1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Scheduler internal types and methods: 4 */ 5 #ifndef _KERNEL_SCHED_SCHED_H 6 #define _KERNEL_SCHED_SCHED_H 7 8 #include <linux/sched/affinity.h> 9 #include <linux/sched/autogroup.h> 10 #include <linux/sched/cpufreq.h> 11 #include <linux/sched/deadline.h> 12 #include <linux/sched.h> 13 #include <linux/sched/loadavg.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/rseq_api.h> 16 #include <linux/sched/signal.h> 17 #include <linux/sched/smt.h> 18 #include <linux/sched/stat.h> 19 #include <linux/sched/sysctl.h> 20 #include <linux/sched/task_flags.h> 21 #include <linux/sched/task.h> 22 #include <linux/sched/topology.h> 23 24 #include <linux/atomic.h> 25 #include <linux/bitmap.h> 26 #include <linux/bug.h> 27 #include <linux/capability.h> 28 #include <linux/cgroup_api.h> 29 #include <linux/cgroup.h> 30 #include <linux/context_tracking.h> 31 #include <linux/cpufreq.h> 32 #include <linux/cpumask_api.h> 33 #include <linux/ctype.h> 34 #include <linux/file.h> 35 #include <linux/fs_api.h> 36 #include <linux/hrtimer_api.h> 37 #include <linux/interrupt.h> 38 #include <linux/irq_work.h> 39 #include <linux/jiffies.h> 40 #include <linux/kref_api.h> 41 #include <linux/kthread.h> 42 #include <linux/ktime_api.h> 43 #include <linux/lockdep_api.h> 44 #include <linux/lockdep.h> 45 #include <linux/minmax.h> 46 #include <linux/mm.h> 47 #include <linux/module.h> 48 #include <linux/mutex_api.h> 49 #include <linux/plist.h> 50 #include <linux/poll.h> 51 #include <linux/proc_fs.h> 52 #include <linux/profile.h> 53 #include <linux/psi.h> 54 #include <linux/rcupdate.h> 55 #include <linux/seq_file.h> 56 #include <linux/seqlock.h> 57 #include <linux/softirq.h> 58 #include <linux/spinlock_api.h> 59 #include <linux/static_key.h> 60 #include <linux/stop_machine.h> 61 #include <linux/syscalls_api.h> 62 #include <linux/syscalls.h> 63 #include <linux/tick.h> 64 #include <linux/topology.h> 65 #include <linux/types.h> 66 #include <linux/u64_stats_sync_api.h> 67 #include <linux/uaccess.h> 68 #include <linux/wait_api.h> 69 #include <linux/wait_bit.h> 70 #include <linux/workqueue_api.h> 71 #include <linux/delayacct.h> 72 73 #include <trace/events/power.h> 74 #include <trace/events/sched.h> 75 76 #include "../workqueue_internal.h" 77 78 struct rq; 79 struct cfs_rq; 80 struct rt_rq; 81 struct sched_group; 82 struct cpuidle_state; 83 84 #ifdef CONFIG_PARAVIRT 85 # include <asm/paravirt.h> 86 # include <asm/paravirt_api_clock.h> 87 #endif 88 89 #include <asm/barrier.h> 90 91 #include "cpupri.h" 92 #include "cpudeadline.h" 93 94 /* task_struct::on_rq states: */ 95 #define TASK_ON_RQ_QUEUED 1 96 #define TASK_ON_RQ_MIGRATING 2 97 98 extern __read_mostly int scheduler_running; 99 100 extern unsigned long calc_load_update; 101 extern atomic_long_t calc_load_tasks; 102 103 extern void calc_global_load_tick(struct rq *this_rq); 104 extern long calc_load_fold_active(struct rq *this_rq, long adjust); 105 106 extern void call_trace_sched_update_nr_running(struct rq *rq, int count); 107 108 extern int sysctl_sched_rt_period; 109 extern int sysctl_sched_rt_runtime; 110 extern int sched_rr_timeslice; 111 112 /* 113 * Asymmetric CPU capacity bits 114 */ 115 struct asym_cap_data { 116 struct list_head link; 117 struct rcu_head rcu; 118 unsigned long capacity; 119 unsigned long cpus[]; 120 }; 121 122 extern struct list_head asym_cap_list; 123 124 #define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus) 125 126 /* 127 * Helpers for converting nanosecond timing to jiffy resolution 128 */ 129 #define NS_TO_JIFFIES(time) ((unsigned long)(time) / (NSEC_PER_SEC/HZ)) 130 131 /* 132 * Increase resolution of nice-level calculations for 64-bit architectures. 133 * The extra resolution improves shares distribution and load balancing of 134 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group 135 * hierarchies, especially on larger systems. This is not a user-visible change 136 * and does not change the user-interface for setting shares/weights. 137 * 138 * We increase resolution only if we have enough bits to allow this increased 139 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit 140 * are pretty high and the returns do not justify the increased costs. 141 * 142 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to 143 * increase coverage and consistency always enable it on 64-bit platforms. 144 */ 145 #ifdef CONFIG_64BIT 146 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT) 147 # define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT) 148 # define scale_load_down(w) \ 149 ({ \ 150 unsigned long __w = (w); \ 151 \ 152 if (__w) \ 153 __w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \ 154 __w; \ 155 }) 156 #else 157 # define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT) 158 # define scale_load(w) (w) 159 # define scale_load_down(w) (w) 160 #endif 161 162 /* 163 * Task weight (visible to users) and its load (invisible to users) have 164 * independent resolution, but they should be well calibrated. We use 165 * scale_load() and scale_load_down(w) to convert between them. The 166 * following must be true: 167 * 168 * scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD 169 * 170 */ 171 #define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT) 172 173 /* 174 * Single value that decides SCHED_DEADLINE internal math precision. 175 * 10 -> just above 1us 176 * 9 -> just above 0.5us 177 */ 178 #define DL_SCALE 10 179 180 /* 181 * Single value that denotes runtime == period, ie unlimited time. 182 */ 183 #define RUNTIME_INF ((u64)~0ULL) 184 185 static inline int idle_policy(int policy) 186 { 187 return policy == SCHED_IDLE; 188 } 189 190 static inline int normal_policy(int policy) 191 { 192 #ifdef CONFIG_SCHED_CLASS_EXT 193 if (policy == SCHED_EXT) 194 return true; 195 #endif 196 return policy == SCHED_NORMAL; 197 } 198 199 static inline int fair_policy(int policy) 200 { 201 return normal_policy(policy) || policy == SCHED_BATCH; 202 } 203 204 static inline int rt_policy(int policy) 205 { 206 return policy == SCHED_FIFO || policy == SCHED_RR; 207 } 208 209 static inline int dl_policy(int policy) 210 { 211 return policy == SCHED_DEADLINE; 212 } 213 214 static inline bool valid_policy(int policy) 215 { 216 return idle_policy(policy) || fair_policy(policy) || 217 rt_policy(policy) || dl_policy(policy); 218 } 219 220 static inline int task_has_idle_policy(struct task_struct *p) 221 { 222 return idle_policy(p->policy); 223 } 224 225 static inline int task_has_rt_policy(struct task_struct *p) 226 { 227 return rt_policy(p->policy); 228 } 229 230 static inline int task_has_dl_policy(struct task_struct *p) 231 { 232 return dl_policy(p->policy); 233 } 234 235 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT) 236 237 static inline void update_avg(u64 *avg, u64 sample) 238 { 239 s64 diff = sample - *avg; 240 241 *avg += diff / 8; 242 } 243 244 /* 245 * Shifting a value by an exponent greater *or equal* to the size of said value 246 * is UB; cap at size-1. 247 */ 248 #define shr_bound(val, shift) \ 249 (val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1)) 250 251 /* 252 * cgroup weight knobs should use the common MIN, DFL and MAX values which are 253 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it 254 * maps pretty well onto the shares value used by scheduler and the round-trip 255 * conversions preserve the original value over the entire range. 256 */ 257 static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight) 258 { 259 return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL); 260 } 261 262 static inline unsigned long sched_weight_to_cgroup(unsigned long weight) 263 { 264 return clamp_t(unsigned long, 265 DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024), 266 CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX); 267 } 268 269 /* 270 * !! For sched_setattr_nocheck() (kernel) only !! 271 * 272 * This is actually gross. :( 273 * 274 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE 275 * tasks, but still be able to sleep. We need this on platforms that cannot 276 * atomically change clock frequency. Remove once fast switching will be 277 * available on such platforms. 278 * 279 * SUGOV stands for SchedUtil GOVernor. 280 */ 281 #define SCHED_FLAG_SUGOV 0x10000000 282 283 #define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV) 284 285 static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se) 286 { 287 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL 288 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV); 289 #else 290 return false; 291 #endif 292 } 293 294 /* 295 * Tells if entity @a should preempt entity @b. 296 */ 297 static inline bool dl_entity_preempt(const struct sched_dl_entity *a, 298 const struct sched_dl_entity *b) 299 { 300 return dl_entity_is_special(a) || 301 dl_time_before(a->deadline, b->deadline); 302 } 303 304 /* 305 * This is the priority-queue data structure of the RT scheduling class: 306 */ 307 struct rt_prio_array { 308 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ 309 struct list_head queue[MAX_RT_PRIO]; 310 }; 311 312 struct rt_bandwidth { 313 /* nests inside the rq lock: */ 314 raw_spinlock_t rt_runtime_lock; 315 ktime_t rt_period; 316 u64 rt_runtime; 317 struct hrtimer rt_period_timer; 318 unsigned int rt_period_active; 319 }; 320 321 static inline int dl_bandwidth_enabled(void) 322 { 323 return sysctl_sched_rt_runtime >= 0; 324 } 325 326 /* 327 * To keep the bandwidth of -deadline tasks under control 328 * we need some place where: 329 * - store the maximum -deadline bandwidth of each cpu; 330 * - cache the fraction of bandwidth that is currently allocated in 331 * each root domain; 332 * 333 * This is all done in the data structure below. It is similar to the 334 * one used for RT-throttling (rt_bandwidth), with the main difference 335 * that, since here we are only interested in admission control, we 336 * do not decrease any runtime while the group "executes", neither we 337 * need a timer to replenish it. 338 * 339 * With respect to SMP, bandwidth is given on a per root domain basis, 340 * meaning that: 341 * - bw (< 100%) is the deadline bandwidth of each CPU; 342 * - total_bw is the currently allocated bandwidth in each root domain; 343 */ 344 struct dl_bw { 345 raw_spinlock_t lock; 346 u64 bw; 347 u64 total_bw; 348 }; 349 350 extern void init_dl_bw(struct dl_bw *dl_b); 351 extern int sched_dl_global_validate(void); 352 extern void sched_dl_do_global(void); 353 extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr); 354 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr); 355 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr); 356 extern bool __checkparam_dl(const struct sched_attr *attr); 357 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr); 358 extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); 359 extern int dl_bw_deactivate(int cpu); 360 extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec); 361 /* 362 * SCHED_DEADLINE supports servers (nested scheduling) with the following 363 * interface: 364 * 365 * dl_se::rq -- runqueue we belong to. 366 * 367 * dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the 368 * server when it runs out of tasks to run. 369 * 370 * dl_se::server_pick() -- nested pick_next_task(); we yield the period if this 371 * returns NULL. 372 * 373 * dl_server_update() -- called from update_curr_common(), propagates runtime 374 * to the server. 375 * 376 * dl_server_start() 377 * dl_server_stop() -- start/stop the server when it has (no) tasks. 378 * 379 * dl_server_init() -- initializes the server. 380 */ 381 extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec); 382 extern void dl_server_start(struct sched_dl_entity *dl_se); 383 extern void dl_server_stop(struct sched_dl_entity *dl_se); 384 extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq, 385 dl_server_has_tasks_f has_tasks, 386 dl_server_pick_f pick_task); 387 388 extern void dl_server_update_idle_time(struct rq *rq, 389 struct task_struct *p); 390 extern void fair_server_init(struct rq *rq); 391 extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq); 392 extern int dl_server_apply_params(struct sched_dl_entity *dl_se, 393 u64 runtime, u64 period, bool init); 394 395 static inline bool dl_server_active(struct sched_dl_entity *dl_se) 396 { 397 return dl_se->dl_server_active; 398 } 399 400 #ifdef CONFIG_CGROUP_SCHED 401 402 extern struct list_head task_groups; 403 404 struct cfs_bandwidth { 405 #ifdef CONFIG_CFS_BANDWIDTH 406 raw_spinlock_t lock; 407 ktime_t period; 408 u64 quota; 409 u64 runtime; 410 u64 burst; 411 u64 runtime_snap; 412 s64 hierarchical_quota; 413 414 u8 idle; 415 u8 period_active; 416 u8 slack_started; 417 struct hrtimer period_timer; 418 struct hrtimer slack_timer; 419 struct list_head throttled_cfs_rq; 420 421 /* Statistics: */ 422 int nr_periods; 423 int nr_throttled; 424 int nr_burst; 425 u64 throttled_time; 426 u64 burst_time; 427 #endif 428 }; 429 430 /* Task group related information */ 431 struct task_group { 432 struct cgroup_subsys_state css; 433 434 #ifdef CONFIG_GROUP_SCHED_WEIGHT 435 /* A positive value indicates that this is a SCHED_IDLE group. */ 436 int idle; 437 #endif 438 439 #ifdef CONFIG_FAIR_GROUP_SCHED 440 /* schedulable entities of this group on each CPU */ 441 struct sched_entity **se; 442 /* runqueue "owned" by this group on each CPU */ 443 struct cfs_rq **cfs_rq; 444 unsigned long shares; 445 #ifdef CONFIG_SMP 446 /* 447 * load_avg can be heavily contended at clock tick time, so put 448 * it in its own cache-line separated from the fields above which 449 * will also be accessed at each tick. 450 */ 451 atomic_long_t load_avg ____cacheline_aligned; 452 #endif 453 #endif 454 455 #ifdef CONFIG_RT_GROUP_SCHED 456 struct sched_rt_entity **rt_se; 457 struct rt_rq **rt_rq; 458 459 struct rt_bandwidth rt_bandwidth; 460 #endif 461 462 #ifdef CONFIG_EXT_GROUP_SCHED 463 u32 scx_flags; /* SCX_TG_* */ 464 u32 scx_weight; 465 #endif 466 467 struct rcu_head rcu; 468 struct list_head list; 469 470 struct task_group *parent; 471 struct list_head siblings; 472 struct list_head children; 473 474 #ifdef CONFIG_SCHED_AUTOGROUP 475 struct autogroup *autogroup; 476 #endif 477 478 struct cfs_bandwidth cfs_bandwidth; 479 480 #ifdef CONFIG_UCLAMP_TASK_GROUP 481 /* The two decimal precision [%] value requested from user-space */ 482 unsigned int uclamp_pct[UCLAMP_CNT]; 483 /* Clamp values requested for a task group */ 484 struct uclamp_se uclamp_req[UCLAMP_CNT]; 485 /* Effective clamp values used for a task group */ 486 struct uclamp_se uclamp[UCLAMP_CNT]; 487 #endif 488 489 }; 490 491 #ifdef CONFIG_GROUP_SCHED_WEIGHT 492 #define ROOT_TASK_GROUP_LOAD NICE_0_LOAD 493 494 /* 495 * A weight of 0 or 1 can cause arithmetics problems. 496 * A weight of a cfs_rq is the sum of weights of which entities 497 * are queued on this cfs_rq, so a weight of a entity should not be 498 * too large, so as the shares value of a task group. 499 * (The default weight is 1024 - so there's no practical 500 * limitation from this.) 501 */ 502 #define MIN_SHARES (1UL << 1) 503 #define MAX_SHARES (1UL << 18) 504 #endif 505 506 typedef int (*tg_visitor)(struct task_group *, void *); 507 508 extern int walk_tg_tree_from(struct task_group *from, 509 tg_visitor down, tg_visitor up, void *data); 510 511 /* 512 * Iterate the full tree, calling @down when first entering a node and @up when 513 * leaving it for the final time. 514 * 515 * Caller must hold rcu_lock or sufficient equivalent. 516 */ 517 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) 518 { 519 return walk_tg_tree_from(&root_task_group, down, up, data); 520 } 521 522 static inline struct task_group *css_tg(struct cgroup_subsys_state *css) 523 { 524 return css ? container_of(css, struct task_group, css) : NULL; 525 } 526 527 extern int tg_nop(struct task_group *tg, void *data); 528 529 #ifdef CONFIG_FAIR_GROUP_SCHED 530 extern void free_fair_sched_group(struct task_group *tg); 531 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent); 532 extern void online_fair_sched_group(struct task_group *tg); 533 extern void unregister_fair_sched_group(struct task_group *tg); 534 #else 535 static inline void free_fair_sched_group(struct task_group *tg) { } 536 static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) 537 { 538 return 1; 539 } 540 static inline void online_fair_sched_group(struct task_group *tg) { } 541 static inline void unregister_fair_sched_group(struct task_group *tg) { } 542 #endif 543 544 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, 545 struct sched_entity *se, int cpu, 546 struct sched_entity *parent); 547 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent); 548 549 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b); 550 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b); 551 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq); 552 extern bool cfs_task_bw_constrained(struct task_struct *p); 553 554 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, 555 struct sched_rt_entity *rt_se, int cpu, 556 struct sched_rt_entity *parent); 557 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us); 558 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us); 559 extern long sched_group_rt_runtime(struct task_group *tg); 560 extern long sched_group_rt_period(struct task_group *tg); 561 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk); 562 563 extern struct task_group *sched_create_group(struct task_group *parent); 564 extern void sched_online_group(struct task_group *tg, 565 struct task_group *parent); 566 extern void sched_destroy_group(struct task_group *tg); 567 extern void sched_release_group(struct task_group *tg); 568 569 extern void sched_move_task(struct task_struct *tsk, bool for_autogroup); 570 571 #ifdef CONFIG_FAIR_GROUP_SCHED 572 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares); 573 574 extern int sched_group_set_idle(struct task_group *tg, long idle); 575 576 #ifdef CONFIG_SMP 577 extern void set_task_rq_fair(struct sched_entity *se, 578 struct cfs_rq *prev, struct cfs_rq *next); 579 #else /* !CONFIG_SMP */ 580 static inline void set_task_rq_fair(struct sched_entity *se, 581 struct cfs_rq *prev, struct cfs_rq *next) { } 582 #endif /* CONFIG_SMP */ 583 #else /* !CONFIG_FAIR_GROUP_SCHED */ 584 static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; } 585 static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; } 586 #endif /* CONFIG_FAIR_GROUP_SCHED */ 587 588 #else /* CONFIG_CGROUP_SCHED */ 589 590 struct cfs_bandwidth { }; 591 592 static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; } 593 594 #endif /* CONFIG_CGROUP_SCHED */ 595 596 extern void unregister_rt_sched_group(struct task_group *tg); 597 extern void free_rt_sched_group(struct task_group *tg); 598 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent); 599 600 /* 601 * u64_u32_load/u64_u32_store 602 * 603 * Use a copy of a u64 value to protect against data race. This is only 604 * applicable for 32-bits architectures. 605 */ 606 #ifdef CONFIG_64BIT 607 # define u64_u32_load_copy(var, copy) var 608 # define u64_u32_store_copy(var, copy, val) (var = val) 609 #else 610 # define u64_u32_load_copy(var, copy) \ 611 ({ \ 612 u64 __val, __val_copy; \ 613 do { \ 614 __val_copy = copy; \ 615 /* \ 616 * paired with u64_u32_store_copy(), ordering access \ 617 * to var and copy. \ 618 */ \ 619 smp_rmb(); \ 620 __val = var; \ 621 } while (__val != __val_copy); \ 622 __val; \ 623 }) 624 # define u64_u32_store_copy(var, copy, val) \ 625 do { \ 626 typeof(val) __val = (val); \ 627 var = __val; \ 628 /* \ 629 * paired with u64_u32_load_copy(), ordering access to var and \ 630 * copy. \ 631 */ \ 632 smp_wmb(); \ 633 copy = __val; \ 634 } while (0) 635 #endif 636 # define u64_u32_load(var) u64_u32_load_copy(var, var##_copy) 637 # define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val) 638 639 struct balance_callback { 640 struct balance_callback *next; 641 void (*func)(struct rq *rq); 642 }; 643 644 /* CFS-related fields in a runqueue */ 645 struct cfs_rq { 646 struct load_weight load; 647 unsigned int nr_queued; 648 unsigned int h_nr_queued; /* SCHED_{NORMAL,BATCH,IDLE} */ 649 unsigned int h_nr_runnable; /* SCHED_{NORMAL,BATCH,IDLE} */ 650 unsigned int h_nr_idle; /* SCHED_IDLE */ 651 652 s64 avg_vruntime; 653 u64 avg_load; 654 655 u64 min_vruntime; 656 #ifdef CONFIG_SCHED_CORE 657 unsigned int forceidle_seq; 658 u64 min_vruntime_fi; 659 #endif 660 661 struct rb_root_cached tasks_timeline; 662 663 /* 664 * 'curr' points to currently running entity on this cfs_rq. 665 * It is set to NULL otherwise (i.e when none are currently running). 666 */ 667 struct sched_entity *curr; 668 struct sched_entity *next; 669 670 #ifdef CONFIG_SMP 671 /* 672 * CFS load tracking 673 */ 674 struct sched_avg avg; 675 #ifndef CONFIG_64BIT 676 u64 last_update_time_copy; 677 #endif 678 struct { 679 raw_spinlock_t lock ____cacheline_aligned; 680 int nr; 681 unsigned long load_avg; 682 unsigned long util_avg; 683 unsigned long runnable_avg; 684 } removed; 685 686 #ifdef CONFIG_FAIR_GROUP_SCHED 687 u64 last_update_tg_load_avg; 688 unsigned long tg_load_avg_contrib; 689 long propagate; 690 long prop_runnable_sum; 691 692 /* 693 * h_load = weight * f(tg) 694 * 695 * Where f(tg) is the recursive weight fraction assigned to 696 * this group. 697 */ 698 unsigned long h_load; 699 u64 last_h_load_update; 700 struct sched_entity *h_load_next; 701 #endif /* CONFIG_FAIR_GROUP_SCHED */ 702 #endif /* CONFIG_SMP */ 703 704 #ifdef CONFIG_FAIR_GROUP_SCHED 705 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */ 706 707 /* 708 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in 709 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities 710 * (like users, containers etc.) 711 * 712 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU. 713 * This list is used during load balance. 714 */ 715 int on_list; 716 struct list_head leaf_cfs_rq_list; 717 struct task_group *tg; /* group that "owns" this runqueue */ 718 719 /* Locally cached copy of our task_group's idle value */ 720 int idle; 721 722 #ifdef CONFIG_CFS_BANDWIDTH 723 int runtime_enabled; 724 s64 runtime_remaining; 725 726 u64 throttled_pelt_idle; 727 #ifndef CONFIG_64BIT 728 u64 throttled_pelt_idle_copy; 729 #endif 730 u64 throttled_clock; 731 u64 throttled_clock_pelt; 732 u64 throttled_clock_pelt_time; 733 u64 throttled_clock_self; 734 u64 throttled_clock_self_time; 735 int throttled; 736 int throttle_count; 737 struct list_head throttled_list; 738 struct list_head throttled_csd_list; 739 #endif /* CONFIG_CFS_BANDWIDTH */ 740 #endif /* CONFIG_FAIR_GROUP_SCHED */ 741 }; 742 743 #ifdef CONFIG_SCHED_CLASS_EXT 744 /* scx_rq->flags, protected by the rq lock */ 745 enum scx_rq_flags { 746 /* 747 * A hotplugged CPU starts scheduling before rq_online_scx(). Track 748 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called 749 * only while the BPF scheduler considers the CPU to be online. 750 */ 751 SCX_RQ_ONLINE = 1 << 0, 752 SCX_RQ_CAN_STOP_TICK = 1 << 1, 753 SCX_RQ_BAL_PENDING = 1 << 2, /* balance hasn't run yet */ 754 SCX_RQ_BAL_KEEP = 1 << 3, /* balance decided to keep current */ 755 SCX_RQ_BYPASSING = 1 << 4, 756 SCX_RQ_CLK_VALID = 1 << 5, /* RQ clock is fresh and valid */ 757 758 SCX_RQ_IN_WAKEUP = 1 << 16, 759 SCX_RQ_IN_BALANCE = 1 << 17, 760 }; 761 762 struct scx_rq { 763 struct scx_dispatch_q local_dsq; 764 struct list_head runnable_list; /* runnable tasks on this rq */ 765 struct list_head ddsp_deferred_locals; /* deferred ddsps from enq */ 766 unsigned long ops_qseq; 767 u64 extra_enq_flags; /* see move_task_to_local_dsq() */ 768 u32 nr_running; 769 u32 cpuperf_target; /* [0, SCHED_CAPACITY_SCALE] */ 770 bool cpu_released; 771 u32 flags; 772 u64 clock; /* current per-rq clock -- see scx_bpf_now() */ 773 cpumask_var_t cpus_to_kick; 774 cpumask_var_t cpus_to_kick_if_idle; 775 cpumask_var_t cpus_to_preempt; 776 cpumask_var_t cpus_to_wait; 777 unsigned long pnt_seq; 778 struct balance_callback deferred_bal_cb; 779 struct irq_work deferred_irq_work; 780 struct irq_work kick_cpus_irq_work; 781 }; 782 #endif /* CONFIG_SCHED_CLASS_EXT */ 783 784 static inline int rt_bandwidth_enabled(void) 785 { 786 return sysctl_sched_rt_runtime >= 0; 787 } 788 789 /* RT IPI pull logic requires IRQ_WORK */ 790 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP) 791 # define HAVE_RT_PUSH_IPI 792 #endif 793 794 /* Real-Time classes' related field in a runqueue: */ 795 struct rt_rq { 796 struct rt_prio_array active; 797 unsigned int rt_nr_running; 798 unsigned int rr_nr_running; 799 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED 800 struct { 801 int curr; /* highest queued rt task prio */ 802 #ifdef CONFIG_SMP 803 int next; /* next highest */ 804 #endif 805 } highest_prio; 806 #endif 807 #ifdef CONFIG_SMP 808 bool overloaded; 809 struct plist_head pushable_tasks; 810 811 #endif /* CONFIG_SMP */ 812 int rt_queued; 813 814 #ifdef CONFIG_RT_GROUP_SCHED 815 int rt_throttled; 816 u64 rt_time; 817 u64 rt_runtime; 818 /* Nests inside the rq lock: */ 819 raw_spinlock_t rt_runtime_lock; 820 821 unsigned int rt_nr_boosted; 822 823 struct rq *rq; 824 struct task_group *tg; 825 #endif 826 }; 827 828 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq) 829 { 830 return rt_rq->rt_queued && rt_rq->rt_nr_running; 831 } 832 833 /* Deadline class' related fields in a runqueue */ 834 struct dl_rq { 835 /* runqueue is an rbtree, ordered by deadline */ 836 struct rb_root_cached root; 837 838 unsigned int dl_nr_running; 839 840 #ifdef CONFIG_SMP 841 /* 842 * Deadline values of the currently executing and the 843 * earliest ready task on this rq. Caching these facilitates 844 * the decision whether or not a ready but not running task 845 * should migrate somewhere else. 846 */ 847 struct { 848 u64 curr; 849 u64 next; 850 } earliest_dl; 851 852 bool overloaded; 853 854 /* 855 * Tasks on this rq that can be pushed away. They are kept in 856 * an rb-tree, ordered by tasks' deadlines, with caching 857 * of the leftmost (earliest deadline) element. 858 */ 859 struct rb_root_cached pushable_dl_tasks_root; 860 #else 861 struct dl_bw dl_bw; 862 #endif 863 /* 864 * "Active utilization" for this runqueue: increased when a 865 * task wakes up (becomes TASK_RUNNING) and decreased when a 866 * task blocks 867 */ 868 u64 running_bw; 869 870 /* 871 * Utilization of the tasks "assigned" to this runqueue (including 872 * the tasks that are in runqueue and the tasks that executed on this 873 * CPU and blocked). Increased when a task moves to this runqueue, and 874 * decreased when the task moves away (migrates, changes scheduling 875 * policy, or terminates). 876 * This is needed to compute the "inactive utilization" for the 877 * runqueue (inactive utilization = this_bw - running_bw). 878 */ 879 u64 this_bw; 880 u64 extra_bw; 881 882 /* 883 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM 884 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB). 885 */ 886 u64 max_bw; 887 888 /* 889 * Inverse of the fraction of CPU utilization that can be reclaimed 890 * by the GRUB algorithm. 891 */ 892 u64 bw_ratio; 893 }; 894 895 #ifdef CONFIG_FAIR_GROUP_SCHED 896 897 /* An entity is a task if it doesn't "own" a runqueue */ 898 #define entity_is_task(se) (!se->my_q) 899 900 static inline void se_update_runnable(struct sched_entity *se) 901 { 902 if (!entity_is_task(se)) 903 se->runnable_weight = se->my_q->h_nr_runnable; 904 } 905 906 static inline long se_runnable(struct sched_entity *se) 907 { 908 if (se->sched_delayed) 909 return false; 910 911 if (entity_is_task(se)) 912 return !!se->on_rq; 913 else 914 return se->runnable_weight; 915 } 916 917 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 918 919 #define entity_is_task(se) 1 920 921 static inline void se_update_runnable(struct sched_entity *se) { } 922 923 static inline long se_runnable(struct sched_entity *se) 924 { 925 if (se->sched_delayed) 926 return false; 927 928 return !!se->on_rq; 929 } 930 931 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 932 933 #ifdef CONFIG_SMP 934 /* 935 * XXX we want to get rid of these helpers and use the full load resolution. 936 */ 937 static inline long se_weight(struct sched_entity *se) 938 { 939 return scale_load_down(se->load.weight); 940 } 941 942 943 static inline bool sched_asym_prefer(int a, int b) 944 { 945 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b); 946 } 947 948 struct perf_domain { 949 struct em_perf_domain *em_pd; 950 struct perf_domain *next; 951 struct rcu_head rcu; 952 }; 953 954 /* 955 * We add the notion of a root-domain which will be used to define per-domain 956 * variables. Each exclusive cpuset essentially defines an island domain by 957 * fully partitioning the member CPUs from any other cpuset. Whenever a new 958 * exclusive cpuset is created, we also create and attach a new root-domain 959 * object. 960 * 961 */ 962 struct root_domain { 963 atomic_t refcount; 964 atomic_t rto_count; 965 struct rcu_head rcu; 966 cpumask_var_t span; 967 cpumask_var_t online; 968 969 /* 970 * Indicate pullable load on at least one CPU, e.g: 971 * - More than one runnable task 972 * - Running task is misfit 973 */ 974 bool overloaded; 975 976 /* Indicate one or more CPUs over-utilized (tipping point) */ 977 bool overutilized; 978 979 /* 980 * The bit corresponding to a CPU gets set here if such CPU has more 981 * than one runnable -deadline task (as it is below for RT tasks). 982 */ 983 cpumask_var_t dlo_mask; 984 atomic_t dlo_count; 985 struct dl_bw dl_bw; 986 struct cpudl cpudl; 987 988 /* 989 * Indicate whether a root_domain's dl_bw has been checked or 990 * updated. It's monotonously increasing value. 991 * 992 * Also, some corner cases, like 'wrap around' is dangerous, but given 993 * that u64 is 'big enough'. So that shouldn't be a concern. 994 */ 995 u64 visit_cookie; 996 997 #ifdef HAVE_RT_PUSH_IPI 998 /* 999 * For IPI pull requests, loop across the rto_mask. 1000 */ 1001 struct irq_work rto_push_work; 1002 raw_spinlock_t rto_lock; 1003 /* These are only updated and read within rto_lock */ 1004 int rto_loop; 1005 int rto_cpu; 1006 /* These atomics are updated outside of a lock */ 1007 atomic_t rto_loop_next; 1008 atomic_t rto_loop_start; 1009 #endif 1010 /* 1011 * The "RT overload" flag: it gets set if a CPU has more than 1012 * one runnable RT task. 1013 */ 1014 cpumask_var_t rto_mask; 1015 struct cpupri cpupri; 1016 1017 /* 1018 * NULL-terminated list of performance domains intersecting with the 1019 * CPUs of the rd. Protected by RCU. 1020 */ 1021 struct perf_domain __rcu *pd; 1022 }; 1023 1024 extern void init_defrootdomain(void); 1025 extern int sched_init_domains(const struct cpumask *cpu_map); 1026 extern void rq_attach_root(struct rq *rq, struct root_domain *rd); 1027 extern void sched_get_rd(struct root_domain *rd); 1028 extern void sched_put_rd(struct root_domain *rd); 1029 1030 static inline int get_rd_overloaded(struct root_domain *rd) 1031 { 1032 return READ_ONCE(rd->overloaded); 1033 } 1034 1035 static inline void set_rd_overloaded(struct root_domain *rd, int status) 1036 { 1037 if (get_rd_overloaded(rd) != status) 1038 WRITE_ONCE(rd->overloaded, status); 1039 } 1040 1041 #ifdef HAVE_RT_PUSH_IPI 1042 extern void rto_push_irq_work_func(struct irq_work *work); 1043 #endif 1044 #endif /* CONFIG_SMP */ 1045 1046 #ifdef CONFIG_UCLAMP_TASK 1047 /* 1048 * struct uclamp_bucket - Utilization clamp bucket 1049 * @value: utilization clamp value for tasks on this clamp bucket 1050 * @tasks: number of RUNNABLE tasks on this clamp bucket 1051 * 1052 * Keep track of how many tasks are RUNNABLE for a given utilization 1053 * clamp value. 1054 */ 1055 struct uclamp_bucket { 1056 unsigned long value : bits_per(SCHED_CAPACITY_SCALE); 1057 unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE); 1058 }; 1059 1060 /* 1061 * struct uclamp_rq - rq's utilization clamp 1062 * @value: currently active clamp values for a rq 1063 * @bucket: utilization clamp buckets affecting a rq 1064 * 1065 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values. 1066 * A clamp value is affecting a rq when there is at least one task RUNNABLE 1067 * (or actually running) with that value. 1068 * 1069 * There are up to UCLAMP_CNT possible different clamp values, currently there 1070 * are only two: minimum utilization and maximum utilization. 1071 * 1072 * All utilization clamping values are MAX aggregated, since: 1073 * - for util_min: we want to run the CPU at least at the max of the minimum 1074 * utilization required by its currently RUNNABLE tasks. 1075 * - for util_max: we want to allow the CPU to run up to the max of the 1076 * maximum utilization allowed by its currently RUNNABLE tasks. 1077 * 1078 * Since on each system we expect only a limited number of different 1079 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track 1080 * the metrics required to compute all the per-rq utilization clamp values. 1081 */ 1082 struct uclamp_rq { 1083 unsigned int value; 1084 struct uclamp_bucket bucket[UCLAMP_BUCKETS]; 1085 }; 1086 1087 DECLARE_STATIC_KEY_FALSE(sched_uclamp_used); 1088 #endif /* CONFIG_UCLAMP_TASK */ 1089 1090 /* 1091 * This is the main, per-CPU runqueue data structure. 1092 * 1093 * Locking rule: those places that want to lock multiple runqueues 1094 * (such as the load balancing or the thread migration code), lock 1095 * acquire operations must be ordered by ascending &runqueue. 1096 */ 1097 struct rq { 1098 /* runqueue lock: */ 1099 raw_spinlock_t __lock; 1100 1101 unsigned int nr_running; 1102 #ifdef CONFIG_NUMA_BALANCING 1103 unsigned int nr_numa_running; 1104 unsigned int nr_preferred_running; 1105 unsigned int numa_migrate_on; 1106 #endif 1107 #ifdef CONFIG_NO_HZ_COMMON 1108 #ifdef CONFIG_SMP 1109 unsigned long last_blocked_load_update_tick; 1110 unsigned int has_blocked_load; 1111 call_single_data_t nohz_csd; 1112 #endif /* CONFIG_SMP */ 1113 unsigned int nohz_tick_stopped; 1114 atomic_t nohz_flags; 1115 #endif /* CONFIG_NO_HZ_COMMON */ 1116 1117 #ifdef CONFIG_SMP 1118 unsigned int ttwu_pending; 1119 #endif 1120 u64 nr_switches; 1121 1122 #ifdef CONFIG_UCLAMP_TASK 1123 /* Utilization clamp values based on CPU's RUNNABLE tasks */ 1124 struct uclamp_rq uclamp[UCLAMP_CNT] ____cacheline_aligned; 1125 unsigned int uclamp_flags; 1126 #define UCLAMP_FLAG_IDLE 0x01 1127 #endif 1128 1129 struct cfs_rq cfs; 1130 struct rt_rq rt; 1131 struct dl_rq dl; 1132 #ifdef CONFIG_SCHED_CLASS_EXT 1133 struct scx_rq scx; 1134 #endif 1135 1136 struct sched_dl_entity fair_server; 1137 1138 #ifdef CONFIG_FAIR_GROUP_SCHED 1139 /* list of leaf cfs_rq on this CPU: */ 1140 struct list_head leaf_cfs_rq_list; 1141 struct list_head *tmp_alone_branch; 1142 #endif /* CONFIG_FAIR_GROUP_SCHED */ 1143 1144 /* 1145 * This is part of a global counter where only the total sum 1146 * over all CPUs matters. A task can increase this counter on 1147 * one CPU and if it got migrated afterwards it may decrease 1148 * it on another CPU. Always updated under the runqueue lock: 1149 */ 1150 unsigned int nr_uninterruptible; 1151 1152 union { 1153 struct task_struct __rcu *donor; /* Scheduler context */ 1154 struct task_struct __rcu *curr; /* Execution context */ 1155 }; 1156 struct sched_dl_entity *dl_server; 1157 struct task_struct *idle; 1158 struct task_struct *stop; 1159 unsigned long next_balance; 1160 struct mm_struct *prev_mm; 1161 1162 unsigned int clock_update_flags; 1163 u64 clock; 1164 /* Ensure that all clocks are in the same cache line */ 1165 u64 clock_task ____cacheline_aligned; 1166 u64 clock_pelt; 1167 unsigned long lost_idle_time; 1168 u64 clock_pelt_idle; 1169 u64 clock_idle; 1170 #ifndef CONFIG_64BIT 1171 u64 clock_pelt_idle_copy; 1172 u64 clock_idle_copy; 1173 #endif 1174 1175 atomic_t nr_iowait; 1176 1177 u64 last_seen_need_resched_ns; 1178 int ticks_without_resched; 1179 1180 #ifdef CONFIG_MEMBARRIER 1181 int membarrier_state; 1182 #endif 1183 1184 #ifdef CONFIG_SMP 1185 struct root_domain *rd; 1186 struct sched_domain __rcu *sd; 1187 1188 unsigned long cpu_capacity; 1189 1190 struct balance_callback *balance_callback; 1191 1192 unsigned char nohz_idle_balance; 1193 unsigned char idle_balance; 1194 1195 unsigned long misfit_task_load; 1196 1197 /* For active balancing */ 1198 int active_balance; 1199 int push_cpu; 1200 struct cpu_stop_work active_balance_work; 1201 1202 /* CPU of this runqueue: */ 1203 int cpu; 1204 int online; 1205 1206 struct list_head cfs_tasks; 1207 1208 struct sched_avg avg_rt; 1209 struct sched_avg avg_dl; 1210 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 1211 struct sched_avg avg_irq; 1212 #endif 1213 #ifdef CONFIG_SCHED_HW_PRESSURE 1214 struct sched_avg avg_hw; 1215 #endif 1216 u64 idle_stamp; 1217 u64 avg_idle; 1218 1219 /* This is used to determine avg_idle's max value */ 1220 u64 max_idle_balance_cost; 1221 1222 #ifdef CONFIG_HOTPLUG_CPU 1223 struct rcuwait hotplug_wait; 1224 #endif 1225 #endif /* CONFIG_SMP */ 1226 1227 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 1228 u64 prev_irq_time; 1229 u64 psi_irq_time; 1230 #endif 1231 #ifdef CONFIG_PARAVIRT 1232 u64 prev_steal_time; 1233 #endif 1234 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 1235 u64 prev_steal_time_rq; 1236 #endif 1237 1238 /* calc_load related fields */ 1239 unsigned long calc_load_update; 1240 long calc_load_active; 1241 1242 #ifdef CONFIG_SCHED_HRTICK 1243 #ifdef CONFIG_SMP 1244 call_single_data_t hrtick_csd; 1245 #endif 1246 struct hrtimer hrtick_timer; 1247 ktime_t hrtick_time; 1248 #endif 1249 1250 #ifdef CONFIG_SCHEDSTATS 1251 /* latency stats */ 1252 struct sched_info rq_sched_info; 1253 unsigned long long rq_cpu_time; 1254 1255 /* sys_sched_yield() stats */ 1256 unsigned int yld_count; 1257 1258 /* schedule() stats */ 1259 unsigned int sched_count; 1260 unsigned int sched_goidle; 1261 1262 /* try_to_wake_up() stats */ 1263 unsigned int ttwu_count; 1264 unsigned int ttwu_local; 1265 #endif 1266 1267 #ifdef CONFIG_CPU_IDLE 1268 /* Must be inspected within a RCU lock section */ 1269 struct cpuidle_state *idle_state; 1270 #endif 1271 1272 #ifdef CONFIG_SMP 1273 unsigned int nr_pinned; 1274 #endif 1275 unsigned int push_busy; 1276 struct cpu_stop_work push_work; 1277 1278 #ifdef CONFIG_SCHED_CORE 1279 /* per rq */ 1280 struct rq *core; 1281 struct task_struct *core_pick; 1282 struct sched_dl_entity *core_dl_server; 1283 unsigned int core_enabled; 1284 unsigned int core_sched_seq; 1285 struct rb_root core_tree; 1286 1287 /* shared state -- careful with sched_core_cpu_deactivate() */ 1288 unsigned int core_task_seq; 1289 unsigned int core_pick_seq; 1290 unsigned long core_cookie; 1291 unsigned int core_forceidle_count; 1292 unsigned int core_forceidle_seq; 1293 unsigned int core_forceidle_occupation; 1294 u64 core_forceidle_start; 1295 #endif 1296 1297 /* Scratch cpumask to be temporarily used under rq_lock */ 1298 cpumask_var_t scratch_mask; 1299 1300 #if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP) 1301 call_single_data_t cfsb_csd; 1302 struct list_head cfsb_csd_list; 1303 #endif 1304 }; 1305 1306 #ifdef CONFIG_FAIR_GROUP_SCHED 1307 1308 /* CPU runqueue to which this cfs_rq is attached */ 1309 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1310 { 1311 return cfs_rq->rq; 1312 } 1313 1314 #else 1315 1316 static inline struct rq *rq_of(struct cfs_rq *cfs_rq) 1317 { 1318 return container_of(cfs_rq, struct rq, cfs); 1319 } 1320 #endif 1321 1322 static inline int cpu_of(struct rq *rq) 1323 { 1324 #ifdef CONFIG_SMP 1325 return rq->cpu; 1326 #else 1327 return 0; 1328 #endif 1329 } 1330 1331 #define MDF_PUSH 0x01 1332 1333 static inline bool is_migration_disabled(struct task_struct *p) 1334 { 1335 #ifdef CONFIG_SMP 1336 return p->migration_disabled; 1337 #else 1338 return false; 1339 #endif 1340 } 1341 1342 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 1343 1344 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu))) 1345 #define this_rq() this_cpu_ptr(&runqueues) 1346 #define task_rq(p) cpu_rq(task_cpu(p)) 1347 #define cpu_curr(cpu) (cpu_rq(cpu)->curr) 1348 #define raw_rq() raw_cpu_ptr(&runqueues) 1349 1350 static inline void rq_set_donor(struct rq *rq, struct task_struct *t) 1351 { 1352 /* Do nothing */ 1353 } 1354 1355 #ifdef CONFIG_SCHED_CORE 1356 static inline struct cpumask *sched_group_span(struct sched_group *sg); 1357 1358 DECLARE_STATIC_KEY_FALSE(__sched_core_enabled); 1359 1360 static inline bool sched_core_enabled(struct rq *rq) 1361 { 1362 return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled; 1363 } 1364 1365 static inline bool sched_core_disabled(void) 1366 { 1367 return !static_branch_unlikely(&__sched_core_enabled); 1368 } 1369 1370 /* 1371 * Be careful with this function; not for general use. The return value isn't 1372 * stable unless you actually hold a relevant rq->__lock. 1373 */ 1374 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1375 { 1376 if (sched_core_enabled(rq)) 1377 return &rq->core->__lock; 1378 1379 return &rq->__lock; 1380 } 1381 1382 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1383 { 1384 if (rq->core_enabled) 1385 return &rq->core->__lock; 1386 1387 return &rq->__lock; 1388 } 1389 1390 extern bool 1391 cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi); 1392 1393 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 1394 1395 /* 1396 * Helpers to check if the CPU's core cookie matches with the task's cookie 1397 * when core scheduling is enabled. 1398 * A special case is that the task's cookie always matches with CPU's core 1399 * cookie if the CPU is in an idle core. 1400 */ 1401 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1402 { 1403 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1404 if (!sched_core_enabled(rq)) 1405 return true; 1406 1407 return rq->core->core_cookie == p->core_cookie; 1408 } 1409 1410 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1411 { 1412 bool idle_core = true; 1413 int cpu; 1414 1415 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1416 if (!sched_core_enabled(rq)) 1417 return true; 1418 1419 for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) { 1420 if (!available_idle_cpu(cpu)) { 1421 idle_core = false; 1422 break; 1423 } 1424 } 1425 1426 /* 1427 * A CPU in an idle core is always the best choice for tasks with 1428 * cookies. 1429 */ 1430 return idle_core || rq->core->core_cookie == p->core_cookie; 1431 } 1432 1433 static inline bool sched_group_cookie_match(struct rq *rq, 1434 struct task_struct *p, 1435 struct sched_group *group) 1436 { 1437 int cpu; 1438 1439 /* Ignore cookie match if core scheduler is not enabled on the CPU. */ 1440 if (!sched_core_enabled(rq)) 1441 return true; 1442 1443 for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) { 1444 if (sched_core_cookie_match(cpu_rq(cpu), p)) 1445 return true; 1446 } 1447 return false; 1448 } 1449 1450 static inline bool sched_core_enqueued(struct task_struct *p) 1451 { 1452 return !RB_EMPTY_NODE(&p->core_node); 1453 } 1454 1455 extern void sched_core_enqueue(struct rq *rq, struct task_struct *p); 1456 extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags); 1457 1458 extern void sched_core_get(void); 1459 extern void sched_core_put(void); 1460 1461 #else /* !CONFIG_SCHED_CORE: */ 1462 1463 static inline bool sched_core_enabled(struct rq *rq) 1464 { 1465 return false; 1466 } 1467 1468 static inline bool sched_core_disabled(void) 1469 { 1470 return true; 1471 } 1472 1473 static inline raw_spinlock_t *rq_lockp(struct rq *rq) 1474 { 1475 return &rq->__lock; 1476 } 1477 1478 static inline raw_spinlock_t *__rq_lockp(struct rq *rq) 1479 { 1480 return &rq->__lock; 1481 } 1482 1483 static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p) 1484 { 1485 return true; 1486 } 1487 1488 static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p) 1489 { 1490 return true; 1491 } 1492 1493 static inline bool sched_group_cookie_match(struct rq *rq, 1494 struct task_struct *p, 1495 struct sched_group *group) 1496 { 1497 return true; 1498 } 1499 1500 #endif /* !CONFIG_SCHED_CORE */ 1501 1502 static inline void lockdep_assert_rq_held(struct rq *rq) 1503 { 1504 lockdep_assert_held(__rq_lockp(rq)); 1505 } 1506 1507 extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass); 1508 extern bool raw_spin_rq_trylock(struct rq *rq); 1509 extern void raw_spin_rq_unlock(struct rq *rq); 1510 1511 static inline void raw_spin_rq_lock(struct rq *rq) 1512 { 1513 raw_spin_rq_lock_nested(rq, 0); 1514 } 1515 1516 static inline void raw_spin_rq_lock_irq(struct rq *rq) 1517 { 1518 local_irq_disable(); 1519 raw_spin_rq_lock(rq); 1520 } 1521 1522 static inline void raw_spin_rq_unlock_irq(struct rq *rq) 1523 { 1524 raw_spin_rq_unlock(rq); 1525 local_irq_enable(); 1526 } 1527 1528 static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq) 1529 { 1530 unsigned long flags; 1531 1532 local_irq_save(flags); 1533 raw_spin_rq_lock(rq); 1534 1535 return flags; 1536 } 1537 1538 static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags) 1539 { 1540 raw_spin_rq_unlock(rq); 1541 local_irq_restore(flags); 1542 } 1543 1544 #define raw_spin_rq_lock_irqsave(rq, flags) \ 1545 do { \ 1546 flags = _raw_spin_rq_lock_irqsave(rq); \ 1547 } while (0) 1548 1549 #ifdef CONFIG_SCHED_SMT 1550 extern void __update_idle_core(struct rq *rq); 1551 1552 static inline void update_idle_core(struct rq *rq) 1553 { 1554 if (static_branch_unlikely(&sched_smt_present)) 1555 __update_idle_core(rq); 1556 } 1557 1558 #else 1559 static inline void update_idle_core(struct rq *rq) { } 1560 #endif 1561 1562 #ifdef CONFIG_FAIR_GROUP_SCHED 1563 1564 static inline struct task_struct *task_of(struct sched_entity *se) 1565 { 1566 WARN_ON_ONCE(!entity_is_task(se)); 1567 return container_of(se, struct task_struct, se); 1568 } 1569 1570 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p) 1571 { 1572 return p->se.cfs_rq; 1573 } 1574 1575 /* runqueue on which this entity is (to be) queued */ 1576 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1577 { 1578 return se->cfs_rq; 1579 } 1580 1581 /* runqueue "owned" by this group */ 1582 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1583 { 1584 return grp->my_q; 1585 } 1586 1587 #else /* !CONFIG_FAIR_GROUP_SCHED: */ 1588 1589 #define task_of(_se) container_of(_se, struct task_struct, se) 1590 1591 static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p) 1592 { 1593 return &task_rq(p)->cfs; 1594 } 1595 1596 static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se) 1597 { 1598 const struct task_struct *p = task_of(se); 1599 struct rq *rq = task_rq(p); 1600 1601 return &rq->cfs; 1602 } 1603 1604 /* runqueue "owned" by this group */ 1605 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp) 1606 { 1607 return NULL; 1608 } 1609 1610 #endif /* !CONFIG_FAIR_GROUP_SCHED */ 1611 1612 extern void update_rq_clock(struct rq *rq); 1613 1614 /* 1615 * rq::clock_update_flags bits 1616 * 1617 * %RQCF_REQ_SKIP - will request skipping of clock update on the next 1618 * call to __schedule(). This is an optimisation to avoid 1619 * neighbouring rq clock updates. 1620 * 1621 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is 1622 * in effect and calls to update_rq_clock() are being ignored. 1623 * 1624 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been 1625 * made to update_rq_clock() since the last time rq::lock was pinned. 1626 * 1627 * If inside of __schedule(), clock_update_flags will have been 1628 * shifted left (a left shift is a cheap operation for the fast path 1629 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use, 1630 * 1631 * if (rq-clock_update_flags >= RQCF_UPDATED) 1632 * 1633 * to check if %RQCF_UPDATED is set. It'll never be shifted more than 1634 * one position though, because the next rq_unpin_lock() will shift it 1635 * back. 1636 */ 1637 #define RQCF_REQ_SKIP 0x01 1638 #define RQCF_ACT_SKIP 0x02 1639 #define RQCF_UPDATED 0x04 1640 1641 static inline void assert_clock_updated(struct rq *rq) 1642 { 1643 /* 1644 * The only reason for not seeing a clock update since the 1645 * last rq_pin_lock() is if we're currently skipping updates. 1646 */ 1647 WARN_ON_ONCE(rq->clock_update_flags < RQCF_ACT_SKIP); 1648 } 1649 1650 static inline u64 rq_clock(struct rq *rq) 1651 { 1652 lockdep_assert_rq_held(rq); 1653 assert_clock_updated(rq); 1654 1655 return rq->clock; 1656 } 1657 1658 static inline u64 rq_clock_task(struct rq *rq) 1659 { 1660 lockdep_assert_rq_held(rq); 1661 assert_clock_updated(rq); 1662 1663 return rq->clock_task; 1664 } 1665 1666 static inline void rq_clock_skip_update(struct rq *rq) 1667 { 1668 lockdep_assert_rq_held(rq); 1669 rq->clock_update_flags |= RQCF_REQ_SKIP; 1670 } 1671 1672 /* 1673 * See rt task throttling, which is the only time a skip 1674 * request is canceled. 1675 */ 1676 static inline void rq_clock_cancel_skipupdate(struct rq *rq) 1677 { 1678 lockdep_assert_rq_held(rq); 1679 rq->clock_update_flags &= ~RQCF_REQ_SKIP; 1680 } 1681 1682 /* 1683 * During cpu offlining and rq wide unthrottling, we can trigger 1684 * an update_rq_clock() for several cfs and rt runqueues (Typically 1685 * when using list_for_each_entry_*) 1686 * rq_clock_start_loop_update() can be called after updating the clock 1687 * once and before iterating over the list to prevent multiple update. 1688 * After the iterative traversal, we need to call rq_clock_stop_loop_update() 1689 * to clear RQCF_ACT_SKIP of rq->clock_update_flags. 1690 */ 1691 static inline void rq_clock_start_loop_update(struct rq *rq) 1692 { 1693 lockdep_assert_rq_held(rq); 1694 WARN_ON_ONCE(rq->clock_update_flags & RQCF_ACT_SKIP); 1695 rq->clock_update_flags |= RQCF_ACT_SKIP; 1696 } 1697 1698 static inline void rq_clock_stop_loop_update(struct rq *rq) 1699 { 1700 lockdep_assert_rq_held(rq); 1701 rq->clock_update_flags &= ~RQCF_ACT_SKIP; 1702 } 1703 1704 struct rq_flags { 1705 unsigned long flags; 1706 struct pin_cookie cookie; 1707 /* 1708 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the 1709 * current pin context is stashed here in case it needs to be 1710 * restored in rq_repin_lock(). 1711 */ 1712 unsigned int clock_update_flags; 1713 }; 1714 1715 extern struct balance_callback balance_push_callback; 1716 1717 #ifdef CONFIG_SCHED_CLASS_EXT 1718 extern const struct sched_class ext_sched_class; 1719 1720 DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled); /* SCX BPF scheduler loaded */ 1721 DECLARE_STATIC_KEY_FALSE(__scx_switched_all); /* all fair class tasks on SCX */ 1722 1723 #define scx_enabled() static_branch_unlikely(&__scx_ops_enabled) 1724 #define scx_switched_all() static_branch_unlikely(&__scx_switched_all) 1725 1726 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) 1727 { 1728 if (!scx_enabled()) 1729 return; 1730 WRITE_ONCE(rq->scx.clock, clock); 1731 smp_store_release(&rq->scx.flags, rq->scx.flags | SCX_RQ_CLK_VALID); 1732 } 1733 1734 static inline void scx_rq_clock_invalidate(struct rq *rq) 1735 { 1736 if (!scx_enabled()) 1737 return; 1738 WRITE_ONCE(rq->scx.flags, rq->scx.flags & ~SCX_RQ_CLK_VALID); 1739 } 1740 1741 #else /* !CONFIG_SCHED_CLASS_EXT */ 1742 #define scx_enabled() false 1743 #define scx_switched_all() false 1744 1745 static inline void scx_rq_clock_update(struct rq *rq, u64 clock) {} 1746 static inline void scx_rq_clock_invalidate(struct rq *rq) {} 1747 #endif /* !CONFIG_SCHED_CLASS_EXT */ 1748 1749 /* 1750 * Lockdep annotation that avoids accidental unlocks; it's like a 1751 * sticky/continuous lockdep_assert_held(). 1752 * 1753 * This avoids code that has access to 'struct rq *rq' (basically everything in 1754 * the scheduler) from accidentally unlocking the rq if they do not also have a 1755 * copy of the (on-stack) 'struct rq_flags rf'. 1756 * 1757 * Also see Documentation/locking/lockdep-design.rst. 1758 */ 1759 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf) 1760 { 1761 rf->cookie = lockdep_pin_lock(__rq_lockp(rq)); 1762 1763 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 1764 rf->clock_update_flags = 0; 1765 #ifdef CONFIG_SMP 1766 WARN_ON_ONCE(rq->balance_callback && rq->balance_callback != &balance_push_callback); 1767 #endif 1768 } 1769 1770 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf) 1771 { 1772 if (rq->clock_update_flags > RQCF_ACT_SKIP) 1773 rf->clock_update_flags = RQCF_UPDATED; 1774 1775 scx_rq_clock_invalidate(rq); 1776 lockdep_unpin_lock(__rq_lockp(rq), rf->cookie); 1777 } 1778 1779 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf) 1780 { 1781 lockdep_repin_lock(__rq_lockp(rq), rf->cookie); 1782 1783 /* 1784 * Restore the value we stashed in @rf for this pin context. 1785 */ 1786 rq->clock_update_flags |= rf->clock_update_flags; 1787 } 1788 1789 extern 1790 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1791 __acquires(rq->lock); 1792 1793 extern 1794 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 1795 __acquires(p->pi_lock) 1796 __acquires(rq->lock); 1797 1798 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf) 1799 __releases(rq->lock) 1800 { 1801 rq_unpin_lock(rq, rf); 1802 raw_spin_rq_unlock(rq); 1803 } 1804 1805 static inline void 1806 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf) 1807 __releases(rq->lock) 1808 __releases(p->pi_lock) 1809 { 1810 rq_unpin_lock(rq, rf); 1811 raw_spin_rq_unlock(rq); 1812 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 1813 } 1814 1815 DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct, 1816 _T->rq = task_rq_lock(_T->lock, &_T->rf), 1817 task_rq_unlock(_T->rq, _T->lock, &_T->rf), 1818 struct rq *rq; struct rq_flags rf) 1819 1820 static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf) 1821 __acquires(rq->lock) 1822 { 1823 raw_spin_rq_lock_irqsave(rq, rf->flags); 1824 rq_pin_lock(rq, rf); 1825 } 1826 1827 static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf) 1828 __acquires(rq->lock) 1829 { 1830 raw_spin_rq_lock_irq(rq); 1831 rq_pin_lock(rq, rf); 1832 } 1833 1834 static inline void rq_lock(struct rq *rq, struct rq_flags *rf) 1835 __acquires(rq->lock) 1836 { 1837 raw_spin_rq_lock(rq); 1838 rq_pin_lock(rq, rf); 1839 } 1840 1841 static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf) 1842 __releases(rq->lock) 1843 { 1844 rq_unpin_lock(rq, rf); 1845 raw_spin_rq_unlock_irqrestore(rq, rf->flags); 1846 } 1847 1848 static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf) 1849 __releases(rq->lock) 1850 { 1851 rq_unpin_lock(rq, rf); 1852 raw_spin_rq_unlock_irq(rq); 1853 } 1854 1855 static inline void rq_unlock(struct rq *rq, struct rq_flags *rf) 1856 __releases(rq->lock) 1857 { 1858 rq_unpin_lock(rq, rf); 1859 raw_spin_rq_unlock(rq); 1860 } 1861 1862 DEFINE_LOCK_GUARD_1(rq_lock, struct rq, 1863 rq_lock(_T->lock, &_T->rf), 1864 rq_unlock(_T->lock, &_T->rf), 1865 struct rq_flags rf) 1866 1867 DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq, 1868 rq_lock_irq(_T->lock, &_T->rf), 1869 rq_unlock_irq(_T->lock, &_T->rf), 1870 struct rq_flags rf) 1871 1872 DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq, 1873 rq_lock_irqsave(_T->lock, &_T->rf), 1874 rq_unlock_irqrestore(_T->lock, &_T->rf), 1875 struct rq_flags rf) 1876 1877 static inline struct rq *this_rq_lock_irq(struct rq_flags *rf) 1878 __acquires(rq->lock) 1879 { 1880 struct rq *rq; 1881 1882 local_irq_disable(); 1883 rq = this_rq(); 1884 rq_lock(rq, rf); 1885 1886 return rq; 1887 } 1888 1889 #ifdef CONFIG_NUMA 1890 1891 enum numa_topology_type { 1892 NUMA_DIRECT, 1893 NUMA_GLUELESS_MESH, 1894 NUMA_BACKPLANE, 1895 }; 1896 1897 extern enum numa_topology_type sched_numa_topology_type; 1898 extern int sched_max_numa_distance; 1899 extern bool find_numa_distance(int distance); 1900 extern void sched_init_numa(int offline_node); 1901 extern void sched_update_numa(int cpu, bool online); 1902 extern void sched_domains_numa_masks_set(unsigned int cpu); 1903 extern void sched_domains_numa_masks_clear(unsigned int cpu); 1904 extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu); 1905 1906 #else /* !CONFIG_NUMA: */ 1907 1908 static inline void sched_init_numa(int offline_node) { } 1909 static inline void sched_update_numa(int cpu, bool online) { } 1910 static inline void sched_domains_numa_masks_set(unsigned int cpu) { } 1911 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } 1912 1913 static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu) 1914 { 1915 return nr_cpu_ids; 1916 } 1917 1918 #endif /* !CONFIG_NUMA */ 1919 1920 #ifdef CONFIG_NUMA_BALANCING 1921 1922 /* The regions in numa_faults array from task_struct */ 1923 enum numa_faults_stats { 1924 NUMA_MEM = 0, 1925 NUMA_CPU, 1926 NUMA_MEMBUF, 1927 NUMA_CPUBUF 1928 }; 1929 1930 extern void sched_setnuma(struct task_struct *p, int node); 1931 extern int migrate_task_to(struct task_struct *p, int cpu); 1932 extern int migrate_swap(struct task_struct *p, struct task_struct *t, 1933 int cpu, int scpu); 1934 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p); 1935 1936 #else /* !CONFIG_NUMA_BALANCING: */ 1937 1938 static inline void 1939 init_numa_balancing(unsigned long clone_flags, struct task_struct *p) 1940 { 1941 } 1942 1943 #endif /* !CONFIG_NUMA_BALANCING */ 1944 1945 #ifdef CONFIG_SMP 1946 1947 static inline void 1948 queue_balance_callback(struct rq *rq, 1949 struct balance_callback *head, 1950 void (*func)(struct rq *rq)) 1951 { 1952 lockdep_assert_rq_held(rq); 1953 1954 /* 1955 * Don't (re)queue an already queued item; nor queue anything when 1956 * balance_push() is active, see the comment with 1957 * balance_push_callback. 1958 */ 1959 if (unlikely(head->next || rq->balance_callback == &balance_push_callback)) 1960 return; 1961 1962 head->func = func; 1963 head->next = rq->balance_callback; 1964 rq->balance_callback = head; 1965 } 1966 1967 #define rcu_dereference_check_sched_domain(p) \ 1968 rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex)) 1969 1970 /* 1971 * The domain tree (rq->sd) is protected by RCU's quiescent state transition. 1972 * See destroy_sched_domains: call_rcu for details. 1973 * 1974 * The domain tree of any CPU may only be accessed from within 1975 * preempt-disabled sections. 1976 */ 1977 #define for_each_domain(cpu, __sd) \ 1978 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \ 1979 __sd; __sd = __sd->parent) 1980 1981 /* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */ 1982 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) | 1983 static const unsigned int SD_SHARED_CHILD_MASK = 1984 #include <linux/sched/sd_flags.h> 1985 0; 1986 #undef SD_FLAG 1987 1988 /** 1989 * highest_flag_domain - Return highest sched_domain containing flag. 1990 * @cpu: The CPU whose highest level of sched domain is to 1991 * be returned. 1992 * @flag: The flag to check for the highest sched_domain 1993 * for the given CPU. 1994 * 1995 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has 1996 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag. 1997 */ 1998 static inline struct sched_domain *highest_flag_domain(int cpu, int flag) 1999 { 2000 struct sched_domain *sd, *hsd = NULL; 2001 2002 for_each_domain(cpu, sd) { 2003 if (sd->flags & flag) { 2004 hsd = sd; 2005 continue; 2006 } 2007 2008 /* 2009 * Stop the search if @flag is known to be shared at lower 2010 * levels. It will not be found further up. 2011 */ 2012 if (flag & SD_SHARED_CHILD_MASK) 2013 break; 2014 } 2015 2016 return hsd; 2017 } 2018 2019 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag) 2020 { 2021 struct sched_domain *sd; 2022 2023 for_each_domain(cpu, sd) { 2024 if (sd->flags & flag) 2025 break; 2026 } 2027 2028 return sd; 2029 } 2030 2031 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc); 2032 DECLARE_PER_CPU(int, sd_llc_size); 2033 DECLARE_PER_CPU(int, sd_llc_id); 2034 DECLARE_PER_CPU(int, sd_share_id); 2035 DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared); 2036 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa); 2037 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing); 2038 DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity); 2039 2040 extern struct static_key_false sched_asym_cpucapacity; 2041 extern struct static_key_false sched_cluster_active; 2042 2043 static __always_inline bool sched_asym_cpucap_active(void) 2044 { 2045 return static_branch_unlikely(&sched_asym_cpucapacity); 2046 } 2047 2048 struct sched_group_capacity { 2049 atomic_t ref; 2050 /* 2051 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity 2052 * for a single CPU. 2053 */ 2054 unsigned long capacity; 2055 unsigned long min_capacity; /* Min per-CPU capacity in group */ 2056 unsigned long max_capacity; /* Max per-CPU capacity in group */ 2057 unsigned long next_update; 2058 int imbalance; /* XXX unrelated to capacity but shared group state */ 2059 2060 int id; 2061 2062 unsigned long cpumask[]; /* Balance mask */ 2063 }; 2064 2065 struct sched_group { 2066 struct sched_group *next; /* Must be a circular list */ 2067 atomic_t ref; 2068 2069 unsigned int group_weight; 2070 unsigned int cores; 2071 struct sched_group_capacity *sgc; 2072 int asym_prefer_cpu; /* CPU of highest priority in group */ 2073 int flags; 2074 2075 /* 2076 * The CPUs this group covers. 2077 * 2078 * NOTE: this field is variable length. (Allocated dynamically 2079 * by attaching extra space to the end of the structure, 2080 * depending on how many CPUs the kernel has booted up with) 2081 */ 2082 unsigned long cpumask[]; 2083 }; 2084 2085 static inline struct cpumask *sched_group_span(struct sched_group *sg) 2086 { 2087 return to_cpumask(sg->cpumask); 2088 } 2089 2090 /* 2091 * See build_balance_mask(). 2092 */ 2093 static inline struct cpumask *group_balance_mask(struct sched_group *sg) 2094 { 2095 return to_cpumask(sg->sgc->cpumask); 2096 } 2097 2098 extern int group_balance_cpu(struct sched_group *sg); 2099 2100 extern void update_sched_domain_debugfs(void); 2101 extern void dirty_sched_domain_sysctl(int cpu); 2102 2103 extern int sched_update_scaling(void); 2104 2105 static inline const struct cpumask *task_user_cpus(struct task_struct *p) 2106 { 2107 if (!p->user_cpus_ptr) 2108 return cpu_possible_mask; /* &init_task.cpus_mask */ 2109 return p->user_cpus_ptr; 2110 } 2111 2112 #endif /* CONFIG_SMP */ 2113 2114 #ifdef CONFIG_CGROUP_SCHED 2115 2116 /* 2117 * Return the group to which this tasks belongs. 2118 * 2119 * We cannot use task_css() and friends because the cgroup subsystem 2120 * changes that value before the cgroup_subsys::attach() method is called, 2121 * therefore we cannot pin it and might observe the wrong value. 2122 * 2123 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup 2124 * core changes this before calling sched_move_task(). 2125 * 2126 * Instead we use a 'copy' which is updated from sched_move_task() while 2127 * holding both task_struct::pi_lock and rq::lock. 2128 */ 2129 static inline struct task_group *task_group(struct task_struct *p) 2130 { 2131 return p->sched_task_group; 2132 } 2133 2134 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ 2135 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) 2136 { 2137 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED) 2138 struct task_group *tg = task_group(p); 2139 #endif 2140 2141 #ifdef CONFIG_FAIR_GROUP_SCHED 2142 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]); 2143 p->se.cfs_rq = tg->cfs_rq[cpu]; 2144 p->se.parent = tg->se[cpu]; 2145 p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0; 2146 #endif 2147 2148 #ifdef CONFIG_RT_GROUP_SCHED 2149 p->rt.rt_rq = tg->rt_rq[cpu]; 2150 p->rt.parent = tg->rt_se[cpu]; 2151 #endif 2152 } 2153 2154 #else /* !CONFIG_CGROUP_SCHED: */ 2155 2156 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } 2157 2158 static inline struct task_group *task_group(struct task_struct *p) 2159 { 2160 return NULL; 2161 } 2162 2163 #endif /* !CONFIG_CGROUP_SCHED */ 2164 2165 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) 2166 { 2167 set_task_rq(p, cpu); 2168 #ifdef CONFIG_SMP 2169 /* 2170 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be 2171 * successfully executed on another CPU. We must ensure that updates of 2172 * per-task data have been completed by this moment. 2173 */ 2174 smp_wmb(); 2175 WRITE_ONCE(task_thread_info(p)->cpu, cpu); 2176 p->wake_cpu = cpu; 2177 #endif 2178 } 2179 2180 /* 2181 * Tunables: 2182 */ 2183 2184 #define SCHED_FEAT(name, enabled) \ 2185 __SCHED_FEAT_##name , 2186 2187 enum { 2188 #include "features.h" 2189 __SCHED_FEAT_NR, 2190 }; 2191 2192 #undef SCHED_FEAT 2193 2194 /* 2195 * To support run-time toggling of sched features, all the translation units 2196 * (but core.c) reference the sysctl_sched_features defined in core.c. 2197 */ 2198 extern __read_mostly unsigned int sysctl_sched_features; 2199 2200 #ifdef CONFIG_JUMP_LABEL 2201 2202 #define SCHED_FEAT(name, enabled) \ 2203 static __always_inline bool static_branch_##name(struct static_key *key) \ 2204 { \ 2205 return static_key_##enabled(key); \ 2206 } 2207 2208 #include "features.h" 2209 #undef SCHED_FEAT 2210 2211 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR]; 2212 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x])) 2213 2214 #else /* !CONFIG_JUMP_LABEL: */ 2215 2216 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) 2217 2218 #endif /* !CONFIG_JUMP_LABEL */ 2219 2220 extern struct static_key_false sched_numa_balancing; 2221 extern struct static_key_false sched_schedstats; 2222 2223 static inline u64 global_rt_period(void) 2224 { 2225 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; 2226 } 2227 2228 static inline u64 global_rt_runtime(void) 2229 { 2230 if (sysctl_sched_rt_runtime < 0) 2231 return RUNTIME_INF; 2232 2233 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; 2234 } 2235 2236 /* 2237 * Is p the current execution context? 2238 */ 2239 static inline int task_current(struct rq *rq, struct task_struct *p) 2240 { 2241 return rq->curr == p; 2242 } 2243 2244 /* 2245 * Is p the current scheduling context? 2246 * 2247 * Note that it might be the current execution context at the same time if 2248 * rq->curr == rq->donor == p. 2249 */ 2250 static inline int task_current_donor(struct rq *rq, struct task_struct *p) 2251 { 2252 return rq->donor == p; 2253 } 2254 2255 static inline int task_on_cpu(struct rq *rq, struct task_struct *p) 2256 { 2257 #ifdef CONFIG_SMP 2258 return p->on_cpu; 2259 #else 2260 return task_current(rq, p); 2261 #endif 2262 } 2263 2264 static inline int task_on_rq_queued(struct task_struct *p) 2265 { 2266 return READ_ONCE(p->on_rq) == TASK_ON_RQ_QUEUED; 2267 } 2268 2269 static inline int task_on_rq_migrating(struct task_struct *p) 2270 { 2271 return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING; 2272 } 2273 2274 /* Wake flags. The first three directly map to some SD flag value */ 2275 #define WF_EXEC 0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */ 2276 #define WF_FORK 0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */ 2277 #define WF_TTWU 0x08 /* Wakeup; maps to SD_BALANCE_WAKE */ 2278 2279 #define WF_SYNC 0x10 /* Waker goes to sleep after wakeup */ 2280 #define WF_MIGRATED 0x20 /* Internal use, task got migrated */ 2281 #define WF_CURRENT_CPU 0x40 /* Prefer to move the wakee to the current CPU. */ 2282 #define WF_RQ_SELECTED 0x80 /* ->select_task_rq() was called */ 2283 2284 #ifdef CONFIG_SMP 2285 static_assert(WF_EXEC == SD_BALANCE_EXEC); 2286 static_assert(WF_FORK == SD_BALANCE_FORK); 2287 static_assert(WF_TTWU == SD_BALANCE_WAKE); 2288 #endif 2289 2290 /* 2291 * To aid in avoiding the subversion of "niceness" due to uneven distribution 2292 * of tasks with abnormal "nice" values across CPUs the contribution that 2293 * each task makes to its run queue's load is weighted according to its 2294 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a 2295 * scaled version of the new time slice allocation that they receive on time 2296 * slice expiry etc. 2297 */ 2298 2299 #define WEIGHT_IDLEPRIO 3 2300 #define WMULT_IDLEPRIO 1431655765 2301 2302 extern const int sched_prio_to_weight[40]; 2303 extern const u32 sched_prio_to_wmult[40]; 2304 2305 /* 2306 * {de,en}queue flags: 2307 * 2308 * DEQUEUE_SLEEP - task is no longer runnable 2309 * ENQUEUE_WAKEUP - task just became runnable 2310 * 2311 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks 2312 * are in a known state which allows modification. Such pairs 2313 * should preserve as much state as possible. 2314 * 2315 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location 2316 * in the runqueue. 2317 * 2318 * NOCLOCK - skip the update_rq_clock() (avoids double updates) 2319 * 2320 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE) 2321 * 2322 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified) 2323 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline) 2324 * ENQUEUE_MIGRATED - the task was migrated during wakeup 2325 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called 2326 * 2327 */ 2328 2329 #define DEQUEUE_SLEEP 0x01 /* Matches ENQUEUE_WAKEUP */ 2330 #define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */ 2331 #define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */ 2332 #define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */ 2333 #define DEQUEUE_SPECIAL 0x10 2334 #define DEQUEUE_MIGRATING 0x100 /* Matches ENQUEUE_MIGRATING */ 2335 #define DEQUEUE_DELAYED 0x200 /* Matches ENQUEUE_DELAYED */ 2336 2337 #define ENQUEUE_WAKEUP 0x01 2338 #define ENQUEUE_RESTORE 0x02 2339 #define ENQUEUE_MOVE 0x04 2340 #define ENQUEUE_NOCLOCK 0x08 2341 2342 #define ENQUEUE_HEAD 0x10 2343 #define ENQUEUE_REPLENISH 0x20 2344 #ifdef CONFIG_SMP 2345 #define ENQUEUE_MIGRATED 0x40 2346 #else 2347 #define ENQUEUE_MIGRATED 0x00 2348 #endif 2349 #define ENQUEUE_INITIAL 0x80 2350 #define ENQUEUE_MIGRATING 0x100 2351 #define ENQUEUE_DELAYED 0x200 2352 #define ENQUEUE_RQ_SELECTED 0x400 2353 2354 #define RETRY_TASK ((void *)-1UL) 2355 2356 struct affinity_context { 2357 const struct cpumask *new_mask; 2358 struct cpumask *user_mask; 2359 unsigned int flags; 2360 }; 2361 2362 extern s64 update_curr_common(struct rq *rq); 2363 2364 struct sched_class { 2365 2366 #ifdef CONFIG_UCLAMP_TASK 2367 int uclamp_enabled; 2368 #endif 2369 2370 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags); 2371 bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags); 2372 void (*yield_task) (struct rq *rq); 2373 bool (*yield_to_task)(struct rq *rq, struct task_struct *p); 2374 2375 void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags); 2376 2377 int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2378 struct task_struct *(*pick_task)(struct rq *rq); 2379 /* 2380 * Optional! When implemented pick_next_task() should be equivalent to: 2381 * 2382 * next = pick_task(); 2383 * if (next) { 2384 * put_prev_task(prev); 2385 * set_next_task_first(next); 2386 * } 2387 */ 2388 struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev); 2389 2390 void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next); 2391 void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first); 2392 2393 #ifdef CONFIG_SMP 2394 int (*select_task_rq)(struct task_struct *p, int task_cpu, int flags); 2395 2396 void (*migrate_task_rq)(struct task_struct *p, int new_cpu); 2397 2398 void (*task_woken)(struct rq *this_rq, struct task_struct *task); 2399 2400 void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx); 2401 2402 void (*rq_online)(struct rq *rq); 2403 void (*rq_offline)(struct rq *rq); 2404 2405 struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq); 2406 #endif 2407 2408 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued); 2409 void (*task_fork)(struct task_struct *p); 2410 void (*task_dead)(struct task_struct *p); 2411 2412 /* 2413 * The switched_from() call is allowed to drop rq->lock, therefore we 2414 * cannot assume the switched_from/switched_to pair is serialized by 2415 * rq->lock. They are however serialized by p->pi_lock. 2416 */ 2417 void (*switching_to) (struct rq *this_rq, struct task_struct *task); 2418 void (*switched_from)(struct rq *this_rq, struct task_struct *task); 2419 void (*switched_to) (struct rq *this_rq, struct task_struct *task); 2420 void (*reweight_task)(struct rq *this_rq, struct task_struct *task, 2421 const struct load_weight *lw); 2422 void (*prio_changed) (struct rq *this_rq, struct task_struct *task, 2423 int oldprio); 2424 2425 unsigned int (*get_rr_interval)(struct rq *rq, 2426 struct task_struct *task); 2427 2428 void (*update_curr)(struct rq *rq); 2429 2430 #ifdef CONFIG_FAIR_GROUP_SCHED 2431 void (*task_change_group)(struct task_struct *p); 2432 #endif 2433 2434 #ifdef CONFIG_SCHED_CORE 2435 int (*task_is_throttled)(struct task_struct *p, int cpu); 2436 #endif 2437 }; 2438 2439 static inline void put_prev_task(struct rq *rq, struct task_struct *prev) 2440 { 2441 WARN_ON_ONCE(rq->donor != prev); 2442 prev->sched_class->put_prev_task(rq, prev, NULL); 2443 } 2444 2445 static inline void set_next_task(struct rq *rq, struct task_struct *next) 2446 { 2447 next->sched_class->set_next_task(rq, next, false); 2448 } 2449 2450 static inline void 2451 __put_prev_set_next_dl_server(struct rq *rq, 2452 struct task_struct *prev, 2453 struct task_struct *next) 2454 { 2455 prev->dl_server = NULL; 2456 next->dl_server = rq->dl_server; 2457 rq->dl_server = NULL; 2458 } 2459 2460 static inline void put_prev_set_next_task(struct rq *rq, 2461 struct task_struct *prev, 2462 struct task_struct *next) 2463 { 2464 WARN_ON_ONCE(rq->curr != prev); 2465 2466 __put_prev_set_next_dl_server(rq, prev, next); 2467 2468 if (next == prev) 2469 return; 2470 2471 prev->sched_class->put_prev_task(rq, prev, next); 2472 next->sched_class->set_next_task(rq, next, true); 2473 } 2474 2475 /* 2476 * Helper to define a sched_class instance; each one is placed in a separate 2477 * section which is ordered by the linker script: 2478 * 2479 * include/asm-generic/vmlinux.lds.h 2480 * 2481 * *CAREFUL* they are laid out in *REVERSE* order!!! 2482 * 2483 * Also enforce alignment on the instance, not the type, to guarantee layout. 2484 */ 2485 #define DEFINE_SCHED_CLASS(name) \ 2486 const struct sched_class name##_sched_class \ 2487 __aligned(__alignof__(struct sched_class)) \ 2488 __section("__" #name "_sched_class") 2489 2490 /* Defined in include/asm-generic/vmlinux.lds.h */ 2491 extern struct sched_class __sched_class_highest[]; 2492 extern struct sched_class __sched_class_lowest[]; 2493 2494 extern const struct sched_class stop_sched_class; 2495 extern const struct sched_class dl_sched_class; 2496 extern const struct sched_class rt_sched_class; 2497 extern const struct sched_class fair_sched_class; 2498 extern const struct sched_class idle_sched_class; 2499 2500 /* 2501 * Iterate only active classes. SCX can take over all fair tasks or be 2502 * completely disabled. If the former, skip fair. If the latter, skip SCX. 2503 */ 2504 static inline const struct sched_class *next_active_class(const struct sched_class *class) 2505 { 2506 class++; 2507 #ifdef CONFIG_SCHED_CLASS_EXT 2508 if (scx_switched_all() && class == &fair_sched_class) 2509 class++; 2510 if (!scx_enabled() && class == &ext_sched_class) 2511 class++; 2512 #endif 2513 return class; 2514 } 2515 2516 #define for_class_range(class, _from, _to) \ 2517 for (class = (_from); class < (_to); class++) 2518 2519 #define for_each_class(class) \ 2520 for_class_range(class, __sched_class_highest, __sched_class_lowest) 2521 2522 #define for_active_class_range(class, _from, _to) \ 2523 for (class = (_from); class != (_to); class = next_active_class(class)) 2524 2525 #define for_each_active_class(class) \ 2526 for_active_class_range(class, __sched_class_highest, __sched_class_lowest) 2527 2528 #define sched_class_above(_a, _b) ((_a) < (_b)) 2529 2530 static inline bool sched_stop_runnable(struct rq *rq) 2531 { 2532 return rq->stop && task_on_rq_queued(rq->stop); 2533 } 2534 2535 static inline bool sched_dl_runnable(struct rq *rq) 2536 { 2537 return rq->dl.dl_nr_running > 0; 2538 } 2539 2540 static inline bool sched_rt_runnable(struct rq *rq) 2541 { 2542 return rq->rt.rt_queued > 0; 2543 } 2544 2545 static inline bool sched_fair_runnable(struct rq *rq) 2546 { 2547 return rq->cfs.nr_queued > 0; 2548 } 2549 2550 extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf); 2551 extern struct task_struct *pick_task_idle(struct rq *rq); 2552 2553 #define SCA_CHECK 0x01 2554 #define SCA_MIGRATE_DISABLE 0x02 2555 #define SCA_MIGRATE_ENABLE 0x04 2556 #define SCA_USER 0x08 2557 2558 #ifdef CONFIG_SMP 2559 2560 extern void update_group_capacity(struct sched_domain *sd, int cpu); 2561 2562 extern void sched_balance_trigger(struct rq *rq); 2563 2564 extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx); 2565 extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx); 2566 2567 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2568 { 2569 /* When not in the task's cpumask, no point in looking further. */ 2570 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 2571 return false; 2572 2573 /* Can @cpu run a user thread? */ 2574 if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p)) 2575 return false; 2576 2577 return true; 2578 } 2579 2580 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2581 { 2582 /* 2583 * See do_set_cpus_allowed() above for the rcu_head usage. 2584 */ 2585 int size = max_t(int, cpumask_size(), sizeof(struct rcu_head)); 2586 2587 return kmalloc_node(size, GFP_KERNEL, node); 2588 } 2589 2590 static inline struct task_struct *get_push_task(struct rq *rq) 2591 { 2592 struct task_struct *p = rq->donor; 2593 2594 lockdep_assert_rq_held(rq); 2595 2596 if (rq->push_busy) 2597 return NULL; 2598 2599 if (p->nr_cpus_allowed == 1) 2600 return NULL; 2601 2602 if (p->migration_disabled) 2603 return NULL; 2604 2605 rq->push_busy = true; 2606 return get_task_struct(p); 2607 } 2608 2609 extern int push_cpu_stop(void *arg); 2610 2611 #else /* !CONFIG_SMP: */ 2612 2613 static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu) 2614 { 2615 return true; 2616 } 2617 2618 static inline int __set_cpus_allowed_ptr(struct task_struct *p, 2619 struct affinity_context *ctx) 2620 { 2621 return set_cpus_allowed_ptr(p, ctx->new_mask); 2622 } 2623 2624 static inline cpumask_t *alloc_user_cpus_ptr(int node) 2625 { 2626 return NULL; 2627 } 2628 2629 #endif /* !CONFIG_SMP */ 2630 2631 #ifdef CONFIG_CPU_IDLE 2632 2633 static inline void idle_set_state(struct rq *rq, 2634 struct cpuidle_state *idle_state) 2635 { 2636 rq->idle_state = idle_state; 2637 } 2638 2639 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2640 { 2641 WARN_ON_ONCE(!rcu_read_lock_held()); 2642 2643 return rq->idle_state; 2644 } 2645 2646 #else /* !CONFIG_CPU_IDLE: */ 2647 2648 static inline void idle_set_state(struct rq *rq, 2649 struct cpuidle_state *idle_state) 2650 { 2651 } 2652 2653 static inline struct cpuidle_state *idle_get_state(struct rq *rq) 2654 { 2655 return NULL; 2656 } 2657 2658 #endif /* !CONFIG_CPU_IDLE */ 2659 2660 extern void schedule_idle(void); 2661 asmlinkage void schedule_user(void); 2662 2663 extern void sysrq_sched_debug_show(void); 2664 extern void sched_init_granularity(void); 2665 extern void update_max_interval(void); 2666 2667 extern void init_sched_dl_class(void); 2668 extern void init_sched_rt_class(void); 2669 extern void init_sched_fair_class(void); 2670 2671 extern void resched_curr(struct rq *rq); 2672 extern void resched_curr_lazy(struct rq *rq); 2673 extern void resched_cpu(int cpu); 2674 2675 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime); 2676 extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq); 2677 2678 extern void init_dl_entity(struct sched_dl_entity *dl_se); 2679 2680 #define BW_SHIFT 20 2681 #define BW_UNIT (1 << BW_SHIFT) 2682 #define RATIO_SHIFT 8 2683 #define MAX_BW_BITS (64 - BW_SHIFT) 2684 #define MAX_BW ((1ULL << MAX_BW_BITS) - 1) 2685 2686 extern unsigned long to_ratio(u64 period, u64 runtime); 2687 2688 extern void init_entity_runnable_average(struct sched_entity *se); 2689 extern void post_init_entity_util_avg(struct task_struct *p); 2690 2691 #ifdef CONFIG_NO_HZ_FULL 2692 extern bool sched_can_stop_tick(struct rq *rq); 2693 extern int __init sched_tick_offload_init(void); 2694 2695 /* 2696 * Tick may be needed by tasks in the runqueue depending on their policy and 2697 * requirements. If tick is needed, lets send the target an IPI to kick it out of 2698 * nohz mode if necessary. 2699 */ 2700 static inline void sched_update_tick_dependency(struct rq *rq) 2701 { 2702 int cpu = cpu_of(rq); 2703 2704 if (!tick_nohz_full_cpu(cpu)) 2705 return; 2706 2707 if (sched_can_stop_tick(rq)) 2708 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED); 2709 else 2710 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED); 2711 } 2712 #else /* !CONFIG_NO_HZ_FULL: */ 2713 static inline int sched_tick_offload_init(void) { return 0; } 2714 static inline void sched_update_tick_dependency(struct rq *rq) { } 2715 #endif /* !CONFIG_NO_HZ_FULL */ 2716 2717 static inline void add_nr_running(struct rq *rq, unsigned count) 2718 { 2719 unsigned prev_nr = rq->nr_running; 2720 2721 rq->nr_running = prev_nr + count; 2722 if (trace_sched_update_nr_running_tp_enabled()) { 2723 call_trace_sched_update_nr_running(rq, count); 2724 } 2725 2726 #ifdef CONFIG_SMP 2727 if (prev_nr < 2 && rq->nr_running >= 2) 2728 set_rd_overloaded(rq->rd, 1); 2729 #endif 2730 2731 sched_update_tick_dependency(rq); 2732 } 2733 2734 static inline void sub_nr_running(struct rq *rq, unsigned count) 2735 { 2736 rq->nr_running -= count; 2737 if (trace_sched_update_nr_running_tp_enabled()) { 2738 call_trace_sched_update_nr_running(rq, -count); 2739 } 2740 2741 /* Check if we still need preemption */ 2742 sched_update_tick_dependency(rq); 2743 } 2744 2745 static inline void __block_task(struct rq *rq, struct task_struct *p) 2746 { 2747 if (p->sched_contributes_to_load) 2748 rq->nr_uninterruptible++; 2749 2750 if (p->in_iowait) { 2751 atomic_inc(&rq->nr_iowait); 2752 delayacct_blkio_start(); 2753 } 2754 2755 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2756 2757 /* 2758 * The moment this write goes through, ttwu() can swoop in and migrate 2759 * this task, rendering our rq->__lock ineffective. 2760 * 2761 * __schedule() try_to_wake_up() 2762 * LOCK rq->__lock LOCK p->pi_lock 2763 * pick_next_task() 2764 * pick_next_task_fair() 2765 * pick_next_entity() 2766 * dequeue_entities() 2767 * __block_task() 2768 * RELEASE p->on_rq = 0 if (p->on_rq && ...) 2769 * break; 2770 * 2771 * ACQUIRE (after ctrl-dep) 2772 * 2773 * cpu = select_task_rq(); 2774 * set_task_cpu(p, cpu); 2775 * ttwu_queue() 2776 * ttwu_do_activate() 2777 * LOCK rq->__lock 2778 * activate_task() 2779 * STORE p->on_rq = 1 2780 * UNLOCK rq->__lock 2781 * 2782 * Callers must ensure to not reference @p after this -- we no longer 2783 * own it. 2784 */ 2785 smp_store_release(&p->on_rq, 0); 2786 } 2787 2788 extern void activate_task(struct rq *rq, struct task_struct *p, int flags); 2789 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags); 2790 2791 extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags); 2792 2793 #ifdef CONFIG_PREEMPT_RT 2794 # define SCHED_NR_MIGRATE_BREAK 8 2795 #else 2796 # define SCHED_NR_MIGRATE_BREAK 32 2797 #endif 2798 2799 extern __read_mostly unsigned int sysctl_sched_nr_migrate; 2800 extern __read_mostly unsigned int sysctl_sched_migration_cost; 2801 2802 extern unsigned int sysctl_sched_base_slice; 2803 2804 extern int sysctl_resched_latency_warn_ms; 2805 extern int sysctl_resched_latency_warn_once; 2806 2807 extern unsigned int sysctl_sched_tunable_scaling; 2808 2809 extern unsigned int sysctl_numa_balancing_scan_delay; 2810 extern unsigned int sysctl_numa_balancing_scan_period_min; 2811 extern unsigned int sysctl_numa_balancing_scan_period_max; 2812 extern unsigned int sysctl_numa_balancing_scan_size; 2813 extern unsigned int sysctl_numa_balancing_hot_threshold; 2814 2815 #ifdef CONFIG_SCHED_HRTICK 2816 2817 /* 2818 * Use hrtick when: 2819 * - enabled by features 2820 * - hrtimer is actually high res 2821 */ 2822 static inline int hrtick_enabled(struct rq *rq) 2823 { 2824 if (!cpu_active(cpu_of(rq))) 2825 return 0; 2826 return hrtimer_is_hres_active(&rq->hrtick_timer); 2827 } 2828 2829 static inline int hrtick_enabled_fair(struct rq *rq) 2830 { 2831 if (!sched_feat(HRTICK)) 2832 return 0; 2833 return hrtick_enabled(rq); 2834 } 2835 2836 static inline int hrtick_enabled_dl(struct rq *rq) 2837 { 2838 if (!sched_feat(HRTICK_DL)) 2839 return 0; 2840 return hrtick_enabled(rq); 2841 } 2842 2843 extern void hrtick_start(struct rq *rq, u64 delay); 2844 2845 #else /* !CONFIG_SCHED_HRTICK: */ 2846 2847 static inline int hrtick_enabled_fair(struct rq *rq) 2848 { 2849 return 0; 2850 } 2851 2852 static inline int hrtick_enabled_dl(struct rq *rq) 2853 { 2854 return 0; 2855 } 2856 2857 static inline int hrtick_enabled(struct rq *rq) 2858 { 2859 return 0; 2860 } 2861 2862 #endif /* !CONFIG_SCHED_HRTICK */ 2863 2864 #ifndef arch_scale_freq_tick 2865 static __always_inline void arch_scale_freq_tick(void) { } 2866 #endif 2867 2868 #ifndef arch_scale_freq_capacity 2869 /** 2870 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU. 2871 * @cpu: the CPU in question. 2872 * 2873 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e. 2874 * 2875 * f_curr 2876 * ------ * SCHED_CAPACITY_SCALE 2877 * f_max 2878 */ 2879 static __always_inline 2880 unsigned long arch_scale_freq_capacity(int cpu) 2881 { 2882 return SCHED_CAPACITY_SCALE; 2883 } 2884 #endif 2885 2886 /* 2887 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to 2888 * acquire rq lock instead of rq_lock(). So at the end of these two functions 2889 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of 2890 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning. 2891 */ 2892 static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) 2893 { 2894 rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2895 /* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */ 2896 #ifdef CONFIG_SMP 2897 rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP); 2898 #endif 2899 } 2900 2901 #define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...) \ 2902 __DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \ 2903 static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \ 2904 { class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t; \ 2905 _lock; return _t; } 2906 2907 #ifdef CONFIG_SMP 2908 2909 static inline bool rq_order_less(struct rq *rq1, struct rq *rq2) 2910 { 2911 #ifdef CONFIG_SCHED_CORE 2912 /* 2913 * In order to not have {0,2},{1,3} turn into into an AB-BA, 2914 * order by core-id first and cpu-id second. 2915 * 2916 * Notably: 2917 * 2918 * double_rq_lock(0,3); will take core-0, core-1 lock 2919 * double_rq_lock(1,2); will take core-1, core-0 lock 2920 * 2921 * when only cpu-id is considered. 2922 */ 2923 if (rq1->core->cpu < rq2->core->cpu) 2924 return true; 2925 if (rq1->core->cpu > rq2->core->cpu) 2926 return false; 2927 2928 /* 2929 * __sched_core_flip() relies on SMT having cpu-id lock order. 2930 */ 2931 #endif 2932 return rq1->cpu < rq2->cpu; 2933 } 2934 2935 extern void double_rq_lock(struct rq *rq1, struct rq *rq2); 2936 2937 #ifdef CONFIG_PREEMPTION 2938 2939 /* 2940 * fair double_lock_balance: Safely acquires both rq->locks in a fair 2941 * way at the expense of forcing extra atomic operations in all 2942 * invocations. This assures that the double_lock is acquired using the 2943 * same underlying policy as the spinlock_t on this architecture, which 2944 * reduces latency compared to the unfair variant below. However, it 2945 * also adds more overhead and therefore may reduce throughput. 2946 */ 2947 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2948 __releases(this_rq->lock) 2949 __acquires(busiest->lock) 2950 __acquires(this_rq->lock) 2951 { 2952 raw_spin_rq_unlock(this_rq); 2953 double_rq_lock(this_rq, busiest); 2954 2955 return 1; 2956 } 2957 2958 #else /* !CONFIG_PREEMPTION: */ 2959 /* 2960 * Unfair double_lock_balance: Optimizes throughput at the expense of 2961 * latency by eliminating extra atomic operations when the locks are 2962 * already in proper order on entry. This favors lower CPU-ids and will 2963 * grant the double lock to lower CPUs over higher ids under contention, 2964 * regardless of entry order into the function. 2965 */ 2966 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest) 2967 __releases(this_rq->lock) 2968 __acquires(busiest->lock) 2969 __acquires(this_rq->lock) 2970 { 2971 if (__rq_lockp(this_rq) == __rq_lockp(busiest) || 2972 likely(raw_spin_rq_trylock(busiest))) { 2973 double_rq_clock_clear_update(this_rq, busiest); 2974 return 0; 2975 } 2976 2977 if (rq_order_less(this_rq, busiest)) { 2978 raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING); 2979 double_rq_clock_clear_update(this_rq, busiest); 2980 return 0; 2981 } 2982 2983 raw_spin_rq_unlock(this_rq); 2984 double_rq_lock(this_rq, busiest); 2985 2986 return 1; 2987 } 2988 2989 #endif /* !CONFIG_PREEMPTION */ 2990 2991 /* 2992 * double_lock_balance - lock the busiest runqueue, this_rq is locked already. 2993 */ 2994 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest) 2995 { 2996 lockdep_assert_irqs_disabled(); 2997 2998 return _double_lock_balance(this_rq, busiest); 2999 } 3000 3001 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest) 3002 __releases(busiest->lock) 3003 { 3004 if (__rq_lockp(this_rq) != __rq_lockp(busiest)) 3005 raw_spin_rq_unlock(busiest); 3006 lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_); 3007 } 3008 3009 static inline void double_lock(spinlock_t *l1, spinlock_t *l2) 3010 { 3011 if (l1 > l2) 3012 swap(l1, l2); 3013 3014 spin_lock(l1); 3015 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3016 } 3017 3018 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2) 3019 { 3020 if (l1 > l2) 3021 swap(l1, l2); 3022 3023 spin_lock_irq(l1); 3024 spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3025 } 3026 3027 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3028 { 3029 if (l1 > l2) 3030 swap(l1, l2); 3031 3032 raw_spin_lock(l1); 3033 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING); 3034 } 3035 3036 static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2) 3037 { 3038 raw_spin_unlock(l1); 3039 raw_spin_unlock(l2); 3040 } 3041 3042 DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t, 3043 double_raw_lock(_T->lock, _T->lock2), 3044 double_raw_unlock(_T->lock, _T->lock2)) 3045 3046 /* 3047 * double_rq_unlock - safely unlock two runqueues 3048 * 3049 * Note this does not restore interrupts like task_rq_unlock, 3050 * you need to do so manually after calling. 3051 */ 3052 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3053 __releases(rq1->lock) 3054 __releases(rq2->lock) 3055 { 3056 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 3057 raw_spin_rq_unlock(rq2); 3058 else 3059 __release(rq2->lock); 3060 raw_spin_rq_unlock(rq1); 3061 } 3062 3063 extern void set_rq_online (struct rq *rq); 3064 extern void set_rq_offline(struct rq *rq); 3065 3066 extern bool sched_smp_initialized; 3067 3068 #else /* !CONFIG_SMP: */ 3069 3070 /* 3071 * double_rq_lock - safely lock two runqueues 3072 * 3073 * Note this does not disable interrupts like task_rq_lock, 3074 * you need to do so manually before calling. 3075 */ 3076 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2) 3077 __acquires(rq1->lock) 3078 __acquires(rq2->lock) 3079 { 3080 WARN_ON_ONCE(!irqs_disabled()); 3081 WARN_ON_ONCE(rq1 != rq2); 3082 raw_spin_rq_lock(rq1); 3083 __acquire(rq2->lock); /* Fake it out ;) */ 3084 double_rq_clock_clear_update(rq1, rq2); 3085 } 3086 3087 /* 3088 * double_rq_unlock - safely unlock two runqueues 3089 * 3090 * Note this does not restore interrupts like task_rq_unlock, 3091 * you need to do so manually after calling. 3092 */ 3093 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) 3094 __releases(rq1->lock) 3095 __releases(rq2->lock) 3096 { 3097 WARN_ON_ONCE(rq1 != rq2); 3098 raw_spin_rq_unlock(rq1); 3099 __release(rq2->lock); 3100 } 3101 3102 #endif /* !CONFIG_SMP */ 3103 3104 DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq, 3105 double_rq_lock(_T->lock, _T->lock2), 3106 double_rq_unlock(_T->lock, _T->lock2)) 3107 3108 extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq); 3109 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq); 3110 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq); 3111 3112 extern bool sched_debug_verbose; 3113 3114 extern void print_cfs_stats(struct seq_file *m, int cpu); 3115 extern void print_rt_stats(struct seq_file *m, int cpu); 3116 extern void print_dl_stats(struct seq_file *m, int cpu); 3117 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq); 3118 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq); 3119 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq); 3120 3121 extern void resched_latency_warn(int cpu, u64 latency); 3122 #ifdef CONFIG_NUMA_BALANCING 3123 extern void show_numa_stats(struct task_struct *p, struct seq_file *m); 3124 extern void 3125 print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 3126 unsigned long tpf, unsigned long gsf, unsigned long gpf); 3127 #endif /* CONFIG_NUMA_BALANCING */ 3128 3129 extern void init_cfs_rq(struct cfs_rq *cfs_rq); 3130 extern void init_rt_rq(struct rt_rq *rt_rq); 3131 extern void init_dl_rq(struct dl_rq *dl_rq); 3132 3133 extern void cfs_bandwidth_usage_inc(void); 3134 extern void cfs_bandwidth_usage_dec(void); 3135 3136 #ifdef CONFIG_NO_HZ_COMMON 3137 3138 #define NOHZ_BALANCE_KICK_BIT 0 3139 #define NOHZ_STATS_KICK_BIT 1 3140 #define NOHZ_NEWILB_KICK_BIT 2 3141 #define NOHZ_NEXT_KICK_BIT 3 3142 3143 /* Run sched_balance_domains() */ 3144 #define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT) 3145 /* Update blocked load */ 3146 #define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT) 3147 /* Update blocked load when entering idle */ 3148 #define NOHZ_NEWILB_KICK BIT(NOHZ_NEWILB_KICK_BIT) 3149 /* Update nohz.next_balance */ 3150 #define NOHZ_NEXT_KICK BIT(NOHZ_NEXT_KICK_BIT) 3151 3152 #define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK) 3153 3154 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags) 3155 3156 extern void nohz_balance_exit_idle(struct rq *rq); 3157 #else /* !CONFIG_NO_HZ_COMMON: */ 3158 static inline void nohz_balance_exit_idle(struct rq *rq) { } 3159 #endif /* !CONFIG_NO_HZ_COMMON */ 3160 3161 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 3162 extern void nohz_run_idle_balance(int cpu); 3163 #else 3164 static inline void nohz_run_idle_balance(int cpu) { } 3165 #endif 3166 3167 #include "stats.h" 3168 3169 #if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS) 3170 3171 extern void __sched_core_account_forceidle(struct rq *rq); 3172 3173 static inline void sched_core_account_forceidle(struct rq *rq) 3174 { 3175 if (schedstat_enabled()) 3176 __sched_core_account_forceidle(rq); 3177 } 3178 3179 extern void __sched_core_tick(struct rq *rq); 3180 3181 static inline void sched_core_tick(struct rq *rq) 3182 { 3183 if (sched_core_enabled(rq) && schedstat_enabled()) 3184 __sched_core_tick(rq); 3185 } 3186 3187 #else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */ 3188 3189 static inline void sched_core_account_forceidle(struct rq *rq) { } 3190 3191 static inline void sched_core_tick(struct rq *rq) { } 3192 3193 #endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */ 3194 3195 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 3196 3197 struct irqtime { 3198 u64 total; 3199 u64 tick_delta; 3200 u64 irq_start_time; 3201 struct u64_stats_sync sync; 3202 }; 3203 3204 DECLARE_PER_CPU(struct irqtime, cpu_irqtime); 3205 extern int sched_clock_irqtime; 3206 3207 static inline int irqtime_enabled(void) 3208 { 3209 return sched_clock_irqtime; 3210 } 3211 3212 /* 3213 * Returns the irqtime minus the softirq time computed by ksoftirqd. 3214 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime 3215 * and never move forward. 3216 */ 3217 static inline u64 irq_time_read(int cpu) 3218 { 3219 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu); 3220 unsigned int seq; 3221 u64 total; 3222 3223 do { 3224 seq = __u64_stats_fetch_begin(&irqtime->sync); 3225 total = irqtime->total; 3226 } while (__u64_stats_fetch_retry(&irqtime->sync, seq)); 3227 3228 return total; 3229 } 3230 3231 #else 3232 3233 static inline int irqtime_enabled(void) 3234 { 3235 return 0; 3236 } 3237 3238 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */ 3239 3240 #ifdef CONFIG_CPU_FREQ 3241 3242 DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data); 3243 3244 /** 3245 * cpufreq_update_util - Take a note about CPU utilization changes. 3246 * @rq: Runqueue to carry out the update for. 3247 * @flags: Update reason flags. 3248 * 3249 * This function is called by the scheduler on the CPU whose utilization is 3250 * being updated. 3251 * 3252 * It can only be called from RCU-sched read-side critical sections. 3253 * 3254 * The way cpufreq is currently arranged requires it to evaluate the CPU 3255 * performance state (frequency/voltage) on a regular basis to prevent it from 3256 * being stuck in a completely inadequate performance level for too long. 3257 * That is not guaranteed to happen if the updates are only triggered from CFS 3258 * and DL, though, because they may not be coming in if only RT tasks are 3259 * active all the time (or there are RT tasks only). 3260 * 3261 * As a workaround for that issue, this function is called periodically by the 3262 * RT sched class to trigger extra cpufreq updates to prevent it from stalling, 3263 * but that really is a band-aid. Going forward it should be replaced with 3264 * solutions targeted more specifically at RT tasks. 3265 */ 3266 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) 3267 { 3268 struct update_util_data *data; 3269 3270 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data, 3271 cpu_of(rq))); 3272 if (data) 3273 data->func(data, rq_clock(rq), flags); 3274 } 3275 #else /* !CONFIG_CPU_FREQ: */ 3276 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { } 3277 #endif /* !CONFIG_CPU_FREQ */ 3278 3279 #ifdef arch_scale_freq_capacity 3280 # ifndef arch_scale_freq_invariant 3281 # define arch_scale_freq_invariant() true 3282 # endif 3283 #else 3284 # define arch_scale_freq_invariant() false 3285 #endif 3286 3287 #ifdef CONFIG_SMP 3288 3289 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs, 3290 unsigned long *min, 3291 unsigned long *max); 3292 3293 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual, 3294 unsigned long min, 3295 unsigned long max); 3296 3297 3298 /* 3299 * Verify the fitness of task @p to run on @cpu taking into account the 3300 * CPU original capacity and the runtime/deadline ratio of the task. 3301 * 3302 * The function will return true if the original capacity of @cpu is 3303 * greater than or equal to task's deadline density right shifted by 3304 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise. 3305 */ 3306 static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu) 3307 { 3308 unsigned long cap = arch_scale_cpu_capacity(cpu); 3309 3310 return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT); 3311 } 3312 3313 static inline unsigned long cpu_bw_dl(struct rq *rq) 3314 { 3315 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT; 3316 } 3317 3318 static inline unsigned long cpu_util_dl(struct rq *rq) 3319 { 3320 return READ_ONCE(rq->avg_dl.util_avg); 3321 } 3322 3323 3324 extern unsigned long cpu_util_cfs(int cpu); 3325 extern unsigned long cpu_util_cfs_boost(int cpu); 3326 3327 static inline unsigned long cpu_util_rt(struct rq *rq) 3328 { 3329 return READ_ONCE(rq->avg_rt.util_avg); 3330 } 3331 3332 #else /* !CONFIG_SMP */ 3333 static inline bool update_other_load_avgs(struct rq *rq) { return false; } 3334 #endif /* CONFIG_SMP */ 3335 3336 #ifdef CONFIG_UCLAMP_TASK 3337 3338 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id); 3339 3340 /* 3341 * When uclamp is compiled in, the aggregation at rq level is 'turned off' 3342 * by default in the fast path and only gets turned on once userspace performs 3343 * an operation that requires it. 3344 * 3345 * Returns true if userspace opted-in to use uclamp and aggregation at rq level 3346 * hence is active. 3347 */ 3348 static inline bool uclamp_is_used(void) 3349 { 3350 return static_branch_likely(&sched_uclamp_used); 3351 } 3352 3353 /* 3354 * Enabling static branches would get the cpus_read_lock(), 3355 * check whether uclamp_is_used before enable it to avoid always 3356 * calling cpus_read_lock(). Because we never disable this 3357 * static key once enable it. 3358 */ 3359 static inline void sched_uclamp_enable(void) 3360 { 3361 if (!uclamp_is_used()) 3362 static_branch_enable(&sched_uclamp_used); 3363 } 3364 3365 static inline unsigned long uclamp_rq_get(struct rq *rq, 3366 enum uclamp_id clamp_id) 3367 { 3368 return READ_ONCE(rq->uclamp[clamp_id].value); 3369 } 3370 3371 static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, 3372 unsigned int value) 3373 { 3374 WRITE_ONCE(rq->uclamp[clamp_id].value, value); 3375 } 3376 3377 static inline bool uclamp_rq_is_idle(struct rq *rq) 3378 { 3379 return rq->uclamp_flags & UCLAMP_FLAG_IDLE; 3380 } 3381 3382 /* Is the rq being capped/throttled by uclamp_max? */ 3383 static inline bool uclamp_rq_is_capped(struct rq *rq) 3384 { 3385 unsigned long rq_util; 3386 unsigned long max_util; 3387 3388 if (!uclamp_is_used()) 3389 return false; 3390 3391 rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq); 3392 max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value); 3393 3394 return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util; 3395 } 3396 3397 #define for_each_clamp_id(clamp_id) \ 3398 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++) 3399 3400 extern unsigned int sysctl_sched_uclamp_util_min_rt_default; 3401 3402 3403 static inline unsigned int uclamp_none(enum uclamp_id clamp_id) 3404 { 3405 if (clamp_id == UCLAMP_MIN) 3406 return 0; 3407 return SCHED_CAPACITY_SCALE; 3408 } 3409 3410 /* Integer rounded range for each bucket */ 3411 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS) 3412 3413 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value) 3414 { 3415 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1); 3416 } 3417 3418 static inline void 3419 uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined) 3420 { 3421 uc_se->value = value; 3422 uc_se->bucket_id = uclamp_bucket_id(value); 3423 uc_se->user_defined = user_defined; 3424 } 3425 3426 #else /* !CONFIG_UCLAMP_TASK: */ 3427 3428 static inline unsigned long 3429 uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 3430 { 3431 if (clamp_id == UCLAMP_MIN) 3432 return 0; 3433 3434 return SCHED_CAPACITY_SCALE; 3435 } 3436 3437 static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; } 3438 3439 static inline bool uclamp_is_used(void) 3440 { 3441 return false; 3442 } 3443 3444 static inline void sched_uclamp_enable(void) {} 3445 3446 static inline unsigned long 3447 uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id) 3448 { 3449 if (clamp_id == UCLAMP_MIN) 3450 return 0; 3451 3452 return SCHED_CAPACITY_SCALE; 3453 } 3454 3455 static inline void 3456 uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value) 3457 { 3458 } 3459 3460 static inline bool uclamp_rq_is_idle(struct rq *rq) 3461 { 3462 return false; 3463 } 3464 3465 #endif /* !CONFIG_UCLAMP_TASK */ 3466 3467 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 3468 3469 static inline unsigned long cpu_util_irq(struct rq *rq) 3470 { 3471 return READ_ONCE(rq->avg_irq.util_avg); 3472 } 3473 3474 static inline 3475 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3476 { 3477 util *= (max - irq); 3478 util /= max; 3479 3480 return util; 3481 3482 } 3483 3484 #else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */ 3485 3486 static inline unsigned long cpu_util_irq(struct rq *rq) 3487 { 3488 return 0; 3489 } 3490 3491 static inline 3492 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max) 3493 { 3494 return util; 3495 } 3496 3497 #endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */ 3498 3499 extern void __setparam_fair(struct task_struct *p, const struct sched_attr *attr); 3500 3501 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL) 3502 3503 #define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus))) 3504 3505 DECLARE_STATIC_KEY_FALSE(sched_energy_present); 3506 3507 static inline bool sched_energy_enabled(void) 3508 { 3509 return static_branch_unlikely(&sched_energy_present); 3510 } 3511 3512 extern struct cpufreq_governor schedutil_gov; 3513 3514 #else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */ 3515 3516 #define perf_domain_span(pd) NULL 3517 3518 static inline bool sched_energy_enabled(void) { return false; } 3519 3520 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */ 3521 3522 #ifdef CONFIG_MEMBARRIER 3523 3524 /* 3525 * The scheduler provides memory barriers required by membarrier between: 3526 * - prior user-space memory accesses and store to rq->membarrier_state, 3527 * - store to rq->membarrier_state and following user-space memory accesses. 3528 * In the same way it provides those guarantees around store to rq->curr. 3529 */ 3530 static inline void membarrier_switch_mm(struct rq *rq, 3531 struct mm_struct *prev_mm, 3532 struct mm_struct *next_mm) 3533 { 3534 int membarrier_state; 3535 3536 if (prev_mm == next_mm) 3537 return; 3538 3539 membarrier_state = atomic_read(&next_mm->membarrier_state); 3540 if (READ_ONCE(rq->membarrier_state) == membarrier_state) 3541 return; 3542 3543 WRITE_ONCE(rq->membarrier_state, membarrier_state); 3544 } 3545 3546 #else /* !CONFIG_MEMBARRIER :*/ 3547 3548 static inline void membarrier_switch_mm(struct rq *rq, 3549 struct mm_struct *prev_mm, 3550 struct mm_struct *next_mm) 3551 { 3552 } 3553 3554 #endif /* !CONFIG_MEMBARRIER */ 3555 3556 #ifdef CONFIG_SMP 3557 static inline bool is_per_cpu_kthread(struct task_struct *p) 3558 { 3559 if (!(p->flags & PF_KTHREAD)) 3560 return false; 3561 3562 if (p->nr_cpus_allowed != 1) 3563 return false; 3564 3565 return true; 3566 } 3567 #endif 3568 3569 extern void swake_up_all_locked(struct swait_queue_head *q); 3570 extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait); 3571 3572 extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags); 3573 3574 #ifdef CONFIG_PREEMPT_DYNAMIC 3575 extern int preempt_dynamic_mode; 3576 extern int sched_dynamic_mode(const char *str); 3577 extern void sched_dynamic_update(int mode); 3578 #endif 3579 extern const char *preempt_modes[]; 3580 3581 #ifdef CONFIG_SCHED_MM_CID 3582 3583 #define SCHED_MM_CID_PERIOD_NS (100ULL * 1000000) /* 100ms */ 3584 #define MM_CID_SCAN_DELAY 100 /* 100ms */ 3585 3586 extern raw_spinlock_t cid_lock; 3587 extern int use_cid_lock; 3588 3589 extern void sched_mm_cid_migrate_from(struct task_struct *t); 3590 extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t); 3591 extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr); 3592 extern void init_sched_mm_cid(struct task_struct *t); 3593 3594 static inline void __mm_cid_put(struct mm_struct *mm, int cid) 3595 { 3596 if (cid < 0) 3597 return; 3598 cpumask_clear_cpu(cid, mm_cidmask(mm)); 3599 } 3600 3601 /* 3602 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to 3603 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to 3604 * be held to transition to other states. 3605 * 3606 * State transitions synchronized with cmpxchg or try_cmpxchg need to be 3607 * consistent across CPUs, which prevents use of this_cpu_cmpxchg. 3608 */ 3609 static inline void mm_cid_put_lazy(struct task_struct *t) 3610 { 3611 struct mm_struct *mm = t->mm; 3612 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3613 int cid; 3614 3615 lockdep_assert_irqs_disabled(); 3616 cid = __this_cpu_read(pcpu_cid->cid); 3617 if (!mm_cid_is_lazy_put(cid) || 3618 !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3619 return; 3620 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3621 } 3622 3623 static inline int mm_cid_pcpu_unset(struct mm_struct *mm) 3624 { 3625 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3626 int cid, res; 3627 3628 lockdep_assert_irqs_disabled(); 3629 cid = __this_cpu_read(pcpu_cid->cid); 3630 for (;;) { 3631 if (mm_cid_is_unset(cid)) 3632 return MM_CID_UNSET; 3633 /* 3634 * Attempt transition from valid or lazy-put to unset. 3635 */ 3636 res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET); 3637 if (res == cid) 3638 break; 3639 cid = res; 3640 } 3641 return cid; 3642 } 3643 3644 static inline void mm_cid_put(struct mm_struct *mm) 3645 { 3646 int cid; 3647 3648 lockdep_assert_irqs_disabled(); 3649 cid = mm_cid_pcpu_unset(mm); 3650 if (cid == MM_CID_UNSET) 3651 return; 3652 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3653 } 3654 3655 static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm) 3656 { 3657 struct cpumask *cidmask = mm_cidmask(mm); 3658 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3659 int cid, max_nr_cid, allowed_max_nr_cid; 3660 3661 /* 3662 * After shrinking the number of threads or reducing the number 3663 * of allowed cpus, reduce the value of max_nr_cid so expansion 3664 * of cid allocation will preserve cache locality if the number 3665 * of threads or allowed cpus increase again. 3666 */ 3667 max_nr_cid = atomic_read(&mm->max_nr_cid); 3668 while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed), 3669 atomic_read(&mm->mm_users))), 3670 max_nr_cid > allowed_max_nr_cid) { 3671 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */ 3672 if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) { 3673 max_nr_cid = allowed_max_nr_cid; 3674 break; 3675 } 3676 } 3677 /* Try to re-use recent cid. This improves cache locality. */ 3678 cid = __this_cpu_read(pcpu_cid->recent_cid); 3679 if (!mm_cid_is_unset(cid) && cid < max_nr_cid && 3680 !cpumask_test_and_set_cpu(cid, cidmask)) 3681 return cid; 3682 /* 3683 * Expand cid allocation if the maximum number of concurrency 3684 * IDs allocated (max_nr_cid) is below the number cpus allowed 3685 * and number of threads. Expanding cid allocation as much as 3686 * possible improves cache locality. 3687 */ 3688 cid = max_nr_cid; 3689 while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) { 3690 /* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */ 3691 if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1)) 3692 continue; 3693 if (!cpumask_test_and_set_cpu(cid, cidmask)) 3694 return cid; 3695 } 3696 /* 3697 * Find the first available concurrency id. 3698 * Retry finding first zero bit if the mask is temporarily 3699 * filled. This only happens during concurrent remote-clear 3700 * which owns a cid without holding a rq lock. 3701 */ 3702 for (;;) { 3703 cid = cpumask_first_zero(cidmask); 3704 if (cid < READ_ONCE(mm->nr_cpus_allowed)) 3705 break; 3706 cpu_relax(); 3707 } 3708 if (cpumask_test_and_set_cpu(cid, cidmask)) 3709 return -1; 3710 3711 return cid; 3712 } 3713 3714 /* 3715 * Save a snapshot of the current runqueue time of this cpu 3716 * with the per-cpu cid value, allowing to estimate how recently it was used. 3717 */ 3718 static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm) 3719 { 3720 struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq)); 3721 3722 lockdep_assert_rq_held(rq); 3723 WRITE_ONCE(pcpu_cid->time, rq->clock); 3724 } 3725 3726 static inline int __mm_cid_get(struct rq *rq, struct task_struct *t, 3727 struct mm_struct *mm) 3728 { 3729 int cid; 3730 3731 /* 3732 * All allocations (even those using the cid_lock) are lock-free. If 3733 * use_cid_lock is set, hold the cid_lock to perform cid allocation to 3734 * guarantee forward progress. 3735 */ 3736 if (!READ_ONCE(use_cid_lock)) { 3737 cid = __mm_cid_try_get(t, mm); 3738 if (cid >= 0) 3739 goto end; 3740 raw_spin_lock(&cid_lock); 3741 } else { 3742 raw_spin_lock(&cid_lock); 3743 cid = __mm_cid_try_get(t, mm); 3744 if (cid >= 0) 3745 goto unlock; 3746 } 3747 3748 /* 3749 * cid concurrently allocated. Retry while forcing following 3750 * allocations to use the cid_lock to ensure forward progress. 3751 */ 3752 WRITE_ONCE(use_cid_lock, 1); 3753 /* 3754 * Set use_cid_lock before allocation. Only care about program order 3755 * because this is only required for forward progress. 3756 */ 3757 barrier(); 3758 /* 3759 * Retry until it succeeds. It is guaranteed to eventually succeed once 3760 * all newcoming allocations observe the use_cid_lock flag set. 3761 */ 3762 do { 3763 cid = __mm_cid_try_get(t, mm); 3764 cpu_relax(); 3765 } while (cid < 0); 3766 /* 3767 * Allocate before clearing use_cid_lock. Only care about 3768 * program order because this is for forward progress. 3769 */ 3770 barrier(); 3771 WRITE_ONCE(use_cid_lock, 0); 3772 unlock: 3773 raw_spin_unlock(&cid_lock); 3774 end: 3775 mm_cid_snapshot_time(rq, mm); 3776 3777 return cid; 3778 } 3779 3780 static inline int mm_cid_get(struct rq *rq, struct task_struct *t, 3781 struct mm_struct *mm) 3782 { 3783 struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid; 3784 struct cpumask *cpumask; 3785 int cid; 3786 3787 lockdep_assert_rq_held(rq); 3788 cpumask = mm_cidmask(mm); 3789 cid = __this_cpu_read(pcpu_cid->cid); 3790 if (mm_cid_is_valid(cid)) { 3791 mm_cid_snapshot_time(rq, mm); 3792 return cid; 3793 } 3794 if (mm_cid_is_lazy_put(cid)) { 3795 if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET)) 3796 __mm_cid_put(mm, mm_cid_clear_lazy_put(cid)); 3797 } 3798 cid = __mm_cid_get(rq, t, mm); 3799 __this_cpu_write(pcpu_cid->cid, cid); 3800 __this_cpu_write(pcpu_cid->recent_cid, cid); 3801 3802 return cid; 3803 } 3804 3805 static inline void switch_mm_cid(struct rq *rq, 3806 struct task_struct *prev, 3807 struct task_struct *next) 3808 { 3809 /* 3810 * Provide a memory barrier between rq->curr store and load of 3811 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition. 3812 * 3813 * Should be adapted if context_switch() is modified. 3814 */ 3815 if (!next->mm) { // to kernel 3816 /* 3817 * user -> kernel transition does not guarantee a barrier, but 3818 * we can use the fact that it performs an atomic operation in 3819 * mmgrab(). 3820 */ 3821 if (prev->mm) // from user 3822 smp_mb__after_mmgrab(); 3823 /* 3824 * kernel -> kernel transition does not change rq->curr->mm 3825 * state. It stays NULL. 3826 */ 3827 } else { // to user 3828 /* 3829 * kernel -> user transition does not provide a barrier 3830 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu]. 3831 * Provide it here. 3832 */ 3833 if (!prev->mm) { // from kernel 3834 smp_mb(); 3835 } else { // from user 3836 /* 3837 * user->user transition relies on an implicit 3838 * memory barrier in switch_mm() when 3839 * current->mm changes. If the architecture 3840 * switch_mm() does not have an implicit memory 3841 * barrier, it is emitted here. If current->mm 3842 * is unchanged, no barrier is needed. 3843 */ 3844 smp_mb__after_switch_mm(); 3845 } 3846 } 3847 if (prev->mm_cid_active) { 3848 mm_cid_snapshot_time(rq, prev->mm); 3849 mm_cid_put_lazy(prev); 3850 prev->mm_cid = -1; 3851 } 3852 if (next->mm_cid_active) 3853 next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm); 3854 } 3855 3856 #else /* !CONFIG_SCHED_MM_CID: */ 3857 static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { } 3858 static inline void sched_mm_cid_migrate_from(struct task_struct *t) { } 3859 static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { } 3860 static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { } 3861 static inline void init_sched_mm_cid(struct task_struct *t) { } 3862 #endif /* !CONFIG_SCHED_MM_CID */ 3863 3864 extern u64 avg_vruntime(struct cfs_rq *cfs_rq); 3865 extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se); 3866 #ifdef CONFIG_SMP 3867 static inline 3868 void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task) 3869 { 3870 lockdep_assert_rq_held(src_rq); 3871 lockdep_assert_rq_held(dst_rq); 3872 3873 deactivate_task(src_rq, task, 0); 3874 set_task_cpu(task, dst_rq->cpu); 3875 activate_task(dst_rq, task, 0); 3876 } 3877 3878 static inline 3879 bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu) 3880 { 3881 if (!task_on_cpu(rq, p) && 3882 cpumask_test_cpu(cpu, &p->cpus_mask)) 3883 return true; 3884 3885 return false; 3886 } 3887 #endif 3888 3889 #ifdef CONFIG_RT_MUTEXES 3890 3891 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio) 3892 { 3893 if (pi_task) 3894 prio = min(prio, pi_task->prio); 3895 3896 return prio; 3897 } 3898 3899 static inline int rt_effective_prio(struct task_struct *p, int prio) 3900 { 3901 struct task_struct *pi_task = rt_mutex_get_top_task(p); 3902 3903 return __rt_effective_prio(pi_task, prio); 3904 } 3905 3906 #else /* !CONFIG_RT_MUTEXES: */ 3907 3908 static inline int rt_effective_prio(struct task_struct *p, int prio) 3909 { 3910 return prio; 3911 } 3912 3913 #endif /* !CONFIG_RT_MUTEXES */ 3914 3915 extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi); 3916 extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx); 3917 extern const struct sched_class *__setscheduler_class(int policy, int prio); 3918 extern void set_load_weight(struct task_struct *p, bool update_load); 3919 extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags); 3920 extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags); 3921 3922 extern void check_class_changing(struct rq *rq, struct task_struct *p, 3923 const struct sched_class *prev_class); 3924 extern void check_class_changed(struct rq *rq, struct task_struct *p, 3925 const struct sched_class *prev_class, 3926 int oldprio); 3927 3928 #ifdef CONFIG_SMP 3929 extern struct balance_callback *splice_balance_callbacks(struct rq *rq); 3930 extern void balance_callbacks(struct rq *rq, struct balance_callback *head); 3931 #else 3932 3933 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq) 3934 { 3935 return NULL; 3936 } 3937 3938 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head) 3939 { 3940 } 3941 3942 #endif 3943 3944 #ifdef CONFIG_SCHED_CLASS_EXT 3945 /* 3946 * Used by SCX in the enable/disable paths to move tasks between sched_classes 3947 * and establish invariants. 3948 */ 3949 struct sched_enq_and_set_ctx { 3950 struct task_struct *p; 3951 int queue_flags; 3952 bool queued; 3953 bool running; 3954 }; 3955 3956 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 3957 struct sched_enq_and_set_ctx *ctx); 3958 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx); 3959 3960 #endif /* CONFIG_SCHED_CLASS_EXT */ 3961 3962 #include "ext.h" 3963 3964 #endif /* _KERNEL_SCHED_SCHED_H */ 3965