1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Deadline Scheduling Class (SCHED_DEADLINE)
4 *
5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
6 *
7 * Tasks that periodically executes their instances for less than their
8 * runtime won't miss any of their deadlines.
9 * Tasks that are not periodic or sporadic or that tries to execute more
10 * than their reserved bandwidth will be slowed down (and may potentially
11 * miss some of their deadlines), and won't affect any other task.
12 *
13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
14 * Juri Lelli <juri.lelli@gmail.com>,
15 * Michael Trimarchi <michael@amarulasolutions.com>,
16 * Fabio Checconi <fchecconi@gmail.com>
17 */
18
19 #include <linux/cpuset.h>
20 #include <linux/sched/clock.h>
21 #include <uapi/linux/sched/types.h>
22 #include "sched.h"
23 #include "pelt.h"
24
25 /*
26 * Default limits for DL period; on the top end we guard against small util
27 * tasks still getting ridiculously long effective runtimes, on the bottom end we
28 * guard against timer DoS.
29 */
30 static unsigned int sysctl_sched_dl_period_max = 1 << 22; /* ~4 seconds */
31 static unsigned int sysctl_sched_dl_period_min = 100; /* 100 us */
32 #ifdef CONFIG_SYSCTL
33 static const struct ctl_table sched_dl_sysctls[] = {
34 {
35 .procname = "sched_deadline_period_max_us",
36 .data = &sysctl_sched_dl_period_max,
37 .maxlen = sizeof(unsigned int),
38 .mode = 0644,
39 .proc_handler = proc_douintvec_minmax,
40 .extra1 = (void *)&sysctl_sched_dl_period_min,
41 },
42 {
43 .procname = "sched_deadline_period_min_us",
44 .data = &sysctl_sched_dl_period_min,
45 .maxlen = sizeof(unsigned int),
46 .mode = 0644,
47 .proc_handler = proc_douintvec_minmax,
48 .extra2 = (void *)&sysctl_sched_dl_period_max,
49 },
50 };
51
sched_dl_sysctl_init(void)52 static int __init sched_dl_sysctl_init(void)
53 {
54 register_sysctl_init("kernel", sched_dl_sysctls);
55 return 0;
56 }
57 late_initcall(sched_dl_sysctl_init);
58 #endif /* CONFIG_SYSCTL */
59
dl_server(struct sched_dl_entity * dl_se)60 static bool dl_server(struct sched_dl_entity *dl_se)
61 {
62 return dl_se->dl_server;
63 }
64
dl_task_of(struct sched_dl_entity * dl_se)65 static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
66 {
67 BUG_ON(dl_server(dl_se));
68 return container_of(dl_se, struct task_struct, dl);
69 }
70
rq_of_dl_rq(struct dl_rq * dl_rq)71 static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
72 {
73 return container_of(dl_rq, struct rq, dl);
74 }
75
rq_of_dl_se(struct sched_dl_entity * dl_se)76 static inline struct rq *rq_of_dl_se(struct sched_dl_entity *dl_se)
77 {
78 struct rq *rq = dl_se->rq;
79
80 if (!dl_server(dl_se))
81 rq = task_rq(dl_task_of(dl_se));
82
83 return rq;
84 }
85
dl_rq_of_se(struct sched_dl_entity * dl_se)86 static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
87 {
88 return &rq_of_dl_se(dl_se)->dl;
89 }
90
on_dl_rq(struct sched_dl_entity * dl_se)91 static inline int on_dl_rq(struct sched_dl_entity *dl_se)
92 {
93 return !RB_EMPTY_NODE(&dl_se->rb_node);
94 }
95
96 #ifdef CONFIG_RT_MUTEXES
pi_of(struct sched_dl_entity * dl_se)97 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
98 {
99 return dl_se->pi_se;
100 }
101
is_dl_boosted(struct sched_dl_entity * dl_se)102 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
103 {
104 return pi_of(dl_se) != dl_se;
105 }
106 #else /* !CONFIG_RT_MUTEXES: */
pi_of(struct sched_dl_entity * dl_se)107 static inline struct sched_dl_entity *pi_of(struct sched_dl_entity *dl_se)
108 {
109 return dl_se;
110 }
111
is_dl_boosted(struct sched_dl_entity * dl_se)112 static inline bool is_dl_boosted(struct sched_dl_entity *dl_se)
113 {
114 return false;
115 }
116 #endif /* !CONFIG_RT_MUTEXES */
117
dl_bw_of(int i)118 static inline struct dl_bw *dl_bw_of(int i)
119 {
120 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
121 "sched RCU must be held");
122 return &cpu_rq(i)->rd->dl_bw;
123 }
124
dl_bw_cpus(int i)125 static inline int dl_bw_cpus(int i)
126 {
127 struct root_domain *rd = cpu_rq(i)->rd;
128
129 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
130 "sched RCU must be held");
131
132 return cpumask_weight_and(rd->span, cpu_active_mask);
133 }
134
__dl_bw_capacity(const struct cpumask * mask)135 static inline unsigned long __dl_bw_capacity(const struct cpumask *mask)
136 {
137 unsigned long cap = 0;
138 int i;
139
140 for_each_cpu_and(i, mask, cpu_active_mask)
141 cap += arch_scale_cpu_capacity(i);
142
143 return cap;
144 }
145
146 /*
147 * XXX Fix: If 'rq->rd == def_root_domain' perform AC against capacity
148 * of the CPU the task is running on rather rd's \Sum CPU capacity.
149 */
dl_bw_capacity(int i)150 static inline unsigned long dl_bw_capacity(int i)
151 {
152 if (!sched_asym_cpucap_active() &&
153 arch_scale_cpu_capacity(i) == SCHED_CAPACITY_SCALE) {
154 return dl_bw_cpus(i) << SCHED_CAPACITY_SHIFT;
155 } else {
156 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
157 "sched RCU must be held");
158
159 return __dl_bw_capacity(cpu_rq(i)->rd->span);
160 }
161 }
162
dl_bw_visited(int cpu,u64 cookie)163 bool dl_bw_visited(int cpu, u64 cookie)
164 {
165 struct root_domain *rd = cpu_rq(cpu)->rd;
166
167 if (rd->visit_cookie == cookie)
168 return true;
169
170 rd->visit_cookie = cookie;
171 return false;
172 }
173
174 static inline
__dl_update(struct dl_bw * dl_b,s64 bw)175 void __dl_update(struct dl_bw *dl_b, s64 bw)
176 {
177 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
178 int i;
179
180 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
181 "sched RCU must be held");
182 for_each_cpu_and(i, rd->span, cpu_active_mask) {
183 struct rq *rq = cpu_rq(i);
184
185 rq->dl.extra_bw += bw;
186 }
187 }
188
189 static inline
__dl_sub(struct dl_bw * dl_b,u64 tsk_bw,int cpus)190 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
191 {
192 dl_b->total_bw -= tsk_bw;
193 __dl_update(dl_b, (s32)tsk_bw / cpus);
194 }
195
196 static inline
__dl_add(struct dl_bw * dl_b,u64 tsk_bw,int cpus)197 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
198 {
199 dl_b->total_bw += tsk_bw;
200 __dl_update(dl_b, -((s32)tsk_bw / cpus));
201 }
202
203 static inline bool
__dl_overflow(struct dl_bw * dl_b,unsigned long cap,u64 old_bw,u64 new_bw)204 __dl_overflow(struct dl_bw *dl_b, unsigned long cap, u64 old_bw, u64 new_bw)
205 {
206 return dl_b->bw != -1 &&
207 cap_scale(dl_b->bw, cap) < dl_b->total_bw - old_bw + new_bw;
208 }
209
210 static inline
__add_running_bw(u64 dl_bw,struct dl_rq * dl_rq)211 void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
212 {
213 u64 old = dl_rq->running_bw;
214
215 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
216 dl_rq->running_bw += dl_bw;
217 WARN_ON_ONCE(dl_rq->running_bw < old); /* overflow */
218 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
219 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
220 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
221 }
222
223 static inline
__sub_running_bw(u64 dl_bw,struct dl_rq * dl_rq)224 void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
225 {
226 u64 old = dl_rq->running_bw;
227
228 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
229 dl_rq->running_bw -= dl_bw;
230 WARN_ON_ONCE(dl_rq->running_bw > old); /* underflow */
231 if (dl_rq->running_bw > old)
232 dl_rq->running_bw = 0;
233 /* kick cpufreq (see the comment in kernel/sched/sched.h). */
234 cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
235 }
236
237 static inline
__add_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)238 void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
239 {
240 u64 old = dl_rq->this_bw;
241
242 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
243 dl_rq->this_bw += dl_bw;
244 WARN_ON_ONCE(dl_rq->this_bw < old); /* overflow */
245 }
246
247 static inline
__sub_rq_bw(u64 dl_bw,struct dl_rq * dl_rq)248 void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
249 {
250 u64 old = dl_rq->this_bw;
251
252 lockdep_assert_rq_held(rq_of_dl_rq(dl_rq));
253 dl_rq->this_bw -= dl_bw;
254 WARN_ON_ONCE(dl_rq->this_bw > old); /* underflow */
255 if (dl_rq->this_bw > old)
256 dl_rq->this_bw = 0;
257 WARN_ON_ONCE(dl_rq->running_bw > dl_rq->this_bw);
258 }
259
260 static inline
add_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)261 void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
262 {
263 if (!dl_entity_is_special(dl_se))
264 __add_rq_bw(dl_se->dl_bw, dl_rq);
265 }
266
267 static inline
sub_rq_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)268 void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
269 {
270 if (!dl_entity_is_special(dl_se))
271 __sub_rq_bw(dl_se->dl_bw, dl_rq);
272 }
273
274 static inline
add_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)275 void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
276 {
277 if (!dl_entity_is_special(dl_se))
278 __add_running_bw(dl_se->dl_bw, dl_rq);
279 }
280
281 static inline
sub_running_bw(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)282 void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
283 {
284 if (!dl_entity_is_special(dl_se))
285 __sub_running_bw(dl_se->dl_bw, dl_rq);
286 }
287
dl_rq_change_utilization(struct rq * rq,struct sched_dl_entity * dl_se,u64 new_bw)288 static void dl_rq_change_utilization(struct rq *rq, struct sched_dl_entity *dl_se, u64 new_bw)
289 {
290 if (dl_se->dl_non_contending) {
291 sub_running_bw(dl_se, &rq->dl);
292 dl_se->dl_non_contending = 0;
293
294 /*
295 * If the timer handler is currently running and the
296 * timer cannot be canceled, inactive_task_timer()
297 * will see that dl_not_contending is not set, and
298 * will not touch the rq's active utilization,
299 * so we are still safe.
300 */
301 if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1) {
302 if (!dl_server(dl_se))
303 put_task_struct(dl_task_of(dl_se));
304 }
305 }
306 __sub_rq_bw(dl_se->dl_bw, &rq->dl);
307 __add_rq_bw(new_bw, &rq->dl);
308 }
309
310 static __always_inline
cancel_dl_timer(struct sched_dl_entity * dl_se,struct hrtimer * timer)311 void cancel_dl_timer(struct sched_dl_entity *dl_se, struct hrtimer *timer)
312 {
313 /*
314 * If the timer callback was running (hrtimer_try_to_cancel == -1),
315 * it will eventually call put_task_struct().
316 */
317 if (hrtimer_try_to_cancel(timer) == 1 && !dl_server(dl_se))
318 put_task_struct(dl_task_of(dl_se));
319 }
320
321 static __always_inline
cancel_replenish_timer(struct sched_dl_entity * dl_se)322 void cancel_replenish_timer(struct sched_dl_entity *dl_se)
323 {
324 cancel_dl_timer(dl_se, &dl_se->dl_timer);
325 }
326
327 static __always_inline
cancel_inactive_timer(struct sched_dl_entity * dl_se)328 void cancel_inactive_timer(struct sched_dl_entity *dl_se)
329 {
330 cancel_dl_timer(dl_se, &dl_se->inactive_timer);
331 }
332
dl_change_utilization(struct task_struct * p,u64 new_bw)333 static void dl_change_utilization(struct task_struct *p, u64 new_bw)
334 {
335 WARN_ON_ONCE(p->dl.flags & SCHED_FLAG_SUGOV);
336
337 if (task_on_rq_queued(p))
338 return;
339
340 dl_rq_change_utilization(task_rq(p), &p->dl, new_bw);
341 }
342
343 static void __dl_clear_params(struct sched_dl_entity *dl_se);
344
345 /*
346 * The utilization of a task cannot be immediately removed from
347 * the rq active utilization (running_bw) when the task blocks.
348 * Instead, we have to wait for the so called "0-lag time".
349 *
350 * If a task blocks before the "0-lag time", a timer (the inactive
351 * timer) is armed, and running_bw is decreased when the timer
352 * fires.
353 *
354 * If the task wakes up again before the inactive timer fires,
355 * the timer is canceled, whereas if the task wakes up after the
356 * inactive timer fired (and running_bw has been decreased) the
357 * task's utilization has to be added to running_bw again.
358 * A flag in the deadline scheduling entity (dl_non_contending)
359 * is used to avoid race conditions between the inactive timer handler
360 * and task wakeups.
361 *
362 * The following diagram shows how running_bw is updated. A task is
363 * "ACTIVE" when its utilization contributes to running_bw; an
364 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
365 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
366 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
367 * time already passed, which does not contribute to running_bw anymore.
368 * +------------------+
369 * wakeup | ACTIVE |
370 * +------------------>+ contending |
371 * | add_running_bw | |
372 * | +----+------+------+
373 * | | ^
374 * | dequeue | |
375 * +--------+-------+ | |
376 * | | t >= 0-lag | | wakeup
377 * | INACTIVE |<---------------+ |
378 * | | sub_running_bw | |
379 * +--------+-------+ | |
380 * ^ | |
381 * | t < 0-lag | |
382 * | | |
383 * | V |
384 * | +----+------+------+
385 * | sub_running_bw | ACTIVE |
386 * +-------------------+ |
387 * inactive timer | non contending |
388 * fired +------------------+
389 *
390 * The task_non_contending() function is invoked when a task
391 * blocks, and checks if the 0-lag time already passed or
392 * not (in the first case, it directly updates running_bw;
393 * in the second case, it arms the inactive timer).
394 *
395 * The task_contending() function is invoked when a task wakes
396 * up, and checks if the task is still in the "ACTIVE non contending"
397 * state or not (in the second case, it updates running_bw).
398 */
task_non_contending(struct sched_dl_entity * dl_se,bool dl_task)399 static void task_non_contending(struct sched_dl_entity *dl_se, bool dl_task)
400 {
401 struct hrtimer *timer = &dl_se->inactive_timer;
402 struct rq *rq = rq_of_dl_se(dl_se);
403 struct dl_rq *dl_rq = &rq->dl;
404 s64 zerolag_time;
405
406 /*
407 * If this is a non-deadline task that has been boosted,
408 * do nothing
409 */
410 if (dl_se->dl_runtime == 0)
411 return;
412
413 if (dl_entity_is_special(dl_se))
414 return;
415
416 WARN_ON(dl_se->dl_non_contending);
417
418 zerolag_time = dl_se->deadline -
419 div64_long((dl_se->runtime * dl_se->dl_period),
420 dl_se->dl_runtime);
421
422 /*
423 * Using relative times instead of the absolute "0-lag time"
424 * allows to simplify the code
425 */
426 zerolag_time -= rq_clock(rq);
427
428 /*
429 * If the "0-lag time" already passed, decrease the active
430 * utilization now, instead of starting a timer
431 */
432 if ((zerolag_time < 0) || hrtimer_active(&dl_se->inactive_timer)) {
433 if (dl_server(dl_se)) {
434 sub_running_bw(dl_se, dl_rq);
435 } else {
436 struct task_struct *p = dl_task_of(dl_se);
437
438 if (dl_task)
439 sub_running_bw(dl_se, dl_rq);
440
441 if (!dl_task || READ_ONCE(p->__state) == TASK_DEAD) {
442 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
443
444 if (READ_ONCE(p->__state) == TASK_DEAD)
445 sub_rq_bw(dl_se, &rq->dl);
446 raw_spin_lock(&dl_b->lock);
447 __dl_sub(dl_b, dl_se->dl_bw, dl_bw_cpus(task_cpu(p)));
448 raw_spin_unlock(&dl_b->lock);
449 __dl_clear_params(dl_se);
450 }
451 }
452
453 return;
454 }
455
456 dl_se->dl_non_contending = 1;
457 if (!dl_server(dl_se))
458 get_task_struct(dl_task_of(dl_se));
459
460 hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL_HARD);
461 }
462
task_contending(struct sched_dl_entity * dl_se,int flags)463 static void task_contending(struct sched_dl_entity *dl_se, int flags)
464 {
465 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
466
467 /*
468 * If this is a non-deadline task that has been boosted,
469 * do nothing
470 */
471 if (dl_se->dl_runtime == 0)
472 return;
473
474 if (flags & ENQUEUE_MIGRATED)
475 add_rq_bw(dl_se, dl_rq);
476
477 if (dl_se->dl_non_contending) {
478 dl_se->dl_non_contending = 0;
479 /*
480 * If the timer handler is currently running and the
481 * timer cannot be canceled, inactive_task_timer()
482 * will see that dl_not_contending is not set, and
483 * will not touch the rq's active utilization,
484 * so we are still safe.
485 */
486 cancel_inactive_timer(dl_se);
487 } else {
488 /*
489 * Since "dl_non_contending" is not set, the
490 * task's utilization has already been removed from
491 * active utilization (either when the task blocked,
492 * when the "inactive timer" fired).
493 * So, add it back.
494 */
495 add_running_bw(dl_se, dl_rq);
496 }
497 }
498
is_leftmost(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)499 static inline int is_leftmost(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
500 {
501 return rb_first_cached(&dl_rq->root) == &dl_se->rb_node;
502 }
503
504 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
505
init_dl_bw(struct dl_bw * dl_b)506 void init_dl_bw(struct dl_bw *dl_b)
507 {
508 raw_spin_lock_init(&dl_b->lock);
509 if (global_rt_runtime() == RUNTIME_INF)
510 dl_b->bw = -1;
511 else
512 dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
513 dl_b->total_bw = 0;
514 }
515
init_dl_rq(struct dl_rq * dl_rq)516 void init_dl_rq(struct dl_rq *dl_rq)
517 {
518 dl_rq->root = RB_ROOT_CACHED;
519
520 /* zero means no -deadline tasks */
521 dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
522
523 dl_rq->overloaded = 0;
524 dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
525
526 dl_rq->running_bw = 0;
527 dl_rq->this_bw = 0;
528 init_dl_rq_bw_ratio(dl_rq);
529 }
530
dl_overloaded(struct rq * rq)531 static inline int dl_overloaded(struct rq *rq)
532 {
533 return atomic_read(&rq->rd->dlo_count);
534 }
535
dl_set_overload(struct rq * rq)536 static inline void dl_set_overload(struct rq *rq)
537 {
538 if (!rq->online)
539 return;
540
541 cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
542 /*
543 * Must be visible before the overload count is
544 * set (as in sched_rt.c).
545 *
546 * Matched by the barrier in pull_dl_task().
547 */
548 smp_wmb();
549 atomic_inc(&rq->rd->dlo_count);
550 }
551
dl_clear_overload(struct rq * rq)552 static inline void dl_clear_overload(struct rq *rq)
553 {
554 if (!rq->online)
555 return;
556
557 atomic_dec(&rq->rd->dlo_count);
558 cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
559 }
560
561 #define __node_2_pdl(node) \
562 rb_entry((node), struct task_struct, pushable_dl_tasks)
563
__pushable_less(struct rb_node * a,const struct rb_node * b)564 static inline bool __pushable_less(struct rb_node *a, const struct rb_node *b)
565 {
566 return dl_entity_preempt(&__node_2_pdl(a)->dl, &__node_2_pdl(b)->dl);
567 }
568
has_pushable_dl_tasks(struct rq * rq)569 static inline int has_pushable_dl_tasks(struct rq *rq)
570 {
571 return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
572 }
573
574 /*
575 * The list of pushable -deadline task is not a plist, like in
576 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
577 */
enqueue_pushable_dl_task(struct rq * rq,struct task_struct * p)578 static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
579 {
580 struct rb_node *leftmost;
581
582 WARN_ON_ONCE(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
583
584 leftmost = rb_add_cached(&p->pushable_dl_tasks,
585 &rq->dl.pushable_dl_tasks_root,
586 __pushable_less);
587 if (leftmost)
588 rq->dl.earliest_dl.next = p->dl.deadline;
589
590 if (!rq->dl.overloaded) {
591 dl_set_overload(rq);
592 rq->dl.overloaded = 1;
593 }
594 }
595
dequeue_pushable_dl_task(struct rq * rq,struct task_struct * p)596 static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
597 {
598 struct dl_rq *dl_rq = &rq->dl;
599 struct rb_root_cached *root = &dl_rq->pushable_dl_tasks_root;
600 struct rb_node *leftmost;
601
602 if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
603 return;
604
605 leftmost = rb_erase_cached(&p->pushable_dl_tasks, root);
606 if (leftmost)
607 dl_rq->earliest_dl.next = __node_2_pdl(leftmost)->dl.deadline;
608
609 RB_CLEAR_NODE(&p->pushable_dl_tasks);
610
611 if (!has_pushable_dl_tasks(rq) && rq->dl.overloaded) {
612 dl_clear_overload(rq);
613 rq->dl.overloaded = 0;
614 }
615 }
616
617 static int push_dl_task(struct rq *rq);
618
need_pull_dl_task(struct rq * rq,struct task_struct * prev)619 static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
620 {
621 return rq->online && dl_task(prev);
622 }
623
624 static DEFINE_PER_CPU(struct balance_callback, dl_push_head);
625 static DEFINE_PER_CPU(struct balance_callback, dl_pull_head);
626
627 static void push_dl_tasks(struct rq *);
628 static void pull_dl_task(struct rq *);
629
deadline_queue_push_tasks(struct rq * rq)630 static inline void deadline_queue_push_tasks(struct rq *rq)
631 {
632 if (!has_pushable_dl_tasks(rq))
633 return;
634
635 queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
636 }
637
deadline_queue_pull_task(struct rq * rq)638 static inline void deadline_queue_pull_task(struct rq *rq)
639 {
640 queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
641 }
642
643 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
644
dl_task_offline_migration(struct rq * rq,struct task_struct * p)645 static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
646 {
647 struct rq *later_rq = NULL;
648 struct dl_bw *dl_b;
649
650 later_rq = find_lock_later_rq(p, rq);
651 if (!later_rq) {
652 int cpu;
653
654 /*
655 * If we cannot preempt any rq, fall back to pick any
656 * online CPU:
657 */
658 cpu = cpumask_any_and(cpu_active_mask, p->cpus_ptr);
659 if (cpu >= nr_cpu_ids) {
660 /*
661 * Failed to find any suitable CPU.
662 * The task will never come back!
663 */
664 WARN_ON_ONCE(dl_bandwidth_enabled());
665
666 /*
667 * If admission control is disabled we
668 * try a little harder to let the task
669 * run.
670 */
671 cpu = cpumask_any(cpu_active_mask);
672 }
673 later_rq = cpu_rq(cpu);
674 double_lock_balance(rq, later_rq);
675 }
676
677 if (p->dl.dl_non_contending || p->dl.dl_throttled) {
678 /*
679 * Inactive timer is armed (or callback is running, but
680 * waiting for us to release rq locks). In any case, when it
681 * will fire (or continue), it will see running_bw of this
682 * task migrated to later_rq (and correctly handle it).
683 */
684 sub_running_bw(&p->dl, &rq->dl);
685 sub_rq_bw(&p->dl, &rq->dl);
686
687 add_rq_bw(&p->dl, &later_rq->dl);
688 add_running_bw(&p->dl, &later_rq->dl);
689 } else {
690 sub_rq_bw(&p->dl, &rq->dl);
691 add_rq_bw(&p->dl, &later_rq->dl);
692 }
693
694 /*
695 * And we finally need to fix up root_domain(s) bandwidth accounting,
696 * since p is still hanging out in the old (now moved to default) root
697 * domain.
698 */
699 dl_b = &rq->rd->dl_bw;
700 raw_spin_lock(&dl_b->lock);
701 __dl_sub(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
702 raw_spin_unlock(&dl_b->lock);
703
704 dl_b = &later_rq->rd->dl_bw;
705 raw_spin_lock(&dl_b->lock);
706 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(later_rq->rd->span));
707 raw_spin_unlock(&dl_b->lock);
708
709 set_task_cpu(p, later_rq->cpu);
710 double_unlock_balance(later_rq, rq);
711
712 return later_rq;
713 }
714
715 static void
716 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags);
717 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
718 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags);
719 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p, int flags);
720
replenish_dl_new_period(struct sched_dl_entity * dl_se,struct rq * rq)721 static inline void replenish_dl_new_period(struct sched_dl_entity *dl_se,
722 struct rq *rq)
723 {
724 /* for non-boosted task, pi_of(dl_se) == dl_se */
725 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
726 dl_se->runtime = pi_of(dl_se)->dl_runtime;
727
728 /*
729 * If it is a deferred reservation, and the server
730 * is not handling an starvation case, defer it.
731 */
732 if (dl_se->dl_defer && !dl_se->dl_defer_running) {
733 dl_se->dl_throttled = 1;
734 dl_se->dl_defer_armed = 1;
735 }
736 }
737
738 /*
739 * We are being explicitly informed that a new instance is starting,
740 * and this means that:
741 * - the absolute deadline of the entity has to be placed at
742 * current time + relative deadline;
743 * - the runtime of the entity has to be set to the maximum value.
744 *
745 * The capability of specifying such event is useful whenever a -deadline
746 * entity wants to (try to!) synchronize its behaviour with the scheduler's
747 * one, and to (try to!) reconcile itself with its own scheduling
748 * parameters.
749 */
setup_new_dl_entity(struct sched_dl_entity * dl_se)750 static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
751 {
752 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
753 struct rq *rq = rq_of_dl_rq(dl_rq);
754
755 WARN_ON(is_dl_boosted(dl_se));
756 WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
757
758 /*
759 * We are racing with the deadline timer. So, do nothing because
760 * the deadline timer handler will take care of properly recharging
761 * the runtime and postponing the deadline
762 */
763 if (dl_se->dl_throttled)
764 return;
765
766 /*
767 * We use the regular wall clock time to set deadlines in the
768 * future; in fact, we must consider execution overheads (time
769 * spent on hardirq context, etc.).
770 */
771 replenish_dl_new_period(dl_se, rq);
772 }
773
774 static int start_dl_timer(struct sched_dl_entity *dl_se);
775 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t);
776
777 /*
778 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
779 * possibility of a entity lasting more than what it declared, and thus
780 * exhausting its runtime.
781 *
782 * Here we are interested in making runtime overrun possible, but we do
783 * not want a entity which is misbehaving to affect the scheduling of all
784 * other entities.
785 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
786 * is used, in order to confine each entity within its own bandwidth.
787 *
788 * This function deals exactly with that, and ensures that when the runtime
789 * of a entity is replenished, its deadline is also postponed. That ensures
790 * the overrunning entity can't interfere with other entity in the system and
791 * can't make them miss their deadlines. Reasons why this kind of overruns
792 * could happen are, typically, a entity voluntarily trying to overcome its
793 * runtime, or it just underestimated it during sched_setattr().
794 */
replenish_dl_entity(struct sched_dl_entity * dl_se)795 static void replenish_dl_entity(struct sched_dl_entity *dl_se)
796 {
797 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
798 struct rq *rq = rq_of_dl_rq(dl_rq);
799
800 WARN_ON_ONCE(pi_of(dl_se)->dl_runtime <= 0);
801
802 /*
803 * This could be the case for a !-dl task that is boosted.
804 * Just go with full inherited parameters.
805 *
806 * Or, it could be the case of a deferred reservation that
807 * was not able to consume its runtime in background and
808 * reached this point with current u > U.
809 *
810 * In both cases, set a new period.
811 */
812 if (dl_se->dl_deadline == 0 ||
813 (dl_se->dl_defer_armed && dl_entity_overflow(dl_se, rq_clock(rq)))) {
814 dl_se->deadline = rq_clock(rq) + pi_of(dl_se)->dl_deadline;
815 dl_se->runtime = pi_of(dl_se)->dl_runtime;
816 }
817
818 if (dl_se->dl_yielded && dl_se->runtime > 0)
819 dl_se->runtime = 0;
820
821 /*
822 * We keep moving the deadline away until we get some
823 * available runtime for the entity. This ensures correct
824 * handling of situations where the runtime overrun is
825 * arbitrary large.
826 */
827 while (dl_se->runtime <= 0) {
828 dl_se->deadline += pi_of(dl_se)->dl_period;
829 dl_se->runtime += pi_of(dl_se)->dl_runtime;
830 }
831
832 /*
833 * At this point, the deadline really should be "in
834 * the future" with respect to rq->clock. If it's
835 * not, we are, for some reason, lagging too much!
836 * Anyway, after having warn userspace abut that,
837 * we still try to keep the things running by
838 * resetting the deadline and the budget of the
839 * entity.
840 */
841 if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
842 printk_deferred_once("sched: DL replenish lagged too much\n");
843 replenish_dl_new_period(dl_se, rq);
844 }
845
846 if (dl_se->dl_yielded)
847 dl_se->dl_yielded = 0;
848 if (dl_se->dl_throttled)
849 dl_se->dl_throttled = 0;
850
851 /*
852 * If this is the replenishment of a deferred reservation,
853 * clear the flag and return.
854 */
855 if (dl_se->dl_defer_armed) {
856 dl_se->dl_defer_armed = 0;
857 return;
858 }
859
860 /*
861 * A this point, if the deferred server is not armed, and the deadline
862 * is in the future, if it is not running already, throttle the server
863 * and arm the defer timer.
864 */
865 if (dl_se->dl_defer && !dl_se->dl_defer_running &&
866 dl_time_before(rq_clock(dl_se->rq), dl_se->deadline - dl_se->runtime)) {
867 if (!is_dl_boosted(dl_se)) {
868
869 /*
870 * Set dl_se->dl_defer_armed and dl_throttled variables to
871 * inform the start_dl_timer() that this is a deferred
872 * activation.
873 */
874 dl_se->dl_defer_armed = 1;
875 dl_se->dl_throttled = 1;
876 if (!start_dl_timer(dl_se)) {
877 /*
878 * If for whatever reason (delays), a previous timer was
879 * queued but not serviced, cancel it and clean the
880 * deferrable server variables intended for start_dl_timer().
881 */
882 hrtimer_try_to_cancel(&dl_se->dl_timer);
883 dl_se->dl_defer_armed = 0;
884 dl_se->dl_throttled = 0;
885 }
886 }
887 }
888 }
889
890 /*
891 * Here we check if --at time t-- an entity (which is probably being
892 * [re]activated or, in general, enqueued) can use its remaining runtime
893 * and its current deadline _without_ exceeding the bandwidth it is
894 * assigned (function returns true if it can't). We are in fact applying
895 * one of the CBS rules: when a task wakes up, if the residual runtime
896 * over residual deadline fits within the allocated bandwidth, then we
897 * can keep the current (absolute) deadline and residual budget without
898 * disrupting the schedulability of the system. Otherwise, we should
899 * refill the runtime and set the deadline a period in the future,
900 * because keeping the current (absolute) deadline of the task would
901 * result in breaking guarantees promised to other tasks (refer to
902 * Documentation/scheduler/sched-deadline.rst for more information).
903 *
904 * This function returns true if:
905 *
906 * runtime / (deadline - t) > dl_runtime / dl_deadline ,
907 *
908 * IOW we can't recycle current parameters.
909 *
910 * Notice that the bandwidth check is done against the deadline. For
911 * task with deadline equal to period this is the same of using
912 * dl_period instead of dl_deadline in the equation above.
913 */
dl_entity_overflow(struct sched_dl_entity * dl_se,u64 t)914 static bool dl_entity_overflow(struct sched_dl_entity *dl_se, u64 t)
915 {
916 u64 left, right;
917
918 /*
919 * left and right are the two sides of the equation above,
920 * after a bit of shuffling to use multiplications instead
921 * of divisions.
922 *
923 * Note that none of the time values involved in the two
924 * multiplications are absolute: dl_deadline and dl_runtime
925 * are the relative deadline and the maximum runtime of each
926 * instance, runtime is the runtime left for the last instance
927 * and (deadline - t), since t is rq->clock, is the time left
928 * to the (absolute) deadline. Even if overflowing the u64 type
929 * is very unlikely to occur in both cases, here we scale down
930 * as we want to avoid that risk at all. Scaling down by 10
931 * means that we reduce granularity to 1us. We are fine with it,
932 * since this is only a true/false check and, anyway, thinking
933 * of anything below microseconds resolution is actually fiction
934 * (but still we want to give the user that illusion >;).
935 */
936 left = (pi_of(dl_se)->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
937 right = ((dl_se->deadline - t) >> DL_SCALE) *
938 (pi_of(dl_se)->dl_runtime >> DL_SCALE);
939
940 return dl_time_before(right, left);
941 }
942
943 /*
944 * Revised wakeup rule [1]: For self-suspending tasks, rather then
945 * re-initializing task's runtime and deadline, the revised wakeup
946 * rule adjusts the task's runtime to avoid the task to overrun its
947 * density.
948 *
949 * Reasoning: a task may overrun the density if:
950 * runtime / (deadline - t) > dl_runtime / dl_deadline
951 *
952 * Therefore, runtime can be adjusted to:
953 * runtime = (dl_runtime / dl_deadline) * (deadline - t)
954 *
955 * In such way that runtime will be equal to the maximum density
956 * the task can use without breaking any rule.
957 *
958 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
959 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
960 */
961 static void
update_dl_revised_wakeup(struct sched_dl_entity * dl_se,struct rq * rq)962 update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
963 {
964 u64 laxity = dl_se->deadline - rq_clock(rq);
965
966 /*
967 * If the task has deadline < period, and the deadline is in the past,
968 * it should already be throttled before this check.
969 *
970 * See update_dl_entity() comments for further details.
971 */
972 WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
973
974 dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
975 }
976
977 /*
978 * Regarding the deadline, a task with implicit deadline has a relative
979 * deadline == relative period. A task with constrained deadline has a
980 * relative deadline <= relative period.
981 *
982 * We support constrained deadline tasks. However, there are some restrictions
983 * applied only for tasks which do not have an implicit deadline. See
984 * update_dl_entity() to know more about such restrictions.
985 *
986 * The dl_is_implicit() returns true if the task has an implicit deadline.
987 */
dl_is_implicit(struct sched_dl_entity * dl_se)988 static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
989 {
990 return dl_se->dl_deadline == dl_se->dl_period;
991 }
992
993 /*
994 * When a deadline entity is placed in the runqueue, its runtime and deadline
995 * might need to be updated. This is done by a CBS wake up rule. There are two
996 * different rules: 1) the original CBS; and 2) the Revisited CBS.
997 *
998 * When the task is starting a new period, the Original CBS is used. In this
999 * case, the runtime is replenished and a new absolute deadline is set.
1000 *
1001 * When a task is queued before the begin of the next period, using the
1002 * remaining runtime and deadline could make the entity to overflow, see
1003 * dl_entity_overflow() to find more about runtime overflow. When such case
1004 * is detected, the runtime and deadline need to be updated.
1005 *
1006 * If the task has an implicit deadline, i.e., deadline == period, the Original
1007 * CBS is applied. The runtime is replenished and a new absolute deadline is
1008 * set, as in the previous cases.
1009 *
1010 * However, the Original CBS does not work properly for tasks with
1011 * deadline < period, which are said to have a constrained deadline. By
1012 * applying the Original CBS, a constrained deadline task would be able to run
1013 * runtime/deadline in a period. With deadline < period, the task would
1014 * overrun the runtime/period allowed bandwidth, breaking the admission test.
1015 *
1016 * In order to prevent this misbehave, the Revisited CBS is used for
1017 * constrained deadline tasks when a runtime overflow is detected. In the
1018 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
1019 * the remaining runtime of the task is reduced to avoid runtime overflow.
1020 * Please refer to the comments update_dl_revised_wakeup() function to find
1021 * more about the Revised CBS rule.
1022 */
update_dl_entity(struct sched_dl_entity * dl_se)1023 static void update_dl_entity(struct sched_dl_entity *dl_se)
1024 {
1025 struct rq *rq = rq_of_dl_se(dl_se);
1026
1027 if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
1028 dl_entity_overflow(dl_se, rq_clock(rq))) {
1029
1030 if (unlikely(!dl_is_implicit(dl_se) &&
1031 !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1032 !is_dl_boosted(dl_se))) {
1033 update_dl_revised_wakeup(dl_se, rq);
1034 return;
1035 }
1036
1037 replenish_dl_new_period(dl_se, rq);
1038 } else if (dl_server(dl_se) && dl_se->dl_defer) {
1039 /*
1040 * The server can still use its previous deadline, so check if
1041 * it left the dl_defer_running state.
1042 */
1043 if (!dl_se->dl_defer_running) {
1044 dl_se->dl_defer_armed = 1;
1045 dl_se->dl_throttled = 1;
1046 }
1047 }
1048 }
1049
dl_next_period(struct sched_dl_entity * dl_se)1050 static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
1051 {
1052 return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
1053 }
1054
1055 /*
1056 * If the entity depleted all its runtime, and if we want it to sleep
1057 * while waiting for some new execution time to become available, we
1058 * set the bandwidth replenishment timer to the replenishment instant
1059 * and try to activate it.
1060 *
1061 * Notice that it is important for the caller to know if the timer
1062 * actually started or not (i.e., the replenishment instant is in
1063 * the future or in the past).
1064 */
start_dl_timer(struct sched_dl_entity * dl_se)1065 static int start_dl_timer(struct sched_dl_entity *dl_se)
1066 {
1067 struct hrtimer *timer = &dl_se->dl_timer;
1068 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1069 struct rq *rq = rq_of_dl_rq(dl_rq);
1070 ktime_t now, act;
1071 s64 delta;
1072
1073 lockdep_assert_rq_held(rq);
1074
1075 /*
1076 * We want the timer to fire at the deadline, but considering
1077 * that it is actually coming from rq->clock and not from
1078 * hrtimer's time base reading.
1079 *
1080 * The deferred reservation will have its timer set to
1081 * (deadline - runtime). At that point, the CBS rule will decide
1082 * if the current deadline can be used, or if a replenishment is
1083 * required to avoid add too much pressure on the system
1084 * (current u > U).
1085 */
1086 if (dl_se->dl_defer_armed) {
1087 WARN_ON_ONCE(!dl_se->dl_throttled);
1088 act = ns_to_ktime(dl_se->deadline - dl_se->runtime);
1089 } else {
1090 /* act = deadline - rel-deadline + period */
1091 act = ns_to_ktime(dl_next_period(dl_se));
1092 }
1093
1094 now = hrtimer_cb_get_time(timer);
1095 delta = ktime_to_ns(now) - rq_clock(rq);
1096 act = ktime_add_ns(act, delta);
1097
1098 /*
1099 * If the expiry time already passed, e.g., because the value
1100 * chosen as the deadline is too small, don't even try to
1101 * start the timer in the past!
1102 */
1103 if (ktime_us_delta(act, now) < 0)
1104 return 0;
1105
1106 /*
1107 * !enqueued will guarantee another callback; even if one is already in
1108 * progress. This ensures a balanced {get,put}_task_struct().
1109 *
1110 * The race against __run_timer() clearing the enqueued state is
1111 * harmless because we're holding task_rq()->lock, therefore the timer
1112 * expiring after we've done the check will wait on its task_rq_lock()
1113 * and observe our state.
1114 */
1115 if (!hrtimer_is_queued(timer)) {
1116 if (!dl_server(dl_se))
1117 get_task_struct(dl_task_of(dl_se));
1118 hrtimer_start(timer, act, HRTIMER_MODE_ABS_HARD);
1119 }
1120
1121 return 1;
1122 }
1123
__push_dl_task(struct rq * rq,struct rq_flags * rf)1124 static void __push_dl_task(struct rq *rq, struct rq_flags *rf)
1125 {
1126 /*
1127 * Queueing this task back might have overloaded rq, check if we need
1128 * to kick someone away.
1129 */
1130 if (has_pushable_dl_tasks(rq)) {
1131 /*
1132 * Nothing relies on rq->lock after this, so its safe to drop
1133 * rq->lock.
1134 */
1135 rq_unpin_lock(rq, rf);
1136 push_dl_task(rq);
1137 rq_repin_lock(rq, rf);
1138 }
1139 }
1140
1141 /* a defer timer will not be reset if the runtime consumed was < dl_server_min_res */
1142 static const u64 dl_server_min_res = 1 * NSEC_PER_MSEC;
1143
dl_server_timer(struct hrtimer * timer,struct sched_dl_entity * dl_se)1144 static enum hrtimer_restart dl_server_timer(struct hrtimer *timer, struct sched_dl_entity *dl_se)
1145 {
1146 struct rq *rq = rq_of_dl_se(dl_se);
1147 u64 fw;
1148
1149 scoped_guard (rq_lock, rq) {
1150 struct rq_flags *rf = &scope.rf;
1151
1152 if (!dl_se->dl_throttled || !dl_se->dl_runtime)
1153 return HRTIMER_NORESTART;
1154
1155 sched_clock_tick();
1156 update_rq_clock(rq);
1157
1158 /*
1159 * Make sure current has propagated its pending runtime into
1160 * any relevant server through calling dl_server_update() and
1161 * friends.
1162 */
1163 rq->donor->sched_class->update_curr(rq);
1164
1165 if (dl_se->dl_defer_idle) {
1166 dl_server_stop(dl_se);
1167 return HRTIMER_NORESTART;
1168 }
1169
1170 if (dl_se->dl_defer_armed) {
1171 /*
1172 * First check if the server could consume runtime in background.
1173 * If so, it is possible to push the defer timer for this amount
1174 * of time. The dl_server_min_res serves as a limit to avoid
1175 * forwarding the timer for a too small amount of time.
1176 */
1177 if (dl_time_before(rq_clock(dl_se->rq),
1178 (dl_se->deadline - dl_se->runtime - dl_server_min_res))) {
1179
1180 /* reset the defer timer */
1181 fw = dl_se->deadline - rq_clock(dl_se->rq) - dl_se->runtime;
1182
1183 hrtimer_forward_now(timer, ns_to_ktime(fw));
1184 return HRTIMER_RESTART;
1185 }
1186
1187 dl_se->dl_defer_running = 1;
1188 }
1189
1190 enqueue_dl_entity(dl_se, ENQUEUE_REPLENISH);
1191
1192 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &dl_se->rq->curr->dl))
1193 resched_curr(rq);
1194
1195 __push_dl_task(rq, rf);
1196 }
1197
1198 return HRTIMER_NORESTART;
1199 }
1200
1201 /*
1202 * This is the bandwidth enforcement timer callback. If here, we know
1203 * a task is not on its dl_rq, since the fact that the timer was running
1204 * means the task is throttled and needs a runtime replenishment.
1205 *
1206 * However, what we actually do depends on the fact the task is active,
1207 * (it is on its rq) or has been removed from there by a call to
1208 * dequeue_task_dl(). In the former case we must issue the runtime
1209 * replenishment and add the task back to the dl_rq; in the latter, we just
1210 * do nothing but clearing dl_throttled, so that runtime and deadline
1211 * updating (and the queueing back to dl_rq) will be done by the
1212 * next call to enqueue_task_dl().
1213 */
dl_task_timer(struct hrtimer * timer)1214 static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
1215 {
1216 struct sched_dl_entity *dl_se = container_of(timer,
1217 struct sched_dl_entity,
1218 dl_timer);
1219 struct task_struct *p;
1220 struct rq_flags rf;
1221 struct rq *rq;
1222
1223 if (dl_server(dl_se))
1224 return dl_server_timer(timer, dl_se);
1225
1226 p = dl_task_of(dl_se);
1227 rq = task_rq_lock(p, &rf);
1228
1229 /*
1230 * The task might have changed its scheduling policy to something
1231 * different than SCHED_DEADLINE (through switched_from_dl()).
1232 */
1233 if (!dl_task(p))
1234 goto unlock;
1235
1236 /*
1237 * The task might have been boosted by someone else and might be in the
1238 * boosting/deboosting path, its not throttled.
1239 */
1240 if (is_dl_boosted(dl_se))
1241 goto unlock;
1242
1243 /*
1244 * Spurious timer due to start_dl_timer() race; or we already received
1245 * a replenishment from rt_mutex_setprio().
1246 */
1247 if (!dl_se->dl_throttled)
1248 goto unlock;
1249
1250 sched_clock_tick();
1251 update_rq_clock(rq);
1252
1253 /*
1254 * If the throttle happened during sched-out; like:
1255 *
1256 * schedule()
1257 * deactivate_task()
1258 * dequeue_task_dl()
1259 * update_curr_dl()
1260 * start_dl_timer()
1261 * __dequeue_task_dl()
1262 * prev->on_rq = 0;
1263 *
1264 * We can be both throttled and !queued. Replenish the counter
1265 * but do not enqueue -- wait for our wakeup to do that.
1266 */
1267 if (!task_on_rq_queued(p)) {
1268 replenish_dl_entity(dl_se);
1269 goto unlock;
1270 }
1271
1272 if (unlikely(!rq->online)) {
1273 /*
1274 * If the runqueue is no longer available, migrate the
1275 * task elsewhere. This necessarily changes rq.
1276 */
1277 lockdep_unpin_lock(__rq_lockp(rq), rf.cookie);
1278 rq = dl_task_offline_migration(rq, p);
1279 rf.cookie = lockdep_pin_lock(__rq_lockp(rq));
1280 update_rq_clock(rq);
1281
1282 /*
1283 * Now that the task has been migrated to the new RQ and we
1284 * have that locked, proceed as normal and enqueue the task
1285 * there.
1286 */
1287 }
1288
1289 enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1290 if (dl_task(rq->donor))
1291 wakeup_preempt_dl(rq, p, 0);
1292 else
1293 resched_curr(rq);
1294
1295 __push_dl_task(rq, &rf);
1296
1297 unlock:
1298 task_rq_unlock(rq, p, &rf);
1299
1300 /*
1301 * This can free the task_struct, including this hrtimer, do not touch
1302 * anything related to that after this.
1303 */
1304 put_task_struct(p);
1305
1306 return HRTIMER_NORESTART;
1307 }
1308
init_dl_task_timer(struct sched_dl_entity * dl_se)1309 static void init_dl_task_timer(struct sched_dl_entity *dl_se)
1310 {
1311 struct hrtimer *timer = &dl_se->dl_timer;
1312
1313 hrtimer_setup(timer, dl_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
1314 }
1315
1316 /*
1317 * During the activation, CBS checks if it can reuse the current task's
1318 * runtime and period. If the deadline of the task is in the past, CBS
1319 * cannot use the runtime, and so it replenishes the task. This rule
1320 * works fine for implicit deadline tasks (deadline == period), and the
1321 * CBS was designed for implicit deadline tasks. However, a task with
1322 * constrained deadline (deadline < period) might be awakened after the
1323 * deadline, but before the next period. In this case, replenishing the
1324 * task would allow it to run for runtime / deadline. As in this case
1325 * deadline < period, CBS enables a task to run for more than the
1326 * runtime / period. In a very loaded system, this can cause a domino
1327 * effect, making other tasks miss their deadlines.
1328 *
1329 * To avoid this problem, in the activation of a constrained deadline
1330 * task after the deadline but before the next period, throttle the
1331 * task and set the replenishing timer to the begin of the next period,
1332 * unless it is boosted.
1333 */
dl_check_constrained_dl(struct sched_dl_entity * dl_se)1334 static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1335 {
1336 struct rq *rq = rq_of_dl_se(dl_se);
1337
1338 if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1339 dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1340 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se)))
1341 return;
1342 dl_se->dl_throttled = 1;
1343 if (dl_se->runtime > 0)
1344 dl_se->runtime = 0;
1345 }
1346 }
1347
1348 static
dl_runtime_exceeded(struct sched_dl_entity * dl_se)1349 int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1350 {
1351 return (dl_se->runtime <= 0);
1352 }
1353
1354 /*
1355 * This function implements the GRUB accounting rule. According to the
1356 * GRUB reclaiming algorithm, the runtime is not decreased as "dq = -dt",
1357 * but as "dq = -(max{u, (Umax - Uinact - Uextra)} / Umax) dt",
1358 * where u is the utilization of the task, Umax is the maximum reclaimable
1359 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1360 * as the difference between the "total runqueue utilization" and the
1361 * "runqueue active utilization", and Uextra is the (per runqueue) extra
1362 * reclaimable utilization.
1363 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations multiplied
1364 * by 2^BW_SHIFT, the result has to be shifted right by BW_SHIFT.
1365 * Since rq->dl.bw_ratio contains 1 / Umax multiplied by 2^RATIO_SHIFT, dl_bw
1366 * is multiplied by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1367 * Since delta is a 64 bit variable, to have an overflow its value should be
1368 * larger than 2^(64 - 20 - 8), which is more than 64 seconds. So, overflow is
1369 * not an issue here.
1370 */
grub_reclaim(u64 delta,struct rq * rq,struct sched_dl_entity * dl_se)1371 static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1372 {
1373 u64 u_act;
1374 u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1375
1376 /*
1377 * Instead of computing max{u, (u_max - u_inact - u_extra)}, we
1378 * compare u_inact + u_extra with u_max - u, because u_inact + u_extra
1379 * can be larger than u_max. So, u_max - u_inact - u_extra would be
1380 * negative leading to wrong results.
1381 */
1382 if (u_inact + rq->dl.extra_bw > rq->dl.max_bw - dl_se->dl_bw)
1383 u_act = dl_se->dl_bw;
1384 else
1385 u_act = rq->dl.max_bw - u_inact - rq->dl.extra_bw;
1386
1387 u_act = (u_act * rq->dl.bw_ratio) >> RATIO_SHIFT;
1388 return (delta * u_act) >> BW_SHIFT;
1389 }
1390
dl_scaled_delta_exec(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1391 s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1392 {
1393 s64 scaled_delta_exec;
1394
1395 /*
1396 * For tasks that participate in GRUB, we implement GRUB-PA: the
1397 * spare reclaimed bandwidth is used to clock down frequency.
1398 *
1399 * For the others, we still need to scale reservation parameters
1400 * according to current frequency and CPU maximum capacity.
1401 */
1402 if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1403 scaled_delta_exec = grub_reclaim(delta_exec, rq, dl_se);
1404 } else {
1405 int cpu = cpu_of(rq);
1406 unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1407 unsigned long scale_cpu = arch_scale_cpu_capacity(cpu);
1408
1409 scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1410 scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1411 }
1412
1413 return scaled_delta_exec;
1414 }
1415
1416 static inline void
1417 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se, int flags);
1418
update_curr_dl_se(struct rq * rq,struct sched_dl_entity * dl_se,s64 delta_exec)1419 static void update_curr_dl_se(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec)
1420 {
1421 bool idle = idle_rq(rq);
1422 s64 scaled_delta_exec;
1423
1424 if (unlikely(delta_exec <= 0)) {
1425 if (unlikely(dl_se->dl_yielded))
1426 goto throttle;
1427 return;
1428 }
1429
1430 if (dl_server(dl_se) && dl_se->dl_throttled && !dl_se->dl_defer)
1431 return;
1432
1433 if (dl_entity_is_special(dl_se))
1434 return;
1435
1436 scaled_delta_exec = delta_exec;
1437 if (!dl_server(dl_se))
1438 scaled_delta_exec = dl_scaled_delta_exec(rq, dl_se, delta_exec);
1439
1440 dl_se->runtime -= scaled_delta_exec;
1441
1442 if (dl_se->dl_defer_idle && !idle)
1443 dl_se->dl_defer_idle = 0;
1444
1445 /*
1446 * The fair server can consume its runtime while throttled (not queued/
1447 * running as regular CFS).
1448 *
1449 * If the server consumes its entire runtime in this state. The server
1450 * is not required for the current period. Thus, reset the server by
1451 * starting a new period, pushing the activation.
1452 */
1453 if (dl_se->dl_defer && dl_se->dl_throttled && dl_runtime_exceeded(dl_se)) {
1454 /*
1455 * Non-servers would never get time accounted while throttled.
1456 */
1457 WARN_ON_ONCE(!dl_server(dl_se));
1458
1459 /*
1460 * While the server is marked idle, do not push out the
1461 * activation further, instead wait for the period timer
1462 * to lapse and stop the server.
1463 */
1464 if (dl_se->dl_defer_idle && idle) {
1465 /*
1466 * The timer is at the zero-laxity point, this means
1467 * dl_server_stop() / dl_server_start() can happen
1468 * while now < deadline. This means update_dl_entity()
1469 * will not replenish. Additionally start_dl_timer()
1470 * will be set for 'deadline - runtime'. Negative
1471 * runtime will not do.
1472 */
1473 dl_se->runtime = 0;
1474 return;
1475 }
1476
1477 /*
1478 * If the server was previously activated - the starving condition
1479 * took place, it this point it went away because the fair scheduler
1480 * was able to get runtime in background. So return to the initial
1481 * state.
1482 */
1483 dl_se->dl_defer_running = 0;
1484
1485 hrtimer_try_to_cancel(&dl_se->dl_timer);
1486
1487 replenish_dl_new_period(dl_se, dl_se->rq);
1488
1489 if (idle)
1490 dl_se->dl_defer_idle = 1;
1491
1492 /*
1493 * Not being able to start the timer seems problematic. If it could not
1494 * be started for whatever reason, we need to "unthrottle" the DL server
1495 * and queue right away. Otherwise nothing might queue it. That's similar
1496 * to what enqueue_dl_entity() does on start_dl_timer==0. For now, just warn.
1497 */
1498 WARN_ON_ONCE(!start_dl_timer(dl_se));
1499
1500 return;
1501 }
1502
1503 throttle:
1504 if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1505 dl_se->dl_throttled = 1;
1506
1507 /* If requested, inform the user about runtime overruns. */
1508 if (dl_runtime_exceeded(dl_se) &&
1509 (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1510 dl_se->dl_overrun = 1;
1511
1512 dequeue_dl_entity(dl_se, 0);
1513 if (!dl_server(dl_se)) {
1514 update_stats_dequeue_dl(&rq->dl, dl_se, 0);
1515 dequeue_pushable_dl_task(rq, dl_task_of(dl_se));
1516 }
1517
1518 if (unlikely(is_dl_boosted(dl_se) || !start_dl_timer(dl_se))) {
1519 if (dl_server(dl_se)) {
1520 replenish_dl_new_period(dl_se, rq);
1521 start_dl_timer(dl_se);
1522 } else {
1523 enqueue_task_dl(rq, dl_task_of(dl_se), ENQUEUE_REPLENISH);
1524 }
1525 }
1526
1527 if (!is_leftmost(dl_se, &rq->dl))
1528 resched_curr(rq);
1529 }
1530
1531 /*
1532 * The fair server (sole dl_server) does not account for real-time
1533 * workload because it is running fair work.
1534 */
1535 if (dl_se == &rq->fair_server)
1536 return;
1537
1538 #ifdef CONFIG_RT_GROUP_SCHED
1539 /*
1540 * Because -- for now -- we share the rt bandwidth, we need to
1541 * account our runtime there too, otherwise actual rt tasks
1542 * would be able to exceed the shared quota.
1543 *
1544 * Account to the root rt group for now.
1545 *
1546 * The solution we're working towards is having the RT groups scheduled
1547 * using deadline servers -- however there's a few nasties to figure
1548 * out before that can happen.
1549 */
1550 if (rt_bandwidth_enabled()) {
1551 struct rt_rq *rt_rq = &rq->rt;
1552
1553 raw_spin_lock(&rt_rq->rt_runtime_lock);
1554 /*
1555 * We'll let actual RT tasks worry about the overflow here, we
1556 * have our own CBS to keep us inline; only account when RT
1557 * bandwidth is relevant.
1558 */
1559 if (sched_rt_bandwidth_account(rt_rq))
1560 rt_rq->rt_time += delta_exec;
1561 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1562 }
1563 #endif /* CONFIG_RT_GROUP_SCHED */
1564 }
1565
1566 /*
1567 * In the non-defer mode, the idle time is not accounted, as the
1568 * server provides a guarantee.
1569 *
1570 * If the dl_server is in defer mode, the idle time is also considered
1571 * as time available for the fair server, avoiding a penalty for the
1572 * rt scheduler that did not consumed that time.
1573 */
dl_server_update_idle(struct sched_dl_entity * dl_se,s64 delta_exec)1574 void dl_server_update_idle(struct sched_dl_entity *dl_se, s64 delta_exec)
1575 {
1576 if (dl_se->dl_server_active && dl_se->dl_runtime && dl_se->dl_defer)
1577 update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1578 }
1579
dl_server_update(struct sched_dl_entity * dl_se,s64 delta_exec)1580 void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec)
1581 {
1582 /* 0 runtime = fair server disabled */
1583 if (dl_se->dl_server_active && dl_se->dl_runtime)
1584 update_curr_dl_se(dl_se->rq, dl_se, delta_exec);
1585 }
1586
1587 /*
1588 * dl_server && dl_defer:
1589 *
1590 * 6
1591 * +--------------------+
1592 * v |
1593 * +-------------+ 4 +-----------+ 5 +------------------+
1594 * +-> | A:init | <--- | D:running | -----> | E:replenish-wait |
1595 * | +-------------+ +-----------+ +------------------+
1596 * | | | 1 ^ ^ |
1597 * | | 1 +----------+ | 3 |
1598 * | v | |
1599 * | +--------------------------------+ 2 |
1600 * | | | ----+ |
1601 * | 8 | B:zero_laxity-wait | | |
1602 * | | | <---+ |
1603 * | +--------------------------------+ |
1604 * | | ^ ^ 2 |
1605 * | | 7 | 2, 1 +----------------+
1606 * | v |
1607 * | +-------------+ |
1608 * +-- | C:idle-wait | -+
1609 * +-------------+
1610 * ^ 7 |
1611 * +---------+
1612 *
1613 *
1614 * [A] - init
1615 * dl_server_active = 0
1616 * dl_throttled = 0
1617 * dl_defer_armed = 0
1618 * dl_defer_running = 0/1
1619 * dl_defer_idle = 0
1620 *
1621 * [B] - zero_laxity-wait
1622 * dl_server_active = 1
1623 * dl_throttled = 1
1624 * dl_defer_armed = 1
1625 * dl_defer_running = 0
1626 * dl_defer_idle = 0
1627 *
1628 * [C] - idle-wait
1629 * dl_server_active = 1
1630 * dl_throttled = 1
1631 * dl_defer_armed = 1
1632 * dl_defer_running = 0
1633 * dl_defer_idle = 1
1634 *
1635 * [D] - running
1636 * dl_server_active = 1
1637 * dl_throttled = 0
1638 * dl_defer_armed = 0
1639 * dl_defer_running = 1
1640 * dl_defer_idle = 0
1641 *
1642 * [E] - replenish-wait
1643 * dl_server_active = 1
1644 * dl_throttled = 1
1645 * dl_defer_armed = 0
1646 * dl_defer_running = 1
1647 * dl_defer_idle = 0
1648 *
1649 *
1650 * [1] A->B, A->D, C->B
1651 * dl_server_start()
1652 * dl_defer_idle = 0;
1653 * if (dl_server_active)
1654 * return; // [B]
1655 * dl_server_active = 1;
1656 * enqueue_dl_entity()
1657 * update_dl_entity(WAKEUP)
1658 * if (!dl_defer_running)
1659 * dl_defer_armed = 1;
1660 * dl_throttled = 1;
1661 * if (dl_throttled && start_dl_timer())
1662 * return; // [B]
1663 * __enqueue_dl_entity();
1664 * // [D]
1665 *
1666 * // deplete server runtime from client-class
1667 * [2] B->B, C->B, E->B
1668 * dl_server_update()
1669 * update_curr_dl_se() // idle = false
1670 * if (dl_defer_idle)
1671 * dl_defer_idle = 0;
1672 * if (dl_defer && dl_throttled && dl_runtime_exceeded())
1673 * dl_defer_running = 0;
1674 * hrtimer_try_to_cancel(); // stop timer
1675 * replenish_dl_new_period()
1676 * // fwd period
1677 * dl_throttled = 1;
1678 * dl_defer_armed = 1;
1679 * start_dl_timer(); // restart timer
1680 * // [B]
1681 *
1682 * // timer actually fires means we have runtime
1683 * [3] B->D
1684 * dl_server_timer()
1685 * if (dl_defer_armed)
1686 * dl_defer_running = 1;
1687 * enqueue_dl_entity(REPLENISH)
1688 * replenish_dl_entity()
1689 * // fwd period
1690 * if (dl_throttled)
1691 * dl_throttled = 0;
1692 * if (dl_defer_armed)
1693 * dl_defer_armed = 0;
1694 * __enqueue_dl_entity();
1695 * // [D]
1696 *
1697 * // schedule server
1698 * [4] D->A
1699 * pick_task_dl()
1700 * p = server_pick_task();
1701 * if (!p)
1702 * dl_server_stop()
1703 * dequeue_dl_entity();
1704 * hrtimer_try_to_cancel();
1705 * dl_defer_armed = 0;
1706 * dl_throttled = 0;
1707 * dl_server_active = 0;
1708 * // [A]
1709 * return p;
1710 *
1711 * // server running
1712 * [5] D->E
1713 * update_curr_dl_se()
1714 * if (dl_runtime_exceeded())
1715 * dl_throttled = 1;
1716 * dequeue_dl_entity();
1717 * start_dl_timer();
1718 * // [E]
1719 *
1720 * // server replenished
1721 * [6] E->D
1722 * dl_server_timer()
1723 * enqueue_dl_entity(REPLENISH)
1724 * replenish_dl_entity()
1725 * fwd-period
1726 * if (dl_throttled)
1727 * dl_throttled = 0;
1728 * __enqueue_dl_entity();
1729 * // [D]
1730 *
1731 * // deplete server runtime from idle
1732 * [7] B->C, C->C
1733 * dl_server_update_idle()
1734 * update_curr_dl_se() // idle = true
1735 * if (dl_defer && dl_throttled && dl_runtime_exceeded())
1736 * if (dl_defer_idle)
1737 * return;
1738 * dl_defer_running = 0;
1739 * hrtimer_try_to_cancel();
1740 * replenish_dl_new_period()
1741 * // fwd period
1742 * dl_throttled = 1;
1743 * dl_defer_armed = 1;
1744 * dl_defer_idle = 1;
1745 * start_dl_timer(); // restart timer
1746 * // [C]
1747 *
1748 * // stop idle server
1749 * [8] C->A
1750 * dl_server_timer()
1751 * if (dl_defer_idle)
1752 * dl_server_stop();
1753 * // [A]
1754 *
1755 *
1756 * digraph dl_server {
1757 * "A:init" -> "B:zero_laxity-wait" [label="1:dl_server_start"]
1758 * "A:init" -> "D:running" [label="1:dl_server_start"]
1759 * "B:zero_laxity-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"]
1760 * "B:zero_laxity-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"]
1761 * "B:zero_laxity-wait" -> "D:running" [label="3:dl_server_timer"]
1762 * "C:idle-wait" -> "A:init" [label="8:dl_server_timer"]
1763 * "C:idle-wait" -> "B:zero_laxity-wait" [label="1:dl_server_start"]
1764 * "C:idle-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"]
1765 * "C:idle-wait" -> "C:idle-wait" [label="7:dl_server_update_idle"]
1766 * "D:running" -> "A:init" [label="4:pick_task_dl"]
1767 * "D:running" -> "E:replenish-wait" [label="5:update_curr_dl_se"]
1768 * "E:replenish-wait" -> "B:zero_laxity-wait" [label="2:dl_server_update"]
1769 * "E:replenish-wait" -> "D:running" [label="6:dl_server_timer"]
1770 * }
1771 *
1772 *
1773 * Notes:
1774 *
1775 * - When there are fair tasks running the most likely loop is [2]->[2].
1776 * the dl_server never actually runs, the timer never fires.
1777 *
1778 * - When there is actual fair starvation; the timer fires and starts the
1779 * dl_server. This will then throttle and replenish like a normal DL
1780 * task. Notably it will not 'defer' again.
1781 *
1782 * - When idle it will push the actication forward once, and then wait
1783 * for the timer to hit or a non-idle update to restart things.
1784 */
dl_server_start(struct sched_dl_entity * dl_se)1785 void dl_server_start(struct sched_dl_entity *dl_se)
1786 {
1787 struct rq *rq = dl_se->rq;
1788
1789 dl_se->dl_defer_idle = 0;
1790 if (!dl_server(dl_se) || dl_se->dl_server_active)
1791 return;
1792
1793 /*
1794 * Update the current task to 'now'.
1795 */
1796 rq->donor->sched_class->update_curr(rq);
1797
1798 if (WARN_ON_ONCE(!cpu_online(cpu_of(rq))))
1799 return;
1800
1801 dl_se->dl_server_active = 1;
1802 enqueue_dl_entity(dl_se, ENQUEUE_WAKEUP);
1803 if (!dl_task(dl_se->rq->curr) || dl_entity_preempt(dl_se, &rq->curr->dl))
1804 resched_curr(dl_se->rq);
1805 }
1806
dl_server_stop(struct sched_dl_entity * dl_se)1807 void dl_server_stop(struct sched_dl_entity *dl_se)
1808 {
1809 if (!dl_server(dl_se) || !dl_server_active(dl_se))
1810 return;
1811
1812 dequeue_dl_entity(dl_se, DEQUEUE_SLEEP);
1813 hrtimer_try_to_cancel(&dl_se->dl_timer);
1814 dl_se->dl_defer_armed = 0;
1815 dl_se->dl_throttled = 0;
1816 dl_se->dl_defer_idle = 0;
1817 dl_se->dl_server_active = 0;
1818 }
1819
dl_server_init(struct sched_dl_entity * dl_se,struct rq * rq,dl_server_pick_f pick_task)1820 void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
1821 dl_server_pick_f pick_task)
1822 {
1823 dl_se->rq = rq;
1824 dl_se->server_pick_task = pick_task;
1825 }
1826
sched_init_dl_servers(void)1827 void sched_init_dl_servers(void)
1828 {
1829 int cpu;
1830 struct rq *rq;
1831 struct sched_dl_entity *dl_se;
1832
1833 for_each_online_cpu(cpu) {
1834 u64 runtime = 50 * NSEC_PER_MSEC;
1835 u64 period = 1000 * NSEC_PER_MSEC;
1836
1837 rq = cpu_rq(cpu);
1838
1839 guard(rq_lock_irq)(rq);
1840 update_rq_clock(rq);
1841
1842 dl_se = &rq->fair_server;
1843
1844 WARN_ON(dl_server(dl_se));
1845
1846 dl_server_apply_params(dl_se, runtime, period, 1);
1847
1848 dl_se->dl_server = 1;
1849 dl_se->dl_defer = 1;
1850 setup_new_dl_entity(dl_se);
1851 }
1852 }
1853
__dl_server_attach_root(struct sched_dl_entity * dl_se,struct rq * rq)1854 void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq)
1855 {
1856 u64 new_bw = dl_se->dl_bw;
1857 int cpu = cpu_of(rq);
1858 struct dl_bw *dl_b;
1859
1860 dl_b = dl_bw_of(cpu_of(rq));
1861 guard(raw_spinlock)(&dl_b->lock);
1862
1863 if (!dl_bw_cpus(cpu))
1864 return;
1865
1866 __dl_add(dl_b, new_bw, dl_bw_cpus(cpu));
1867 }
1868
dl_server_apply_params(struct sched_dl_entity * dl_se,u64 runtime,u64 period,bool init)1869 int dl_server_apply_params(struct sched_dl_entity *dl_se, u64 runtime, u64 period, bool init)
1870 {
1871 u64 old_bw = init ? 0 : to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1872 u64 new_bw = to_ratio(period, runtime);
1873 struct rq *rq = dl_se->rq;
1874 int cpu = cpu_of(rq);
1875 struct dl_bw *dl_b;
1876 unsigned long cap;
1877 int retval = 0;
1878 int cpus;
1879
1880 dl_b = dl_bw_of(cpu);
1881 guard(raw_spinlock)(&dl_b->lock);
1882
1883 cpus = dl_bw_cpus(cpu);
1884 cap = dl_bw_capacity(cpu);
1885
1886 if (__dl_overflow(dl_b, cap, old_bw, new_bw))
1887 return -EBUSY;
1888
1889 if (init) {
1890 __add_rq_bw(new_bw, &rq->dl);
1891 __dl_add(dl_b, new_bw, cpus);
1892 } else {
1893 __dl_sub(dl_b, dl_se->dl_bw, cpus);
1894 __dl_add(dl_b, new_bw, cpus);
1895
1896 dl_rq_change_utilization(rq, dl_se, new_bw);
1897 }
1898
1899 dl_se->dl_runtime = runtime;
1900 dl_se->dl_deadline = period;
1901 dl_se->dl_period = period;
1902
1903 dl_se->runtime = 0;
1904 dl_se->deadline = 0;
1905
1906 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
1907 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
1908
1909 return retval;
1910 }
1911
1912 /*
1913 * Update the current task's runtime statistics (provided it is still
1914 * a -deadline task and has not been removed from the dl_rq).
1915 */
update_curr_dl(struct rq * rq)1916 static void update_curr_dl(struct rq *rq)
1917 {
1918 struct task_struct *donor = rq->donor;
1919 struct sched_dl_entity *dl_se = &donor->dl;
1920 s64 delta_exec;
1921
1922 if (!dl_task(donor) || !on_dl_rq(dl_se))
1923 return;
1924
1925 /*
1926 * Consumed budget is computed considering the time as
1927 * observed by schedulable tasks (excluding time spent
1928 * in hardirq context, etc.). Deadlines are instead
1929 * computed using hard walltime. This seems to be the more
1930 * natural solution, but the full ramifications of this
1931 * approach need further study.
1932 */
1933 delta_exec = update_curr_common(rq);
1934 update_curr_dl_se(rq, dl_se, delta_exec);
1935 }
1936
inactive_task_timer(struct hrtimer * timer)1937 static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1938 {
1939 struct sched_dl_entity *dl_se = container_of(timer,
1940 struct sched_dl_entity,
1941 inactive_timer);
1942 struct task_struct *p = NULL;
1943 struct rq_flags rf;
1944 struct rq *rq;
1945
1946 if (!dl_server(dl_se)) {
1947 p = dl_task_of(dl_se);
1948 rq = task_rq_lock(p, &rf);
1949 } else {
1950 rq = dl_se->rq;
1951 rq_lock(rq, &rf);
1952 }
1953
1954 sched_clock_tick();
1955 update_rq_clock(rq);
1956
1957 if (dl_server(dl_se))
1958 goto no_task;
1959
1960 if (!dl_task(p) || READ_ONCE(p->__state) == TASK_DEAD) {
1961 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1962
1963 if (READ_ONCE(p->__state) == TASK_DEAD && dl_se->dl_non_contending) {
1964 sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1965 sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1966 dl_se->dl_non_contending = 0;
1967 }
1968
1969 raw_spin_lock(&dl_b->lock);
1970 __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1971 raw_spin_unlock(&dl_b->lock);
1972 __dl_clear_params(dl_se);
1973
1974 goto unlock;
1975 }
1976
1977 no_task:
1978 if (dl_se->dl_non_contending == 0)
1979 goto unlock;
1980
1981 sub_running_bw(dl_se, &rq->dl);
1982 dl_se->dl_non_contending = 0;
1983 unlock:
1984
1985 if (!dl_server(dl_se)) {
1986 task_rq_unlock(rq, p, &rf);
1987 put_task_struct(p);
1988 } else {
1989 rq_unlock(rq, &rf);
1990 }
1991
1992 return HRTIMER_NORESTART;
1993 }
1994
init_dl_inactive_task_timer(struct sched_dl_entity * dl_se)1995 static void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1996 {
1997 struct hrtimer *timer = &dl_se->inactive_timer;
1998
1999 hrtimer_setup(timer, inactive_task_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
2000 }
2001
2002 #define __node_2_dle(node) \
2003 rb_entry((node), struct sched_dl_entity, rb_node)
2004
inc_dl_deadline(struct dl_rq * dl_rq,u64 deadline)2005 static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
2006 {
2007 struct rq *rq = rq_of_dl_rq(dl_rq);
2008
2009 if (dl_rq->earliest_dl.curr == 0 ||
2010 dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
2011 if (dl_rq->earliest_dl.curr == 0)
2012 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_HIGHER);
2013 dl_rq->earliest_dl.curr = deadline;
2014 cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
2015 }
2016 }
2017
dec_dl_deadline(struct dl_rq * dl_rq,u64 deadline)2018 static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
2019 {
2020 struct rq *rq = rq_of_dl_rq(dl_rq);
2021
2022 /*
2023 * Since we may have removed our earliest (and/or next earliest)
2024 * task we must recompute them.
2025 */
2026 if (!dl_rq->dl_nr_running) {
2027 dl_rq->earliest_dl.curr = 0;
2028 dl_rq->earliest_dl.next = 0;
2029 cpudl_clear(&rq->rd->cpudl, rq->cpu, rq->online);
2030 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2031 } else {
2032 struct rb_node *leftmost = rb_first_cached(&dl_rq->root);
2033 struct sched_dl_entity *entry = __node_2_dle(leftmost);
2034
2035 dl_rq->earliest_dl.curr = entry->deadline;
2036 cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
2037 }
2038 }
2039
2040 static inline
inc_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)2041 void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
2042 {
2043 u64 deadline = dl_se->deadline;
2044
2045 dl_rq->dl_nr_running++;
2046
2047 if (!dl_server(dl_se))
2048 add_nr_running(rq_of_dl_rq(dl_rq), 1);
2049
2050 inc_dl_deadline(dl_rq, deadline);
2051 }
2052
2053 static inline
dec_dl_tasks(struct sched_dl_entity * dl_se,struct dl_rq * dl_rq)2054 void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
2055 {
2056 WARN_ON(!dl_rq->dl_nr_running);
2057 dl_rq->dl_nr_running--;
2058
2059 if (!dl_server(dl_se))
2060 sub_nr_running(rq_of_dl_rq(dl_rq), 1);
2061
2062 dec_dl_deadline(dl_rq, dl_se->deadline);
2063 }
2064
__dl_less(struct rb_node * a,const struct rb_node * b)2065 static inline bool __dl_less(struct rb_node *a, const struct rb_node *b)
2066 {
2067 return dl_time_before(__node_2_dle(a)->deadline, __node_2_dle(b)->deadline);
2068 }
2069
2070 static __always_inline struct sched_statistics *
__schedstats_from_dl_se(struct sched_dl_entity * dl_se)2071 __schedstats_from_dl_se(struct sched_dl_entity *dl_se)
2072 {
2073 if (!schedstat_enabled())
2074 return NULL;
2075
2076 if (dl_server(dl_se))
2077 return NULL;
2078
2079 return &dl_task_of(dl_se)->stats;
2080 }
2081
2082 static inline void
update_stats_wait_start_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)2083 update_stats_wait_start_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
2084 {
2085 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
2086 if (stats)
2087 __update_stats_wait_start(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
2088 }
2089
2090 static inline void
update_stats_wait_end_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)2091 update_stats_wait_end_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
2092 {
2093 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
2094 if (stats)
2095 __update_stats_wait_end(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
2096 }
2097
2098 static inline void
update_stats_enqueue_sleeper_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se)2099 update_stats_enqueue_sleeper_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se)
2100 {
2101 struct sched_statistics *stats = __schedstats_from_dl_se(dl_se);
2102 if (stats)
2103 __update_stats_enqueue_sleeper(rq_of_dl_rq(dl_rq), dl_task_of(dl_se), stats);
2104 }
2105
2106 static inline void
update_stats_enqueue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)2107 update_stats_enqueue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
2108 int flags)
2109 {
2110 if (!schedstat_enabled())
2111 return;
2112
2113 if (flags & ENQUEUE_WAKEUP)
2114 update_stats_enqueue_sleeper_dl(dl_rq, dl_se);
2115 }
2116
2117 static inline void
update_stats_dequeue_dl(struct dl_rq * dl_rq,struct sched_dl_entity * dl_se,int flags)2118 update_stats_dequeue_dl(struct dl_rq *dl_rq, struct sched_dl_entity *dl_se,
2119 int flags)
2120 {
2121 struct task_struct *p = dl_task_of(dl_se);
2122
2123 if (!schedstat_enabled())
2124 return;
2125
2126 if ((flags & DEQUEUE_SLEEP)) {
2127 unsigned int state;
2128
2129 state = READ_ONCE(p->__state);
2130 if (state & TASK_INTERRUPTIBLE)
2131 __schedstat_set(p->stats.sleep_start,
2132 rq_clock(rq_of_dl_rq(dl_rq)));
2133
2134 if (state & TASK_UNINTERRUPTIBLE)
2135 __schedstat_set(p->stats.block_start,
2136 rq_clock(rq_of_dl_rq(dl_rq)));
2137 }
2138 }
2139
__enqueue_dl_entity(struct sched_dl_entity * dl_se)2140 static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
2141 {
2142 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2143
2144 WARN_ON_ONCE(!RB_EMPTY_NODE(&dl_se->rb_node));
2145
2146 rb_add_cached(&dl_se->rb_node, &dl_rq->root, __dl_less);
2147
2148 inc_dl_tasks(dl_se, dl_rq);
2149 }
2150
__dequeue_dl_entity(struct sched_dl_entity * dl_se)2151 static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
2152 {
2153 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2154
2155 if (RB_EMPTY_NODE(&dl_se->rb_node))
2156 return;
2157
2158 rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
2159
2160 RB_CLEAR_NODE(&dl_se->rb_node);
2161
2162 dec_dl_tasks(dl_se, dl_rq);
2163 }
2164
2165 static void
enqueue_dl_entity(struct sched_dl_entity * dl_se,int flags)2166 enqueue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2167 {
2168 WARN_ON_ONCE(on_dl_rq(dl_se));
2169
2170 update_stats_enqueue_dl(dl_rq_of_se(dl_se), dl_se, flags);
2171
2172 /*
2173 * Check if a constrained deadline task was activated
2174 * after the deadline but before the next period.
2175 * If that is the case, the task will be throttled and
2176 * the replenishment timer will be set to the next period.
2177 */
2178 if (!dl_se->dl_throttled && !dl_is_implicit(dl_se))
2179 dl_check_constrained_dl(dl_se);
2180
2181 if (flags & (ENQUEUE_RESTORE|ENQUEUE_MIGRATING)) {
2182 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2183
2184 add_rq_bw(dl_se, dl_rq);
2185 add_running_bw(dl_se, dl_rq);
2186 }
2187
2188 /*
2189 * If p is throttled, we do not enqueue it. In fact, if it exhausted
2190 * its budget it needs a replenishment and, since it now is on
2191 * its rq, the bandwidth timer callback (which clearly has not
2192 * run yet) will take care of this.
2193 * However, the active utilization does not depend on the fact
2194 * that the task is on the runqueue or not (but depends on the
2195 * task's state - in GRUB parlance, "inactive" vs "active contending").
2196 * In other words, even if a task is throttled its utilization must
2197 * be counted in the active utilization; hence, we need to call
2198 * add_running_bw().
2199 */
2200 if (!dl_se->dl_defer && dl_se->dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
2201 if (flags & ENQUEUE_WAKEUP)
2202 task_contending(dl_se, flags);
2203
2204 return;
2205 }
2206
2207 /*
2208 * If this is a wakeup or a new instance, the scheduling
2209 * parameters of the task might need updating. Otherwise,
2210 * we want a replenishment of its runtime.
2211 */
2212 if (flags & ENQUEUE_WAKEUP) {
2213 task_contending(dl_se, flags);
2214 update_dl_entity(dl_se);
2215 } else if (flags & ENQUEUE_REPLENISH) {
2216 replenish_dl_entity(dl_se);
2217 } else if ((flags & ENQUEUE_MOVE) &&
2218 !is_dl_boosted(dl_se) &&
2219 dl_time_before(dl_se->deadline, rq_clock(rq_of_dl_se(dl_se)))) {
2220 setup_new_dl_entity(dl_se);
2221 }
2222
2223 /*
2224 * If the reservation is still throttled, e.g., it got replenished but is a
2225 * deferred task and still got to wait, don't enqueue.
2226 */
2227 if (dl_se->dl_throttled && start_dl_timer(dl_se))
2228 return;
2229
2230 /*
2231 * We're about to enqueue, make sure we're not ->dl_throttled!
2232 * In case the timer was not started, say because the defer time
2233 * has passed, mark as not throttled and mark unarmed.
2234 * Also cancel earlier timers, since letting those run is pointless.
2235 */
2236 if (dl_se->dl_throttled) {
2237 hrtimer_try_to_cancel(&dl_se->dl_timer);
2238 dl_se->dl_defer_armed = 0;
2239 dl_se->dl_throttled = 0;
2240 }
2241
2242 __enqueue_dl_entity(dl_se);
2243 }
2244
dequeue_dl_entity(struct sched_dl_entity * dl_se,int flags)2245 static void dequeue_dl_entity(struct sched_dl_entity *dl_se, int flags)
2246 {
2247 __dequeue_dl_entity(dl_se);
2248
2249 if (flags & (DEQUEUE_SAVE|DEQUEUE_MIGRATING)) {
2250 struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
2251
2252 sub_running_bw(dl_se, dl_rq);
2253 sub_rq_bw(dl_se, dl_rq);
2254 }
2255
2256 /*
2257 * This check allows to start the inactive timer (or to immediately
2258 * decrease the active utilization, if needed) in two cases:
2259 * when the task blocks and when it is terminating
2260 * (p->state == TASK_DEAD). We can handle the two cases in the same
2261 * way, because from GRUB's point of view the same thing is happening
2262 * (the task moves from "active contending" to "active non contending"
2263 * or "inactive")
2264 */
2265 if (flags & DEQUEUE_SLEEP)
2266 task_non_contending(dl_se, true);
2267 }
2268
enqueue_task_dl(struct rq * rq,struct task_struct * p,int flags)2269 static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2270 {
2271 if (is_dl_boosted(&p->dl)) {
2272 /*
2273 * Because of delays in the detection of the overrun of a
2274 * thread's runtime, it might be the case that a thread
2275 * goes to sleep in a rt mutex with negative runtime. As
2276 * a consequence, the thread will be throttled.
2277 *
2278 * While waiting for the mutex, this thread can also be
2279 * boosted via PI, resulting in a thread that is throttled
2280 * and boosted at the same time.
2281 *
2282 * In this case, the boost overrides the throttle.
2283 */
2284 if (p->dl.dl_throttled) {
2285 /*
2286 * The replenish timer needs to be canceled. No
2287 * problem if it fires concurrently: boosted threads
2288 * are ignored in dl_task_timer().
2289 */
2290 cancel_replenish_timer(&p->dl);
2291 p->dl.dl_throttled = 0;
2292 }
2293 } else if (!dl_prio(p->normal_prio)) {
2294 /*
2295 * Special case in which we have a !SCHED_DEADLINE task that is going
2296 * to be deboosted, but exceeds its runtime while doing so. No point in
2297 * replenishing it, as it's going to return back to its original
2298 * scheduling class after this. If it has been throttled, we need to
2299 * clear the flag, otherwise the task may wake up as throttled after
2300 * being boosted again with no means to replenish the runtime and clear
2301 * the throttle.
2302 */
2303 p->dl.dl_throttled = 0;
2304 if (!(flags & ENQUEUE_REPLENISH))
2305 printk_deferred_once("sched: DL de-boosted task PID %d: REPLENISH flag missing\n",
2306 task_pid_nr(p));
2307
2308 return;
2309 }
2310
2311 check_schedstat_required();
2312 update_stats_wait_start_dl(dl_rq_of_se(&p->dl), &p->dl);
2313
2314 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2315 flags |= ENQUEUE_MIGRATING;
2316
2317 enqueue_dl_entity(&p->dl, flags);
2318
2319 if (dl_server(&p->dl))
2320 return;
2321
2322 if (task_is_blocked(p))
2323 return;
2324
2325 if (!task_current(rq, p) && !p->dl.dl_throttled && p->nr_cpus_allowed > 1)
2326 enqueue_pushable_dl_task(rq, p);
2327 }
2328
dequeue_task_dl(struct rq * rq,struct task_struct * p,int flags)2329 static bool dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
2330 {
2331 update_curr_dl(rq);
2332
2333 if (p->on_rq == TASK_ON_RQ_MIGRATING)
2334 flags |= DEQUEUE_MIGRATING;
2335
2336 dequeue_dl_entity(&p->dl, flags);
2337 if (!p->dl.dl_throttled && !dl_server(&p->dl))
2338 dequeue_pushable_dl_task(rq, p);
2339
2340 return true;
2341 }
2342
2343 /*
2344 * Yield task semantic for -deadline tasks is:
2345 *
2346 * get off from the CPU until our next instance, with
2347 * a new runtime. This is of little use now, since we
2348 * don't have a bandwidth reclaiming mechanism. Anyway,
2349 * bandwidth reclaiming is planned for the future, and
2350 * yield_task_dl will indicate that some spare budget
2351 * is available for other task instances to use it.
2352 */
yield_task_dl(struct rq * rq)2353 static void yield_task_dl(struct rq *rq)
2354 {
2355 /*
2356 * We make the task go to sleep until its current deadline by
2357 * forcing its runtime to zero. This way, update_curr_dl() stops
2358 * it and the bandwidth timer will wake it up and will give it
2359 * new scheduling parameters (thanks to dl_yielded=1).
2360 */
2361 rq->donor->dl.dl_yielded = 1;
2362
2363 update_rq_clock(rq);
2364 update_curr_dl(rq);
2365 /*
2366 * Tell update_rq_clock() that we've just updated,
2367 * so we don't do microscopic update in schedule()
2368 * and double the fastpath cost.
2369 */
2370 rq_clock_skip_update(rq);
2371 }
2372
dl_task_is_earliest_deadline(struct task_struct * p,struct rq * rq)2373 static inline bool dl_task_is_earliest_deadline(struct task_struct *p,
2374 struct rq *rq)
2375 {
2376 return (!rq->dl.dl_nr_running ||
2377 dl_time_before(p->dl.deadline,
2378 rq->dl.earliest_dl.curr));
2379 }
2380
2381 static int find_later_rq(struct task_struct *task);
2382
2383 static int
select_task_rq_dl(struct task_struct * p,int cpu,int flags)2384 select_task_rq_dl(struct task_struct *p, int cpu, int flags)
2385 {
2386 struct task_struct *curr, *donor;
2387 bool select_rq;
2388 struct rq *rq;
2389
2390 if (!(flags & WF_TTWU))
2391 return cpu;
2392
2393 rq = cpu_rq(cpu);
2394
2395 rcu_read_lock();
2396 curr = READ_ONCE(rq->curr); /* unlocked access */
2397 donor = READ_ONCE(rq->donor);
2398
2399 /*
2400 * If we are dealing with a -deadline task, we must
2401 * decide where to wake it up.
2402 * If it has a later deadline and the current task
2403 * on this rq can't move (provided the waking task
2404 * can!) we prefer to send it somewhere else. On the
2405 * other hand, if it has a shorter deadline, we
2406 * try to make it stay here, it might be important.
2407 */
2408 select_rq = unlikely(dl_task(donor)) &&
2409 (curr->nr_cpus_allowed < 2 ||
2410 !dl_entity_preempt(&p->dl, &donor->dl)) &&
2411 p->nr_cpus_allowed > 1;
2412
2413 /*
2414 * Take the capacity of the CPU into account to
2415 * ensure it fits the requirement of the task.
2416 */
2417 if (sched_asym_cpucap_active())
2418 select_rq |= !dl_task_fits_capacity(p, cpu);
2419
2420 if (select_rq) {
2421 int target = find_later_rq(p);
2422
2423 if (target != -1 &&
2424 dl_task_is_earliest_deadline(p, cpu_rq(target)))
2425 cpu = target;
2426 }
2427 rcu_read_unlock();
2428
2429 return cpu;
2430 }
2431
migrate_task_rq_dl(struct task_struct * p,int new_cpu __maybe_unused)2432 static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
2433 {
2434 struct rq_flags rf;
2435 struct rq *rq;
2436
2437 if (READ_ONCE(p->__state) != TASK_WAKING)
2438 return;
2439
2440 rq = task_rq(p);
2441 /*
2442 * Since p->state == TASK_WAKING, set_task_cpu() has been called
2443 * from try_to_wake_up(). Hence, p->pi_lock is locked, but
2444 * rq->lock is not... So, lock it
2445 */
2446 rq_lock(rq, &rf);
2447 if (p->dl.dl_non_contending) {
2448 update_rq_clock(rq);
2449 sub_running_bw(&p->dl, &rq->dl);
2450 p->dl.dl_non_contending = 0;
2451 /*
2452 * If the timer handler is currently running and the
2453 * timer cannot be canceled, inactive_task_timer()
2454 * will see that dl_not_contending is not set, and
2455 * will not touch the rq's active utilization,
2456 * so we are still safe.
2457 */
2458 cancel_inactive_timer(&p->dl);
2459 }
2460 sub_rq_bw(&p->dl, &rq->dl);
2461 rq_unlock(rq, &rf);
2462 }
2463
check_preempt_equal_dl(struct rq * rq,struct task_struct * p)2464 static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
2465 {
2466 /*
2467 * Current can't be migrated, useless to reschedule,
2468 * let's hope p can move out.
2469 */
2470 if (rq->curr->nr_cpus_allowed == 1 ||
2471 !cpudl_find(&rq->rd->cpudl, rq->donor, NULL))
2472 return;
2473
2474 /*
2475 * p is migratable, so let's not schedule it and
2476 * see if it is pushed or pulled somewhere else.
2477 */
2478 if (p->nr_cpus_allowed != 1 &&
2479 cpudl_find(&rq->rd->cpudl, p, NULL))
2480 return;
2481
2482 resched_curr(rq);
2483 }
2484
balance_dl(struct rq * rq,struct task_struct * p,struct rq_flags * rf)2485 static int balance_dl(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
2486 {
2487 if (!on_dl_rq(&p->dl) && need_pull_dl_task(rq, p)) {
2488 /*
2489 * This is OK, because current is on_cpu, which avoids it being
2490 * picked for load-balance and preemption/IRQs are still
2491 * disabled avoiding further scheduler activity on it and we've
2492 * not yet started the picking loop.
2493 */
2494 rq_unpin_lock(rq, rf);
2495 pull_dl_task(rq);
2496 rq_repin_lock(rq, rf);
2497 }
2498
2499 return sched_stop_runnable(rq) || sched_dl_runnable(rq);
2500 }
2501
2502 /*
2503 * Only called when both the current and waking task are -deadline
2504 * tasks.
2505 */
wakeup_preempt_dl(struct rq * rq,struct task_struct * p,int flags)2506 static void wakeup_preempt_dl(struct rq *rq, struct task_struct *p,
2507 int flags)
2508 {
2509 if (dl_entity_preempt(&p->dl, &rq->donor->dl)) {
2510 resched_curr(rq);
2511 return;
2512 }
2513
2514 /*
2515 * In the unlikely case current and p have the same deadline
2516 * let us try to decide what's the best thing to do...
2517 */
2518 if ((p->dl.deadline == rq->donor->dl.deadline) &&
2519 !test_tsk_need_resched(rq->curr))
2520 check_preempt_equal_dl(rq, p);
2521 }
2522
2523 #ifdef CONFIG_SCHED_HRTICK
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2524 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2525 {
2526 hrtick_start(rq, dl_se->runtime);
2527 }
2528 #else /* !CONFIG_SCHED_HRTICK: */
start_hrtick_dl(struct rq * rq,struct sched_dl_entity * dl_se)2529 static void start_hrtick_dl(struct rq *rq, struct sched_dl_entity *dl_se)
2530 {
2531 }
2532 #endif /* !CONFIG_SCHED_HRTICK */
2533
set_next_task_dl(struct rq * rq,struct task_struct * p,bool first)2534 static void set_next_task_dl(struct rq *rq, struct task_struct *p, bool first)
2535 {
2536 struct sched_dl_entity *dl_se = &p->dl;
2537 struct dl_rq *dl_rq = &rq->dl;
2538
2539 p->se.exec_start = rq_clock_task(rq);
2540 if (on_dl_rq(&p->dl))
2541 update_stats_wait_end_dl(dl_rq, dl_se);
2542
2543 /* You can't push away the running task */
2544 dequeue_pushable_dl_task(rq, p);
2545
2546 if (!first)
2547 return;
2548
2549 if (rq->donor->sched_class != &dl_sched_class)
2550 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2551
2552 deadline_queue_push_tasks(rq);
2553
2554 if (hrtick_enabled_dl(rq))
2555 start_hrtick_dl(rq, &p->dl);
2556 }
2557
pick_next_dl_entity(struct dl_rq * dl_rq)2558 static struct sched_dl_entity *pick_next_dl_entity(struct dl_rq *dl_rq)
2559 {
2560 struct rb_node *left = rb_first_cached(&dl_rq->root);
2561
2562 if (!left)
2563 return NULL;
2564
2565 return __node_2_dle(left);
2566 }
2567
2568 /*
2569 * __pick_next_task_dl - Helper to pick the next -deadline task to run.
2570 * @rq: The runqueue to pick the next task from.
2571 */
__pick_task_dl(struct rq * rq,struct rq_flags * rf)2572 static struct task_struct *__pick_task_dl(struct rq *rq, struct rq_flags *rf)
2573 {
2574 struct sched_dl_entity *dl_se;
2575 struct dl_rq *dl_rq = &rq->dl;
2576 struct task_struct *p;
2577
2578 again:
2579 if (!sched_dl_runnable(rq))
2580 return NULL;
2581
2582 dl_se = pick_next_dl_entity(dl_rq);
2583 WARN_ON_ONCE(!dl_se);
2584
2585 if (dl_server(dl_se)) {
2586 p = dl_se->server_pick_task(dl_se, rf);
2587 if (!p) {
2588 dl_server_stop(dl_se);
2589 goto again;
2590 }
2591 rq->dl_server = dl_se;
2592 } else {
2593 p = dl_task_of(dl_se);
2594 }
2595
2596 return p;
2597 }
2598
pick_task_dl(struct rq * rq,struct rq_flags * rf)2599 static struct task_struct *pick_task_dl(struct rq *rq, struct rq_flags *rf)
2600 {
2601 return __pick_task_dl(rq, rf);
2602 }
2603
put_prev_task_dl(struct rq * rq,struct task_struct * p,struct task_struct * next)2604 static void put_prev_task_dl(struct rq *rq, struct task_struct *p, struct task_struct *next)
2605 {
2606 struct sched_dl_entity *dl_se = &p->dl;
2607 struct dl_rq *dl_rq = &rq->dl;
2608
2609 if (on_dl_rq(&p->dl))
2610 update_stats_wait_start_dl(dl_rq, dl_se);
2611
2612 update_curr_dl(rq);
2613
2614 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2615
2616 if (task_is_blocked(p))
2617 return;
2618
2619 if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
2620 enqueue_pushable_dl_task(rq, p);
2621 }
2622
2623 /*
2624 * scheduler tick hitting a task of our scheduling class.
2625 *
2626 * NOTE: This function can be called remotely by the tick offload that
2627 * goes along full dynticks. Therefore no local assumption can be made
2628 * and everything must be accessed through the @rq and @curr passed in
2629 * parameters.
2630 */
task_tick_dl(struct rq * rq,struct task_struct * p,int queued)2631 static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
2632 {
2633 update_curr_dl(rq);
2634
2635 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2636 /*
2637 * Even when we have runtime, update_curr_dl() might have resulted in us
2638 * not being the leftmost task anymore. In that case NEED_RESCHED will
2639 * be set and schedule() will start a new hrtick for the next task.
2640 */
2641 if (hrtick_enabled_dl(rq) && queued && p->dl.runtime > 0 &&
2642 is_leftmost(&p->dl, &rq->dl))
2643 start_hrtick_dl(rq, &p->dl);
2644 }
2645
task_fork_dl(struct task_struct * p)2646 static void task_fork_dl(struct task_struct *p)
2647 {
2648 /*
2649 * SCHED_DEADLINE tasks cannot fork and this is achieved through
2650 * sched_fork()
2651 */
2652 }
2653
2654 /* Only try algorithms three times */
2655 #define DL_MAX_TRIES 3
2656
2657 /*
2658 * Return the earliest pushable rq's task, which is suitable to be executed
2659 * on the CPU, NULL otherwise:
2660 */
pick_earliest_pushable_dl_task(struct rq * rq,int cpu)2661 static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
2662 {
2663 struct task_struct *p = NULL;
2664 struct rb_node *next_node;
2665
2666 if (!has_pushable_dl_tasks(rq))
2667 return NULL;
2668
2669 next_node = rb_first_cached(&rq->dl.pushable_dl_tasks_root);
2670 while (next_node) {
2671 p = __node_2_pdl(next_node);
2672
2673 if (task_is_pushable(rq, p, cpu))
2674 return p;
2675
2676 next_node = rb_next(next_node);
2677 }
2678
2679 return NULL;
2680 }
2681
2682 /* Access rule: must be called on local CPU with preemption disabled */
2683 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
2684
find_later_rq(struct task_struct * task)2685 static int find_later_rq(struct task_struct *task)
2686 {
2687 struct sched_domain *sd;
2688 struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
2689 int this_cpu = smp_processor_id();
2690 int cpu = task_cpu(task);
2691
2692 /* Make sure the mask is initialized first */
2693 if (unlikely(!later_mask))
2694 return -1;
2695
2696 if (task->nr_cpus_allowed == 1)
2697 return -1;
2698
2699 /*
2700 * We have to consider system topology and task affinity
2701 * first, then we can look for a suitable CPU.
2702 */
2703 if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
2704 return -1;
2705
2706 /*
2707 * If we are here, some targets have been found, including
2708 * the most suitable which is, among the runqueues where the
2709 * current tasks have later deadlines than the task's one, the
2710 * rq with the latest possible one.
2711 *
2712 * Now we check how well this matches with task's
2713 * affinity and system topology.
2714 *
2715 * The last CPU where the task run is our first
2716 * guess, since it is most likely cache-hot there.
2717 */
2718 if (cpumask_test_cpu(cpu, later_mask))
2719 return cpu;
2720 /*
2721 * Check if this_cpu is to be skipped (i.e., it is
2722 * not in the mask) or not.
2723 */
2724 if (!cpumask_test_cpu(this_cpu, later_mask))
2725 this_cpu = -1;
2726
2727 rcu_read_lock();
2728 for_each_domain(cpu, sd) {
2729 if (sd->flags & SD_WAKE_AFFINE) {
2730 int best_cpu;
2731
2732 /*
2733 * If possible, preempting this_cpu is
2734 * cheaper than migrating.
2735 */
2736 if (this_cpu != -1 &&
2737 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
2738 rcu_read_unlock();
2739 return this_cpu;
2740 }
2741
2742 best_cpu = cpumask_any_and_distribute(later_mask,
2743 sched_domain_span(sd));
2744 /*
2745 * Last chance: if a CPU being in both later_mask
2746 * and current sd span is valid, that becomes our
2747 * choice. Of course, the latest possible CPU is
2748 * already under consideration through later_mask.
2749 */
2750 if (best_cpu < nr_cpu_ids) {
2751 rcu_read_unlock();
2752 return best_cpu;
2753 }
2754 }
2755 }
2756 rcu_read_unlock();
2757
2758 /*
2759 * At this point, all our guesses failed, we just return
2760 * 'something', and let the caller sort the things out.
2761 */
2762 if (this_cpu != -1)
2763 return this_cpu;
2764
2765 cpu = cpumask_any_distribute(later_mask);
2766 if (cpu < nr_cpu_ids)
2767 return cpu;
2768
2769 return -1;
2770 }
2771
pick_next_pushable_dl_task(struct rq * rq)2772 static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2773 {
2774 struct task_struct *p;
2775
2776 if (!has_pushable_dl_tasks(rq))
2777 return NULL;
2778
2779 p = __node_2_pdl(rb_first_cached(&rq->dl.pushable_dl_tasks_root));
2780
2781 WARN_ON_ONCE(rq->cpu != task_cpu(p));
2782 WARN_ON_ONCE(task_current(rq, p));
2783 WARN_ON_ONCE(p->nr_cpus_allowed <= 1);
2784
2785 WARN_ON_ONCE(!task_on_rq_queued(p));
2786 WARN_ON_ONCE(!dl_task(p));
2787
2788 return p;
2789 }
2790
2791 /* Locks the rq it finds */
find_lock_later_rq(struct task_struct * task,struct rq * rq)2792 static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
2793 {
2794 struct rq *later_rq = NULL;
2795 int tries;
2796 int cpu;
2797
2798 for (tries = 0; tries < DL_MAX_TRIES; tries++) {
2799 cpu = find_later_rq(task);
2800
2801 if ((cpu == -1) || (cpu == rq->cpu))
2802 break;
2803
2804 later_rq = cpu_rq(cpu);
2805
2806 if (!dl_task_is_earliest_deadline(task, later_rq)) {
2807 /*
2808 * Target rq has tasks of equal or earlier deadline,
2809 * retrying does not release any lock and is unlikely
2810 * to yield a different result.
2811 */
2812 later_rq = NULL;
2813 break;
2814 }
2815
2816 /* Retry if something changed. */
2817 if (double_lock_balance(rq, later_rq)) {
2818 /*
2819 * double_lock_balance had to release rq->lock, in the
2820 * meantime, task may no longer be fit to be migrated.
2821 * Check the following to ensure that the task is
2822 * still suitable for migration:
2823 * 1. It is possible the task was scheduled,
2824 * migrate_disabled was set and then got preempted,
2825 * so we must check the task migration disable
2826 * flag.
2827 * 2. The CPU picked is in the task's affinity.
2828 * 3. For throttled task (dl_task_offline_migration),
2829 * check the following:
2830 * - the task is not on the rq anymore (it was
2831 * migrated)
2832 * - the task is not on CPU anymore
2833 * - the task is still a dl task
2834 * - the task is not queued on the rq anymore
2835 * 4. For the non-throttled task (push_dl_task), the
2836 * check to ensure that this task is still at the
2837 * head of the pushable tasks list is enough.
2838 */
2839 if (unlikely(is_migration_disabled(task) ||
2840 !cpumask_test_cpu(later_rq->cpu, &task->cpus_mask) ||
2841 (task->dl.dl_throttled &&
2842 (task_rq(task) != rq ||
2843 task_on_cpu(rq, task) ||
2844 !dl_task(task) ||
2845 !task_on_rq_queued(task))) ||
2846 (!task->dl.dl_throttled &&
2847 task != pick_next_pushable_dl_task(rq)))) {
2848
2849 double_unlock_balance(rq, later_rq);
2850 later_rq = NULL;
2851 break;
2852 }
2853 }
2854
2855 /*
2856 * If the rq we found has no -deadline task, or
2857 * its earliest one has a later deadline than our
2858 * task, the rq is a good one.
2859 */
2860 if (dl_task_is_earliest_deadline(task, later_rq))
2861 break;
2862
2863 /* Otherwise we try again. */
2864 double_unlock_balance(rq, later_rq);
2865 later_rq = NULL;
2866 }
2867
2868 return later_rq;
2869 }
2870
2871 /*
2872 * See if the non running -deadline tasks on this rq
2873 * can be sent to some other CPU where they can preempt
2874 * and start executing.
2875 */
push_dl_task(struct rq * rq)2876 static int push_dl_task(struct rq *rq)
2877 {
2878 struct task_struct *next_task;
2879 struct rq *later_rq;
2880 int ret = 0;
2881
2882 next_task = pick_next_pushable_dl_task(rq);
2883 if (!next_task)
2884 return 0;
2885
2886 retry:
2887 /*
2888 * If next_task preempts rq->curr, and rq->curr
2889 * can move away, it makes sense to just reschedule
2890 * without going further in pushing next_task.
2891 */
2892 if (dl_task(rq->donor) &&
2893 dl_time_before(next_task->dl.deadline, rq->donor->dl.deadline) &&
2894 rq->curr->nr_cpus_allowed > 1) {
2895 resched_curr(rq);
2896 return 0;
2897 }
2898
2899 if (is_migration_disabled(next_task))
2900 return 0;
2901
2902 if (WARN_ON(next_task == rq->curr))
2903 return 0;
2904
2905 /* We might release rq lock */
2906 get_task_struct(next_task);
2907
2908 /* Will lock the rq it'll find */
2909 later_rq = find_lock_later_rq(next_task, rq);
2910 if (!later_rq) {
2911 struct task_struct *task;
2912
2913 /*
2914 * We must check all this again, since
2915 * find_lock_later_rq releases rq->lock and it is
2916 * then possible that next_task has migrated.
2917 */
2918 task = pick_next_pushable_dl_task(rq);
2919 if (task == next_task) {
2920 /*
2921 * The task is still there. We don't try
2922 * again, some other CPU will pull it when ready.
2923 */
2924 goto out;
2925 }
2926
2927 if (!task)
2928 /* No more tasks */
2929 goto out;
2930
2931 put_task_struct(next_task);
2932 next_task = task;
2933 goto retry;
2934 }
2935
2936 move_queued_task_locked(rq, later_rq, next_task);
2937 ret = 1;
2938
2939 resched_curr(later_rq);
2940
2941 double_unlock_balance(rq, later_rq);
2942
2943 out:
2944 put_task_struct(next_task);
2945
2946 return ret;
2947 }
2948
push_dl_tasks(struct rq * rq)2949 static void push_dl_tasks(struct rq *rq)
2950 {
2951 /* push_dl_task() will return true if it moved a -deadline task */
2952 while (push_dl_task(rq))
2953 ;
2954 }
2955
pull_dl_task(struct rq * this_rq)2956 static void pull_dl_task(struct rq *this_rq)
2957 {
2958 int this_cpu = this_rq->cpu, cpu;
2959 struct task_struct *p, *push_task;
2960 bool resched = false;
2961 struct rq *src_rq;
2962 u64 dmin = LONG_MAX;
2963
2964 if (likely(!dl_overloaded(this_rq)))
2965 return;
2966
2967 /*
2968 * Match the barrier from dl_set_overloaded; this guarantees that if we
2969 * see overloaded we must also see the dlo_mask bit.
2970 */
2971 smp_rmb();
2972
2973 for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2974 if (this_cpu == cpu)
2975 continue;
2976
2977 src_rq = cpu_rq(cpu);
2978
2979 /*
2980 * It looks racy, and it is! However, as in sched_rt.c,
2981 * we are fine with this.
2982 */
2983 if (this_rq->dl.dl_nr_running &&
2984 dl_time_before(this_rq->dl.earliest_dl.curr,
2985 src_rq->dl.earliest_dl.next))
2986 continue;
2987
2988 /* Might drop this_rq->lock */
2989 push_task = NULL;
2990 double_lock_balance(this_rq, src_rq);
2991
2992 /*
2993 * If there are no more pullable tasks on the
2994 * rq, we're done with it.
2995 */
2996 if (src_rq->dl.dl_nr_running <= 1)
2997 goto skip;
2998
2999 p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
3000
3001 /*
3002 * We found a task to be pulled if:
3003 * - it preempts our current (if there's one),
3004 * - it will preempt the last one we pulled (if any).
3005 */
3006 if (p && dl_time_before(p->dl.deadline, dmin) &&
3007 dl_task_is_earliest_deadline(p, this_rq)) {
3008 WARN_ON(p == src_rq->curr);
3009 WARN_ON(!task_on_rq_queued(p));
3010
3011 /*
3012 * Then we pull iff p has actually an earlier
3013 * deadline than the current task of its runqueue.
3014 */
3015 if (dl_time_before(p->dl.deadline,
3016 src_rq->donor->dl.deadline))
3017 goto skip;
3018
3019 if (is_migration_disabled(p)) {
3020 push_task = get_push_task(src_rq);
3021 } else {
3022 move_queued_task_locked(src_rq, this_rq, p);
3023 dmin = p->dl.deadline;
3024 resched = true;
3025 }
3026
3027 /* Is there any other task even earlier? */
3028 }
3029 skip:
3030 double_unlock_balance(this_rq, src_rq);
3031
3032 if (push_task) {
3033 preempt_disable();
3034 raw_spin_rq_unlock(this_rq);
3035 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
3036 push_task, &src_rq->push_work);
3037 preempt_enable();
3038 raw_spin_rq_lock(this_rq);
3039 }
3040 }
3041
3042 if (resched)
3043 resched_curr(this_rq);
3044 }
3045
3046 /*
3047 * Since the task is not running and a reschedule is not going to happen
3048 * anytime soon on its runqueue, we try pushing it away now.
3049 */
task_woken_dl(struct rq * rq,struct task_struct * p)3050 static void task_woken_dl(struct rq *rq, struct task_struct *p)
3051 {
3052 if (!task_on_cpu(rq, p) &&
3053 !test_tsk_need_resched(rq->curr) &&
3054 p->nr_cpus_allowed > 1 &&
3055 dl_task(rq->donor) &&
3056 (rq->curr->nr_cpus_allowed < 2 ||
3057 !dl_entity_preempt(&p->dl, &rq->donor->dl))) {
3058 push_dl_tasks(rq);
3059 }
3060 }
3061
set_cpus_allowed_dl(struct task_struct * p,struct affinity_context * ctx)3062 static void set_cpus_allowed_dl(struct task_struct *p,
3063 struct affinity_context *ctx)
3064 {
3065 struct root_domain *src_rd;
3066 struct rq *rq;
3067
3068 WARN_ON_ONCE(!dl_task(p));
3069
3070 rq = task_rq(p);
3071 src_rd = rq->rd;
3072 /*
3073 * Migrating a SCHED_DEADLINE task between exclusive
3074 * cpusets (different root_domains) entails a bandwidth
3075 * update. We already made space for us in the destination
3076 * domain (see cpuset_can_attach()).
3077 */
3078 if (!cpumask_intersects(src_rd->span, ctx->new_mask)) {
3079 struct dl_bw *src_dl_b;
3080
3081 src_dl_b = dl_bw_of(cpu_of(rq));
3082 /*
3083 * We now free resources of the root_domain we are migrating
3084 * off. In the worst case, sched_setattr() may temporary fail
3085 * until we complete the update.
3086 */
3087 raw_spin_lock(&src_dl_b->lock);
3088 __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
3089 raw_spin_unlock(&src_dl_b->lock);
3090 }
3091
3092 set_cpus_allowed_common(p, ctx);
3093 }
3094
3095 /* Assumes rq->lock is held */
rq_online_dl(struct rq * rq)3096 static void rq_online_dl(struct rq *rq)
3097 {
3098 if (rq->dl.overloaded)
3099 dl_set_overload(rq);
3100
3101 if (rq->dl.dl_nr_running > 0)
3102 cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
3103 else
3104 cpudl_clear(&rq->rd->cpudl, rq->cpu, true);
3105 }
3106
3107 /* Assumes rq->lock is held */
rq_offline_dl(struct rq * rq)3108 static void rq_offline_dl(struct rq *rq)
3109 {
3110 if (rq->dl.overloaded)
3111 dl_clear_overload(rq);
3112
3113 cpudl_clear(&rq->rd->cpudl, rq->cpu, false);
3114 }
3115
init_sched_dl_class(void)3116 void __init init_sched_dl_class(void)
3117 {
3118 unsigned int i;
3119
3120 for_each_possible_cpu(i)
3121 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
3122 GFP_KERNEL, cpu_to_node(i));
3123 }
3124
3125 /*
3126 * This function always returns a non-empty bitmap in @cpus. This is because
3127 * if a root domain has reserved bandwidth for DL tasks, the DL bandwidth
3128 * check will prevent CPU hotplug from deactivating all CPUs in that domain.
3129 */
dl_get_task_effective_cpus(struct task_struct * p,struct cpumask * cpus)3130 static void dl_get_task_effective_cpus(struct task_struct *p, struct cpumask *cpus)
3131 {
3132 const struct cpumask *hk_msk;
3133
3134 hk_msk = housekeeping_cpumask(HK_TYPE_DOMAIN);
3135 if (housekeeping_enabled(HK_TYPE_DOMAIN)) {
3136 if (!cpumask_intersects(p->cpus_ptr, hk_msk)) {
3137 /*
3138 * CPUs isolated by isolcpu="domain" always belong to
3139 * def_root_domain.
3140 */
3141 cpumask_andnot(cpus, cpu_active_mask, hk_msk);
3142 return;
3143 }
3144 }
3145
3146 /*
3147 * If a root domain holds a DL task, it must have active CPUs. So
3148 * active CPUs can always be found by walking up the task's cpuset
3149 * hierarchy up to the partition root.
3150 */
3151 cpuset_cpus_allowed_locked(p, cpus);
3152 }
3153
3154 /* The caller should hold cpuset_mutex */
dl_add_task_root_domain(struct task_struct * p)3155 void dl_add_task_root_domain(struct task_struct *p)
3156 {
3157 struct rq_flags rf;
3158 struct rq *rq;
3159 struct dl_bw *dl_b;
3160 unsigned int cpu;
3161 struct cpumask *msk;
3162
3163 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3164 if (!dl_task(p) || dl_entity_is_special(&p->dl)) {
3165 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3166 return;
3167 }
3168
3169 msk = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
3170 dl_get_task_effective_cpus(p, msk);
3171 cpu = cpumask_first_and(cpu_active_mask, msk);
3172 BUG_ON(cpu >= nr_cpu_ids);
3173 rq = cpu_rq(cpu);
3174 dl_b = &rq->rd->dl_bw;
3175
3176 raw_spin_lock(&dl_b->lock);
3177 __dl_add(dl_b, p->dl.dl_bw, cpumask_weight(rq->rd->span));
3178 raw_spin_unlock(&dl_b->lock);
3179 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3180 }
3181
dl_clear_root_domain(struct root_domain * rd)3182 void dl_clear_root_domain(struct root_domain *rd)
3183 {
3184 int i;
3185
3186 guard(raw_spinlock_irqsave)(&rd->dl_bw.lock);
3187
3188 /*
3189 * Reset total_bw to zero and extra_bw to max_bw so that next
3190 * loop will add dl-servers contributions back properly,
3191 */
3192 rd->dl_bw.total_bw = 0;
3193 for_each_cpu(i, rd->span)
3194 cpu_rq(i)->dl.extra_bw = cpu_rq(i)->dl.max_bw;
3195
3196 /*
3197 * dl_servers are not tasks. Since dl_add_task_root_domain ignores
3198 * them, we need to account for them here explicitly.
3199 */
3200 for_each_cpu(i, rd->span) {
3201 struct sched_dl_entity *dl_se = &cpu_rq(i)->fair_server;
3202
3203 if (dl_server(dl_se) && cpu_active(i))
3204 __dl_add(&rd->dl_bw, dl_se->dl_bw, dl_bw_cpus(i));
3205 }
3206 }
3207
dl_clear_root_domain_cpu(int cpu)3208 void dl_clear_root_domain_cpu(int cpu)
3209 {
3210 dl_clear_root_domain(cpu_rq(cpu)->rd);
3211 }
3212
switched_from_dl(struct rq * rq,struct task_struct * p)3213 static void switched_from_dl(struct rq *rq, struct task_struct *p)
3214 {
3215 /*
3216 * task_non_contending() can start the "inactive timer" (if the 0-lag
3217 * time is in the future). If the task switches back to dl before
3218 * the "inactive timer" fires, it can continue to consume its current
3219 * runtime using its current deadline. If it stays outside of
3220 * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
3221 * will reset the task parameters.
3222 */
3223 if (task_on_rq_queued(p) && p->dl.dl_runtime)
3224 task_non_contending(&p->dl, false);
3225
3226 /*
3227 * In case a task is setscheduled out from SCHED_DEADLINE we need to
3228 * keep track of that on its cpuset (for correct bandwidth tracking).
3229 */
3230 dec_dl_tasks_cs(p);
3231
3232 if (!task_on_rq_queued(p)) {
3233 /*
3234 * Inactive timer is armed. However, p is leaving DEADLINE and
3235 * might migrate away from this rq while continuing to run on
3236 * some other class. We need to remove its contribution from
3237 * this rq running_bw now, or sub_rq_bw (below) will complain.
3238 */
3239 if (p->dl.dl_non_contending)
3240 sub_running_bw(&p->dl, &rq->dl);
3241 sub_rq_bw(&p->dl, &rq->dl);
3242 }
3243
3244 /*
3245 * We cannot use inactive_task_timer() to invoke sub_running_bw()
3246 * at the 0-lag time, because the task could have been migrated
3247 * while SCHED_OTHER in the meanwhile.
3248 */
3249 if (p->dl.dl_non_contending)
3250 p->dl.dl_non_contending = 0;
3251
3252 /*
3253 * Since this might be the only -deadline task on the rq,
3254 * this is the right place to try to pull some other one
3255 * from an overloaded CPU, if any.
3256 */
3257 if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
3258 return;
3259
3260 deadline_queue_pull_task(rq);
3261 }
3262
3263 /*
3264 * When switching to -deadline, we may overload the rq, then
3265 * we try to push someone off, if possible.
3266 */
switched_to_dl(struct rq * rq,struct task_struct * p)3267 static void switched_to_dl(struct rq *rq, struct task_struct *p)
3268 {
3269 cancel_inactive_timer(&p->dl);
3270
3271 /*
3272 * In case a task is setscheduled to SCHED_DEADLINE we need to keep
3273 * track of that on its cpuset (for correct bandwidth tracking).
3274 */
3275 inc_dl_tasks_cs(p);
3276
3277 /* If p is not queued we will update its parameters at next wakeup. */
3278 if (!task_on_rq_queued(p)) {
3279 add_rq_bw(&p->dl, &rq->dl);
3280
3281 return;
3282 }
3283
3284 if (rq->donor != p) {
3285 if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
3286 deadline_queue_push_tasks(rq);
3287 if (dl_task(rq->donor))
3288 wakeup_preempt_dl(rq, p, 0);
3289 else
3290 resched_curr(rq);
3291 } else {
3292 update_dl_rq_load_avg(rq_clock_pelt(rq), rq, 0);
3293 }
3294 }
3295
get_prio_dl(struct rq * rq,struct task_struct * p)3296 static u64 get_prio_dl(struct rq *rq, struct task_struct *p)
3297 {
3298 /*
3299 * Make sure to update current so we don't return a stale value.
3300 */
3301 if (task_current_donor(rq, p))
3302 update_curr_dl(rq);
3303
3304 return p->dl.deadline;
3305 }
3306
3307 /*
3308 * If the scheduling parameters of a -deadline task changed,
3309 * a push or pull operation might be needed.
3310 */
prio_changed_dl(struct rq * rq,struct task_struct * p,u64 old_deadline)3311 static void prio_changed_dl(struct rq *rq, struct task_struct *p, u64 old_deadline)
3312 {
3313 if (!task_on_rq_queued(p))
3314 return;
3315
3316 if (p->dl.deadline == old_deadline)
3317 return;
3318
3319 if (dl_time_before(old_deadline, p->dl.deadline))
3320 deadline_queue_pull_task(rq);
3321
3322 if (task_current_donor(rq, p)) {
3323 /*
3324 * If we now have a earlier deadline task than p,
3325 * then reschedule, provided p is still on this
3326 * runqueue.
3327 */
3328 if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
3329 resched_curr(rq);
3330 } else {
3331 /*
3332 * Current may not be deadline in case p was throttled but we
3333 * have just replenished it (e.g. rt_mutex_setprio()).
3334 *
3335 * Otherwise, if p was given an earlier deadline, reschedule.
3336 */
3337 if (!dl_task(rq->curr) ||
3338 dl_time_before(p->dl.deadline, rq->curr->dl.deadline))
3339 resched_curr(rq);
3340 }
3341 }
3342
3343 #ifdef CONFIG_SCHED_CORE
task_is_throttled_dl(struct task_struct * p,int cpu)3344 static int task_is_throttled_dl(struct task_struct *p, int cpu)
3345 {
3346 return p->dl.dl_throttled;
3347 }
3348 #endif
3349
3350 DEFINE_SCHED_CLASS(dl) = {
3351
3352 .queue_mask = 8,
3353
3354 .enqueue_task = enqueue_task_dl,
3355 .dequeue_task = dequeue_task_dl,
3356 .yield_task = yield_task_dl,
3357
3358 .wakeup_preempt = wakeup_preempt_dl,
3359
3360 .pick_task = pick_task_dl,
3361 .put_prev_task = put_prev_task_dl,
3362 .set_next_task = set_next_task_dl,
3363
3364 .balance = balance_dl,
3365 .select_task_rq = select_task_rq_dl,
3366 .migrate_task_rq = migrate_task_rq_dl,
3367 .set_cpus_allowed = set_cpus_allowed_dl,
3368 .rq_online = rq_online_dl,
3369 .rq_offline = rq_offline_dl,
3370 .task_woken = task_woken_dl,
3371 .find_lock_rq = find_lock_later_rq,
3372
3373 .task_tick = task_tick_dl,
3374 .task_fork = task_fork_dl,
3375
3376 .get_prio = get_prio_dl,
3377 .prio_changed = prio_changed_dl,
3378 .switched_from = switched_from_dl,
3379 .switched_to = switched_to_dl,
3380
3381 .update_curr = update_curr_dl,
3382 #ifdef CONFIG_SCHED_CORE
3383 .task_is_throttled = task_is_throttled_dl,
3384 #endif
3385 };
3386
3387 /*
3388 * Used for dl_bw check and update, used under sched_rt_handler()::mutex and
3389 * sched_domains_mutex.
3390 */
3391 u64 dl_cookie;
3392
sched_dl_global_validate(void)3393 int sched_dl_global_validate(void)
3394 {
3395 u64 runtime = global_rt_runtime();
3396 u64 period = global_rt_period();
3397 u64 new_bw = to_ratio(period, runtime);
3398 u64 cookie = ++dl_cookie;
3399 struct dl_bw *dl_b;
3400 int cpu, cpus, ret = 0;
3401 unsigned long flags;
3402
3403 /*
3404 * Here we want to check the bandwidth not being set to some
3405 * value smaller than the currently allocated bandwidth in
3406 * any of the root_domains.
3407 */
3408 for_each_online_cpu(cpu) {
3409 rcu_read_lock_sched();
3410
3411 if (dl_bw_visited(cpu, cookie))
3412 goto next;
3413
3414 dl_b = dl_bw_of(cpu);
3415 cpus = dl_bw_cpus(cpu);
3416
3417 raw_spin_lock_irqsave(&dl_b->lock, flags);
3418 if (new_bw * cpus < dl_b->total_bw)
3419 ret = -EBUSY;
3420 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3421
3422 next:
3423 rcu_read_unlock_sched();
3424
3425 if (ret)
3426 break;
3427 }
3428
3429 return ret;
3430 }
3431
init_dl_rq_bw_ratio(struct dl_rq * dl_rq)3432 static void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
3433 {
3434 if (global_rt_runtime() == RUNTIME_INF) {
3435 dl_rq->bw_ratio = 1 << RATIO_SHIFT;
3436 dl_rq->max_bw = dl_rq->extra_bw = 1 << BW_SHIFT;
3437 } else {
3438 dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
3439 global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
3440 dl_rq->max_bw = dl_rq->extra_bw =
3441 to_ratio(global_rt_period(), global_rt_runtime());
3442 }
3443 }
3444
sched_dl_do_global(void)3445 void sched_dl_do_global(void)
3446 {
3447 u64 new_bw = -1;
3448 u64 cookie = ++dl_cookie;
3449 struct dl_bw *dl_b;
3450 int cpu;
3451 unsigned long flags;
3452
3453 if (global_rt_runtime() != RUNTIME_INF)
3454 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
3455
3456 for_each_possible_cpu(cpu)
3457 init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
3458
3459 for_each_possible_cpu(cpu) {
3460 rcu_read_lock_sched();
3461
3462 if (dl_bw_visited(cpu, cookie)) {
3463 rcu_read_unlock_sched();
3464 continue;
3465 }
3466
3467 dl_b = dl_bw_of(cpu);
3468
3469 raw_spin_lock_irqsave(&dl_b->lock, flags);
3470 dl_b->bw = new_bw;
3471 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3472
3473 rcu_read_unlock_sched();
3474 }
3475 }
3476
3477 /*
3478 * We must be sure that accepting a new task (or allowing changing the
3479 * parameters of an existing one) is consistent with the bandwidth
3480 * constraints. If yes, this function also accordingly updates the currently
3481 * allocated bandwidth to reflect the new situation.
3482 *
3483 * This function is called while holding p's rq->lock.
3484 */
sched_dl_overflow(struct task_struct * p,int policy,const struct sched_attr * attr)3485 int sched_dl_overflow(struct task_struct *p, int policy,
3486 const struct sched_attr *attr)
3487 {
3488 u64 period = attr->sched_period ?: attr->sched_deadline;
3489 u64 runtime = attr->sched_runtime;
3490 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
3491 int cpus, err = -1, cpu = task_cpu(p);
3492 struct dl_bw *dl_b = dl_bw_of(cpu);
3493 unsigned long cap;
3494
3495 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3496 return 0;
3497
3498 /* !deadline task may carry old deadline bandwidth */
3499 if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
3500 return 0;
3501
3502 /*
3503 * Either if a task, enters, leave, or stays -deadline but changes
3504 * its parameters, we may need to update accordingly the total
3505 * allocated bandwidth of the container.
3506 */
3507 raw_spin_lock(&dl_b->lock);
3508 cpus = dl_bw_cpus(cpu);
3509 cap = dl_bw_capacity(cpu);
3510
3511 if (dl_policy(policy) && !task_has_dl_policy(p) &&
3512 !__dl_overflow(dl_b, cap, 0, new_bw)) {
3513 if (hrtimer_active(&p->dl.inactive_timer))
3514 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3515 __dl_add(dl_b, new_bw, cpus);
3516 err = 0;
3517 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
3518 !__dl_overflow(dl_b, cap, p->dl.dl_bw, new_bw)) {
3519 /*
3520 * XXX this is slightly incorrect: when the task
3521 * utilization decreases, we should delay the total
3522 * utilization change until the task's 0-lag point.
3523 * But this would require to set the task's "inactive
3524 * timer" when the task is not inactive.
3525 */
3526 __dl_sub(dl_b, p->dl.dl_bw, cpus);
3527 __dl_add(dl_b, new_bw, cpus);
3528 dl_change_utilization(p, new_bw);
3529 err = 0;
3530 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
3531 /*
3532 * Do not decrease the total deadline utilization here,
3533 * switched_from_dl() will take care to do it at the correct
3534 * (0-lag) time.
3535 */
3536 err = 0;
3537 }
3538 raw_spin_unlock(&dl_b->lock);
3539
3540 return err;
3541 }
3542
3543 /*
3544 * This function initializes the sched_dl_entity of a newly becoming
3545 * SCHED_DEADLINE task.
3546 *
3547 * Only the static values are considered here, the actual runtime and the
3548 * absolute deadline will be properly calculated when the task is enqueued
3549 * for the first time with its new policy.
3550 */
__setparam_dl(struct task_struct * p,const struct sched_attr * attr)3551 void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3552 {
3553 struct sched_dl_entity *dl_se = &p->dl;
3554
3555 dl_se->dl_runtime = attr->sched_runtime;
3556 dl_se->dl_deadline = attr->sched_deadline;
3557 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
3558 dl_se->flags = attr->sched_flags & SCHED_DL_FLAGS;
3559 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
3560 dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
3561 }
3562
__getparam_dl(struct task_struct * p,struct sched_attr * attr)3563 void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
3564 {
3565 struct sched_dl_entity *dl_se = &p->dl;
3566
3567 attr->sched_priority = p->rt_priority;
3568 attr->sched_runtime = dl_se->dl_runtime;
3569 attr->sched_deadline = dl_se->dl_deadline;
3570 attr->sched_period = dl_se->dl_period;
3571 attr->sched_flags &= ~SCHED_DL_FLAGS;
3572 attr->sched_flags |= dl_se->flags;
3573 }
3574
3575 /*
3576 * This function validates the new parameters of a -deadline task.
3577 * We ask for the deadline not being zero, and greater or equal
3578 * than the runtime, as well as the period of being zero or
3579 * greater than deadline. Furthermore, we have to be sure that
3580 * user parameters are above the internal resolution of 1us (we
3581 * check sched_runtime only since it is always the smaller one) and
3582 * below 2^63 ns (we have to check both sched_deadline and
3583 * sched_period, as the latter can be zero).
3584 */
__checkparam_dl(const struct sched_attr * attr)3585 bool __checkparam_dl(const struct sched_attr *attr)
3586 {
3587 u64 period, max, min;
3588
3589 /* special dl tasks don't actually use any parameter */
3590 if (attr->sched_flags & SCHED_FLAG_SUGOV)
3591 return true;
3592
3593 /* deadline != 0 */
3594 if (attr->sched_deadline == 0)
3595 return false;
3596
3597 /*
3598 * Since we truncate DL_SCALE bits, make sure we're at least
3599 * that big.
3600 */
3601 if (attr->sched_runtime < (1ULL << DL_SCALE))
3602 return false;
3603
3604 /*
3605 * Since we use the MSB for wrap-around and sign issues, make
3606 * sure it's not set (mind that period can be equal to zero).
3607 */
3608 if (attr->sched_deadline & (1ULL << 63) ||
3609 attr->sched_period & (1ULL << 63))
3610 return false;
3611
3612 period = attr->sched_period;
3613 if (!period)
3614 period = attr->sched_deadline;
3615
3616 /* runtime <= deadline <= period (if period != 0) */
3617 if (period < attr->sched_deadline ||
3618 attr->sched_deadline < attr->sched_runtime)
3619 return false;
3620
3621 max = (u64)READ_ONCE(sysctl_sched_dl_period_max) * NSEC_PER_USEC;
3622 min = (u64)READ_ONCE(sysctl_sched_dl_period_min) * NSEC_PER_USEC;
3623
3624 if (period < min || period > max)
3625 return false;
3626
3627 return true;
3628 }
3629
3630 /*
3631 * This function clears the sched_dl_entity static params.
3632 */
__dl_clear_params(struct sched_dl_entity * dl_se)3633 static void __dl_clear_params(struct sched_dl_entity *dl_se)
3634 {
3635 dl_se->dl_runtime = 0;
3636 dl_se->dl_deadline = 0;
3637 dl_se->dl_period = 0;
3638 dl_se->flags = 0;
3639 dl_se->dl_bw = 0;
3640 dl_se->dl_density = 0;
3641
3642 dl_se->dl_throttled = 0;
3643 dl_se->dl_yielded = 0;
3644 dl_se->dl_non_contending = 0;
3645 dl_se->dl_overrun = 0;
3646 dl_se->dl_server = 0;
3647
3648 #ifdef CONFIG_RT_MUTEXES
3649 dl_se->pi_se = dl_se;
3650 #endif
3651 }
3652
init_dl_entity(struct sched_dl_entity * dl_se)3653 void init_dl_entity(struct sched_dl_entity *dl_se)
3654 {
3655 RB_CLEAR_NODE(&dl_se->rb_node);
3656 init_dl_task_timer(dl_se);
3657 init_dl_inactive_task_timer(dl_se);
3658 __dl_clear_params(dl_se);
3659 }
3660
dl_param_changed(struct task_struct * p,const struct sched_attr * attr)3661 bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
3662 {
3663 struct sched_dl_entity *dl_se = &p->dl;
3664
3665 if (dl_se->dl_runtime != attr->sched_runtime ||
3666 dl_se->dl_deadline != attr->sched_deadline ||
3667 dl_se->dl_period != attr->sched_period ||
3668 dl_se->flags != (attr->sched_flags & SCHED_DL_FLAGS))
3669 return true;
3670
3671 return false;
3672 }
3673
dl_cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)3674 int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
3675 const struct cpumask *trial)
3676 {
3677 unsigned long flags, cap;
3678 struct dl_bw *cur_dl_b;
3679 int ret = 1;
3680
3681 rcu_read_lock_sched();
3682 cur_dl_b = dl_bw_of(cpumask_any(cur));
3683 cap = __dl_bw_capacity(trial);
3684 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
3685 if (__dl_overflow(cur_dl_b, cap, 0, 0))
3686 ret = 0;
3687 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
3688 rcu_read_unlock_sched();
3689
3690 return ret;
3691 }
3692
3693 enum dl_bw_request {
3694 dl_bw_req_deactivate = 0,
3695 dl_bw_req_alloc,
3696 dl_bw_req_free
3697 };
3698
dl_bw_manage(enum dl_bw_request req,int cpu,u64 dl_bw)3699 static int dl_bw_manage(enum dl_bw_request req, int cpu, u64 dl_bw)
3700 {
3701 unsigned long flags, cap;
3702 struct dl_bw *dl_b;
3703 bool overflow = 0;
3704 u64 fair_server_bw = 0;
3705
3706 rcu_read_lock_sched();
3707 dl_b = dl_bw_of(cpu);
3708 raw_spin_lock_irqsave(&dl_b->lock, flags);
3709
3710 cap = dl_bw_capacity(cpu);
3711 switch (req) {
3712 case dl_bw_req_free:
3713 __dl_sub(dl_b, dl_bw, dl_bw_cpus(cpu));
3714 break;
3715 case dl_bw_req_alloc:
3716 overflow = __dl_overflow(dl_b, cap, 0, dl_bw);
3717
3718 if (!overflow) {
3719 /*
3720 * We reserve space in the destination
3721 * root_domain, as we can't fail after this point.
3722 * We will free resources in the source root_domain
3723 * later on (see set_cpus_allowed_dl()).
3724 */
3725 __dl_add(dl_b, dl_bw, dl_bw_cpus(cpu));
3726 }
3727 break;
3728 case dl_bw_req_deactivate:
3729 /*
3730 * cpu is not off yet, but we need to do the math by
3731 * considering it off already (i.e., what would happen if we
3732 * turn cpu off?).
3733 */
3734 cap -= arch_scale_cpu_capacity(cpu);
3735
3736 /*
3737 * cpu is going offline and NORMAL tasks will be moved away
3738 * from it. We can thus discount dl_server bandwidth
3739 * contribution as it won't need to be servicing tasks after
3740 * the cpu is off.
3741 */
3742 if (cpu_rq(cpu)->fair_server.dl_server)
3743 fair_server_bw = cpu_rq(cpu)->fair_server.dl_bw;
3744
3745 /*
3746 * Not much to check if no DEADLINE bandwidth is present.
3747 * dl_servers we can discount, as tasks will be moved out the
3748 * offlined CPUs anyway.
3749 */
3750 if (dl_b->total_bw - fair_server_bw > 0) {
3751 /*
3752 * Leaving at least one CPU for DEADLINE tasks seems a
3753 * wise thing to do. As said above, cpu is not offline
3754 * yet, so account for that.
3755 */
3756 if (dl_bw_cpus(cpu) - 1)
3757 overflow = __dl_overflow(dl_b, cap, fair_server_bw, 0);
3758 else
3759 overflow = 1;
3760 }
3761
3762 break;
3763 }
3764
3765 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3766 rcu_read_unlock_sched();
3767
3768 return overflow ? -EBUSY : 0;
3769 }
3770
dl_bw_deactivate(int cpu)3771 int dl_bw_deactivate(int cpu)
3772 {
3773 return dl_bw_manage(dl_bw_req_deactivate, cpu, 0);
3774 }
3775
dl_bw_alloc(int cpu,u64 dl_bw)3776 int dl_bw_alloc(int cpu, u64 dl_bw)
3777 {
3778 return dl_bw_manage(dl_bw_req_alloc, cpu, dl_bw);
3779 }
3780
dl_bw_free(int cpu,u64 dl_bw)3781 void dl_bw_free(int cpu, u64 dl_bw)
3782 {
3783 dl_bw_manage(dl_bw_req_free, cpu, dl_bw);
3784 }
3785
print_dl_stats(struct seq_file * m,int cpu)3786 void print_dl_stats(struct seq_file *m, int cpu)
3787 {
3788 print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
3789 }
3790