1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst
4 *
5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
6 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
7 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
8 */
9 #include <linux/btf_ids.h>
10 #include "ext_idle.h"
11
12 /*
13 * NOTE: sched_ext is in the process of growing multiple scheduler support and
14 * scx_root usage is in a transitional state. Naked dereferences are safe if the
15 * caller is one of the tasks attached to SCX and explicit RCU dereference is
16 * necessary otherwise. Naked scx_root dereferences trigger sparse warnings but
17 * are used as temporary markers to indicate that the dereferences need to be
18 * updated to point to the associated scheduler instances rather than scx_root.
19 */
20 static struct scx_sched __rcu *scx_root;
21
22 /*
23 * During exit, a task may schedule after losing its PIDs. When disabling the
24 * BPF scheduler, we need to be able to iterate tasks in every state to
25 * guarantee system safety. Maintain a dedicated task list which contains every
26 * task between its fork and eventual free.
27 */
28 static DEFINE_RAW_SPINLOCK(scx_tasks_lock);
29 static LIST_HEAD(scx_tasks);
30
31 /* ops enable/disable */
32 static DEFINE_MUTEX(scx_enable_mutex);
33 DEFINE_STATIC_KEY_FALSE(__scx_enabled);
34 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem);
35 static atomic_t scx_enable_state_var = ATOMIC_INIT(SCX_DISABLED);
36 static int scx_bypass_depth;
37 static cpumask_var_t scx_bypass_lb_donee_cpumask;
38 static cpumask_var_t scx_bypass_lb_resched_cpumask;
39 static bool scx_aborting;
40 static bool scx_init_task_enabled;
41 static bool scx_switching_all;
42 DEFINE_STATIC_KEY_FALSE(__scx_switched_all);
43
44 /*
45 * Tracks whether scx_enable() called scx_bypass(true). Used to balance bypass
46 * depth on enable failure. Will be removed when bypass depth is moved into the
47 * sched instance.
48 */
49 static bool scx_bypassed_for_enable;
50
51 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0);
52 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0);
53
54 /*
55 * A monotically increasing sequence number that is incremented every time a
56 * scheduler is enabled. This can be used by to check if any custom sched_ext
57 * scheduler has ever been used in the system.
58 */
59 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0);
60
61 /*
62 * The maximum amount of time in jiffies that a task may be runnable without
63 * being scheduled on a CPU. If this timeout is exceeded, it will trigger
64 * scx_error().
65 */
66 static unsigned long scx_watchdog_timeout;
67
68 /*
69 * The last time the delayed work was run. This delayed work relies on
70 * ksoftirqd being able to run to service timer interrupts, so it's possible
71 * that this work itself could get wedged. To account for this, we check that
72 * it's not stalled in the timer tick, and trigger an error if it is.
73 */
74 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES;
75
76 static struct delayed_work scx_watchdog_work;
77
78 /*
79 * For %SCX_KICK_WAIT: Each CPU has a pointer to an array of kick_sync sequence
80 * numbers. The arrays are allocated with kvzalloc() as size can exceed percpu
81 * allocator limits on large machines. O(nr_cpu_ids^2) allocation, allocated
82 * lazily when enabling and freed when disabling to avoid waste when sched_ext
83 * isn't active.
84 */
85 struct scx_kick_syncs {
86 struct rcu_head rcu;
87 unsigned long syncs[];
88 };
89
90 static DEFINE_PER_CPU(struct scx_kick_syncs __rcu *, scx_kick_syncs);
91
92 /*
93 * Direct dispatch marker.
94 *
95 * Non-NULL values are used for direct dispatch from enqueue path. A valid
96 * pointer points to the task currently being enqueued. An ERR_PTR value is used
97 * to indicate that direct dispatch has already happened.
98 */
99 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task);
100
101 static const struct rhashtable_params dsq_hash_params = {
102 .key_len = sizeof_field(struct scx_dispatch_q, id),
103 .key_offset = offsetof(struct scx_dispatch_q, id),
104 .head_offset = offsetof(struct scx_dispatch_q, hash_node),
105 };
106
107 static LLIST_HEAD(dsqs_to_free);
108
109 /* dispatch buf */
110 struct scx_dsp_buf_ent {
111 struct task_struct *task;
112 unsigned long qseq;
113 u64 dsq_id;
114 u64 enq_flags;
115 };
116
117 static u32 scx_dsp_max_batch;
118
119 struct scx_dsp_ctx {
120 struct rq *rq;
121 u32 cursor;
122 u32 nr_tasks;
123 struct scx_dsp_buf_ent buf[];
124 };
125
126 static struct scx_dsp_ctx __percpu *scx_dsp_ctx;
127
128 /* string formatting from BPF */
129 struct scx_bstr_buf {
130 u64 data[MAX_BPRINTF_VARARGS];
131 char line[SCX_EXIT_MSG_LEN];
132 };
133
134 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock);
135 static struct scx_bstr_buf scx_exit_bstr_buf;
136
137 /* ops debug dump */
138 struct scx_dump_data {
139 s32 cpu;
140 bool first;
141 s32 cursor;
142 struct seq_buf *s;
143 const char *prefix;
144 struct scx_bstr_buf buf;
145 };
146
147 static struct scx_dump_data scx_dump_data = {
148 .cpu = -1,
149 };
150
151 /* /sys/kernel/sched_ext interface */
152 static struct kset *scx_kset;
153
154 /*
155 * Parameters that can be adjusted through /sys/module/sched_ext/parameters.
156 * There usually is no reason to modify these as normal scheduler operation
157 * shouldn't be affected by them. The knobs are primarily for debugging.
158 */
159 static u64 scx_slice_dfl = SCX_SLICE_DFL;
160 static unsigned int scx_slice_bypass_us = SCX_SLICE_BYPASS / NSEC_PER_USEC;
161 static unsigned int scx_bypass_lb_intv_us = SCX_BYPASS_LB_DFL_INTV_US;
162
set_slice_us(const char * val,const struct kernel_param * kp)163 static int set_slice_us(const char *val, const struct kernel_param *kp)
164 {
165 return param_set_uint_minmax(val, kp, 100, 100 * USEC_PER_MSEC);
166 }
167
168 static const struct kernel_param_ops slice_us_param_ops = {
169 .set = set_slice_us,
170 .get = param_get_uint,
171 };
172
set_bypass_lb_intv_us(const char * val,const struct kernel_param * kp)173 static int set_bypass_lb_intv_us(const char *val, const struct kernel_param *kp)
174 {
175 return param_set_uint_minmax(val, kp, 0, 10 * USEC_PER_SEC);
176 }
177
178 static const struct kernel_param_ops bypass_lb_intv_us_param_ops = {
179 .set = set_bypass_lb_intv_us,
180 .get = param_get_uint,
181 };
182
183 #undef MODULE_PARAM_PREFIX
184 #define MODULE_PARAM_PREFIX "sched_ext."
185
186 module_param_cb(slice_bypass_us, &slice_us_param_ops, &scx_slice_bypass_us, 0600);
187 MODULE_PARM_DESC(slice_bypass_us, "bypass slice in microseconds, applied on [un]load (100us to 100ms)");
188 module_param_cb(bypass_lb_intv_us, &bypass_lb_intv_us_param_ops, &scx_bypass_lb_intv_us, 0600);
189 MODULE_PARM_DESC(bypass_lb_intv_us, "bypass load balance interval in microseconds (0 (disable) to 10s)");
190
191 #undef MODULE_PARAM_PREFIX
192
193 #define CREATE_TRACE_POINTS
194 #include <trace/events/sched_ext.h>
195
196 static void process_ddsp_deferred_locals(struct rq *rq);
197 static u32 reenq_local(struct rq *rq);
198 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags);
199 static bool scx_vexit(struct scx_sched *sch, enum scx_exit_kind kind,
200 s64 exit_code, const char *fmt, va_list args);
201
scx_exit(struct scx_sched * sch,enum scx_exit_kind kind,s64 exit_code,const char * fmt,...)202 static __printf(4, 5) bool scx_exit(struct scx_sched *sch,
203 enum scx_exit_kind kind, s64 exit_code,
204 const char *fmt, ...)
205 {
206 va_list args;
207 bool ret;
208
209 va_start(args, fmt);
210 ret = scx_vexit(sch, kind, exit_code, fmt, args);
211 va_end(args);
212
213 return ret;
214 }
215
216 #define scx_error(sch, fmt, args...) scx_exit((sch), SCX_EXIT_ERROR, 0, fmt, ##args)
217 #define scx_verror(sch, fmt, args) scx_vexit((sch), SCX_EXIT_ERROR, 0, fmt, args)
218
219 #define SCX_HAS_OP(sch, op) test_bit(SCX_OP_IDX(op), (sch)->has_op)
220
jiffies_delta_msecs(unsigned long at,unsigned long now)221 static long jiffies_delta_msecs(unsigned long at, unsigned long now)
222 {
223 if (time_after(at, now))
224 return jiffies_to_msecs(at - now);
225 else
226 return -(long)jiffies_to_msecs(now - at);
227 }
228
229 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */
higher_bits(u32 flags)230 static u32 higher_bits(u32 flags)
231 {
232 return ~((1 << fls(flags)) - 1);
233 }
234
235 /* return the mask with only the highest bit set */
highest_bit(u32 flags)236 static u32 highest_bit(u32 flags)
237 {
238 int bit = fls(flags);
239 return ((u64)1 << bit) >> 1;
240 }
241
u32_before(u32 a,u32 b)242 static bool u32_before(u32 a, u32 b)
243 {
244 return (s32)(a - b) < 0;
245 }
246
find_global_dsq(struct scx_sched * sch,struct task_struct * p)247 static struct scx_dispatch_q *find_global_dsq(struct scx_sched *sch,
248 struct task_struct *p)
249 {
250 return sch->global_dsqs[cpu_to_node(task_cpu(p))];
251 }
252
find_user_dsq(struct scx_sched * sch,u64 dsq_id)253 static struct scx_dispatch_q *find_user_dsq(struct scx_sched *sch, u64 dsq_id)
254 {
255 return rhashtable_lookup(&sch->dsq_hash, &dsq_id, dsq_hash_params);
256 }
257
scx_setscheduler_class(struct task_struct * p)258 static const struct sched_class *scx_setscheduler_class(struct task_struct *p)
259 {
260 if (p->sched_class == &stop_sched_class)
261 return &stop_sched_class;
262
263 return __setscheduler_class(p->policy, p->prio);
264 }
265
266 /*
267 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX
268 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate
269 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check
270 * whether it's running from an allowed context.
271 *
272 * @mask is constant, always inline to cull the mask calculations.
273 */
scx_kf_allow(u32 mask)274 static __always_inline void scx_kf_allow(u32 mask)
275 {
276 /* nesting is allowed only in increasing scx_kf_mask order */
277 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask,
278 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n",
279 current->scx.kf_mask, mask);
280 current->scx.kf_mask |= mask;
281 barrier();
282 }
283
scx_kf_disallow(u32 mask)284 static void scx_kf_disallow(u32 mask)
285 {
286 barrier();
287 current->scx.kf_mask &= ~mask;
288 }
289
290 /*
291 * Track the rq currently locked.
292 *
293 * This allows kfuncs to safely operate on rq from any scx ops callback,
294 * knowing which rq is already locked.
295 */
296 DEFINE_PER_CPU(struct rq *, scx_locked_rq_state);
297
update_locked_rq(struct rq * rq)298 static inline void update_locked_rq(struct rq *rq)
299 {
300 /*
301 * Check whether @rq is actually locked. This can help expose bugs
302 * or incorrect assumptions about the context in which a kfunc or
303 * callback is executed.
304 */
305 if (rq)
306 lockdep_assert_rq_held(rq);
307 __this_cpu_write(scx_locked_rq_state, rq);
308 }
309
310 #define SCX_CALL_OP(sch, mask, op, rq, args...) \
311 do { \
312 if (rq) \
313 update_locked_rq(rq); \
314 if (mask) { \
315 scx_kf_allow(mask); \
316 (sch)->ops.op(args); \
317 scx_kf_disallow(mask); \
318 } else { \
319 (sch)->ops.op(args); \
320 } \
321 if (rq) \
322 update_locked_rq(NULL); \
323 } while (0)
324
325 #define SCX_CALL_OP_RET(sch, mask, op, rq, args...) \
326 ({ \
327 __typeof__((sch)->ops.op(args)) __ret; \
328 \
329 if (rq) \
330 update_locked_rq(rq); \
331 if (mask) { \
332 scx_kf_allow(mask); \
333 __ret = (sch)->ops.op(args); \
334 scx_kf_disallow(mask); \
335 } else { \
336 __ret = (sch)->ops.op(args); \
337 } \
338 if (rq) \
339 update_locked_rq(NULL); \
340 __ret; \
341 })
342
343 /*
344 * Some kfuncs are allowed only on the tasks that are subjects of the
345 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such
346 * restrictions, the following SCX_CALL_OP_*() variants should be used when
347 * invoking scx_ops operations that take task arguments. These can only be used
348 * for non-nesting operations due to the way the tasks are tracked.
349 *
350 * kfuncs which can only operate on such tasks can in turn use
351 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on
352 * the specific task.
353 */
354 #define SCX_CALL_OP_TASK(sch, mask, op, rq, task, args...) \
355 do { \
356 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
357 current->scx.kf_tasks[0] = task; \
358 SCX_CALL_OP((sch), mask, op, rq, task, ##args); \
359 current->scx.kf_tasks[0] = NULL; \
360 } while (0)
361
362 #define SCX_CALL_OP_TASK_RET(sch, mask, op, rq, task, args...) \
363 ({ \
364 __typeof__((sch)->ops.op(task, ##args)) __ret; \
365 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
366 current->scx.kf_tasks[0] = task; \
367 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task, ##args); \
368 current->scx.kf_tasks[0] = NULL; \
369 __ret; \
370 })
371
372 #define SCX_CALL_OP_2TASKS_RET(sch, mask, op, rq, task0, task1, args...) \
373 ({ \
374 __typeof__((sch)->ops.op(task0, task1, ##args)) __ret; \
375 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \
376 current->scx.kf_tasks[0] = task0; \
377 current->scx.kf_tasks[1] = task1; \
378 __ret = SCX_CALL_OP_RET((sch), mask, op, rq, task0, task1, ##args); \
379 current->scx.kf_tasks[0] = NULL; \
380 current->scx.kf_tasks[1] = NULL; \
381 __ret; \
382 })
383
384 /* @mask is constant, always inline to cull unnecessary branches */
scx_kf_allowed(struct scx_sched * sch,u32 mask)385 static __always_inline bool scx_kf_allowed(struct scx_sched *sch, u32 mask)
386 {
387 if (unlikely(!(current->scx.kf_mask & mask))) {
388 scx_error(sch, "kfunc with mask 0x%x called from an operation only allowing 0x%x",
389 mask, current->scx.kf_mask);
390 return false;
391 }
392
393 /*
394 * Enforce nesting boundaries. e.g. A kfunc which can be called from
395 * DISPATCH must not be called if we're running DEQUEUE which is nested
396 * inside ops.dispatch(). We don't need to check boundaries for any
397 * blocking kfuncs as the verifier ensures they're only called from
398 * sleepable progs.
399 */
400 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE &&
401 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) {
402 scx_error(sch, "cpu_release kfunc called from a nested operation");
403 return false;
404 }
405
406 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH &&
407 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) {
408 scx_error(sch, "dispatch kfunc called from a nested operation");
409 return false;
410 }
411
412 return true;
413 }
414
415 /* see SCX_CALL_OP_TASK() */
scx_kf_allowed_on_arg_tasks(struct scx_sched * sch,u32 mask,struct task_struct * p)416 static __always_inline bool scx_kf_allowed_on_arg_tasks(struct scx_sched *sch,
417 u32 mask,
418 struct task_struct *p)
419 {
420 if (!scx_kf_allowed(sch, mask))
421 return false;
422
423 if (unlikely((p != current->scx.kf_tasks[0] &&
424 p != current->scx.kf_tasks[1]))) {
425 scx_error(sch, "called on a task not being operated on");
426 return false;
427 }
428
429 return true;
430 }
431
432 /**
433 * nldsq_next_task - Iterate to the next task in a non-local DSQ
434 * @dsq: user dsq being iterated
435 * @cur: current position, %NULL to start iteration
436 * @rev: walk backwards
437 *
438 * Returns %NULL when iteration is finished.
439 */
nldsq_next_task(struct scx_dispatch_q * dsq,struct task_struct * cur,bool rev)440 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq,
441 struct task_struct *cur, bool rev)
442 {
443 struct list_head *list_node;
444 struct scx_dsq_list_node *dsq_lnode;
445
446 lockdep_assert_held(&dsq->lock);
447
448 if (cur)
449 list_node = &cur->scx.dsq_list.node;
450 else
451 list_node = &dsq->list;
452
453 /* find the next task, need to skip BPF iteration cursors */
454 do {
455 if (rev)
456 list_node = list_node->prev;
457 else
458 list_node = list_node->next;
459
460 if (list_node == &dsq->list)
461 return NULL;
462
463 dsq_lnode = container_of(list_node, struct scx_dsq_list_node,
464 node);
465 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR);
466
467 return container_of(dsq_lnode, struct task_struct, scx.dsq_list);
468 }
469
470 #define nldsq_for_each_task(p, dsq) \
471 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \
472 (p) = nldsq_next_task((dsq), (p), false))
473
474
475 /*
476 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse]
477 * dispatch order. BPF-visible iterator is opaque and larger to allow future
478 * changes without breaking backward compatibility. Can be used with
479 * bpf_for_each(). See bpf_iter_scx_dsq_*().
480 */
481 enum scx_dsq_iter_flags {
482 /* iterate in the reverse dispatch order */
483 SCX_DSQ_ITER_REV = 1U << 16,
484
485 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30,
486 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31,
487
488 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV,
489 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS |
490 __SCX_DSQ_ITER_HAS_SLICE |
491 __SCX_DSQ_ITER_HAS_VTIME,
492 };
493
494 struct bpf_iter_scx_dsq_kern {
495 struct scx_dsq_list_node cursor;
496 struct scx_dispatch_q *dsq;
497 u64 slice;
498 u64 vtime;
499 } __attribute__((aligned(8)));
500
501 struct bpf_iter_scx_dsq {
502 u64 __opaque[6];
503 } __attribute__((aligned(8)));
504
505
506 /*
507 * SCX task iterator.
508 */
509 struct scx_task_iter {
510 struct sched_ext_entity cursor;
511 struct task_struct *locked_task;
512 struct rq *rq;
513 struct rq_flags rf;
514 u32 cnt;
515 bool list_locked;
516 };
517
518 /**
519 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration
520 * @iter: iterator to init
521 *
522 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter
523 * must eventually be stopped with scx_task_iter_stop().
524 *
525 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock()
526 * between this and the first next() call or between any two next() calls. If
527 * the locks are released between two next() calls, the caller is responsible
528 * for ensuring that the task being iterated remains accessible either through
529 * RCU read lock or obtaining a reference count.
530 *
531 * All tasks which existed when the iteration started are guaranteed to be
532 * visited as long as they are not dead.
533 */
scx_task_iter_start(struct scx_task_iter * iter)534 static void scx_task_iter_start(struct scx_task_iter *iter)
535 {
536 memset(iter, 0, sizeof(*iter));
537
538 raw_spin_lock_irq(&scx_tasks_lock);
539
540 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR };
541 list_add(&iter->cursor.tasks_node, &scx_tasks);
542 iter->list_locked = true;
543 }
544
__scx_task_iter_rq_unlock(struct scx_task_iter * iter)545 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter)
546 {
547 if (iter->locked_task) {
548 task_rq_unlock(iter->rq, iter->locked_task, &iter->rf);
549 iter->locked_task = NULL;
550 }
551 }
552
553 /**
554 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator
555 * @iter: iterator to unlock
556 *
557 * If @iter is in the middle of a locked iteration, it may be locking the rq of
558 * the task currently being visited in addition to scx_tasks_lock. Unlock both.
559 * This function can be safely called anytime during an iteration. The next
560 * iterator operation will automatically restore the necessary locking.
561 */
scx_task_iter_unlock(struct scx_task_iter * iter)562 static void scx_task_iter_unlock(struct scx_task_iter *iter)
563 {
564 __scx_task_iter_rq_unlock(iter);
565 if (iter->list_locked) {
566 iter->list_locked = false;
567 raw_spin_unlock_irq(&scx_tasks_lock);
568 }
569 }
570
__scx_task_iter_maybe_relock(struct scx_task_iter * iter)571 static void __scx_task_iter_maybe_relock(struct scx_task_iter *iter)
572 {
573 if (!iter->list_locked) {
574 raw_spin_lock_irq(&scx_tasks_lock);
575 iter->list_locked = true;
576 }
577 }
578
579 /**
580 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock
581 * @iter: iterator to exit
582 *
583 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held
584 * which is released on return. If the iterator holds a task's rq lock, that rq
585 * lock is also released. See scx_task_iter_start() for details.
586 */
scx_task_iter_stop(struct scx_task_iter * iter)587 static void scx_task_iter_stop(struct scx_task_iter *iter)
588 {
589 __scx_task_iter_maybe_relock(iter);
590 list_del_init(&iter->cursor.tasks_node);
591 scx_task_iter_unlock(iter);
592 }
593
594 /**
595 * scx_task_iter_next - Next task
596 * @iter: iterator to walk
597 *
598 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped
599 * and re-acquired every %SCX_TASK_ITER_BATCH iterations to avoid causing stalls
600 * by holding scx_tasks_lock for too long.
601 */
scx_task_iter_next(struct scx_task_iter * iter)602 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter)
603 {
604 struct list_head *cursor = &iter->cursor.tasks_node;
605 struct sched_ext_entity *pos;
606
607 if (!(++iter->cnt % SCX_TASK_ITER_BATCH)) {
608 scx_task_iter_unlock(iter);
609 cond_resched();
610 }
611
612 __scx_task_iter_maybe_relock(iter);
613
614 list_for_each_entry(pos, cursor, tasks_node) {
615 if (&pos->tasks_node == &scx_tasks)
616 return NULL;
617 if (!(pos->flags & SCX_TASK_CURSOR)) {
618 list_move(cursor, &pos->tasks_node);
619 return container_of(pos, struct task_struct, scx);
620 }
621 }
622
623 /* can't happen, should always terminate at scx_tasks above */
624 BUG();
625 }
626
627 /**
628 * scx_task_iter_next_locked - Next non-idle task with its rq locked
629 * @iter: iterator to walk
630 *
631 * Visit the non-idle task with its rq lock held. Allows callers to specify
632 * whether they would like to filter out dead tasks. See scx_task_iter_start()
633 * for details.
634 */
scx_task_iter_next_locked(struct scx_task_iter * iter)635 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter)
636 {
637 struct task_struct *p;
638
639 __scx_task_iter_rq_unlock(iter);
640
641 while ((p = scx_task_iter_next(iter))) {
642 /*
643 * scx_task_iter is used to prepare and move tasks into SCX
644 * while loading the BPF scheduler and vice-versa while
645 * unloading. The init_tasks ("swappers") should be excluded
646 * from the iteration because:
647 *
648 * - It's unsafe to use __setschduler_prio() on an init_task to
649 * determine the sched_class to use as it won't preserve its
650 * idle_sched_class.
651 *
652 * - ops.init/exit_task() can easily be confused if called with
653 * init_tasks as they, e.g., share PID 0.
654 *
655 * As init_tasks are never scheduled through SCX, they can be
656 * skipped safely. Note that is_idle_task() which tests %PF_IDLE
657 * doesn't work here:
658 *
659 * - %PF_IDLE may not be set for an init_task whose CPU hasn't
660 * yet been onlined.
661 *
662 * - %PF_IDLE can be set on tasks that are not init_tasks. See
663 * play_idle_precise() used by CONFIG_IDLE_INJECT.
664 *
665 * Test for idle_sched_class as only init_tasks are on it.
666 */
667 if (p->sched_class != &idle_sched_class)
668 break;
669 }
670 if (!p)
671 return NULL;
672
673 iter->rq = task_rq_lock(p, &iter->rf);
674 iter->locked_task = p;
675
676 return p;
677 }
678
679 /**
680 * scx_add_event - Increase an event counter for 'name' by 'cnt'
681 * @sch: scx_sched to account events for
682 * @name: an event name defined in struct scx_event_stats
683 * @cnt: the number of the event occurred
684 *
685 * This can be used when preemption is not disabled.
686 */
687 #define scx_add_event(sch, name, cnt) do { \
688 this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
689 trace_sched_ext_event(#name, (cnt)); \
690 } while(0)
691
692 /**
693 * __scx_add_event - Increase an event counter for 'name' by 'cnt'
694 * @sch: scx_sched to account events for
695 * @name: an event name defined in struct scx_event_stats
696 * @cnt: the number of the event occurred
697 *
698 * This should be used only when preemption is disabled.
699 */
700 #define __scx_add_event(sch, name, cnt) do { \
701 __this_cpu_add((sch)->pcpu->event_stats.name, (cnt)); \
702 trace_sched_ext_event(#name, cnt); \
703 } while(0)
704
705 /**
706 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e'
707 * @dst_e: destination event stats
708 * @src_e: source event stats
709 * @kind: a kind of event to be aggregated
710 */
711 #define scx_agg_event(dst_e, src_e, kind) do { \
712 (dst_e)->kind += READ_ONCE((src_e)->kind); \
713 } while(0)
714
715 /**
716 * scx_dump_event - Dump an event 'kind' in 'events' to 's'
717 * @s: output seq_buf
718 * @events: event stats
719 * @kind: a kind of event to dump
720 */
721 #define scx_dump_event(s, events, kind) do { \
722 dump_line(&(s), "%40s: %16lld", #kind, (events)->kind); \
723 } while (0)
724
725
726 static void scx_read_events(struct scx_sched *sch,
727 struct scx_event_stats *events);
728
scx_enable_state(void)729 static enum scx_enable_state scx_enable_state(void)
730 {
731 return atomic_read(&scx_enable_state_var);
732 }
733
scx_set_enable_state(enum scx_enable_state to)734 static enum scx_enable_state scx_set_enable_state(enum scx_enable_state to)
735 {
736 return atomic_xchg(&scx_enable_state_var, to);
737 }
738
scx_tryset_enable_state(enum scx_enable_state to,enum scx_enable_state from)739 static bool scx_tryset_enable_state(enum scx_enable_state to,
740 enum scx_enable_state from)
741 {
742 int from_v = from;
743
744 return atomic_try_cmpxchg(&scx_enable_state_var, &from_v, to);
745 }
746
747 /**
748 * wait_ops_state - Busy-wait the specified ops state to end
749 * @p: target task
750 * @opss: state to wait the end of
751 *
752 * Busy-wait for @p to transition out of @opss. This can only be used when the
753 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also
754 * has load_acquire semantics to ensure that the caller can see the updates made
755 * in the enqueueing and dispatching paths.
756 */
wait_ops_state(struct task_struct * p,unsigned long opss)757 static void wait_ops_state(struct task_struct *p, unsigned long opss)
758 {
759 do {
760 cpu_relax();
761 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss);
762 }
763
__cpu_valid(s32 cpu)764 static inline bool __cpu_valid(s32 cpu)
765 {
766 return likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu));
767 }
768
769 /**
770 * ops_cpu_valid - Verify a cpu number, to be used on ops input args
771 * @sch: scx_sched to abort on error
772 * @cpu: cpu number which came from a BPF ops
773 * @where: extra information reported on error
774 *
775 * @cpu is a cpu number which came from the BPF scheduler and can be any value.
776 * Verify that it is in range and one of the possible cpus. If invalid, trigger
777 * an ops error.
778 */
ops_cpu_valid(struct scx_sched * sch,s32 cpu,const char * where)779 static bool ops_cpu_valid(struct scx_sched *sch, s32 cpu, const char *where)
780 {
781 if (__cpu_valid(cpu)) {
782 return true;
783 } else {
784 scx_error(sch, "invalid CPU %d%s%s", cpu, where ? " " : "", where ?: "");
785 return false;
786 }
787 }
788
789 /**
790 * ops_sanitize_err - Sanitize a -errno value
791 * @sch: scx_sched to error out on error
792 * @ops_name: operation to blame on failure
793 * @err: -errno value to sanitize
794 *
795 * Verify @err is a valid -errno. If not, trigger scx_error() and return
796 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can
797 * cause misbehaviors. For an example, a large negative return from
798 * ops.init_task() triggers an oops when passed up the call chain because the
799 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is
800 * handled as a pointer.
801 */
ops_sanitize_err(struct scx_sched * sch,const char * ops_name,s32 err)802 static int ops_sanitize_err(struct scx_sched *sch, const char *ops_name, s32 err)
803 {
804 if (err < 0 && err >= -MAX_ERRNO)
805 return err;
806
807 scx_error(sch, "ops.%s() returned an invalid errno %d", ops_name, err);
808 return -EPROTO;
809 }
810
run_deferred(struct rq * rq)811 static void run_deferred(struct rq *rq)
812 {
813 process_ddsp_deferred_locals(rq);
814
815 if (local_read(&rq->scx.reenq_local_deferred)) {
816 local_set(&rq->scx.reenq_local_deferred, 0);
817 reenq_local(rq);
818 }
819 }
820
deferred_bal_cb_workfn(struct rq * rq)821 static void deferred_bal_cb_workfn(struct rq *rq)
822 {
823 run_deferred(rq);
824 }
825
deferred_irq_workfn(struct irq_work * irq_work)826 static void deferred_irq_workfn(struct irq_work *irq_work)
827 {
828 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work);
829
830 raw_spin_rq_lock(rq);
831 run_deferred(rq);
832 raw_spin_rq_unlock(rq);
833 }
834
835 /**
836 * schedule_deferred - Schedule execution of deferred actions on an rq
837 * @rq: target rq
838 *
839 * Schedule execution of deferred actions on @rq. Deferred actions are executed
840 * with @rq locked but unpinned, and thus can unlock @rq to e.g. migrate tasks
841 * to other rqs.
842 */
schedule_deferred(struct rq * rq)843 static void schedule_deferred(struct rq *rq)
844 {
845 /*
846 * Queue an irq work. They are executed on IRQ re-enable which may take
847 * a bit longer than the scheduler hook in schedule_deferred_locked().
848 */
849 irq_work_queue(&rq->scx.deferred_irq_work);
850 }
851
852 /**
853 * schedule_deferred_locked - Schedule execution of deferred actions on an rq
854 * @rq: target rq
855 *
856 * Schedule execution of deferred actions on @rq. Equivalent to
857 * schedule_deferred() but requires @rq to be locked and can be more efficient.
858 */
schedule_deferred_locked(struct rq * rq)859 static void schedule_deferred_locked(struct rq *rq)
860 {
861 lockdep_assert_rq_held(rq);
862
863 /*
864 * If in the middle of waking up a task, task_woken_scx() will be called
865 * afterwards which will then run the deferred actions, no need to
866 * schedule anything.
867 */
868 if (rq->scx.flags & SCX_RQ_IN_WAKEUP)
869 return;
870
871 /* Don't do anything if there already is a deferred operation. */
872 if (rq->scx.flags & SCX_RQ_BAL_CB_PENDING)
873 return;
874
875 /*
876 * If in balance, the balance callbacks will be called before rq lock is
877 * released. Schedule one.
878 *
879 *
880 * We can't directly insert the callback into the
881 * rq's list: The call can drop its lock and make the pending balance
882 * callback visible to unrelated code paths that call rq_pin_lock().
883 *
884 * Just let balance_one() know that it must do it itself.
885 */
886 if (rq->scx.flags & SCX_RQ_IN_BALANCE) {
887 rq->scx.flags |= SCX_RQ_BAL_CB_PENDING;
888 return;
889 }
890
891 /*
892 * No scheduler hooks available. Use the generic irq_work path. The
893 * above WAKEUP and BALANCE paths should cover most of the cases and the
894 * time to IRQ re-enable shouldn't be long.
895 */
896 schedule_deferred(rq);
897 }
898
899 /**
900 * touch_core_sched - Update timestamp used for core-sched task ordering
901 * @rq: rq to read clock from, must be locked
902 * @p: task to update the timestamp for
903 *
904 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to
905 * implement global or local-DSQ FIFO ordering for core-sched. Should be called
906 * when a task becomes runnable and its turn on the CPU ends (e.g. slice
907 * exhaustion).
908 */
touch_core_sched(struct rq * rq,struct task_struct * p)909 static void touch_core_sched(struct rq *rq, struct task_struct *p)
910 {
911 lockdep_assert_rq_held(rq);
912
913 #ifdef CONFIG_SCHED_CORE
914 /*
915 * It's okay to update the timestamp spuriously. Use
916 * sched_core_disabled() which is cheaper than enabled().
917 *
918 * As this is used to determine ordering between tasks of sibling CPUs,
919 * it may be better to use per-core dispatch sequence instead.
920 */
921 if (!sched_core_disabled())
922 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq));
923 #endif
924 }
925
926 /**
927 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch
928 * @rq: rq to read clock from, must be locked
929 * @p: task being dispatched
930 *
931 * If the BPF scheduler implements custom core-sched ordering via
932 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO
933 * ordering within each local DSQ. This function is called from dispatch paths
934 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect.
935 */
touch_core_sched_dispatch(struct rq * rq,struct task_struct * p)936 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p)
937 {
938 lockdep_assert_rq_held(rq);
939
940 #ifdef CONFIG_SCHED_CORE
941 if (unlikely(SCX_HAS_OP(scx_root, core_sched_before)))
942 touch_core_sched(rq, p);
943 #endif
944 }
945
update_curr_scx(struct rq * rq)946 static void update_curr_scx(struct rq *rq)
947 {
948 struct task_struct *curr = rq->curr;
949 s64 delta_exec;
950
951 delta_exec = update_curr_common(rq);
952 if (unlikely(delta_exec <= 0))
953 return;
954
955 if (curr->scx.slice != SCX_SLICE_INF) {
956 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec);
957 if (!curr->scx.slice)
958 touch_core_sched(rq, curr);
959 }
960 }
961
scx_dsq_priq_less(struct rb_node * node_a,const struct rb_node * node_b)962 static bool scx_dsq_priq_less(struct rb_node *node_a,
963 const struct rb_node *node_b)
964 {
965 const struct task_struct *a =
966 container_of(node_a, struct task_struct, scx.dsq_priq);
967 const struct task_struct *b =
968 container_of(node_b, struct task_struct, scx.dsq_priq);
969
970 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime);
971 }
972
dsq_mod_nr(struct scx_dispatch_q * dsq,s32 delta)973 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta)
974 {
975 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */
976 WRITE_ONCE(dsq->nr, dsq->nr + delta);
977 }
978
refill_task_slice_dfl(struct scx_sched * sch,struct task_struct * p)979 static void refill_task_slice_dfl(struct scx_sched *sch, struct task_struct *p)
980 {
981 p->scx.slice = READ_ONCE(scx_slice_dfl);
982 __scx_add_event(sch, SCX_EV_REFILL_SLICE_DFL, 1);
983 }
984
local_dsq_post_enq(struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)985 static void local_dsq_post_enq(struct scx_dispatch_q *dsq, struct task_struct *p,
986 u64 enq_flags)
987 {
988 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq);
989 bool preempt = false;
990
991 /*
992 * If @rq is in balance, the CPU is already vacant and looking for the
993 * next task to run. No need to preempt or trigger resched after moving
994 * @p into its local DSQ.
995 */
996 if (rq->scx.flags & SCX_RQ_IN_BALANCE)
997 return;
998
999 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr &&
1000 rq->curr->sched_class == &ext_sched_class) {
1001 rq->curr->scx.slice = 0;
1002 preempt = true;
1003 }
1004
1005 if (preempt || sched_class_above(&ext_sched_class, rq->curr->sched_class))
1006 resched_curr(rq);
1007 }
1008
dispatch_enqueue(struct scx_sched * sch,struct scx_dispatch_q * dsq,struct task_struct * p,u64 enq_flags)1009 static void dispatch_enqueue(struct scx_sched *sch, struct scx_dispatch_q *dsq,
1010 struct task_struct *p, u64 enq_flags)
1011 {
1012 bool is_local = dsq->id == SCX_DSQ_LOCAL;
1013
1014 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1015 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) ||
1016 !RB_EMPTY_NODE(&p->scx.dsq_priq));
1017
1018 if (!is_local) {
1019 raw_spin_lock_nested(&dsq->lock,
1020 (enq_flags & SCX_ENQ_NESTED) ? SINGLE_DEPTH_NESTING : 0);
1021
1022 if (unlikely(dsq->id == SCX_DSQ_INVALID)) {
1023 scx_error(sch, "attempting to dispatch to a destroyed dsq");
1024 /* fall back to the global dsq */
1025 raw_spin_unlock(&dsq->lock);
1026 dsq = find_global_dsq(sch, p);
1027 raw_spin_lock(&dsq->lock);
1028 }
1029 }
1030
1031 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) &&
1032 (enq_flags & SCX_ENQ_DSQ_PRIQ))) {
1033 /*
1034 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from
1035 * their FIFO queues. To avoid confusion and accidentally
1036 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we
1037 * disallow any internal DSQ from doing vtime ordering of
1038 * tasks.
1039 */
1040 scx_error(sch, "cannot use vtime ordering for built-in DSQs");
1041 enq_flags &= ~SCX_ENQ_DSQ_PRIQ;
1042 }
1043
1044 if (enq_flags & SCX_ENQ_DSQ_PRIQ) {
1045 struct rb_node *rbp;
1046
1047 /*
1048 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are
1049 * linked to both the rbtree and list on PRIQs, this can only be
1050 * tested easily when adding the first task.
1051 */
1052 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) &&
1053 nldsq_next_task(dsq, NULL, false)))
1054 scx_error(sch, "DSQ ID 0x%016llx already had FIFO-enqueued tasks",
1055 dsq->id);
1056
1057 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ;
1058 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less);
1059
1060 /*
1061 * Find the previous task and insert after it on the list so
1062 * that @dsq->list is vtime ordered.
1063 */
1064 rbp = rb_prev(&p->scx.dsq_priq);
1065 if (rbp) {
1066 struct task_struct *prev =
1067 container_of(rbp, struct task_struct,
1068 scx.dsq_priq);
1069 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node);
1070 /* first task unchanged - no update needed */
1071 } else {
1072 list_add(&p->scx.dsq_list.node, &dsq->list);
1073 /* not builtin and new task is at head - use fastpath */
1074 rcu_assign_pointer(dsq->first_task, p);
1075 }
1076 } else {
1077 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */
1078 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq)))
1079 scx_error(sch, "DSQ ID 0x%016llx already had PRIQ-enqueued tasks",
1080 dsq->id);
1081
1082 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) {
1083 list_add(&p->scx.dsq_list.node, &dsq->list);
1084 /* new task inserted at head - use fastpath */
1085 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN))
1086 rcu_assign_pointer(dsq->first_task, p);
1087 } else {
1088 bool was_empty;
1089
1090 was_empty = list_empty(&dsq->list);
1091 list_add_tail(&p->scx.dsq_list.node, &dsq->list);
1092 if (was_empty && !(dsq->id & SCX_DSQ_FLAG_BUILTIN))
1093 rcu_assign_pointer(dsq->first_task, p);
1094 }
1095 }
1096
1097 /* seq records the order tasks are queued, used by BPF DSQ iterator */
1098 dsq->seq++;
1099 p->scx.dsq_seq = dsq->seq;
1100
1101 dsq_mod_nr(dsq, 1);
1102 p->scx.dsq = dsq;
1103
1104 /*
1105 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the
1106 * direct dispatch path, but we clear them here because the direct
1107 * dispatch verdict may be overridden on the enqueue path during e.g.
1108 * bypass.
1109 */
1110 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID;
1111 p->scx.ddsp_enq_flags = 0;
1112
1113 /*
1114 * We're transitioning out of QUEUEING or DISPATCHING. store_release to
1115 * match waiters' load_acquire.
1116 */
1117 if (enq_flags & SCX_ENQ_CLEAR_OPSS)
1118 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1119
1120 if (is_local)
1121 local_dsq_post_enq(dsq, p, enq_flags);
1122 else
1123 raw_spin_unlock(&dsq->lock);
1124 }
1125
task_unlink_from_dsq(struct task_struct * p,struct scx_dispatch_q * dsq)1126 static void task_unlink_from_dsq(struct task_struct *p,
1127 struct scx_dispatch_q *dsq)
1128 {
1129 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node));
1130
1131 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) {
1132 rb_erase(&p->scx.dsq_priq, &dsq->priq);
1133 RB_CLEAR_NODE(&p->scx.dsq_priq);
1134 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ;
1135 }
1136
1137 list_del_init(&p->scx.dsq_list.node);
1138 dsq_mod_nr(dsq, -1);
1139
1140 if (!(dsq->id & SCX_DSQ_FLAG_BUILTIN) && dsq->first_task == p) {
1141 struct task_struct *first_task;
1142
1143 first_task = nldsq_next_task(dsq, NULL, false);
1144 rcu_assign_pointer(dsq->first_task, first_task);
1145 }
1146 }
1147
dispatch_dequeue(struct rq * rq,struct task_struct * p)1148 static void dispatch_dequeue(struct rq *rq, struct task_struct *p)
1149 {
1150 struct scx_dispatch_q *dsq = p->scx.dsq;
1151 bool is_local = dsq == &rq->scx.local_dsq;
1152
1153 lockdep_assert_rq_held(rq);
1154
1155 if (!dsq) {
1156 /*
1157 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals.
1158 * Unlinking is all that's needed to cancel.
1159 */
1160 if (unlikely(!list_empty(&p->scx.dsq_list.node)))
1161 list_del_init(&p->scx.dsq_list.node);
1162
1163 /*
1164 * When dispatching directly from the BPF scheduler to a local
1165 * DSQ, the task isn't associated with any DSQ but
1166 * @p->scx.holding_cpu may be set under the protection of
1167 * %SCX_OPSS_DISPATCHING.
1168 */
1169 if (p->scx.holding_cpu >= 0)
1170 p->scx.holding_cpu = -1;
1171
1172 return;
1173 }
1174
1175 if (!is_local)
1176 raw_spin_lock(&dsq->lock);
1177
1178 /*
1179 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't
1180 * change underneath us.
1181 */
1182 if (p->scx.holding_cpu < 0) {
1183 /* @p must still be on @dsq, dequeue */
1184 task_unlink_from_dsq(p, dsq);
1185 } else {
1186 /*
1187 * We're racing against dispatch_to_local_dsq() which already
1188 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the
1189 * holding_cpu which tells dispatch_to_local_dsq() that it lost
1190 * the race.
1191 */
1192 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node));
1193 p->scx.holding_cpu = -1;
1194 }
1195 p->scx.dsq = NULL;
1196
1197 if (!is_local)
1198 raw_spin_unlock(&dsq->lock);
1199 }
1200
1201 /*
1202 * Abbreviated version of dispatch_dequeue() that can be used when both @p's rq
1203 * and dsq are locked.
1204 */
dispatch_dequeue_locked(struct task_struct * p,struct scx_dispatch_q * dsq)1205 static void dispatch_dequeue_locked(struct task_struct *p,
1206 struct scx_dispatch_q *dsq)
1207 {
1208 lockdep_assert_rq_held(task_rq(p));
1209 lockdep_assert_held(&dsq->lock);
1210
1211 task_unlink_from_dsq(p, dsq);
1212 p->scx.dsq = NULL;
1213 }
1214
find_dsq_for_dispatch(struct scx_sched * sch,struct rq * rq,u64 dsq_id,struct task_struct * p)1215 static struct scx_dispatch_q *find_dsq_for_dispatch(struct scx_sched *sch,
1216 struct rq *rq, u64 dsq_id,
1217 struct task_struct *p)
1218 {
1219 struct scx_dispatch_q *dsq;
1220
1221 if (dsq_id == SCX_DSQ_LOCAL)
1222 return &rq->scx.local_dsq;
1223
1224 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
1225 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
1226
1227 if (!ops_cpu_valid(sch, cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict"))
1228 return find_global_dsq(sch, p);
1229
1230 return &cpu_rq(cpu)->scx.local_dsq;
1231 }
1232
1233 if (dsq_id == SCX_DSQ_GLOBAL)
1234 dsq = find_global_dsq(sch, p);
1235 else
1236 dsq = find_user_dsq(sch, dsq_id);
1237
1238 if (unlikely(!dsq)) {
1239 scx_error(sch, "non-existent DSQ 0x%llx for %s[%d]",
1240 dsq_id, p->comm, p->pid);
1241 return find_global_dsq(sch, p);
1242 }
1243
1244 return dsq;
1245 }
1246
mark_direct_dispatch(struct scx_sched * sch,struct task_struct * ddsp_task,struct task_struct * p,u64 dsq_id,u64 enq_flags)1247 static void mark_direct_dispatch(struct scx_sched *sch,
1248 struct task_struct *ddsp_task,
1249 struct task_struct *p, u64 dsq_id,
1250 u64 enq_flags)
1251 {
1252 /*
1253 * Mark that dispatch already happened from ops.select_cpu() or
1254 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value
1255 * which can never match a valid task pointer.
1256 */
1257 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH));
1258
1259 /* @p must match the task on the enqueue path */
1260 if (unlikely(p != ddsp_task)) {
1261 if (IS_ERR(ddsp_task))
1262 scx_error(sch, "%s[%d] already direct-dispatched",
1263 p->comm, p->pid);
1264 else
1265 scx_error(sch, "scheduling for %s[%d] but trying to direct-dispatch %s[%d]",
1266 ddsp_task->comm, ddsp_task->pid,
1267 p->comm, p->pid);
1268 return;
1269 }
1270
1271 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID);
1272 WARN_ON_ONCE(p->scx.ddsp_enq_flags);
1273
1274 p->scx.ddsp_dsq_id = dsq_id;
1275 p->scx.ddsp_enq_flags = enq_flags;
1276 }
1277
direct_dispatch(struct scx_sched * sch,struct task_struct * p,u64 enq_flags)1278 static void direct_dispatch(struct scx_sched *sch, struct task_struct *p,
1279 u64 enq_flags)
1280 {
1281 struct rq *rq = task_rq(p);
1282 struct scx_dispatch_q *dsq =
1283 find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
1284
1285 touch_core_sched_dispatch(rq, p);
1286
1287 p->scx.ddsp_enq_flags |= enq_flags;
1288
1289 /*
1290 * We are in the enqueue path with @rq locked and pinned, and thus can't
1291 * double lock a remote rq and enqueue to its local DSQ. For
1292 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer
1293 * the enqueue so that it's executed when @rq can be unlocked.
1294 */
1295 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) {
1296 unsigned long opss;
1297
1298 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK;
1299
1300 switch (opss & SCX_OPSS_STATE_MASK) {
1301 case SCX_OPSS_NONE:
1302 break;
1303 case SCX_OPSS_QUEUEING:
1304 /*
1305 * As @p was never passed to the BPF side, _release is
1306 * not strictly necessary. Still do it for consistency.
1307 */
1308 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1309 break;
1310 default:
1311 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()",
1312 p->comm, p->pid, opss);
1313 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1314 break;
1315 }
1316
1317 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node));
1318 list_add_tail(&p->scx.dsq_list.node,
1319 &rq->scx.ddsp_deferred_locals);
1320 schedule_deferred_locked(rq);
1321 return;
1322 }
1323
1324 dispatch_enqueue(sch, dsq, p,
1325 p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS);
1326 }
1327
scx_rq_online(struct rq * rq)1328 static bool scx_rq_online(struct rq *rq)
1329 {
1330 /*
1331 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates
1332 * the online state as seen from the BPF scheduler. cpu_active() test
1333 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will
1334 * stay set until the current scheduling operation is complete even if
1335 * we aren't locking @rq.
1336 */
1337 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq)));
1338 }
1339
do_enqueue_task(struct rq * rq,struct task_struct * p,u64 enq_flags,int sticky_cpu)1340 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags,
1341 int sticky_cpu)
1342 {
1343 struct scx_sched *sch = scx_root;
1344 struct task_struct **ddsp_taskp;
1345 struct scx_dispatch_q *dsq;
1346 unsigned long qseq;
1347
1348 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED));
1349
1350 /* rq migration */
1351 if (sticky_cpu == cpu_of(rq))
1352 goto local_norefill;
1353
1354 /*
1355 * If !scx_rq_online(), we already told the BPF scheduler that the CPU
1356 * is offline and are just running the hotplug path. Don't bother the
1357 * BPF scheduler.
1358 */
1359 if (!scx_rq_online(rq))
1360 goto local;
1361
1362 if (scx_rq_bypassing(rq)) {
1363 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
1364 goto bypass;
1365 }
1366
1367 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1368 goto direct;
1369
1370 /* see %SCX_OPS_ENQ_EXITING */
1371 if (!(sch->ops.flags & SCX_OPS_ENQ_EXITING) &&
1372 unlikely(p->flags & PF_EXITING)) {
1373 __scx_add_event(sch, SCX_EV_ENQ_SKIP_EXITING, 1);
1374 goto local;
1375 }
1376
1377 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */
1378 if (!(sch->ops.flags & SCX_OPS_ENQ_MIGRATION_DISABLED) &&
1379 is_migration_disabled(p)) {
1380 __scx_add_event(sch, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1);
1381 goto local;
1382 }
1383
1384 if (unlikely(!SCX_HAS_OP(sch, enqueue)))
1385 goto global;
1386
1387 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */
1388 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT;
1389
1390 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1391 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq);
1392
1393 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
1394 WARN_ON_ONCE(*ddsp_taskp);
1395 *ddsp_taskp = p;
1396
1397 SCX_CALL_OP_TASK(sch, SCX_KF_ENQUEUE, enqueue, rq, p, enq_flags);
1398
1399 *ddsp_taskp = NULL;
1400 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID)
1401 goto direct;
1402
1403 /*
1404 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or
1405 * dequeue may be waiting. The store_release matches their load_acquire.
1406 */
1407 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq);
1408 return;
1409
1410 direct:
1411 direct_dispatch(sch, p, enq_flags);
1412 return;
1413 local_norefill:
1414 dispatch_enqueue(sch, &rq->scx.local_dsq, p, enq_flags);
1415 return;
1416 local:
1417 dsq = &rq->scx.local_dsq;
1418 goto enqueue;
1419 global:
1420 dsq = find_global_dsq(sch, p);
1421 goto enqueue;
1422 bypass:
1423 dsq = &task_rq(p)->scx.bypass_dsq;
1424 goto enqueue;
1425
1426 enqueue:
1427 /*
1428 * For task-ordering, slice refill must be treated as implying the end
1429 * of the current slice. Otherwise, the longer @p stays on the CPU, the
1430 * higher priority it becomes from scx_prio_less()'s POV.
1431 */
1432 touch_core_sched(rq, p);
1433 refill_task_slice_dfl(sch, p);
1434 dispatch_enqueue(sch, dsq, p, enq_flags);
1435 }
1436
task_runnable(const struct task_struct * p)1437 static bool task_runnable(const struct task_struct *p)
1438 {
1439 return !list_empty(&p->scx.runnable_node);
1440 }
1441
set_task_runnable(struct rq * rq,struct task_struct * p)1442 static void set_task_runnable(struct rq *rq, struct task_struct *p)
1443 {
1444 lockdep_assert_rq_held(rq);
1445
1446 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) {
1447 p->scx.runnable_at = jiffies;
1448 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT;
1449 }
1450
1451 /*
1452 * list_add_tail() must be used. scx_bypass() depends on tasks being
1453 * appended to the runnable_list.
1454 */
1455 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list);
1456 }
1457
clr_task_runnable(struct task_struct * p,bool reset_runnable_at)1458 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at)
1459 {
1460 list_del_init(&p->scx.runnable_node);
1461 if (reset_runnable_at)
1462 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
1463 }
1464
enqueue_task_scx(struct rq * rq,struct task_struct * p,int enq_flags)1465 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags)
1466 {
1467 struct scx_sched *sch = scx_root;
1468 int sticky_cpu = p->scx.sticky_cpu;
1469
1470 if (enq_flags & ENQUEUE_WAKEUP)
1471 rq->scx.flags |= SCX_RQ_IN_WAKEUP;
1472
1473 enq_flags |= rq->scx.extra_enq_flags;
1474
1475 if (sticky_cpu >= 0)
1476 p->scx.sticky_cpu = -1;
1477
1478 /*
1479 * Restoring a running task will be immediately followed by
1480 * set_next_task_scx() which expects the task to not be on the BPF
1481 * scheduler as tasks can only start running through local DSQs. Force
1482 * direct-dispatch into the local DSQ by setting the sticky_cpu.
1483 */
1484 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p))
1485 sticky_cpu = cpu_of(rq);
1486
1487 if (p->scx.flags & SCX_TASK_QUEUED) {
1488 WARN_ON_ONCE(!task_runnable(p));
1489 goto out;
1490 }
1491
1492 set_task_runnable(rq, p);
1493 p->scx.flags |= SCX_TASK_QUEUED;
1494 rq->scx.nr_running++;
1495 add_nr_running(rq, 1);
1496
1497 if (SCX_HAS_OP(sch, runnable) && !task_on_rq_migrating(p))
1498 SCX_CALL_OP_TASK(sch, SCX_KF_REST, runnable, rq, p, enq_flags);
1499
1500 if (enq_flags & SCX_ENQ_WAKEUP)
1501 touch_core_sched(rq, p);
1502
1503 do_enqueue_task(rq, p, enq_flags, sticky_cpu);
1504 out:
1505 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP;
1506
1507 if ((enq_flags & SCX_ENQ_CPU_SELECTED) &&
1508 unlikely(cpu_of(rq) != p->scx.selected_cpu))
1509 __scx_add_event(sch, SCX_EV_SELECT_CPU_FALLBACK, 1);
1510 }
1511
ops_dequeue(struct rq * rq,struct task_struct * p,u64 deq_flags)1512 static void ops_dequeue(struct rq *rq, struct task_struct *p, u64 deq_flags)
1513 {
1514 struct scx_sched *sch = scx_root;
1515 unsigned long opss;
1516
1517 /* dequeue is always temporary, don't reset runnable_at */
1518 clr_task_runnable(p, false);
1519
1520 /* acquire ensures that we see the preceding updates on QUEUED */
1521 opss = atomic_long_read_acquire(&p->scx.ops_state);
1522
1523 switch (opss & SCX_OPSS_STATE_MASK) {
1524 case SCX_OPSS_NONE:
1525 break;
1526 case SCX_OPSS_QUEUEING:
1527 /*
1528 * QUEUEING is started and finished while holding @p's rq lock.
1529 * As we're holding the rq lock now, we shouldn't see QUEUEING.
1530 */
1531 BUG();
1532 case SCX_OPSS_QUEUED:
1533 if (SCX_HAS_OP(sch, dequeue))
1534 SCX_CALL_OP_TASK(sch, SCX_KF_REST, dequeue, rq,
1535 p, deq_flags);
1536
1537 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
1538 SCX_OPSS_NONE))
1539 break;
1540 fallthrough;
1541 case SCX_OPSS_DISPATCHING:
1542 /*
1543 * If @p is being dispatched from the BPF scheduler to a DSQ,
1544 * wait for the transfer to complete so that @p doesn't get
1545 * added to its DSQ after dequeueing is complete.
1546 *
1547 * As we're waiting on DISPATCHING with the rq locked, the
1548 * dispatching side shouldn't try to lock the rq while
1549 * DISPATCHING is set. See dispatch_to_local_dsq().
1550 *
1551 * DISPATCHING shouldn't have qseq set and control can reach
1552 * here with NONE @opss from the above QUEUED case block.
1553 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss.
1554 */
1555 wait_ops_state(p, SCX_OPSS_DISPATCHING);
1556 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE);
1557 break;
1558 }
1559 }
1560
dequeue_task_scx(struct rq * rq,struct task_struct * p,int deq_flags)1561 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags)
1562 {
1563 struct scx_sched *sch = scx_root;
1564
1565 if (!(p->scx.flags & SCX_TASK_QUEUED)) {
1566 WARN_ON_ONCE(task_runnable(p));
1567 return true;
1568 }
1569
1570 ops_dequeue(rq, p, deq_flags);
1571
1572 /*
1573 * A currently running task which is going off @rq first gets dequeued
1574 * and then stops running. As we want running <-> stopping transitions
1575 * to be contained within runnable <-> quiescent transitions, trigger
1576 * ->stopping() early here instead of in put_prev_task_scx().
1577 *
1578 * @p may go through multiple stopping <-> running transitions between
1579 * here and put_prev_task_scx() if task attribute changes occur while
1580 * balance_one() leaves @rq unlocked. However, they don't contain any
1581 * information meaningful to the BPF scheduler and can be suppressed by
1582 * skipping the callbacks if the task is !QUEUED.
1583 */
1584 if (SCX_HAS_OP(sch, stopping) && task_current(rq, p)) {
1585 update_curr_scx(rq);
1586 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, false);
1587 }
1588
1589 if (SCX_HAS_OP(sch, quiescent) && !task_on_rq_migrating(p))
1590 SCX_CALL_OP_TASK(sch, SCX_KF_REST, quiescent, rq, p, deq_flags);
1591
1592 if (deq_flags & SCX_DEQ_SLEEP)
1593 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP;
1594 else
1595 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP;
1596
1597 p->scx.flags &= ~SCX_TASK_QUEUED;
1598 rq->scx.nr_running--;
1599 sub_nr_running(rq, 1);
1600
1601 dispatch_dequeue(rq, p);
1602 return true;
1603 }
1604
yield_task_scx(struct rq * rq)1605 static void yield_task_scx(struct rq *rq)
1606 {
1607 struct scx_sched *sch = scx_root;
1608 struct task_struct *p = rq->donor;
1609
1610 if (SCX_HAS_OP(sch, yield))
1611 SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq, p, NULL);
1612 else
1613 p->scx.slice = 0;
1614 }
1615
yield_to_task_scx(struct rq * rq,struct task_struct * to)1616 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to)
1617 {
1618 struct scx_sched *sch = scx_root;
1619 struct task_struct *from = rq->donor;
1620
1621 if (SCX_HAS_OP(sch, yield))
1622 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, yield, rq,
1623 from, to);
1624 else
1625 return false;
1626 }
1627
move_local_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct rq * dst_rq)1628 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1629 struct scx_dispatch_q *src_dsq,
1630 struct rq *dst_rq)
1631 {
1632 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq;
1633
1634 /* @dsq is locked and @p is on @dst_rq */
1635 lockdep_assert_held(&src_dsq->lock);
1636 lockdep_assert_rq_held(dst_rq);
1637
1638 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1639
1640 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT))
1641 list_add(&p->scx.dsq_list.node, &dst_dsq->list);
1642 else
1643 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list);
1644
1645 dsq_mod_nr(dst_dsq, 1);
1646 p->scx.dsq = dst_dsq;
1647
1648 local_dsq_post_enq(dst_dsq, p, enq_flags);
1649 }
1650
1651 /**
1652 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ
1653 * @p: task to move
1654 * @enq_flags: %SCX_ENQ_*
1655 * @src_rq: rq to move the task from, locked on entry, released on return
1656 * @dst_rq: rq to move the task into, locked on return
1657 *
1658 * Move @p which is currently on @src_rq to @dst_rq's local DSQ.
1659 */
move_remote_task_to_local_dsq(struct task_struct * p,u64 enq_flags,struct rq * src_rq,struct rq * dst_rq)1660 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags,
1661 struct rq *src_rq, struct rq *dst_rq)
1662 {
1663 lockdep_assert_rq_held(src_rq);
1664
1665 /* the following marks @p MIGRATING which excludes dequeue */
1666 deactivate_task(src_rq, p, 0);
1667 set_task_cpu(p, cpu_of(dst_rq));
1668 p->scx.sticky_cpu = cpu_of(dst_rq);
1669
1670 raw_spin_rq_unlock(src_rq);
1671 raw_spin_rq_lock(dst_rq);
1672
1673 /*
1674 * We want to pass scx-specific enq_flags but activate_task() will
1675 * truncate the upper 32 bit. As we own @rq, we can pass them through
1676 * @rq->scx.extra_enq_flags instead.
1677 */
1678 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr));
1679 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags);
1680 dst_rq->scx.extra_enq_flags = enq_flags;
1681 activate_task(dst_rq, p, 0);
1682 dst_rq->scx.extra_enq_flags = 0;
1683 }
1684
1685 /*
1686 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two
1687 * differences:
1688 *
1689 * - is_cpu_allowed() asks "Can this task run on this CPU?" while
1690 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to
1691 * this CPU?".
1692 *
1693 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task
1694 * must be allowed to finish on the CPU that it's currently on regardless of
1695 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the
1696 * BPF scheduler shouldn't attempt to migrate a task which has migration
1697 * disabled.
1698 *
1699 * - The BPF scheduler is bypassed while the rq is offline and we can always say
1700 * no to the BPF scheduler initiated migrations while offline.
1701 *
1702 * The caller must ensure that @p and @rq are on different CPUs.
1703 */
task_can_run_on_remote_rq(struct scx_sched * sch,struct task_struct * p,struct rq * rq,bool enforce)1704 static bool task_can_run_on_remote_rq(struct scx_sched *sch,
1705 struct task_struct *p, struct rq *rq,
1706 bool enforce)
1707 {
1708 int cpu = cpu_of(rq);
1709
1710 WARN_ON_ONCE(task_cpu(p) == cpu);
1711
1712 /*
1713 * If @p has migration disabled, @p->cpus_ptr is updated to contain only
1714 * the pinned CPU in migrate_disable_switch() while @p is being switched
1715 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is
1716 * updated and thus another CPU may see @p on a DSQ inbetween leading to
1717 * @p passing the below task_allowed_on_cpu() check while migration is
1718 * disabled.
1719 *
1720 * Test the migration disabled state first as the race window is narrow
1721 * and the BPF scheduler failing to check migration disabled state can
1722 * easily be masked if task_allowed_on_cpu() is done first.
1723 */
1724 if (unlikely(is_migration_disabled(p))) {
1725 if (enforce)
1726 scx_error(sch, "SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d",
1727 p->comm, p->pid, task_cpu(p), cpu);
1728 return false;
1729 }
1730
1731 /*
1732 * We don't require the BPF scheduler to avoid dispatching to offline
1733 * CPUs mostly for convenience but also because CPUs can go offline
1734 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the
1735 * picked CPU is outside the allowed mask.
1736 */
1737 if (!task_allowed_on_cpu(p, cpu)) {
1738 if (enforce)
1739 scx_error(sch, "SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]",
1740 cpu, p->comm, p->pid);
1741 return false;
1742 }
1743
1744 if (!scx_rq_online(rq)) {
1745 if (enforce)
1746 __scx_add_event(sch, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1);
1747 return false;
1748 }
1749
1750 return true;
1751 }
1752
1753 /**
1754 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq
1755 * @p: target task
1756 * @dsq: locked DSQ @p is currently on
1757 * @src_rq: rq @p is currently on, stable with @dsq locked
1758 *
1759 * Called with @dsq locked but no rq's locked. We want to move @p to a different
1760 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is
1761 * required when transferring into a local DSQ. Even when transferring into a
1762 * non-local DSQ, it's better to use the same mechanism to protect against
1763 * dequeues and maintain the invariant that @p->scx.dsq can only change while
1764 * @src_rq is locked, which e.g. scx_dump_task() depends on.
1765 *
1766 * We want to grab @src_rq but that can deadlock if we try while locking @dsq,
1767 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As
1768 * this may race with dequeue, which can't drop the rq lock or fail, do a little
1769 * dancing from our side.
1770 *
1771 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets
1772 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu
1773 * would be cleared to -1. While other cpus may have updated it to different
1774 * values afterwards, as this operation can't be preempted or recurse, the
1775 * holding_cpu can never become this CPU again before we're done. Thus, we can
1776 * tell whether we lost to dequeue by testing whether the holding_cpu still
1777 * points to this CPU. See dispatch_dequeue() for the counterpart.
1778 *
1779 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is
1780 * still valid. %false if lost to dequeue.
1781 */
unlink_dsq_and_lock_src_rq(struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)1782 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p,
1783 struct scx_dispatch_q *dsq,
1784 struct rq *src_rq)
1785 {
1786 s32 cpu = raw_smp_processor_id();
1787
1788 lockdep_assert_held(&dsq->lock);
1789
1790 WARN_ON_ONCE(p->scx.holding_cpu >= 0);
1791 task_unlink_from_dsq(p, dsq);
1792 p->scx.holding_cpu = cpu;
1793
1794 raw_spin_unlock(&dsq->lock);
1795 raw_spin_rq_lock(src_rq);
1796
1797 /* task_rq couldn't have changed if we're still the holding cpu */
1798 return likely(p->scx.holding_cpu == cpu) &&
1799 !WARN_ON_ONCE(src_rq != task_rq(p));
1800 }
1801
consume_remote_task(struct rq * this_rq,struct task_struct * p,struct scx_dispatch_q * dsq,struct rq * src_rq)1802 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p,
1803 struct scx_dispatch_q *dsq, struct rq *src_rq)
1804 {
1805 raw_spin_rq_unlock(this_rq);
1806
1807 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) {
1808 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq);
1809 return true;
1810 } else {
1811 raw_spin_rq_unlock(src_rq);
1812 raw_spin_rq_lock(this_rq);
1813 return false;
1814 }
1815 }
1816
1817 /**
1818 * move_task_between_dsqs() - Move a task from one DSQ to another
1819 * @sch: scx_sched being operated on
1820 * @p: target task
1821 * @enq_flags: %SCX_ENQ_*
1822 * @src_dsq: DSQ @p is currently on, must not be a local DSQ
1823 * @dst_dsq: DSQ @p is being moved to, can be any DSQ
1824 *
1825 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local
1826 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq
1827 * will change. As @p's task_rq is locked, this function doesn't need to use the
1828 * holding_cpu mechanism.
1829 *
1830 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the
1831 * return value, is locked.
1832 */
move_task_between_dsqs(struct scx_sched * sch,struct task_struct * p,u64 enq_flags,struct scx_dispatch_q * src_dsq,struct scx_dispatch_q * dst_dsq)1833 static struct rq *move_task_between_dsqs(struct scx_sched *sch,
1834 struct task_struct *p, u64 enq_flags,
1835 struct scx_dispatch_q *src_dsq,
1836 struct scx_dispatch_q *dst_dsq)
1837 {
1838 struct rq *src_rq = task_rq(p), *dst_rq;
1839
1840 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL);
1841 lockdep_assert_held(&src_dsq->lock);
1842 lockdep_assert_rq_held(src_rq);
1843
1844 if (dst_dsq->id == SCX_DSQ_LOCAL) {
1845 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1846 if (src_rq != dst_rq &&
1847 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1848 dst_dsq = find_global_dsq(sch, p);
1849 dst_rq = src_rq;
1850 }
1851 } else {
1852 /* no need to migrate if destination is a non-local DSQ */
1853 dst_rq = src_rq;
1854 }
1855
1856 /*
1857 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different
1858 * CPU, @p will be migrated.
1859 */
1860 if (dst_dsq->id == SCX_DSQ_LOCAL) {
1861 /* @p is going from a non-local DSQ to a local DSQ */
1862 if (src_rq == dst_rq) {
1863 task_unlink_from_dsq(p, src_dsq);
1864 move_local_task_to_local_dsq(p, enq_flags,
1865 src_dsq, dst_rq);
1866 raw_spin_unlock(&src_dsq->lock);
1867 } else {
1868 raw_spin_unlock(&src_dsq->lock);
1869 move_remote_task_to_local_dsq(p, enq_flags,
1870 src_rq, dst_rq);
1871 }
1872 } else {
1873 /*
1874 * @p is going from a non-local DSQ to a non-local DSQ. As
1875 * $src_dsq is already locked, do an abbreviated dequeue.
1876 */
1877 dispatch_dequeue_locked(p, src_dsq);
1878 raw_spin_unlock(&src_dsq->lock);
1879
1880 dispatch_enqueue(sch, dst_dsq, p, enq_flags);
1881 }
1882
1883 return dst_rq;
1884 }
1885
consume_dispatch_q(struct scx_sched * sch,struct rq * rq,struct scx_dispatch_q * dsq)1886 static bool consume_dispatch_q(struct scx_sched *sch, struct rq *rq,
1887 struct scx_dispatch_q *dsq)
1888 {
1889 struct task_struct *p;
1890 retry:
1891 /*
1892 * The caller can't expect to successfully consume a task if the task's
1893 * addition to @dsq isn't guaranteed to be visible somehow. Test
1894 * @dsq->list without locking and skip if it seems empty.
1895 */
1896 if (list_empty(&dsq->list))
1897 return false;
1898
1899 raw_spin_lock(&dsq->lock);
1900
1901 nldsq_for_each_task(p, dsq) {
1902 struct rq *task_rq = task_rq(p);
1903
1904 /*
1905 * This loop can lead to multiple lockup scenarios, e.g. the BPF
1906 * scheduler can put an enormous number of affinitized tasks into
1907 * a contended DSQ, or the outer retry loop can repeatedly race
1908 * against scx_bypass() dequeueing tasks from @dsq trying to put
1909 * the system into the bypass mode. This can easily live-lock the
1910 * machine. If aborting, exit from all non-bypass DSQs.
1911 */
1912 if (unlikely(READ_ONCE(scx_aborting)) && dsq->id != SCX_DSQ_BYPASS)
1913 break;
1914
1915 if (rq == task_rq) {
1916 task_unlink_from_dsq(p, dsq);
1917 move_local_task_to_local_dsq(p, 0, dsq, rq);
1918 raw_spin_unlock(&dsq->lock);
1919 return true;
1920 }
1921
1922 if (task_can_run_on_remote_rq(sch, p, rq, false)) {
1923 if (likely(consume_remote_task(rq, p, dsq, task_rq)))
1924 return true;
1925 goto retry;
1926 }
1927 }
1928
1929 raw_spin_unlock(&dsq->lock);
1930 return false;
1931 }
1932
consume_global_dsq(struct scx_sched * sch,struct rq * rq)1933 static bool consume_global_dsq(struct scx_sched *sch, struct rq *rq)
1934 {
1935 int node = cpu_to_node(cpu_of(rq));
1936
1937 return consume_dispatch_q(sch, rq, sch->global_dsqs[node]);
1938 }
1939
1940 /**
1941 * dispatch_to_local_dsq - Dispatch a task to a local dsq
1942 * @sch: scx_sched being operated on
1943 * @rq: current rq which is locked
1944 * @dst_dsq: destination DSQ
1945 * @p: task to dispatch
1946 * @enq_flags: %SCX_ENQ_*
1947 *
1948 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local
1949 * DSQ. This function performs all the synchronization dancing needed because
1950 * local DSQs are protected with rq locks.
1951 *
1952 * The caller must have exclusive ownership of @p (e.g. through
1953 * %SCX_OPSS_DISPATCHING).
1954 */
dispatch_to_local_dsq(struct scx_sched * sch,struct rq * rq,struct scx_dispatch_q * dst_dsq,struct task_struct * p,u64 enq_flags)1955 static void dispatch_to_local_dsq(struct scx_sched *sch, struct rq *rq,
1956 struct scx_dispatch_q *dst_dsq,
1957 struct task_struct *p, u64 enq_flags)
1958 {
1959 struct rq *src_rq = task_rq(p);
1960 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq);
1961 struct rq *locked_rq = rq;
1962
1963 /*
1964 * We're synchronized against dequeue through DISPATCHING. As @p can't
1965 * be dequeued, its task_rq and cpus_allowed are stable too.
1966 *
1967 * If dispatching to @rq that @p is already on, no lock dancing needed.
1968 */
1969 if (rq == src_rq && rq == dst_rq) {
1970 dispatch_enqueue(sch, dst_dsq, p,
1971 enq_flags | SCX_ENQ_CLEAR_OPSS);
1972 return;
1973 }
1974
1975 if (src_rq != dst_rq &&
1976 unlikely(!task_can_run_on_remote_rq(sch, p, dst_rq, true))) {
1977 dispatch_enqueue(sch, find_global_dsq(sch, p), p,
1978 enq_flags | SCX_ENQ_CLEAR_OPSS);
1979 return;
1980 }
1981
1982 /*
1983 * @p is on a possibly remote @src_rq which we need to lock to move the
1984 * task. If dequeue is in progress, it'd be locking @src_rq and waiting
1985 * on DISPATCHING, so we can't grab @src_rq lock while holding
1986 * DISPATCHING.
1987 *
1988 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that
1989 * we're moving from a DSQ and use the same mechanism - mark the task
1990 * under transfer with holding_cpu, release DISPATCHING and then follow
1991 * the same protocol. See unlink_dsq_and_lock_src_rq().
1992 */
1993 p->scx.holding_cpu = raw_smp_processor_id();
1994
1995 /* store_release ensures that dequeue sees the above */
1996 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE);
1997
1998 /* switch to @src_rq lock */
1999 if (locked_rq != src_rq) {
2000 raw_spin_rq_unlock(locked_rq);
2001 locked_rq = src_rq;
2002 raw_spin_rq_lock(src_rq);
2003 }
2004
2005 /* task_rq couldn't have changed if we're still the holding cpu */
2006 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) &&
2007 !WARN_ON_ONCE(src_rq != task_rq(p))) {
2008 /*
2009 * If @p is staying on the same rq, there's no need to go
2010 * through the full deactivate/activate cycle. Optimize by
2011 * abbreviating move_remote_task_to_local_dsq().
2012 */
2013 if (src_rq == dst_rq) {
2014 p->scx.holding_cpu = -1;
2015 dispatch_enqueue(sch, &dst_rq->scx.local_dsq, p,
2016 enq_flags);
2017 } else {
2018 move_remote_task_to_local_dsq(p, enq_flags,
2019 src_rq, dst_rq);
2020 /* task has been moved to dst_rq, which is now locked */
2021 locked_rq = dst_rq;
2022 }
2023
2024 /* if the destination CPU is idle, wake it up */
2025 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class))
2026 resched_curr(dst_rq);
2027 }
2028
2029 /* switch back to @rq lock */
2030 if (locked_rq != rq) {
2031 raw_spin_rq_unlock(locked_rq);
2032 raw_spin_rq_lock(rq);
2033 }
2034 }
2035
2036 /**
2037 * finish_dispatch - Asynchronously finish dispatching a task
2038 * @rq: current rq which is locked
2039 * @p: task to finish dispatching
2040 * @qseq_at_dispatch: qseq when @p started getting dispatched
2041 * @dsq_id: destination DSQ ID
2042 * @enq_flags: %SCX_ENQ_*
2043 *
2044 * Dispatching to local DSQs may need to wait for queueing to complete or
2045 * require rq lock dancing. As we don't wanna do either while inside
2046 * ops.dispatch() to avoid locking order inversion, we split dispatching into
2047 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the
2048 * task and its qseq. Once ops.dispatch() returns, this function is called to
2049 * finish up.
2050 *
2051 * There is no guarantee that @p is still valid for dispatching or even that it
2052 * was valid in the first place. Make sure that the task is still owned by the
2053 * BPF scheduler and claim the ownership before dispatching.
2054 */
finish_dispatch(struct scx_sched * sch,struct rq * rq,struct task_struct * p,unsigned long qseq_at_dispatch,u64 dsq_id,u64 enq_flags)2055 static void finish_dispatch(struct scx_sched *sch, struct rq *rq,
2056 struct task_struct *p,
2057 unsigned long qseq_at_dispatch,
2058 u64 dsq_id, u64 enq_flags)
2059 {
2060 struct scx_dispatch_q *dsq;
2061 unsigned long opss;
2062
2063 touch_core_sched_dispatch(rq, p);
2064 retry:
2065 /*
2066 * No need for _acquire here. @p is accessed only after a successful
2067 * try_cmpxchg to DISPATCHING.
2068 */
2069 opss = atomic_long_read(&p->scx.ops_state);
2070
2071 switch (opss & SCX_OPSS_STATE_MASK) {
2072 case SCX_OPSS_DISPATCHING:
2073 case SCX_OPSS_NONE:
2074 /* someone else already got to it */
2075 return;
2076 case SCX_OPSS_QUEUED:
2077 /*
2078 * If qseq doesn't match, @p has gone through at least one
2079 * dispatch/dequeue and re-enqueue cycle between
2080 * scx_bpf_dsq_insert() and here and we have no claim on it.
2081 */
2082 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch)
2083 return;
2084
2085 /*
2086 * While we know @p is accessible, we don't yet have a claim on
2087 * it - the BPF scheduler is allowed to dispatch tasks
2088 * spuriously and there can be a racing dequeue attempt. Let's
2089 * claim @p by atomically transitioning it from QUEUED to
2090 * DISPATCHING.
2091 */
2092 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss,
2093 SCX_OPSS_DISPATCHING)))
2094 break;
2095 goto retry;
2096 case SCX_OPSS_QUEUEING:
2097 /*
2098 * do_enqueue_task() is in the process of transferring the task
2099 * to the BPF scheduler while holding @p's rq lock. As we aren't
2100 * holding any kernel or BPF resource that the enqueue path may
2101 * depend upon, it's safe to wait.
2102 */
2103 wait_ops_state(p, opss);
2104 goto retry;
2105 }
2106
2107 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED));
2108
2109 dsq = find_dsq_for_dispatch(sch, this_rq(), dsq_id, p);
2110
2111 if (dsq->id == SCX_DSQ_LOCAL)
2112 dispatch_to_local_dsq(sch, rq, dsq, p, enq_flags);
2113 else
2114 dispatch_enqueue(sch, dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS);
2115 }
2116
flush_dispatch_buf(struct scx_sched * sch,struct rq * rq)2117 static void flush_dispatch_buf(struct scx_sched *sch, struct rq *rq)
2118 {
2119 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2120 u32 u;
2121
2122 for (u = 0; u < dspc->cursor; u++) {
2123 struct scx_dsp_buf_ent *ent = &dspc->buf[u];
2124
2125 finish_dispatch(sch, rq, ent->task, ent->qseq, ent->dsq_id,
2126 ent->enq_flags);
2127 }
2128
2129 dspc->nr_tasks += dspc->cursor;
2130 dspc->cursor = 0;
2131 }
2132
maybe_queue_balance_callback(struct rq * rq)2133 static inline void maybe_queue_balance_callback(struct rq *rq)
2134 {
2135 lockdep_assert_rq_held(rq);
2136
2137 if (!(rq->scx.flags & SCX_RQ_BAL_CB_PENDING))
2138 return;
2139
2140 queue_balance_callback(rq, &rq->scx.deferred_bal_cb,
2141 deferred_bal_cb_workfn);
2142
2143 rq->scx.flags &= ~SCX_RQ_BAL_CB_PENDING;
2144 }
2145
balance_one(struct rq * rq,struct task_struct * prev)2146 static int balance_one(struct rq *rq, struct task_struct *prev)
2147 {
2148 struct scx_sched *sch = scx_root;
2149 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
2150 bool prev_on_scx = prev->sched_class == &ext_sched_class;
2151 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED;
2152 int nr_loops = SCX_DSP_MAX_LOOPS;
2153
2154 lockdep_assert_rq_held(rq);
2155 rq->scx.flags |= SCX_RQ_IN_BALANCE;
2156 rq->scx.flags &= ~SCX_RQ_BAL_KEEP;
2157
2158 if ((sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT) &&
2159 unlikely(rq->scx.cpu_released)) {
2160 /*
2161 * If the previous sched_class for the current CPU was not SCX,
2162 * notify the BPF scheduler that it again has control of the
2163 * core. This callback complements ->cpu_release(), which is
2164 * emitted in switch_class().
2165 */
2166 if (SCX_HAS_OP(sch, cpu_acquire))
2167 SCX_CALL_OP(sch, SCX_KF_REST, cpu_acquire, rq,
2168 cpu_of(rq), NULL);
2169 rq->scx.cpu_released = false;
2170 }
2171
2172 if (prev_on_scx) {
2173 update_curr_scx(rq);
2174
2175 /*
2176 * If @prev is runnable & has slice left, it has priority and
2177 * fetching more just increases latency for the fetched tasks.
2178 * Tell pick_task_scx() to keep running @prev. If the BPF
2179 * scheduler wants to handle this explicitly, it should
2180 * implement ->cpu_release().
2181 *
2182 * See scx_disable_workfn() for the explanation on the bypassing
2183 * test.
2184 */
2185 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) {
2186 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2187 goto has_tasks;
2188 }
2189 }
2190
2191 /* if there already are tasks to run, nothing to do */
2192 if (rq->scx.local_dsq.nr)
2193 goto has_tasks;
2194
2195 if (consume_global_dsq(sch, rq))
2196 goto has_tasks;
2197
2198 if (scx_rq_bypassing(rq)) {
2199 if (consume_dispatch_q(sch, rq, &rq->scx.bypass_dsq))
2200 goto has_tasks;
2201 else
2202 goto no_tasks;
2203 }
2204
2205 if (unlikely(!SCX_HAS_OP(sch, dispatch)) || !scx_rq_online(rq))
2206 goto no_tasks;
2207
2208 dspc->rq = rq;
2209
2210 /*
2211 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock,
2212 * the local DSQ might still end up empty after a successful
2213 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch()
2214 * produced some tasks, retry. The BPF scheduler may depend on this
2215 * looping behavior to simplify its implementation.
2216 */
2217 do {
2218 dspc->nr_tasks = 0;
2219
2220 SCX_CALL_OP(sch, SCX_KF_DISPATCH, dispatch, rq,
2221 cpu_of(rq), prev_on_scx ? prev : NULL);
2222
2223 flush_dispatch_buf(sch, rq);
2224
2225 if (prev_on_rq && prev->scx.slice) {
2226 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2227 goto has_tasks;
2228 }
2229 if (rq->scx.local_dsq.nr)
2230 goto has_tasks;
2231 if (consume_global_dsq(sch, rq))
2232 goto has_tasks;
2233
2234 /*
2235 * ops.dispatch() can trap us in this loop by repeatedly
2236 * dispatching ineligible tasks. Break out once in a while to
2237 * allow the watchdog to run. As IRQ can't be enabled in
2238 * balance(), we want to complete this scheduling cycle and then
2239 * start a new one. IOW, we want to call resched_curr() on the
2240 * next, most likely idle, task, not the current one. Use
2241 * scx_kick_cpu() for deferred kicking.
2242 */
2243 if (unlikely(!--nr_loops)) {
2244 scx_kick_cpu(sch, cpu_of(rq), 0);
2245 break;
2246 }
2247 } while (dspc->nr_tasks);
2248
2249 no_tasks:
2250 /*
2251 * Didn't find another task to run. Keep running @prev unless
2252 * %SCX_OPS_ENQ_LAST is in effect.
2253 */
2254 if (prev_on_rq &&
2255 (!(sch->ops.flags & SCX_OPS_ENQ_LAST) || scx_rq_bypassing(rq))) {
2256 rq->scx.flags |= SCX_RQ_BAL_KEEP;
2257 __scx_add_event(sch, SCX_EV_DISPATCH_KEEP_LAST, 1);
2258 goto has_tasks;
2259 }
2260 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2261 return false;
2262
2263 has_tasks:
2264 rq->scx.flags &= ~SCX_RQ_IN_BALANCE;
2265 return true;
2266 }
2267
process_ddsp_deferred_locals(struct rq * rq)2268 static void process_ddsp_deferred_locals(struct rq *rq)
2269 {
2270 struct task_struct *p;
2271
2272 lockdep_assert_rq_held(rq);
2273
2274 /*
2275 * Now that @rq can be unlocked, execute the deferred enqueueing of
2276 * tasks directly dispatched to the local DSQs of other CPUs. See
2277 * direct_dispatch(). Keep popping from the head instead of using
2278 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq
2279 * temporarily.
2280 */
2281 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals,
2282 struct task_struct, scx.dsq_list.node))) {
2283 struct scx_sched *sch = scx_root;
2284 struct scx_dispatch_q *dsq;
2285
2286 list_del_init(&p->scx.dsq_list.node);
2287
2288 dsq = find_dsq_for_dispatch(sch, rq, p->scx.ddsp_dsq_id, p);
2289 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL))
2290 dispatch_to_local_dsq(sch, rq, dsq, p,
2291 p->scx.ddsp_enq_flags);
2292 }
2293 }
2294
set_next_task_scx(struct rq * rq,struct task_struct * p,bool first)2295 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first)
2296 {
2297 struct scx_sched *sch = scx_root;
2298
2299 if (p->scx.flags & SCX_TASK_QUEUED) {
2300 /*
2301 * Core-sched might decide to execute @p before it is
2302 * dispatched. Call ops_dequeue() to notify the BPF scheduler.
2303 */
2304 ops_dequeue(rq, p, SCX_DEQ_CORE_SCHED_EXEC);
2305 dispatch_dequeue(rq, p);
2306 }
2307
2308 p->se.exec_start = rq_clock_task(rq);
2309
2310 /* see dequeue_task_scx() on why we skip when !QUEUED */
2311 if (SCX_HAS_OP(sch, running) && (p->scx.flags & SCX_TASK_QUEUED))
2312 SCX_CALL_OP_TASK(sch, SCX_KF_REST, running, rq, p);
2313
2314 clr_task_runnable(p, true);
2315
2316 /*
2317 * @p is getting newly scheduled or got kicked after someone updated its
2318 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick().
2319 */
2320 if ((p->scx.slice == SCX_SLICE_INF) !=
2321 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) {
2322 if (p->scx.slice == SCX_SLICE_INF)
2323 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK;
2324 else
2325 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK;
2326
2327 sched_update_tick_dependency(rq);
2328
2329 /*
2330 * For now, let's refresh the load_avgs just when transitioning
2331 * in and out of nohz. In the future, we might want to add a
2332 * mechanism which calls the following periodically on
2333 * tick-stopped CPUs.
2334 */
2335 update_other_load_avgs(rq);
2336 }
2337 }
2338
2339 static enum scx_cpu_preempt_reason
preempt_reason_from_class(const struct sched_class * class)2340 preempt_reason_from_class(const struct sched_class *class)
2341 {
2342 if (class == &stop_sched_class)
2343 return SCX_CPU_PREEMPT_STOP;
2344 if (class == &dl_sched_class)
2345 return SCX_CPU_PREEMPT_DL;
2346 if (class == &rt_sched_class)
2347 return SCX_CPU_PREEMPT_RT;
2348 return SCX_CPU_PREEMPT_UNKNOWN;
2349 }
2350
switch_class(struct rq * rq,struct task_struct * next)2351 static void switch_class(struct rq *rq, struct task_struct *next)
2352 {
2353 struct scx_sched *sch = scx_root;
2354 const struct sched_class *next_class = next->sched_class;
2355
2356 if (!(sch->ops.flags & SCX_OPS_HAS_CPU_PREEMPT))
2357 return;
2358
2359 /*
2360 * The callback is conceptually meant to convey that the CPU is no
2361 * longer under the control of SCX. Therefore, don't invoke the callback
2362 * if the next class is below SCX (in which case the BPF scheduler has
2363 * actively decided not to schedule any tasks on the CPU).
2364 */
2365 if (sched_class_above(&ext_sched_class, next_class))
2366 return;
2367
2368 /*
2369 * At this point we know that SCX was preempted by a higher priority
2370 * sched_class, so invoke the ->cpu_release() callback if we have not
2371 * done so already. We only send the callback once between SCX being
2372 * preempted, and it regaining control of the CPU.
2373 *
2374 * ->cpu_release() complements ->cpu_acquire(), which is emitted the
2375 * next time that balance_one() is invoked.
2376 */
2377 if (!rq->scx.cpu_released) {
2378 if (SCX_HAS_OP(sch, cpu_release)) {
2379 struct scx_cpu_release_args args = {
2380 .reason = preempt_reason_from_class(next_class),
2381 .task = next,
2382 };
2383
2384 SCX_CALL_OP(sch, SCX_KF_CPU_RELEASE, cpu_release, rq,
2385 cpu_of(rq), &args);
2386 }
2387 rq->scx.cpu_released = true;
2388 }
2389 }
2390
put_prev_task_scx(struct rq * rq,struct task_struct * p,struct task_struct * next)2391 static void put_prev_task_scx(struct rq *rq, struct task_struct *p,
2392 struct task_struct *next)
2393 {
2394 struct scx_sched *sch = scx_root;
2395
2396 /* see kick_cpus_irq_workfn() */
2397 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1);
2398
2399 update_curr_scx(rq);
2400
2401 /* see dequeue_task_scx() on why we skip when !QUEUED */
2402 if (SCX_HAS_OP(sch, stopping) && (p->scx.flags & SCX_TASK_QUEUED))
2403 SCX_CALL_OP_TASK(sch, SCX_KF_REST, stopping, rq, p, true);
2404
2405 if (p->scx.flags & SCX_TASK_QUEUED) {
2406 set_task_runnable(rq, p);
2407
2408 /*
2409 * If @p has slice left and is being put, @p is getting
2410 * preempted by a higher priority scheduler class or core-sched
2411 * forcing a different task. Leave it at the head of the local
2412 * DSQ.
2413 */
2414 if (p->scx.slice && !scx_rq_bypassing(rq)) {
2415 dispatch_enqueue(sch, &rq->scx.local_dsq, p,
2416 SCX_ENQ_HEAD);
2417 goto switch_class;
2418 }
2419
2420 /*
2421 * If @p is runnable but we're about to enter a lower
2422 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell
2423 * ops.enqueue() that @p is the only one available for this cpu,
2424 * which should trigger an explicit follow-up scheduling event.
2425 */
2426 if (next && sched_class_above(&ext_sched_class, next->sched_class)) {
2427 WARN_ON_ONCE(!(sch->ops.flags & SCX_OPS_ENQ_LAST));
2428 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1);
2429 } else {
2430 do_enqueue_task(rq, p, 0, -1);
2431 }
2432 }
2433
2434 switch_class:
2435 if (next && next->sched_class != &ext_sched_class)
2436 switch_class(rq, next);
2437 }
2438
first_local_task(struct rq * rq)2439 static struct task_struct *first_local_task(struct rq *rq)
2440 {
2441 return list_first_entry_or_null(&rq->scx.local_dsq.list,
2442 struct task_struct, scx.dsq_list.node);
2443 }
2444
2445 static struct task_struct *
do_pick_task_scx(struct rq * rq,struct rq_flags * rf,bool force_scx)2446 do_pick_task_scx(struct rq *rq, struct rq_flags *rf, bool force_scx)
2447 {
2448 struct task_struct *prev = rq->curr;
2449 bool keep_prev;
2450 struct task_struct *p;
2451
2452 /* see kick_cpus_irq_workfn() */
2453 smp_store_release(&rq->scx.kick_sync, rq->scx.kick_sync + 1);
2454
2455 rq_modified_clear(rq);
2456
2457 rq_unpin_lock(rq, rf);
2458 balance_one(rq, prev);
2459 rq_repin_lock(rq, rf);
2460 maybe_queue_balance_callback(rq);
2461
2462 /*
2463 * If any higher-priority sched class enqueued a runnable task on
2464 * this rq during balance_one(), abort and return RETRY_TASK, so
2465 * that the scheduler loop can restart.
2466 *
2467 * If @force_scx is true, always try to pick a SCHED_EXT task,
2468 * regardless of any higher-priority sched classes activity.
2469 */
2470 if (!force_scx && rq_modified_above(rq, &ext_sched_class))
2471 return RETRY_TASK;
2472
2473 keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP;
2474 if (unlikely(keep_prev &&
2475 prev->sched_class != &ext_sched_class)) {
2476 WARN_ON_ONCE(scx_enable_state() == SCX_ENABLED);
2477 keep_prev = false;
2478 }
2479
2480 /*
2481 * If balance_one() is telling us to keep running @prev, replenish slice
2482 * if necessary and keep running @prev. Otherwise, pop the first one
2483 * from the local DSQ.
2484 */
2485 if (keep_prev) {
2486 p = prev;
2487 if (!p->scx.slice)
2488 refill_task_slice_dfl(rcu_dereference_sched(scx_root), p);
2489 } else {
2490 p = first_local_task(rq);
2491 if (!p)
2492 return NULL;
2493
2494 if (unlikely(!p->scx.slice)) {
2495 struct scx_sched *sch = rcu_dereference_sched(scx_root);
2496
2497 if (!scx_rq_bypassing(rq) && !sch->warned_zero_slice) {
2498 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n",
2499 p->comm, p->pid, __func__);
2500 sch->warned_zero_slice = true;
2501 }
2502 refill_task_slice_dfl(sch, p);
2503 }
2504 }
2505
2506 return p;
2507 }
2508
pick_task_scx(struct rq * rq,struct rq_flags * rf)2509 static struct task_struct *pick_task_scx(struct rq *rq, struct rq_flags *rf)
2510 {
2511 return do_pick_task_scx(rq, rf, false);
2512 }
2513
2514 #ifdef CONFIG_SCHED_CORE
2515 /**
2516 * scx_prio_less - Task ordering for core-sched
2517 * @a: task A
2518 * @b: task B
2519 * @in_fi: in forced idle state
2520 *
2521 * Core-sched is implemented as an additional scheduling layer on top of the
2522 * usual sched_class'es and needs to find out the expected task ordering. For
2523 * SCX, core-sched calls this function to interrogate the task ordering.
2524 *
2525 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used
2526 * to implement the default task ordering. The older the timestamp, the higher
2527 * priority the task - the global FIFO ordering matching the default scheduling
2528 * behavior.
2529 *
2530 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to
2531 * implement FIFO ordering within each local DSQ. See pick_task_scx().
2532 */
scx_prio_less(const struct task_struct * a,const struct task_struct * b,bool in_fi)2533 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b,
2534 bool in_fi)
2535 {
2536 struct scx_sched *sch = scx_root;
2537
2538 /*
2539 * The const qualifiers are dropped from task_struct pointers when
2540 * calling ops.core_sched_before(). Accesses are controlled by the
2541 * verifier.
2542 */
2543 if (SCX_HAS_OP(sch, core_sched_before) &&
2544 !scx_rq_bypassing(task_rq(a)))
2545 return SCX_CALL_OP_2TASKS_RET(sch, SCX_KF_REST, core_sched_before,
2546 NULL,
2547 (struct task_struct *)a,
2548 (struct task_struct *)b);
2549 else
2550 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at);
2551 }
2552 #endif /* CONFIG_SCHED_CORE */
2553
select_task_rq_scx(struct task_struct * p,int prev_cpu,int wake_flags)2554 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags)
2555 {
2556 struct scx_sched *sch = scx_root;
2557 bool rq_bypass;
2558
2559 /*
2560 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it
2561 * can be a good migration opportunity with low cache and memory
2562 * footprint. Returning a CPU different than @prev_cpu triggers
2563 * immediate rq migration. However, for SCX, as the current rq
2564 * association doesn't dictate where the task is going to run, this
2565 * doesn't fit well. If necessary, we can later add a dedicated method
2566 * which can decide to preempt self to force it through the regular
2567 * scheduling path.
2568 */
2569 if (unlikely(wake_flags & WF_EXEC))
2570 return prev_cpu;
2571
2572 rq_bypass = scx_rq_bypassing(task_rq(p));
2573 if (likely(SCX_HAS_OP(sch, select_cpu)) && !rq_bypass) {
2574 s32 cpu;
2575 struct task_struct **ddsp_taskp;
2576
2577 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task);
2578 WARN_ON_ONCE(*ddsp_taskp);
2579 *ddsp_taskp = p;
2580
2581 cpu = SCX_CALL_OP_TASK_RET(sch,
2582 SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU,
2583 select_cpu, NULL, p, prev_cpu,
2584 wake_flags);
2585 p->scx.selected_cpu = cpu;
2586 *ddsp_taskp = NULL;
2587 if (ops_cpu_valid(sch, cpu, "from ops.select_cpu()"))
2588 return cpu;
2589 else
2590 return prev_cpu;
2591 } else {
2592 s32 cpu;
2593
2594 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, NULL, 0);
2595 if (cpu >= 0) {
2596 refill_task_slice_dfl(sch, p);
2597 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL;
2598 } else {
2599 cpu = prev_cpu;
2600 }
2601 p->scx.selected_cpu = cpu;
2602
2603 if (rq_bypass)
2604 __scx_add_event(sch, SCX_EV_BYPASS_DISPATCH, 1);
2605 return cpu;
2606 }
2607 }
2608
task_woken_scx(struct rq * rq,struct task_struct * p)2609 static void task_woken_scx(struct rq *rq, struct task_struct *p)
2610 {
2611 run_deferred(rq);
2612 }
2613
set_cpus_allowed_scx(struct task_struct * p,struct affinity_context * ac)2614 static void set_cpus_allowed_scx(struct task_struct *p,
2615 struct affinity_context *ac)
2616 {
2617 struct scx_sched *sch = scx_root;
2618
2619 set_cpus_allowed_common(p, ac);
2620
2621 /*
2622 * The effective cpumask is stored in @p->cpus_ptr which may temporarily
2623 * differ from the configured one in @p->cpus_mask. Always tell the bpf
2624 * scheduler the effective one.
2625 *
2626 * Fine-grained memory write control is enforced by BPF making the const
2627 * designation pointless. Cast it away when calling the operation.
2628 */
2629 if (SCX_HAS_OP(sch, set_cpumask))
2630 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, NULL,
2631 p, (struct cpumask *)p->cpus_ptr);
2632 }
2633
handle_hotplug(struct rq * rq,bool online)2634 static void handle_hotplug(struct rq *rq, bool online)
2635 {
2636 struct scx_sched *sch = scx_root;
2637 int cpu = cpu_of(rq);
2638
2639 atomic_long_inc(&scx_hotplug_seq);
2640
2641 /*
2642 * scx_root updates are protected by cpus_read_lock() and will stay
2643 * stable here. Note that we can't depend on scx_enabled() test as the
2644 * hotplug ops need to be enabled before __scx_enabled is set.
2645 */
2646 if (unlikely(!sch))
2647 return;
2648
2649 if (scx_enabled())
2650 scx_idle_update_selcpu_topology(&sch->ops);
2651
2652 if (online && SCX_HAS_OP(sch, cpu_online))
2653 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_online, NULL, cpu);
2654 else if (!online && SCX_HAS_OP(sch, cpu_offline))
2655 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cpu_offline, NULL, cpu);
2656 else
2657 scx_exit(sch, SCX_EXIT_UNREG_KERN,
2658 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
2659 "cpu %d going %s, exiting scheduler", cpu,
2660 online ? "online" : "offline");
2661 }
2662
scx_rq_activate(struct rq * rq)2663 void scx_rq_activate(struct rq *rq)
2664 {
2665 handle_hotplug(rq, true);
2666 }
2667
scx_rq_deactivate(struct rq * rq)2668 void scx_rq_deactivate(struct rq *rq)
2669 {
2670 handle_hotplug(rq, false);
2671 }
2672
rq_online_scx(struct rq * rq)2673 static void rq_online_scx(struct rq *rq)
2674 {
2675 rq->scx.flags |= SCX_RQ_ONLINE;
2676 }
2677
rq_offline_scx(struct rq * rq)2678 static void rq_offline_scx(struct rq *rq)
2679 {
2680 rq->scx.flags &= ~SCX_RQ_ONLINE;
2681 }
2682
2683
check_rq_for_timeouts(struct rq * rq)2684 static bool check_rq_for_timeouts(struct rq *rq)
2685 {
2686 struct scx_sched *sch;
2687 struct task_struct *p;
2688 struct rq_flags rf;
2689 bool timed_out = false;
2690
2691 rq_lock_irqsave(rq, &rf);
2692 sch = rcu_dereference_bh(scx_root);
2693 if (unlikely(!sch))
2694 goto out_unlock;
2695
2696 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) {
2697 unsigned long last_runnable = p->scx.runnable_at;
2698
2699 if (unlikely(time_after(jiffies,
2700 last_runnable + scx_watchdog_timeout))) {
2701 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable);
2702
2703 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2704 "%s[%d] failed to run for %u.%03us",
2705 p->comm, p->pid, dur_ms / 1000, dur_ms % 1000);
2706 timed_out = true;
2707 break;
2708 }
2709 }
2710 out_unlock:
2711 rq_unlock_irqrestore(rq, &rf);
2712 return timed_out;
2713 }
2714
scx_watchdog_workfn(struct work_struct * work)2715 static void scx_watchdog_workfn(struct work_struct *work)
2716 {
2717 int cpu;
2718
2719 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
2720
2721 for_each_online_cpu(cpu) {
2722 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu))))
2723 break;
2724
2725 cond_resched();
2726 }
2727 queue_delayed_work(system_unbound_wq, to_delayed_work(work),
2728 scx_watchdog_timeout / 2);
2729 }
2730
scx_tick(struct rq * rq)2731 void scx_tick(struct rq *rq)
2732 {
2733 struct scx_sched *sch;
2734 unsigned long last_check;
2735
2736 if (!scx_enabled())
2737 return;
2738
2739 sch = rcu_dereference_bh(scx_root);
2740 if (unlikely(!sch))
2741 return;
2742
2743 last_check = READ_ONCE(scx_watchdog_timestamp);
2744 if (unlikely(time_after(jiffies,
2745 last_check + READ_ONCE(scx_watchdog_timeout)))) {
2746 u32 dur_ms = jiffies_to_msecs(jiffies - last_check);
2747
2748 scx_exit(sch, SCX_EXIT_ERROR_STALL, 0,
2749 "watchdog failed to check in for %u.%03us",
2750 dur_ms / 1000, dur_ms % 1000);
2751 }
2752
2753 update_other_load_avgs(rq);
2754 }
2755
task_tick_scx(struct rq * rq,struct task_struct * curr,int queued)2756 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued)
2757 {
2758 struct scx_sched *sch = scx_root;
2759
2760 update_curr_scx(rq);
2761
2762 /*
2763 * While disabling, always resched and refresh core-sched timestamp as
2764 * we can't trust the slice management or ops.core_sched_before().
2765 */
2766 if (scx_rq_bypassing(rq)) {
2767 curr->scx.slice = 0;
2768 touch_core_sched(rq, curr);
2769 } else if (SCX_HAS_OP(sch, tick)) {
2770 SCX_CALL_OP_TASK(sch, SCX_KF_REST, tick, rq, curr);
2771 }
2772
2773 if (!curr->scx.slice)
2774 resched_curr(rq);
2775 }
2776
2777 #ifdef CONFIG_EXT_GROUP_SCHED
tg_cgrp(struct task_group * tg)2778 static struct cgroup *tg_cgrp(struct task_group *tg)
2779 {
2780 /*
2781 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup,
2782 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the
2783 * root cgroup.
2784 */
2785 if (tg && tg->css.cgroup)
2786 return tg->css.cgroup;
2787 else
2788 return &cgrp_dfl_root.cgrp;
2789 }
2790
2791 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg),
2792
2793 #else /* CONFIG_EXT_GROUP_SCHED */
2794
2795 #define SCX_INIT_TASK_ARGS_CGROUP(tg)
2796
2797 #endif /* CONFIG_EXT_GROUP_SCHED */
2798
scx_get_task_state(const struct task_struct * p)2799 static enum scx_task_state scx_get_task_state(const struct task_struct *p)
2800 {
2801 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT;
2802 }
2803
scx_set_task_state(struct task_struct * p,enum scx_task_state state)2804 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state)
2805 {
2806 enum scx_task_state prev_state = scx_get_task_state(p);
2807 bool warn = false;
2808
2809 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS));
2810
2811 switch (state) {
2812 case SCX_TASK_NONE:
2813 break;
2814 case SCX_TASK_INIT:
2815 warn = prev_state != SCX_TASK_NONE;
2816 break;
2817 case SCX_TASK_READY:
2818 warn = prev_state == SCX_TASK_NONE;
2819 break;
2820 case SCX_TASK_ENABLED:
2821 warn = prev_state != SCX_TASK_READY;
2822 break;
2823 default:
2824 warn = true;
2825 return;
2826 }
2827
2828 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]",
2829 prev_state, state, p->comm, p->pid);
2830
2831 p->scx.flags &= ~SCX_TASK_STATE_MASK;
2832 p->scx.flags |= state << SCX_TASK_STATE_SHIFT;
2833 }
2834
scx_init_task(struct task_struct * p,struct task_group * tg,bool fork)2835 static int scx_init_task(struct task_struct *p, struct task_group *tg, bool fork)
2836 {
2837 struct scx_sched *sch = scx_root;
2838 int ret;
2839
2840 p->scx.disallow = false;
2841
2842 if (SCX_HAS_OP(sch, init_task)) {
2843 struct scx_init_task_args args = {
2844 SCX_INIT_TASK_ARGS_CGROUP(tg)
2845 .fork = fork,
2846 };
2847
2848 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init_task, NULL,
2849 p, &args);
2850 if (unlikely(ret)) {
2851 ret = ops_sanitize_err(sch, "init_task", ret);
2852 return ret;
2853 }
2854 }
2855
2856 scx_set_task_state(p, SCX_TASK_INIT);
2857
2858 if (p->scx.disallow) {
2859 if (!fork) {
2860 struct rq *rq;
2861 struct rq_flags rf;
2862
2863 rq = task_rq_lock(p, &rf);
2864
2865 /*
2866 * We're in the load path and @p->policy will be applied
2867 * right after. Reverting @p->policy here and rejecting
2868 * %SCHED_EXT transitions from scx_check_setscheduler()
2869 * guarantees that if ops.init_task() sets @p->disallow,
2870 * @p can never be in SCX.
2871 */
2872 if (p->policy == SCHED_EXT) {
2873 p->policy = SCHED_NORMAL;
2874 atomic_long_inc(&scx_nr_rejected);
2875 }
2876
2877 task_rq_unlock(rq, p, &rf);
2878 } else if (p->policy == SCHED_EXT) {
2879 scx_error(sch, "ops.init_task() set task->scx.disallow for %s[%d] during fork",
2880 p->comm, p->pid);
2881 }
2882 }
2883
2884 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT;
2885 return 0;
2886 }
2887
scx_enable_task(struct task_struct * p)2888 static void scx_enable_task(struct task_struct *p)
2889 {
2890 struct scx_sched *sch = scx_root;
2891 struct rq *rq = task_rq(p);
2892 u32 weight;
2893
2894 lockdep_assert_rq_held(rq);
2895
2896 /*
2897 * Set the weight before calling ops.enable() so that the scheduler
2898 * doesn't see a stale value if they inspect the task struct.
2899 */
2900 if (task_has_idle_policy(p))
2901 weight = WEIGHT_IDLEPRIO;
2902 else
2903 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO];
2904
2905 p->scx.weight = sched_weight_to_cgroup(weight);
2906
2907 if (SCX_HAS_OP(sch, enable))
2908 SCX_CALL_OP_TASK(sch, SCX_KF_REST, enable, rq, p);
2909 scx_set_task_state(p, SCX_TASK_ENABLED);
2910
2911 if (SCX_HAS_OP(sch, set_weight))
2912 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
2913 p, p->scx.weight);
2914 }
2915
scx_disable_task(struct task_struct * p)2916 static void scx_disable_task(struct task_struct *p)
2917 {
2918 struct scx_sched *sch = scx_root;
2919 struct rq *rq = task_rq(p);
2920
2921 lockdep_assert_rq_held(rq);
2922 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED);
2923
2924 if (SCX_HAS_OP(sch, disable))
2925 SCX_CALL_OP_TASK(sch, SCX_KF_REST, disable, rq, p);
2926 scx_set_task_state(p, SCX_TASK_READY);
2927 }
2928
scx_exit_task(struct task_struct * p)2929 static void scx_exit_task(struct task_struct *p)
2930 {
2931 struct scx_sched *sch = scx_root;
2932 struct scx_exit_task_args args = {
2933 .cancelled = false,
2934 };
2935
2936 lockdep_assert_rq_held(task_rq(p));
2937
2938 switch (scx_get_task_state(p)) {
2939 case SCX_TASK_NONE:
2940 return;
2941 case SCX_TASK_INIT:
2942 args.cancelled = true;
2943 break;
2944 case SCX_TASK_READY:
2945 break;
2946 case SCX_TASK_ENABLED:
2947 scx_disable_task(p);
2948 break;
2949 default:
2950 WARN_ON_ONCE(true);
2951 return;
2952 }
2953
2954 if (SCX_HAS_OP(sch, exit_task))
2955 SCX_CALL_OP_TASK(sch, SCX_KF_REST, exit_task, task_rq(p),
2956 p, &args);
2957 scx_set_task_state(p, SCX_TASK_NONE);
2958 }
2959
init_scx_entity(struct sched_ext_entity * scx)2960 void init_scx_entity(struct sched_ext_entity *scx)
2961 {
2962 memset(scx, 0, sizeof(*scx));
2963 INIT_LIST_HEAD(&scx->dsq_list.node);
2964 RB_CLEAR_NODE(&scx->dsq_priq);
2965 scx->sticky_cpu = -1;
2966 scx->holding_cpu = -1;
2967 INIT_LIST_HEAD(&scx->runnable_node);
2968 scx->runnable_at = jiffies;
2969 scx->ddsp_dsq_id = SCX_DSQ_INVALID;
2970 scx->slice = READ_ONCE(scx_slice_dfl);
2971 }
2972
scx_pre_fork(struct task_struct * p)2973 void scx_pre_fork(struct task_struct *p)
2974 {
2975 /*
2976 * BPF scheduler enable/disable paths want to be able to iterate and
2977 * update all tasks which can become complex when racing forks. As
2978 * enable/disable are very cold paths, let's use a percpu_rwsem to
2979 * exclude forks.
2980 */
2981 percpu_down_read(&scx_fork_rwsem);
2982 }
2983
scx_fork(struct task_struct * p)2984 int scx_fork(struct task_struct *p)
2985 {
2986 percpu_rwsem_assert_held(&scx_fork_rwsem);
2987
2988 if (scx_init_task_enabled)
2989 return scx_init_task(p, task_group(p), true);
2990 else
2991 return 0;
2992 }
2993
scx_post_fork(struct task_struct * p)2994 void scx_post_fork(struct task_struct *p)
2995 {
2996 if (scx_init_task_enabled) {
2997 scx_set_task_state(p, SCX_TASK_READY);
2998
2999 /*
3000 * Enable the task immediately if it's running on sched_ext.
3001 * Otherwise, it'll be enabled in switching_to_scx() if and
3002 * when it's ever configured to run with a SCHED_EXT policy.
3003 */
3004 if (p->sched_class == &ext_sched_class) {
3005 struct rq_flags rf;
3006 struct rq *rq;
3007
3008 rq = task_rq_lock(p, &rf);
3009 scx_enable_task(p);
3010 task_rq_unlock(rq, p, &rf);
3011 }
3012 }
3013
3014 raw_spin_lock_irq(&scx_tasks_lock);
3015 list_add_tail(&p->scx.tasks_node, &scx_tasks);
3016 raw_spin_unlock_irq(&scx_tasks_lock);
3017
3018 percpu_up_read(&scx_fork_rwsem);
3019 }
3020
scx_cancel_fork(struct task_struct * p)3021 void scx_cancel_fork(struct task_struct *p)
3022 {
3023 if (scx_enabled()) {
3024 struct rq *rq;
3025 struct rq_flags rf;
3026
3027 rq = task_rq_lock(p, &rf);
3028 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY);
3029 scx_exit_task(p);
3030 task_rq_unlock(rq, p, &rf);
3031 }
3032
3033 percpu_up_read(&scx_fork_rwsem);
3034 }
3035
sched_ext_dead(struct task_struct * p)3036 void sched_ext_dead(struct task_struct *p)
3037 {
3038 unsigned long flags;
3039
3040 raw_spin_lock_irqsave(&scx_tasks_lock, flags);
3041 list_del_init(&p->scx.tasks_node);
3042 raw_spin_unlock_irqrestore(&scx_tasks_lock, flags);
3043
3044 /*
3045 * @p is off scx_tasks and wholly ours. scx_enable()'s READY -> ENABLED
3046 * transitions can't race us. Disable ops for @p.
3047 */
3048 if (scx_get_task_state(p) != SCX_TASK_NONE) {
3049 struct rq_flags rf;
3050 struct rq *rq;
3051
3052 rq = task_rq_lock(p, &rf);
3053 scx_exit_task(p);
3054 task_rq_unlock(rq, p, &rf);
3055 }
3056 }
3057
reweight_task_scx(struct rq * rq,struct task_struct * p,const struct load_weight * lw)3058 static void reweight_task_scx(struct rq *rq, struct task_struct *p,
3059 const struct load_weight *lw)
3060 {
3061 struct scx_sched *sch = scx_root;
3062
3063 lockdep_assert_rq_held(task_rq(p));
3064
3065 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight));
3066 if (SCX_HAS_OP(sch, set_weight))
3067 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_weight, rq,
3068 p, p->scx.weight);
3069 }
3070
prio_changed_scx(struct rq * rq,struct task_struct * p,u64 oldprio)3071 static void prio_changed_scx(struct rq *rq, struct task_struct *p, u64 oldprio)
3072 {
3073 }
3074
switching_to_scx(struct rq * rq,struct task_struct * p)3075 static void switching_to_scx(struct rq *rq, struct task_struct *p)
3076 {
3077 struct scx_sched *sch = scx_root;
3078
3079 scx_enable_task(p);
3080
3081 /*
3082 * set_cpus_allowed_scx() is not called while @p is associated with a
3083 * different scheduler class. Keep the BPF scheduler up-to-date.
3084 */
3085 if (SCX_HAS_OP(sch, set_cpumask))
3086 SCX_CALL_OP_TASK(sch, SCX_KF_REST, set_cpumask, rq,
3087 p, (struct cpumask *)p->cpus_ptr);
3088 }
3089
switched_from_scx(struct rq * rq,struct task_struct * p)3090 static void switched_from_scx(struct rq *rq, struct task_struct *p)
3091 {
3092 scx_disable_task(p);
3093 }
3094
wakeup_preempt_scx(struct rq * rq,struct task_struct * p,int wake_flags)3095 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {}
switched_to_scx(struct rq * rq,struct task_struct * p)3096 static void switched_to_scx(struct rq *rq, struct task_struct *p) {}
3097
scx_check_setscheduler(struct task_struct * p,int policy)3098 int scx_check_setscheduler(struct task_struct *p, int policy)
3099 {
3100 lockdep_assert_rq_held(task_rq(p));
3101
3102 /* if disallow, reject transitioning into SCX */
3103 if (scx_enabled() && READ_ONCE(p->scx.disallow) &&
3104 p->policy != policy && policy == SCHED_EXT)
3105 return -EACCES;
3106
3107 return 0;
3108 }
3109
3110 #ifdef CONFIG_NO_HZ_FULL
scx_can_stop_tick(struct rq * rq)3111 bool scx_can_stop_tick(struct rq *rq)
3112 {
3113 struct task_struct *p = rq->curr;
3114
3115 if (scx_rq_bypassing(rq))
3116 return false;
3117
3118 if (p->sched_class != &ext_sched_class)
3119 return true;
3120
3121 /*
3122 * @rq can dispatch from different DSQs, so we can't tell whether it
3123 * needs the tick or not by looking at nr_running. Allow stopping ticks
3124 * iff the BPF scheduler indicated so. See set_next_task_scx().
3125 */
3126 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK;
3127 }
3128 #endif
3129
3130 #ifdef CONFIG_EXT_GROUP_SCHED
3131
3132 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_ops_rwsem);
3133 static bool scx_cgroup_enabled;
3134
scx_tg_init(struct task_group * tg)3135 void scx_tg_init(struct task_group *tg)
3136 {
3137 tg->scx.weight = CGROUP_WEIGHT_DFL;
3138 tg->scx.bw_period_us = default_bw_period_us();
3139 tg->scx.bw_quota_us = RUNTIME_INF;
3140 tg->scx.idle = false;
3141 }
3142
scx_tg_online(struct task_group * tg)3143 int scx_tg_online(struct task_group *tg)
3144 {
3145 struct scx_sched *sch = scx_root;
3146 int ret = 0;
3147
3148 WARN_ON_ONCE(tg->scx.flags & (SCX_TG_ONLINE | SCX_TG_INITED));
3149
3150 if (scx_cgroup_enabled) {
3151 if (SCX_HAS_OP(sch, cgroup_init)) {
3152 struct scx_cgroup_init_args args =
3153 { .weight = tg->scx.weight,
3154 .bw_period_us = tg->scx.bw_period_us,
3155 .bw_quota_us = tg->scx.bw_quota_us,
3156 .bw_burst_us = tg->scx.bw_burst_us };
3157
3158 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init,
3159 NULL, tg->css.cgroup, &args);
3160 if (ret)
3161 ret = ops_sanitize_err(sch, "cgroup_init", ret);
3162 }
3163 if (ret == 0)
3164 tg->scx.flags |= SCX_TG_ONLINE | SCX_TG_INITED;
3165 } else {
3166 tg->scx.flags |= SCX_TG_ONLINE;
3167 }
3168
3169 return ret;
3170 }
3171
scx_tg_offline(struct task_group * tg)3172 void scx_tg_offline(struct task_group *tg)
3173 {
3174 struct scx_sched *sch = scx_root;
3175
3176 WARN_ON_ONCE(!(tg->scx.flags & SCX_TG_ONLINE));
3177
3178 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_exit) &&
3179 (tg->scx.flags & SCX_TG_INITED))
3180 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3181 tg->css.cgroup);
3182 tg->scx.flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED);
3183 }
3184
scx_cgroup_can_attach(struct cgroup_taskset * tset)3185 int scx_cgroup_can_attach(struct cgroup_taskset *tset)
3186 {
3187 struct scx_sched *sch = scx_root;
3188 struct cgroup_subsys_state *css;
3189 struct task_struct *p;
3190 int ret;
3191
3192 if (!scx_cgroup_enabled)
3193 return 0;
3194
3195 cgroup_taskset_for_each(p, css, tset) {
3196 struct cgroup *from = tg_cgrp(task_group(p));
3197 struct cgroup *to = tg_cgrp(css_tg(css));
3198
3199 WARN_ON_ONCE(p->scx.cgrp_moving_from);
3200
3201 /*
3202 * sched_move_task() omits identity migrations. Let's match the
3203 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move()
3204 * always match one-to-one.
3205 */
3206 if (from == to)
3207 continue;
3208
3209 if (SCX_HAS_OP(sch, cgroup_prep_move)) {
3210 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED,
3211 cgroup_prep_move, NULL,
3212 p, from, css->cgroup);
3213 if (ret)
3214 goto err;
3215 }
3216
3217 p->scx.cgrp_moving_from = from;
3218 }
3219
3220 return 0;
3221
3222 err:
3223 cgroup_taskset_for_each(p, css, tset) {
3224 if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3225 p->scx.cgrp_moving_from)
3226 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3227 p, p->scx.cgrp_moving_from, css->cgroup);
3228 p->scx.cgrp_moving_from = NULL;
3229 }
3230
3231 return ops_sanitize_err(sch, "cgroup_prep_move", ret);
3232 }
3233
scx_cgroup_move_task(struct task_struct * p)3234 void scx_cgroup_move_task(struct task_struct *p)
3235 {
3236 struct scx_sched *sch = scx_root;
3237
3238 if (!scx_cgroup_enabled)
3239 return;
3240
3241 /*
3242 * @p must have ops.cgroup_prep_move() called on it and thus
3243 * cgrp_moving_from set.
3244 */
3245 if (SCX_HAS_OP(sch, cgroup_move) &&
3246 !WARN_ON_ONCE(!p->scx.cgrp_moving_from))
3247 SCX_CALL_OP_TASK(sch, SCX_KF_UNLOCKED, cgroup_move, NULL,
3248 p, p->scx.cgrp_moving_from,
3249 tg_cgrp(task_group(p)));
3250 p->scx.cgrp_moving_from = NULL;
3251 }
3252
scx_cgroup_cancel_attach(struct cgroup_taskset * tset)3253 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset)
3254 {
3255 struct scx_sched *sch = scx_root;
3256 struct cgroup_subsys_state *css;
3257 struct task_struct *p;
3258
3259 if (!scx_cgroup_enabled)
3260 return;
3261
3262 cgroup_taskset_for_each(p, css, tset) {
3263 if (SCX_HAS_OP(sch, cgroup_cancel_move) &&
3264 p->scx.cgrp_moving_from)
3265 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_cancel_move, NULL,
3266 p, p->scx.cgrp_moving_from, css->cgroup);
3267 p->scx.cgrp_moving_from = NULL;
3268 }
3269 }
3270
scx_group_set_weight(struct task_group * tg,unsigned long weight)3271 void scx_group_set_weight(struct task_group *tg, unsigned long weight)
3272 {
3273 struct scx_sched *sch = scx_root;
3274
3275 percpu_down_read(&scx_cgroup_ops_rwsem);
3276
3277 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_weight) &&
3278 tg->scx.weight != weight)
3279 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_weight, NULL,
3280 tg_cgrp(tg), weight);
3281
3282 tg->scx.weight = weight;
3283
3284 percpu_up_read(&scx_cgroup_ops_rwsem);
3285 }
3286
scx_group_set_idle(struct task_group * tg,bool idle)3287 void scx_group_set_idle(struct task_group *tg, bool idle)
3288 {
3289 struct scx_sched *sch = scx_root;
3290
3291 percpu_down_read(&scx_cgroup_ops_rwsem);
3292
3293 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_idle))
3294 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_idle, NULL,
3295 tg_cgrp(tg), idle);
3296
3297 /* Update the task group's idle state */
3298 tg->scx.idle = idle;
3299
3300 percpu_up_read(&scx_cgroup_ops_rwsem);
3301 }
3302
scx_group_set_bandwidth(struct task_group * tg,u64 period_us,u64 quota_us,u64 burst_us)3303 void scx_group_set_bandwidth(struct task_group *tg,
3304 u64 period_us, u64 quota_us, u64 burst_us)
3305 {
3306 struct scx_sched *sch = scx_root;
3307
3308 percpu_down_read(&scx_cgroup_ops_rwsem);
3309
3310 if (scx_cgroup_enabled && SCX_HAS_OP(sch, cgroup_set_bandwidth) &&
3311 (tg->scx.bw_period_us != period_us ||
3312 tg->scx.bw_quota_us != quota_us ||
3313 tg->scx.bw_burst_us != burst_us))
3314 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_set_bandwidth, NULL,
3315 tg_cgrp(tg), period_us, quota_us, burst_us);
3316
3317 tg->scx.bw_period_us = period_us;
3318 tg->scx.bw_quota_us = quota_us;
3319 tg->scx.bw_burst_us = burst_us;
3320
3321 percpu_up_read(&scx_cgroup_ops_rwsem);
3322 }
3323
scx_cgroup_lock(void)3324 static void scx_cgroup_lock(void)
3325 {
3326 percpu_down_write(&scx_cgroup_ops_rwsem);
3327 cgroup_lock();
3328 }
3329
scx_cgroup_unlock(void)3330 static void scx_cgroup_unlock(void)
3331 {
3332 cgroup_unlock();
3333 percpu_up_write(&scx_cgroup_ops_rwsem);
3334 }
3335
3336 #else /* CONFIG_EXT_GROUP_SCHED */
3337
scx_cgroup_lock(void)3338 static void scx_cgroup_lock(void) {}
scx_cgroup_unlock(void)3339 static void scx_cgroup_unlock(void) {}
3340
3341 #endif /* CONFIG_EXT_GROUP_SCHED */
3342
3343 /*
3344 * Omitted operations:
3345 *
3346 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task
3347 * isn't tied to the CPU at that point. Preemption is implemented by resetting
3348 * the victim task's slice to 0 and triggering reschedule on the target CPU.
3349 *
3350 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient.
3351 *
3352 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of
3353 * their current sched_class. Call them directly from sched core instead.
3354 */
3355 DEFINE_SCHED_CLASS(ext) = {
3356 .queue_mask = 1,
3357
3358 .enqueue_task = enqueue_task_scx,
3359 .dequeue_task = dequeue_task_scx,
3360 .yield_task = yield_task_scx,
3361 .yield_to_task = yield_to_task_scx,
3362
3363 .wakeup_preempt = wakeup_preempt_scx,
3364
3365 .pick_task = pick_task_scx,
3366
3367 .put_prev_task = put_prev_task_scx,
3368 .set_next_task = set_next_task_scx,
3369
3370 .select_task_rq = select_task_rq_scx,
3371 .task_woken = task_woken_scx,
3372 .set_cpus_allowed = set_cpus_allowed_scx,
3373
3374 .rq_online = rq_online_scx,
3375 .rq_offline = rq_offline_scx,
3376
3377 .task_tick = task_tick_scx,
3378
3379 .switching_to = switching_to_scx,
3380 .switched_from = switched_from_scx,
3381 .switched_to = switched_to_scx,
3382 .reweight_task = reweight_task_scx,
3383 .prio_changed = prio_changed_scx,
3384
3385 .update_curr = update_curr_scx,
3386
3387 #ifdef CONFIG_UCLAMP_TASK
3388 .uclamp_enabled = 1,
3389 #endif
3390 };
3391
init_dsq(struct scx_dispatch_q * dsq,u64 dsq_id)3392 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id)
3393 {
3394 memset(dsq, 0, sizeof(*dsq));
3395
3396 raw_spin_lock_init(&dsq->lock);
3397 INIT_LIST_HEAD(&dsq->list);
3398 dsq->id = dsq_id;
3399 }
3400
free_dsq_irq_workfn(struct irq_work * irq_work)3401 static void free_dsq_irq_workfn(struct irq_work *irq_work)
3402 {
3403 struct llist_node *to_free = llist_del_all(&dsqs_to_free);
3404 struct scx_dispatch_q *dsq, *tmp_dsq;
3405
3406 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node)
3407 kfree_rcu(dsq, rcu);
3408 }
3409
3410 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn);
3411
destroy_dsq(struct scx_sched * sch,u64 dsq_id)3412 static void destroy_dsq(struct scx_sched *sch, u64 dsq_id)
3413 {
3414 struct scx_dispatch_q *dsq;
3415 unsigned long flags;
3416
3417 rcu_read_lock();
3418
3419 dsq = find_user_dsq(sch, dsq_id);
3420 if (!dsq)
3421 goto out_unlock_rcu;
3422
3423 raw_spin_lock_irqsave(&dsq->lock, flags);
3424
3425 if (dsq->nr) {
3426 scx_error(sch, "attempting to destroy in-use dsq 0x%016llx (nr=%u)",
3427 dsq->id, dsq->nr);
3428 goto out_unlock_dsq;
3429 }
3430
3431 if (rhashtable_remove_fast(&sch->dsq_hash, &dsq->hash_node,
3432 dsq_hash_params))
3433 goto out_unlock_dsq;
3434
3435 /*
3436 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from
3437 * queueing more tasks. As this function can be called from anywhere,
3438 * freeing is bounced through an irq work to avoid nesting RCU
3439 * operations inside scheduler locks.
3440 */
3441 dsq->id = SCX_DSQ_INVALID;
3442 llist_add(&dsq->free_node, &dsqs_to_free);
3443 irq_work_queue(&free_dsq_irq_work);
3444
3445 out_unlock_dsq:
3446 raw_spin_unlock_irqrestore(&dsq->lock, flags);
3447 out_unlock_rcu:
3448 rcu_read_unlock();
3449 }
3450
3451 #ifdef CONFIG_EXT_GROUP_SCHED
scx_cgroup_exit(struct scx_sched * sch)3452 static void scx_cgroup_exit(struct scx_sched *sch)
3453 {
3454 struct cgroup_subsys_state *css;
3455
3456 scx_cgroup_enabled = false;
3457
3458 /*
3459 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3460 * cgroups and exit all the inited ones, all online cgroups are exited.
3461 */
3462 css_for_each_descendant_post(css, &root_task_group.css) {
3463 struct task_group *tg = css_tg(css);
3464
3465 if (!(tg->scx.flags & SCX_TG_INITED))
3466 continue;
3467 tg->scx.flags &= ~SCX_TG_INITED;
3468
3469 if (!sch->ops.cgroup_exit)
3470 continue;
3471
3472 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, cgroup_exit, NULL,
3473 css->cgroup);
3474 }
3475 }
3476
scx_cgroup_init(struct scx_sched * sch)3477 static int scx_cgroup_init(struct scx_sched *sch)
3478 {
3479 struct cgroup_subsys_state *css;
3480 int ret;
3481
3482 /*
3483 * scx_tg_on/offline() are excluded through cgroup_lock(). If we walk
3484 * cgroups and init, all online cgroups are initialized.
3485 */
3486 css_for_each_descendant_pre(css, &root_task_group.css) {
3487 struct task_group *tg = css_tg(css);
3488 struct scx_cgroup_init_args args = {
3489 .weight = tg->scx.weight,
3490 .bw_period_us = tg->scx.bw_period_us,
3491 .bw_quota_us = tg->scx.bw_quota_us,
3492 .bw_burst_us = tg->scx.bw_burst_us,
3493 };
3494
3495 if ((tg->scx.flags &
3496 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE)
3497 continue;
3498
3499 if (!sch->ops.cgroup_init) {
3500 tg->scx.flags |= SCX_TG_INITED;
3501 continue;
3502 }
3503
3504 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, cgroup_init, NULL,
3505 css->cgroup, &args);
3506 if (ret) {
3507 css_put(css);
3508 scx_error(sch, "ops.cgroup_init() failed (%d)", ret);
3509 return ret;
3510 }
3511 tg->scx.flags |= SCX_TG_INITED;
3512 }
3513
3514 WARN_ON_ONCE(scx_cgroup_enabled);
3515 scx_cgroup_enabled = true;
3516
3517 return 0;
3518 }
3519
3520 #else
scx_cgroup_exit(struct scx_sched * sch)3521 static void scx_cgroup_exit(struct scx_sched *sch) {}
scx_cgroup_init(struct scx_sched * sch)3522 static int scx_cgroup_init(struct scx_sched *sch) { return 0; }
3523 #endif
3524
3525
3526 /********************************************************************************
3527 * Sysfs interface and ops enable/disable.
3528 */
3529
3530 #define SCX_ATTR(_name) \
3531 static struct kobj_attribute scx_attr_##_name = { \
3532 .attr = { .name = __stringify(_name), .mode = 0444 }, \
3533 .show = scx_attr_##_name##_show, \
3534 }
3535
scx_attr_state_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3536 static ssize_t scx_attr_state_show(struct kobject *kobj,
3537 struct kobj_attribute *ka, char *buf)
3538 {
3539 return sysfs_emit(buf, "%s\n", scx_enable_state_str[scx_enable_state()]);
3540 }
3541 SCX_ATTR(state);
3542
scx_attr_switch_all_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3543 static ssize_t scx_attr_switch_all_show(struct kobject *kobj,
3544 struct kobj_attribute *ka, char *buf)
3545 {
3546 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all));
3547 }
3548 SCX_ATTR(switch_all);
3549
scx_attr_nr_rejected_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3550 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj,
3551 struct kobj_attribute *ka, char *buf)
3552 {
3553 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected));
3554 }
3555 SCX_ATTR(nr_rejected);
3556
scx_attr_hotplug_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3557 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj,
3558 struct kobj_attribute *ka, char *buf)
3559 {
3560 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq));
3561 }
3562 SCX_ATTR(hotplug_seq);
3563
scx_attr_enable_seq_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3564 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj,
3565 struct kobj_attribute *ka, char *buf)
3566 {
3567 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq));
3568 }
3569 SCX_ATTR(enable_seq);
3570
3571 static struct attribute *scx_global_attrs[] = {
3572 &scx_attr_state.attr,
3573 &scx_attr_switch_all.attr,
3574 &scx_attr_nr_rejected.attr,
3575 &scx_attr_hotplug_seq.attr,
3576 &scx_attr_enable_seq.attr,
3577 NULL,
3578 };
3579
3580 static const struct attribute_group scx_global_attr_group = {
3581 .attrs = scx_global_attrs,
3582 };
3583
3584 static void free_exit_info(struct scx_exit_info *ei);
3585
scx_sched_free_rcu_work(struct work_struct * work)3586 static void scx_sched_free_rcu_work(struct work_struct *work)
3587 {
3588 struct rcu_work *rcu_work = to_rcu_work(work);
3589 struct scx_sched *sch = container_of(rcu_work, struct scx_sched, rcu_work);
3590 struct rhashtable_iter rht_iter;
3591 struct scx_dispatch_q *dsq;
3592 int node;
3593
3594 irq_work_sync(&sch->error_irq_work);
3595 kthread_destroy_worker(sch->helper);
3596
3597 free_percpu(sch->pcpu);
3598
3599 for_each_node_state(node, N_POSSIBLE)
3600 kfree(sch->global_dsqs[node]);
3601 kfree(sch->global_dsqs);
3602
3603 rhashtable_walk_enter(&sch->dsq_hash, &rht_iter);
3604 do {
3605 rhashtable_walk_start(&rht_iter);
3606
3607 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq))
3608 destroy_dsq(sch, dsq->id);
3609
3610 rhashtable_walk_stop(&rht_iter);
3611 } while (dsq == ERR_PTR(-EAGAIN));
3612 rhashtable_walk_exit(&rht_iter);
3613
3614 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
3615 free_exit_info(sch->exit_info);
3616 kfree(sch);
3617 }
3618
scx_kobj_release(struct kobject * kobj)3619 static void scx_kobj_release(struct kobject *kobj)
3620 {
3621 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3622
3623 INIT_RCU_WORK(&sch->rcu_work, scx_sched_free_rcu_work);
3624 queue_rcu_work(system_unbound_wq, &sch->rcu_work);
3625 }
3626
scx_attr_ops_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3627 static ssize_t scx_attr_ops_show(struct kobject *kobj,
3628 struct kobj_attribute *ka, char *buf)
3629 {
3630 return sysfs_emit(buf, "%s\n", scx_root->ops.name);
3631 }
3632 SCX_ATTR(ops);
3633
3634 #define scx_attr_event_show(buf, at, events, kind) ({ \
3635 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \
3636 })
3637
scx_attr_events_show(struct kobject * kobj,struct kobj_attribute * ka,char * buf)3638 static ssize_t scx_attr_events_show(struct kobject *kobj,
3639 struct kobj_attribute *ka, char *buf)
3640 {
3641 struct scx_sched *sch = container_of(kobj, struct scx_sched, kobj);
3642 struct scx_event_stats events;
3643 int at = 0;
3644
3645 scx_read_events(sch, &events);
3646 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK);
3647 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
3648 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST);
3649 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING);
3650 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
3651 at += scx_attr_event_show(buf, at, &events, SCX_EV_REFILL_SLICE_DFL);
3652 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION);
3653 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH);
3654 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE);
3655 return at;
3656 }
3657 SCX_ATTR(events);
3658
3659 static struct attribute *scx_sched_attrs[] = {
3660 &scx_attr_ops.attr,
3661 &scx_attr_events.attr,
3662 NULL,
3663 };
3664 ATTRIBUTE_GROUPS(scx_sched);
3665
3666 static const struct kobj_type scx_ktype = {
3667 .release = scx_kobj_release,
3668 .sysfs_ops = &kobj_sysfs_ops,
3669 .default_groups = scx_sched_groups,
3670 };
3671
scx_uevent(const struct kobject * kobj,struct kobj_uevent_env * env)3672 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env)
3673 {
3674 return add_uevent_var(env, "SCXOPS=%s", scx_root->ops.name);
3675 }
3676
3677 static const struct kset_uevent_ops scx_uevent_ops = {
3678 .uevent = scx_uevent,
3679 };
3680
3681 /*
3682 * Used by sched_fork() and __setscheduler_prio() to pick the matching
3683 * sched_class. dl/rt are already handled.
3684 */
task_should_scx(int policy)3685 bool task_should_scx(int policy)
3686 {
3687 if (!scx_enabled() || unlikely(scx_enable_state() == SCX_DISABLING))
3688 return false;
3689 if (READ_ONCE(scx_switching_all))
3690 return true;
3691 return policy == SCHED_EXT;
3692 }
3693
scx_allow_ttwu_queue(const struct task_struct * p)3694 bool scx_allow_ttwu_queue(const struct task_struct *p)
3695 {
3696 struct scx_sched *sch;
3697
3698 if (!scx_enabled())
3699 return true;
3700
3701 sch = rcu_dereference_sched(scx_root);
3702 if (unlikely(!sch))
3703 return true;
3704
3705 if (sch->ops.flags & SCX_OPS_ALLOW_QUEUED_WAKEUP)
3706 return true;
3707
3708 if (unlikely(p->sched_class != &ext_sched_class))
3709 return true;
3710
3711 return false;
3712 }
3713
3714 /**
3715 * handle_lockup - sched_ext common lockup handler
3716 * @fmt: format string
3717 *
3718 * Called on system stall or lockup condition and initiates abort of sched_ext
3719 * if enabled, which may resolve the reported lockup.
3720 *
3721 * Returns %true if sched_ext is enabled and abort was initiated, which may
3722 * resolve the lockup. %false if sched_ext is not enabled or abort was already
3723 * initiated by someone else.
3724 */
handle_lockup(const char * fmt,...)3725 static __printf(1, 2) bool handle_lockup(const char *fmt, ...)
3726 {
3727 struct scx_sched *sch;
3728 va_list args;
3729 bool ret;
3730
3731 guard(rcu)();
3732
3733 sch = rcu_dereference(scx_root);
3734 if (unlikely(!sch))
3735 return false;
3736
3737 switch (scx_enable_state()) {
3738 case SCX_ENABLING:
3739 case SCX_ENABLED:
3740 va_start(args, fmt);
3741 ret = scx_verror(sch, fmt, args);
3742 va_end(args);
3743 return ret;
3744 default:
3745 return false;
3746 }
3747 }
3748
3749 /**
3750 * scx_rcu_cpu_stall - sched_ext RCU CPU stall handler
3751 *
3752 * While there are various reasons why RCU CPU stalls can occur on a system
3753 * that may not be caused by the current BPF scheduler, try kicking out the
3754 * current scheduler in an attempt to recover the system to a good state before
3755 * issuing panics.
3756 *
3757 * Returns %true if sched_ext is enabled and abort was initiated, which may
3758 * resolve the reported RCU stall. %false if sched_ext is not enabled or someone
3759 * else already initiated abort.
3760 */
scx_rcu_cpu_stall(void)3761 bool scx_rcu_cpu_stall(void)
3762 {
3763 return handle_lockup("RCU CPU stall detected!");
3764 }
3765
3766 /**
3767 * scx_softlockup - sched_ext softlockup handler
3768 * @dur_s: number of seconds of CPU stuck due to soft lockup
3769 *
3770 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can
3771 * live-lock the system by making many CPUs target the same DSQ to the point
3772 * where soft-lockup detection triggers. This function is called from
3773 * soft-lockup watchdog when the triggering point is close and tries to unjam
3774 * the system and aborting the BPF scheduler.
3775 */
scx_softlockup(u32 dur_s)3776 void scx_softlockup(u32 dur_s)
3777 {
3778 if (!handle_lockup("soft lockup - CPU %d stuck for %us", smp_processor_id(), dur_s))
3779 return;
3780
3781 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU %d stuck for %us, disabling BPF scheduler\n",
3782 smp_processor_id(), dur_s);
3783 }
3784
3785 /**
3786 * scx_hardlockup - sched_ext hardlockup handler
3787 *
3788 * A poorly behaving BPF scheduler can trigger hard lockup by e.g. putting
3789 * numerous affinitized tasks in a single queue and directing all CPUs at it.
3790 * Try kicking out the current scheduler in an attempt to recover the system to
3791 * a good state before taking more drastic actions.
3792 *
3793 * Returns %true if sched_ext is enabled and abort was initiated, which may
3794 * resolve the reported hardlockdup. %false if sched_ext is not enabled or
3795 * someone else already initiated abort.
3796 */
scx_hardlockup(int cpu)3797 bool scx_hardlockup(int cpu)
3798 {
3799 if (!handle_lockup("hard lockup - CPU %d", cpu))
3800 return false;
3801
3802 printk_deferred(KERN_ERR "sched_ext: Hard lockup - CPU %d, disabling BPF scheduler\n",
3803 cpu);
3804 return true;
3805 }
3806
bypass_lb_cpu(struct scx_sched * sch,struct rq * rq,struct cpumask * donee_mask,struct cpumask * resched_mask,u32 nr_donor_target,u32 nr_donee_target)3807 static u32 bypass_lb_cpu(struct scx_sched *sch, struct rq *rq,
3808 struct cpumask *donee_mask, struct cpumask *resched_mask,
3809 u32 nr_donor_target, u32 nr_donee_target)
3810 {
3811 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq;
3812 struct task_struct *p, *n;
3813 struct scx_dsq_list_node cursor = INIT_DSQ_LIST_CURSOR(cursor, 0, 0);
3814 s32 delta = READ_ONCE(donor_dsq->nr) - nr_donor_target;
3815 u32 nr_balanced = 0, min_delta_us;
3816
3817 /*
3818 * All we want to guarantee is reasonable forward progress. No reason to
3819 * fine tune. Assuming every task on @donor_dsq runs their full slice,
3820 * consider offloading iff the total queued duration is over the
3821 * threshold.
3822 */
3823 min_delta_us = scx_bypass_lb_intv_us / SCX_BYPASS_LB_MIN_DELTA_DIV;
3824 if (delta < DIV_ROUND_UP(min_delta_us, scx_slice_bypass_us))
3825 return 0;
3826
3827 raw_spin_rq_lock_irq(rq);
3828 raw_spin_lock(&donor_dsq->lock);
3829 list_add(&cursor.node, &donor_dsq->list);
3830 resume:
3831 n = container_of(&cursor, struct task_struct, scx.dsq_list);
3832 n = nldsq_next_task(donor_dsq, n, false);
3833
3834 while ((p = n)) {
3835 struct rq *donee_rq;
3836 struct scx_dispatch_q *donee_dsq;
3837 int donee;
3838
3839 n = nldsq_next_task(donor_dsq, n, false);
3840
3841 if (donor_dsq->nr <= nr_donor_target)
3842 break;
3843
3844 if (cpumask_empty(donee_mask))
3845 break;
3846
3847 donee = cpumask_any_and_distribute(donee_mask, p->cpus_ptr);
3848 if (donee >= nr_cpu_ids)
3849 continue;
3850
3851 donee_rq = cpu_rq(donee);
3852 donee_dsq = &donee_rq->scx.bypass_dsq;
3853
3854 /*
3855 * $p's rq is not locked but $p's DSQ lock protects its
3856 * scheduling properties making this test safe.
3857 */
3858 if (!task_can_run_on_remote_rq(sch, p, donee_rq, false))
3859 continue;
3860
3861 /*
3862 * Moving $p from one non-local DSQ to another. The source rq
3863 * and DSQ are already locked. Do an abbreviated dequeue and
3864 * then perform enqueue without unlocking $donor_dsq.
3865 *
3866 * We don't want to drop and reacquire the lock on each
3867 * iteration as @donor_dsq can be very long and potentially
3868 * highly contended. Donee DSQs are less likely to be contended.
3869 * The nested locking is safe as only this LB moves tasks
3870 * between bypass DSQs.
3871 */
3872 dispatch_dequeue_locked(p, donor_dsq);
3873 dispatch_enqueue(sch, donee_dsq, p, SCX_ENQ_NESTED);
3874
3875 /*
3876 * $donee might have been idle and need to be woken up. No need
3877 * to be clever. Kick every CPU that receives tasks.
3878 */
3879 cpumask_set_cpu(donee, resched_mask);
3880
3881 if (READ_ONCE(donee_dsq->nr) >= nr_donee_target)
3882 cpumask_clear_cpu(donee, donee_mask);
3883
3884 nr_balanced++;
3885 if (!(nr_balanced % SCX_BYPASS_LB_BATCH) && n) {
3886 list_move_tail(&cursor.node, &n->scx.dsq_list.node);
3887 raw_spin_unlock(&donor_dsq->lock);
3888 raw_spin_rq_unlock_irq(rq);
3889 cpu_relax();
3890 raw_spin_rq_lock_irq(rq);
3891 raw_spin_lock(&donor_dsq->lock);
3892 goto resume;
3893 }
3894 }
3895
3896 list_del_init(&cursor.node);
3897 raw_spin_unlock(&donor_dsq->lock);
3898 raw_spin_rq_unlock_irq(rq);
3899
3900 return nr_balanced;
3901 }
3902
bypass_lb_node(struct scx_sched * sch,int node)3903 static void bypass_lb_node(struct scx_sched *sch, int node)
3904 {
3905 const struct cpumask *node_mask = cpumask_of_node(node);
3906 struct cpumask *donee_mask = scx_bypass_lb_donee_cpumask;
3907 struct cpumask *resched_mask = scx_bypass_lb_resched_cpumask;
3908 u32 nr_tasks = 0, nr_cpus = 0, nr_balanced = 0;
3909 u32 nr_target, nr_donor_target;
3910 u32 before_min = U32_MAX, before_max = 0;
3911 u32 after_min = U32_MAX, after_max = 0;
3912 int cpu;
3913
3914 /* count the target tasks and CPUs */
3915 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3916 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr);
3917
3918 nr_tasks += nr;
3919 nr_cpus++;
3920
3921 before_min = min(nr, before_min);
3922 before_max = max(nr, before_max);
3923 }
3924
3925 if (!nr_cpus)
3926 return;
3927
3928 /*
3929 * We don't want CPUs to have more than $nr_donor_target tasks and
3930 * balancing to fill donee CPUs upto $nr_target. Once targets are
3931 * calculated, find the donee CPUs.
3932 */
3933 nr_target = DIV_ROUND_UP(nr_tasks, nr_cpus);
3934 nr_donor_target = DIV_ROUND_UP(nr_target * SCX_BYPASS_LB_DONOR_PCT, 100);
3935
3936 cpumask_clear(donee_mask);
3937 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3938 if (READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr) < nr_target)
3939 cpumask_set_cpu(cpu, donee_mask);
3940 }
3941
3942 /* iterate !donee CPUs and see if they should be offloaded */
3943 cpumask_clear(resched_mask);
3944 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3945 struct rq *rq = cpu_rq(cpu);
3946 struct scx_dispatch_q *donor_dsq = &rq->scx.bypass_dsq;
3947
3948 if (cpumask_empty(donee_mask))
3949 break;
3950 if (cpumask_test_cpu(cpu, donee_mask))
3951 continue;
3952 if (READ_ONCE(donor_dsq->nr) <= nr_donor_target)
3953 continue;
3954
3955 nr_balanced += bypass_lb_cpu(sch, rq, donee_mask, resched_mask,
3956 nr_donor_target, nr_target);
3957 }
3958
3959 for_each_cpu(cpu, resched_mask)
3960 resched_cpu(cpu);
3961
3962 for_each_cpu_and(cpu, cpu_online_mask, node_mask) {
3963 u32 nr = READ_ONCE(cpu_rq(cpu)->scx.bypass_dsq.nr);
3964
3965 after_min = min(nr, after_min);
3966 after_max = max(nr, after_max);
3967
3968 }
3969
3970 trace_sched_ext_bypass_lb(node, nr_cpus, nr_tasks, nr_balanced,
3971 before_min, before_max, after_min, after_max);
3972 }
3973
3974 /*
3975 * In bypass mode, all tasks are put on the per-CPU bypass DSQs. If the machine
3976 * is over-saturated and the BPF scheduler skewed tasks into few CPUs, some
3977 * bypass DSQs can be overloaded. If there are enough tasks to saturate other
3978 * lightly loaded CPUs, such imbalance can lead to very high execution latency
3979 * on the overloaded CPUs and thus to hung tasks and RCU stalls. To avoid such
3980 * outcomes, a simple load balancing mechanism is implemented by the following
3981 * timer which runs periodically while bypass mode is in effect.
3982 */
scx_bypass_lb_timerfn(struct timer_list * timer)3983 static void scx_bypass_lb_timerfn(struct timer_list *timer)
3984 {
3985 struct scx_sched *sch;
3986 int node;
3987 u32 intv_us;
3988
3989 sch = rcu_dereference_all(scx_root);
3990 if (unlikely(!sch) || !READ_ONCE(scx_bypass_depth))
3991 return;
3992
3993 for_each_node_with_cpus(node)
3994 bypass_lb_node(sch, node);
3995
3996 intv_us = READ_ONCE(scx_bypass_lb_intv_us);
3997 if (intv_us)
3998 mod_timer(timer, jiffies + usecs_to_jiffies(intv_us));
3999 }
4000
4001 static DEFINE_TIMER(scx_bypass_lb_timer, scx_bypass_lb_timerfn);
4002
4003 /**
4004 * scx_bypass - [Un]bypass scx_ops and guarantee forward progress
4005 * @bypass: true for bypass, false for unbypass
4006 *
4007 * Bypassing guarantees that all runnable tasks make forward progress without
4008 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might
4009 * be held by tasks that the BPF scheduler is forgetting to run, which
4010 * unfortunately also excludes toggling the static branches.
4011 *
4012 * Let's work around by overriding a couple ops and modifying behaviors based on
4013 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue
4014 * to force global FIFO scheduling.
4015 *
4016 * - ops.select_cpu() is ignored and the default select_cpu() is used.
4017 *
4018 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order.
4019 * %SCX_OPS_ENQ_LAST is also ignored.
4020 *
4021 * - ops.dispatch() is ignored.
4022 *
4023 * - balance_one() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice
4024 * can't be trusted. Whenever a tick triggers, the running task is rotated to
4025 * the tail of the queue with core_sched_at touched.
4026 *
4027 * - pick_next_task() suppresses zero slice warning.
4028 *
4029 * - scx_kick_cpu() is disabled to avoid irq_work malfunction during PM
4030 * operations.
4031 *
4032 * - scx_prio_less() reverts to the default core_sched_at order.
4033 */
scx_bypass(bool bypass)4034 static void scx_bypass(bool bypass)
4035 {
4036 static DEFINE_RAW_SPINLOCK(bypass_lock);
4037 static unsigned long bypass_timestamp;
4038 struct scx_sched *sch;
4039 unsigned long flags;
4040 int cpu;
4041
4042 raw_spin_lock_irqsave(&bypass_lock, flags);
4043 sch = rcu_dereference_bh(scx_root);
4044
4045 if (bypass) {
4046 u32 intv_us;
4047
4048 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth + 1);
4049 WARN_ON_ONCE(scx_bypass_depth <= 0);
4050 if (scx_bypass_depth != 1)
4051 goto unlock;
4052 WRITE_ONCE(scx_slice_dfl, scx_slice_bypass_us * NSEC_PER_USEC);
4053 bypass_timestamp = ktime_get_ns();
4054 if (sch)
4055 scx_add_event(sch, SCX_EV_BYPASS_ACTIVATE, 1);
4056
4057 intv_us = READ_ONCE(scx_bypass_lb_intv_us);
4058 if (intv_us && !timer_pending(&scx_bypass_lb_timer)) {
4059 scx_bypass_lb_timer.expires =
4060 jiffies + usecs_to_jiffies(intv_us);
4061 add_timer_global(&scx_bypass_lb_timer);
4062 }
4063 } else {
4064 WRITE_ONCE(scx_bypass_depth, scx_bypass_depth - 1);
4065 WARN_ON_ONCE(scx_bypass_depth < 0);
4066 if (scx_bypass_depth != 0)
4067 goto unlock;
4068 WRITE_ONCE(scx_slice_dfl, SCX_SLICE_DFL);
4069 if (sch)
4070 scx_add_event(sch, SCX_EV_BYPASS_DURATION,
4071 ktime_get_ns() - bypass_timestamp);
4072 }
4073
4074 /*
4075 * No task property is changing. We just need to make sure all currently
4076 * queued tasks are re-queued according to the new scx_rq_bypassing()
4077 * state. As an optimization, walk each rq's runnable_list instead of
4078 * the scx_tasks list.
4079 *
4080 * This function can't trust the scheduler and thus can't use
4081 * cpus_read_lock(). Walk all possible CPUs instead of online.
4082 */
4083 for_each_possible_cpu(cpu) {
4084 struct rq *rq = cpu_rq(cpu);
4085 struct task_struct *p, *n;
4086
4087 raw_spin_rq_lock(rq);
4088
4089 if (bypass) {
4090 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING);
4091 rq->scx.flags |= SCX_RQ_BYPASSING;
4092 } else {
4093 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING));
4094 rq->scx.flags &= ~SCX_RQ_BYPASSING;
4095 }
4096
4097 /*
4098 * We need to guarantee that no tasks are on the BPF scheduler
4099 * while bypassing. Either we see enabled or the enable path
4100 * sees scx_rq_bypassing() before moving tasks to SCX.
4101 */
4102 if (!scx_enabled()) {
4103 raw_spin_rq_unlock(rq);
4104 continue;
4105 }
4106
4107 /*
4108 * The use of list_for_each_entry_safe_reverse() is required
4109 * because each task is going to be removed from and added back
4110 * to the runnable_list during iteration. Because they're added
4111 * to the tail of the list, safe reverse iteration can still
4112 * visit all nodes.
4113 */
4114 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list,
4115 scx.runnable_node) {
4116 /* cycling deq/enq is enough, see the function comment */
4117 scoped_guard (sched_change, p, DEQUEUE_SAVE | DEQUEUE_MOVE) {
4118 /* nothing */ ;
4119 }
4120 }
4121
4122 /* resched to restore ticks and idle state */
4123 if (cpu_online(cpu) || cpu == smp_processor_id())
4124 resched_curr(rq);
4125
4126 raw_spin_rq_unlock(rq);
4127 }
4128
4129 unlock:
4130 raw_spin_unlock_irqrestore(&bypass_lock, flags);
4131 }
4132
free_exit_info(struct scx_exit_info * ei)4133 static void free_exit_info(struct scx_exit_info *ei)
4134 {
4135 kvfree(ei->dump);
4136 kfree(ei->msg);
4137 kfree(ei->bt);
4138 kfree(ei);
4139 }
4140
alloc_exit_info(size_t exit_dump_len)4141 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len)
4142 {
4143 struct scx_exit_info *ei;
4144
4145 ei = kzalloc(sizeof(*ei), GFP_KERNEL);
4146 if (!ei)
4147 return NULL;
4148
4149 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL);
4150 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL);
4151 ei->dump = kvzalloc(exit_dump_len, GFP_KERNEL);
4152
4153 if (!ei->bt || !ei->msg || !ei->dump) {
4154 free_exit_info(ei);
4155 return NULL;
4156 }
4157
4158 return ei;
4159 }
4160
scx_exit_reason(enum scx_exit_kind kind)4161 static const char *scx_exit_reason(enum scx_exit_kind kind)
4162 {
4163 switch (kind) {
4164 case SCX_EXIT_UNREG:
4165 return "unregistered from user space";
4166 case SCX_EXIT_UNREG_BPF:
4167 return "unregistered from BPF";
4168 case SCX_EXIT_UNREG_KERN:
4169 return "unregistered from the main kernel";
4170 case SCX_EXIT_SYSRQ:
4171 return "disabled by sysrq-S";
4172 case SCX_EXIT_ERROR:
4173 return "runtime error";
4174 case SCX_EXIT_ERROR_BPF:
4175 return "scx_bpf_error";
4176 case SCX_EXIT_ERROR_STALL:
4177 return "runnable task stall";
4178 default:
4179 return "<UNKNOWN>";
4180 }
4181 }
4182
free_kick_syncs(void)4183 static void free_kick_syncs(void)
4184 {
4185 int cpu;
4186
4187 for_each_possible_cpu(cpu) {
4188 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu);
4189 struct scx_kick_syncs *to_free;
4190
4191 to_free = rcu_replace_pointer(*ksyncs, NULL, true);
4192 if (to_free)
4193 kvfree_rcu(to_free, rcu);
4194 }
4195 }
4196
scx_disable_workfn(struct kthread_work * work)4197 static void scx_disable_workfn(struct kthread_work *work)
4198 {
4199 struct scx_sched *sch = container_of(work, struct scx_sched, disable_work);
4200 struct scx_exit_info *ei = sch->exit_info;
4201 struct scx_task_iter sti;
4202 struct task_struct *p;
4203 int kind, cpu;
4204
4205 kind = atomic_read(&sch->exit_kind);
4206 while (true) {
4207 if (kind == SCX_EXIT_DONE) /* already disabled? */
4208 return;
4209 WARN_ON_ONCE(kind == SCX_EXIT_NONE);
4210 if (atomic_try_cmpxchg(&sch->exit_kind, &kind, SCX_EXIT_DONE))
4211 break;
4212 }
4213 ei->kind = kind;
4214 ei->reason = scx_exit_reason(ei->kind);
4215
4216 /* guarantee forward progress by bypassing scx_ops */
4217 scx_bypass(true);
4218 WRITE_ONCE(scx_aborting, false);
4219
4220 switch (scx_set_enable_state(SCX_DISABLING)) {
4221 case SCX_DISABLING:
4222 WARN_ONCE(true, "sched_ext: duplicate disabling instance?");
4223 break;
4224 case SCX_DISABLED:
4225 pr_warn("sched_ext: ops error detected without ops (%s)\n",
4226 sch->exit_info->msg);
4227 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
4228 goto done;
4229 default:
4230 break;
4231 }
4232
4233 /*
4234 * Here, every runnable task is guaranteed to make forward progress and
4235 * we can safely use blocking synchronization constructs. Actually
4236 * disable ops.
4237 */
4238 mutex_lock(&scx_enable_mutex);
4239
4240 static_branch_disable(&__scx_switched_all);
4241 WRITE_ONCE(scx_switching_all, false);
4242
4243 /*
4244 * Shut down cgroup support before tasks so that the cgroup attach path
4245 * doesn't race against scx_exit_task().
4246 */
4247 scx_cgroup_lock();
4248 scx_cgroup_exit(sch);
4249 scx_cgroup_unlock();
4250
4251 /*
4252 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones
4253 * must be switched out and exited synchronously.
4254 */
4255 percpu_down_write(&scx_fork_rwsem);
4256
4257 scx_init_task_enabled = false;
4258
4259 scx_task_iter_start(&sti);
4260 while ((p = scx_task_iter_next_locked(&sti))) {
4261 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
4262 const struct sched_class *old_class = p->sched_class;
4263 const struct sched_class *new_class = scx_setscheduler_class(p);
4264
4265 update_rq_clock(task_rq(p));
4266
4267 if (old_class != new_class)
4268 queue_flags |= DEQUEUE_CLASS;
4269
4270 scoped_guard (sched_change, p, queue_flags) {
4271 p->sched_class = new_class;
4272 }
4273
4274 scx_exit_task(p);
4275 }
4276 scx_task_iter_stop(&sti);
4277 percpu_up_write(&scx_fork_rwsem);
4278
4279 /*
4280 * Invalidate all the rq clocks to prevent getting outdated
4281 * rq clocks from a previous scx scheduler.
4282 */
4283 for_each_possible_cpu(cpu) {
4284 struct rq *rq = cpu_rq(cpu);
4285 scx_rq_clock_invalidate(rq);
4286 }
4287
4288 /* no task is on scx, turn off all the switches and flush in-progress calls */
4289 static_branch_disable(&__scx_enabled);
4290 bitmap_zero(sch->has_op, SCX_OPI_END);
4291 scx_idle_disable();
4292 synchronize_rcu();
4293
4294 if (ei->kind >= SCX_EXIT_ERROR) {
4295 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4296 sch->ops.name, ei->reason);
4297
4298 if (ei->msg[0] != '\0')
4299 pr_err("sched_ext: %s: %s\n", sch->ops.name, ei->msg);
4300 #ifdef CONFIG_STACKTRACE
4301 stack_trace_print(ei->bt, ei->bt_len, 2);
4302 #endif
4303 } else {
4304 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n",
4305 sch->ops.name, ei->reason);
4306 }
4307
4308 if (sch->ops.exit)
4309 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, exit, NULL, ei);
4310
4311 cancel_delayed_work_sync(&scx_watchdog_work);
4312
4313 /*
4314 * scx_root clearing must be inside cpus_read_lock(). See
4315 * handle_hotplug().
4316 */
4317 cpus_read_lock();
4318 RCU_INIT_POINTER(scx_root, NULL);
4319 cpus_read_unlock();
4320
4321 /*
4322 * Delete the kobject from the hierarchy synchronously. Otherwise, sysfs
4323 * could observe an object of the same name still in the hierarchy when
4324 * the next scheduler is loaded.
4325 */
4326 kobject_del(&sch->kobj);
4327
4328 free_percpu(scx_dsp_ctx);
4329 scx_dsp_ctx = NULL;
4330 scx_dsp_max_batch = 0;
4331 free_kick_syncs();
4332
4333 if (scx_bypassed_for_enable) {
4334 scx_bypassed_for_enable = false;
4335 scx_bypass(false);
4336 }
4337
4338 mutex_unlock(&scx_enable_mutex);
4339
4340 WARN_ON_ONCE(scx_set_enable_state(SCX_DISABLED) != SCX_DISABLING);
4341 done:
4342 scx_bypass(false);
4343 }
4344
scx_claim_exit(struct scx_sched * sch,enum scx_exit_kind kind)4345 static bool scx_claim_exit(struct scx_sched *sch, enum scx_exit_kind kind)
4346 {
4347 int none = SCX_EXIT_NONE;
4348
4349 if (!atomic_try_cmpxchg(&sch->exit_kind, &none, kind))
4350 return false;
4351
4352 /*
4353 * Some CPUs may be trapped in the dispatch paths. Set the aborting
4354 * flag to break potential live-lock scenarios, ensuring we can
4355 * successfully reach scx_bypass().
4356 */
4357 WRITE_ONCE(scx_aborting, true);
4358 return true;
4359 }
4360
scx_disable(enum scx_exit_kind kind)4361 static void scx_disable(enum scx_exit_kind kind)
4362 {
4363 struct scx_sched *sch;
4364
4365 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE))
4366 kind = SCX_EXIT_ERROR;
4367
4368 rcu_read_lock();
4369 sch = rcu_dereference(scx_root);
4370 if (sch) {
4371 scx_claim_exit(sch, kind);
4372 kthread_queue_work(sch->helper, &sch->disable_work);
4373 }
4374 rcu_read_unlock();
4375 }
4376
dump_newline(struct seq_buf * s)4377 static void dump_newline(struct seq_buf *s)
4378 {
4379 trace_sched_ext_dump("");
4380
4381 /* @s may be zero sized and seq_buf triggers WARN if so */
4382 if (s->size)
4383 seq_buf_putc(s, '\n');
4384 }
4385
dump_line(struct seq_buf * s,const char * fmt,...)4386 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...)
4387 {
4388 va_list args;
4389
4390 #ifdef CONFIG_TRACEPOINTS
4391 if (trace_sched_ext_dump_enabled()) {
4392 /* protected by scx_dump_state()::dump_lock */
4393 static char line_buf[SCX_EXIT_MSG_LEN];
4394
4395 va_start(args, fmt);
4396 vscnprintf(line_buf, sizeof(line_buf), fmt, args);
4397 va_end(args);
4398
4399 trace_sched_ext_dump(line_buf);
4400 }
4401 #endif
4402 /* @s may be zero sized and seq_buf triggers WARN if so */
4403 if (s->size) {
4404 va_start(args, fmt);
4405 seq_buf_vprintf(s, fmt, args);
4406 va_end(args);
4407
4408 seq_buf_putc(s, '\n');
4409 }
4410 }
4411
dump_stack_trace(struct seq_buf * s,const char * prefix,const unsigned long * bt,unsigned int len)4412 static void dump_stack_trace(struct seq_buf *s, const char *prefix,
4413 const unsigned long *bt, unsigned int len)
4414 {
4415 unsigned int i;
4416
4417 for (i = 0; i < len; i++)
4418 dump_line(s, "%s%pS", prefix, (void *)bt[i]);
4419 }
4420
ops_dump_init(struct seq_buf * s,const char * prefix)4421 static void ops_dump_init(struct seq_buf *s, const char *prefix)
4422 {
4423 struct scx_dump_data *dd = &scx_dump_data;
4424
4425 lockdep_assert_irqs_disabled();
4426
4427 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */
4428 dd->first = true;
4429 dd->cursor = 0;
4430 dd->s = s;
4431 dd->prefix = prefix;
4432 }
4433
ops_dump_flush(void)4434 static void ops_dump_flush(void)
4435 {
4436 struct scx_dump_data *dd = &scx_dump_data;
4437 char *line = dd->buf.line;
4438
4439 if (!dd->cursor)
4440 return;
4441
4442 /*
4443 * There's something to flush and this is the first line. Insert a blank
4444 * line to distinguish ops dump.
4445 */
4446 if (dd->first) {
4447 dump_newline(dd->s);
4448 dd->first = false;
4449 }
4450
4451 /*
4452 * There may be multiple lines in $line. Scan and emit each line
4453 * separately.
4454 */
4455 while (true) {
4456 char *end = line;
4457 char c;
4458
4459 while (*end != '\n' && *end != '\0')
4460 end++;
4461
4462 /*
4463 * If $line overflowed, it may not have newline at the end.
4464 * Always emit with a newline.
4465 */
4466 c = *end;
4467 *end = '\0';
4468 dump_line(dd->s, "%s%s", dd->prefix, line);
4469 if (c == '\0')
4470 break;
4471
4472 /* move to the next line */
4473 end++;
4474 if (*end == '\0')
4475 break;
4476 line = end;
4477 }
4478
4479 dd->cursor = 0;
4480 }
4481
ops_dump_exit(void)4482 static void ops_dump_exit(void)
4483 {
4484 ops_dump_flush();
4485 scx_dump_data.cpu = -1;
4486 }
4487
scx_dump_task(struct seq_buf * s,struct scx_dump_ctx * dctx,struct task_struct * p,char marker)4488 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx,
4489 struct task_struct *p, char marker)
4490 {
4491 static unsigned long bt[SCX_EXIT_BT_LEN];
4492 struct scx_sched *sch = scx_root;
4493 char dsq_id_buf[19] = "(n/a)";
4494 unsigned long ops_state = atomic_long_read(&p->scx.ops_state);
4495 unsigned int bt_len = 0;
4496
4497 if (p->scx.dsq)
4498 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx",
4499 (unsigned long long)p->scx.dsq->id);
4500
4501 dump_newline(s);
4502 dump_line(s, " %c%c %s[%d] %+ldms",
4503 marker, task_state_to_char(p), p->comm, p->pid,
4504 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies));
4505 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu",
4506 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK,
4507 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK,
4508 ops_state >> SCX_OPSS_QSEQ_SHIFT);
4509 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s",
4510 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf);
4511 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u",
4512 p->scx.dsq_vtime, p->scx.slice, p->scx.weight);
4513 dump_line(s, " cpus=%*pb no_mig=%u", cpumask_pr_args(p->cpus_ptr),
4514 p->migration_disabled);
4515
4516 if (SCX_HAS_OP(sch, dump_task)) {
4517 ops_dump_init(s, " ");
4518 SCX_CALL_OP(sch, SCX_KF_REST, dump_task, NULL, dctx, p);
4519 ops_dump_exit();
4520 }
4521
4522 #ifdef CONFIG_STACKTRACE
4523 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1);
4524 #endif
4525 if (bt_len) {
4526 dump_newline(s);
4527 dump_stack_trace(s, " ", bt, bt_len);
4528 }
4529 }
4530
scx_dump_state(struct scx_exit_info * ei,size_t dump_len)4531 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len)
4532 {
4533 static DEFINE_SPINLOCK(dump_lock);
4534 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n";
4535 struct scx_sched *sch = scx_root;
4536 struct scx_dump_ctx dctx = {
4537 .kind = ei->kind,
4538 .exit_code = ei->exit_code,
4539 .reason = ei->reason,
4540 .at_ns = ktime_get_ns(),
4541 .at_jiffies = jiffies,
4542 };
4543 struct seq_buf s;
4544 struct scx_event_stats events;
4545 unsigned long flags;
4546 char *buf;
4547 int cpu;
4548
4549 spin_lock_irqsave(&dump_lock, flags);
4550
4551 seq_buf_init(&s, ei->dump, dump_len);
4552
4553 if (ei->kind == SCX_EXIT_NONE) {
4554 dump_line(&s, "Debug dump triggered by %s", ei->reason);
4555 } else {
4556 dump_line(&s, "%s[%d] triggered exit kind %d:",
4557 current->comm, current->pid, ei->kind);
4558 dump_line(&s, " %s (%s)", ei->reason, ei->msg);
4559 dump_newline(&s);
4560 dump_line(&s, "Backtrace:");
4561 dump_stack_trace(&s, " ", ei->bt, ei->bt_len);
4562 }
4563
4564 if (SCX_HAS_OP(sch, dump)) {
4565 ops_dump_init(&s, "");
4566 SCX_CALL_OP(sch, SCX_KF_UNLOCKED, dump, NULL, &dctx);
4567 ops_dump_exit();
4568 }
4569
4570 dump_newline(&s);
4571 dump_line(&s, "CPU states");
4572 dump_line(&s, "----------");
4573
4574 for_each_possible_cpu(cpu) {
4575 struct rq *rq = cpu_rq(cpu);
4576 struct rq_flags rf;
4577 struct task_struct *p;
4578 struct seq_buf ns;
4579 size_t avail, used;
4580 bool idle;
4581
4582 rq_lock_irqsave(rq, &rf);
4583
4584 idle = list_empty(&rq->scx.runnable_list) &&
4585 rq->curr->sched_class == &idle_sched_class;
4586
4587 if (idle && !SCX_HAS_OP(sch, dump_cpu))
4588 goto next;
4589
4590 /*
4591 * We don't yet know whether ops.dump_cpu() will produce output
4592 * and we may want to skip the default CPU dump if it doesn't.
4593 * Use a nested seq_buf to generate the standard dump so that we
4594 * can decide whether to commit later.
4595 */
4596 avail = seq_buf_get_buf(&s, &buf);
4597 seq_buf_init(&ns, buf, avail);
4598
4599 dump_newline(&ns);
4600 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu ksync=%lu",
4601 cpu, rq->scx.nr_running, rq->scx.flags,
4602 rq->scx.cpu_released, rq->scx.ops_qseq,
4603 rq->scx.kick_sync);
4604 dump_line(&ns, " curr=%s[%d] class=%ps",
4605 rq->curr->comm, rq->curr->pid,
4606 rq->curr->sched_class);
4607 if (!cpumask_empty(rq->scx.cpus_to_kick))
4608 dump_line(&ns, " cpus_to_kick : %*pb",
4609 cpumask_pr_args(rq->scx.cpus_to_kick));
4610 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle))
4611 dump_line(&ns, " idle_to_kick : %*pb",
4612 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle));
4613 if (!cpumask_empty(rq->scx.cpus_to_preempt))
4614 dump_line(&ns, " cpus_to_preempt: %*pb",
4615 cpumask_pr_args(rq->scx.cpus_to_preempt));
4616 if (!cpumask_empty(rq->scx.cpus_to_wait))
4617 dump_line(&ns, " cpus_to_wait : %*pb",
4618 cpumask_pr_args(rq->scx.cpus_to_wait));
4619
4620 used = seq_buf_used(&ns);
4621 if (SCX_HAS_OP(sch, dump_cpu)) {
4622 ops_dump_init(&ns, " ");
4623 SCX_CALL_OP(sch, SCX_KF_REST, dump_cpu, NULL,
4624 &dctx, cpu, idle);
4625 ops_dump_exit();
4626 }
4627
4628 /*
4629 * If idle && nothing generated by ops.dump_cpu(), there's
4630 * nothing interesting. Skip.
4631 */
4632 if (idle && used == seq_buf_used(&ns))
4633 goto next;
4634
4635 /*
4636 * $s may already have overflowed when $ns was created. If so,
4637 * calling commit on it will trigger BUG.
4638 */
4639 if (avail) {
4640 seq_buf_commit(&s, seq_buf_used(&ns));
4641 if (seq_buf_has_overflowed(&ns))
4642 seq_buf_set_overflow(&s);
4643 }
4644
4645 if (rq->curr->sched_class == &ext_sched_class)
4646 scx_dump_task(&s, &dctx, rq->curr, '*');
4647
4648 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node)
4649 scx_dump_task(&s, &dctx, p, ' ');
4650 next:
4651 rq_unlock_irqrestore(rq, &rf);
4652 }
4653
4654 dump_newline(&s);
4655 dump_line(&s, "Event counters");
4656 dump_line(&s, "--------------");
4657
4658 scx_read_events(sch, &events);
4659 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK);
4660 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
4661 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST);
4662 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING);
4663 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
4664 scx_dump_event(s, &events, SCX_EV_REFILL_SLICE_DFL);
4665 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION);
4666 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH);
4667 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE);
4668
4669 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker))
4670 memcpy(ei->dump + dump_len - sizeof(trunc_marker),
4671 trunc_marker, sizeof(trunc_marker));
4672
4673 spin_unlock_irqrestore(&dump_lock, flags);
4674 }
4675
scx_error_irq_workfn(struct irq_work * irq_work)4676 static void scx_error_irq_workfn(struct irq_work *irq_work)
4677 {
4678 struct scx_sched *sch = container_of(irq_work, struct scx_sched, error_irq_work);
4679 struct scx_exit_info *ei = sch->exit_info;
4680
4681 if (ei->kind >= SCX_EXIT_ERROR)
4682 scx_dump_state(ei, sch->ops.exit_dump_len);
4683
4684 kthread_queue_work(sch->helper, &sch->disable_work);
4685 }
4686
scx_vexit(struct scx_sched * sch,enum scx_exit_kind kind,s64 exit_code,const char * fmt,va_list args)4687 static bool scx_vexit(struct scx_sched *sch,
4688 enum scx_exit_kind kind, s64 exit_code,
4689 const char *fmt, va_list args)
4690 {
4691 struct scx_exit_info *ei = sch->exit_info;
4692
4693 if (!scx_claim_exit(sch, kind))
4694 return false;
4695
4696 ei->exit_code = exit_code;
4697 #ifdef CONFIG_STACKTRACE
4698 if (kind >= SCX_EXIT_ERROR)
4699 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1);
4700 #endif
4701 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args);
4702
4703 /*
4704 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again
4705 * in scx_disable_workfn().
4706 */
4707 ei->kind = kind;
4708 ei->reason = scx_exit_reason(ei->kind);
4709
4710 irq_work_queue(&sch->error_irq_work);
4711 return true;
4712 }
4713
alloc_kick_syncs(void)4714 static int alloc_kick_syncs(void)
4715 {
4716 int cpu;
4717
4718 /*
4719 * Allocate per-CPU arrays sized by nr_cpu_ids. Use kvzalloc as size
4720 * can exceed percpu allocator limits on large machines.
4721 */
4722 for_each_possible_cpu(cpu) {
4723 struct scx_kick_syncs **ksyncs = per_cpu_ptr(&scx_kick_syncs, cpu);
4724 struct scx_kick_syncs *new_ksyncs;
4725
4726 WARN_ON_ONCE(rcu_access_pointer(*ksyncs));
4727
4728 new_ksyncs = kvzalloc_node(struct_size(new_ksyncs, syncs, nr_cpu_ids),
4729 GFP_KERNEL, cpu_to_node(cpu));
4730 if (!new_ksyncs) {
4731 free_kick_syncs();
4732 return -ENOMEM;
4733 }
4734
4735 rcu_assign_pointer(*ksyncs, new_ksyncs);
4736 }
4737
4738 return 0;
4739 }
4740
scx_alloc_and_add_sched(struct sched_ext_ops * ops)4741 static struct scx_sched *scx_alloc_and_add_sched(struct sched_ext_ops *ops)
4742 {
4743 struct scx_sched *sch;
4744 int node, ret;
4745
4746 sch = kzalloc(sizeof(*sch), GFP_KERNEL);
4747 if (!sch)
4748 return ERR_PTR(-ENOMEM);
4749
4750 sch->exit_info = alloc_exit_info(ops->exit_dump_len);
4751 if (!sch->exit_info) {
4752 ret = -ENOMEM;
4753 goto err_free_sch;
4754 }
4755
4756 ret = rhashtable_init(&sch->dsq_hash, &dsq_hash_params);
4757 if (ret < 0)
4758 goto err_free_ei;
4759
4760 sch->global_dsqs = kcalloc(nr_node_ids, sizeof(sch->global_dsqs[0]),
4761 GFP_KERNEL);
4762 if (!sch->global_dsqs) {
4763 ret = -ENOMEM;
4764 goto err_free_hash;
4765 }
4766
4767 for_each_node_state(node, N_POSSIBLE) {
4768 struct scx_dispatch_q *dsq;
4769
4770 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node);
4771 if (!dsq) {
4772 ret = -ENOMEM;
4773 goto err_free_gdsqs;
4774 }
4775
4776 init_dsq(dsq, SCX_DSQ_GLOBAL);
4777 sch->global_dsqs[node] = dsq;
4778 }
4779
4780 sch->pcpu = alloc_percpu(struct scx_sched_pcpu);
4781 if (!sch->pcpu) {
4782 ret = -ENOMEM;
4783 goto err_free_gdsqs;
4784 }
4785
4786 sch->helper = kthread_run_worker(0, "sched_ext_helper");
4787 if (IS_ERR(sch->helper)) {
4788 ret = PTR_ERR(sch->helper);
4789 goto err_free_pcpu;
4790 }
4791
4792 sched_set_fifo(sch->helper->task);
4793
4794 atomic_set(&sch->exit_kind, SCX_EXIT_NONE);
4795 init_irq_work(&sch->error_irq_work, scx_error_irq_workfn);
4796 kthread_init_work(&sch->disable_work, scx_disable_workfn);
4797 sch->ops = *ops;
4798 ops->priv = sch;
4799
4800 sch->kobj.kset = scx_kset;
4801 ret = kobject_init_and_add(&sch->kobj, &scx_ktype, NULL, "root");
4802 if (ret < 0)
4803 goto err_stop_helper;
4804
4805 return sch;
4806
4807 err_stop_helper:
4808 kthread_destroy_worker(sch->helper);
4809 err_free_pcpu:
4810 free_percpu(sch->pcpu);
4811 err_free_gdsqs:
4812 for_each_node_state(node, N_POSSIBLE)
4813 kfree(sch->global_dsqs[node]);
4814 kfree(sch->global_dsqs);
4815 err_free_hash:
4816 rhashtable_free_and_destroy(&sch->dsq_hash, NULL, NULL);
4817 err_free_ei:
4818 free_exit_info(sch->exit_info);
4819 err_free_sch:
4820 kfree(sch);
4821 return ERR_PTR(ret);
4822 }
4823
check_hotplug_seq(struct scx_sched * sch,const struct sched_ext_ops * ops)4824 static int check_hotplug_seq(struct scx_sched *sch,
4825 const struct sched_ext_ops *ops)
4826 {
4827 unsigned long long global_hotplug_seq;
4828
4829 /*
4830 * If a hotplug event has occurred between when a scheduler was
4831 * initialized, and when we were able to attach, exit and notify user
4832 * space about it.
4833 */
4834 if (ops->hotplug_seq) {
4835 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq);
4836 if (ops->hotplug_seq != global_hotplug_seq) {
4837 scx_exit(sch, SCX_EXIT_UNREG_KERN,
4838 SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG,
4839 "expected hotplug seq %llu did not match actual %llu",
4840 ops->hotplug_seq, global_hotplug_seq);
4841 return -EBUSY;
4842 }
4843 }
4844
4845 return 0;
4846 }
4847
validate_ops(struct scx_sched * sch,const struct sched_ext_ops * ops)4848 static int validate_ops(struct scx_sched *sch, const struct sched_ext_ops *ops)
4849 {
4850 /*
4851 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the
4852 * ops.enqueue() callback isn't implemented.
4853 */
4854 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) {
4855 scx_error(sch, "SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented");
4856 return -EINVAL;
4857 }
4858
4859 /*
4860 * SCX_OPS_BUILTIN_IDLE_PER_NODE requires built-in CPU idle
4861 * selection policy to be enabled.
4862 */
4863 if ((ops->flags & SCX_OPS_BUILTIN_IDLE_PER_NODE) &&
4864 (ops->update_idle && !(ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE))) {
4865 scx_error(sch, "SCX_OPS_BUILTIN_IDLE_PER_NODE requires CPU idle selection enabled");
4866 return -EINVAL;
4867 }
4868
4869 if (ops->flags & SCX_OPS_HAS_CGROUP_WEIGHT)
4870 pr_warn("SCX_OPS_HAS_CGROUP_WEIGHT is deprecated and a noop\n");
4871
4872 if (ops->cpu_acquire || ops->cpu_release)
4873 pr_warn("ops->cpu_acquire/release() are deprecated, use sched_switch TP instead\n");
4874
4875 return 0;
4876 }
4877
scx_enable(struct sched_ext_ops * ops,struct bpf_link * link)4878 static int scx_enable(struct sched_ext_ops *ops, struct bpf_link *link)
4879 {
4880 struct scx_sched *sch;
4881 struct scx_task_iter sti;
4882 struct task_struct *p;
4883 unsigned long timeout;
4884 int i, cpu, ret;
4885
4886 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN),
4887 cpu_possible_mask)) {
4888 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n");
4889 return -EINVAL;
4890 }
4891
4892 mutex_lock(&scx_enable_mutex);
4893
4894 if (scx_enable_state() != SCX_DISABLED) {
4895 ret = -EBUSY;
4896 goto err_unlock;
4897 }
4898
4899 ret = alloc_kick_syncs();
4900 if (ret)
4901 goto err_unlock;
4902
4903 sch = scx_alloc_and_add_sched(ops);
4904 if (IS_ERR(sch)) {
4905 ret = PTR_ERR(sch);
4906 goto err_free_ksyncs;
4907 }
4908
4909 /*
4910 * Transition to ENABLING and clear exit info to arm the disable path.
4911 * Failure triggers full disabling from here on.
4912 */
4913 WARN_ON_ONCE(scx_set_enable_state(SCX_ENABLING) != SCX_DISABLED);
4914 WARN_ON_ONCE(scx_root);
4915 if (WARN_ON_ONCE(READ_ONCE(scx_aborting)))
4916 WRITE_ONCE(scx_aborting, false);
4917
4918 atomic_long_set(&scx_nr_rejected, 0);
4919
4920 for_each_possible_cpu(cpu)
4921 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE;
4922
4923 /*
4924 * Keep CPUs stable during enable so that the BPF scheduler can track
4925 * online CPUs by watching ->on/offline_cpu() after ->init().
4926 */
4927 cpus_read_lock();
4928
4929 /*
4930 * Make the scheduler instance visible. Must be inside cpus_read_lock().
4931 * See handle_hotplug().
4932 */
4933 rcu_assign_pointer(scx_root, sch);
4934
4935 scx_idle_enable(ops);
4936
4937 if (sch->ops.init) {
4938 ret = SCX_CALL_OP_RET(sch, SCX_KF_UNLOCKED, init, NULL);
4939 if (ret) {
4940 ret = ops_sanitize_err(sch, "init", ret);
4941 cpus_read_unlock();
4942 scx_error(sch, "ops.init() failed (%d)", ret);
4943 goto err_disable;
4944 }
4945 sch->exit_info->flags |= SCX_EFLAG_INITIALIZED;
4946 }
4947
4948 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++)
4949 if (((void (**)(void))ops)[i])
4950 set_bit(i, sch->has_op);
4951
4952 ret = check_hotplug_seq(sch, ops);
4953 if (ret) {
4954 cpus_read_unlock();
4955 goto err_disable;
4956 }
4957 scx_idle_update_selcpu_topology(ops);
4958
4959 cpus_read_unlock();
4960
4961 ret = validate_ops(sch, ops);
4962 if (ret)
4963 goto err_disable;
4964
4965 WARN_ON_ONCE(scx_dsp_ctx);
4966 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH;
4967 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf,
4968 scx_dsp_max_batch),
4969 __alignof__(struct scx_dsp_ctx));
4970 if (!scx_dsp_ctx) {
4971 ret = -ENOMEM;
4972 goto err_disable;
4973 }
4974
4975 if (ops->timeout_ms)
4976 timeout = msecs_to_jiffies(ops->timeout_ms);
4977 else
4978 timeout = SCX_WATCHDOG_MAX_TIMEOUT;
4979
4980 WRITE_ONCE(scx_watchdog_timeout, timeout);
4981 WRITE_ONCE(scx_watchdog_timestamp, jiffies);
4982 queue_delayed_work(system_unbound_wq, &scx_watchdog_work,
4983 scx_watchdog_timeout / 2);
4984
4985 /*
4986 * Once __scx_enabled is set, %current can be switched to SCX anytime.
4987 * This can lead to stalls as some BPF schedulers (e.g. userspace
4988 * scheduling) may not function correctly before all tasks are switched.
4989 * Init in bypass mode to guarantee forward progress.
4990 */
4991 scx_bypass(true);
4992 scx_bypassed_for_enable = true;
4993
4994 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++)
4995 if (((void (**)(void))ops)[i])
4996 set_bit(i, sch->has_op);
4997
4998 if (sch->ops.cpu_acquire || sch->ops.cpu_release)
4999 sch->ops.flags |= SCX_OPS_HAS_CPU_PREEMPT;
5000
5001 /*
5002 * Lock out forks, cgroup on/offlining and moves before opening the
5003 * floodgate so that they don't wander into the operations prematurely.
5004 */
5005 percpu_down_write(&scx_fork_rwsem);
5006
5007 WARN_ON_ONCE(scx_init_task_enabled);
5008 scx_init_task_enabled = true;
5009
5010 /*
5011 * Enable ops for every task. Fork is excluded by scx_fork_rwsem
5012 * preventing new tasks from being added. No need to exclude tasks
5013 * leaving as sched_ext_free() can handle both prepped and enabled
5014 * tasks. Prep all tasks first and then enable them with preemption
5015 * disabled.
5016 *
5017 * All cgroups should be initialized before scx_init_task() so that the
5018 * BPF scheduler can reliably track each task's cgroup membership from
5019 * scx_init_task(). Lock out cgroup on/offlining and task migrations
5020 * while tasks are being initialized so that scx_cgroup_can_attach()
5021 * never sees uninitialized tasks.
5022 */
5023 scx_cgroup_lock();
5024 ret = scx_cgroup_init(sch);
5025 if (ret)
5026 goto err_disable_unlock_all;
5027
5028 scx_task_iter_start(&sti);
5029 while ((p = scx_task_iter_next_locked(&sti))) {
5030 /*
5031 * @p may already be dead, have lost all its usages counts and
5032 * be waiting for RCU grace period before being freed. @p can't
5033 * be initialized for SCX in such cases and should be ignored.
5034 */
5035 if (!tryget_task_struct(p))
5036 continue;
5037
5038 scx_task_iter_unlock(&sti);
5039
5040 ret = scx_init_task(p, task_group(p), false);
5041 if (ret) {
5042 put_task_struct(p);
5043 scx_task_iter_stop(&sti);
5044 scx_error(sch, "ops.init_task() failed (%d) for %s[%d]",
5045 ret, p->comm, p->pid);
5046 goto err_disable_unlock_all;
5047 }
5048
5049 scx_set_task_state(p, SCX_TASK_READY);
5050
5051 put_task_struct(p);
5052 }
5053 scx_task_iter_stop(&sti);
5054 scx_cgroup_unlock();
5055 percpu_up_write(&scx_fork_rwsem);
5056
5057 /*
5058 * All tasks are READY. It's safe to turn on scx_enabled() and switch
5059 * all eligible tasks.
5060 */
5061 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL));
5062 static_branch_enable(&__scx_enabled);
5063
5064 /*
5065 * We're fully committed and can't fail. The task READY -> ENABLED
5066 * transitions here are synchronized against sched_ext_free() through
5067 * scx_tasks_lock.
5068 */
5069 percpu_down_write(&scx_fork_rwsem);
5070 scx_task_iter_start(&sti);
5071 while ((p = scx_task_iter_next_locked(&sti))) {
5072 unsigned int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
5073 const struct sched_class *old_class = p->sched_class;
5074 const struct sched_class *new_class = scx_setscheduler_class(p);
5075
5076 if (scx_get_task_state(p) != SCX_TASK_READY)
5077 continue;
5078
5079 if (old_class != new_class)
5080 queue_flags |= DEQUEUE_CLASS;
5081
5082 scoped_guard (sched_change, p, queue_flags) {
5083 p->scx.slice = READ_ONCE(scx_slice_dfl);
5084 p->sched_class = new_class;
5085 }
5086 }
5087 scx_task_iter_stop(&sti);
5088 percpu_up_write(&scx_fork_rwsem);
5089
5090 scx_bypassed_for_enable = false;
5091 scx_bypass(false);
5092
5093 if (!scx_tryset_enable_state(SCX_ENABLED, SCX_ENABLING)) {
5094 WARN_ON_ONCE(atomic_read(&sch->exit_kind) == SCX_EXIT_NONE);
5095 goto err_disable;
5096 }
5097
5098 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL))
5099 static_branch_enable(&__scx_switched_all);
5100
5101 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n",
5102 sch->ops.name, scx_switched_all() ? "" : " (partial)");
5103 kobject_uevent(&sch->kobj, KOBJ_ADD);
5104 mutex_unlock(&scx_enable_mutex);
5105
5106 atomic_long_inc(&scx_enable_seq);
5107
5108 return 0;
5109
5110 err_free_ksyncs:
5111 free_kick_syncs();
5112 err_unlock:
5113 mutex_unlock(&scx_enable_mutex);
5114 return ret;
5115
5116 err_disable_unlock_all:
5117 scx_cgroup_unlock();
5118 percpu_up_write(&scx_fork_rwsem);
5119 /* we'll soon enter disable path, keep bypass on */
5120 err_disable:
5121 mutex_unlock(&scx_enable_mutex);
5122 /*
5123 * Returning an error code here would not pass all the error information
5124 * to userspace. Record errno using scx_error() for cases scx_error()
5125 * wasn't already invoked and exit indicating success so that the error
5126 * is notified through ops.exit() with all the details.
5127 *
5128 * Flush scx_disable_work to ensure that error is reported before init
5129 * completion. sch's base reference will be put by bpf_scx_unreg().
5130 */
5131 scx_error(sch, "scx_enable() failed (%d)", ret);
5132 kthread_flush_work(&sch->disable_work);
5133 return 0;
5134 }
5135
5136
5137 /********************************************************************************
5138 * bpf_struct_ops plumbing.
5139 */
5140 #include <linux/bpf_verifier.h>
5141 #include <linux/bpf.h>
5142 #include <linux/btf.h>
5143
5144 static const struct btf_type *task_struct_type;
5145
bpf_scx_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5146 static bool bpf_scx_is_valid_access(int off, int size,
5147 enum bpf_access_type type,
5148 const struct bpf_prog *prog,
5149 struct bpf_insn_access_aux *info)
5150 {
5151 if (type != BPF_READ)
5152 return false;
5153 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
5154 return false;
5155 if (off % size != 0)
5156 return false;
5157
5158 return btf_ctx_access(off, size, type, prog, info);
5159 }
5160
bpf_scx_btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size)5161 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log,
5162 const struct bpf_reg_state *reg, int off,
5163 int size)
5164 {
5165 const struct btf_type *t;
5166
5167 t = btf_type_by_id(reg->btf, reg->btf_id);
5168 if (t == task_struct_type) {
5169 if (off >= offsetof(struct task_struct, scx.slice) &&
5170 off + size <= offsetofend(struct task_struct, scx.slice))
5171 return SCALAR_VALUE;
5172 if (off >= offsetof(struct task_struct, scx.dsq_vtime) &&
5173 off + size <= offsetofend(struct task_struct, scx.dsq_vtime))
5174 return SCALAR_VALUE;
5175 if (off >= offsetof(struct task_struct, scx.disallow) &&
5176 off + size <= offsetofend(struct task_struct, scx.disallow))
5177 return SCALAR_VALUE;
5178 }
5179
5180 return -EACCES;
5181 }
5182
5183 static const struct bpf_verifier_ops bpf_scx_verifier_ops = {
5184 .get_func_proto = bpf_base_func_proto,
5185 .is_valid_access = bpf_scx_is_valid_access,
5186 .btf_struct_access = bpf_scx_btf_struct_access,
5187 };
5188
bpf_scx_init_member(const struct btf_type * t,const struct btf_member * member,void * kdata,const void * udata)5189 static int bpf_scx_init_member(const struct btf_type *t,
5190 const struct btf_member *member,
5191 void *kdata, const void *udata)
5192 {
5193 const struct sched_ext_ops *uops = udata;
5194 struct sched_ext_ops *ops = kdata;
5195 u32 moff = __btf_member_bit_offset(t, member) / 8;
5196 int ret;
5197
5198 switch (moff) {
5199 case offsetof(struct sched_ext_ops, dispatch_max_batch):
5200 if (*(u32 *)(udata + moff) > INT_MAX)
5201 return -E2BIG;
5202 ops->dispatch_max_batch = *(u32 *)(udata + moff);
5203 return 1;
5204 case offsetof(struct sched_ext_ops, flags):
5205 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS)
5206 return -EINVAL;
5207 ops->flags = *(u64 *)(udata + moff);
5208 return 1;
5209 case offsetof(struct sched_ext_ops, name):
5210 ret = bpf_obj_name_cpy(ops->name, uops->name,
5211 sizeof(ops->name));
5212 if (ret < 0)
5213 return ret;
5214 if (ret == 0)
5215 return -EINVAL;
5216 return 1;
5217 case offsetof(struct sched_ext_ops, timeout_ms):
5218 if (msecs_to_jiffies(*(u32 *)(udata + moff)) >
5219 SCX_WATCHDOG_MAX_TIMEOUT)
5220 return -E2BIG;
5221 ops->timeout_ms = *(u32 *)(udata + moff);
5222 return 1;
5223 case offsetof(struct sched_ext_ops, exit_dump_len):
5224 ops->exit_dump_len =
5225 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN;
5226 return 1;
5227 case offsetof(struct sched_ext_ops, hotplug_seq):
5228 ops->hotplug_seq = *(u64 *)(udata + moff);
5229 return 1;
5230 }
5231
5232 return 0;
5233 }
5234
bpf_scx_check_member(const struct btf_type * t,const struct btf_member * member,const struct bpf_prog * prog)5235 static int bpf_scx_check_member(const struct btf_type *t,
5236 const struct btf_member *member,
5237 const struct bpf_prog *prog)
5238 {
5239 u32 moff = __btf_member_bit_offset(t, member) / 8;
5240
5241 switch (moff) {
5242 case offsetof(struct sched_ext_ops, init_task):
5243 #ifdef CONFIG_EXT_GROUP_SCHED
5244 case offsetof(struct sched_ext_ops, cgroup_init):
5245 case offsetof(struct sched_ext_ops, cgroup_exit):
5246 case offsetof(struct sched_ext_ops, cgroup_prep_move):
5247 #endif
5248 case offsetof(struct sched_ext_ops, cpu_online):
5249 case offsetof(struct sched_ext_ops, cpu_offline):
5250 case offsetof(struct sched_ext_ops, init):
5251 case offsetof(struct sched_ext_ops, exit):
5252 break;
5253 default:
5254 if (prog->sleepable)
5255 return -EINVAL;
5256 }
5257
5258 return 0;
5259 }
5260
bpf_scx_reg(void * kdata,struct bpf_link * link)5261 static int bpf_scx_reg(void *kdata, struct bpf_link *link)
5262 {
5263 return scx_enable(kdata, link);
5264 }
5265
bpf_scx_unreg(void * kdata,struct bpf_link * link)5266 static void bpf_scx_unreg(void *kdata, struct bpf_link *link)
5267 {
5268 struct sched_ext_ops *ops = kdata;
5269 struct scx_sched *sch = ops->priv;
5270
5271 scx_disable(SCX_EXIT_UNREG);
5272 kthread_flush_work(&sch->disable_work);
5273 kobject_put(&sch->kobj);
5274 }
5275
bpf_scx_init(struct btf * btf)5276 static int bpf_scx_init(struct btf *btf)
5277 {
5278 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]);
5279
5280 return 0;
5281 }
5282
bpf_scx_update(void * kdata,void * old_kdata,struct bpf_link * link)5283 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link)
5284 {
5285 /*
5286 * sched_ext does not support updating the actively-loaded BPF
5287 * scheduler, as registering a BPF scheduler can always fail if the
5288 * scheduler returns an error code for e.g. ops.init(), ops.init_task(),
5289 * etc. Similarly, we can always race with unregistration happening
5290 * elsewhere, such as with sysrq.
5291 */
5292 return -EOPNOTSUPP;
5293 }
5294
bpf_scx_validate(void * kdata)5295 static int bpf_scx_validate(void *kdata)
5296 {
5297 return 0;
5298 }
5299
sched_ext_ops__select_cpu(struct task_struct * p,s32 prev_cpu,u64 wake_flags)5300 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; }
sched_ext_ops__enqueue(struct task_struct * p,u64 enq_flags)5301 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dequeue(struct task_struct * p,u64 enq_flags)5302 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__dispatch(s32 prev_cpu,struct task_struct * prev__nullable)5303 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {}
sched_ext_ops__tick(struct task_struct * p)5304 static void sched_ext_ops__tick(struct task_struct *p) {}
sched_ext_ops__runnable(struct task_struct * p,u64 enq_flags)5305 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {}
sched_ext_ops__running(struct task_struct * p)5306 static void sched_ext_ops__running(struct task_struct *p) {}
sched_ext_ops__stopping(struct task_struct * p,bool runnable)5307 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {}
sched_ext_ops__quiescent(struct task_struct * p,u64 deq_flags)5308 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {}
sched_ext_ops__yield(struct task_struct * from,struct task_struct * to__nullable)5309 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; }
sched_ext_ops__core_sched_before(struct task_struct * a,struct task_struct * b)5310 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; }
sched_ext_ops__set_weight(struct task_struct * p,u32 weight)5311 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {}
sched_ext_ops__set_cpumask(struct task_struct * p,const struct cpumask * mask)5312 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {}
sched_ext_ops__update_idle(s32 cpu,bool idle)5313 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {}
sched_ext_ops__cpu_acquire(s32 cpu,struct scx_cpu_acquire_args * args)5314 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {}
sched_ext_ops__cpu_release(s32 cpu,struct scx_cpu_release_args * args)5315 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {}
sched_ext_ops__init_task(struct task_struct * p,struct scx_init_task_args * args)5316 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; }
sched_ext_ops__exit_task(struct task_struct * p,struct scx_exit_task_args * args)5317 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {}
sched_ext_ops__enable(struct task_struct * p)5318 static void sched_ext_ops__enable(struct task_struct *p) {}
sched_ext_ops__disable(struct task_struct * p)5319 static void sched_ext_ops__disable(struct task_struct *p) {}
5320 #ifdef CONFIG_EXT_GROUP_SCHED
sched_ext_ops__cgroup_init(struct cgroup * cgrp,struct scx_cgroup_init_args * args)5321 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; }
sched_ext_ops__cgroup_exit(struct cgroup * cgrp)5322 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {}
sched_ext_ops__cgroup_prep_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5323 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; }
sched_ext_ops__cgroup_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5324 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_cancel_move(struct task_struct * p,struct cgroup * from,struct cgroup * to)5325 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {}
sched_ext_ops__cgroup_set_weight(struct cgroup * cgrp,u32 weight)5326 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {}
sched_ext_ops__cgroup_set_bandwidth(struct cgroup * cgrp,u64 period_us,u64 quota_us,u64 burst_us)5327 static void sched_ext_ops__cgroup_set_bandwidth(struct cgroup *cgrp, u64 period_us, u64 quota_us, u64 burst_us) {}
sched_ext_ops__cgroup_set_idle(struct cgroup * cgrp,bool idle)5328 static void sched_ext_ops__cgroup_set_idle(struct cgroup *cgrp, bool idle) {}
5329 #endif
sched_ext_ops__cpu_online(s32 cpu)5330 static void sched_ext_ops__cpu_online(s32 cpu) {}
sched_ext_ops__cpu_offline(s32 cpu)5331 static void sched_ext_ops__cpu_offline(s32 cpu) {}
sched_ext_ops__init(void)5332 static s32 sched_ext_ops__init(void) { return -EINVAL; }
sched_ext_ops__exit(struct scx_exit_info * info)5333 static void sched_ext_ops__exit(struct scx_exit_info *info) {}
sched_ext_ops__dump(struct scx_dump_ctx * ctx)5334 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {}
sched_ext_ops__dump_cpu(struct scx_dump_ctx * ctx,s32 cpu,bool idle)5335 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {}
sched_ext_ops__dump_task(struct scx_dump_ctx * ctx,struct task_struct * p)5336 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {}
5337
5338 static struct sched_ext_ops __bpf_ops_sched_ext_ops = {
5339 .select_cpu = sched_ext_ops__select_cpu,
5340 .enqueue = sched_ext_ops__enqueue,
5341 .dequeue = sched_ext_ops__dequeue,
5342 .dispatch = sched_ext_ops__dispatch,
5343 .tick = sched_ext_ops__tick,
5344 .runnable = sched_ext_ops__runnable,
5345 .running = sched_ext_ops__running,
5346 .stopping = sched_ext_ops__stopping,
5347 .quiescent = sched_ext_ops__quiescent,
5348 .yield = sched_ext_ops__yield,
5349 .core_sched_before = sched_ext_ops__core_sched_before,
5350 .set_weight = sched_ext_ops__set_weight,
5351 .set_cpumask = sched_ext_ops__set_cpumask,
5352 .update_idle = sched_ext_ops__update_idle,
5353 .cpu_acquire = sched_ext_ops__cpu_acquire,
5354 .cpu_release = sched_ext_ops__cpu_release,
5355 .init_task = sched_ext_ops__init_task,
5356 .exit_task = sched_ext_ops__exit_task,
5357 .enable = sched_ext_ops__enable,
5358 .disable = sched_ext_ops__disable,
5359 #ifdef CONFIG_EXT_GROUP_SCHED
5360 .cgroup_init = sched_ext_ops__cgroup_init,
5361 .cgroup_exit = sched_ext_ops__cgroup_exit,
5362 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move,
5363 .cgroup_move = sched_ext_ops__cgroup_move,
5364 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move,
5365 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight,
5366 .cgroup_set_bandwidth = sched_ext_ops__cgroup_set_bandwidth,
5367 .cgroup_set_idle = sched_ext_ops__cgroup_set_idle,
5368 #endif
5369 .cpu_online = sched_ext_ops__cpu_online,
5370 .cpu_offline = sched_ext_ops__cpu_offline,
5371 .init = sched_ext_ops__init,
5372 .exit = sched_ext_ops__exit,
5373 .dump = sched_ext_ops__dump,
5374 .dump_cpu = sched_ext_ops__dump_cpu,
5375 .dump_task = sched_ext_ops__dump_task,
5376 };
5377
5378 static struct bpf_struct_ops bpf_sched_ext_ops = {
5379 .verifier_ops = &bpf_scx_verifier_ops,
5380 .reg = bpf_scx_reg,
5381 .unreg = bpf_scx_unreg,
5382 .check_member = bpf_scx_check_member,
5383 .init_member = bpf_scx_init_member,
5384 .init = bpf_scx_init,
5385 .update = bpf_scx_update,
5386 .validate = bpf_scx_validate,
5387 .name = "sched_ext_ops",
5388 .owner = THIS_MODULE,
5389 .cfi_stubs = &__bpf_ops_sched_ext_ops
5390 };
5391
5392
5393 /********************************************************************************
5394 * System integration and init.
5395 */
5396
sysrq_handle_sched_ext_reset(u8 key)5397 static void sysrq_handle_sched_ext_reset(u8 key)
5398 {
5399 scx_disable(SCX_EXIT_SYSRQ);
5400 }
5401
5402 static const struct sysrq_key_op sysrq_sched_ext_reset_op = {
5403 .handler = sysrq_handle_sched_ext_reset,
5404 .help_msg = "reset-sched-ext(S)",
5405 .action_msg = "Disable sched_ext and revert all tasks to CFS",
5406 .enable_mask = SYSRQ_ENABLE_RTNICE,
5407 };
5408
sysrq_handle_sched_ext_dump(u8 key)5409 static void sysrq_handle_sched_ext_dump(u8 key)
5410 {
5411 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" };
5412
5413 if (scx_enabled())
5414 scx_dump_state(&ei, 0);
5415 }
5416
5417 static const struct sysrq_key_op sysrq_sched_ext_dump_op = {
5418 .handler = sysrq_handle_sched_ext_dump,
5419 .help_msg = "dump-sched-ext(D)",
5420 .action_msg = "Trigger sched_ext debug dump",
5421 .enable_mask = SYSRQ_ENABLE_RTNICE,
5422 };
5423
can_skip_idle_kick(struct rq * rq)5424 static bool can_skip_idle_kick(struct rq *rq)
5425 {
5426 lockdep_assert_rq_held(rq);
5427
5428 /*
5429 * We can skip idle kicking if @rq is going to go through at least one
5430 * full SCX scheduling cycle before going idle. Just checking whether
5431 * curr is not idle is insufficient because we could be racing
5432 * balance_one() trying to pull the next task from a remote rq, which
5433 * may fail, and @rq may become idle afterwards.
5434 *
5435 * The race window is small and we don't and can't guarantee that @rq is
5436 * only kicked while idle anyway. Skip only when sure.
5437 */
5438 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE);
5439 }
5440
kick_one_cpu(s32 cpu,struct rq * this_rq,unsigned long * ksyncs)5441 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *ksyncs)
5442 {
5443 struct rq *rq = cpu_rq(cpu);
5444 struct scx_rq *this_scx = &this_rq->scx;
5445 const struct sched_class *cur_class;
5446 bool should_wait = false;
5447 unsigned long flags;
5448
5449 raw_spin_rq_lock_irqsave(rq, flags);
5450 cur_class = rq->curr->sched_class;
5451
5452 /*
5453 * During CPU hotplug, a CPU may depend on kicking itself to make
5454 * forward progress. Allow kicking self regardless of online state. If
5455 * @cpu is running a higher class task, we have no control over @cpu.
5456 * Skip kicking.
5457 */
5458 if ((cpu_online(cpu) || cpu == cpu_of(this_rq)) &&
5459 !sched_class_above(cur_class, &ext_sched_class)) {
5460 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) {
5461 if (cur_class == &ext_sched_class)
5462 rq->curr->scx.slice = 0;
5463 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5464 }
5465
5466 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) {
5467 if (cur_class == &ext_sched_class) {
5468 ksyncs[cpu] = rq->scx.kick_sync;
5469 should_wait = true;
5470 } else {
5471 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5472 }
5473 }
5474
5475 resched_curr(rq);
5476 } else {
5477 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt);
5478 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5479 }
5480
5481 raw_spin_rq_unlock_irqrestore(rq, flags);
5482
5483 return should_wait;
5484 }
5485
kick_one_cpu_if_idle(s32 cpu,struct rq * this_rq)5486 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq)
5487 {
5488 struct rq *rq = cpu_rq(cpu);
5489 unsigned long flags;
5490
5491 raw_spin_rq_lock_irqsave(rq, flags);
5492
5493 if (!can_skip_idle_kick(rq) &&
5494 (cpu_online(cpu) || cpu == cpu_of(this_rq)))
5495 resched_curr(rq);
5496
5497 raw_spin_rq_unlock_irqrestore(rq, flags);
5498 }
5499
kick_cpus_irq_workfn(struct irq_work * irq_work)5500 static void kick_cpus_irq_workfn(struct irq_work *irq_work)
5501 {
5502 struct rq *this_rq = this_rq();
5503 struct scx_rq *this_scx = &this_rq->scx;
5504 struct scx_kick_syncs __rcu *ksyncs_pcpu = __this_cpu_read(scx_kick_syncs);
5505 bool should_wait = false;
5506 unsigned long *ksyncs;
5507 s32 cpu;
5508
5509 if (unlikely(!ksyncs_pcpu)) {
5510 pr_warn_once("kick_cpus_irq_workfn() called with NULL scx_kick_syncs");
5511 return;
5512 }
5513
5514 ksyncs = rcu_dereference_bh(ksyncs_pcpu)->syncs;
5515
5516 for_each_cpu(cpu, this_scx->cpus_to_kick) {
5517 should_wait |= kick_one_cpu(cpu, this_rq, ksyncs);
5518 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick);
5519 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5520 }
5521
5522 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) {
5523 kick_one_cpu_if_idle(cpu, this_rq);
5524 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle);
5525 }
5526
5527 if (!should_wait)
5528 return;
5529
5530 for_each_cpu(cpu, this_scx->cpus_to_wait) {
5531 unsigned long *wait_kick_sync = &cpu_rq(cpu)->scx.kick_sync;
5532
5533 /*
5534 * Busy-wait until the task running at the time of kicking is no
5535 * longer running. This can be used to implement e.g. core
5536 * scheduling.
5537 *
5538 * smp_cond_load_acquire() pairs with store_releases in
5539 * pick_task_scx() and put_prev_task_scx(). The former breaks
5540 * the wait if SCX's scheduling path is entered even if the same
5541 * task is picked subsequently. The latter is necessary to break
5542 * the wait when $cpu is taken by a higher sched class.
5543 */
5544 if (cpu != cpu_of(this_rq))
5545 smp_cond_load_acquire(wait_kick_sync, VAL != ksyncs[cpu]);
5546
5547 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait);
5548 }
5549 }
5550
5551 /**
5552 * print_scx_info - print out sched_ext scheduler state
5553 * @log_lvl: the log level to use when printing
5554 * @p: target task
5555 *
5556 * If a sched_ext scheduler is enabled, print the name and state of the
5557 * scheduler. If @p is on sched_ext, print further information about the task.
5558 *
5559 * This function can be safely called on any task as long as the task_struct
5560 * itself is accessible. While safe, this function isn't synchronized and may
5561 * print out mixups or garbages of limited length.
5562 */
print_scx_info(const char * log_lvl,struct task_struct * p)5563 void print_scx_info(const char *log_lvl, struct task_struct *p)
5564 {
5565 struct scx_sched *sch = scx_root;
5566 enum scx_enable_state state = scx_enable_state();
5567 const char *all = READ_ONCE(scx_switching_all) ? "+all" : "";
5568 char runnable_at_buf[22] = "?";
5569 struct sched_class *class;
5570 unsigned long runnable_at;
5571
5572 if (state == SCX_DISABLED)
5573 return;
5574
5575 /*
5576 * Carefully check if the task was running on sched_ext, and then
5577 * carefully copy the time it's been runnable, and its state.
5578 */
5579 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) ||
5580 class != &ext_sched_class) {
5581 printk("%sSched_ext: %s (%s%s)", log_lvl, sch->ops.name,
5582 scx_enable_state_str[state], all);
5583 return;
5584 }
5585
5586 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at,
5587 sizeof(runnable_at)))
5588 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms",
5589 jiffies_delta_msecs(runnable_at, jiffies));
5590
5591 /* print everything onto one line to conserve console space */
5592 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s",
5593 log_lvl, sch->ops.name, scx_enable_state_str[state], all,
5594 runnable_at_buf);
5595 }
5596
scx_pm_handler(struct notifier_block * nb,unsigned long event,void * ptr)5597 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr)
5598 {
5599 /*
5600 * SCX schedulers often have userspace components which are sometimes
5601 * involved in critial scheduling paths. PM operations involve freezing
5602 * userspace which can lead to scheduling misbehaviors including stalls.
5603 * Let's bypass while PM operations are in progress.
5604 */
5605 switch (event) {
5606 case PM_HIBERNATION_PREPARE:
5607 case PM_SUSPEND_PREPARE:
5608 case PM_RESTORE_PREPARE:
5609 scx_bypass(true);
5610 break;
5611 case PM_POST_HIBERNATION:
5612 case PM_POST_SUSPEND:
5613 case PM_POST_RESTORE:
5614 scx_bypass(false);
5615 break;
5616 }
5617
5618 return NOTIFY_OK;
5619 }
5620
5621 static struct notifier_block scx_pm_notifier = {
5622 .notifier_call = scx_pm_handler,
5623 };
5624
init_sched_ext_class(void)5625 void __init init_sched_ext_class(void)
5626 {
5627 s32 cpu, v;
5628
5629 /*
5630 * The following is to prevent the compiler from optimizing out the enum
5631 * definitions so that BPF scheduler implementations can use them
5632 * through the generated vmlinux.h.
5633 */
5634 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT |
5635 SCX_TG_ONLINE);
5636
5637 scx_idle_init_masks();
5638
5639 for_each_possible_cpu(cpu) {
5640 struct rq *rq = cpu_rq(cpu);
5641 int n = cpu_to_node(cpu);
5642
5643 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL);
5644 init_dsq(&rq->scx.bypass_dsq, SCX_DSQ_BYPASS);
5645 INIT_LIST_HEAD(&rq->scx.runnable_list);
5646 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals);
5647
5648 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n));
5649 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n));
5650 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n));
5651 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n));
5652 rq->scx.deferred_irq_work = IRQ_WORK_INIT_HARD(deferred_irq_workfn);
5653 rq->scx.kick_cpus_irq_work = IRQ_WORK_INIT_HARD(kick_cpus_irq_workfn);
5654
5655 if (cpu_online(cpu))
5656 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE;
5657 }
5658
5659 register_sysrq_key('S', &sysrq_sched_ext_reset_op);
5660 register_sysrq_key('D', &sysrq_sched_ext_dump_op);
5661 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn);
5662 }
5663
5664
5665 /********************************************************************************
5666 * Helpers that can be called from the BPF scheduler.
5667 */
scx_dsq_insert_preamble(struct scx_sched * sch,struct task_struct * p,u64 enq_flags)5668 static bool scx_dsq_insert_preamble(struct scx_sched *sch, struct task_struct *p,
5669 u64 enq_flags)
5670 {
5671 if (!scx_kf_allowed(sch, SCX_KF_ENQUEUE | SCX_KF_DISPATCH))
5672 return false;
5673
5674 lockdep_assert_irqs_disabled();
5675
5676 if (unlikely(!p)) {
5677 scx_error(sch, "called with NULL task");
5678 return false;
5679 }
5680
5681 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) {
5682 scx_error(sch, "invalid enq_flags 0x%llx", enq_flags);
5683 return false;
5684 }
5685
5686 return true;
5687 }
5688
scx_dsq_insert_commit(struct scx_sched * sch,struct task_struct * p,u64 dsq_id,u64 enq_flags)5689 static void scx_dsq_insert_commit(struct scx_sched *sch, struct task_struct *p,
5690 u64 dsq_id, u64 enq_flags)
5691 {
5692 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
5693 struct task_struct *ddsp_task;
5694
5695 ddsp_task = __this_cpu_read(direct_dispatch_task);
5696 if (ddsp_task) {
5697 mark_direct_dispatch(sch, ddsp_task, p, dsq_id, enq_flags);
5698 return;
5699 }
5700
5701 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) {
5702 scx_error(sch, "dispatch buffer overflow");
5703 return;
5704 }
5705
5706 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){
5707 .task = p,
5708 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK,
5709 .dsq_id = dsq_id,
5710 .enq_flags = enq_flags,
5711 };
5712 }
5713
5714 __bpf_kfunc_start_defs();
5715
5716 /**
5717 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ
5718 * @p: task_struct to insert
5719 * @dsq_id: DSQ to insert into
5720 * @slice: duration @p can run for in nsecs, 0 to keep the current value
5721 * @enq_flags: SCX_ENQ_*
5722 *
5723 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to
5724 * call this function spuriously. Can be called from ops.enqueue(),
5725 * ops.select_cpu(), and ops.dispatch().
5726 *
5727 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch
5728 * and @p must match the task being enqueued.
5729 *
5730 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p
5731 * will be directly inserted into the corresponding dispatch queue after
5732 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be
5733 * inserted into the local DSQ of the CPU returned by ops.select_cpu().
5734 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the
5735 * task is inserted.
5736 *
5737 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id
5738 * and this function can be called upto ops.dispatch_max_batch times to insert
5739 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the
5740 * remaining slots. scx_bpf_dsq_move_to_local() flushes the batch and resets the
5741 * counter.
5742 *
5743 * This function doesn't have any locking restrictions and may be called under
5744 * BPF locks (in the future when BPF introduces more flexible locking).
5745 *
5746 * @p is allowed to run for @slice. The scheduling path is triggered on slice
5747 * exhaustion. If zero, the current residual slice is maintained. If
5748 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with
5749 * scx_bpf_kick_cpu() to trigger scheduling.
5750 *
5751 * Returns %true on successful insertion, %false on failure. On the root
5752 * scheduler, %false return triggers scheduler abort and the caller doesn't need
5753 * to check the return value.
5754 */
scx_bpf_dsq_insert___v2(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)5755 __bpf_kfunc bool scx_bpf_dsq_insert___v2(struct task_struct *p, u64 dsq_id,
5756 u64 slice, u64 enq_flags)
5757 {
5758 struct scx_sched *sch;
5759
5760 guard(rcu)();
5761 sch = rcu_dereference(scx_root);
5762 if (unlikely(!sch))
5763 return false;
5764
5765 if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5766 return false;
5767
5768 if (slice)
5769 p->scx.slice = slice;
5770 else
5771 p->scx.slice = p->scx.slice ?: 1;
5772
5773 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags);
5774
5775 return true;
5776 }
5777
5778 /*
5779 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix.
5780 */
scx_bpf_dsq_insert(struct task_struct * p,u64 dsq_id,u64 slice,u64 enq_flags)5781 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id,
5782 u64 slice, u64 enq_flags)
5783 {
5784 scx_bpf_dsq_insert___v2(p, dsq_id, slice, enq_flags);
5785 }
5786
scx_dsq_insert_vtime(struct scx_sched * sch,struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)5787 static bool scx_dsq_insert_vtime(struct scx_sched *sch, struct task_struct *p,
5788 u64 dsq_id, u64 slice, u64 vtime, u64 enq_flags)
5789 {
5790 if (!scx_dsq_insert_preamble(sch, p, enq_flags))
5791 return false;
5792
5793 if (slice)
5794 p->scx.slice = slice;
5795 else
5796 p->scx.slice = p->scx.slice ?: 1;
5797
5798 p->scx.dsq_vtime = vtime;
5799
5800 scx_dsq_insert_commit(sch, p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
5801
5802 return true;
5803 }
5804
5805 struct scx_bpf_dsq_insert_vtime_args {
5806 /* @p can't be packed together as KF_RCU is not transitive */
5807 u64 dsq_id;
5808 u64 slice;
5809 u64 vtime;
5810 u64 enq_flags;
5811 };
5812
5813 /**
5814 * __scx_bpf_dsq_insert_vtime - Arg-wrapped vtime DSQ insertion
5815 * @p: task_struct to insert
5816 * @args: struct containing the rest of the arguments
5817 * @args->dsq_id: DSQ to insert into
5818 * @args->slice: duration @p can run for in nsecs, 0 to keep the current value
5819 * @args->vtime: @p's ordering inside the vtime-sorted queue of the target DSQ
5820 * @args->enq_flags: SCX_ENQ_*
5821 *
5822 * Wrapper kfunc that takes arguments via struct to work around BPF's 5 argument
5823 * limit. BPF programs should use scx_bpf_dsq_insert_vtime() which is provided
5824 * as an inline wrapper in common.bpf.h.
5825 *
5826 * Insert @p into the vtime priority queue of the DSQ identified by
5827 * @args->dsq_id. Tasks queued into the priority queue are ordered by
5828 * @args->vtime. All other aspects are identical to scx_bpf_dsq_insert().
5829 *
5830 * @args->vtime ordering is according to time_before64() which considers
5831 * wrapping. A numerically larger vtime may indicate an earlier position in the
5832 * ordering and vice-versa.
5833 *
5834 * A DSQ can only be used as a FIFO or priority queue at any given time and this
5835 * function must not be called on a DSQ which already has one or more FIFO tasks
5836 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and
5837 * SCX_DSQ_GLOBAL) cannot be used as priority queues.
5838 *
5839 * Returns %true on successful insertion, %false on failure. On the root
5840 * scheduler, %false return triggers scheduler abort and the caller doesn't need
5841 * to check the return value.
5842 */
5843 __bpf_kfunc bool
__scx_bpf_dsq_insert_vtime(struct task_struct * p,struct scx_bpf_dsq_insert_vtime_args * args)5844 __scx_bpf_dsq_insert_vtime(struct task_struct *p,
5845 struct scx_bpf_dsq_insert_vtime_args *args)
5846 {
5847 struct scx_sched *sch;
5848
5849 guard(rcu)();
5850
5851 sch = rcu_dereference(scx_root);
5852 if (unlikely(!sch))
5853 return false;
5854
5855 return scx_dsq_insert_vtime(sch, p, args->dsq_id, args->slice,
5856 args->vtime, args->enq_flags);
5857 }
5858
5859 /*
5860 * COMPAT: Will be removed in v6.23.
5861 */
scx_bpf_dsq_insert_vtime(struct task_struct * p,u64 dsq_id,u64 slice,u64 vtime,u64 enq_flags)5862 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id,
5863 u64 slice, u64 vtime, u64 enq_flags)
5864 {
5865 struct scx_sched *sch;
5866
5867 guard(rcu)();
5868
5869 sch = rcu_dereference(scx_root);
5870 if (unlikely(!sch))
5871 return;
5872
5873 scx_dsq_insert_vtime(sch, p, dsq_id, slice, vtime, enq_flags);
5874 }
5875
5876 __bpf_kfunc_end_defs();
5877
5878 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch)
5879 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU)
5880 BTF_ID_FLAGS(func, scx_bpf_dsq_insert___v2, KF_RCU)
5881 BTF_ID_FLAGS(func, __scx_bpf_dsq_insert_vtime, KF_RCU)
5882 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU)
5883 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch)
5884
5885 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = {
5886 .owner = THIS_MODULE,
5887 .set = &scx_kfunc_ids_enqueue_dispatch,
5888 };
5889
scx_dsq_move(struct bpf_iter_scx_dsq_kern * kit,struct task_struct * p,u64 dsq_id,u64 enq_flags)5890 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit,
5891 struct task_struct *p, u64 dsq_id, u64 enq_flags)
5892 {
5893 struct scx_sched *sch = scx_root;
5894 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq;
5895 struct rq *this_rq, *src_rq, *locked_rq;
5896 bool dispatched = false;
5897 bool in_balance;
5898 unsigned long flags;
5899
5900 if (!scx_kf_allowed_if_unlocked() &&
5901 !scx_kf_allowed(sch, SCX_KF_DISPATCH))
5902 return false;
5903
5904 /*
5905 * If the BPF scheduler keeps calling this function repeatedly, it can
5906 * cause similar live-lock conditions as consume_dispatch_q().
5907 */
5908 if (unlikely(READ_ONCE(scx_aborting)))
5909 return false;
5910
5911 /*
5912 * Can be called from either ops.dispatch() locking this_rq() or any
5913 * context where no rq lock is held. If latter, lock @p's task_rq which
5914 * we'll likely need anyway.
5915 */
5916 src_rq = task_rq(p);
5917
5918 local_irq_save(flags);
5919 this_rq = this_rq();
5920 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE;
5921
5922 if (in_balance) {
5923 if (this_rq != src_rq) {
5924 raw_spin_rq_unlock(this_rq);
5925 raw_spin_rq_lock(src_rq);
5926 }
5927 } else {
5928 raw_spin_rq_lock(src_rq);
5929 }
5930
5931 locked_rq = src_rq;
5932 raw_spin_lock(&src_dsq->lock);
5933
5934 /*
5935 * Did someone else get to it? @p could have already left $src_dsq, got
5936 * re-enqueud, or be in the process of being consumed by someone else.
5937 */
5938 if (unlikely(p->scx.dsq != src_dsq ||
5939 u32_before(kit->cursor.priv, p->scx.dsq_seq) ||
5940 p->scx.holding_cpu >= 0) ||
5941 WARN_ON_ONCE(src_rq != task_rq(p))) {
5942 raw_spin_unlock(&src_dsq->lock);
5943 goto out;
5944 }
5945
5946 /* @p is still on $src_dsq and stable, determine the destination */
5947 dst_dsq = find_dsq_for_dispatch(sch, this_rq, dsq_id, p);
5948
5949 /*
5950 * Apply vtime and slice updates before moving so that the new time is
5951 * visible before inserting into $dst_dsq. @p is still on $src_dsq but
5952 * this is safe as we're locking it.
5953 */
5954 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME)
5955 p->scx.dsq_vtime = kit->vtime;
5956 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE)
5957 p->scx.slice = kit->slice;
5958
5959 /* execute move */
5960 locked_rq = move_task_between_dsqs(sch, p, enq_flags, src_dsq, dst_dsq);
5961 dispatched = true;
5962 out:
5963 if (in_balance) {
5964 if (this_rq != locked_rq) {
5965 raw_spin_rq_unlock(locked_rq);
5966 raw_spin_rq_lock(this_rq);
5967 }
5968 } else {
5969 raw_spin_rq_unlock_irqrestore(locked_rq, flags);
5970 }
5971
5972 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE |
5973 __SCX_DSQ_ITER_HAS_VTIME);
5974 return dispatched;
5975 }
5976
5977 __bpf_kfunc_start_defs();
5978
5979 /**
5980 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots
5981 *
5982 * Can only be called from ops.dispatch().
5983 */
scx_bpf_dispatch_nr_slots(void)5984 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void)
5985 {
5986 struct scx_sched *sch;
5987
5988 guard(rcu)();
5989
5990 sch = rcu_dereference(scx_root);
5991 if (unlikely(!sch))
5992 return 0;
5993
5994 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
5995 return 0;
5996
5997 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor);
5998 }
5999
6000 /**
6001 * scx_bpf_dispatch_cancel - Cancel the latest dispatch
6002 *
6003 * Cancel the latest dispatch. Can be called multiple times to cancel further
6004 * dispatches. Can only be called from ops.dispatch().
6005 */
scx_bpf_dispatch_cancel(void)6006 __bpf_kfunc void scx_bpf_dispatch_cancel(void)
6007 {
6008 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6009 struct scx_sched *sch;
6010
6011 guard(rcu)();
6012
6013 sch = rcu_dereference(scx_root);
6014 if (unlikely(!sch))
6015 return;
6016
6017 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
6018 return;
6019
6020 if (dspc->cursor > 0)
6021 dspc->cursor--;
6022 else
6023 scx_error(sch, "dispatch buffer underflow");
6024 }
6025
6026 /**
6027 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ
6028 * @dsq_id: DSQ to move task from
6029 *
6030 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's
6031 * local DSQ for execution. Can only be called from ops.dispatch().
6032 *
6033 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert()
6034 * before trying to move from the specified DSQ. It may also grab rq locks and
6035 * thus can't be called under any BPF locks.
6036 *
6037 * Returns %true if a task has been moved, %false if there isn't any task to
6038 * move.
6039 */
scx_bpf_dsq_move_to_local(u64 dsq_id)6040 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id)
6041 {
6042 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx);
6043 struct scx_dispatch_q *dsq;
6044 struct scx_sched *sch;
6045
6046 guard(rcu)();
6047
6048 sch = rcu_dereference(scx_root);
6049 if (unlikely(!sch))
6050 return false;
6051
6052 if (!scx_kf_allowed(sch, SCX_KF_DISPATCH))
6053 return false;
6054
6055 flush_dispatch_buf(sch, dspc->rq);
6056
6057 dsq = find_user_dsq(sch, dsq_id);
6058 if (unlikely(!dsq)) {
6059 scx_error(sch, "invalid DSQ ID 0x%016llx", dsq_id);
6060 return false;
6061 }
6062
6063 if (consume_dispatch_q(sch, dspc->rq, dsq)) {
6064 /*
6065 * A successfully consumed task can be dequeued before it starts
6066 * running while the CPU is trying to migrate other dispatched
6067 * tasks. Bump nr_tasks to tell balance_one() to retry on empty
6068 * local DSQ.
6069 */
6070 dspc->nr_tasks++;
6071 return true;
6072 } else {
6073 return false;
6074 }
6075 }
6076
6077 /**
6078 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs
6079 * @it__iter: DSQ iterator in progress
6080 * @slice: duration the moved task can run for in nsecs
6081 *
6082 * Override the slice of the next task that will be moved from @it__iter using
6083 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous
6084 * slice duration is kept.
6085 */
scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq * it__iter,u64 slice)6086 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter,
6087 u64 slice)
6088 {
6089 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6090
6091 kit->slice = slice;
6092 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE;
6093 }
6094
6095 /**
6096 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs
6097 * @it__iter: DSQ iterator in progress
6098 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ
6099 *
6100 * Override the vtime of the next task that will be moved from @it__iter using
6101 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice
6102 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the
6103 * override is ignored and cleared.
6104 */
scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq * it__iter,u64 vtime)6105 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter,
6106 u64 vtime)
6107 {
6108 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter;
6109
6110 kit->vtime = vtime;
6111 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME;
6112 }
6113
6114 /**
6115 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ
6116 * @it__iter: DSQ iterator in progress
6117 * @p: task to transfer
6118 * @dsq_id: DSQ to move @p to
6119 * @enq_flags: SCX_ENQ_*
6120 *
6121 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ
6122 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can
6123 * be the destination.
6124 *
6125 * For the transfer to be successful, @p must still be on the DSQ and have been
6126 * queued before the DSQ iteration started. This function doesn't care whether
6127 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have
6128 * been queued before the iteration started.
6129 *
6130 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update.
6131 *
6132 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq
6133 * lock (e.g. BPF timers or SYSCALL programs).
6134 *
6135 * Returns %true if @p has been consumed, %false if @p had already been
6136 * consumed, dequeued, or, for sub-scheds, @dsq_id points to a disallowed local
6137 * DSQ.
6138 */
scx_bpf_dsq_move(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6139 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter,
6140 struct task_struct *p, u64 dsq_id,
6141 u64 enq_flags)
6142 {
6143 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6144 p, dsq_id, enq_flags);
6145 }
6146
6147 /**
6148 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ
6149 * @it__iter: DSQ iterator in progress
6150 * @p: task to transfer
6151 * @dsq_id: DSQ to move @p to
6152 * @enq_flags: SCX_ENQ_*
6153 *
6154 * Transfer @p which is on the DSQ currently iterated by @it__iter to the
6155 * priority queue of the DSQ specified by @dsq_id. The destination must be a
6156 * user DSQ as only user DSQs support priority queue.
6157 *
6158 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice()
6159 * and scx_bpf_dsq_move_set_vtime() to update.
6160 *
6161 * All other aspects are identical to scx_bpf_dsq_move(). See
6162 * scx_bpf_dsq_insert_vtime() for more information on @vtime.
6163 */
scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq * it__iter,struct task_struct * p,u64 dsq_id,u64 enq_flags)6164 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter,
6165 struct task_struct *p, u64 dsq_id,
6166 u64 enq_flags)
6167 {
6168 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter,
6169 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ);
6170 }
6171
6172 __bpf_kfunc_end_defs();
6173
6174 BTF_KFUNCS_START(scx_kfunc_ids_dispatch)
6175 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots)
6176 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel)
6177 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local)
6178 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
6179 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
6180 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6181 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6182 BTF_KFUNCS_END(scx_kfunc_ids_dispatch)
6183
6184 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = {
6185 .owner = THIS_MODULE,
6186 .set = &scx_kfunc_ids_dispatch,
6187 };
6188
reenq_local(struct rq * rq)6189 static u32 reenq_local(struct rq *rq)
6190 {
6191 LIST_HEAD(tasks);
6192 u32 nr_enqueued = 0;
6193 struct task_struct *p, *n;
6194
6195 lockdep_assert_rq_held(rq);
6196
6197 /*
6198 * The BPF scheduler may choose to dispatch tasks back to
6199 * @rq->scx.local_dsq. Move all candidate tasks off to a private list
6200 * first to avoid processing the same tasks repeatedly.
6201 */
6202 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list,
6203 scx.dsq_list.node) {
6204 /*
6205 * If @p is being migrated, @p's current CPU may not agree with
6206 * its allowed CPUs and the migration_cpu_stop is about to
6207 * deactivate and re-activate @p anyway. Skip re-enqueueing.
6208 *
6209 * While racing sched property changes may also dequeue and
6210 * re-enqueue a migrating task while its current CPU and allowed
6211 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to
6212 * the current local DSQ for running tasks and thus are not
6213 * visible to the BPF scheduler.
6214 */
6215 if (p->migration_pending)
6216 continue;
6217
6218 dispatch_dequeue(rq, p);
6219 list_add_tail(&p->scx.dsq_list.node, &tasks);
6220 }
6221
6222 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) {
6223 list_del_init(&p->scx.dsq_list.node);
6224 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1);
6225 nr_enqueued++;
6226 }
6227
6228 return nr_enqueued;
6229 }
6230
6231 __bpf_kfunc_start_defs();
6232
6233 /**
6234 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6235 *
6236 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6237 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of
6238 * processed tasks. Can only be called from ops.cpu_release().
6239 *
6240 * COMPAT: Will be removed in v6.23 along with the ___v2 suffix on the void
6241 * returning variant that can be called from anywhere.
6242 */
scx_bpf_reenqueue_local(void)6243 __bpf_kfunc u32 scx_bpf_reenqueue_local(void)
6244 {
6245 struct scx_sched *sch;
6246 struct rq *rq;
6247
6248 guard(rcu)();
6249 sch = rcu_dereference(scx_root);
6250 if (unlikely(!sch))
6251 return 0;
6252
6253 if (!scx_kf_allowed(sch, SCX_KF_CPU_RELEASE))
6254 return 0;
6255
6256 rq = cpu_rq(smp_processor_id());
6257 lockdep_assert_rq_held(rq);
6258
6259 return reenq_local(rq);
6260 }
6261
6262 __bpf_kfunc_end_defs();
6263
6264 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release)
6265 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local)
6266 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release)
6267
6268 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = {
6269 .owner = THIS_MODULE,
6270 .set = &scx_kfunc_ids_cpu_release,
6271 };
6272
6273 __bpf_kfunc_start_defs();
6274
6275 /**
6276 * scx_bpf_create_dsq - Create a custom DSQ
6277 * @dsq_id: DSQ to create
6278 * @node: NUMA node to allocate from
6279 *
6280 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable
6281 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog.
6282 */
scx_bpf_create_dsq(u64 dsq_id,s32 node)6283 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node)
6284 {
6285 struct scx_dispatch_q *dsq;
6286 struct scx_sched *sch;
6287 s32 ret;
6288
6289 if (unlikely(node >= (int)nr_node_ids ||
6290 (node < 0 && node != NUMA_NO_NODE)))
6291 return -EINVAL;
6292
6293 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN))
6294 return -EINVAL;
6295
6296 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node);
6297 if (!dsq)
6298 return -ENOMEM;
6299
6300 init_dsq(dsq, dsq_id);
6301
6302 rcu_read_lock();
6303
6304 sch = rcu_dereference(scx_root);
6305 if (sch)
6306 ret = rhashtable_lookup_insert_fast(&sch->dsq_hash, &dsq->hash_node,
6307 dsq_hash_params);
6308 else
6309 ret = -ENODEV;
6310
6311 rcu_read_unlock();
6312 if (ret)
6313 kfree(dsq);
6314 return ret;
6315 }
6316
6317 __bpf_kfunc_end_defs();
6318
6319 BTF_KFUNCS_START(scx_kfunc_ids_unlocked)
6320 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE)
6321 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice, KF_RCU)
6322 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime, KF_RCU)
6323 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU)
6324 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU)
6325 BTF_KFUNCS_END(scx_kfunc_ids_unlocked)
6326
6327 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = {
6328 .owner = THIS_MODULE,
6329 .set = &scx_kfunc_ids_unlocked,
6330 };
6331
6332 __bpf_kfunc_start_defs();
6333
6334 /**
6335 * scx_bpf_task_set_slice - Set task's time slice
6336 * @p: task of interest
6337 * @slice: time slice to set in nsecs
6338 *
6339 * Set @p's time slice to @slice. Returns %true on success, %false if the
6340 * calling scheduler doesn't have authority over @p.
6341 */
scx_bpf_task_set_slice(struct task_struct * p,u64 slice)6342 __bpf_kfunc bool scx_bpf_task_set_slice(struct task_struct *p, u64 slice)
6343 {
6344 p->scx.slice = slice;
6345 return true;
6346 }
6347
6348 /**
6349 * scx_bpf_task_set_dsq_vtime - Set task's virtual time for DSQ ordering
6350 * @p: task of interest
6351 * @vtime: virtual time to set
6352 *
6353 * Set @p's virtual time to @vtime. Returns %true on success, %false if the
6354 * calling scheduler doesn't have authority over @p.
6355 */
scx_bpf_task_set_dsq_vtime(struct task_struct * p,u64 vtime)6356 __bpf_kfunc bool scx_bpf_task_set_dsq_vtime(struct task_struct *p, u64 vtime)
6357 {
6358 p->scx.dsq_vtime = vtime;
6359 return true;
6360 }
6361
scx_kick_cpu(struct scx_sched * sch,s32 cpu,u64 flags)6362 static void scx_kick_cpu(struct scx_sched *sch, s32 cpu, u64 flags)
6363 {
6364 struct rq *this_rq;
6365 unsigned long irq_flags;
6366
6367 if (!ops_cpu_valid(sch, cpu, NULL))
6368 return;
6369
6370 local_irq_save(irq_flags);
6371
6372 this_rq = this_rq();
6373
6374 /*
6375 * While bypassing for PM ops, IRQ handling may not be online which can
6376 * lead to irq_work_queue() malfunction such as infinite busy wait for
6377 * IRQ status update. Suppress kicking.
6378 */
6379 if (scx_rq_bypassing(this_rq))
6380 goto out;
6381
6382 /*
6383 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting
6384 * rq locks. We can probably be smarter and avoid bouncing if called
6385 * from ops which don't hold a rq lock.
6386 */
6387 if (flags & SCX_KICK_IDLE) {
6388 struct rq *target_rq = cpu_rq(cpu);
6389
6390 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT)))
6391 scx_error(sch, "PREEMPT/WAIT cannot be used with SCX_KICK_IDLE");
6392
6393 if (raw_spin_rq_trylock(target_rq)) {
6394 if (can_skip_idle_kick(target_rq)) {
6395 raw_spin_rq_unlock(target_rq);
6396 goto out;
6397 }
6398 raw_spin_rq_unlock(target_rq);
6399 }
6400 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle);
6401 } else {
6402 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick);
6403
6404 if (flags & SCX_KICK_PREEMPT)
6405 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt);
6406 if (flags & SCX_KICK_WAIT)
6407 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait);
6408 }
6409
6410 irq_work_queue(&this_rq->scx.kick_cpus_irq_work);
6411 out:
6412 local_irq_restore(irq_flags);
6413 }
6414
6415 /**
6416 * scx_bpf_kick_cpu - Trigger reschedule on a CPU
6417 * @cpu: cpu to kick
6418 * @flags: %SCX_KICK_* flags
6419 *
6420 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or
6421 * trigger rescheduling on a busy CPU. This can be called from any online
6422 * scx_ops operation and the actual kicking is performed asynchronously through
6423 * an irq work.
6424 */
scx_bpf_kick_cpu(s32 cpu,u64 flags)6425 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags)
6426 {
6427 struct scx_sched *sch;
6428
6429 guard(rcu)();
6430 sch = rcu_dereference(scx_root);
6431 if (likely(sch))
6432 scx_kick_cpu(sch, cpu, flags);
6433 }
6434
6435 /**
6436 * scx_bpf_dsq_nr_queued - Return the number of queued tasks
6437 * @dsq_id: id of the DSQ
6438 *
6439 * Return the number of tasks in the DSQ matching @dsq_id. If not found,
6440 * -%ENOENT is returned.
6441 */
scx_bpf_dsq_nr_queued(u64 dsq_id)6442 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id)
6443 {
6444 struct scx_sched *sch;
6445 struct scx_dispatch_q *dsq;
6446 s32 ret;
6447
6448 preempt_disable();
6449
6450 sch = rcu_dereference_sched(scx_root);
6451 if (unlikely(!sch)) {
6452 ret = -ENODEV;
6453 goto out;
6454 }
6455
6456 if (dsq_id == SCX_DSQ_LOCAL) {
6457 ret = READ_ONCE(this_rq()->scx.local_dsq.nr);
6458 goto out;
6459 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) {
6460 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK;
6461
6462 if (ops_cpu_valid(sch, cpu, NULL)) {
6463 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr);
6464 goto out;
6465 }
6466 } else {
6467 dsq = find_user_dsq(sch, dsq_id);
6468 if (dsq) {
6469 ret = READ_ONCE(dsq->nr);
6470 goto out;
6471 }
6472 }
6473 ret = -ENOENT;
6474 out:
6475 preempt_enable();
6476 return ret;
6477 }
6478
6479 /**
6480 * scx_bpf_destroy_dsq - Destroy a custom DSQ
6481 * @dsq_id: DSQ to destroy
6482 *
6483 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with
6484 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is
6485 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ
6486 * which doesn't exist. Can be called from any online scx_ops operations.
6487 */
scx_bpf_destroy_dsq(u64 dsq_id)6488 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id)
6489 {
6490 struct scx_sched *sch;
6491
6492 rcu_read_lock();
6493 sch = rcu_dereference(scx_root);
6494 if (sch)
6495 destroy_dsq(sch, dsq_id);
6496 rcu_read_unlock();
6497 }
6498
6499 /**
6500 * bpf_iter_scx_dsq_new - Create a DSQ iterator
6501 * @it: iterator to initialize
6502 * @dsq_id: DSQ to iterate
6503 * @flags: %SCX_DSQ_ITER_*
6504 *
6505 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk
6506 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes
6507 * tasks which are already queued when this function is invoked.
6508 */
bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq * it,u64 dsq_id,u64 flags)6509 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id,
6510 u64 flags)
6511 {
6512 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6513 struct scx_sched *sch;
6514
6515 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) >
6516 sizeof(struct bpf_iter_scx_dsq));
6517 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) !=
6518 __alignof__(struct bpf_iter_scx_dsq));
6519 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS &
6520 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1));
6521
6522 /*
6523 * next() and destroy() will be called regardless of the return value.
6524 * Always clear $kit->dsq.
6525 */
6526 kit->dsq = NULL;
6527
6528 sch = rcu_dereference_check(scx_root, rcu_read_lock_bh_held());
6529 if (unlikely(!sch))
6530 return -ENODEV;
6531
6532 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS)
6533 return -EINVAL;
6534
6535 kit->dsq = find_user_dsq(sch, dsq_id);
6536 if (!kit->dsq)
6537 return -ENOENT;
6538
6539 kit->cursor = INIT_DSQ_LIST_CURSOR(kit->cursor, flags,
6540 READ_ONCE(kit->dsq->seq));
6541
6542 return 0;
6543 }
6544
6545 /**
6546 * bpf_iter_scx_dsq_next - Progress a DSQ iterator
6547 * @it: iterator to progress
6548 *
6549 * Return the next task. See bpf_iter_scx_dsq_new().
6550 */
bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq * it)6551 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it)
6552 {
6553 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6554 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV;
6555 struct task_struct *p;
6556 unsigned long flags;
6557
6558 if (!kit->dsq)
6559 return NULL;
6560
6561 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6562
6563 if (list_empty(&kit->cursor.node))
6564 p = NULL;
6565 else
6566 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list);
6567
6568 /*
6569 * Only tasks which were queued before the iteration started are
6570 * visible. This bounds BPF iterations and guarantees that vtime never
6571 * jumps in the other direction while iterating.
6572 */
6573 do {
6574 p = nldsq_next_task(kit->dsq, p, rev);
6575 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq)));
6576
6577 if (p) {
6578 if (rev)
6579 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node);
6580 else
6581 list_move(&kit->cursor.node, &p->scx.dsq_list.node);
6582 } else {
6583 list_del_init(&kit->cursor.node);
6584 }
6585
6586 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6587
6588 return p;
6589 }
6590
6591 /**
6592 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator
6593 * @it: iterator to destroy
6594 *
6595 * Undo scx_iter_scx_dsq_new().
6596 */
bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq * it)6597 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it)
6598 {
6599 struct bpf_iter_scx_dsq_kern *kit = (void *)it;
6600
6601 if (!kit->dsq)
6602 return;
6603
6604 if (!list_empty(&kit->cursor.node)) {
6605 unsigned long flags;
6606
6607 raw_spin_lock_irqsave(&kit->dsq->lock, flags);
6608 list_del_init(&kit->cursor.node);
6609 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags);
6610 }
6611 kit->dsq = NULL;
6612 }
6613
6614 /**
6615 * scx_bpf_dsq_peek - Lockless peek at the first element.
6616 * @dsq_id: DSQ to examine.
6617 *
6618 * Read the first element in the DSQ. This is semantically equivalent to using
6619 * the DSQ iterator, but is lockfree. Of course, like any lockless operation,
6620 * this provides only a point-in-time snapshot, and the contents may change
6621 * by the time any subsequent locking operation reads the queue.
6622 *
6623 * Returns the pointer, or NULL indicates an empty queue OR internal error.
6624 */
scx_bpf_dsq_peek(u64 dsq_id)6625 __bpf_kfunc struct task_struct *scx_bpf_dsq_peek(u64 dsq_id)
6626 {
6627 struct scx_sched *sch;
6628 struct scx_dispatch_q *dsq;
6629
6630 sch = rcu_dereference(scx_root);
6631 if (unlikely(!sch))
6632 return NULL;
6633
6634 if (unlikely(dsq_id & SCX_DSQ_FLAG_BUILTIN)) {
6635 scx_error(sch, "peek disallowed on builtin DSQ 0x%llx", dsq_id);
6636 return NULL;
6637 }
6638
6639 dsq = find_user_dsq(sch, dsq_id);
6640 if (unlikely(!dsq)) {
6641 scx_error(sch, "peek on non-existent DSQ 0x%llx", dsq_id);
6642 return NULL;
6643 }
6644
6645 return rcu_dereference(dsq->first_task);
6646 }
6647
6648 __bpf_kfunc_end_defs();
6649
__bstr_format(struct scx_sched * sch,u64 * data_buf,char * line_buf,size_t line_size,char * fmt,unsigned long long * data,u32 data__sz)6650 static s32 __bstr_format(struct scx_sched *sch, u64 *data_buf, char *line_buf,
6651 size_t line_size, char *fmt, unsigned long long *data,
6652 u32 data__sz)
6653 {
6654 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true };
6655 s32 ret;
6656
6657 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 ||
6658 (data__sz && !data)) {
6659 scx_error(sch, "invalid data=%p and data__sz=%u", (void *)data, data__sz);
6660 return -EINVAL;
6661 }
6662
6663 ret = copy_from_kernel_nofault(data_buf, data, data__sz);
6664 if (ret < 0) {
6665 scx_error(sch, "failed to read data fields (%d)", ret);
6666 return ret;
6667 }
6668
6669 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8,
6670 &bprintf_data);
6671 if (ret < 0) {
6672 scx_error(sch, "format preparation failed (%d)", ret);
6673 return ret;
6674 }
6675
6676 ret = bstr_printf(line_buf, line_size, fmt,
6677 bprintf_data.bin_args);
6678 bpf_bprintf_cleanup(&bprintf_data);
6679 if (ret < 0) {
6680 scx_error(sch, "(\"%s\", %p, %u) failed to format", fmt, data, data__sz);
6681 return ret;
6682 }
6683
6684 return ret;
6685 }
6686
bstr_format(struct scx_sched * sch,struct scx_bstr_buf * buf,char * fmt,unsigned long long * data,u32 data__sz)6687 static s32 bstr_format(struct scx_sched *sch, struct scx_bstr_buf *buf,
6688 char *fmt, unsigned long long *data, u32 data__sz)
6689 {
6690 return __bstr_format(sch, buf->data, buf->line, sizeof(buf->line),
6691 fmt, data, data__sz);
6692 }
6693
6694 __bpf_kfunc_start_defs();
6695
6696 /**
6697 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler.
6698 * @exit_code: Exit value to pass to user space via struct scx_exit_info.
6699 * @fmt: error message format string
6700 * @data: format string parameters packaged using ___bpf_fill() macro
6701 * @data__sz: @data len, must end in '__sz' for the verifier
6702 *
6703 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops
6704 * disabling.
6705 */
scx_bpf_exit_bstr(s64 exit_code,char * fmt,unsigned long long * data,u32 data__sz)6706 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt,
6707 unsigned long long *data, u32 data__sz)
6708 {
6709 struct scx_sched *sch;
6710 unsigned long flags;
6711
6712 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6713 sch = rcu_dereference_bh(scx_root);
6714 if (likely(sch) &&
6715 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6716 scx_exit(sch, SCX_EXIT_UNREG_BPF, exit_code, "%s", scx_exit_bstr_buf.line);
6717 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6718 }
6719
6720 /**
6721 * scx_bpf_error_bstr - Indicate fatal error
6722 * @fmt: error message format string
6723 * @data: format string parameters packaged using ___bpf_fill() macro
6724 * @data__sz: @data len, must end in '__sz' for the verifier
6725 *
6726 * Indicate that the BPF scheduler encountered a fatal error and initiate ops
6727 * disabling.
6728 */
scx_bpf_error_bstr(char * fmt,unsigned long long * data,u32 data__sz)6729 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data,
6730 u32 data__sz)
6731 {
6732 struct scx_sched *sch;
6733 unsigned long flags;
6734
6735 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags);
6736 sch = rcu_dereference_bh(scx_root);
6737 if (likely(sch) &&
6738 bstr_format(sch, &scx_exit_bstr_buf, fmt, data, data__sz) >= 0)
6739 scx_exit(sch, SCX_EXIT_ERROR_BPF, 0, "%s", scx_exit_bstr_buf.line);
6740 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags);
6741 }
6742
6743 /**
6744 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler
6745 * @fmt: format string
6746 * @data: format string parameters packaged using ___bpf_fill() macro
6747 * @data__sz: @data len, must end in '__sz' for the verifier
6748 *
6749 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and
6750 * dump_task() to generate extra debug dump specific to the BPF scheduler.
6751 *
6752 * The extra dump may be multiple lines. A single line may be split over
6753 * multiple calls. The last line is automatically terminated.
6754 */
scx_bpf_dump_bstr(char * fmt,unsigned long long * data,u32 data__sz)6755 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data,
6756 u32 data__sz)
6757 {
6758 struct scx_sched *sch;
6759 struct scx_dump_data *dd = &scx_dump_data;
6760 struct scx_bstr_buf *buf = &dd->buf;
6761 s32 ret;
6762
6763 guard(rcu)();
6764
6765 sch = rcu_dereference(scx_root);
6766 if (unlikely(!sch))
6767 return;
6768
6769 if (raw_smp_processor_id() != dd->cpu) {
6770 scx_error(sch, "scx_bpf_dump() must only be called from ops.dump() and friends");
6771 return;
6772 }
6773
6774 /* append the formatted string to the line buf */
6775 ret = __bstr_format(sch, buf->data, buf->line + dd->cursor,
6776 sizeof(buf->line) - dd->cursor, fmt, data, data__sz);
6777 if (ret < 0) {
6778 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)",
6779 dd->prefix, fmt, data, data__sz, ret);
6780 return;
6781 }
6782
6783 dd->cursor += ret;
6784 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line));
6785
6786 if (!dd->cursor)
6787 return;
6788
6789 /*
6790 * If the line buf overflowed or ends in a newline, flush it into the
6791 * dump. This is to allow the caller to generate a single line over
6792 * multiple calls. As ops_dump_flush() can also handle multiple lines in
6793 * the line buf, the only case which can lead to an unexpected
6794 * truncation is when the caller keeps generating newlines in the middle
6795 * instead of the end consecutively. Don't do that.
6796 */
6797 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n')
6798 ops_dump_flush();
6799 }
6800
6801 /**
6802 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ
6803 *
6804 * Iterate over all of the tasks currently enqueued on the local DSQ of the
6805 * caller's CPU, and re-enqueue them in the BPF scheduler. Can be called from
6806 * anywhere.
6807 */
scx_bpf_reenqueue_local___v2(void)6808 __bpf_kfunc void scx_bpf_reenqueue_local___v2(void)
6809 {
6810 struct rq *rq;
6811
6812 guard(preempt)();
6813
6814 rq = this_rq();
6815 local_set(&rq->scx.reenq_local_deferred, 1);
6816 schedule_deferred(rq);
6817 }
6818
6819 /**
6820 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU
6821 * @cpu: CPU of interest
6822 *
6823 * Return the maximum relative capacity of @cpu in relation to the most
6824 * performant CPU in the system. The return value is in the range [1,
6825 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur().
6826 */
scx_bpf_cpuperf_cap(s32 cpu)6827 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu)
6828 {
6829 struct scx_sched *sch;
6830
6831 guard(rcu)();
6832
6833 sch = rcu_dereference(scx_root);
6834 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6835 return arch_scale_cpu_capacity(cpu);
6836 else
6837 return SCX_CPUPERF_ONE;
6838 }
6839
6840 /**
6841 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU
6842 * @cpu: CPU of interest
6843 *
6844 * Return the current relative performance of @cpu in relation to its maximum.
6845 * The return value is in the range [1, %SCX_CPUPERF_ONE].
6846 *
6847 * The current performance level of a CPU in relation to the maximum performance
6848 * available in the system can be calculated as follows:
6849 *
6850 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE
6851 *
6852 * The result is in the range [1, %SCX_CPUPERF_ONE].
6853 */
scx_bpf_cpuperf_cur(s32 cpu)6854 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu)
6855 {
6856 struct scx_sched *sch;
6857
6858 guard(rcu)();
6859
6860 sch = rcu_dereference(scx_root);
6861 if (likely(sch) && ops_cpu_valid(sch, cpu, NULL))
6862 return arch_scale_freq_capacity(cpu);
6863 else
6864 return SCX_CPUPERF_ONE;
6865 }
6866
6867 /**
6868 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU
6869 * @cpu: CPU of interest
6870 * @perf: target performance level [0, %SCX_CPUPERF_ONE]
6871 *
6872 * Set the target performance level of @cpu to @perf. @perf is in linear
6873 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the
6874 * schedutil cpufreq governor chooses the target frequency.
6875 *
6876 * The actual performance level chosen, CPU grouping, and the overhead and
6877 * latency of the operations are dependent on the hardware and cpufreq driver in
6878 * use. Consult hardware and cpufreq documentation for more information. The
6879 * current performance level can be monitored using scx_bpf_cpuperf_cur().
6880 */
scx_bpf_cpuperf_set(s32 cpu,u32 perf)6881 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf)
6882 {
6883 struct scx_sched *sch;
6884
6885 guard(rcu)();
6886
6887 sch = rcu_dereference(scx_root);
6888 if (unlikely(!sch))
6889 return;
6890
6891 if (unlikely(perf > SCX_CPUPERF_ONE)) {
6892 scx_error(sch, "Invalid cpuperf target %u for CPU %d", perf, cpu);
6893 return;
6894 }
6895
6896 if (ops_cpu_valid(sch, cpu, NULL)) {
6897 struct rq *rq = cpu_rq(cpu), *locked_rq = scx_locked_rq();
6898 struct rq_flags rf;
6899
6900 /*
6901 * When called with an rq lock held, restrict the operation
6902 * to the corresponding CPU to prevent ABBA deadlocks.
6903 */
6904 if (locked_rq && rq != locked_rq) {
6905 scx_error(sch, "Invalid target CPU %d", cpu);
6906 return;
6907 }
6908
6909 /*
6910 * If no rq lock is held, allow to operate on any CPU by
6911 * acquiring the corresponding rq lock.
6912 */
6913 if (!locked_rq) {
6914 rq_lock_irqsave(rq, &rf);
6915 update_rq_clock(rq);
6916 }
6917
6918 rq->scx.cpuperf_target = perf;
6919 cpufreq_update_util(rq, 0);
6920
6921 if (!locked_rq)
6922 rq_unlock_irqrestore(rq, &rf);
6923 }
6924 }
6925
6926 /**
6927 * scx_bpf_nr_node_ids - Return the number of possible node IDs
6928 *
6929 * All valid node IDs in the system are smaller than the returned value.
6930 */
scx_bpf_nr_node_ids(void)6931 __bpf_kfunc u32 scx_bpf_nr_node_ids(void)
6932 {
6933 return nr_node_ids;
6934 }
6935
6936 /**
6937 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs
6938 *
6939 * All valid CPU IDs in the system are smaller than the returned value.
6940 */
scx_bpf_nr_cpu_ids(void)6941 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void)
6942 {
6943 return nr_cpu_ids;
6944 }
6945
6946 /**
6947 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask
6948 */
scx_bpf_get_possible_cpumask(void)6949 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void)
6950 {
6951 return cpu_possible_mask;
6952 }
6953
6954 /**
6955 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask
6956 */
scx_bpf_get_online_cpumask(void)6957 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void)
6958 {
6959 return cpu_online_mask;
6960 }
6961
6962 /**
6963 * scx_bpf_put_cpumask - Release a possible/online cpumask
6964 * @cpumask: cpumask to release
6965 */
scx_bpf_put_cpumask(const struct cpumask * cpumask)6966 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask)
6967 {
6968 /*
6969 * Empty function body because we aren't actually acquiring or releasing
6970 * a reference to a global cpumask, which is read-only in the caller and
6971 * is never released. The acquire / release semantics here are just used
6972 * to make the cpumask is a trusted pointer in the caller.
6973 */
6974 }
6975
6976 /**
6977 * scx_bpf_task_running - Is task currently running?
6978 * @p: task of interest
6979 */
scx_bpf_task_running(const struct task_struct * p)6980 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p)
6981 {
6982 return task_rq(p)->curr == p;
6983 }
6984
6985 /**
6986 * scx_bpf_task_cpu - CPU a task is currently associated with
6987 * @p: task of interest
6988 */
scx_bpf_task_cpu(const struct task_struct * p)6989 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p)
6990 {
6991 return task_cpu(p);
6992 }
6993
6994 /**
6995 * scx_bpf_cpu_rq - Fetch the rq of a CPU
6996 * @cpu: CPU of the rq
6997 */
scx_bpf_cpu_rq(s32 cpu)6998 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu)
6999 {
7000 struct scx_sched *sch;
7001
7002 guard(rcu)();
7003
7004 sch = rcu_dereference(scx_root);
7005 if (unlikely(!sch))
7006 return NULL;
7007
7008 if (!ops_cpu_valid(sch, cpu, NULL))
7009 return NULL;
7010
7011 if (!sch->warned_deprecated_rq) {
7012 printk_deferred(KERN_WARNING "sched_ext: %s() is deprecated; "
7013 "use scx_bpf_locked_rq() when holding rq lock "
7014 "or scx_bpf_cpu_curr() to read remote curr safely.\n", __func__);
7015 sch->warned_deprecated_rq = true;
7016 }
7017
7018 return cpu_rq(cpu);
7019 }
7020
7021 /**
7022 * scx_bpf_locked_rq - Return the rq currently locked by SCX
7023 *
7024 * Returns the rq if a rq lock is currently held by SCX.
7025 * Otherwise emits an error and returns NULL.
7026 */
scx_bpf_locked_rq(void)7027 __bpf_kfunc struct rq *scx_bpf_locked_rq(void)
7028 {
7029 struct scx_sched *sch;
7030 struct rq *rq;
7031
7032 guard(preempt)();
7033
7034 sch = rcu_dereference_sched(scx_root);
7035 if (unlikely(!sch))
7036 return NULL;
7037
7038 rq = scx_locked_rq();
7039 if (!rq) {
7040 scx_error(sch, "accessing rq without holding rq lock");
7041 return NULL;
7042 }
7043
7044 return rq;
7045 }
7046
7047 /**
7048 * scx_bpf_cpu_curr - Return remote CPU's curr task
7049 * @cpu: CPU of interest
7050 *
7051 * Callers must hold RCU read lock (KF_RCU).
7052 */
scx_bpf_cpu_curr(s32 cpu)7053 __bpf_kfunc struct task_struct *scx_bpf_cpu_curr(s32 cpu)
7054 {
7055 struct scx_sched *sch;
7056
7057 guard(rcu)();
7058
7059 sch = rcu_dereference(scx_root);
7060 if (unlikely(!sch))
7061 return NULL;
7062
7063 if (!ops_cpu_valid(sch, cpu, NULL))
7064 return NULL;
7065
7066 return rcu_dereference(cpu_rq(cpu)->curr);
7067 }
7068
7069 /**
7070 * scx_bpf_task_cgroup - Return the sched cgroup of a task
7071 * @p: task of interest
7072 *
7073 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with
7074 * from the scheduler's POV. SCX operations should use this function to
7075 * determine @p's current cgroup as, unlike following @p->cgroups,
7076 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all
7077 * rq-locked operations. Can be called on the parameter tasks of rq-locked
7078 * operations. The restriction guarantees that @p's rq is locked by the caller.
7079 */
7080 #ifdef CONFIG_CGROUP_SCHED
scx_bpf_task_cgroup(struct task_struct * p)7081 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p)
7082 {
7083 struct task_group *tg = p->sched_task_group;
7084 struct cgroup *cgrp = &cgrp_dfl_root.cgrp;
7085 struct scx_sched *sch;
7086
7087 guard(rcu)();
7088
7089 sch = rcu_dereference(scx_root);
7090 if (unlikely(!sch))
7091 goto out;
7092
7093 if (!scx_kf_allowed_on_arg_tasks(sch, __SCX_KF_RQ_LOCKED, p))
7094 goto out;
7095
7096 cgrp = tg_cgrp(tg);
7097
7098 out:
7099 cgroup_get(cgrp);
7100 return cgrp;
7101 }
7102 #endif
7103
7104 /**
7105 * scx_bpf_now - Returns a high-performance monotonically non-decreasing
7106 * clock for the current CPU. The clock returned is in nanoseconds.
7107 *
7108 * It provides the following properties:
7109 *
7110 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently
7111 * to account for execution time and track tasks' runtime properties.
7112 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which
7113 * eventually reads a hardware timestamp counter -- is neither performant nor
7114 * scalable. scx_bpf_now() aims to provide a high-performance clock by
7115 * using the rq clock in the scheduler core whenever possible.
7116 *
7117 * 2) High enough resolution for the BPF scheduler use cases: In most BPF
7118 * scheduler use cases, the required clock resolution is lower than the most
7119 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically
7120 * uses the rq clock in the scheduler core whenever it is valid. It considers
7121 * that the rq clock is valid from the time the rq clock is updated
7122 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock).
7123 *
7124 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now()
7125 * guarantees the clock never goes backward when comparing them in the same
7126 * CPU. On the other hand, when comparing clocks in different CPUs, there
7127 * is no such guarantee -- the clock can go backward. It provides a
7128 * monotonically *non-decreasing* clock so that it would provide the same
7129 * clock values in two different scx_bpf_now() calls in the same CPU
7130 * during the same period of when the rq clock is valid.
7131 */
scx_bpf_now(void)7132 __bpf_kfunc u64 scx_bpf_now(void)
7133 {
7134 struct rq *rq;
7135 u64 clock;
7136
7137 preempt_disable();
7138
7139 rq = this_rq();
7140 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) {
7141 /*
7142 * If the rq clock is valid, use the cached rq clock.
7143 *
7144 * Note that scx_bpf_now() is re-entrant between a process
7145 * context and an interrupt context (e.g., timer interrupt).
7146 * However, we don't need to consider the race between them
7147 * because such race is not observable from a caller.
7148 */
7149 clock = READ_ONCE(rq->scx.clock);
7150 } else {
7151 /*
7152 * Otherwise, return a fresh rq clock.
7153 *
7154 * The rq clock is updated outside of the rq lock.
7155 * In this case, keep the updated rq clock invalid so the next
7156 * kfunc call outside the rq lock gets a fresh rq clock.
7157 */
7158 clock = sched_clock_cpu(cpu_of(rq));
7159 }
7160
7161 preempt_enable();
7162
7163 return clock;
7164 }
7165
scx_read_events(struct scx_sched * sch,struct scx_event_stats * events)7166 static void scx_read_events(struct scx_sched *sch, struct scx_event_stats *events)
7167 {
7168 struct scx_event_stats *e_cpu;
7169 int cpu;
7170
7171 /* Aggregate per-CPU event counters into @events. */
7172 memset(events, 0, sizeof(*events));
7173 for_each_possible_cpu(cpu) {
7174 e_cpu = &per_cpu_ptr(sch->pcpu, cpu)->event_stats;
7175 scx_agg_event(events, e_cpu, SCX_EV_SELECT_CPU_FALLBACK);
7176 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE);
7177 scx_agg_event(events, e_cpu, SCX_EV_DISPATCH_KEEP_LAST);
7178 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_EXITING);
7179 scx_agg_event(events, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED);
7180 scx_agg_event(events, e_cpu, SCX_EV_REFILL_SLICE_DFL);
7181 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DURATION);
7182 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_DISPATCH);
7183 scx_agg_event(events, e_cpu, SCX_EV_BYPASS_ACTIVATE);
7184 }
7185 }
7186
7187 /*
7188 * scx_bpf_events - Get a system-wide event counter to
7189 * @events: output buffer from a BPF program
7190 * @events__sz: @events len, must end in '__sz'' for the verifier
7191 */
scx_bpf_events(struct scx_event_stats * events,size_t events__sz)7192 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events,
7193 size_t events__sz)
7194 {
7195 struct scx_sched *sch;
7196 struct scx_event_stats e_sys;
7197
7198 rcu_read_lock();
7199 sch = rcu_dereference(scx_root);
7200 if (sch)
7201 scx_read_events(sch, &e_sys);
7202 else
7203 memset(&e_sys, 0, sizeof(e_sys));
7204 rcu_read_unlock();
7205
7206 /*
7207 * We cannot entirely trust a BPF-provided size since a BPF program
7208 * might be compiled against a different vmlinux.h, of which
7209 * scx_event_stats would be larger (a newer vmlinux.h) or smaller
7210 * (an older vmlinux.h). Hence, we use the smaller size to avoid
7211 * memory corruption.
7212 */
7213 events__sz = min(events__sz, sizeof(*events));
7214 memcpy(events, &e_sys, events__sz);
7215 }
7216
7217 __bpf_kfunc_end_defs();
7218
7219 BTF_KFUNCS_START(scx_kfunc_ids_any)
7220 BTF_ID_FLAGS(func, scx_bpf_task_set_slice, KF_RCU);
7221 BTF_ID_FLAGS(func, scx_bpf_task_set_dsq_vtime, KF_RCU);
7222 BTF_ID_FLAGS(func, scx_bpf_kick_cpu)
7223 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued)
7224 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq)
7225 BTF_ID_FLAGS(func, scx_bpf_dsq_peek, KF_RCU_PROTECTED | KF_RET_NULL)
7226 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED)
7227 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL)
7228 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY)
7229 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS)
7230 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS)
7231 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS)
7232 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local___v2)
7233 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap)
7234 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur)
7235 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set)
7236 BTF_ID_FLAGS(func, scx_bpf_nr_node_ids)
7237 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids)
7238 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE)
7239 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE)
7240 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE)
7241 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU)
7242 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU)
7243 BTF_ID_FLAGS(func, scx_bpf_cpu_rq)
7244 BTF_ID_FLAGS(func, scx_bpf_locked_rq, KF_RET_NULL)
7245 BTF_ID_FLAGS(func, scx_bpf_cpu_curr, KF_RET_NULL | KF_RCU_PROTECTED)
7246 #ifdef CONFIG_CGROUP_SCHED
7247 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE)
7248 #endif
7249 BTF_ID_FLAGS(func, scx_bpf_now)
7250 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS)
7251 BTF_KFUNCS_END(scx_kfunc_ids_any)
7252
7253 static const struct btf_kfunc_id_set scx_kfunc_set_any = {
7254 .owner = THIS_MODULE,
7255 .set = &scx_kfunc_ids_any,
7256 };
7257
scx_init(void)7258 static int __init scx_init(void)
7259 {
7260 int ret;
7261
7262 /*
7263 * kfunc registration can't be done from init_sched_ext_class() as
7264 * register_btf_kfunc_id_set() needs most of the system to be up.
7265 *
7266 * Some kfuncs are context-sensitive and can only be called from
7267 * specific SCX ops. They are grouped into BTF sets accordingly.
7268 * Unfortunately, BPF currently doesn't have a way of enforcing such
7269 * restrictions. Eventually, the verifier should be able to enforce
7270 * them. For now, register them the same and make each kfunc explicitly
7271 * check using scx_kf_allowed().
7272 */
7273 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7274 &scx_kfunc_set_enqueue_dispatch)) ||
7275 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7276 &scx_kfunc_set_dispatch)) ||
7277 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7278 &scx_kfunc_set_cpu_release)) ||
7279 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7280 &scx_kfunc_set_unlocked)) ||
7281 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7282 &scx_kfunc_set_unlocked)) ||
7283 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS,
7284 &scx_kfunc_set_any)) ||
7285 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
7286 &scx_kfunc_set_any)) ||
7287 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL,
7288 &scx_kfunc_set_any))) {
7289 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret);
7290 return ret;
7291 }
7292
7293 ret = scx_idle_init();
7294 if (ret) {
7295 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret);
7296 return ret;
7297 }
7298
7299 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops);
7300 if (ret) {
7301 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret);
7302 return ret;
7303 }
7304
7305 ret = register_pm_notifier(&scx_pm_notifier);
7306 if (ret) {
7307 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret);
7308 return ret;
7309 }
7310
7311 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj);
7312 if (!scx_kset) {
7313 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n");
7314 return -ENOMEM;
7315 }
7316
7317 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group);
7318 if (ret < 0) {
7319 pr_err("sched_ext: Failed to add global attributes\n");
7320 return ret;
7321 }
7322
7323 if (!alloc_cpumask_var(&scx_bypass_lb_donee_cpumask, GFP_KERNEL) ||
7324 !alloc_cpumask_var(&scx_bypass_lb_resched_cpumask, GFP_KERNEL)) {
7325 pr_err("sched_ext: Failed to allocate cpumasks\n");
7326 return -ENOMEM;
7327 }
7328
7329 return 0;
7330 }
7331 __initcall(scx_init);
7332