1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
11
12 /*
13 * lowcomms.c
14 *
15 * This is the "low-level" comms layer.
16 *
17 * It is responsible for sending/receiving messages
18 * from other nodes in the cluster.
19 *
20 * Cluster nodes are referred to by their nodeids. nodeids are
21 * simply 32 bit numbers to the locking module - if they need to
22 * be expanded for the cluster infrastructure then that is its
23 * responsibility. It is this layer's
24 * responsibility to resolve these into IP address or
25 * whatever it needs for inter-node communication.
26 *
27 * The comms level is two kernel threads that deal mainly with
28 * the receiving of messages from other nodes and passing them
29 * up to the mid-level comms layer (which understands the
30 * message format) for execution by the locking core, and
31 * a send thread which does all the setting up of connections
32 * to remote nodes and the sending of data. Threads are not allowed
33 * to send their own data because it may cause them to wait in times
34 * of high load. Also, this way, the sending thread can collect together
35 * messages bound for one node and send them in one block.
36 *
37 * lowcomms will choose to use either TCP or SCTP as its transport layer
38 * depending on the configuration variable 'protocol'. This should be set
39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
41 * for the DLM to function.
42 *
43 */
44
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
55
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
58
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
64
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define DLM_MAX_PROCESS_BUFFERS 24
67 #define NEEDED_RMEM (4*1024*1024)
68
69 struct connection {
70 struct socket *sock; /* NULL if not connected */
71 uint32_t nodeid; /* So we know who we are in the list */
72 /* this semaphore is used to allow parallel recv/send in read
73 * lock mode. When we release a sock we need to held the write lock.
74 *
75 * However this is locking code and not nice. When we remove the
76 * othercon handling we can look into other mechanism to synchronize
77 * io handling to call sock_release() at the right time.
78 */
79 struct rw_semaphore sock_lock;
80 unsigned long flags;
81 #define CF_APP_LIMITED 0
82 #define CF_RECV_PENDING 1
83 #define CF_SEND_PENDING 2
84 #define CF_RECV_INTR 3
85 #define CF_IO_STOP 4
86 #define CF_IS_OTHERCON 5
87 struct list_head writequeue; /* List of outgoing writequeue_entries */
88 spinlock_t writequeue_lock;
89 int retries;
90 struct hlist_node list;
91 /* due some connect()/accept() races we currently have this cross over
92 * connection attempt second connection for one node.
93 *
94 * There is a solution to avoid the race by introducing a connect
95 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
96 * connect. Otherside can connect but will only be considered that
97 * the other side wants to have a reconnect.
98 *
99 * However changing to this behaviour will break backwards compatible.
100 * In a DLM protocol major version upgrade we should remove this!
101 */
102 struct connection *othercon;
103 struct work_struct rwork; /* receive worker */
104 struct work_struct swork; /* send worker */
105 wait_queue_head_t shutdown_wait;
106 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
107 int rx_leftover;
108 int mark;
109 int addr_count;
110 int curr_addr_index;
111 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
112 spinlock_t addrs_lock;
113 struct rcu_head rcu;
114 };
115 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
116
117 struct listen_connection {
118 struct socket *sock;
119 struct work_struct rwork;
120 };
121
122 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
123 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
124
125 /* An entry waiting to be sent */
126 struct writequeue_entry {
127 struct list_head list;
128 struct page *page;
129 int offset;
130 int len;
131 int end;
132 int users;
133 bool dirty;
134 struct connection *con;
135 struct list_head msgs;
136 struct kref ref;
137 };
138
139 struct dlm_msg {
140 struct writequeue_entry *entry;
141 struct dlm_msg *orig_msg;
142 bool retransmit;
143 void *ppc;
144 int len;
145 int idx; /* new()/commit() idx exchange */
146
147 struct list_head list;
148 struct kref ref;
149 };
150
151 struct processqueue_entry {
152 unsigned char *buf;
153 int nodeid;
154 int buflen;
155
156 struct list_head list;
157 };
158
159 struct dlm_proto_ops {
160 bool try_new_addr;
161 const char *name;
162 int proto;
163
164 void (*sockopts)(struct socket *sock);
165 int (*bind)(struct socket *sock);
166 int (*listen_validate)(void);
167 void (*listen_sockopts)(struct socket *sock);
168 int (*listen_bind)(struct socket *sock);
169 };
170
171 static struct listen_sock_callbacks {
172 void (*sk_error_report)(struct sock *);
173 void (*sk_data_ready)(struct sock *);
174 void (*sk_state_change)(struct sock *);
175 void (*sk_write_space)(struct sock *);
176 } listen_sock;
177
178 static struct listen_connection listen_con;
179 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
180 static int dlm_local_count;
181
182 /* Work queues */
183 static struct workqueue_struct *io_workqueue;
184 static struct workqueue_struct *process_workqueue;
185
186 static struct hlist_head connection_hash[CONN_HASH_SIZE];
187 static DEFINE_SPINLOCK(connections_lock);
188 DEFINE_STATIC_SRCU(connections_srcu);
189
190 static const struct dlm_proto_ops *dlm_proto_ops;
191
192 #define DLM_IO_SUCCESS 0
193 #define DLM_IO_END 1
194 #define DLM_IO_EOF 2
195 #define DLM_IO_RESCHED 3
196 #define DLM_IO_FLUSH 4
197
198 static void process_recv_sockets(struct work_struct *work);
199 static void process_send_sockets(struct work_struct *work);
200 static void process_dlm_messages(struct work_struct *work);
201
202 static DECLARE_WORK(process_work, process_dlm_messages);
203 static DEFINE_SPINLOCK(processqueue_lock);
204 static bool process_dlm_messages_pending;
205 static DECLARE_WAIT_QUEUE_HEAD(processqueue_wq);
206 static atomic_t processqueue_count;
207 static LIST_HEAD(processqueue);
208
dlm_lowcomms_is_running(void)209 bool dlm_lowcomms_is_running(void)
210 {
211 return !!listen_con.sock;
212 }
213
lowcomms_queue_swork(struct connection * con)214 static void lowcomms_queue_swork(struct connection *con)
215 {
216 assert_spin_locked(&con->writequeue_lock);
217
218 if (!test_bit(CF_IO_STOP, &con->flags) &&
219 !test_bit(CF_APP_LIMITED, &con->flags) &&
220 !test_and_set_bit(CF_SEND_PENDING, &con->flags))
221 queue_work(io_workqueue, &con->swork);
222 }
223
lowcomms_queue_rwork(struct connection * con)224 static void lowcomms_queue_rwork(struct connection *con)
225 {
226 #ifdef CONFIG_LOCKDEP
227 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
228 #endif
229
230 if (!test_bit(CF_IO_STOP, &con->flags) &&
231 !test_and_set_bit(CF_RECV_PENDING, &con->flags))
232 queue_work(io_workqueue, &con->rwork);
233 }
234
writequeue_entry_ctor(void * data)235 static void writequeue_entry_ctor(void *data)
236 {
237 struct writequeue_entry *entry = data;
238
239 INIT_LIST_HEAD(&entry->msgs);
240 }
241
dlm_lowcomms_writequeue_cache_create(void)242 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
243 {
244 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
245 0, 0, writequeue_entry_ctor);
246 }
247
dlm_lowcomms_msg_cache_create(void)248 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
249 {
250 return KMEM_CACHE(dlm_msg, 0);
251 }
252
253 /* need to held writequeue_lock */
con_next_wq(struct connection * con)254 static struct writequeue_entry *con_next_wq(struct connection *con)
255 {
256 struct writequeue_entry *e;
257
258 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
259 list);
260 /* if len is zero nothing is to send, if there are users filling
261 * buffers we wait until the users are done so we can send more.
262 */
263 if (!e || e->users || e->len == 0)
264 return NULL;
265
266 return e;
267 }
268
__find_con(int nodeid,int r)269 static struct connection *__find_con(int nodeid, int r)
270 {
271 struct connection *con;
272
273 hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
274 if (con->nodeid == nodeid)
275 return con;
276 }
277
278 return NULL;
279 }
280
dlm_con_init(struct connection * con,int nodeid)281 static void dlm_con_init(struct connection *con, int nodeid)
282 {
283 con->nodeid = nodeid;
284 init_rwsem(&con->sock_lock);
285 INIT_LIST_HEAD(&con->writequeue);
286 spin_lock_init(&con->writequeue_lock);
287 INIT_WORK(&con->swork, process_send_sockets);
288 INIT_WORK(&con->rwork, process_recv_sockets);
289 spin_lock_init(&con->addrs_lock);
290 init_waitqueue_head(&con->shutdown_wait);
291 }
292
293 /*
294 * If 'allocation' is zero then we don't attempt to create a new
295 * connection structure for this node.
296 */
nodeid2con(int nodeid,gfp_t alloc)297 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
298 {
299 struct connection *con, *tmp;
300 int r;
301
302 r = nodeid_hash(nodeid);
303 con = __find_con(nodeid, r);
304 if (con || !alloc)
305 return con;
306
307 con = kzalloc(sizeof(*con), alloc);
308 if (!con)
309 return NULL;
310
311 dlm_con_init(con, nodeid);
312
313 spin_lock(&connections_lock);
314 /* Because multiple workqueues/threads calls this function it can
315 * race on multiple cpu's. Instead of locking hot path __find_con()
316 * we just check in rare cases of recently added nodes again
317 * under protection of connections_lock. If this is the case we
318 * abort our connection creation and return the existing connection.
319 */
320 tmp = __find_con(nodeid, r);
321 if (tmp) {
322 spin_unlock(&connections_lock);
323 kfree(con);
324 return tmp;
325 }
326
327 hlist_add_head_rcu(&con->list, &connection_hash[r]);
328 spin_unlock(&connections_lock);
329
330 return con;
331 }
332
addr_compare(const struct sockaddr_storage * x,const struct sockaddr_storage * y)333 static int addr_compare(const struct sockaddr_storage *x,
334 const struct sockaddr_storage *y)
335 {
336 switch (x->ss_family) {
337 case AF_INET: {
338 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
339 struct sockaddr_in *siny = (struct sockaddr_in *)y;
340 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
341 return 0;
342 if (sinx->sin_port != siny->sin_port)
343 return 0;
344 break;
345 }
346 case AF_INET6: {
347 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
348 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
349 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
350 return 0;
351 if (sinx->sin6_port != siny->sin6_port)
352 return 0;
353 break;
354 }
355 default:
356 return 0;
357 }
358 return 1;
359 }
360
nodeid_to_addr(int nodeid,struct sockaddr_storage * sas_out,struct sockaddr * sa_out,bool try_new_addr,unsigned int * mark)361 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
362 struct sockaddr *sa_out, bool try_new_addr,
363 unsigned int *mark)
364 {
365 struct sockaddr_storage sas;
366 struct connection *con;
367 int idx;
368
369 if (!dlm_local_count)
370 return -1;
371
372 idx = srcu_read_lock(&connections_srcu);
373 con = nodeid2con(nodeid, 0);
374 if (!con) {
375 srcu_read_unlock(&connections_srcu, idx);
376 return -ENOENT;
377 }
378
379 spin_lock(&con->addrs_lock);
380 if (!con->addr_count) {
381 spin_unlock(&con->addrs_lock);
382 srcu_read_unlock(&connections_srcu, idx);
383 return -ENOENT;
384 }
385
386 memcpy(&sas, &con->addr[con->curr_addr_index],
387 sizeof(struct sockaddr_storage));
388
389 if (try_new_addr) {
390 con->curr_addr_index++;
391 if (con->curr_addr_index == con->addr_count)
392 con->curr_addr_index = 0;
393 }
394
395 *mark = con->mark;
396 spin_unlock(&con->addrs_lock);
397
398 if (sas_out)
399 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
400
401 if (!sa_out) {
402 srcu_read_unlock(&connections_srcu, idx);
403 return 0;
404 }
405
406 if (dlm_local_addr[0].ss_family == AF_INET) {
407 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
408 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
409 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
410 } else {
411 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
412 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
413 ret6->sin6_addr = in6->sin6_addr;
414 }
415
416 srcu_read_unlock(&connections_srcu, idx);
417 return 0;
418 }
419
addr_to_nodeid(struct sockaddr_storage * addr,int * nodeid,unsigned int * mark)420 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
421 unsigned int *mark)
422 {
423 struct connection *con;
424 int i, idx, addr_i;
425
426 idx = srcu_read_lock(&connections_srcu);
427 for (i = 0; i < CONN_HASH_SIZE; i++) {
428 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
429 WARN_ON_ONCE(!con->addr_count);
430
431 spin_lock(&con->addrs_lock);
432 for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
433 if (addr_compare(&con->addr[addr_i], addr)) {
434 *nodeid = con->nodeid;
435 *mark = con->mark;
436 spin_unlock(&con->addrs_lock);
437 srcu_read_unlock(&connections_srcu, idx);
438 return 0;
439 }
440 }
441 spin_unlock(&con->addrs_lock);
442 }
443 }
444 srcu_read_unlock(&connections_srcu, idx);
445
446 return -ENOENT;
447 }
448
dlm_lowcomms_con_has_addr(const struct connection * con,const struct sockaddr_storage * addr)449 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
450 const struct sockaddr_storage *addr)
451 {
452 int i;
453
454 for (i = 0; i < con->addr_count; i++) {
455 if (addr_compare(&con->addr[i], addr))
456 return true;
457 }
458
459 return false;
460 }
461
dlm_lowcomms_addr(int nodeid,struct sockaddr_storage * addr)462 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr)
463 {
464 struct connection *con;
465 bool ret, idx;
466
467 idx = srcu_read_lock(&connections_srcu);
468 con = nodeid2con(nodeid, GFP_NOFS);
469 if (!con) {
470 srcu_read_unlock(&connections_srcu, idx);
471 return -ENOMEM;
472 }
473
474 spin_lock(&con->addrs_lock);
475 if (!con->addr_count) {
476 memcpy(&con->addr[0], addr, sizeof(*addr));
477 con->addr_count = 1;
478 con->mark = dlm_config.ci_mark;
479 spin_unlock(&con->addrs_lock);
480 srcu_read_unlock(&connections_srcu, idx);
481 return 0;
482 }
483
484 ret = dlm_lowcomms_con_has_addr(con, addr);
485 if (ret) {
486 spin_unlock(&con->addrs_lock);
487 srcu_read_unlock(&connections_srcu, idx);
488 return -EEXIST;
489 }
490
491 if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
492 spin_unlock(&con->addrs_lock);
493 srcu_read_unlock(&connections_srcu, idx);
494 return -ENOSPC;
495 }
496
497 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
498 srcu_read_unlock(&connections_srcu, idx);
499 spin_unlock(&con->addrs_lock);
500 return 0;
501 }
502
503 /* Data available on socket or listen socket received a connect */
lowcomms_data_ready(struct sock * sk)504 static void lowcomms_data_ready(struct sock *sk)
505 {
506 struct connection *con = sock2con(sk);
507
508 trace_sk_data_ready(sk);
509
510 set_bit(CF_RECV_INTR, &con->flags);
511 lowcomms_queue_rwork(con);
512 }
513
lowcomms_write_space(struct sock * sk)514 static void lowcomms_write_space(struct sock *sk)
515 {
516 struct connection *con = sock2con(sk);
517
518 clear_bit(SOCK_NOSPACE, &con->sock->flags);
519
520 spin_lock_bh(&con->writequeue_lock);
521 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
522 con->sock->sk->sk_write_pending--;
523 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
524 }
525
526 lowcomms_queue_swork(con);
527 spin_unlock_bh(&con->writequeue_lock);
528 }
529
lowcomms_state_change(struct sock * sk)530 static void lowcomms_state_change(struct sock *sk)
531 {
532 /* SCTP layer is not calling sk_data_ready when the connection
533 * is done, so we catch the signal through here.
534 */
535 if (sk->sk_shutdown == RCV_SHUTDOWN)
536 lowcomms_data_ready(sk);
537 }
538
lowcomms_listen_data_ready(struct sock * sk)539 static void lowcomms_listen_data_ready(struct sock *sk)
540 {
541 trace_sk_data_ready(sk);
542
543 queue_work(io_workqueue, &listen_con.rwork);
544 }
545
dlm_lowcomms_connect_node(int nodeid)546 int dlm_lowcomms_connect_node(int nodeid)
547 {
548 struct connection *con;
549 int idx;
550
551 idx = srcu_read_lock(&connections_srcu);
552 con = nodeid2con(nodeid, 0);
553 if (WARN_ON_ONCE(!con)) {
554 srcu_read_unlock(&connections_srcu, idx);
555 return -ENOENT;
556 }
557
558 down_read(&con->sock_lock);
559 if (!con->sock) {
560 spin_lock_bh(&con->writequeue_lock);
561 lowcomms_queue_swork(con);
562 spin_unlock_bh(&con->writequeue_lock);
563 }
564 up_read(&con->sock_lock);
565 srcu_read_unlock(&connections_srcu, idx);
566
567 cond_resched();
568 return 0;
569 }
570
dlm_lowcomms_nodes_set_mark(int nodeid,unsigned int mark)571 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
572 {
573 struct connection *con;
574 int idx;
575
576 idx = srcu_read_lock(&connections_srcu);
577 con = nodeid2con(nodeid, 0);
578 if (!con) {
579 srcu_read_unlock(&connections_srcu, idx);
580 return -ENOENT;
581 }
582
583 spin_lock(&con->addrs_lock);
584 con->mark = mark;
585 spin_unlock(&con->addrs_lock);
586 srcu_read_unlock(&connections_srcu, idx);
587 return 0;
588 }
589
lowcomms_error_report(struct sock * sk)590 static void lowcomms_error_report(struct sock *sk)
591 {
592 struct connection *con = sock2con(sk);
593 struct inet_sock *inet;
594
595 inet = inet_sk(sk);
596 switch (sk->sk_family) {
597 case AF_INET:
598 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
599 "sending to node %d at %pI4, dport %d, "
600 "sk_err=%d/%d\n", dlm_our_nodeid(),
601 con->nodeid, &inet->inet_daddr,
602 ntohs(inet->inet_dport), sk->sk_err,
603 READ_ONCE(sk->sk_err_soft));
604 break;
605 #if IS_ENABLED(CONFIG_IPV6)
606 case AF_INET6:
607 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
608 "sending to node %d at %pI6c, "
609 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
610 con->nodeid, &sk->sk_v6_daddr,
611 ntohs(inet->inet_dport), sk->sk_err,
612 READ_ONCE(sk->sk_err_soft));
613 break;
614 #endif
615 default:
616 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
617 "invalid socket family %d set, "
618 "sk_err=%d/%d\n", dlm_our_nodeid(),
619 sk->sk_family, sk->sk_err,
620 READ_ONCE(sk->sk_err_soft));
621 break;
622 }
623
624 dlm_midcomms_unack_msg_resend(con->nodeid);
625
626 listen_sock.sk_error_report(sk);
627 }
628
restore_callbacks(struct sock * sk)629 static void restore_callbacks(struct sock *sk)
630 {
631 #ifdef CONFIG_LOCKDEP
632 WARN_ON_ONCE(!lockdep_sock_is_held(sk));
633 #endif
634
635 sk->sk_user_data = NULL;
636 sk->sk_data_ready = listen_sock.sk_data_ready;
637 sk->sk_state_change = listen_sock.sk_state_change;
638 sk->sk_write_space = listen_sock.sk_write_space;
639 sk->sk_error_report = listen_sock.sk_error_report;
640 }
641
642 /* Make a socket active */
add_sock(struct socket * sock,struct connection * con)643 static void add_sock(struct socket *sock, struct connection *con)
644 {
645 struct sock *sk = sock->sk;
646
647 lock_sock(sk);
648 con->sock = sock;
649
650 sk->sk_user_data = con;
651 sk->sk_data_ready = lowcomms_data_ready;
652 sk->sk_write_space = lowcomms_write_space;
653 if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
654 sk->sk_state_change = lowcomms_state_change;
655 sk->sk_allocation = GFP_NOFS;
656 sk->sk_use_task_frag = false;
657 sk->sk_error_report = lowcomms_error_report;
658 release_sock(sk);
659 }
660
661 /* Add the port number to an IPv6 or 4 sockaddr and return the address
662 length */
make_sockaddr(struct sockaddr_storage * saddr,__be16 port,int * addr_len)663 static void make_sockaddr(struct sockaddr_storage *saddr, __be16 port,
664 int *addr_len)
665 {
666 saddr->ss_family = dlm_local_addr[0].ss_family;
667 if (saddr->ss_family == AF_INET) {
668 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
669 in4_addr->sin_port = port;
670 *addr_len = sizeof(struct sockaddr_in);
671 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
672 } else {
673 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
674 in6_addr->sin6_port = port;
675 *addr_len = sizeof(struct sockaddr_in6);
676 }
677 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
678 }
679
dlm_page_release(struct kref * kref)680 static void dlm_page_release(struct kref *kref)
681 {
682 struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
683 ref);
684
685 __free_page(e->page);
686 dlm_free_writequeue(e);
687 }
688
dlm_msg_release(struct kref * kref)689 static void dlm_msg_release(struct kref *kref)
690 {
691 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
692
693 kref_put(&msg->entry->ref, dlm_page_release);
694 dlm_free_msg(msg);
695 }
696
free_entry(struct writequeue_entry * e)697 static void free_entry(struct writequeue_entry *e)
698 {
699 struct dlm_msg *msg, *tmp;
700
701 list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
702 if (msg->orig_msg) {
703 msg->orig_msg->retransmit = false;
704 kref_put(&msg->orig_msg->ref, dlm_msg_release);
705 }
706
707 list_del(&msg->list);
708 kref_put(&msg->ref, dlm_msg_release);
709 }
710
711 list_del(&e->list);
712 kref_put(&e->ref, dlm_page_release);
713 }
714
dlm_close_sock(struct socket ** sock)715 static void dlm_close_sock(struct socket **sock)
716 {
717 lock_sock((*sock)->sk);
718 restore_callbacks((*sock)->sk);
719 release_sock((*sock)->sk);
720
721 sock_release(*sock);
722 *sock = NULL;
723 }
724
allow_connection_io(struct connection * con)725 static void allow_connection_io(struct connection *con)
726 {
727 if (con->othercon)
728 clear_bit(CF_IO_STOP, &con->othercon->flags);
729 clear_bit(CF_IO_STOP, &con->flags);
730 }
731
stop_connection_io(struct connection * con)732 static void stop_connection_io(struct connection *con)
733 {
734 if (con->othercon)
735 stop_connection_io(con->othercon);
736
737 spin_lock_bh(&con->writequeue_lock);
738 set_bit(CF_IO_STOP, &con->flags);
739 spin_unlock_bh(&con->writequeue_lock);
740
741 down_write(&con->sock_lock);
742 if (con->sock) {
743 lock_sock(con->sock->sk);
744 restore_callbacks(con->sock->sk);
745 release_sock(con->sock->sk);
746 }
747 up_write(&con->sock_lock);
748
749 cancel_work_sync(&con->swork);
750 cancel_work_sync(&con->rwork);
751 }
752
753 /* Close a remote connection and tidy up */
close_connection(struct connection * con,bool and_other)754 static void close_connection(struct connection *con, bool and_other)
755 {
756 struct writequeue_entry *e;
757
758 if (con->othercon && and_other)
759 close_connection(con->othercon, false);
760
761 down_write(&con->sock_lock);
762 if (!con->sock) {
763 up_write(&con->sock_lock);
764 return;
765 }
766
767 dlm_close_sock(&con->sock);
768
769 /* if we send a writequeue entry only a half way, we drop the
770 * whole entry because reconnection and that we not start of the
771 * middle of a msg which will confuse the other end.
772 *
773 * we can always drop messages because retransmits, but what we
774 * cannot allow is to transmit half messages which may be processed
775 * at the other side.
776 *
777 * our policy is to start on a clean state when disconnects, we don't
778 * know what's send/received on transport layer in this case.
779 */
780 spin_lock_bh(&con->writequeue_lock);
781 if (!list_empty(&con->writequeue)) {
782 e = list_first_entry(&con->writequeue, struct writequeue_entry,
783 list);
784 if (e->dirty)
785 free_entry(e);
786 }
787 spin_unlock_bh(&con->writequeue_lock);
788
789 con->rx_leftover = 0;
790 con->retries = 0;
791 clear_bit(CF_APP_LIMITED, &con->flags);
792 clear_bit(CF_RECV_PENDING, &con->flags);
793 clear_bit(CF_SEND_PENDING, &con->flags);
794 up_write(&con->sock_lock);
795 }
796
shutdown_connection(struct connection * con,bool and_other)797 static void shutdown_connection(struct connection *con, bool and_other)
798 {
799 int ret;
800
801 if (con->othercon && and_other)
802 shutdown_connection(con->othercon, false);
803
804 flush_workqueue(io_workqueue);
805 down_read(&con->sock_lock);
806 /* nothing to shutdown */
807 if (!con->sock) {
808 up_read(&con->sock_lock);
809 return;
810 }
811
812 ret = kernel_sock_shutdown(con->sock, SHUT_WR);
813 up_read(&con->sock_lock);
814 if (ret) {
815 log_print("Connection %p failed to shutdown: %d will force close",
816 con, ret);
817 goto force_close;
818 } else {
819 ret = wait_event_timeout(con->shutdown_wait, !con->sock,
820 DLM_SHUTDOWN_WAIT_TIMEOUT);
821 if (ret == 0) {
822 log_print("Connection %p shutdown timed out, will force close",
823 con);
824 goto force_close;
825 }
826 }
827
828 return;
829
830 force_close:
831 close_connection(con, false);
832 }
833
new_processqueue_entry(int nodeid,int buflen)834 static struct processqueue_entry *new_processqueue_entry(int nodeid,
835 int buflen)
836 {
837 struct processqueue_entry *pentry;
838
839 pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
840 if (!pentry)
841 return NULL;
842
843 pentry->buf = kmalloc(buflen, GFP_NOFS);
844 if (!pentry->buf) {
845 kfree(pentry);
846 return NULL;
847 }
848
849 pentry->nodeid = nodeid;
850 return pentry;
851 }
852
free_processqueue_entry(struct processqueue_entry * pentry)853 static void free_processqueue_entry(struct processqueue_entry *pentry)
854 {
855 kfree(pentry->buf);
856 kfree(pentry);
857 }
858
process_dlm_messages(struct work_struct * work)859 static void process_dlm_messages(struct work_struct *work)
860 {
861 struct processqueue_entry *pentry;
862
863 spin_lock_bh(&processqueue_lock);
864 pentry = list_first_entry_or_null(&processqueue,
865 struct processqueue_entry, list);
866 if (WARN_ON_ONCE(!pentry)) {
867 process_dlm_messages_pending = false;
868 spin_unlock_bh(&processqueue_lock);
869 return;
870 }
871
872 list_del(&pentry->list);
873 if (atomic_dec_and_test(&processqueue_count))
874 wake_up(&processqueue_wq);
875 spin_unlock_bh(&processqueue_lock);
876
877 for (;;) {
878 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
879 pentry->buflen);
880 free_processqueue_entry(pentry);
881
882 spin_lock_bh(&processqueue_lock);
883 pentry = list_first_entry_or_null(&processqueue,
884 struct processqueue_entry, list);
885 if (!pentry) {
886 process_dlm_messages_pending = false;
887 spin_unlock_bh(&processqueue_lock);
888 break;
889 }
890
891 list_del(&pentry->list);
892 if (atomic_dec_and_test(&processqueue_count))
893 wake_up(&processqueue_wq);
894 spin_unlock_bh(&processqueue_lock);
895 }
896 }
897
898 /* Data received from remote end */
receive_from_sock(struct connection * con,int buflen)899 static int receive_from_sock(struct connection *con, int buflen)
900 {
901 struct processqueue_entry *pentry;
902 int ret, buflen_real;
903 struct msghdr msg;
904 struct kvec iov;
905
906 pentry = new_processqueue_entry(con->nodeid, buflen);
907 if (!pentry)
908 return DLM_IO_RESCHED;
909
910 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
911
912 /* calculate new buffer parameter regarding last receive and
913 * possible leftover bytes
914 */
915 iov.iov_base = pentry->buf + con->rx_leftover;
916 iov.iov_len = buflen - con->rx_leftover;
917
918 memset(&msg, 0, sizeof(msg));
919 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
920 clear_bit(CF_RECV_INTR, &con->flags);
921 again:
922 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
923 msg.msg_flags);
924 trace_dlm_recv(con->nodeid, ret);
925 if (ret == -EAGAIN) {
926 lock_sock(con->sock->sk);
927 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
928 release_sock(con->sock->sk);
929 goto again;
930 }
931
932 clear_bit(CF_RECV_PENDING, &con->flags);
933 release_sock(con->sock->sk);
934 free_processqueue_entry(pentry);
935 return DLM_IO_END;
936 } else if (ret == 0) {
937 /* close will clear CF_RECV_PENDING */
938 free_processqueue_entry(pentry);
939 return DLM_IO_EOF;
940 } else if (ret < 0) {
941 free_processqueue_entry(pentry);
942 return ret;
943 }
944
945 /* new buflen according readed bytes and leftover from last receive */
946 buflen_real = ret + con->rx_leftover;
947 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
948 buflen_real);
949 if (ret < 0) {
950 free_processqueue_entry(pentry);
951 return ret;
952 }
953
954 pentry->buflen = ret;
955
956 /* calculate leftover bytes from process and put it into begin of
957 * the receive buffer, so next receive we have the full message
958 * at the start address of the receive buffer.
959 */
960 con->rx_leftover = buflen_real - ret;
961 memmove(con->rx_leftover_buf, pentry->buf + ret,
962 con->rx_leftover);
963
964 spin_lock_bh(&processqueue_lock);
965 ret = atomic_inc_return(&processqueue_count);
966 list_add_tail(&pentry->list, &processqueue);
967 if (!process_dlm_messages_pending) {
968 process_dlm_messages_pending = true;
969 queue_work(process_workqueue, &process_work);
970 }
971 spin_unlock_bh(&processqueue_lock);
972
973 if (ret > DLM_MAX_PROCESS_BUFFERS)
974 return DLM_IO_FLUSH;
975
976 return DLM_IO_SUCCESS;
977 }
978
979 /* Listening socket is busy, accept a connection */
accept_from_sock(void)980 static int accept_from_sock(void)
981 {
982 struct sockaddr_storage peeraddr;
983 int len, idx, result, nodeid;
984 struct connection *newcon;
985 struct socket *newsock;
986 unsigned int mark;
987
988 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
989 if (result == -EAGAIN)
990 return DLM_IO_END;
991 else if (result < 0)
992 goto accept_err;
993
994 /* Get the connected socket's peer */
995 memset(&peeraddr, 0, sizeof(peeraddr));
996 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
997 if (len < 0) {
998 result = -ECONNABORTED;
999 goto accept_err;
1000 }
1001
1002 /* Get the new node's NODEID */
1003 make_sockaddr(&peeraddr, 0, &len);
1004 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1005 switch (peeraddr.ss_family) {
1006 case AF_INET: {
1007 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1008
1009 log_print("connect from non cluster IPv4 node %pI4",
1010 &sin->sin_addr);
1011 break;
1012 }
1013 #if IS_ENABLED(CONFIG_IPV6)
1014 case AF_INET6: {
1015 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1016
1017 log_print("connect from non cluster IPv6 node %pI6c",
1018 &sin6->sin6_addr);
1019 break;
1020 }
1021 #endif
1022 default:
1023 log_print("invalid family from non cluster node");
1024 break;
1025 }
1026
1027 sock_release(newsock);
1028 return -1;
1029 }
1030
1031 log_print("got connection from %d", nodeid);
1032
1033 /* Check to see if we already have a connection to this node. This
1034 * could happen if the two nodes initiate a connection at roughly
1035 * the same time and the connections cross on the wire.
1036 * In this case we store the incoming one in "othercon"
1037 */
1038 idx = srcu_read_lock(&connections_srcu);
1039 newcon = nodeid2con(nodeid, 0);
1040 if (WARN_ON_ONCE(!newcon)) {
1041 srcu_read_unlock(&connections_srcu, idx);
1042 result = -ENOENT;
1043 goto accept_err;
1044 }
1045
1046 sock_set_mark(newsock->sk, mark);
1047
1048 down_write(&newcon->sock_lock);
1049 if (newcon->sock) {
1050 struct connection *othercon = newcon->othercon;
1051
1052 if (!othercon) {
1053 othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1054 if (!othercon) {
1055 log_print("failed to allocate incoming socket");
1056 up_write(&newcon->sock_lock);
1057 srcu_read_unlock(&connections_srcu, idx);
1058 result = -ENOMEM;
1059 goto accept_err;
1060 }
1061
1062 dlm_con_init(othercon, nodeid);
1063 lockdep_set_subclass(&othercon->sock_lock, 1);
1064 newcon->othercon = othercon;
1065 set_bit(CF_IS_OTHERCON, &othercon->flags);
1066 } else {
1067 /* close other sock con if we have something new */
1068 close_connection(othercon, false);
1069 }
1070
1071 down_write(&othercon->sock_lock);
1072 add_sock(newsock, othercon);
1073
1074 /* check if we receved something while adding */
1075 lock_sock(othercon->sock->sk);
1076 lowcomms_queue_rwork(othercon);
1077 release_sock(othercon->sock->sk);
1078 up_write(&othercon->sock_lock);
1079 }
1080 else {
1081 /* accept copies the sk after we've saved the callbacks, so we
1082 don't want to save them a second time or comm errors will
1083 result in calling sk_error_report recursively. */
1084 add_sock(newsock, newcon);
1085
1086 /* check if we receved something while adding */
1087 lock_sock(newcon->sock->sk);
1088 lowcomms_queue_rwork(newcon);
1089 release_sock(newcon->sock->sk);
1090 }
1091 up_write(&newcon->sock_lock);
1092 srcu_read_unlock(&connections_srcu, idx);
1093
1094 return DLM_IO_SUCCESS;
1095
1096 accept_err:
1097 if (newsock)
1098 sock_release(newsock);
1099
1100 return result;
1101 }
1102
1103 /*
1104 * writequeue_entry_complete - try to delete and free write queue entry
1105 * @e: write queue entry to try to delete
1106 * @completed: bytes completed
1107 *
1108 * writequeue_lock must be held.
1109 */
writequeue_entry_complete(struct writequeue_entry * e,int completed)1110 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1111 {
1112 e->offset += completed;
1113 e->len -= completed;
1114 /* signal that page was half way transmitted */
1115 e->dirty = true;
1116
1117 if (e->len == 0 && e->users == 0)
1118 free_entry(e);
1119 }
1120
1121 /*
1122 * sctp_bind_addrs - bind a SCTP socket to all our addresses
1123 */
sctp_bind_addrs(struct socket * sock,__be16 port)1124 static int sctp_bind_addrs(struct socket *sock, __be16 port)
1125 {
1126 struct sockaddr_storage localaddr;
1127 struct sockaddr *addr = (struct sockaddr *)&localaddr;
1128 int i, addr_len, result = 0;
1129
1130 for (i = 0; i < dlm_local_count; i++) {
1131 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1132 make_sockaddr(&localaddr, port, &addr_len);
1133
1134 if (!i)
1135 result = kernel_bind(sock, addr, addr_len);
1136 else
1137 result = sock_bind_add(sock->sk, addr, addr_len);
1138
1139 if (result < 0) {
1140 log_print("Can't bind to %d addr number %d, %d.\n",
1141 port, i + 1, result);
1142 break;
1143 }
1144 }
1145 return result;
1146 }
1147
1148 /* Get local addresses */
init_local(void)1149 static void init_local(void)
1150 {
1151 struct sockaddr_storage sas;
1152 int i;
1153
1154 dlm_local_count = 0;
1155 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1156 if (dlm_our_addr(&sas, i))
1157 break;
1158
1159 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1160 }
1161 }
1162
new_writequeue_entry(struct connection * con)1163 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1164 {
1165 struct writequeue_entry *entry;
1166
1167 entry = dlm_allocate_writequeue();
1168 if (!entry)
1169 return NULL;
1170
1171 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1172 if (!entry->page) {
1173 dlm_free_writequeue(entry);
1174 return NULL;
1175 }
1176
1177 entry->offset = 0;
1178 entry->len = 0;
1179 entry->end = 0;
1180 entry->dirty = false;
1181 entry->con = con;
1182 entry->users = 1;
1183 kref_init(&entry->ref);
1184 return entry;
1185 }
1186
new_wq_entry(struct connection * con,int len,char ** ppc,void (* cb)(void * data),void * data)1187 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1188 char **ppc, void (*cb)(void *data),
1189 void *data)
1190 {
1191 struct writequeue_entry *e;
1192
1193 spin_lock_bh(&con->writequeue_lock);
1194 if (!list_empty(&con->writequeue)) {
1195 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1196 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1197 kref_get(&e->ref);
1198
1199 *ppc = page_address(e->page) + e->end;
1200 if (cb)
1201 cb(data);
1202
1203 e->end += len;
1204 e->users++;
1205 goto out;
1206 }
1207 }
1208
1209 e = new_writequeue_entry(con);
1210 if (!e)
1211 goto out;
1212
1213 kref_get(&e->ref);
1214 *ppc = page_address(e->page);
1215 e->end += len;
1216 if (cb)
1217 cb(data);
1218
1219 list_add_tail(&e->list, &con->writequeue);
1220
1221 out:
1222 spin_unlock_bh(&con->writequeue_lock);
1223 return e;
1224 };
1225
dlm_lowcomms_new_msg_con(struct connection * con,int len,char ** ppc,void (* cb)(void * data),void * data)1226 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1227 char **ppc, void (*cb)(void *data),
1228 void *data)
1229 {
1230 struct writequeue_entry *e;
1231 struct dlm_msg *msg;
1232
1233 msg = dlm_allocate_msg();
1234 if (!msg)
1235 return NULL;
1236
1237 kref_init(&msg->ref);
1238
1239 e = new_wq_entry(con, len, ppc, cb, data);
1240 if (!e) {
1241 dlm_free_msg(msg);
1242 return NULL;
1243 }
1244
1245 msg->retransmit = false;
1246 msg->orig_msg = NULL;
1247 msg->ppc = *ppc;
1248 msg->len = len;
1249 msg->entry = e;
1250
1251 return msg;
1252 }
1253
1254 /* avoid false positive for nodes_srcu, unlock happens in
1255 * dlm_lowcomms_commit_msg which is a must call if success
1256 */
1257 #ifndef __CHECKER__
dlm_lowcomms_new_msg(int nodeid,int len,char ** ppc,void (* cb)(void * data),void * data)1258 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, char **ppc,
1259 void (*cb)(void *data), void *data)
1260 {
1261 struct connection *con;
1262 struct dlm_msg *msg;
1263 int idx;
1264
1265 if (len > DLM_MAX_SOCKET_BUFSIZE ||
1266 len < sizeof(struct dlm_header)) {
1267 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1268 log_print("failed to allocate a buffer of size %d", len);
1269 WARN_ON_ONCE(1);
1270 return NULL;
1271 }
1272
1273 idx = srcu_read_lock(&connections_srcu);
1274 con = nodeid2con(nodeid, 0);
1275 if (WARN_ON_ONCE(!con)) {
1276 srcu_read_unlock(&connections_srcu, idx);
1277 return NULL;
1278 }
1279
1280 msg = dlm_lowcomms_new_msg_con(con, len, ppc, cb, data);
1281 if (!msg) {
1282 srcu_read_unlock(&connections_srcu, idx);
1283 return NULL;
1284 }
1285
1286 /* for dlm_lowcomms_commit_msg() */
1287 kref_get(&msg->ref);
1288 /* we assume if successful commit must called */
1289 msg->idx = idx;
1290 return msg;
1291 }
1292 #endif
1293
_dlm_lowcomms_commit_msg(struct dlm_msg * msg)1294 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1295 {
1296 struct writequeue_entry *e = msg->entry;
1297 struct connection *con = e->con;
1298 int users;
1299
1300 spin_lock_bh(&con->writequeue_lock);
1301 kref_get(&msg->ref);
1302 list_add(&msg->list, &e->msgs);
1303
1304 users = --e->users;
1305 if (users)
1306 goto out;
1307
1308 e->len = DLM_WQ_LENGTH_BYTES(e);
1309
1310 lowcomms_queue_swork(con);
1311
1312 out:
1313 spin_unlock_bh(&con->writequeue_lock);
1314 return;
1315 }
1316
1317 /* avoid false positive for nodes_srcu, lock was happen in
1318 * dlm_lowcomms_new_msg
1319 */
1320 #ifndef __CHECKER__
dlm_lowcomms_commit_msg(struct dlm_msg * msg)1321 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1322 {
1323 _dlm_lowcomms_commit_msg(msg);
1324 srcu_read_unlock(&connections_srcu, msg->idx);
1325 /* because dlm_lowcomms_new_msg() */
1326 kref_put(&msg->ref, dlm_msg_release);
1327 }
1328 #endif
1329
dlm_lowcomms_put_msg(struct dlm_msg * msg)1330 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1331 {
1332 kref_put(&msg->ref, dlm_msg_release);
1333 }
1334
1335 /* does not held connections_srcu, usage lowcomms_error_report only */
dlm_lowcomms_resend_msg(struct dlm_msg * msg)1336 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1337 {
1338 struct dlm_msg *msg_resend;
1339 char *ppc;
1340
1341 if (msg->retransmit)
1342 return 1;
1343
1344 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, &ppc,
1345 NULL, NULL);
1346 if (!msg_resend)
1347 return -ENOMEM;
1348
1349 msg->retransmit = true;
1350 kref_get(&msg->ref);
1351 msg_resend->orig_msg = msg;
1352
1353 memcpy(ppc, msg->ppc, msg->len);
1354 _dlm_lowcomms_commit_msg(msg_resend);
1355 dlm_lowcomms_put_msg(msg_resend);
1356
1357 return 0;
1358 }
1359
1360 /* Send a message */
send_to_sock(struct connection * con)1361 static int send_to_sock(struct connection *con)
1362 {
1363 struct writequeue_entry *e;
1364 struct bio_vec bvec;
1365 struct msghdr msg = {
1366 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1367 };
1368 int len, offset, ret;
1369
1370 spin_lock_bh(&con->writequeue_lock);
1371 e = con_next_wq(con);
1372 if (!e) {
1373 clear_bit(CF_SEND_PENDING, &con->flags);
1374 spin_unlock_bh(&con->writequeue_lock);
1375 return DLM_IO_END;
1376 }
1377
1378 len = e->len;
1379 offset = e->offset;
1380 WARN_ON_ONCE(len == 0 && e->users == 0);
1381 spin_unlock_bh(&con->writequeue_lock);
1382
1383 bvec_set_page(&bvec, e->page, len, offset);
1384 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1385 ret = sock_sendmsg(con->sock, &msg);
1386 trace_dlm_send(con->nodeid, ret);
1387 if (ret == -EAGAIN || ret == 0) {
1388 lock_sock(con->sock->sk);
1389 spin_lock_bh(&con->writequeue_lock);
1390 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1391 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1392 /* Notify TCP that we're limited by the
1393 * application window size.
1394 */
1395 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1396 con->sock->sk->sk_write_pending++;
1397
1398 clear_bit(CF_SEND_PENDING, &con->flags);
1399 spin_unlock_bh(&con->writequeue_lock);
1400 release_sock(con->sock->sk);
1401
1402 /* wait for write_space() event */
1403 return DLM_IO_END;
1404 }
1405 spin_unlock_bh(&con->writequeue_lock);
1406 release_sock(con->sock->sk);
1407
1408 return DLM_IO_RESCHED;
1409 } else if (ret < 0) {
1410 return ret;
1411 }
1412
1413 spin_lock_bh(&con->writequeue_lock);
1414 writequeue_entry_complete(e, ret);
1415 spin_unlock_bh(&con->writequeue_lock);
1416
1417 return DLM_IO_SUCCESS;
1418 }
1419
clean_one_writequeue(struct connection * con)1420 static void clean_one_writequeue(struct connection *con)
1421 {
1422 struct writequeue_entry *e, *safe;
1423
1424 spin_lock_bh(&con->writequeue_lock);
1425 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1426 free_entry(e);
1427 }
1428 spin_unlock_bh(&con->writequeue_lock);
1429 }
1430
connection_release(struct rcu_head * rcu)1431 static void connection_release(struct rcu_head *rcu)
1432 {
1433 struct connection *con = container_of(rcu, struct connection, rcu);
1434
1435 WARN_ON_ONCE(!list_empty(&con->writequeue));
1436 WARN_ON_ONCE(con->sock);
1437 kfree(con);
1438 }
1439
1440 /* Called from recovery when it knows that a node has
1441 left the cluster */
dlm_lowcomms_close(int nodeid)1442 int dlm_lowcomms_close(int nodeid)
1443 {
1444 struct connection *con;
1445 int idx;
1446
1447 log_print("closing connection to node %d", nodeid);
1448
1449 idx = srcu_read_lock(&connections_srcu);
1450 con = nodeid2con(nodeid, 0);
1451 if (WARN_ON_ONCE(!con)) {
1452 srcu_read_unlock(&connections_srcu, idx);
1453 return -ENOENT;
1454 }
1455
1456 stop_connection_io(con);
1457 log_print("io handling for node: %d stopped", nodeid);
1458 close_connection(con, true);
1459
1460 spin_lock(&connections_lock);
1461 hlist_del_rcu(&con->list);
1462 spin_unlock(&connections_lock);
1463
1464 clean_one_writequeue(con);
1465 call_srcu(&connections_srcu, &con->rcu, connection_release);
1466 if (con->othercon) {
1467 clean_one_writequeue(con->othercon);
1468 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1469 }
1470 srcu_read_unlock(&connections_srcu, idx);
1471
1472 /* for debugging we print when we are done to compare with other
1473 * messages in between. This function need to be correctly synchronized
1474 * with io handling
1475 */
1476 log_print("closing connection to node %d done", nodeid);
1477
1478 return 0;
1479 }
1480
1481 /* Receive worker function */
process_recv_sockets(struct work_struct * work)1482 static void process_recv_sockets(struct work_struct *work)
1483 {
1484 struct connection *con = container_of(work, struct connection, rwork);
1485 int ret, buflen;
1486
1487 down_read(&con->sock_lock);
1488 if (!con->sock) {
1489 up_read(&con->sock_lock);
1490 return;
1491 }
1492
1493 buflen = READ_ONCE(dlm_config.ci_buffer_size);
1494 do {
1495 ret = receive_from_sock(con, buflen);
1496 } while (ret == DLM_IO_SUCCESS);
1497 up_read(&con->sock_lock);
1498
1499 switch (ret) {
1500 case DLM_IO_END:
1501 /* CF_RECV_PENDING cleared */
1502 break;
1503 case DLM_IO_EOF:
1504 close_connection(con, false);
1505 wake_up(&con->shutdown_wait);
1506 /* CF_RECV_PENDING cleared */
1507 break;
1508 case DLM_IO_FLUSH:
1509 /* we can't flush the process_workqueue here because a
1510 * WQ_MEM_RECLAIM workequeue can occurr a deadlock for a non
1511 * WQ_MEM_RECLAIM workqueue such as process_workqueue. Instead
1512 * we have a waitqueue to wait until all messages are
1513 * processed.
1514 *
1515 * This handling is only necessary to backoff the sender and
1516 * not queue all messages from the socket layer into DLM
1517 * processqueue. When DLM is capable to parse multiple messages
1518 * on an e.g. per socket basis this handling can might be
1519 * removed. Especially in a message burst we are too slow to
1520 * process messages and the queue will fill up memory.
1521 */
1522 wait_event(processqueue_wq, !atomic_read(&processqueue_count));
1523 fallthrough;
1524 case DLM_IO_RESCHED:
1525 cond_resched();
1526 queue_work(io_workqueue, &con->rwork);
1527 /* CF_RECV_PENDING not cleared */
1528 break;
1529 default:
1530 if (ret < 0) {
1531 if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1532 close_connection(con, false);
1533 } else {
1534 spin_lock_bh(&con->writequeue_lock);
1535 lowcomms_queue_swork(con);
1536 spin_unlock_bh(&con->writequeue_lock);
1537 }
1538
1539 /* CF_RECV_PENDING cleared for othercon
1540 * we trigger send queue if not already done
1541 * and process_send_sockets will handle it
1542 */
1543 break;
1544 }
1545
1546 WARN_ON_ONCE(1);
1547 break;
1548 }
1549 }
1550
process_listen_recv_socket(struct work_struct * work)1551 static void process_listen_recv_socket(struct work_struct *work)
1552 {
1553 int ret;
1554
1555 if (WARN_ON_ONCE(!listen_con.sock))
1556 return;
1557
1558 do {
1559 ret = accept_from_sock();
1560 } while (ret == DLM_IO_SUCCESS);
1561
1562 if (ret < 0)
1563 log_print("critical error accepting connection: %d", ret);
1564 }
1565
dlm_connect(struct connection * con)1566 static int dlm_connect(struct connection *con)
1567 {
1568 struct sockaddr_storage addr;
1569 int result, addr_len;
1570 struct socket *sock;
1571 unsigned int mark;
1572
1573 memset(&addr, 0, sizeof(addr));
1574 result = nodeid_to_addr(con->nodeid, &addr, NULL,
1575 dlm_proto_ops->try_new_addr, &mark);
1576 if (result < 0) {
1577 log_print("no address for nodeid %d", con->nodeid);
1578 return result;
1579 }
1580
1581 /* Create a socket to communicate with */
1582 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1583 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1584 if (result < 0)
1585 return result;
1586
1587 sock_set_mark(sock->sk, mark);
1588 dlm_proto_ops->sockopts(sock);
1589
1590 result = dlm_proto_ops->bind(sock);
1591 if (result < 0) {
1592 sock_release(sock);
1593 return result;
1594 }
1595
1596 add_sock(sock, con);
1597
1598 log_print_ratelimited("connecting to %d", con->nodeid);
1599 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1600 result = kernel_connect(sock, (struct sockaddr *)&addr, addr_len, 0);
1601 switch (result) {
1602 case -EINPROGRESS:
1603 /* not an error */
1604 fallthrough;
1605 case 0:
1606 break;
1607 default:
1608 if (result < 0)
1609 dlm_close_sock(&con->sock);
1610
1611 break;
1612 }
1613
1614 return result;
1615 }
1616
1617 /* Send worker function */
process_send_sockets(struct work_struct * work)1618 static void process_send_sockets(struct work_struct *work)
1619 {
1620 struct connection *con = container_of(work, struct connection, swork);
1621 int ret;
1622
1623 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1624
1625 down_read(&con->sock_lock);
1626 if (!con->sock) {
1627 up_read(&con->sock_lock);
1628 down_write(&con->sock_lock);
1629 if (!con->sock) {
1630 ret = dlm_connect(con);
1631 switch (ret) {
1632 case 0:
1633 break;
1634 default:
1635 /* CF_SEND_PENDING not cleared */
1636 up_write(&con->sock_lock);
1637 log_print("connect to node %d try %d error %d",
1638 con->nodeid, con->retries++, ret);
1639 msleep(1000);
1640 /* For now we try forever to reconnect. In
1641 * future we should send a event to cluster
1642 * manager to fence itself after certain amount
1643 * of retries.
1644 */
1645 queue_work(io_workqueue, &con->swork);
1646 return;
1647 }
1648 }
1649 downgrade_write(&con->sock_lock);
1650 }
1651
1652 do {
1653 ret = send_to_sock(con);
1654 } while (ret == DLM_IO_SUCCESS);
1655 up_read(&con->sock_lock);
1656
1657 switch (ret) {
1658 case DLM_IO_END:
1659 /* CF_SEND_PENDING cleared */
1660 break;
1661 case DLM_IO_RESCHED:
1662 /* CF_SEND_PENDING not cleared */
1663 cond_resched();
1664 queue_work(io_workqueue, &con->swork);
1665 break;
1666 default:
1667 if (ret < 0) {
1668 close_connection(con, false);
1669
1670 /* CF_SEND_PENDING cleared */
1671 spin_lock_bh(&con->writequeue_lock);
1672 lowcomms_queue_swork(con);
1673 spin_unlock_bh(&con->writequeue_lock);
1674 break;
1675 }
1676
1677 WARN_ON_ONCE(1);
1678 break;
1679 }
1680 }
1681
work_stop(void)1682 static void work_stop(void)
1683 {
1684 if (io_workqueue) {
1685 destroy_workqueue(io_workqueue);
1686 io_workqueue = NULL;
1687 }
1688
1689 if (process_workqueue) {
1690 destroy_workqueue(process_workqueue);
1691 process_workqueue = NULL;
1692 }
1693 }
1694
work_start(void)1695 static int work_start(void)
1696 {
1697 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1698 WQ_UNBOUND, 0);
1699 if (!io_workqueue) {
1700 log_print("can't start dlm_io");
1701 return -ENOMEM;
1702 }
1703
1704 process_workqueue = alloc_workqueue("dlm_process", WQ_HIGHPRI | WQ_BH, 0);
1705 if (!process_workqueue) {
1706 log_print("can't start dlm_process");
1707 destroy_workqueue(io_workqueue);
1708 io_workqueue = NULL;
1709 return -ENOMEM;
1710 }
1711
1712 return 0;
1713 }
1714
dlm_lowcomms_shutdown(void)1715 void dlm_lowcomms_shutdown(void)
1716 {
1717 struct connection *con;
1718 int i, idx;
1719
1720 /* stop lowcomms_listen_data_ready calls */
1721 lock_sock(listen_con.sock->sk);
1722 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1723 release_sock(listen_con.sock->sk);
1724
1725 cancel_work_sync(&listen_con.rwork);
1726 dlm_close_sock(&listen_con.sock);
1727
1728 idx = srcu_read_lock(&connections_srcu);
1729 for (i = 0; i < CONN_HASH_SIZE; i++) {
1730 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1731 shutdown_connection(con, true);
1732 stop_connection_io(con);
1733 flush_workqueue(process_workqueue);
1734 close_connection(con, true);
1735
1736 clean_one_writequeue(con);
1737 if (con->othercon)
1738 clean_one_writequeue(con->othercon);
1739 allow_connection_io(con);
1740 }
1741 }
1742 srcu_read_unlock(&connections_srcu, idx);
1743 }
1744
dlm_lowcomms_stop(void)1745 void dlm_lowcomms_stop(void)
1746 {
1747 work_stop();
1748 dlm_proto_ops = NULL;
1749 }
1750
dlm_listen_for_all(void)1751 static int dlm_listen_for_all(void)
1752 {
1753 struct socket *sock;
1754 int result;
1755
1756 log_print("Using %s for communications",
1757 dlm_proto_ops->name);
1758
1759 result = dlm_proto_ops->listen_validate();
1760 if (result < 0)
1761 return result;
1762
1763 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1764 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1765 if (result < 0) {
1766 log_print("Can't create comms socket: %d", result);
1767 return result;
1768 }
1769
1770 sock_set_mark(sock->sk, dlm_config.ci_mark);
1771 dlm_proto_ops->listen_sockopts(sock);
1772
1773 result = dlm_proto_ops->listen_bind(sock);
1774 if (result < 0)
1775 goto out;
1776
1777 lock_sock(sock->sk);
1778 listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1779 listen_sock.sk_write_space = sock->sk->sk_write_space;
1780 listen_sock.sk_error_report = sock->sk->sk_error_report;
1781 listen_sock.sk_state_change = sock->sk->sk_state_change;
1782
1783 listen_con.sock = sock;
1784
1785 sock->sk->sk_allocation = GFP_NOFS;
1786 sock->sk->sk_use_task_frag = false;
1787 sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1788 release_sock(sock->sk);
1789
1790 result = sock->ops->listen(sock, 128);
1791 if (result < 0) {
1792 dlm_close_sock(&listen_con.sock);
1793 return result;
1794 }
1795
1796 return 0;
1797
1798 out:
1799 sock_release(sock);
1800 return result;
1801 }
1802
dlm_tcp_bind(struct socket * sock)1803 static int dlm_tcp_bind(struct socket *sock)
1804 {
1805 struct sockaddr_storage src_addr;
1806 int result, addr_len;
1807
1808 /* Bind to our cluster-known address connecting to avoid
1809 * routing problems.
1810 */
1811 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1812 make_sockaddr(&src_addr, 0, &addr_len);
1813
1814 result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1815 addr_len);
1816 if (result < 0) {
1817 /* This *may* not indicate a critical error */
1818 log_print("could not bind for connect: %d", result);
1819 }
1820
1821 return 0;
1822 }
1823
dlm_tcp_listen_validate(void)1824 static int dlm_tcp_listen_validate(void)
1825 {
1826 /* We don't support multi-homed hosts */
1827 if (dlm_local_count > 1) {
1828 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1829 return -EINVAL;
1830 }
1831
1832 return 0;
1833 }
1834
dlm_tcp_sockopts(struct socket * sock)1835 static void dlm_tcp_sockopts(struct socket *sock)
1836 {
1837 /* Turn off Nagle's algorithm */
1838 tcp_sock_set_nodelay(sock->sk);
1839 }
1840
dlm_tcp_listen_sockopts(struct socket * sock)1841 static void dlm_tcp_listen_sockopts(struct socket *sock)
1842 {
1843 dlm_tcp_sockopts(sock);
1844 sock_set_reuseaddr(sock->sk);
1845 }
1846
dlm_tcp_listen_bind(struct socket * sock)1847 static int dlm_tcp_listen_bind(struct socket *sock)
1848 {
1849 int addr_len;
1850
1851 /* Bind to our port */
1852 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1853 return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1854 addr_len);
1855 }
1856
1857 static const struct dlm_proto_ops dlm_tcp_ops = {
1858 .name = "TCP",
1859 .proto = IPPROTO_TCP,
1860 .sockopts = dlm_tcp_sockopts,
1861 .bind = dlm_tcp_bind,
1862 .listen_validate = dlm_tcp_listen_validate,
1863 .listen_sockopts = dlm_tcp_listen_sockopts,
1864 .listen_bind = dlm_tcp_listen_bind,
1865 };
1866
dlm_sctp_bind(struct socket * sock)1867 static int dlm_sctp_bind(struct socket *sock)
1868 {
1869 return sctp_bind_addrs(sock, 0);
1870 }
1871
dlm_sctp_listen_validate(void)1872 static int dlm_sctp_listen_validate(void)
1873 {
1874 if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1875 log_print("SCTP is not enabled by this kernel");
1876 return -EOPNOTSUPP;
1877 }
1878
1879 request_module("sctp");
1880 return 0;
1881 }
1882
dlm_sctp_bind_listen(struct socket * sock)1883 static int dlm_sctp_bind_listen(struct socket *sock)
1884 {
1885 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1886 }
1887
dlm_sctp_sockopts(struct socket * sock)1888 static void dlm_sctp_sockopts(struct socket *sock)
1889 {
1890 /* Turn off Nagle's algorithm */
1891 sctp_sock_set_nodelay(sock->sk);
1892 sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1893 }
1894
1895 static const struct dlm_proto_ops dlm_sctp_ops = {
1896 .name = "SCTP",
1897 .proto = IPPROTO_SCTP,
1898 .try_new_addr = true,
1899 .sockopts = dlm_sctp_sockopts,
1900 .bind = dlm_sctp_bind,
1901 .listen_validate = dlm_sctp_listen_validate,
1902 .listen_sockopts = dlm_sctp_sockopts,
1903 .listen_bind = dlm_sctp_bind_listen,
1904 };
1905
dlm_lowcomms_start(void)1906 int dlm_lowcomms_start(void)
1907 {
1908 int error;
1909
1910 init_local();
1911 if (!dlm_local_count) {
1912 error = -ENOTCONN;
1913 log_print("no local IP address has been set");
1914 goto fail;
1915 }
1916
1917 error = work_start();
1918 if (error)
1919 goto fail;
1920
1921 /* Start listening */
1922 switch (dlm_config.ci_protocol) {
1923 case DLM_PROTO_TCP:
1924 dlm_proto_ops = &dlm_tcp_ops;
1925 break;
1926 case DLM_PROTO_SCTP:
1927 dlm_proto_ops = &dlm_sctp_ops;
1928 break;
1929 default:
1930 log_print("Invalid protocol identifier %d set",
1931 dlm_config.ci_protocol);
1932 error = -EINVAL;
1933 goto fail_proto_ops;
1934 }
1935
1936 error = dlm_listen_for_all();
1937 if (error)
1938 goto fail_listen;
1939
1940 return 0;
1941
1942 fail_listen:
1943 dlm_proto_ops = NULL;
1944 fail_proto_ops:
1945 work_stop();
1946 fail:
1947 return error;
1948 }
1949
dlm_lowcomms_init(void)1950 void dlm_lowcomms_init(void)
1951 {
1952 int i;
1953
1954 for (i = 0; i < CONN_HASH_SIZE; i++)
1955 INIT_HLIST_HEAD(&connection_hash[i]);
1956
1957 INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1958 }
1959
dlm_lowcomms_exit(void)1960 void dlm_lowcomms_exit(void)
1961 {
1962 struct connection *con;
1963 int i, idx;
1964
1965 idx = srcu_read_lock(&connections_srcu);
1966 for (i = 0; i < CONN_HASH_SIZE; i++) {
1967 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1968 spin_lock(&connections_lock);
1969 hlist_del_rcu(&con->list);
1970 spin_unlock(&connections_lock);
1971
1972 if (con->othercon)
1973 call_srcu(&connections_srcu, &con->othercon->rcu,
1974 connection_release);
1975 call_srcu(&connections_srcu, &con->rcu, connection_release);
1976 }
1977 }
1978 srcu_read_unlock(&connections_srcu, idx);
1979 }
1980