti->error = "Invalid argument";
4677 goto bad;
4678 }
4679 }
4680
4681 ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4682 if (!ic->meta_dev)
4683 ic->meta_device_sectors = ic->data_device_sectors;
4684 else
4685 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4686
4687 if (!journal_sectors) {
4688 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4689 ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4690 }
4691
4692 if (!buffer_sectors)
4693 buffer_sectors = 1;
4694 ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4695
4696 r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4697 "Invalid internal hash", "Error setting internal hash key");
4698 if (r)
4699 goto bad;
4700
4701 r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4702 "Invalid journal mac", "Error setting journal mac key");
4703 if (r)
4704 goto bad;
4705
4706 if (!ic->tag_size) {
4707 if (!ic->internal_hash) {
4708 ti->error = "Unknown tag size";
4709 r = -EINVAL;
4710 goto bad;
4711 }
4712 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4713 }
4714 if (ic->tag_size > MAX_TAG_SIZE) {
4715 ti->error = "Too big tag size";
4716 r = -EINVAL;
4717 goto bad;
4718 }
4719 if (!(ic->tag_size & (ic->tag_size - 1)))
4720 ic->log2_tag_size = __ffs(ic->tag_size);
4721 else
4722 ic->log2_tag_size = -1;
4723
4724 if (ic->mode == 'I') {
4725 struct blk_integrity *bi;
4726 if (ic->meta_dev) {
4727 r = -EINVAL;
4728 ti->error = "Metadata device not supported in inline mode";
4729 goto bad;
4730 }
4731 if (!ic->internal_hash_alg.alg_string) {
4732 r = -EINVAL;
4733 ti->error = "Internal hash not set in inline mode";
4734 goto bad;
4735 }
4736 if (ic->journal_crypt_alg.alg_string || ic->journal_mac_alg.alg_string) {
4737 r = -EINVAL;
4738 ti->error = "Journal crypt not supported in inline mode";
4739 goto bad;
4740 }
4741 if (ic->discard) {
4742 r = -EINVAL;
4743 ti->error = "Discards not supported in inline mode";
4744 goto bad;
4745 }
4746 bi = blk_get_integrity(ic->dev->bdev->bd_disk);
4747 if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
4748 r = -EINVAL;
4749 ti->error = "Integrity profile not supported";
4750 goto bad;
4751 }
4752 /*printk("tag_size: %u, tuple_size: %u\n", bi->tag_size, bi->tuple_size);*/
4753 if (bi->tuple_size < ic->tag_size) {
4754 r = -EINVAL;
4755 ti->error = "The integrity profile is smaller than tag size";
4756 goto bad;
4757 }
4758 if ((unsigned long)bi->tuple_size > PAGE_SIZE / 2) {
4759 r = -EINVAL;
4760 ti->error = "Too big tuple size";
4761 goto bad;
4762 }
4763 ic->tuple_size = bi->tuple_size;
4764 if (1 << bi->interval_exp != ic->sectors_per_block << SECTOR_SHIFT) {
4765 r = -EINVAL;
4766 ti->error = "Integrity profile sector size mismatch";
4767 goto bad;
4768 }
4769 }
4770
4771 if (ic->mode == 'B' && !ic->internal_hash) {
4772 r = -EINVAL;
4773 ti->error = "Bitmap mode can be only used with internal hash";
4774 goto bad;
4775 }
4776
4777 if (ic->discard && !ic->internal_hash) {
4778 r = -EINVAL;
4779 ti->error = "Discard can be only used with internal hash";
4780 goto bad;
4781 }
4782
4783 ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4784 ic->autocommit_msec = sync_msec;
4785 timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4786
4787 ic->io = dm_io_client_create();
4788 if (IS_ERR(ic->io)) {
4789 r = PTR_ERR(ic->io);
4790 ic->io = NULL;
4791 ti->error = "Cannot allocate dm io";
4792 goto bad;
4793 }
4794
4795 r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4796 if (r) {
4797 ti->error = "Cannot allocate mempool";
4798 goto bad;
4799 }
4800
4801 r = mempool_init_page_pool(&ic->recheck_pool, 1, ic->mode == 'I' ? 1 : 0);
4802 if (r) {
4803 ti->error = "Cannot allocate mempool";
4804 goto bad;
4805 }
4806
4807 if (ic->mode == 'I') {
4808 r = bioset_init(&ic->recheck_bios, RECHECK_POOL_SIZE, 0, BIOSET_NEED_BVECS);
4809 if (r) {
4810 ti->error = "Cannot allocate bio set";
4811 goto bad;
4812 }
4813 r = bioset_init(&ic->recalc_bios, 1, 0, BIOSET_NEED_BVECS);
4814 if (r) {
4815 ti->error = "Cannot allocate bio set";
4816 goto bad;
4817 }
4818 }
4819
4820 ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4821 WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4822 if (!ic->metadata_wq) {
4823 ti->error = "Cannot allocate workqueue";
4824 r = -ENOMEM;
4825 goto bad;
4826 }
4827
4828 /*
4829 * If this workqueue weren't ordered, it would cause bio reordering
4830 * and reduced performance.
4831 */
4832 ic->wait_wq = alloc_ordered_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM);
4833 if (!ic->wait_wq) {
4834 ti->error = "Cannot allocate workqueue";
4835 r = -ENOMEM;
4836 goto bad;
4837 }
4838
4839 ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4840 METADATA_WORKQUEUE_MAX_ACTIVE);
4841 if (!ic->offload_wq) {
4842 ti->error = "Cannot allocate workqueue";
4843 r = -ENOMEM;
4844 goto bad;
4845 }
4846
4847 ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4848 if (!ic->commit_wq) {
4849 ti->error = "Cannot allocate workqueue";
4850 r = -ENOMEM;
4851 goto bad;
4852 }
4853 INIT_WORK(&ic->commit_work, integrity_commit);
4854
4855 if (ic->mode == 'J' || ic->mode == 'B') {
4856 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4857 if (!ic->writer_wq) {
4858 ti->error = "Cannot allocate workqueue";
4859 r = -ENOMEM;
4860 goto bad;
4861 }
4862 INIT_WORK(&ic->writer_work, integrity_writer);
4863 }
4864
4865 ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4866 if (!ic->sb) {
4867 r = -ENOMEM;
4868 ti->error = "Cannot allocate superblock area";
4869 goto bad;
4870 }
4871
4872 r = sync_rw_sb(ic, REQ_OP_READ);
4873 if (r) {
4874 ti->error = "Error reading superblock";
4875 goto bad;
4876 }
4877 should_write_sb = false;
4878 if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4879 if (ic->mode != 'R') {
4880 if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4881 r = -EINVAL;
4882 ti->error = "The device is not initialized";
4883 goto bad;
4884 }
4885 }
4886
4887 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4888 if (r) {
4889 ti->error = "Could not initialize superblock";
4890 goto bad;
4891 }
4892 if (ic->mode != 'R')
4893 should_write_sb = true;
4894 }
4895
4896 if (!ic->sb->version || ic->sb->version > SB_VERSION_6) {
4897 r = -EINVAL;
4898 ti->error = "Unknown version";
4899 goto bad;
4900 }
4901 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_INLINE)) != (ic->mode == 'I')) {
4902 r = -EINVAL;
4903 ti->error = "Inline flag mismatch";
4904 goto bad;
4905 }
4906 if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4907 r = -EINVAL;
4908 ti->error = "Tag size doesn't match the information in superblock";
4909 goto bad;
4910 }
4911 if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4912 r = -EINVAL;
4913 ti->error = "Block size doesn't match the information in superblock";
4914 goto bad;
4915 }
4916 if (ic->mode != 'I') {
4917 if (!le32_to_cpu(ic->sb->journal_sections)) {
4918 r = -EINVAL;
4919 ti->error = "Corrupted superblock, journal_sections is 0";
4920 goto bad;
4921 }
4922 } else {
4923 if (le32_to_cpu(ic->sb->journal_sections)) {
4924 r = -EINVAL;
4925 ti->error = "Corrupted superblock, journal_sections is not 0";
4926 goto bad;
4927 }
4928 }
4929 /* make sure that ti->max_io_len doesn't overflow */
4930 if (!ic->meta_dev) {
4931 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4932 ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4933 r = -EINVAL;
4934 ti->error = "Invalid interleave_sectors in the superblock";
4935 goto bad;
4936 }
4937 } else {
4938 if (ic->sb->log2_interleave_sectors) {
4939 r = -EINVAL;
4940 ti->error = "Invalid interleave_sectors in the superblock";
4941 goto bad;
4942 }
4943 }
4944 if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4945 r = -EINVAL;
4946 ti->error = "Journal mac mismatch";
4947 goto bad;
4948 }
4949
4950 get_provided_data_sectors(ic);
4951 if (!ic->provided_data_sectors) {
4952 r = -EINVAL;
4953 ti->error = "The device is too small";
4954 goto bad;
4955 }
4956
4957 try_smaller_buffer:
4958 r = calculate_device_limits(ic);
4959 if (r) {
4960 if (ic->meta_dev) {
4961 if (ic->log2_buffer_sectors > 3) {
4962 ic->log2_buffer_sectors--;
4963 goto try_smaller_buffer;
4964 }
4965 }
4966 ti->error = "The device is too small";
4967 goto bad;
4968 }
4969
4970 if (log2_sectors_per_bitmap_bit < 0)
4971 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4972 if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4973 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4974
4975 bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4976 if (bits_in_journal > UINT_MAX)
4977 bits_in_journal = UINT_MAX;
4978 if (bits_in_journal)
4979 while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4980 log2_sectors_per_bitmap_bit++;
4981
4982 log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4983 ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4984 if (should_write_sb)
4985 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4986
4987 n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4988 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4989 ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4990
4991 if (!ic->meta_dev)
4992 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4993
4994 if (ti->len > ic->provided_data_sectors) {
4995 r = -EINVAL;
4996 ti->error = "Not enough provided sectors for requested mapping size";
4997 goto bad;
4998 }
4999
5000 threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
5001 threshold += 50;
5002 do_div(threshold, 100);
5003 ic->free_sectors_threshold = threshold;
5004
5005 DEBUG_print("initialized:\n");
5006 DEBUG_print(" integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
5007 DEBUG_print(" journal_entry_size %u\n", ic->journal_entry_size);
5008 DEBUG_print(" journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
5009 DEBUG_print(" journal_section_entries %u\n", ic->journal_section_entries);
5010 DEBUG_print(" journal_section_sectors %u\n", ic->journal_section_sectors);
5011 DEBUG_print(" journal_sections %u\n", (unsigned int)le32_to_cpu(ic->sb->journal_sections));
5012 DEBUG_print(" journal_entries %u\n", ic->journal_entries);
5013 DEBUG_print(" log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
5014 DEBUG_print(" data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
5015 DEBUG_print(" initial_sectors 0x%x\n", ic->initial_sectors);
5016 DEBUG_print(" metadata_run 0x%x\n", ic->metadata_run);
5017 DEBUG_print(" log2_metadata_run %d\n", ic->log2_metadata_run);
5018 DEBUG_print(" provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
5019 DEBUG_print(" log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
5020 DEBUG_print(" bits_in_journal %llu\n", bits_in_journal);
5021
5022 if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
5023 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
5024 ic->sb->recalc_sector = cpu_to_le64(0);
5025 }
5026
5027 if (ic->internal_hash) {
5028 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
5029 if (!ic->recalc_wq) {
5030 ti->error = "Cannot allocate workqueue";
5031 r = -ENOMEM;
5032 goto bad;
5033 }
5034 INIT_WORK(&ic->recalc_work, ic->mode == 'I' ? integrity_recalc_inline : integrity_recalc);
5035 } else {
5036 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
5037 ti->error = "Recalculate can only be specified with internal_hash";
5038 r = -EINVAL;
5039 goto bad;
5040 }
5041 }
5042
5043 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
5044 le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
5045 dm_integrity_disable_recalculate(ic)) {
5046 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
5047 r = -EOPNOTSUPP;
5048 goto bad;
5049 }
5050
5051 ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
5052 1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL, 0);
5053 if (IS_ERR(ic->bufio)) {
5054 r = PTR_ERR(ic->bufio);
5055 ti->error = "Cannot initialize dm-bufio";
5056 ic->bufio = NULL;
5057 goto bad;
5058 }
5059 dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
5060
5061 if (ic->mode != 'R' && ic->mode != 'I') {
5062 r = create_journal(ic, &ti->error);
5063 if (r)
5064 goto bad;
5065
5066 }
5067
5068 if (ic->mode == 'B') {
5069 unsigned int i;
5070 unsigned int n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
5071
5072 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5073 if (!ic->recalc_bitmap) {
5074 ti->error = "Could not allocate memory for bitmap";
5075 r = -ENOMEM;
5076 goto bad;
5077 }
5078 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
5079 if (!ic->may_write_bitmap) {
5080 ti->error = "Could not allocate memory for bitmap";
5081 r = -ENOMEM;
5082 goto bad;
5083 }
5084 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
5085 if (!ic->bbs) {
5086 ti->error = "Could not allocate memory for bitmap";
5087 r = -ENOMEM;
5088 goto bad;
5089 }
5090 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
5091 for (i = 0; i < ic->n_bitmap_blocks; i++) {
5092 struct bitmap_block_status *bbs = &ic->bbs[i];
5093 unsigned int sector, pl_index, pl_offset;
5094
5095 INIT_WORK(&bbs->work, bitmap_block_work);
5096 bbs->ic = ic;
5097 bbs->idx = i;
5098 bio_list_init(&bbs->bio_queue);
5099 spin_lock_init(&bbs->bio_queue_lock);
5100
5101 sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
5102 pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
5103 pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
5104
5105 bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
5106 }
5107 }
5108
5109 if (should_write_sb) {
5110 init_journal(ic, 0, ic->journal_sections, 0);
5111 r = dm_integrity_failed(ic);
5112 if (unlikely(r)) {
5113 ti->error = "Error initializing journal";
5114 goto bad;
5115 }
5116 r = sync_rw_sb(ic, REQ_OP_WRITE | REQ_FUA);
5117 if (r) {
5118 ti->error = "Error initializing superblock";
5119 goto bad;
5120 }
5121 ic->just_formatted = true;
5122 }
5123
5124 if (!ic->meta_dev && ic->mode != 'I') {
5125 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
5126 if (r)
5127 goto bad;
5128 }
5129 if (ic->mode == 'B') {
5130 unsigned int max_io_len;
5131
5132 max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
5133 if (!max_io_len)
5134 max_io_len = 1U << 31;
5135 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
5136 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
5137 r = dm_set_target_max_io_len(ti, max_io_len);
5138 if (r)
5139 goto bad;
5140 }
5141 }
5142
5143 ti->num_flush_bios = 1;
5144 ti->flush_supported = true;
5145 if (ic->discard)
5146 ti->num_discard_bios = 1;
5147
5148 if (ic->mode == 'I')
5149 ti->mempool_needs_integrity = true;
5150
5151 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
5152 return 0;
5153
5154 bad:
5155 dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
5156 dm_integrity_dtr(ti);
5157 return r;
5158 }
5159
dm_integrity_dtr(struct dm_target * ti)5160 static void dm_integrity_dtr(struct dm_target *ti)
5161 {
5162 struct dm_integrity_c *ic = ti->private;
5163
5164 BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
5165 BUG_ON(!list_empty(&ic->wait_list));
5166
5167 if (ic->mode == 'B')
5168 cancel_delayed_work_sync(&ic->bitmap_flush_work);
5169 if (ic->metadata_wq)
5170 destroy_workqueue(ic->metadata_wq);
5171 if (ic->wait_wq)
5172 destroy_workqueue(ic->wait_wq);
5173 if (ic->offload_wq)
5174 destroy_workqueue(ic->offload_wq);
5175 if (ic->commit_wq)
5176 destroy_workqueue(ic->commit_wq);
5177 if (ic->writer_wq)
5178 destroy_workqueue(ic->writer_wq);
5179 if (ic->recalc_wq)
5180 destroy_workqueue(ic->recalc_wq);
5181 kvfree(ic->bbs);
5182 if (ic->bufio)
5183 dm_bufio_client_destroy(ic->bufio);
5184 bioset_exit(&ic->recalc_bios);
5185 bioset_exit(&ic->recheck_bios);
5186 mempool_exit(&ic->recheck_pool);
5187 mempool_exit(&ic->journal_io_mempool);
5188 if (ic->io)
5189 dm_io_client_destroy(ic->io);
5190 if (ic->dev)
5191 dm_put_device(ti, ic->dev);
5192 if (ic->meta_dev)
5193 dm_put_device(ti, ic->meta_dev);
5194 dm_integrity_free_page_list(ic->journal);
5195 dm_integrity_free_page_list(ic->journal_io);
5196 dm_integrity_free_page_list(ic->journal_xor);
5197 dm_integrity_free_page_list(ic->recalc_bitmap);
5198 dm_integrity_free_page_list(ic->may_write_bitmap);
5199 if (ic->journal_scatterlist)
5200 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
5201 if (ic->journal_io_scatterlist)
5202 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
5203 if (ic->sk_requests) {
5204 unsigned int i;
5205
5206 for (i = 0; i < ic->journal_sections; i++) {
5207 struct skcipher_request *req;
5208
5209 req = ic->sk_requests[i];
5210 if (req) {
5211 kfree_sensitive(req->iv);
5212 skcipher_request_free(req);
5213 }
5214 }
5215 kvfree(ic->sk_requests);
5216 }
5217 kvfree(ic->journal_tree);
5218 if (ic->sb)
5219 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
5220
5221 if (ic->internal_hash)
5222 crypto_free_shash(ic->internal_hash);
5223 free_alg(&ic->internal_hash_alg);
5224
5225 if (ic->journal_crypt)
5226 crypto_free_skcipher(ic->journal_crypt);
5227 free_alg(&ic->journal_crypt_alg);
5228
5229 if (ic->journal_mac)
5230 crypto_free_shash(ic->journal_mac);
5231 free_alg(&ic->journal_mac_alg);
5232
5233 kfree(ic);
5234 dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
5235 }
5236
5237 static struct target_type integrity_target = {
5238 .name = "integrity",
5239 .version = {1, 13, 0},
5240 .module = THIS_MODULE,
5241 .features = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
5242 .ctr = dm_integrity_ctr,
5243 .dtr = dm_integrity_dtr,
5244 .map = dm_integrity_map,
5245 .end_io = dm_integrity_end_io,
5246 .postsuspend = dm_integrity_postsuspend,
5247 .resume = dm_integrity_resume,
5248 .status = dm_integrity_status,
5249 .iterate_devices = dm_integrity_iterate_devices,
5250 .io_hints = dm_integrity_io_hints,
5251 };
5252
dm_integrity_init(void)5253 static int __init dm_integrity_init(void)
5254 {
5255 int r;
5256
5257 journal_io_cache = kmem_cache_create("integrity_journal_io",
5258 sizeof(struct journal_io), 0, 0, NULL);
5259 if (!journal_io_cache) {
5260 DMERR("can't allocate journal io cache");
5261 return -ENOMEM;
5262 }
5263
5264 r = dm_register_target(&integrity_target);
5265 if (r < 0) {
5266 kmem_cache_destroy(journal_io_cache);
5267 return r;
5268 }
5269
5270 return 0;
5271 }
5272
dm_integrity_exit(void)5273 static void __exit dm_integrity_exit(void)
5274 {
5275 dm_unregister_target(&integrity_target);
5276 kmem_cache_destroy(journal_io_cache);
5277 }
5278
5279 module_init(dm_integrity_init);
5280 module_exit(dm_integrity_exit);
5281
5282 MODULE_AUTHOR("Milan Broz");
5283 MODULE_AUTHOR("Mikulas Patocka");
5284 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
5285 MODULE_LICENSE("GPL");
5286